summaryrefslogtreecommitdiff
path: root/theories/Lists
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/Lists
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/Lists')
-rw-r--r--theories/Lists/List.v1202
-rw-r--r--theories/Lists/ListSet.v53
-rw-r--r--theories/Lists/ListTactics.v48
-rw-r--r--theories/Lists/MonoList.v269
-rw-r--r--theories/Lists/SetoidList.v929
-rw-r--r--theories/Lists/StreamMemo.v48
-rw-r--r--theories/Lists/Streams.v8
-rw-r--r--theories/Lists/TheoryList.v50
-rwxr-xr-xtheories/Lists/intro.tex3
-rw-r--r--theories/Lists/vo.itarget7
10 files changed, 1174 insertions, 1443 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index c015854e..f42dc7fa 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: List.v 12446 2009-10-29 21:43:06Z glondu $ i*)
+(*i $Id$ i*)
Require Import Le Gt Minus Min Bool.
@@ -17,78 +17,47 @@ Set Implicit Arguments.
(** * Basics: definition of polymorphic lists and some operations *)
(******************************************************************)
-(** ** Definitions *)
+(** The definition of [list] is now in [Init/Datatypes],
+ as well as the definitions of [length] and [app] *)
+
+Open Scope list_scope.
Section Lists.
Variable A : Type.
- Inductive list : Type :=
- | nil : list
- | cons : A -> list -> list.
-
- Infix "::" := cons (at level 60, right associativity) : list_scope.
+ (** Head and tail *)
- Open Scope list_scope.
+ Definition hd (default:A) (l:list A) :=
+ match l with
+ | nil => default
+ | x :: _ => x
+ end.
- (** Head and tail *)
- Definition head (l:list) :=
+ Definition hd_error (l:list A) :=
match l with
| nil => error
| x :: _ => value x
end.
- Definition hd (default:A) (l:list) :=
- match l with
- | nil => default
- | x :: _ => x
- end.
-
- Definition tail (l:list) : list :=
+ Definition tl (l:list A) :=
match l with
| nil => nil
| a :: m => m
end.
- (** Length of lists *)
- Fixpoint length (l:list) : nat :=
- match l with
- | nil => 0
- | _ :: m => S (length m)
- end.
-
(** The [In] predicate *)
- Fixpoint In (a:A) (l:list) {struct l} : Prop :=
+ Fixpoint In (a:A) (l:list A) : Prop :=
match l with
| nil => False
| b :: m => b = a \/ In a m
end.
-
- (** Concatenation of two lists *)
- Fixpoint app (l m:list) {struct l} : list :=
- match l with
- | nil => m
- | a :: l1 => a :: app l1 m
- end.
-
- Infix "++" := app (right associativity, at level 60) : list_scope.
-
End Lists.
-(** Exporting list notations and tactics *)
-
-Implicit Arguments nil [A].
-Infix "::" := cons (at level 60, right associativity) : list_scope.
-Infix "++" := app (right associativity, at level 60) : list_scope.
-
-Open Scope list_scope.
-
-Delimit Scope list_scope with list.
-
-Bind Scope list_scope with list.
-
-Arguments Scope list [type_scope].
+(* Keep these notations local to prevent conflicting notations *)
+Local Notation "[ ]" := nil : list_scope.
+Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..) : list_scope.
(** ** Facts about lists *)
@@ -100,164 +69,172 @@ Section Facts.
(** *** Genereric facts *)
(** Discrimination *)
- Theorem nil_cons : forall (x:A) (l:list A), nil <> x :: l.
- Proof.
+ Theorem nil_cons : forall (x:A) (l:list A), [] <> x :: l.
+ Proof.
intros; discriminate.
Qed.
(** Destruction *)
- Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = nil}.
+ Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = []}.
Proof.
- induction l as [|a tl].
+ induction l as [|a tail].
right; reflexivity.
- left; exists a; exists tl; reflexivity.
+ left; exists a, tail; reflexivity.
Qed.
-
+
(** *** Head and tail *)
-
- Theorem head_nil : head (@nil A) = None.
+
+ Theorem hd_error_nil : hd_error (@nil A) = None.
Proof.
simpl; reflexivity.
Qed.
- Theorem head_cons : forall (l : list A) (x : A), head (x::l) = Some x.
+ Theorem hd_error_cons : forall (l : list A) (x : A), hd_error (x::l) = Some x.
Proof.
intros; simpl; reflexivity.
Qed.
(************************)
- (** *** Facts about [In] *)
+ (** *** Facts about [In] *)
(************************)
(** Characterization of [In] *)
-
+
Theorem in_eq : forall (a:A) (l:list A), In a (a :: l).
- Proof.
- simpl in |- *; auto.
+ Proof.
+ simpl; auto.
Qed.
-
+
Theorem in_cons : forall (a b:A) (l:list A), In b l -> In b (a :: l).
- Proof.
- simpl in |- *; auto.
+ Proof.
+ simpl; auto.
Qed.
- Theorem in_nil : forall a:A, ~ In a nil.
+ Theorem in_nil : forall a:A, ~ In a [].
Proof.
- unfold not in |- *; intros a H; inversion_clear H.
+ unfold not; intros a H; inversion_clear H.
Qed.
- Lemma In_split : forall x (l:list A), In x l -> exists l1, exists l2, l = l1++x::l2.
+ Theorem in_split : forall x (l:list A), In x l -> exists l1, exists l2, l = l1++x::l2.
Proof.
induction l; simpl; destruct 1.
subst a; auto.
- exists (@nil A); exists l; auto.
+ exists [], l; auto.
destruct (IHl H) as (l1,(l2,H0)).
- exists (a::l1); exists l2; simpl; f_equal; auto.
+ exists (a::l1), l2; simpl; f_equal; auto.
Qed.
(** Inversion *)
- Theorem in_inv : forall (a b:A) (l:list A), In b (a :: l) -> a = b \/ In b l.
+ Lemma in_inv : forall (a b:A) (l:list A), In b (a :: l) -> a = b \/ In b l.
Proof.
intros a b l H; inversion_clear H; auto.
Qed.
(** Decidability of [In] *)
- Theorem In_dec :
+ Theorem in_dec :
(forall x y:A, {x = y} + {x <> y}) ->
forall (a:A) (l:list A), {In a l} + {~ In a l}.
Proof.
intro H; induction l as [| a0 l IHl].
right; apply in_nil.
- destruct (H a0 a); simpl in |- *; auto.
- destruct IHl; simpl in |- *; auto.
- right; unfold not in |- *; intros [Hc1| Hc2]; auto.
+ destruct (H a0 a); simpl; auto.
+ destruct IHl; simpl; auto.
+ right; unfold not; intros [Hc1| Hc2]; auto.
Defined.
- (*************************)
+ (**************************)
(** *** Facts about [app] *)
- (*************************)
+ (**************************)
(** Discrimination *)
- Theorem app_cons_not_nil : forall (x y:list A) (a:A), nil <> x ++ a :: y.
+ Theorem app_cons_not_nil : forall (x y:list A) (a:A), [] <> x ++ a :: y.
Proof.
- unfold not in |- *.
- destruct x as [| a l]; simpl in |- *; intros.
+ unfold not.
+ destruct x as [| a l]; simpl; intros.
discriminate H.
discriminate H.
Qed.
(** Concat with [nil] *)
+ Theorem app_nil_l : forall l:list A, [] ++ l = l.
+ Proof.
+ reflexivity.
+ Qed.
- Theorem app_nil_end : forall l:list A, l = l ++ nil.
- Proof.
- induction l; simpl in |- *; auto.
- rewrite <- IHl; auto.
+ Theorem app_nil_r : forall l:list A, l ++ [] = l.
+ Proof.
+ induction l; simpl; f_equal; auto.
Qed.
+ (* begin hide *)
+ (* Deprecated *)
+ Theorem app_nil_end : forall (l:list A), l = l ++ [].
+ Proof. symmetry; apply app_nil_r. Qed.
+ (* end hide *)
+
(** [app] is associative *)
- Theorem app_ass : forall l m n:list A, (l ++ m) ++ n = l ++ m ++ n.
- Proof.
- intros. induction l; simpl in |- *; auto.
- now_show (a :: (l ++ m) ++ n = a :: l ++ m ++ n).
- rewrite <- IHl; auto.
+ Theorem app_assoc : forall l m n:list A, l ++ m ++ n = (l ++ m) ++ n.
+ Proof.
+ intros l m n; induction l; simpl; f_equal; auto.
Qed.
- Hint Resolve app_ass.
- Theorem ass_app : forall l m n:list A, l ++ m ++ n = (l ++ m) ++ n.
- Proof.
- auto using app_ass.
+ (* begin hide *)
+ (* Deprecated *)
+ Theorem app_assoc_reverse : forall l m n:list A, (l ++ m) ++ n = l ++ m ++ n.
+ Proof.
+ auto using app_assoc.
Qed.
+ Hint Resolve app_assoc_reverse.
+ (* end hide *)
- (** [app] commutes with [cons] *)
+ (** [app] commutes with [cons] *)
Theorem app_comm_cons : forall (x y:list A) (a:A), a :: (x ++ y) = (a :: x) ++ y.
Proof.
auto.
Qed.
+ (** Facts deduced from the result of a concatenation *)
-
- (** Facts deduced from the result of a concatenation *)
-
- Theorem app_eq_nil : forall l l':list A, l ++ l' = nil -> l = nil /\ l' = nil.
+ Theorem app_eq_nil : forall l l':list A, l ++ l' = [] -> l = [] /\ l' = [].
Proof.
- destruct l as [| x l]; destruct l' as [| y l']; simpl in |- *; auto.
+ destruct l as [| x l]; destruct l' as [| y l']; simpl; auto.
intro; discriminate.
intros H; discriminate H.
Qed.
Theorem app_eq_unit :
forall (x y:list A) (a:A),
- x ++ y = a :: nil -> x = nil /\ y = a :: nil \/ x = a :: nil /\ y = nil.
+ x ++ y = [a] -> x = [] /\ y = [a] \/ x = [a] /\ y = [].
Proof.
destruct x as [| a l]; [ destruct y as [| a l] | destruct y as [| a0 l0] ];
- simpl in |- *.
+ simpl.
intros a H; discriminate H.
left; split; auto.
right; split; auto.
generalize H.
- generalize (app_nil_end l); intros E.
- rewrite <- E; auto.
+ generalize (app_nil_r l); intros E.
+ rewrite -> E; auto.
intros.
injection H.
intro.
- cut (nil = l ++ a0 :: l0); auto.
+ cut ([] = l ++ a0 :: l0); auto.
intro.
generalize (app_cons_not_nil _ _ _ H1); intro.
elim H2.
Qed.
Lemma app_inj_tail :
- forall (x y:list A) (a b:A), x ++ a :: nil = y ++ b :: nil -> x = y /\ a = b.
+ forall (x y:list A) (a b:A), x ++ [a] = y ++ [b] -> x = y /\ a = b.
Proof.
induction x as [| x l IHl];
- [ destruct y as [| a l] | destruct y as [| a l0] ];
- simpl in |- *; auto.
+ [ destruct y as [| a l] | destruct y as [| a l0] ];
+ simpl; auto.
intros a b H.
injection H.
auto.
@@ -266,12 +243,12 @@ Section Facts.
generalize (app_cons_not_nil _ _ _ H0); destruct 1.
intros a b H.
injection H; intros.
- cut (nil = l ++ a :: nil); auto.
+ cut ([] = l ++ [a]); auto.
intro.
generalize (app_cons_not_nil _ _ _ H2); destruct 1.
intros a0 b H.
injection H; intros.
- destruct (IHl l0 a0 b H0).
+ destruct (IHl l0 a0 b H0).
split; auto.
rewrite <- H1; rewrite <- H2; reflexivity.
Qed.
@@ -285,9 +262,9 @@ Section Facts.
Qed.
Lemma in_app_or : forall (l m:list A) (a:A), In a (l ++ m) -> In a l \/ In a m.
- Proof.
+ Proof.
intros l m a.
- elim l; simpl in |- *; auto.
+ elim l; simpl; auto.
intros a0 y H H0.
now_show ((a0 = a \/ In a y) \/ In a m).
elim H0; auto.
@@ -297,9 +274,9 @@ Section Facts.
Qed.
Lemma in_or_app : forall (l m:list A) (a:A), In a l \/ In a m -> In a (l ++ m).
- Proof.
+ Proof.
intros l m a.
- elim l; simpl in |- *; intro H.
+ elim l; simpl; intro H.
now_show (In a m).
elim H; auto; intro H0.
now_show (In a m).
@@ -311,18 +288,23 @@ Section Facts.
now_show (H = a \/ In a (y ++ m)).
elim H2; auto.
Qed.
-
+
+ Lemma in_app_iff : forall l l' (a:A), In a (l++l') <-> In a l \/ In a l'.
+ Proof.
+ split; auto using in_app_or, in_or_app.
+ Qed.
+
Lemma app_inv_head:
- forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2.
+ forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2.
Proof.
induction l; simpl; auto; injection 1; auto.
Qed.
-
+
Lemma app_inv_tail:
- forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2.
+ forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2.
Proof.
intros l l1 l2; revert l1 l2 l.
- induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2];
+ induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2];
simpl; auto; intros l H.
absurd (length (x2 :: l2 ++ l) <= length l).
simpl; rewrite app_length; auto with arith.
@@ -335,10 +317,10 @@ Section Facts.
End Facts.
-Hint Resolve app_nil_end ass_app app_ass: datatypes v62.
+Hint Resolve app_assoc app_assoc_reverse: datatypes v62.
Hint Resolve app_comm_cons app_cons_not_nil: datatypes v62.
Hint Immediate app_eq_nil: datatypes v62.
-Hint Resolve app_eq_unit app_inj_tail: datatypes v62.
+Hint Resolve app_eq_unit app_inj_tail: datatypes v62.
Hint Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app: datatypes v62.
@@ -359,7 +341,7 @@ Section Elts.
match n, l with
| O, x :: l' => x
| O, other => default
- | S m, nil => default
+ | S m, [] => default
| S m, x :: t => nth m t default
end.
@@ -367,26 +349,26 @@ Section Elts.
match n, l with
| O, x :: l' => true
| O, other => false
- | S m, nil => false
+ | S m, [] => false
| S m, x :: t => nth_ok m t default
end.
Lemma nth_in_or_default :
forall (n:nat) (l:list A) (d:A), {In (nth n l d) l} + {nth n l d = d}.
(* Realizer nth_ok. Program_all. *)
- Proof.
+ Proof.
intros n l d; generalize n; induction l; intro n0.
right; case n0; trivial.
- case n0; simpl in |- *.
+ case n0; simpl.
auto.
- intro n1; elim (IHl n1); auto.
+ intro n1; elim (IHl n1); auto.
Qed.
Lemma nth_S_cons :
forall (n:nat) (l:list A) (d a:A),
In (nth n l d) l -> In (nth (S n) (a :: l) d) (a :: l).
- Proof.
- simpl in |- *; auto.
+ Proof.
+ simpl; auto.
Qed.
Fixpoint nth_error (l:list A) (n:nat) {struct n} : Exc A :=
@@ -402,13 +384,19 @@ Section Elts.
| None => default
end.
+ Lemma nth_default_eq :
+ forall n l (d:A), nth_default d l n = nth n l d.
+ Proof.
+ unfold nth_default; induction n; intros [ | ] ?; simpl; auto.
+ Qed.
+
Lemma nth_In :
forall (n:nat) (l:list A) (d:A), n < length l -> In (nth n l d) l.
Proof.
- unfold lt in |- *; induction n as [| n hn]; simpl in |- *.
- destruct l; simpl in |- *; [ inversion 2 | auto ].
- destruct l as [| a l hl]; simpl in |- *.
+ unfold lt; induction n as [| n hn]; simpl.
+ destruct l; simpl; [ inversion 2 | auto ].
+ destruct l as [| a l hl]; simpl.
inversion 2.
intros d ie; right; apply hn; auto with arith.
Qed.
@@ -420,7 +408,7 @@ Section Elts.
apply IHl; auto with arith.
Qed.
- Lemma nth_indep :
+ Lemma nth_indep :
forall l n d d', n < length l -> nth n l d = nth n l d'.
Proof.
induction l; simpl; intros; auto.
@@ -428,7 +416,7 @@ Section Elts.
destruct n; simpl; auto with arith.
Qed.
- Lemma app_nth1 :
+ Lemma app_nth1 :
forall l l' d n, n < length l -> nth n (l++l') d = nth n l d.
Proof.
induction l.
@@ -439,7 +427,7 @@ Section Elts.
intros; rewrite IHl; auto with arith.
Qed.
- Lemma app_nth2 :
+ Lemma app_nth2 :
forall l l' d n, n >= length l -> nth n (l++l') d = nth (n-length l) l' d.
Proof.
induction l.
@@ -461,53 +449,49 @@ Section Elts.
(** ** Remove *)
(*****************)
- Section Remove.
+ Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
- Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
-
- Fixpoint remove (x : A) (l : list A){struct l} : list A :=
- match l with
- | nil => nil
- | y::tl => if (eq_dec x y) then remove x tl else y::(remove x tl)
- end.
-
- Theorem remove_In : forall (l : list A) (x : A), ~ In x (remove x l).
- Proof.
- induction l as [|x l]; auto.
- intro y; simpl; destruct (eq_dec y x) as [yeqx | yneqx].
- apply IHl.
- unfold not; intro HF; simpl in HF; destruct HF; auto.
- apply (IHl y); assumption.
- Qed.
-
- End Remove.
+ Fixpoint remove (x : A) (l : list A) : list A :=
+ match l with
+ | [] => []
+ | y::tl => if (eq_dec x y) then remove x tl else y::(remove x tl)
+ end.
+
+ Theorem remove_In : forall (l : list A) (x : A), ~ In x (remove x l).
+ Proof.
+ induction l as [|x l]; auto.
+ intro y; simpl; destruct (eq_dec y x) as [yeqx | yneqx].
+ apply IHl.
+ unfold not; intro HF; simpl in HF; destruct HF; auto.
+ apply (IHl y); assumption.
+ Qed.
(******************************)
(** ** Last element of a list *)
(******************************)
- (** [last l d] returns the last element of the list [l],
+ (** [last l d] returns the last element of the list [l],
or the default value [d] if [l] is empty. *)
- Fixpoint last (l:list A) (d:A) {struct l} : A :=
- match l with
- | nil => d
- | a :: nil => a
+ Fixpoint last (l:list A) (d:A) : A :=
+ match l with
+ | [] => d
+ | [a] => a
| a :: l => last l d
end.
