summaryrefslogtreecommitdiff
path: root/theories/Logic/Diaconescu.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:02:20 +0100
committerGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:02:20 +0100
commit97fefe1fcca363a1317e066e7f4b99b9c1e9987b (patch)
tree97ec6b7d831cc5fb66328b0c63a11db1cbb2f158 /theories/Logic/Diaconescu.v
parent300293c119981054c95182a90c829058530a6b6f (diff)
Imported Upstream version 8.4~betaupstream/8.4_beta
Diffstat (limited to 'theories/Logic/Diaconescu.v')
-rw-r--r--theories/Logic/Diaconescu.v8
1 files changed, 3 insertions, 5 deletions
diff --git a/theories/Logic/Diaconescu.v b/theories/Logic/Diaconescu.v
index 257245cc..8569e55e 100644
--- a/theories/Logic/Diaconescu.v
+++ b/theories/Logic/Diaconescu.v
@@ -1,14 +1,12 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Diaconescu.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(** Diaconescu showed that the Axiom of Choice entails Excluded-Middle
in topoi [Diaconescu75]. Lacas and Werner adapted the proof to show
that the axiom of choice in equivalence classes entails
@@ -158,8 +156,8 @@ End PredExt_RelChoice_imp_EM.
(**********************************************************************)
(** * B. Proof-Irrel. + Rel. Axiom of Choice -> Excl.-Middle for Equality *)
-(** This is an adaptation of Diaconescu's paradox exploiting that
- proof-irrelevance is some form of extensionality *)
+(** This is an adaptation of Diaconescu's theorem, exploiting the
+ form of extensionality provided by proof-irrelevance *)
Section ProofIrrel_RelChoice_imp_EqEM.