(** [removelast l] remove the last element of [l] *)
- Fixpoint removelast (l:list A) {struct l} : list A :=
- match l with
- | nil => nil
- | a :: nil => nil
+ Fixpoint removelast (l:list A) : list A :=
+ match l with
+ | [] => []
+ | [a] => []
| a :: l => a :: removelast l
end.
-
- Lemma app_removelast_last :
- forall l d, l<>nil -> l = removelast l ++ (last l d :: nil).
+
+ Lemma app_removelast_last :
+ forall l d, l <> [] -> l = removelast l ++ [last l d].
Proof.
induction l.
destruct 1; auto.
@@ -515,27 +499,27 @@ Section Elts.
destruct l; auto.
pattern (a0::l) at 1; rewrite IHl with d; auto; discriminate.
Qed.
-
- Lemma exists_last :
- forall l, l<>nil -> { l' : (list A) & { a : A | l = l'++a::nil}}.
- Proof.
+
+ Lemma exists_last :
+ forall l, l <> [] -> { l' : (list A) & { a : A | l = l' ++ [a]}}.
+ Proof.
induction l.
destruct 1; auto.
intros _.
destruct l.
- exists (@nil A); exists a; auto.
+ exists [], a; auto.
destruct IHl as [l' (a',H)]; try discriminate.
rewrite H.
- exists (a::l'); exists a'; auto.
+ exists (a::l'), a'; auto.
Qed.
- Lemma removelast_app :
- forall l l', l' <> nil -> removelast (l++l') = l ++ removelast l'.
+ Lemma removelast_app :
+ forall l l', l' <> [] -> removelast (l++l') = l ++ removelast l'.
Proof.
induction l.
simpl; auto.
simpl; intros.
- assert (l++l' <> nil).
+ assert (l++l' <> []).
destruct l.
simpl; auto.
simpl; discriminate.
@@ -543,32 +527,30 @@ Section Elts.
destruct (l++l'); [elim H0; auto|f_equal; auto].
Qed.
-
+
(****************************************)
(** ** Counting occurences of a element *)
(****************************************)
- Hypotheses eqA_dec : forall x y : A, {x = y}+{x <> y}.
-
- Fixpoint count_occ (l : list A) (x : A){struct l} : nat :=
- match l with
- | nil => 0
- | y :: tl =>
- let n := count_occ tl x in
- if eqA_dec y x then S n else n
+ Fixpoint count_occ (l : list A) (x : A) : nat :=
+ match l with
+ | [] => 0
+ | y :: tl =>
+ let n := count_occ tl x in
+ if eq_dec y x then S n else n
end.
-
+
(** Compatibility of count_occ with operations on list *)
Theorem count_occ_In : forall (l : list A) (x : A), In x l <-> count_occ l x > 0.
Proof.
induction l as [|y l].
simpl; intros; split; [destruct 1 | apply gt_irrefl].
- simpl. intro x; destruct (eqA_dec y x) as [Heq|Hneq].
- rewrite Heq; intuition.
+ simpl. intro x; destruct (eq_dec y x) as [Heq|Hneq].
+ rewrite Heq; intuition.
pose (IHl x). intuition.
Qed.
-
- Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = nil.
+
+ Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = [].
Proof.
split.
(* Case -> *)
@@ -578,14 +560,14 @@ Section Elts.
elim (O_S (count_occ l x)).
apply sym_eq.
generalize (H x).
- simpl. destruct (eqA_dec x x) as [|HF].
+ simpl. destruct (eq_dec x x) as [|HF].
trivial.
elim HF; reflexivity.
(* Case <- *)
intro H; rewrite H; simpl; reflexivity.
Qed.
-
- Lemma count_occ_nil : forall (x : A), count_occ nil x = 0.
+
+ Lemma count_occ_nil : forall (x : A), count_occ [] x = 0.
Proof.
intro x; simpl; reflexivity.
Qed.
@@ -593,13 +575,13 @@ Section Elts.
Lemma count_occ_cons_eq : forall (l : list A) (x y : A), x = y -> count_occ (x::l) y = S (count_occ l y).
Proof.
intros l x y H; simpl.
- destruct (eqA_dec x y); [reflexivity | contradiction].
+ destruct (eq_dec x y); [reflexivity | contradiction].
Qed.
-
+
Lemma count_occ_cons_neq : forall (l : list A) (x y : A), x <> y -> count_occ (x::l) y = count_occ l y.
Proof.
intros l x y H; simpl.
- destruct (eqA_dec x y); [contradiction | reflexivity].
+ destruct (eq_dec x y); [contradiction | reflexivity].
Qed.
End Elts.
@@ -620,38 +602,38 @@ Section ListOps.
Fixpoint rev (l:list A) : list A :=
match l with
- | nil => nil
- | x :: l' => rev l' ++ x :: nil
+ | [] => []
+ | x :: l' => rev l' ++ [x]
end.
- Lemma distr_rev : forall x y:list A, rev (x ++ y) = rev y ++ rev x.
+ Lemma rev_app_distr : forall x y:list A, rev (x ++ y) = rev y ++ rev x.
Proof.
induction x as [| a l IHl].
destruct y as [| a l].
- simpl in |- *.
+ simpl.
auto.
- simpl in |- *.
- apply app_nil_end; auto.
+ simpl.
+ rewrite app_nil_r; auto.
intro y.
- simpl in |- *.
+ simpl.
rewrite (IHl y).
- apply (app_ass (rev y) (rev l) (a :: nil)).
+ rewrite app_assoc; trivial.
Qed.
- Remark rev_unit : forall (l:list A) (a:A), rev (l ++ a :: nil) = a :: rev l.
+ Remark rev_unit : forall (l:list A) (a:A), rev (l ++ [a]) = a :: rev l.
Proof.
intros.
- apply (distr_rev l (a :: nil)); simpl in |- *; auto.
+ apply (rev_app_distr l [a]); simpl; auto.
Qed.
Lemma rev_involutive : forall l:list A, rev (rev l) = l.
Proof.
induction l as [| a l IHl].
- simpl in |- *; auto.
+ simpl; auto.
- simpl in |- *.
+ simpl.
rewrite (rev_unit (rev l) a).
rewrite IHl; auto.
Qed.
@@ -659,7 +641,7 @@ Section ListOps.
(** Compatibility with other operations *)
- Lemma In_rev : forall l x, In x l <-> In x (rev l).
+ Lemma in_rev : forall l x, In x l <-> In x (rev l).
Proof.
induction l.
simpl; intuition.
@@ -681,7 +663,7 @@ Section ListOps.
elim (length l); simpl; auto.
Qed.
- Lemma rev_nth : forall l d n, n < length l ->
+ Lemma rev_nth : forall l d n, n < length l ->
nth n (rev l) d = nth (length l - S n) l d.
Proof.
induction l.
@@ -704,309 +686,77 @@ Section ListOps.
Qed.
- (** An alternative tail-recursive definition for reverse *)
+ (** An alternative tail-recursive definition for reverse *)
- Fixpoint rev_append (l l': list A) {struct l} : list A :=
- match l with
- | nil => l'
+ Fixpoint rev_append (l l': list A) : list A :=
+ match l with
+ | [] => l'
| a::l => rev_append l (a::l')
end.
- Definition rev' l : list A := rev_append l nil.
-
- Notation rev_acc := rev_append (only parsing).
+ Definition rev' l : list A := rev_append l [].
- Lemma rev_append_rev : forall l l', rev_acc l l' = rev l ++ l'.
+ Lemma rev_append_rev : forall l l', rev_append l l' = rev l ++ l'.
Proof.
induction l; simpl; auto; intros.
- rewrite <- ass_app; firstorder.
+ rewrite <- app_assoc; firstorder.
Qed.
- Notation rev_acc_rev := rev_append_rev (only parsing).
-
- Lemma rev_alt : forall l, rev l = rev_append l nil.
+ Lemma rev_alt : forall l, rev l = rev_append l [].
Proof.
intros; rewrite rev_append_rev.
- apply app_nil_end.
+ rewrite app_nil_r; trivial.
Qed.
(*********************************************)
(** Reverse Induction Principle on Lists *)
(*********************************************)
-
+
Section Reverse_Induction.
-
- Unset Implicit Arguments.
-
+
Lemma rev_list_ind :
forall P:list A-> Prop,
- P nil ->
+ P [] ->
(forall (a:A) (l:list A), P (rev l) -> P (rev (a :: l))) ->
forall l:list A, P (rev l).
Proof.
induction l; auto.
Qed.
- Set Implicit Arguments.
-
+
Theorem rev_ind :
forall P:list A -> Prop,
- P nil ->
- (forall (x:A) (l:list A), P l -> P (l ++ x :: nil)) -> forall l:list A, P l.
+ P [] ->
+ (forall (x:A) (l:list A), P l -> P (l ++ [x])) -> forall l:list A, P l.
Proof.
intros.
generalize (rev_involutive l).
intros E; rewrite <- E.
apply (rev_list_ind P).
auto.
-
- simpl in |- *.
+
+ simpl.
intros.
apply (H0 a (rev l0)).
auto.
Qed.
-
- End Reverse_Induction.
-
-
-
- (***********************************)
- (** ** Lists modulo permutation *)
- (***********************************)
-
- Section Permutation.
-
- Inductive Permutation : list A -> list A -> Prop :=
- | perm_nil: Permutation nil nil
- | perm_skip: forall (x:A) (l l':list A), Permutation l l' -> Permutation (cons x l) (cons x l')
- | perm_swap: forall (x y:A) (l:list A), Permutation (cons y (cons x l)) (cons x (cons y l))
- | perm_trans: forall (l l' l'':list A), Permutation l l' -> Permutation l' l'' -> Permutation l l''.
-
- Hint Constructors Permutation.
-
- (** Some facts about [Permutation] *)
-
- Theorem Permutation_nil : forall (l : list A), Permutation nil l -> l = nil.
- Proof.
- intros l HF.
- set (m:=@nil A) in HF; assert (m = nil); [reflexivity|idtac]; clearbody m.
- induction HF; try elim (nil_cons (sym_eq H)); auto.
- Qed.
-
- Theorem Permutation_nil_cons : forall (l : list A) (x : A), ~ Permutation nil (x::l).
- Proof.
- unfold not; intros l x HF.
- elim (@nil_cons A x l). apply sym_eq. exact (Permutation_nil HF).
- Qed.
-
- (** Permutation over lists is a equivalence relation *)
-
- Theorem Permutation_refl : forall l : list A, Permutation l l.
- Proof.
- induction l; constructor. exact IHl.
- Qed.
-
- Theorem Permutation_sym : forall l l' : list A, Permutation l l' -> Permutation l' l.
- Proof.
- intros l l' Hperm; induction Hperm; auto.
- apply perm_trans with (l':=l'); assumption.
- Qed.
-
- Theorem Permutation_trans : forall l l' l'' : list A, Permutation l l' -> Permutation l' l'' -> Permutation l l''.
- Proof.
- exact perm_trans.
- Qed.
-
- Hint Resolve Permutation_refl Permutation_sym Permutation_trans.
-
- (** Compatibility with others operations on lists *)
-
- Theorem Permutation_in : forall (l l' : list A) (x : A), Permutation l l' -> In x l -> In x l'.
- Proof.
- intros l l' x Hperm; induction Hperm; simpl; tauto.
- Qed.
-
- Lemma Permutation_app_tail : forall (l l' tl : list A), Permutation l l' -> Permutation (l++tl) (l'++tl).
- Proof.
- intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto.
- eapply Permutation_trans with (l':=l'++tl); trivial.
- Qed.
-
- Lemma Permutation_app_head : forall (l tl tl' : list A), Permutation tl tl' -> Permutation (l++tl) (l++tl').
- Proof.
- intros l tl tl' Hperm; induction l; [trivial | repeat rewrite <- app_comm_cons; constructor; assumption].
- Qed.
-
- Theorem Permutation_app : forall (l m l' m' : list A), Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m').
- Proof.
- intros l m l' m' Hpermll' Hpermmm'; induction Hpermll' as [|x l l'|x y l|l l' l'']; repeat rewrite <- app_comm_cons; auto.
- apply Permutation_trans with (l' := (x :: y :: l ++ m));
- [idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial.
- apply Permutation_trans with (l' := (l' ++ m')); try assumption.
- apply Permutation_app_tail; assumption.
- Qed.
-
- Theorem Permutation_app_swap : forall (l l' : list A), Permutation (l++l') (l'++l).
- Proof.
- induction l as [|x l].
- simpl; intro l'; rewrite <- app_nil_end; trivial.
- induction l' as [|y l'].
- simpl; rewrite <- app_nil_end; trivial.
- simpl; apply Permutation_trans with (l' := x :: y :: l' ++ l).
- constructor; rewrite app_comm_cons; apply IHl.
- apply Permutation_trans with (l' := y :: x :: l' ++ l); constructor.
- apply Permutation_trans with (l' := x :: l ++ l'); auto.
- Qed.
-
- Theorem Permutation_cons_app : forall (l l1 l2:list A) a,
- Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2).
- Proof.
- intros l l1; revert l.
- induction l1.
- simpl.
- intros; apply perm_skip; auto.
- simpl; intros.
- apply perm_trans with (a0::a::l1++l2).
- apply perm_skip; auto.
- apply perm_trans with (a::a0::l1++l2).
- apply perm_swap; auto.
- apply perm_skip; auto.
- Qed.
- Hint Resolve Permutation_cons_app.
-
- Theorem Permutation_length : forall (l l' : list A), Permutation l l' -> length l = length l'.
- Proof.
- intros l l' Hperm; induction Hperm; simpl; auto.
- apply trans_eq with (y:= (length l')); trivial.
- Qed.
-
- Theorem Permutation_rev : forall (l : list A), Permutation l (rev l).
- Proof.
- induction l as [| x l]; simpl; trivial.
- apply Permutation_trans with (l' := (x::nil)++rev l).
- simpl; auto.
- apply Permutation_app_swap.
- Qed.
-
- Theorem Permutation_ind_bis :
- forall P : list A -> list A -> Prop,
- P (@nil A) (@nil A) ->
- (forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) ->
- (forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) ->
- (forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
- forall l l', Permutation l l' -> P l l'.
- Proof.
- intros P Hnil Hskip Hswap Htrans.
- induction 1; auto.
- apply Htrans with (x::y::l); auto.
- apply Hswap; auto.
- induction l; auto.
- apply Hskip; auto.
- apply Hskip; auto.
- induction l; auto.
- eauto.
- Qed.
-
- Ltac break_list l x l' H :=
- destruct l as [|x l']; simpl in *;
- injection H; intros; subst; clear H.
-
- Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a,
- Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4).
- Proof.
- set (P:=fun l l' =>
- forall a l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 -> Permutation (l1++l2) (l3++l4)).
- cut (forall l l', Permutation l l' -> P l l').
- intros; apply (H _ _ H0 a); auto.
- intros; apply (Permutation_ind_bis P); unfold P; clear P; try clear H l l'; simpl; auto.
- (* nil *)
- intros; destruct l1; simpl in *; discriminate.
- (* skip *)
- intros x l l' H IH; intros.
- break_list l1 b l1' H0; break_list l3 c l3' H1.
- auto.
- apply perm_trans with (l3'++c::l4); auto.
- apply perm_trans with (l1'++a::l2); auto using Permutation_cons_app.
- apply perm_skip.
- apply (IH a l1' l2 l3' l4); auto.
- (* contradict *)
- intros x y l l' Hp IH; intros.
- break_list l1 b l1' H; break_list l3 c l3' H0.
- auto.
- break_list l3' b l3'' H.
- auto.
- apply perm_trans with (c::l3''++b::l4); auto.
- break_list l1' c l1'' H1.
- auto.
- apply perm_trans with (b::l1''++c::l2); auto.
- break_list l3' d l3'' H; break_list l1' e l1'' H1.
- auto.
- apply perm_trans with (e::a::l1''++l2); auto.
- apply perm_trans with (e::l1''++a::l2); auto.
- apply perm_trans with (d::a::l3''++l4); auto.
- apply perm_trans with (d::l3''++a::l4); auto.
- apply perm_trans with (e::d::l1''++l2); auto.
- apply perm_skip; apply perm_skip.
- apply (IH a l1'' l2 l3'' l4); auto.
- (*trans*)
- intros.
- destruct (In_split a l') as (l'1,(l'2,H6)).
- apply (Permutation_in a H).
- subst l.
- apply in_or_app; right; red; auto.
- apply perm_trans with (l'1++l'2).
- apply (H0 _ _ _ _ _ H3 H6).
- apply (H2 _ _ _ _ _ H6 H4).
- Qed.
-
- Theorem Permutation_cons_inv :
- forall l l' a, Permutation (a::l) (a::l') -> Permutation l l'.
- Proof.
- intros; exact (Permutation_app_inv (@nil _) l (@nil _) l' a H).
- Qed.
-
- Theorem Permutation_cons_app_inv :
- forall l l1 l2 a, Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2).
- Proof.
- intros; exact (Permutation_app_inv (@nil _) l l1 l2 a H).
- Qed.
-
- Theorem Permutation_app_inv_l :
- forall l l1 l2, Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2.
- Proof.
- induction l; simpl; auto.
- intros.
- apply IHl.
- apply Permutation_cons_inv with a; auto.
- Qed.
-
- Theorem Permutation_app_inv_r :
- forall l l1 l2, Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2.
- Proof.
- induction l.
- intros l1 l2; do 2 rewrite <- app_nil_end; auto.
- intros.
- apply IHl.
- apply Permutation_app_inv with a; auto.
- Qed.
-
- End Permutation.
+ End Reverse_Induction.
(***********************************)
(** ** Decidable equality on lists *)
(***********************************)
- Hypotheses eqA_dec : forall (x y : A), {x = y}+{x <> y}.
+ Hypothesis eq_dec : forall (x y : A), {x = y}+{x <> y}.
Lemma list_eq_dec :
forall l l':list A, {l = l'} + {l <> l'}.
Proof.
induction l as [| x l IHl]; destruct l' as [| y l'].
left; trivial.
- right; apply nil_cons.
+ right; apply nil_cons.
right; unfold not; intro HF; apply (nil_cons (sym_eq HF)).
- destruct (eqA_dec x y) as [xeqy|xneqy]; destruct (IHl l') as [leql'|lneql'];
+ destruct (eq_dec x y) as [xeqy|xneqy]; destruct (IHl l') as [leql'|lneql'];
try (right; unfold not; intro HF; injection HF; intros; contradiction).
rewrite xeqy; rewrite leql'; left; trivial.
Qed.
@@ -1026,21 +776,19 @@ End ListOps.
Section Map.
Variables A B : Type.
Variable f : A -> B.
-
+
Fixpoint map (l:list A) : list B :=
match l with
| nil => nil
| cons a t => cons (f a) (map t)
end.
-
+
Lemma in_map :
forall (l:list A) (x:A), In x l -> In (f x) (map l).
- Proof.
- induction l as [| a l IHl]; simpl in |- *;
- [ auto
- | destruct 1; [ left; apply f_equal with (f := f); assumption | auto ] ].
+ Proof.
+ induction l; firstorder (subst; auto).
Qed.
-
+
Lemma in_map_iff : forall l y, In y (map l) <-> exists x, f x = y /\ In x l.
Proof.
induction l; firstorder (subst; auto).
@@ -1051,45 +799,48 @@ Section Map.
induction l; simpl; auto.
Qed.
- Lemma map_nth : forall l d n,
+ Lemma map_nth : forall l d n,
nth n (map l) (f d) = f (nth n l d).
Proof.
induction l; simpl map; destruct n; firstorder.
Qed.
-
- Lemma map_app : forall l l',
+
+ Lemma map_nth_error : forall n l d,
+ nth_error l n = Some d -> nth_error (map l) n = Some (f d).
+ Proof.
+ induction n; intros [ | ] ? Heq; simpl in *; inversion Heq; auto.
+ Qed.
+
+ Lemma map_app : forall l l',
map (l++l') = (map l)++(map l').
- Proof.
+ Proof.
induction l; simpl; auto.
intros; rewrite IHl; auto.
Qed.
-
+
Lemma map_rev : forall l, map (rev l) = rev (map l).
- Proof.
+ Proof.
induction l; simpl; auto.
rewrite map_app.
rewrite IHl; auto.
Qed.
- Hint Constructors Permutation.
-
- Lemma Permutation_map :
- forall l l', Permutation l l' -> Permutation (map l) (map l').
- Proof.
- induction 1; simpl; auto; eauto.
+ Lemma map_eq_nil : forall l, map l = [] -> l = [].
+ Proof.
+ destruct l; simpl; reflexivity || discriminate.
Qed.
(** [flat_map] *)
Definition flat_map (f:A -> list B) :=
- fix flat_map (l:list A) {struct l} : list B :=
+ fix flat_map (l:list A) : list B :=
match l with
| nil => nil
| cons x t => (f x)++(flat_map t)
end.
-
+
Lemma in_flat_map : forall (f:A->list B)(l:list A)(y:B),
- In y (flat_map f l) <-> exists x, In x l /\ In y (f x).
+ In y (flat_map f l) <-> exists x, In x l /\ In y (f x).
Proof.
induction l; simpl; split; intros.
contradiction.
@@ -1105,16 +856,22 @@ Section Map.
exists x; auto.
Qed.
-End Map.
+End Map.
+
+Lemma map_id : forall (A :Type) (l : list A),
+ map (fun x => x) l = l.
+Proof.
+ induction l; simpl; auto; rewrite IHl; auto.
+Qed.
-Lemma map_map : forall (A B C:Type)(f:A->B)(g:B->C) l,
+Lemma map_map : forall (A B C:Type)(f:A->B)(g:B->C) l,
map g (map f l) = map (fun x => g (f x)) l.
Proof.
induction l; simpl; auto.
rewrite IHl; auto.
Qed.
-Lemma map_ext :
+Lemma map_ext :
forall (A B : Type)(f g:A->B), (forall a, f a = g a) -> forall l, map f l = map g l.
Proof.
induction l; simpl; auto.
@@ -1129,17 +886,17 @@ Qed.
Section Fold_Left_Recursor.
Variables A B : Type.
Variable f : A -> B -> A.
-
- Fixpoint fold_left (l:list B) (a0:A) {struct l} : A :=
+
+ Fixpoint fold_left (l:list B) (a0:A) : A :=
match l with
| nil => a0
| cons b t => fold_left t (f a0 b)
end.
-
- Lemma fold_left_app : forall (l l':list B)(i:A),
+
+ Lemma fold_left_app : forall (l l':list B)(i:A),
fold_left (l++l') i = fold_left l' (fold_left l i).
Proof.
- induction l.
+ induction l.
simpl; auto.
intros.
simpl.
@@ -1148,7 +905,7 @@ Section Fold_Left_Recursor.
End Fold_Left_Recursor.
-Lemma fold_left_length :
+Lemma fold_left_length :
forall (A:Type)(l:list A), fold_left (fun x _ => S x) l 0 = length l.
Proof.
intro A.
@@ -1168,7 +925,7 @@ Section Fold_Right_Recursor.
Variables A B : Type.
Variable f : B -> A -> A.
Variable a0 : A.
-
+
Fixpoint fold_right (l:list B) : A :=
match l with
| nil => a0
@@ -1177,7 +934,7 @@ Section Fold_Right_Recursor.
End Fold_Right_Recursor.
- Lemma fold_right_app : forall (A B:Type)(f:A->B->B) l l' i,
+ Lemma fold_right_app : forall (A B:Type)(f:A->B->B) l l' i,
fold_right f i (l++l') = fold_right f (fold_right f i l') l.
Proof.
induction l.
@@ -1186,7 +943,7 @@ End Fold_Right_Recursor.
f_equal; auto.
Qed.
- Lemma fold_left_rev_right : forall (A B:Type)(f:A->B->B) l i,
+ Lemma fold_left_rev_right : forall (A B:Type)(f:A->B->B) l i,
fold_right f i (rev l) = fold_left (fun x y => f y x) l i.
Proof.
induction l.
@@ -1204,10 +961,10 @@ End Fold_Right_Recursor.
Proof.
destruct l as [| a l].
reflexivity.
- simpl in |- *.
+ simpl.
rewrite <- H0.
generalize a0 a.
- induction l as [| a3 l IHl]; simpl in |- *.
+ induction l as [| a3 l IHl]; simpl.
trivial.
intros.
rewrite H.
@@ -1223,7 +980,7 @@ End Fold_Right_Recursor.
(** [(list_power x y)] is [y^x], or the set of sequences of elts of [y]
indexed by elts of [x], sorted in lexicographic order. *)
- Fixpoint list_power (A B:Type)(l:list A) (l':list B) {struct l} :
+ Fixpoint list_power (A B:Type)(l:list A) (l':list B) :
list (list (A * B)) :=
match l with
| nil => cons nil nil
@@ -1237,20 +994,20 @@ End Fold_Right_Recursor.
(** ** Boolean operations over lists *)
(*************************************)
- Section Bool.
+ Section Bool.
Variable A : Type.
Variable f : A -> bool.
- (** find whether a boolean function can be satisfied by an
+ (** find whether a boolean function can be satisfied by an
elements of the list. *)
- Fixpoint existsb (l:list A) {struct l}: bool :=
- match l with
+ Fixpoint existsb (l:list A) : bool :=
+ match l with
| nil => false
| a::l => f a || existsb l
end.
- Lemma existsb_exists :
+ Lemma existsb_exists :
forall l, existsb l = true <-> exists x, In x l /\ f x = true.
Proof.
induction l; simpl; intuition.
@@ -1269,20 +1026,28 @@ End Fold_Right_Recursor.
inversion 1.
simpl; intros.
destruct (orb_false_elim _ _ H0); clear H0; auto.
- destruct n ; auto.
+ destruct n ; auto.
rewrite IHl; auto with arith.
Qed.
- (** find whether a boolean function is satisfied by
+ Lemma existsb_app : forall l1 l2,
+ existsb (l1++l2) = existsb l1 || existsb l2.
+ Proof.
+ induction l1; intros l2; simpl.
+ solve[auto].
+ case (f a); simpl; solve[auto].
+ Qed.
+
+ (** find whether a boolean function is satisfied by
all the elements of a list. *)
- Fixpoint forallb (l:list A) {struct l} : bool :=
- match l with
+ Fixpoint forallb (l:list A) : bool :=
+ match l with
| nil => true
| a::l => f a && forallb l
end.
- Lemma forallb_forall :
+ Lemma forallb_forall :
forall l, forallb l = true <-> (forall x, In x l -> f x = true).
Proof.
induction l; simpl; intuition.
@@ -1291,13 +1056,20 @@ End Fold_Right_Recursor.
destruct (andb_prop _ _ H1); auto.
assert (forallb l = true).
apply H0; intuition.
- rewrite H1; auto.
+ rewrite H1; auto.
Qed.
+ Lemma forallb_app :
+ forall l1 l2, forallb (l1++l2) = forallb l1 && forallb l2.
+ Proof.
+ induction l1; simpl.
+ solve[auto].
+ case (f a); simpl; solve[auto].
+ Qed.
(** [filter] *)
- Fixpoint filter (l:list A) : list A :=
- match l with
+ Fixpoint filter (l:list A) : list A :=
+ match l with
| nil => nil
| x :: l => if f x then x::(filter l) else filter l
end.
@@ -1320,10 +1092,10 @@ End Fold_Right_Recursor.
(** [partition] *)
- Fixpoint partition (l:list A) {struct l} : list A * list A :=
+ Fixpoint partition (l:list A) : list A * list A :=
match l with
| nil => (nil, nil)
- | x :: tl => let (g,d) := partition tl in
+ | x :: tl => let (g,d) := partition tl in
if f x then (x::g,d) else (g,x::d)
end.
@@ -1338,17 +1110,17 @@ End Fold_Right_Recursor.
Section ListPairs.
Variables A B : Type.
-
+
(** [split] derives two lists from a list of pairs *)
- Fixpoint split (l:list (A*B)) { struct l }: list A * list B :=
+ Fixpoint split (l:list (A*B)) : list A * list B :=
match l with
| nil => (nil, nil)
| (x,y) :: tl => let (g,d) := split tl in (x::g, y::d)
end.
- Lemma in_split_l : forall (l:list (A*B))(p:A*B),
- In p l -> In (fst p) (fst (split l)).
+ Lemma in_split_l : forall (l:list (A*B))(p:A*B),
+ In p l -> In (fst p) (fst (split l)).
Proof.
induction l; simpl; intros; auto.
destruct p; destruct a; destruct (split l); simpl in *.
@@ -1357,8 +1129,8 @@ End Fold_Right_Recursor.
right; apply (IHl (a0,b) H).
Qed.
- Lemma in_split_r : forall (l:list (A*B))(p:A*B),
- In p l -> In (snd p) (snd (split l)).
+ Lemma in_split_r : forall (l:list (A*B))(p:A*B),
+ In p l -> In (snd p) (snd (split l)).
Proof.
induction l; simpl; intros; auto.
destruct p; destruct a; destruct (split l); simpl in *.
@@ -1367,7 +1139,7 @@ End Fold_Right_Recursor.
right; apply (IHl (a0,b) H).
Qed.
- Lemma split_nth : forall (l:list (A*B))(n:nat)(d:A*B),
+ Lemma split_nth : forall (l:list (A*B))(n:nat)(d:A*B),
nth n l d = (nth n (fst (split l)) (fst d), nth n (snd (split l)) (snd d)).
Proof.
induction l.
@@ -1379,40 +1151,40 @@ End Fold_Right_Recursor.
Qed.
Lemma split_length_l : forall (l:list (A*B)),
- length (fst (split l)) = length l.
+ length (fst (split l)) = length l.
Proof.
induction l; simpl; auto.
destruct a; destruct (split l); simpl; auto.
Qed.
Lemma split_length_r : forall (l:list (A*B)),
- length (snd (split l)) = length l.
+ length (snd (split l)) = length l.
Proof.
induction l; simpl; auto.
destruct a; destruct (split l); simpl; auto.
Qed.
- (** [combine] is the opposite of [split].
- Lists given to [combine] are meant to be of same length.
+ (** [combine] is the opposite of [split].
+ Lists given to [combine] are meant to be of same length.
If not, [combine] stops on the shorter list *)
- Fixpoint combine (l : list A) (l' : list B){struct l} : list (A*B) :=
+ Fixpoint combine (l : list A) (l' : list B) : list (A*B) :=
match l,l' with
| x::tl, y::tl' => (x,y)::(combine tl tl')
| _, _ => nil
end.
- Lemma split_combine : forall (l: list (A*B)),
+ Lemma split_combine : forall (l: list (A*B)),
let (l1,l2) := split l in combine l1 l2 = l.
Proof.
induction l.
simpl; auto.
- destruct a; simpl.
+ destruct a; simpl.
destruct (split l); simpl in *.
f_equal; auto.
Qed.
- Lemma combine_split : forall (l:list A)(l':list B), length l = length l' ->
+ Lemma combine_split : forall (l:list A)(l':list B), length l = length l' ->
split (combine l l') = (l,l').
Proof.
induction l; destruct l'; simpl; intros; auto; try discriminate.
@@ -1420,19 +1192,19 @@ End Fold_Right_Recursor.
rewrite IHl; auto.
Qed.
- Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B),
+ Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (combine l l') -> In x l.
Proof.
induction l.
simpl; auto.
destruct l'; simpl; auto; intros.
- contradiction.
+ contradiction.
destruct H.
injection H; auto.
right; apply IHl with l' y; auto.
Qed.
- Lemma in_combine_r : forall (l:list A)(l':list B)(x:A)(y:B),
+ Lemma in_combine_r : forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (combine l l') -> In y l'.
Proof.
induction l.
@@ -1443,7 +1215,7 @@ End Fold_Right_Recursor.
right; apply IHl with x; auto.
Qed.
- Lemma combine_length : forall (l:list A)(l':list B),
+ Lemma combine_length : forall (l:list A)(l':list B),
length (combine l l') = min (length l) (length l').
Proof.
induction l.
@@ -1451,8 +1223,8 @@ End Fold_Right_Recursor.
destruct l'; simpl; auto.
Qed.
- Lemma combine_nth : forall (l:list A)(l':list B)(n:nat)(x:A)(y:B),
- length l = length l' ->
+ Lemma combine_nth : forall (l:list A)(l':list B)(n:nat)(x:A)(y:B),
+ length l = length l' ->
nth n (combine l l') (x,y) = (nth n l x, nth n l' y).
Proof.
induction l; destruct l'; intros; try discriminate.
@@ -1461,10 +1233,10 @@ End Fold_Right_Recursor.
Qed.
(** [list_prod] has the same signature as [combine], but unlike
- [combine], it adds every possible pairs, not only those at the
+ [combine], it adds every possible pairs, not only those at the
same position. *)
- Fixpoint list_prod (l:list A) (l':list B) {struct l} :
+ Fixpoint list_prod (l:list A) (l':list B) :
list (A * B) :=
match l with
| nil => nil
@@ -1474,25 +1246,25 @@ End Fold_Right_Recursor.
Lemma in_prod_aux :
forall (x:A) (y:B) (l:list B),
In y l -> In (x, y) (map (fun y0:B => (x, y0)) l).
- Proof.
+ Proof.
induction l;
- [ simpl in |- *; auto
- | simpl in |- *; destruct 1 as [H1| ];
+ [ simpl; auto
+ | simpl; destruct 1 as [H1| ];
[ left; rewrite H1; trivial | right; auto ] ].
Qed.
Lemma in_prod :
forall (l:list A) (l':list B) (x:A) (y:B),
In x l -> In y l' -> In (x, y) (list_prod l l').
- Proof.
+ Proof.
induction l;
- [ simpl in |- *; tauto
- | simpl in |- *; intros; apply in_or_app; destruct H;
+ [ simpl; tauto
+ | simpl; intros; apply in_or_app; destruct H;
[ left; rewrite H; apply in_prod_aux; assumption | right; auto ] ].
Qed.
- Lemma in_prod_iff :
- forall (l:list A)(l':list B)(x:A)(y:B),
+ Lemma in_prod_iff :
+ forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (list_prod l l') <-> In x l /\ In y l'.
Proof.
split; [ | intros; apply in_prod; intuition ].
@@ -1503,9 +1275,9 @@ End Fold_Right_Recursor.
destruct (H1 H0) as (z,(H2,H3)); clear H0 H1.
injection H2; clear H2; intros; subst; intuition.
intuition.
- Qed.
+ Qed.
- Lemma prod_length : forall (l:list A)(l':list B),
+ Lemma prod_length : forall (l:list A)(l':list B),
length (list_prod l l') = (length l) * (length l').
Proof.
induction l; simpl; auto.
@@ -1520,9 +1292,9 @@ End Fold_Right_Recursor.
-(***************************************)
-(** * Miscelenous operations on lists *)
-(***************************************)
+(*****************************************)
+(** * Miscellaneous operations on lists *)
+(*****************************************)
@@ -1539,34 +1311,34 @@ Section length_order.
Variables l m n : list A.
Lemma lel_refl : lel l l.
- Proof.
- unfold lel in |- *; auto with arith.
+ Proof.
+ unfold lel; auto with arith.
Qed.
Lemma lel_trans : lel l m -> lel m n -> lel l n.
- Proof.
- unfold lel in |- *; intros.
+ Proof.
+ unfold lel; intros.
now_show (length l <= length n).
apply le_trans with (length m); auto with arith.
Qed.
Lemma lel_cons_cons : lel l m -> lel (a :: l) (b :: m).
- Proof.
- unfold lel in |- *; simpl in |- *; auto with arith.
+ Proof.
+ unfold lel; simpl; auto with arith.
Qed.
Lemma lel_cons : lel l m -> lel l (b :: m).
- Proof.
- unfold lel in |- *; simpl in |- *; auto with arith.
+ Proof.
+ unfold lel; simpl; auto with arith.
Qed.
Lemma lel_tail : lel (a :: l) (b :: m) -> lel l m.
- Proof.
- unfold lel in |- *; simpl in |- *; auto with arith.
+ Proof.
+ unfold lel; simpl; auto with arith.
Qed.
Lemma lel_nil : forall l':list A, lel l' nil -> nil = l'.
- Proof.
+ Proof.
intro l'; elim l'; auto with arith.
intros a' y H H0.
now_show (nil = a' :: y).
@@ -1588,40 +1360,40 @@ Section SetIncl.
Definition incl (l m:list A) := forall a:A, In a l -> In a m.
Hint Unfold incl.
-
+
Lemma incl_refl : forall l:list A, incl l l.
- Proof.
+ Proof.
auto.
Qed.
Hint Resolve incl_refl.
-
+
Lemma incl_tl : forall (a:A) (l m:list A), incl l m -> incl l (a :: m).
- Proof.
+ Proof.
auto with datatypes.
Qed.
Hint Immediate incl_tl.
Lemma incl_tran : forall l m n:list A, incl l m -> incl m n -> incl l n.
- Proof.
+ Proof.
auto.
Qed.
-
+
Lemma incl_appl : forall l m n:list A, incl l n -> incl l (n ++ m).
- Proof.
+ Proof.
auto with datatypes.
Qed.
Hint Immediate incl_appl.
-
+
Lemma incl_appr : forall l m n:list A, incl l n -> incl l (m ++ n).
- Proof.
+ Proof.
auto with datatypes.
Qed.
Hint Immediate incl_appr.
-
+
Lemma incl_cons :
forall (a:A) (l m:list A), In a m -> incl l m -> incl (a :: l) m.
- Proof.
- unfold incl in |- *; simpl in |- *; intros a l m H H0 a0 H1.
+ Proof.
+ unfold incl; simpl; intros a l m H H0 a0 H1.
now_show (In a0 m).
elim H1.
now_show (a = a0 -> In a0 m).
@@ -1632,15 +1404,15 @@ Section SetIncl.
auto.
Qed.
Hint Resolve incl_cons.
-
+
Lemma incl_app : forall l m n:list A, incl l n -> incl m n -> incl (l ++ m) n.
- Proof.
- unfold incl in |- *; simpl in |- *; intros l m n H H0 a H1.
+ Proof.
+ unfold incl; simpl; intros l m n H H0 a H1.
now_show (In a n).
elim (in_app_or _ _ _ H1); auto.
Qed.
Hint Resolve incl_app.
-
+
End SetIncl.
Hint Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons
@@ -1655,24 +1427,24 @@ Section Cutting.
Variable A : Type.
- Fixpoint firstn (n:nat)(l:list A) {struct n} : list A :=
- match n with
- | 0 => nil
- | S n => match l with
- | nil => nil
+ Fixpoint firstn (n:nat)(l:list A) : list A :=
+ match n with
+ | 0 => nil
+ | S n => match l with
+ | nil => nil
| a::l => a::(firstn n l)
end
end.
-
- Fixpoint skipn (n:nat)(l:list A) { struct n } : list A :=
- match n with
- | 0 => l
- | S n => match l with
- | nil => nil
+
+ Fixpoint skipn (n:nat)(l:list A) : list A :=
+ match n with
+ | 0 => l
+ | S n => match l with
+ | nil => nil
| a::l => skipn n l
end
end.
-
+
Lemma firstn_skipn : forall n l, firstn n l ++ skipn n l = l.
Proof.
induction n.
@@ -1686,7 +1458,7 @@ Section Cutting.
induction n; destruct l; simpl; auto.
Qed.
- Lemma removelast_firstn : forall n l, n < length l ->
+ Lemma removelast_firstn : forall n l, n < length l ->
removelast (firstn (S n) l) = firstn n l.
Proof.
induction n; destruct l.
@@ -1699,13 +1471,13 @@ Section Cutting.
change (firstn (S n) (a::l)) with (a::firstn n l).
rewrite removelast_app.
rewrite IHn; auto with arith.
-
+
clear IHn; destruct l; simpl in *; try discriminate.
inversion_clear H.
inversion_clear H0.
Qed.
- Lemma firstn_removelast : forall n l, n < length l ->
+ Lemma firstn_removelast : forall n l, n < length l ->
firstn n (removelast l) = firstn n l.
Proof.
induction n; destruct l.
@@ -1730,10 +1502,10 @@ End Cutting.
Section ReDun.
Variable A : Type.
-
- Inductive NoDup : list A -> Prop :=
- | NoDup_nil : NoDup nil
- | NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
+
+ Inductive NoDup : list A -> Prop :=
+ | NoDup_nil : NoDup nil
+ | NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
Lemma NoDup_remove_1 : forall l l' a, NoDup (l++a::l') -> NoDup (l++l').
Proof.
@@ -1758,34 +1530,6 @@ Section ReDun.
destruct (IHl _ _ H1); auto.
Qed.
- Lemma NoDup_Permutation : forall l l',
- NoDup l -> NoDup l' -> (forall x, In x l <-> In x l') -> Permutation l l'.
- Proof.
- induction l.
- destruct l'; simpl; intros.
- apply perm_nil.
- destruct (H1 a) as (_,H2); destruct H2; auto.
- intros.
- destruct (In_split a l') as (l'1,(l'2,H2)).
- destruct (H1 a) as (H2,H3); simpl in *; auto.
- subst l'.
- apply Permutation_cons_app.
- inversion_clear H.
- apply IHl; auto.
- apply NoDup_remove_1 with a; auto.
- intro x; split; intros.
- assert (In x (l'1++a::l'2)).
- destruct (H1 x); simpl in *; auto.
- apply in_or_app; destruct (in_app_or _ _ _ H4); auto.
- destruct H5; auto.
- subst x; destruct H2; auto.
- assert (In x (l'1++a::l'2)).
- apply in_or_app; destruct (in_app_or _ _ _ H); simpl; auto.
- destruct (H1 x) as (_,H5); destruct H5; auto.
- subst x.
- destruct (NoDup_remove_2 _ _ _ H0 H).
- Qed.
-
End ReDun.
@@ -1795,21 +1539,21 @@ End ReDun.
Section NatSeq.
- (** [seq] computes the sequence of [len] contiguous integers
+ (** [seq] computes the sequence of [len] contiguous integers
that starts at [start]. For instance, [seq 2 3] is [2::3::4::nil]. *)
-
- Fixpoint seq (start len:nat) {struct len} : list nat :=
- match len with
+
+ Fixpoint seq (start len:nat) : list nat :=
+ match len with
| 0 => nil
| S len => start :: seq (S start) len
- end.
-
+ end.
+
Lemma seq_length : forall len start, length (seq start len) = len.
Proof.
induction len; simpl; auto.
Qed.
-
- Lemma seq_nth : forall len start n d,
+
+ Lemma seq_nth : forall len start n d,
n < len -> nth n (seq start len) d = start+n.
Proof.
induction len; intros.
@@ -1822,7 +1566,7 @@ Section NatSeq.
Lemma seq_shift : forall len start,
map S (seq start len) = seq (S start) len.
- Proof.
+ Proof.
induction len; simpl; auto.
intros.
rewrite IHlen.
@@ -1832,11 +1576,172 @@ Section NatSeq.
End NatSeq.
+(** * Existential and universal predicates over lists *)
+
+Inductive Exists {A} (P:A->Prop) : list A -> Prop :=
+ | Exists_cons_hd : forall x l, P x -> Exists P (x::l)
+ | Exists_cons_tl : forall x l, Exists P l -> Exists P (x::l).
+Hint Constructors Exists.
+
+Lemma Exists_exists : forall A P (l:list A),
+ Exists P l <-> (exists x, In x l /\ P x).
+Proof.
+split.
+induction 1; firstorder.
+induction l; firstorder; subst; auto.
+Qed.
+
+Lemma Exists_nil : forall A (P:A->Prop), Exists P nil <-> False.
+Proof. split; inversion 1. Qed.
+
+Lemma Exists_cons : forall A (P:A->Prop) x l,
+ Exists P (x::l) <-> P x \/ Exists P l.
+Proof. split; inversion 1; auto. Qed.
+
+
+Inductive Forall {A} (P:A->Prop) : list A -> Prop :=
+ | Forall_nil : Forall P nil
+ | Forall_cons : forall x l, P x -> Forall P l -> Forall P (x::l).
+Hint Constructors Forall.
- (** * Exporting hints and tactics *)
+Lemma Forall_forall : forall A P (l:list A),
+ Forall P l <-> (forall x, In x l -> P x).
+Proof.
+split.
+induction 1; firstorder; subst; auto.
+induction l; firstorder.
+Qed.
+
+Lemma Forall_inv : forall A P (a:A) l, Forall P (a :: l) -> P a.
+Proof.
+intros; inversion H; trivial.
+Defined.
+
+Lemma Forall_rect : forall A (P:A->Prop) (Q : list A -> Type),
+ Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall P l -> Q l.
+Proof.
+intros A P Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption.
+Defined.
+
+Lemma Forall_impl : forall A (P Q : A -> Prop), (forall a, P a -> Q a) ->
+ forall l, Forall P l -> Forall Q l.
+Proof.
+ intros A P Q Himp l H.
+ induction H; firstorder.
+Qed.
+(** [Forall2]: stating that elements of two lists are pairwise related. *)
-Hint Rewrite
+Inductive Forall2 A B (R:A->B->Prop) : list A -> list B -> Prop :=
+ | Forall2_nil : Forall2 R [] []
+ | Forall2_cons : forall x y l l',
+ R x y -> Forall2 R l l' -> Forall2 R (x::l) (y::l').
+Hint Constructors Forall2.
+
+Theorem Forall2_refl : forall A B (R:A->B->Prop), Forall2 R [] [].
+Proof. exact Forall2_nil. Qed.
+
+Theorem Forall2_app_inv_l : forall A B (R:A->B->Prop) l1 l2 l',
+ Forall2 R (l1 ++ l2) l' ->
+ exists l1', exists l2', Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l' = l1' ++ l2'.
+Proof.
+ induction l1; intros.
+ exists [], l'; auto.
+ simpl in H; inversion H; subst; clear H.
+ apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->).
+ exists (y::l1'), l2'; simpl; auto.
+Qed.
+
+Theorem Forall2_app_inv_r : forall A B (R:A->B->Prop) l1' l2' l,
+ Forall2 R l (l1' ++ l2') ->
+ exists l1, exists l2, Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l = l1 ++ l2.
+Proof.
+ induction l1'; intros.
+ exists [], l; auto.
+ simpl in H; inversion H; subst; clear H.
+ apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->).
+ exists (x::l1), l2; simpl; auto.
+Qed.
+
+Theorem Forall2_app : forall A B (R:A->B->Prop) l1 l2 l1' l2',
+ Forall2 R l1 l1' -> Forall2 R l2 l2' -> Forall2 R (l1 ++ l2) (l1' ++ l2').
+Proof.
+ intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto.
+Qed.
+
+(** [ForallPairs] : specifies that a certain relation should
+ always hold when inspecting all possible pairs of elements of a list. *)
+
+Definition ForallPairs A (R : A -> A -> Prop) l :=
+ forall a b, In a l -> In b l -> R a b.
+
+(** [ForallOrdPairs] : we still check a relation over all pairs
+ of elements of a list, but now the order of elements matters. *)
+
+Inductive ForallOrdPairs A (R : A -> A -> Prop) : list A -> Prop :=
+ | FOP_nil : ForallOrdPairs R nil
+ | FOP_cons : forall a l,
+ Forall (R a) l -> ForallOrdPairs R l -> ForallOrdPairs R (a::l).
+Hint Constructors ForallOrdPairs.
+
+Lemma ForallOrdPairs_In : forall A (R:A->A->Prop) l,
+ ForallOrdPairs R l ->
+ forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x.
+Proof.
+ induction 1.
+ inversion 1.
+ simpl; destruct 1; destruct 1; repeat subst; auto.
+ right; left. apply -> Forall_forall; eauto.
+ right; right. apply -> Forall_forall; eauto.
+Qed.
+
+
+(** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true
+ only when [R] is symmetric and reflexive. *)
+
+Lemma ForallPairs_ForallOrdPairs : forall A (R:A->A->Prop) l,
+ ForallPairs R l -> ForallOrdPairs R l.
+Proof.
+ induction l; auto. intros H.
+ constructor.
+ apply <- Forall_forall. intros; apply H; simpl; auto.
+ apply IHl. red; intros; apply H; simpl; auto.
+Qed.
+
+Lemma ForallOrdPairs_ForallPairs : forall A (R:A->A->Prop),
+ (forall x, R x x) ->
+ (forall x y, R x y -> R y x) ->
+ forall l, ForallOrdPairs R l -> ForallPairs R l.
+Proof.
+ intros A R Refl Sym l Hl x y Hx Hy.
+ destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition.
+Qed.
+
+(** * Inversion of predicates over lists based on head symbol *)
+
+Ltac is_list_constr c :=
+ match c with
+ | nil => idtac
+ | (_::_) => idtac
+ | _ => fail
+ end.
+
+Ltac invlist f :=
+ match goal with
+ | H:f ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | H:f _ _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f
+ | _ => idtac
+ end.
+
+
+
+(** * Exporting hints and tactics *)
+
+
+Hint Rewrite
rev_involutive (* rev (rev l) = l *)
rev_unit (* rev (l ++ a :: nil) = a :: rev l *)
map_nth (* nth n (map f l) (f d) = f (nth n l d) *)
@@ -1844,11 +1749,36 @@ Hint Rewrite
seq_length (* length (seq start len) = len *)
app_length (* length (l ++ l') = length l + length l' *)
rev_length (* length (rev l) = length l *)
- : list.
-
-Hint Rewrite <-
- app_nil_end (* l = l ++ nil *)
+ app_nil_r (* l ++ nil = l *)
: list.
Ltac simpl_list := autorewrite with list.
Ltac ssimpl_list := autorewrite with list using simpl.
+
+(* begin hide *)
+(* Compatibility notations after the migration of [list] to [Datatypes] *)
+Notation list := list (only parsing).
+Notation list_rect := list_rect (only parsing).
+Notation list_rec := list_rec (only parsing).
+Notation list_ind := list_ind (only parsing).
+Notation nil := nil (only parsing).
+Notation cons := cons (only parsing).
+Notation length := length (only parsing).
+Notation app := app (only parsing).
+(* Compatibility Names *)
+Notation tail := tl (only parsing).
+Notation head := hd_error (only parsing).
+Notation head_nil := hd_error_nil (only parsing).
+Notation head_cons := hd_error_cons (only parsing).
+Notation ass_app := app_assoc (only parsing).
+Notation app_ass := app_assoc_reverse (only parsing).
+Notation In_split := in_split (only parsing).
+Notation In_rev := in_rev (only parsing).
+Notation In_dec := in_dec (only parsing).
+Notation distr_rev := rev_app_distr (only parsing).
+Notation rev_acc := rev_append (only parsing).
+Notation rev_acc_rev := rev_append_rev (only parsing).
+Notation AllS := Forall (only parsing). (* was formerly in TheoryList *)
+
+Hint Resolve app_nil_end : datatypes v62.
+(* end hide *)
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
index 021a64c1..20c9e7e8 100644
--- a/theories/Lists/ListSet.v
+++ b/theories/Lists/ListSet.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ListSet.v 10616 2008-03-04 17:33:35Z letouzey $ i*)
+(*i $Id$ i*)
(** A Library for finite sets, implemented as lists *)
@@ -27,7 +27,7 @@ Section first_definitions.
Definition empty_set : set := nil.
- Fixpoint set_add (a:A) (x:set) {struct x} : set :=
+ Fixpoint set_add (a:A) (x:set) : set :=
match x with
| nil => a :: nil
| a1 :: x1 =>
@@ -38,7 +38,7 @@ Section first_definitions.
end.
- Fixpoint set_mem (a:A) (x:set) {struct x} : bool :=
+ Fixpoint set_mem (a:A) (x:set) : bool :=
match x with
| nil => false
| a1 :: x1 =>
@@ -47,9 +47,9 @@ Section first_definitions.
| right _ => set_mem a x1
end
end.
-
+
(** If [a] belongs to [x], removes [a] from [x]. If not, does nothing *)
- Fixpoint set_remove (a:A) (x:set) {struct x} : set :=
+ Fixpoint set_remove (a:A) (x:set) : set :=
match x with
| nil => empty_set
| a1 :: x1 =>
@@ -67,20 +67,20 @@ Section first_definitions.
if set_mem a1 y then a1 :: set_inter x1 y else set_inter x1 y
end.
- Fixpoint set_union (x y:set) {struct y} : set :=
+ Fixpoint set_union (x y:set) : set :=
match y with
| nil => x
| a1 :: y1 => set_add a1 (set_union x y1)
end.
-
+
(** returns the set of all els of [x] that does not belong to [y] *)
- Fixpoint set_diff (x y:set) {struct x} : set :=
+ Fixpoint set_diff (x y:set) : set :=
match x with
| nil => nil
| a1 :: x1 =>
if set_mem a1 y then set_diff x1 y else set_add a1 (set_diff x1 y)
end.
-
+
Definition set_In : A -> set -> Prop := In (A:=A).
@@ -123,7 +123,7 @@ Section first_definitions.
case H3; auto.
Qed.
-
+
Lemma set_mem_correct1 :
forall (a:A) (x:set), set_mem a x = true -> set_In a x.
Proof.
@@ -191,11 +191,11 @@ Section first_definitions.
Lemma set_add_intro :
forall (a b:A) (x:set), a = b \/ set_In a x -> set_In a (set_add b x).
-
+
Proof.
intros a b x [H1| H2]; auto with datatypes.
Qed.
-
+
Lemma set_add_elim :
forall (a b:A) (x:set), set_In a (set_add b x) -> a = b \/ set_In a x.
@@ -225,7 +225,7 @@ Section first_definitions.
simple induction x; simpl in |- *.
discriminate.
intros; elim (Aeq_dec a a0); intros; discriminate.
- Qed.
+ Qed.
Lemma set_union_intro1 :
@@ -289,7 +289,7 @@ Section first_definitions.
elim (set_mem a y); simpl in |- *; intros.
auto with datatypes.
absurd (set_In a y); auto with datatypes.
- elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ].
+ elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ].
Qed.
Lemma set_inter_elim1 :
@@ -324,7 +324,7 @@ Section first_definitions.
set_In a (set_inter x y) -> set_In a x /\ set_In a y.
Proof.
eauto with datatypes.
- Qed.
+ Qed.
Lemma set_diff_intro :
forall (a:A) (x y:set),
@@ -354,7 +354,7 @@ Section first_definitions.
forall (a:A) (x y:set), set_In a (set_diff x y) -> ~ set_In a y.
intros a x y; elim x; simpl in |- *.
intros; contradiction.
- intros a0 l Hrec.
+ intros a0 l Hrec.
apply set_mem_ind2; auto.
intros H1 H2; case (set_add_elim _ _ _ H2); intros; auto.
rewrite H; trivial.
@@ -373,24 +373,23 @@ End first_definitions.
Section other_definitions.
- Variables A B : Type.
-
- Definition set_prod : set A -> set B -> set (A * B) :=
- list_prod (A:=A) (B:=B).
+ Definition set_prod : forall {A B:Type}, set A -> set B -> set (A * B) :=
+ list_prod.
(** [B^A], set of applications from [A] to [B] *)
- Definition set_power : set A -> set B -> set (set (A * B)) :=
- list_power (A:=A) (B:=B).
+ Definition set_power : forall {A B:Type}, set A -> set B -> set (set (A * B)) :=
+ list_power.
- Definition set_map : (A -> B) -> set A -> set B := map (A:=A) (B:=B).
-
- Definition set_fold_left : (B -> A -> B) -> set A -> B -> B :=
+ Definition set_fold_left {A B:Type} : (B -> A -> B) -> set A -> B -> B :=
fold_left (A:=B) (B:=A).
- Definition set_fold_right (f:A -> B -> B) (x:set A)
+ Definition set_fold_right {A B:Type} (f:A -> B -> B) (x:set A)
(b:B) : B := fold_right f b x.
-
+ Definition set_map {A B:Type} (Aeq_dec : forall x y:B, {x = y} + {x <> y})
+ (f : A -> B) (x : set A) : set B :=
+ set_fold_right (fun a => set_add Aeq_dec (f a)) x (empty_set B).
+
End other_definitions.
Unset Implicit Arguments.
diff --git a/theories/Lists/ListTactics.v b/theories/Lists/ListTactics.v
index 515ed138..0a21a9e2 100644
--- a/theories/Lists/ListTactics.v
+++ b/theories/Lists/ListTactics.v
@@ -6,40 +6,44 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ListTactics.v 9427 2006-12-11 18:46:35Z bgregoir $ i*)
+(*i $Id$ i*)
Require Import BinPos.
Require Import List.
Ltac list_fold_right fcons fnil l :=
match l with
- | (cons ?x ?tl) => fcons x ltac:(list_fold_right fcons fnil tl)
+ | ?x :: ?tl => fcons x ltac:(list_fold_right fcons fnil tl)
| nil => fnil
end.
+(* A variant of list_fold_right, to prevent the match of list_fold_right
+ from catching errors raised by fcons. *)
Ltac lazy_list_fold_right fcons fnil l :=
- match l with
- | (cons ?x ?tl) =>
- let cont := lazy_list_fold_right fcons fnil in
- fcons x cont tl
- | nil => fnil
- end.
+ let f :=
+ match l with
+ | ?x :: ?tl =>
+ fun _ =>
+ fcons x ltac:(fun _ => lazy_list_fold_right fcons fnil tl)
+ | nil => fun _ => fnil()
+ end in
+ f().
Ltac list_fold_left fcons fnil l :=
match l with
- | (cons ?x ?tl) => list_fold_left fcons ltac:(fcons x fnil) tl
+ | ?x :: ?tl => list_fold_left fcons ltac:(fcons x fnil) tl
| nil => fnil
end.
Ltac list_iter f l :=
match l with
- | (cons ?x ?tl) => f x; list_iter f tl
+ | ?x :: ?tl => f x; list_iter f tl
| nil => idtac
end.
Ltac list_iter_gen seq f l :=
match l with
- | (cons ?x ?tl) =>
+ | ?x :: ?tl =>
let t1 _ := f x in
let t2 _ := list_iter_gen seq f tl in
seq t1 t2
@@ -48,30 +52,30 @@ Ltac list_iter_gen seq f l :=
Ltac AddFvTail a l :=
match l with
- | nil => constr:(cons a l)
- | (cons a _) => l
- | (cons ?x ?l) => let l' := AddFvTail a l in constr:(cons x l')
+ | nil => constr:(a::nil)
+ | a :: _ => l
+ | ?x :: ?l => let l' := AddFvTail a l in constr:(x::l')
end.
Ltac Find_at a l :=
let rec find n l :=
match l with
- | nil => fail 100 "anomaly: Find_at"
- | (cons a _) => eval compute in n
- | (cons _ ?l) => find (Psucc n) l
+ | nil => fail 100 "anomaly: Find_at"
+ | a :: _ => eval compute in n
+ | _ :: ?l => find (Psucc n) l
end
in find 1%positive l.
Ltac check_is_list t :=
match t with
- | cons _ ?l => check_is_list l
- | nil => idtac
- | _ => fail 100 "anomaly: failed to build a canonical list"
+ | _ :: ?l => check_is_list l
+ | nil => idtac
+ | _ => fail 100 "anomaly: failed to build a canonical list"
end.
Ltac check_fv l :=
check_is_list l;
- match type of l with
+ match type of l with
| list _ => idtac
- | _ => fail 100 "anomaly: built an ill-typed list"
+ | _ => fail 100 "anomaly: built an ill-typed list"
end.
diff --git a/theories/Lists/MonoList.v b/theories/Lists/MonoList.v
deleted file mode 100644
index aa2b74dd..00000000
--- a/theories/Lists/MonoList.v
+++ /dev/null
@@ -1,269 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: MonoList.v 8642 2006-03-17 10:09:02Z notin $ i*)
-
-(** THIS IS A OLD CONTRIB. IT IS NO LONGER MAINTAINED ***)
-
-Require Import Le.
-
-Parameter List_Dom : Set.
-Definition A := List_Dom.
-
-Inductive list : Set :=
- | nil : list
- | cons : A -> list -> list.
-
-Fixpoint app (l m:list) {struct l} : list :=
- match l return list with
- | nil => m
- | cons a l1 => cons a (app l1 m)
- end.
-
-
-Lemma app_nil_end : forall l:list, l = app l nil.
-Proof.
- intro l; elim l; simpl in |- *; auto.
- simple induction 1; auto.
-Qed.
-Hint Resolve app_nil_end: list v62.
-
-Lemma app_ass : forall l m n:list, app (app l m) n = app l (app m n).
-Proof.
- intros l m n; elim l; simpl in |- *; auto with list.
- simple induction 1; auto with list.
-Qed.
-Hint Resolve app_ass: list v62.
-
-Lemma ass_app : forall l m n:list, app l (app m n) = app (app l m) n.
-Proof.
- auto with list.
-Qed.
-Hint Resolve ass_app: list v62.
-
-Definition tail (l:list) : list :=
- match l return list with
- | cons _ m => m
- | _ => nil
- end.
-
-
-Lemma nil_cons : forall (a:A) (m:list), nil <> cons a m.
- intros; discriminate.
-Qed.
-
-(****************************************)
-(* Length of lists *)
-(****************************************)
-
-Fixpoint length (l:list) : nat :=
- match l return nat with
- | cons _ m => S (length m)
- | _ => 0
- end.
-
-(******************************)
-(* Length order of lists *)
-(******************************)
-
-Section length_order.
-Definition lel (l m:list) := length l <= length m.
-
-Hint Unfold lel: list.
-
-Variables a b : A.
-Variables l m n : list.
-
-Lemma lel_refl : lel l l.
-Proof.
- unfold lel in |- *; auto with list.
-Qed.
-
-Lemma lel_trans : lel l m -> lel m n -> lel l n.
-Proof.
- unfold lel in |- *; intros.
- apply le_trans with (length m); auto with list.
-Qed.
-
-Lemma lel_cons_cons : lel l m -> lel (cons a l) (cons b m).
-Proof.
- unfold lel in |- *; simpl in |- *; auto with list arith.
-Qed.
-
-Lemma lel_cons : lel l m -> lel l (cons b m).
-Proof.
- unfold lel in |- *; simpl in |- *; auto with list arith.
-Qed.
-
-Lemma lel_tail : lel (cons a l) (cons b m) -> lel l m.
-Proof.
- unfold lel in |- *; simpl in |- *; auto with list arith.
-Qed.
-
-Lemma lel_nil : forall l':list, lel l' nil -> nil = l'.
-Proof.
- intro l'; elim l'; auto with list arith.
- intros a' y H H0.
- (* <list>nil=(cons a' y)
- ============================
- H0 : (lel (cons a' y) nil)
- H : (lel y nil)->(<list>nil=y)
- y : list
- a' : A
- l' : list *)
- absurd (S (length y) <= 0); auto with list arith.
-Qed.
-End length_order.
-
-Hint Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons: list
- v62.
-
-Fixpoint In (a:A) (l:list) {struct l} : Prop :=
- match l with
- | nil => False
- | cons b m => b = a \/ In a m
- end.
-
-Lemma in_eq : forall (a:A) (l:list), In a (cons a l).
-Proof.
- simpl in |- *; auto with list.
-Qed.
-Hint Resolve in_eq: list v62.
-
-Lemma in_cons : forall (a b:A) (l:list), In b l -> In b (cons a l).
-Proof.
- simpl in |- *; auto with list.
-Qed.
-Hint Resolve in_cons: list v62.
-
-Lemma in_app_or : forall (l m:list) (a:A), In a (app l m) -> In a l \/ In a m.
-Proof.
- intros l m a.
- elim l; simpl in |- *; auto with list.
- intros a0 y H H0.
- (* ((<A>a0=a)\/(In a y))\/(In a m)
- ============================
- H0 : (<A>a0=a)\/(In a (app y m))
- H : (In a (app y m))->((In a y)\/(In a m))
- y : list
- a0 : A
- a : A
- m : list
- l : list *)
- elim H0; auto with list.
- intro H1.
- (* ((<A>a0=a)\/(In a y))\/(In a m)
- ============================
- H1 : (In a (app y m)) *)
- elim (H H1); auto with list.
-Qed.
-Hint Immediate in_app_or: list v62.
-
-Lemma in_or_app : forall (l m:list) (a:A), In a l \/ In a m -> In a (app l m).
-Proof.
- intros l m a.
- elim l; simpl in |- *; intro H.
- (* 1 (In a m)
- ============================
- H : False\/(In a m)
- a : A
- m : list
- l : list *)
- elim H; auto with list; intro H0.
- (* (In a m)
- ============================
- H0 : False *)
- elim H0. (* subProof completed *)
- intros y H0 H1.
- (* 2 (<A>H=a)\/(In a (app y m))
- ============================
- H1 : ((<A>H=a)\/(In a y))\/(In a m)
- H0 : ((In a y)\/(In a m))->(In a (app y m))
- y : list *)
- elim H1; auto 4 with list.
- intro H2.
- (* (<A>H=a)\/(In a (app y m))
- ============================
- H2 : (<A>H=a)\/(In a y) *)
- elim H2; auto with list.
-Qed.
-Hint Resolve in_or_app: list v62.
-
-Definition incl (l m:list) := forall a:A, In a l -> In a m.
-
-Hint Unfold incl: list v62.
-
-Lemma incl_refl : forall l:list, incl l l.
-Proof.
- auto with list.
-Qed.
-Hint Resolve incl_refl: list v62.
-
-Lemma incl_tl : forall (a:A) (l m:list), incl l m -> incl l (cons a m).
-Proof.
- auto with list.
-Qed.
-Hint Immediate incl_tl: list v62.
-
-Lemma incl_tran : forall l m n:list, incl l m -> incl m n -> incl l n.
-Proof.
- auto with list.
-Qed.
-
-Lemma incl_appl : forall l m n:list, incl l n -> incl l (app n m).
-Proof.
- auto with list.
-Qed.
-Hint Immediate incl_appl: list v62.
-
-Lemma incl_appr : forall l m n:list, incl l n -> incl l (app m n).
-Proof.
- auto with list.
-Qed.
-Hint Immediate incl_appr: list v62.
-
-Lemma incl_cons :
- forall (a:A) (l m:list), In a m -> incl l m -> incl (cons a l) m.
-Proof.
- unfold incl in |- *; simpl in |- *; intros a l m H H0 a0 H1.
- (* (In a0 m)
- ============================
- H1 : (<A>a=a0)\/(In a0 l)
- a0 : A
- H0 : (a:A)(In a l)->(In a m)
- H : (In a m)
- m : list
- l : list
- a : A *)
- elim H1.
- (* 1 (<A>a=a0)->(In a0 m) *)
- elim H1; auto with list; intro H2.
- (* (<A>a=a0)->(In a0 m)
- ============================
- H2 : <A>a=a0 *)
- elim H2; auto with list. (* solves subgoal *)
- (* 2 (In a0 l)->(In a0 m) *)
- auto with list.
-Qed.
-Hint Resolve incl_cons: list v62.
-
-Lemma incl_app : forall l m n:list, incl l n -> incl m n -> incl (app l m) n.
-Proof.
- unfold incl in |- *; simpl in |- *; intros l m n H H0 a H1.
- (* (In a n)
- ============================
- H1 : (In a (app l m))
- a : A
- H0 : (a:A)(In a m)->(In a n)
- H : (a:A)(In a l)->(In a n)
- n : list
- m : list
- l : list *)
- elim (in_app_or l m a); auto with list.
-Qed.
-Hint Resolve incl_app: list v62. \ No newline at end of file
diff --git a/theories/Lists/SetoidList.v b/theories/Lists/SetoidList.v
index 2592abb5..d42e71e5 100644
--- a/theories/Lists/SetoidList.v
+++ b/theories/Lists/SetoidList.v
@@ -6,23 +6,23 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: SetoidList.v 11800 2009-01-18 18:34:15Z msozeau $ *)
+(* $Id$ *)
Require Export List.
Require Export Sorting.
-Require Export Setoid.
+Require Export Setoid Basics Morphisms.
Set Implicit Arguments.
Unset Strict Implicit.
-(** * Logical relations over lists with respect to a setoid equality
- or ordering. *)
+(** * Logical relations over lists with respect to a setoid equality
+ or ordering. *)
-(** This can be seen as a complement of predicate [lelistA] and [sort]
+(** This can be seen as a complement of predicate [lelistA] and [sort]
found in [Sorting]. *)
Section Type_with_equality.
Variable A : Type.
-Variable eqA : A -> A -> Prop.
+Variable eqA : A -> A -> Prop.
(** Being in a list modulo an equality relation over type [A]. *)
@@ -32,27 +32,28 @@ Inductive InA (x : A) : list A -> Prop :=
Hint Constructors InA.
+(** TODO: it would be nice to have a generic definition instead
+ of the previous one. Having [InA = Exists eqA] raises too
+ many compatibility issues. For now, we only state the equivalence: *)
+
+Lemma InA_altdef : forall x l, InA x l <-> Exists (eqA x) l.
+Proof. split; induction 1; auto. Qed.
+
Lemma InA_cons : forall x y l, InA x (y::l) <-> eqA x y \/ InA x l.
Proof.
- intuition.
- inversion H; auto.
+ intuition. invlist InA; auto.
Qed.
Lemma InA_nil : forall x, InA x nil <-> False.
Proof.
- intuition.
- inversion H.
+ intuition. invlist InA.
Qed.
(** An alternative definition of [InA]. *)
Lemma InA_alt : forall x l, InA x l <-> exists y, eqA x y /\ In y l.
-Proof.
- induction l; intuition.
- inversion H.
- firstorder.
- inversion H1; firstorder.
- firstorder; subst; auto.
+Proof.
+ intros; rewrite InA_altdef, Exists_exists; firstorder.
Qed.
(** A list without redundancy modulo the equality over [A]. *)
@@ -63,8 +64,22 @@ Inductive NoDupA : list A -> Prop :=
Hint Constructors NoDupA.
+(** An alternative definition of [NoDupA] based on [ForallOrdPairs] *)
+
+Lemma NoDupA_altdef : forall l,
+ NoDupA l <-> ForallOrdPairs (complement eqA) l.
+Proof.
+ split; induction 1; constructor; auto.
+ rewrite Forall_forall. intros b Hb.
+ intro Eq; elim H. rewrite InA_alt. exists b; auto.
+ rewrite InA_alt; intros (a' & Haa' & Ha').
+ rewrite Forall_forall in H. exact (H a' Ha' Haa').
+Qed.
+
+
(** lists with same elements modulo [eqA] *)
+Definition inclA l l' := forall x, InA x l -> InA x l'.
Definition equivlistA l l' := forall x, InA x l <-> InA x l'.
(** lists with same elements modulo [eqA] at the same place *)
@@ -76,48 +91,78 @@ Inductive eqlistA : list A -> list A -> Prop :=
Hint Constructors eqlistA.
-(** Compatibility of a boolean function with respect to an equality. *)
+(** We could also have written [eqlistA = Forall2 eqA]. *)
-Definition compat_bool (f : A->bool) := forall x y, eqA x y -> f x = f y.
+Lemma eqlistA_altdef : forall l l', eqlistA l l' <-> Forall2 eqA l l'.
+Proof. split; induction 1; auto. Qed.
-(** Compatibility of a function upon natural numbers. *)
+(** Results concerning lists modulo [eqA] *)
-Definition compat_nat (f : A->nat) := forall x y, eqA x y -> f x = f y.
+Hypothesis eqA_equiv : Equivalence eqA.
-(** Compatibility of a predicate with respect to an equality. *)
+Hint Resolve (@Equivalence_Reflexive _ _ eqA_equiv).
+Hint Resolve (@Equivalence_Transitive _ _ eqA_equiv).
+Hint Immediate (@Equivalence_Symmetric _ _ eqA_equiv).
-Definition compat_P (P : A->Prop) := forall x y, eqA x y -> P x -> P y.
+Ltac inv := invlist InA; invlist sort; invlist lelistA; invlist NoDupA.
-(** Results concerning lists modulo [eqA] *)
+(** First, the two notions [equivlistA] and [eqlistA] are indeed equivlances *)
-Hypothesis eqA_refl : forall x, eqA x x.
-Hypothesis eqA_sym : forall x y, eqA x y -> eqA y x.
-Hypothesis eqA_trans : forall x y z, eqA x y -> eqA y z -> eqA x z.
+Global Instance equivlist_equiv : Equivalence equivlistA.
+Proof.
+ firstorder.
+Qed.
+
+Global Instance eqlistA_equiv : Equivalence eqlistA.
+Proof.
+ constructor; red.
+ induction x; auto.
+ induction 1; auto.
+ intros x y z H; revert z; induction H; auto.
+ inversion 1; subst; auto. invlist eqlistA; eauto with *.
+Qed.
+
+(** Moreover, [eqlistA] implies [equivlistA]. A reverse result
+ will be proved later for sorted list without duplicates. *)
+
+Global Instance eqlistA_equivlistA : subrelation eqlistA equivlistA.
+Proof.
+ intros x x' H. induction H.
+ intuition.
+ red; intros.
+ rewrite 2 InA_cons.
+ rewrite (IHeqlistA x0), H; intuition.
+Qed.
+
+(** InA is compatible with eqA (for its first arg) and with
+ equivlistA (and hence eqlistA) for its second arg *)
+
+Global Instance InA_compat : Proper (eqA==>equivlistA==>iff) InA.
+Proof.
+ intros x x' Hxx' l l' Hll'. rewrite (Hll' x).
+ rewrite 2 InA_alt; firstorder.
+Qed.
-Hint Resolve eqA_refl eqA_trans.
-Hint Immediate eqA_sym.
+(** For compatibility, an immediate consequence of [InA_compat] *)
Lemma InA_eqA : forall l x y, eqA x y -> InA x l -> InA y l.
-Proof.
- intros s x y.
- do 2 rewrite InA_alt.
- intros H (z,(U,V)).
- exists z; split; eauto.
+Proof.
+ intros l x y H H'. rewrite <- H; auto.
Qed.
Hint Immediate InA_eqA.
Lemma In_InA : forall l x, In x l -> InA x l.
Proof.
- simple induction l; simpl in |- *; intuition.
- subst; auto.
+ simple induction l; simpl; intuition.
+ subst; auto.
Qed.
Hint Resolve In_InA.
-Lemma InA_split : forall l x, InA x l ->
- exists l1, exists y, exists l2,
+Lemma InA_split : forall l x, InA x l ->
+ exists l1, exists y, exists l2,
eqA x y /\ l = l1++y::l2.
Proof.
-induction l; inversion_clear 1.
+induction l; intros; inv.
exists (@nil A); exists a; exists l; auto.
destruct (IHl x H0) as (l1,(y,(l2,(H1,H2)))).
exists (a::l1); exists y; exists l2; auto.
@@ -128,7 +173,7 @@ Lemma InA_app : forall l1 l2 x,
InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
Proof.
induction l1; simpl in *; intuition.
- inversion_clear H; auto.
+ inv; auto.
elim (IHl1 l2 x H0); auto.
Qed.
@@ -144,7 +189,7 @@ Proof.
apply in_or_app; auto.
Qed.
-Lemma InA_rev : forall p m,
+Lemma InA_rev : forall p m,
InA p (rev m) <-> InA p m.
Proof.
intros; do 2 rewrite InA_alt.
@@ -153,107 +198,16 @@ Proof.
rewrite <- In_rev; auto.
Qed.
-(** Results concerning lists modulo [eqA] and [ltA] *)
-
-Variable ltA : A -> A -> Prop.
-Hypothesis ltA_trans : forall x y z, ltA x y -> ltA y z -> ltA x z.
-Hypothesis ltA_not_eqA : forall x y, ltA x y -> ~ eqA x y.
-Hypothesis ltA_eqA : forall x y z, ltA x y -> eqA y z -> ltA x z.
-Hypothesis eqA_ltA : forall x y z, eqA x y -> ltA y z -> ltA x z.
-
-Hint Resolve ltA_trans.
-Hint Immediate ltA_eqA eqA_ltA.
-
-Notation InfA:=(lelistA ltA).
-Notation SortA:=(sort ltA).
-
-Hint Constructors lelistA sort.
-
-Lemma InfA_ltA :
- forall l x y, ltA x y -> InfA y l -> InfA x l.
-Proof.
- destruct l; constructor; inversion_clear H0;
- eapply ltA_trans; eauto.
-Qed.
-
-Lemma InfA_eqA :
- forall l x y, eqA x y -> InfA y l -> InfA x l.
-Proof.
- intro s; case s; constructor; inversion_clear H0; eauto.
-Qed.
-Hint Immediate InfA_ltA InfA_eqA.
-
-Lemma SortA_InfA_InA :
- forall l x a, SortA l -> InfA a l -> InA x l -> ltA a x.
-Proof.
- simple induction l.
- intros; inversion H1.
- intros.
- inversion_clear H0; inversion_clear H1; inversion_clear H2.
- eapply ltA_eqA; eauto.
- eauto.
-Qed.
-
-Lemma In_InfA :
- forall l x, (forall y, In y l -> ltA x y) -> InfA x l.
-Proof.
- simple induction l; simpl in |- *; intros; constructor; auto.
-Qed.
-
-Lemma InA_InfA :
- forall l x, (forall y, InA y l -> ltA x y) -> InfA x l.
-Proof.
- simple induction l; simpl in |- *; intros; constructor; auto.
-Qed.
-
-(* In fact, this may be used as an alternative definition for InfA: *)
-
-Lemma InfA_alt :
- forall l x, SortA l -> (InfA x l <-> (forall y, InA y l -> ltA x y)).
-Proof.
-split.
-intros; eapply SortA_InfA_InA; eauto.
-apply InA_InfA.
-Qed.
-
-Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
-Proof.
- induction l1; simpl; auto.
- inversion_clear 1; auto.
-Qed.
-
-Lemma SortA_app :
- forall l1 l2, SortA l1 -> SortA l2 ->
- (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
- SortA (l1 ++ l2).
-Proof.
- induction l1; simpl in *; intuition.
- inversion_clear H.
- constructor; auto.
- apply InfA_app; auto.
- destruct l2; auto.
-Qed.
Section NoDupA.
-Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
-Proof.
- simple induction l; auto.
- intros x l' H H0.
- inversion_clear H0.
- constructor; auto.
- intro.
- assert (ltA x x) by (eapply SortA_InfA_InA; eauto).
- elim (ltA_not_eqA H3); auto.
-Qed.
-
-Lemma NoDupA_app : forall l l', NoDupA l -> NoDupA l' ->
- (forall x, InA x l -> InA x l' -> False) ->
+Lemma NoDupA_app : forall l l', NoDupA l -> NoDupA l' ->
+ (forall x, InA x l -> InA x l' -> False) ->
NoDupA (l++l').
Proof.
induction l; simpl; auto; intros.
-inversion_clear H.
+inv.
constructor.
rewrite InA_alt; intros (y,(H4,H5)).
destruct (in_app_or _ _ _ H5).
@@ -274,35 +228,36 @@ Proof.
induction l.
simpl; auto.
simpl; intros.
-inversion_clear H.
+inv.
apply NoDupA_app; auto.
constructor; auto.
-intro H2; inversion H2.
+intro; inv.
intros x.
rewrite InA_alt.
intros (x1,(H2,H3)).
-inversion_clear 1.
+intro; inv.
destruct H0.
-apply InA_eqA with x1; eauto.
+rewrite <- H4, H2.
apply In_InA.
rewrite In_rev; auto.
-inversion H4.
Qed.
Lemma NoDupA_split : forall l l' x, NoDupA (l++x::l') -> NoDupA (l++l').
Proof.
- induction l; simpl in *; inversion_clear 1; auto.
+ induction l; simpl in *; intros; inv; auto.
constructor; eauto.
contradict H0.
- rewrite InA_app_iff in *; rewrite InA_cons; intuition.
+ rewrite InA_app_iff in *.
+ rewrite InA_cons.
+ intuition.
Qed.
Lemma NoDupA_swap : forall l l' x, NoDupA (l++x::l') -> NoDupA (x::l++l').
Proof.
- induction l; simpl in *; inversion_clear 1; auto.
+ induction l; simpl in *; intros; inv; auto.
constructor; eauto.
assert (H2:=IHl _ _ H1).
- inversion_clear H2.
+ inv.
rewrite InA_cons.
red; destruct 1.
apply H0.
@@ -314,287 +269,130 @@ Proof.
eapply NoDupA_split; eauto.
Qed.
-End NoDupA.
-
-(** Some results about [eqlistA] *)
-
-Section EqlistA.
-
-Lemma eqlistA_length : forall l l', eqlistA l l' -> length l = length l'.
-Proof.
-induction 1; auto; simpl; congruence.
-Qed.
-
-Lemma eqlistA_app : forall l1 l1' l2 l2',
- eqlistA l1 l1' -> eqlistA l2 l2' -> eqlistA (l1++l2) (l1'++l2').
-Proof.
-intros l1 l1' l2 l2' H; revert l2 l2'; induction H; simpl; auto.
-Qed.
-
-Lemma eqlistA_rev_app : forall l1 l1',
- eqlistA l1 l1' -> forall l2 l2', eqlistA l2 l2' ->
- eqlistA ((rev l1)++l2) ((rev l1')++l2').
-Proof.
-induction 1; auto.
-simpl; intros.
-do 2 rewrite app_ass; simpl; auto.
-Qed.
-
-Lemma eqlistA_rev : forall l1 l1',
- eqlistA l1 l1' -> eqlistA (rev l1) (rev l1').
-Proof.
-intros.
-rewrite (app_nil_end (rev l1)).
-rewrite (app_nil_end (rev l1')).
-apply eqlistA_rev_app; auto.
-Qed.
-
-Lemma SortA_equivlistA_eqlistA : forall l l',
- SortA l -> SortA l' -> equivlistA l l' -> eqlistA l l'.
-Proof.
-induction l; destruct l'; simpl; intros; auto.
-destruct (H1 a); assert (H4 : InA a nil) by auto; inversion H4.
-destruct (H1 a); assert (H4 : InA a nil) by auto; inversion H4.
-inversion_clear H; inversion_clear H0.
-assert (forall y, InA y l -> ltA a y).
-intros; eapply SortA_InfA_InA with (l:=l); eauto.
-assert (forall y, InA y l' -> ltA a0 y).
-intros; eapply SortA_InfA_InA with (l:=l'); eauto.
-clear H3 H4.
-assert (eqA a a0).
- destruct (H1 a).
- destruct (H1 a0).
- assert (InA a (a0::l')) by auto.
- inversion_clear H8; auto.
- assert (InA a0 (a::l)) by auto.
- inversion_clear H8; auto.
- elim (@ltA_not_eqA a a); auto.
- apply ltA_trans with a0; auto.
-constructor; auto.
-apply IHl; auto.
-split; intros.
-destruct (H1 x).
-assert (H8 : InA x (a0::l')) by auto; inversion_clear H8; auto.
-elim (@ltA_not_eqA a x); eauto.
-destruct (H1 x).
-assert (H8 : InA x (a::l)) by auto; inversion_clear H8; auto.
-elim (@ltA_not_eqA a0 x); eauto.
-Qed.
-
-End EqlistA.
-
-(** A few things about [filter] *)
-
-Section Filter.
-
-Lemma filter_sort : forall f l, SortA l -> SortA (List.filter f l).
+Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y ->
+ NoDupA (x::l) -> NoDupA (l1++y::l2) ->
+ equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
Proof.
-induction l; simpl; auto.
-inversion_clear 1; auto.
-destruct (f a); auto.
-constructor; auto.
-apply In_InfA; auto.
-intros.
-rewrite filter_In in H; destruct H.
-eapply SortA_InfA_InA; eauto.
+ intros; intro a.
+ generalize (H2 a).
+ rewrite !InA_app_iff, !InA_cons.
+ inv.
+ assert (SW:=NoDupA_swap H1). inv.
+ rewrite InA_app_iff in H0.
+ split; intros.
+ assert (~eqA a x) by (contradict H3; rewrite <- H3; auto).
+ assert (~eqA a y) by (rewrite <- H; auto).
+ tauto.
+ assert (OR : eqA a x \/ InA a l) by intuition. clear H6.
+ destruct OR as [EQN|INA]; auto.
+ elim H0.
+ rewrite <-H,<-EQN; auto.
Qed.
-Lemma filter_InA : forall f, (compat_bool f) ->
- forall l x, InA x (List.filter f l) <-> InA x l /\ f x = true.
-Proof.
-intros; do 2 rewrite InA_alt; intuition.
-destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; exists y; intuition.
-destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; intuition.
- rewrite (H _ _ H0); auto.
-destruct H1 as (y,(H0,H1)); exists y; rewrite filter_In; intuition.
- rewrite <- (H _ _ H0); auto.
-Qed.
+End NoDupA.
-Lemma filter_split :
- forall f, (forall x y, f x = true -> f y = false -> ltA x y) ->
- forall l, SortA l -> l = filter f l ++ filter (fun x=>negb (f x)) l.
-Proof.
-induction l; simpl; intros; auto.
-inversion_clear H0.
-pattern l at 1; rewrite IHl; auto.
-case_eq (f a); simpl; intros; auto.
-assert (forall e, In e l -> f e = false).
- intros.
- assert (H4:=SortA_InfA_InA H1 H2 (In_InA H3)).
- case_eq (f e); simpl; intros; auto.
- elim (@ltA_not_eqA e e); auto.
- apply ltA_trans with a; eauto.
-replace (List.filter f l) with (@nil A); auto.
-generalize H3; clear; induction l; simpl; auto.
-case_eq (f a); auto; intros.
-rewrite H3 in H; auto; try discriminate.
-Qed.
-End Filter.
Section Fold.
Variable B:Type.
Variable eqB:B->B->Prop.
-
-(** Compatibility of a two-argument function with respect to two equalities. *)
-Definition compat_op (f : A -> B -> B) :=
- forall (x x' : A) (y y' : B), eqA x x' -> eqB y y' -> eqB (f x y) (f x' y').
-
-(** Two-argument functions that allow to reorder their arguments. *)
-Definition transpose (f : A -> B -> B) :=
- forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
-
-(** A version of transpose with restriction on where it should hold *)
-Definition transpose_restr (R : A -> A -> Prop)(f : A -> B -> B) :=
- forall (x y : A) (z : B), R x y -> eqB (f x (f y z)) (f y (f x z)).
-
Variable st:Equivalence eqB.
Variable f:A->B->B.
Variable i:B.
-Variable Comp:compat_op f.
+Variable Comp:Proper (eqA==>eqB==>eqB) f.
-Lemma fold_right_eqlistA :
- forall s s', eqlistA s s' ->
+Lemma fold_right_eqlistA :
+ forall s s', eqlistA s s' ->
eqB (fold_right f i s) (fold_right f i s').
Proof.
-induction 1; simpl; auto.
-reflexivity.
-Qed.
-
-Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y ->
- NoDupA (x::l) -> NoDupA (l1++y::l2) ->
- equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
-Proof.
- intros; intro a.
- generalize (H2 a).
- repeat rewrite InA_app_iff.
- do 2 rewrite InA_cons.
- inversion_clear H0.
- assert (SW:=NoDupA_swap H1).
- inversion_clear SW.
- rewrite InA_app_iff in H0.
- split; intros.
- assert (~eqA a x).
- contradict H3; apply InA_eqA with a; auto.
- assert (~eqA a y).
- contradict H8; eauto.
- intuition.
- assert (eqA a x \/ InA a l) by intuition.
- destruct H8; auto.
- elim H0.
- destruct H7; [left|right]; eapply InA_eqA; eauto.
+induction 1; simpl; auto with relations.
+apply Comp; auto.
Qed.
-(** [ForallList2] : specifies that a certain binary predicate should
- always hold when inspecting two different elements of the list. *)
-
-Inductive ForallList2 (R : A -> A -> Prop) : list A -> Prop :=
- | ForallNil : ForallList2 R nil
- | ForallCons : forall a l,
- (forall b, In b l -> R a b) ->
- ForallList2 R l -> ForallList2 R (a::l).
-Hint Constructors ForallList2.
+(** Fold with restricted [transpose] hypothesis. *)
-(** [NoDupA] can be written in terms of [ForallList2] *)
-
-Lemma ForallList2_NoDupA : forall l,
- ForallList2 (fun a b => ~eqA a b) l <-> NoDupA l.
-Proof.
- induction l; split; intros; auto.
- inversion_clear H. constructor; [ | rewrite <- IHl; auto ].
- rewrite InA_alt; intros (a',(Haa',Ha')).
- exact (H0 a' Ha' Haa').
- inversion_clear H. constructor; [ | rewrite IHl; auto ].
- intros b Hb.
- contradict H0.
- rewrite InA_alt; exists b; auto.
-Qed.
+Section Fold_With_Restriction.
+Variable R : A -> A -> Prop.
+Hypothesis R_sym : Symmetric R.
+Hypothesis R_compat : Proper (eqA==>eqA==>iff) R.
-Lemma ForallList2_impl : forall (R R':A->A->Prop),
- (forall a b, R a b -> R' a b) ->
- forall l, ForallList2 R l -> ForallList2 R' l.
-Proof.
- induction 2; auto.
-Qed.
-(** The following definition is easier to use than [ForallList2]. *)
+(*
-Definition ForallList2_alt (R:A->A->Prop) l :=
- forall a b, InA a l -> InA b l -> ~eqA a b -> R a b.
+(** [ForallOrdPairs R] is compatible with [equivlistA] over the
+ lists without duplicates, as long as the relation [R]
+ is symmetric and compatible with [eqA]. To prove this fact,
+ we use an auxiliary notion: "forall distinct pairs, ...".
+*)
-Section Restriction.
-Variable R : A -> A -> Prop.
+Definition ForallNeqPairs :=
+ ForallPairs (fun a b => ~eqA a b -> R a b).
-(** [ForallList2] and [ForallList2_alt] are related, but no completely
+(** [ForallOrdPairs] and [ForallNeqPairs] are related, but not completely
equivalent. For proving one implication, we need to know that the
list has no duplicated elements... *)
-Lemma ForallList2_equiv1 : forall l, NoDupA l ->
- ForallList2_alt R l -> ForallList2 R l.
+Lemma ForallNeqPairs_ForallOrdPairs : forall l, NoDupA l ->
+ ForallNeqPairs l -> ForallOrdPairs R l.
Proof.
induction l; auto.
- constructor. intros b Hb.
- inversion_clear H.
- apply H0; auto.
- contradict H1.
- apply InA_eqA with b; auto.
+ constructor. inv.
+ rewrite Forall_forall; intros b Hb.
+ apply H0; simpl; auto.
+ contradict H1; rewrite H1; auto.
apply IHl.
- inversion_clear H; auto.
+ inv; auto.
intros b c Hb Hc Hneq.
- apply H0; auto.
+ apply H0; simpl; auto.
Qed.
(** ... and for proving the other implication, we need to be able
- to reverse and adapt relation [R] modulo [eqA]. *)
-
-Hypothesis R_sym : forall a b, R a b -> R b a.
-Hypothesis R_compat : forall a, compat_P (R a).
+ to reverse relation [R]. *)
-Lemma ForallList2_equiv2 : forall l,
- ForallList2 R l -> ForallList2_alt R l.
+Lemma ForallOrdPairs_ForallNeqPairs : forall l,
+ ForallOrdPairs R l -> ForallNeqPairs l.
Proof.
- induction l.
- intros _. red. intros a b Ha. inversion Ha.
- inversion_clear 1 as [|? ? H_R Hl].
- intros b c Hb Hc Hneq.
- inversion_clear Hb; inversion_clear Hc.
- (* b,c = a : impossible *)
- elim Hneq; eauto.
- (* b = a, c in l *)
- rewrite InA_alt in H0; destruct H0 as (d,(Hcd,Hd)).
- apply R_compat with d; auto.
- apply R_sym; apply R_compat with a; auto.
- (* b in l, c = a *)
- rewrite InA_alt in H; destruct H as (d,(Hcd,Hd)).
- apply R_compat with a; auto.
- apply R_sym; apply R_compat with d; auto.
- (* b,c in l *)
- apply (IHl Hl); auto.
+ intros l Hl x y Hx Hy N.
+ destruct (ForallOrdPairs_In Hl x y Hx Hy) as [H|[H|H]].
+ subst; elim N; auto.
+ assumption.
+ apply R_sym; assumption.
Qed.
-Lemma ForallList2_equiv : forall l, NoDupA l ->
- (ForallList2 R l <-> ForallList2_alt R l).
-Proof.
-split; [apply ForallList2_equiv2|apply ForallList2_equiv1]; auto.
-Qed.
+*)
+
+(** Compatibility of [ForallOrdPairs] with respect to [inclA]. *)
-Lemma ForallList2_equivlistA : forall l l', NoDupA l' ->
- equivlistA l l' -> ForallList2 R l -> ForallList2 R l'.
+Lemma ForallOrdPairs_inclA : forall l l',
+ NoDupA l' -> inclA l' l -> ForallOrdPairs R l -> ForallOrdPairs R l'.
Proof.
-intros.
-apply ForallList2_equiv1; auto.
-intros a b Ha Hb Hneq.
-red in H0; rewrite <- H0 in Ha,Hb.
-revert a b Ha Hb Hneq.
-change (ForallList2_alt R l).
-apply ForallList2_equiv2; auto.
+induction l' as [|x l' IH].
+constructor.
+intros ND Incl FOP. apply FOP_cons; inv; unfold inclA in *; auto.
+rewrite Forall_forall; intros y Hy.
+assert (Ix : InA x (x::l')) by (rewrite InA_cons; auto).
+ apply Incl in Ix. rewrite InA_alt in Ix. destruct Ix as (x' & Hxx' & Hx').
+assert (Iy : InA y (x::l')) by (apply In_InA; simpl; auto).
+ apply Incl in Iy. rewrite InA_alt in Iy. destruct Iy as (y' & Hyy' & Hy').
+rewrite Hxx', Hyy'.
+destruct (ForallOrdPairs_In FOP x' y' Hx' Hy') as [E|[?|?]]; auto.
+absurd (InA x l'); auto. rewrite Hxx', E, <- Hyy'; auto.
Qed.
+
+(** Two-argument functions that allow to reorder their arguments. *)
+Definition transpose (f : A -> B -> B) :=
+ forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
+
+(** A version of transpose with restriction on where it should hold *)
+Definition transpose_restr (R : A -> A -> Prop)(f : A -> B -> B) :=
+ forall (x y : A) (z : B), R x y -> eqB (f x (f y z)) (f y (f x z)).
+
Variable TraR :transpose_restr R f.
Lemma fold_right_commutes_restr :
- forall s1 s2 x, ForallList2 R (s1++x::s2) ->
+ forall s1 s2 x, ForallOrdPairs R (s1++x::s2) ->
eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
Proof.
induction s1; simpl; auto; intros.
@@ -602,15 +400,15 @@ reflexivity.
transitivity (f a (f x (fold_right f i (s1++s2)))).
apply Comp; auto.
apply IHs1.
-inversion_clear H; auto.
+invlist ForallOrdPairs; auto.
apply TraR.
-inversion_clear H.
-apply H0.
+invlist ForallOrdPairs; auto.
+rewrite Forall_forall in H0; apply H0.
apply in_or_app; simpl; auto.
Qed.
Lemma fold_right_equivlistA_restr :
- forall s s', NoDupA s -> NoDupA s' -> ForallList2 R s ->
+ forall s s', NoDupA s -> NoDupA s' -> ForallOrdPairs R s ->
equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
Proof.
simple induction s.
@@ -618,35 +416,35 @@ Proof.
intros; reflexivity.
unfold equivlistA; intros.
destruct (H2 a).
- assert (X : InA a nil); auto; inversion X.
+ assert (InA a nil) by auto; inv.
intros x l Hrec s' N N' F E; simpl in *.
- assert (InA x s').
- rewrite <- (E x); auto.
+ assert (InA x s') by (rewrite <- (E x); auto).
destruct (InA_split H) as (s1,(y,(s2,(H1,H2)))).
subst s'.
transitivity (f x (fold_right f i (s1++s2))).
apply Comp; auto.
apply Hrec; auto.
- inversion_clear N; auto.
+ inv; auto.
eapply NoDupA_split; eauto.
- inversion_clear F; auto.
+ invlist ForallOrdPairs; auto.
eapply equivlistA_NoDupA_split; eauto.
transitivity (f y (fold_right f i (s1++s2))).
apply Comp; auto. reflexivity.
symmetry; apply fold_right_commutes_restr.
- apply ForallList2_equivlistA with (x::l); auto.
+ apply ForallOrdPairs_inclA with (x::l); auto.
+ red; intros; rewrite E; auto.
Qed.
Lemma fold_right_add_restr :
- forall s' s x, NoDupA s -> NoDupA s' -> ForallList2 R s' -> ~ InA x s ->
+ forall s' s x, NoDupA s -> NoDupA s' -> ForallOrdPairs R s' -> ~ InA x s ->
equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
Proof.
intros; apply (@fold_right_equivlistA_restr s' (x::s)); auto.
Qed.
-End Restriction.
+End Fold_With_Restriction.
-(** we know state similar results, but without restriction on transpose. *)
+(** we now state similar results, but without restriction on transpose. *)
Variable Tra :transpose f.
@@ -656,6 +454,7 @@ Proof.
induction s1; simpl; auto; intros.
reflexivity.
transitivity (f a (f x (fold_right f i (s1++s2)))); auto.
+apply Comp; auto.
Qed.
Lemma fold_right_equivlistA :
@@ -663,8 +462,8 @@ Lemma fold_right_equivlistA :
equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
Proof.
intros; apply fold_right_equivlistA_restr with (R:=fun _ _ => True);
- try red; auto.
-apply ForallList2_equiv1; try red; auto.
+ repeat red; auto.
+apply ForallPairs_ForallOrdPairs; try red; auto.
Qed.
Lemma fold_right_add :
@@ -674,6 +473,8 @@ Proof.
intros; apply (@fold_right_equivlistA s' (x::s)); auto.
Qed.
+End Fold.
+
Section Remove.
Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
@@ -682,15 +483,15 @@ Lemma InA_dec : forall x l, { InA x l } + { ~ InA x l }.
Proof.
induction l.
right; auto.
-red; inversion 1.
+intro; inv.
destruct (eqA_dec x a).
left; auto.
destruct IHl.
left; auto.
-right; red; inversion_clear 1; contradiction.
-Qed.
+right; intro; inv; contradiction.
+Defined.
-Fixpoint removeA (x : A) (l : list A){struct l} : list A :=
+Fixpoint removeA (x : A) (l : list A) : list A :=
match l with
| nil => nil
| y::tl => if (eqA_dec x y) then removeA x tl else y::(removeA x tl)
@@ -708,21 +509,21 @@ Lemma removeA_InA : forall l x y, InA y (removeA x l) <-> InA y l /\ ~eqA x y.
Proof.
induction l; simpl; auto.
split.
-inversion_clear 1.
-destruct 1; inversion_clear H.
+intro; inv.
+destruct 1; inv.
intros.
destruct (eqA_dec x a); simpl; auto.
rewrite IHl; split; destruct 1; split; auto.
-inversion_clear H; auto.
-destruct H0; apply eqA_trans with a; auto.
+inv; auto.
+destruct H0; transitivity a; auto.
split.
-inversion_clear 1.
+intro; inv.
split; auto.
contradict n.
-apply eqA_trans with y; auto.
+transitivity y; auto.
rewrite (IHl x y) in H0; destruct H0; auto.
-destruct 1; inversion_clear H; auto.
-constructor 2; rewrite IHl; auto.
+destruct 1; inv; auto.
+right; rewrite IHl; auto.
Qed.
Lemma removeA_NoDupA :
@@ -730,17 +531,17 @@ Lemma removeA_NoDupA :
Proof.
simple induction s; simpl; intros.
auto.
-inversion_clear H0.
-destruct (eqA_dec x a); simpl; auto.
+inv.
+destruct (eqA_dec x a); simpl; auto.
constructor; auto.
rewrite removeA_InA.
intuition.
-Qed.
+Qed.
-Lemma removeA_equivlistA : forall l l' x,
+Lemma removeA_equivlistA : forall l l' x,
~InA x l -> equivlistA (x :: l) l' -> equivlistA l (removeA x l').
-Proof.
-unfold equivlistA; intros.
+Proof.
+unfold equivlistA; intros.
rewrite removeA_InA.
split; intros.
rewrite <- H0; split; auto.
@@ -748,64 +549,306 @@ contradict H.
apply InA_eqA with x0; auto.
rewrite <- (H0 x0) in H1.
destruct H1.
-inversion_clear H1; auto.
+inv; auto.
elim H2; auto.
Qed.
End Remove.
-End Fold.
+
+(** Results concerning lists modulo [eqA] and [ltA] *)
+
+Variable ltA : A -> A -> Prop.
+Hypothesis ltA_strorder : StrictOrder ltA.
+Hypothesis ltA_compat : Proper (eqA==>eqA==>iff) ltA.
+
+Hint Resolve (@StrictOrder_Transitive _ _ ltA_strorder).
+
+Notation InfA:=(lelistA ltA).
+Notation SortA:=(sort ltA).
+
+Hint Constructors lelistA sort.
+
+Lemma InfA_ltA :
+ forall l x y, ltA x y -> InfA y l -> InfA x l.
+Proof.
+ destruct l; constructor. inv; eauto.
+Qed.
+
+Global Instance InfA_compat : Proper (eqA==>eqlistA==>iff) InfA.
+Proof.
+ intros x x' Hxx' l l' Hll'.
+ inversion_clear Hll'.
+ intuition.
+ split; intro; inv; constructor.
+ rewrite <- Hxx', <- H; auto.
+ rewrite Hxx', H; auto.
+Qed.
+
+(** For compatibility, can be deduced from [InfA_compat] *)
+Lemma InfA_eqA :
+ forall l x y, eqA x y -> InfA y l -> InfA x l.
+Proof.
+ intros l x y H; rewrite H; auto.
+Qed.
+Hint Immediate InfA_ltA InfA_eqA.
+
+Lemma SortA_InfA_InA :
+ forall l x a, SortA l -> InfA a l -> InA x l -> ltA a x.
+Proof.
+ simple induction l.
+ intros. inv.
+ intros. inv.
+ setoid_replace x with a; auto.
+ eauto.
+Qed.
+
+Lemma In_InfA :
+ forall l x, (forall y, In y l -> ltA x y) -> InfA x l.
+Proof.
+ simple induction l; simpl; intros; constructor; auto.
+Qed.
+
+Lemma InA_InfA :
+ forall l x, (forall y, InA y l -> ltA x y) -> InfA x l.
+Proof.
+ simple induction l; simpl; intros; constructor; auto.
+Qed.
+
+(* In fact, this may be used as an alternative definition for InfA: *)
+
+Lemma InfA_alt :
+ forall l x, SortA l -> (InfA x l <-> (forall y, InA y l -> ltA x y)).
+Proof.
+split.
+intros; eapply SortA_InfA_InA; eauto.
+apply InA_InfA.
+Qed.
+
+Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
+Proof.
+ induction l1; simpl; auto.
+ intros; inv; auto.
+Qed.
+
+Lemma SortA_app :
+ forall l1 l2, SortA l1 -> SortA l2 ->
+ (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
+ SortA (l1 ++ l2).
+Proof.
+ induction l1; simpl in *; intuition.
+ inv.
+ constructor; auto.
+ apply InfA_app; auto.
+ destruct l2; auto.
+Qed.
+
+Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
+Proof.
+ simple induction l; auto.
+ intros x l' H H0.
+ inv.
+ constructor; auto.
+ intro.
+ apply (StrictOrder_Irreflexive x).
+ eapply SortA_InfA_InA; eauto.
+Qed.
+
+
+(** Some results about [eqlistA] *)
+
+Section EqlistA.
+
+Lemma eqlistA_length : forall l l', eqlistA l l' -> length l = length l'.
+Proof.
+induction 1; auto; simpl; congruence.
+Qed.
+
+Global Instance app_eqlistA_compat :
+ Proper (eqlistA==>eqlistA==>eqlistA) (@app A).
+Proof.
+ repeat red; induction 1; simpl; auto.
+Qed.
+
+(** For compatibility, can be deduced from app_eqlistA_compat **)
+Lemma eqlistA_app : forall l1 l1' l2 l2',
+ eqlistA l1 l1' -> eqlistA l2 l2' -> eqlistA (l1++l2) (l1'++l2').
+Proof.
+intros l1 l1' l2 l2' H H'; rewrite H, H'; reflexivity.
+Qed.
+
+Lemma eqlistA_rev_app : forall l1 l1',
+ eqlistA l1 l1' -> forall l2 l2', eqlistA l2 l2' ->
+ eqlistA ((rev l1)++l2) ((rev l1')++l2').
+Proof.
+induction 1; auto.
+simpl; intros.
+do 2 rewrite app_ass; simpl; auto.
+Qed.
+
+Global Instance rev_eqlistA_compat : Proper (eqlistA==>eqlistA) (@rev A).
+Proof.
+repeat red. intros.
+rewrite (app_nil_end (rev x)), (app_nil_end (rev y)).
+apply eqlistA_rev_app; auto.
+Qed.
+
+Lemma eqlistA_rev : forall l1 l1',
+ eqlistA l1 l1' -> eqlistA (rev l1) (rev l1').
+Proof.
+apply rev_eqlistA_compat.
+Qed.
+
+Lemma SortA_equivlistA_eqlistA : forall l l',
+ SortA l -> SortA l' -> equivlistA l l' -> eqlistA l l'.
+Proof.
+induction l; destruct l'; simpl; intros; auto.
+destruct (H1 a); assert (InA a nil) by auto; inv.
+destruct (H1 a); assert (InA a nil) by auto; inv.
+inv.
+assert (forall y, InA y l -> ltA a y).
+intros; eapply SortA_InfA_InA with (l:=l); eauto.
+assert (forall y, InA y l' -> ltA a0 y).
+intros; eapply SortA_InfA_InA with (l:=l'); eauto.
+clear H3 H4.
+assert (eqA a a0).
+ destruct (H1 a).
+ destruct (H1 a0).
+ assert (InA a (a0::l')) by auto. inv; auto.
+ assert (InA a0 (a::l)) by auto. inv; auto.
+ elim (StrictOrder_Irreflexive a); eauto.
+constructor; auto.
+apply IHl; auto.
+split; intros.
+destruct (H1 x).
+assert (InA x (a0::l')) by auto. inv; auto.
+rewrite H9,<-H3 in H4. elim (StrictOrder_Irreflexive a); eauto.
+destruct (H1 x).
+assert (InA x (a::l)) by auto. inv; auto.
+rewrite H9,H3 in H4. elim (StrictOrder_Irreflexive a0); eauto.
+Qed.
+
+End EqlistA.
+
+(** A few things about [filter] *)
+
+Section Filter.
+
+Lemma filter_sort : forall f l, SortA l -> SortA (List.filter f l).
+Proof.
+induction l; simpl; auto.
+intros; inv; auto.
+destruct (f a); auto.
+constructor; auto.
+apply In_InfA; auto.
+intros.
+rewrite filter_In in H; destruct H.
+eapply SortA_InfA_InA; eauto.
+Qed.
+
+Implicit Arguments eq [ [A] ].
+
+Lemma filter_InA : forall f, Proper (eqA==>eq) f ->
+ forall l x, InA x (List.filter f l) <-> InA x l /\ f x = true.
+Proof.
+clear ltA ltA_compat ltA_strorder.
+intros; do 2 rewrite InA_alt; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; exists y; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; intuition.
+ rewrite (H _ _ H0); auto.
+destruct H1 as (y,(H0,H1)); exists y; rewrite filter_In; intuition.
+ rewrite <- (H _ _ H0); auto.
+Qed.
+
+Lemma filter_split :
+ forall f, (forall x y, f x = true -> f y = false -> ltA x y) ->
+ forall l, SortA l -> l = filter f l ++ filter (fun x=>negb (f x)) l.
+Proof.
+induction l; simpl; intros; auto.
+inv.
+rewrite IHl at 1; auto.
+case_eq (f a); simpl; intros; auto.
+assert (forall e, In e l -> f e = false).
+ intros.
+ assert (H4:=SortA_InfA_InA H1 H2 (In_InA H3)).
+ case_eq (f e); simpl; intros; auto.
+ elim (StrictOrder_Irreflexive e).
+ transitivity a; auto.
+replace (List.filter f l) with (@nil A); auto.
+generalize H3; clear; induction l; simpl; auto.
+case_eq (f a); auto; intros.
+rewrite H3 in H; auto; try discriminate.
+Qed.
+
+End Filter.
End Type_with_equality.
-Hint Unfold compat_bool compat_nat compat_P.
-Hint Constructors InA NoDupA sort lelistA eqlistA.
-Section Find.
-Variable A B : Type.
-Variable eqA : A -> A -> Prop.
-Hypothesis eqA_sym : forall x y, eqA x y -> eqA y x.
-Hypothesis eqA_trans : forall x y z, eqA x y -> eqA y z -> eqA x z.
+Hint Constructors InA eqlistA NoDupA sort lelistA.
+
+Section Find.
+
+Variable A B : Type.
+Variable eqA : A -> A -> Prop.
+Hypothesis eqA_equiv : Equivalence eqA.
Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
-Fixpoint findA (f : A -> bool) (l:list (A*B)) : option B :=
- match l with
- | nil => None
+Fixpoint findA (f : A -> bool) (l:list (A*B)) : option B :=
+ match l with
+ | nil => None
| (a,b)::l => if f a then Some b else findA f l
end.
-Lemma findA_NoDupA :
- forall l a b,
- NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
+Lemma findA_NoDupA :
+ forall l a b,
+ NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
(InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (a,b) l <->
findA (fun a' => if eqA_dec a a' then true else false) l = Some b).
Proof.
-induction l; simpl; intros.
+set (eqk := fun p p' : A*B => eqA (fst p) (fst p')).
+set (eqke := fun p p' : A*B => eqA (fst p) (fst p') /\ snd p = snd p').
+induction l; intros; simpl.
split; intros; try discriminate.
-inversion H0.
+invlist InA.
destruct a as (a',b'); rename a0 into a.
-inversion_clear H.
+invlist NoDupA.
split; intros.
-inversion_clear H.
-simpl in *; destruct H2; subst b'.
+invlist InA.
+compute in H2; destruct H2. subst b'.
destruct (eqA_dec a a'); intuition.
destruct (eqA_dec a a'); simpl.
-destruct H0.
-generalize e H2 eqA_trans eqA_sym; clear.
+contradict H0.
+revert e H2; clear - eqA_equiv.
induction l.
-inversion 2.
-inversion_clear 2; intros; auto.
+intros; invlist InA.
+intros; invlist InA; auto.
destruct a0.
compute in H; destruct H.
subst b.
-constructor 1; auto.
-simpl.
-apply eqA_trans with a; auto.
+left; auto.
+compute.
+transitivity a; auto. symmetry; auto.
rewrite <- IHl; auto.
destruct (eqA_dec a a'); simpl in *.
-inversion H; clear H; intros; subst b'; auto.
-constructor 2.
-rewrite IHl; auto.
+left; split; simpl; congruence.
+right. rewrite IHl; auto.
Qed.
-End Find.
+End Find.
+
+
+(** Compatibility aliases. [Proper] is rather to be used directly now.*)
+
+Definition compat_bool {A} (eqA:A->A->Prop)(f:A->bool) :=
+ Proper (eqA==>Logic.eq) f.
+
+Definition compat_nat {A} (eqA:A->A->Prop)(f:A->nat) :=
+ Proper (eqA==>Logic.eq) f.
+
+Definition compat_P {A} (eqA:A->A->Prop)(P:A->Prop) :=
+ Proper (eqA==>impl) P.
+
+Definition compat_op {A B} (eqA:A->A->Prop)(eqB:B->B->Prop)(f:A->B->B) :=
+ Proper (eqA==>eqB==>eqB) f.
+
diff --git a/theories/Lists/StreamMemo.v b/theories/Lists/StreamMemo.v
index bdbe0ecc..d906cfa4 100644
--- a/theories/Lists/StreamMemo.v
+++ b/theories/Lists/StreamMemo.v
@@ -11,8 +11,8 @@ Require Import Streams.
(** * Memoization *)
-(** Successive outputs of a given function [f] are stored in
- a stream in order to avoid duplicated computations. *)
+(** Successive outputs of a given function [f] are stored in
+ a stream in order to avoid duplicated computations. *)
Section MemoFunction.
@@ -24,8 +24,8 @@ CoFixpoint memo_make (n:nat) : Stream A := Cons (f n) (memo_make (S n)).
Definition memo_list := memo_make 0.
Fixpoint memo_get (n:nat) (l:Stream A) : A :=
- match n with
- | O => hd l
+ match n with
+ | O => hd l
| S n1 => memo_get n1 (tl l)
end.
@@ -49,7 +49,7 @@ Variable g: A -> A.
Hypothesis Hg_correct: forall n, f (S n) = g (f n).
CoFixpoint imemo_make (fn:A) : Stream A :=
- let fn1 := g fn in
+ let fn1 := g fn in
Cons fn1 (imemo_make fn1).
Definition imemo_list := let f0 := f 0 in
@@ -68,7 +68,7 @@ Qed.
End MemoFunction.
-(** For a dependent function, the previous solution is
+(** For a dependent function, the previous solution is
reused thanks to a temporarly hiding of the dependency
in a "container" [memo_val]. *)
@@ -80,7 +80,7 @@ Variable f: forall n, A n.
Inductive memo_val: Type :=
memo_mval: forall n, A n -> memo_val.
-Fixpoint is_eq (n m : nat) {struct n}: {n = m} + {True} :=
+Fixpoint is_eq (n m : nat) : {n = m} + {True} :=
match n, m return {n = m} + {True} with
| 0, 0 =>left True (refl_equal 0)
| 0, S m1 => right (0 = S m1) I
@@ -88,7 +88,7 @@ Fixpoint is_eq (n m : nat) {struct n}: {n = m} + {True} :=
| S n1, S m1 =>
match is_eq n1 m1 with
| left H => left True (f_equal S H)
- | right _ => right (S n1 = S m1) I
+ | right _ => right (S n1 = S m1) I
end
end.
@@ -97,7 +97,7 @@ match v with
| memo_mval m x =>
match is_eq n m with
| left H =>
- match H in (@eq _ _ y) return (A y -> A n) with
+ match H in (eq _ y) return (A y -> A n) with
| refl_equal => fun v1 : A n => v1
end
| right _ => fun _ : A m => f n
@@ -134,7 +134,7 @@ Variable g: forall n, A n -> A (S n).
Hypothesis Hg_correct: forall n, f (S n) = g n (f n).
-Let mg v := match v with
+Let mg v := match v with
memo_mval n1 v1 => memo_mval (S n1) (g n1 v1) end.
Definition dimemo_list := imemo_list _ mf mg.
@@ -166,13 +166,13 @@ End DependentMemoFunction.
Require Import ZArith.
Open Scope Z_scope.
-Fixpoint tfact (n: nat) :=
- match n with
- | O => 1
- | S n1 => Z_of_nat n * tfact n1
+Fixpoint tfact (n: nat) :=
+ match n with
+ | O => 1
+ | S n1 => Z_of_nat n * tfact n1
end.
-Definition lfact_list :=
+Definition lfact_list :=
dimemo_list _ tfact (fun n z => (Z_of_nat (S n) * z)).
Definition lfact n := dmemo_get _ tfact n lfact_list.
@@ -183,18 +183,18 @@ intros n; unfold lfact, lfact_list.
rewrite dimemo_get_correct; auto.
Qed.
-Fixpoint nop p :=
+Fixpoint nop p :=
match p with
- | xH => 0
- | xI p1 => nop p1
- | xO p1 => nop p1
+ | xH => 0
+ | xI p1 => nop p1
+ | xO p1 => nop p1
end.
-Fixpoint test z :=
+Fixpoint test z :=
match z with
- | Z0 => 0
- | Zpos p1 => nop p1
- | Zneg p1 => nop p1
+ | Z0 => 0
+ | Zpos p1 => nop p1
+ | Zneg p1 => nop p1
end.
Time Eval vm_compute in test (lfact 2000).
@@ -202,4 +202,4 @@ Time Eval vm_compute in test (lfact 2000).
Time Eval vm_compute in test (lfact 1500).
Time Eval vm_compute in (lfact 1500).
*)
-
+
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v
index 49990502..3fa053b7 100644
--- a/theories/Lists/Streams.v
+++ b/theories/Lists/Streams.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Streams.v 9967 2007-07-11 15:25:03Z roconnor $ i*)
+(*i $Id$ i*)
Set Implicit Arguments.
@@ -29,7 +29,7 @@ Definition tl (x:Stream) := match x with
end.
-Fixpoint Str_nth_tl (n:nat) (s:Stream) {struct n} : Stream :=
+Fixpoint Str_nth_tl (n:nat) (s:Stream) : Stream :=
match n with
| O => s
| S m => Str_nth_tl m (tl s)
@@ -41,7 +41,7 @@ Definition Str_nth (n:nat) (s:Stream) : A := hd (Str_nth_tl n s).
Lemma unfold_Stream :
forall x:Stream, x = match x with
| Cons a s => Cons a s
- end.
+ end.
Proof.
intro x.
case x.
@@ -223,7 +223,7 @@ Variable f: A -> B -> C.
CoFixpoint zipWith (a:Stream A) (b:Stream B) : Stream C :=
Cons (f (hd a) (hd b)) (zipWith (tl a) (tl b)).
-Lemma Str_nth_tl_zipWith : forall n (a:Stream A) (b:Stream B),
+Lemma Str_nth_tl_zipWith : forall n (a:Stream A) (b:Stream B),
Str_nth_tl n (zipWith a b)= zipWith (Str_nth_tl n a) (Str_nth_tl n b).
Proof.
induction n.
diff --git a/theories/Lists/TheoryList.v b/theories/Lists/TheoryList.v
index 2bfb70fe..7ed9c519 100644
--- a/theories/Lists/TheoryList.v
+++ b/theories/Lists/TheoryList.v
@@ -6,12 +6,16 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: TheoryList.v 8866 2006-05-28 16:21:04Z herbelin $ i*)
+(*i $Id$ i*)
(** Some programs and results about lists following CAML Manual *)
Require Export List.
Set Implicit Arguments.
+
+Local Notation "[ ]" := nil (at level 0).
+Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..) (at level 0).
+
Section Lists.
Variable A : Type.
@@ -23,11 +27,13 @@ Variable A : Type.
Definition Isnil (l:list A) : Prop := nil = l.
Lemma Isnil_nil : Isnil nil.
+Proof.
red in |- *; auto.
Qed.
Hint Resolve Isnil_nil.
Lemma not_Isnil_cons : forall (a:A) (l:list A), ~ Isnil (a :: l).
+Proof.
unfold Isnil in |- *.
intros; discriminate.
Qed.
@@ -35,6 +41,7 @@ Qed.
Hint Resolve Isnil_nil not_Isnil_cons.
Lemma Isnil_dec : forall l:list A, {Isnil l} + {~ Isnil l}.
+Proof.
intro l; case l; auto.
(*
Realizer (fun l => match l with
@@ -50,6 +57,7 @@ Qed.
Lemma Uncons :
forall l:list A, {a : A & {m : list A | a :: m = l}} + {Isnil l}.
+Proof.
intro l; case l.
auto.
intros a m; intros; left; exists a; exists m; reflexivity.
@@ -67,6 +75,7 @@ Qed.
Lemma Hd :
forall l:list A, {a : A | exists m : list A, a :: m = l} + {Isnil l}.
+Proof.
intro l; case l.
auto.
intros a m; intros; left; exists a; exists m; reflexivity.
@@ -81,6 +90,7 @@ Qed.
Lemma Tl :
forall l:list A,
{m : list A | (exists a : A, a :: m = l) \/ Isnil l /\ Isnil m}.
+Proof.
intro l; case l.
exists (nil (A:=A)); auto.
intros a m; intros; exists m; left; exists a; reflexivity.
@@ -97,7 +107,7 @@ Qed.
(****************************************)
(* length is defined in List *)
-Fixpoint Length_l (l:list A) (n:nat) {struct l} : nat :=
+Fixpoint Length_l (l:list A) (n:nat) : nat :=
match l with
| nil => n
| _ :: m => Length_l m (S n)
@@ -105,6 +115,7 @@ Fixpoint Length_l (l:list A) (n:nat) {struct l} : nat :=
(* A tail recursive version *)
Lemma Length_l_pf : forall (l:list A) (n:nat), {m : nat | n + length l = m}.
+Proof.
induction l as [| a m lrec].
intro n; exists n; simpl in |- *; auto.
intro n; elim (lrec (S n)); simpl in |- *; intros.
@@ -115,6 +126,7 @@ Realizer Length_l.
Qed.
Lemma Length : forall l:list A, {m : nat | length l = m}.
+Proof.
intro l. apply (Length_l_pf l 0).
(*
Realizer (fun l -> Length_l_pf l O).
@@ -139,14 +151,9 @@ elim l;
intros; elim H; auto.
Qed.
-Inductive AllS (P:A -> Prop) : list A -> Prop :=
- | allS_nil : AllS P nil
- | allS_cons : forall (a:A) (l:list A), P a -> AllS P l -> AllS P (a :: l).
-Hint Resolve allS_nil allS_cons.
-
Hypothesis eqA_dec : forall a b:A, {a = b} + {a <> b}.
-Fixpoint mem (a:A) (l:list A) {struct l} : bool :=
+Fixpoint mem (a:A) (l:list A) : bool :=
match l with
| nil => false
| b :: m => if eqA_dec a b then true else mem a m
@@ -154,7 +161,7 @@ Fixpoint mem (a:A) (l:list A) {struct l} : bool :=
Hint Unfold In.
Lemma Mem : forall (a:A) (l:list A), {In a l} + {AllS (fun b:A => b <> a) l}.
-intros a l.
+Proof.
induction l.
auto.
elim (eqA_dec a a0).
@@ -188,20 +195,23 @@ Hint Resolve fst_nth_O fst_nth_S.
Lemma fst_nth_nth :
forall (l:list A) (n:nat) (a:A), fst_nth_spec l n a -> nth_spec l n a.
+Proof.
induction 1; auto.
Qed.
Hint Immediate fst_nth_nth.
Lemma nth_lt_O : forall (l:list A) (n:nat) (a:A), nth_spec l n a -> 0 < n.
+Proof.
induction 1; auto.
Qed.
Lemma nth_le_length :
forall (l:list A) (n:nat) (a:A), nth_spec l n a -> n <= length l.
+Proof.
induction 1; simpl in |- *; auto with arith.
Qed.
-Fixpoint Nth_func (l:list A) (n:nat) {struct l} : Exc A :=
+Fixpoint Nth_func (l:list A) (n:nat) : Exc A :=
match l, n with
| a :: _, S O => value a
| _ :: l', S (S p) => Nth_func l' (S p)
@@ -211,6 +221,7 @@ Fixpoint Nth_func (l:list A) (n:nat) {struct l} : Exc A :=
Lemma Nth :
forall (l:list A) (n:nat),
{a : A | nth_spec l n a} + {n = 0 \/ length l < n}.
+Proof.
induction l as [| a l IHl].
intro n; case n; simpl in |- *; auto with arith.
intro n; destruct n as [| [| n1]]; simpl in |- *; auto.
@@ -227,6 +238,7 @@ Qed.
Lemma Item :
forall (l:list A) (n:nat), {a : A | nth_spec l (S n) a} + {length l <= n}.
+Proof.
intros l n; case (Nth l (S n)); intro.
case s; intro a; left; exists a; auto.
right; case o; intro.
@@ -237,7 +249,7 @@ Qed.
Require Import Minus.
Require Import DecBool.
-Fixpoint index_p (a:A) (l:list A) {struct l} : nat -> Exc nat :=
+Fixpoint index_p (a:A) (l:list A) : nat -> Exc nat :=
match l with
| nil => fun p => error
| b :: m => fun p => ifdec (eqA_dec a b) (value p) (index_p a m (S p))
@@ -246,6 +258,7 @@ Fixpoint index_p (a:A) (l:list A) {struct l} : nat -> Exc nat :=
Lemma Index_p :
forall (a:A) (l:list A) (p:nat),
{n : nat | fst_nth_spec l (S n - p) a} + {AllS (fun b:A => a <> b) l}.
+Proof.
induction l as [| b m irec].
auto.
intro p.
@@ -264,6 +277,7 @@ Lemma Index :
forall (a:A) (l:list A),
{n : nat | fst_nth_spec l n a} + {AllS (fun b:A => a <> b) l}.
+Proof.
intros a l; case (Index_p a l 1); auto.
intros [n P]; left; exists n; auto.
rewrite (minus_n_O n); trivial.
@@ -287,20 +301,24 @@ Definition InR_inv (l:list A) :=
end.
Lemma InR_INV : forall l:list A, InR l -> InR_inv l.
+Proof.
induction 1; simpl in |- *; auto.
Qed.
Lemma InR_cons_inv : forall (a:A) (l:list A), InR (a :: l) -> R a \/ InR l.
+Proof.
intros a l H; exact (InR_INV H).
Qed.
Lemma InR_or_app : forall l m:list A, InR l \/ InR m -> InR (l ++ m).
+Proof.
intros l m [| ].
induction 1; simpl in |- *; auto.
intro. induction l; simpl in |- *; auto.
Qed.
Lemma InR_app_or : forall l m:list A, InR (l ++ m) -> InR l \/ InR m.
+Proof.
intros l m; elim l; simpl in |- *; auto.
intros b l' Hrec IAc; elim (InR_cons_inv IAc); auto.
intros; elim Hrec; auto.
@@ -315,6 +333,7 @@ Fixpoint find (l:list A) : Exc A :=
end.
Lemma Find : forall l:list A, {a : A | In a l & R a} + {AllS P l}.
+Proof.
induction l as [| a m [[b H1 H2]| H]]; auto.
left; exists b; auto.
destruct (RS_dec a).
@@ -342,6 +361,7 @@ Fixpoint try_find (l:list A) : Exc B :=
Lemma Try_find :
forall l:list A, {c : B | exists2 a : A, In a l & T a c} + {AllS P l}.
+Proof.
induction l as [| a m [[b H1]| H]].
auto.
left; exists b; destruct H1 as [a' H2 H3]; exists a'; auto.
@@ -349,7 +369,7 @@ destruct (TS_dec a) as [[c H1]| ].
left; exists c.
exists a; auto.
auto.
-(*
+(*
Realizer try_find.
*)
Qed.
@@ -359,7 +379,7 @@ End Find_sec.
Section Assoc_sec.
Variable B : Type.
-Fixpoint assoc (a:A) (l:list (A * B)) {struct l} :
+Fixpoint assoc (a:A) (l:list (A * B)) :
Exc B :=
match l with
| nil => error
@@ -383,6 +403,7 @@ Hint Resolve allS_assoc_nil allS_assoc_cons.
Lemma Assoc :
forall (a:A) (l:list (A * B)), B + {AllS_assoc (fun a':A => a <> a') l}.
+Proof.
induction l as [| [a' b] m assrec]. auto.
destruct (eqA_dec a a').
left; exact b.
@@ -398,6 +419,5 @@ End Assoc_sec.
End Lists.
-Hint Resolve Isnil_nil not_Isnil_cons in_hd in_tl in_cons allS_nil allS_cons:
- datatypes.
+Hint Resolve Isnil_nil not_Isnil_cons in_hd in_tl in_cons : datatypes.
Hint Immediate fst_nth_nth: datatypes.
diff --git a/theories/Lists/intro.tex b/theories/Lists/intro.tex
index c45f8803..0051e2c2 100755
--- a/theories/Lists/intro.tex
+++ b/theories/Lists/intro.tex
@@ -21,7 +21,4 @@ This library includes the following files:
coinductive type. Basic facts are stated and proved. The streams are
also polymorphic.
-\item {\tt MonoList.v} THIS OLD LIBRARY IS HERE ONLY FOR COMPATIBILITY
- WITH OLDER VERSIONS OF COQ. THE USER SHOULD USE {\tt List.v} INSTEAD.
-
\end{itemize}
diff --git a/theories/Lists/vo.itarget b/theories/Lists/vo.itarget
new file mode 100644
index 00000000..d2a31367
--- /dev/null
+++ b/theories/Lists/vo.itarget
@@ -0,0 +1,7 @@
+ListSet.vo
+ListTactics.vo
+List.vo
+SetoidList.vo
+StreamMemo.vo
+Streams.vo
+TheoryList.vo