summaryrefslogtreecommitdiff
path: root/theories/Lists
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
commite0d682ec25282a348d35c5b169abafec48555690 (patch)
tree1a46f0142a85df553388c932110793881f3af52f /theories/Lists
parent86535d84cc3cffeee1dcd8545343f234e7285530 (diff)
Imported Upstream version 8.4dfsgupstream/8.4dfsg
Diffstat (limited to 'theories/Lists')
-rw-r--r--theories/Lists/List.v48
-rw-r--r--theories/Lists/ListSet.v78
-rw-r--r--theories/Lists/ListTactics.v4
-rw-r--r--theories/Lists/SetoidList.v90
-rw-r--r--theories/Lists/SetoidPermutation.v125
-rw-r--r--theories/Lists/StreamMemo.v29
-rw-r--r--theories/Lists/Streams.v14
-rw-r--r--theories/Lists/vo.itarget1
8 files changed, 281 insertions, 108 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index ecadddbc..69475a6f 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -1,12 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Le Gt Minus Bool.
+Require Import Le Gt Minus Bool Setoid.
Set Implicit Arguments.
@@ -546,30 +546,21 @@ Section Elts.
end.
(** Compatibility of count_occ with operations on list *)
- Theorem count_occ_In : forall (l : list A) (x : A), In x l <-> count_occ l x > 0.
+ Theorem count_occ_In (l : list A) (x : A) : In x l <-> count_occ l x > 0.
Proof.
- induction l as [|y l].
- simpl; intros; split; [destruct 1 | apply gt_irrefl].
- simpl. intro x; destruct (eq_dec y x) as [Heq|Hneq].
- rewrite Heq; intuition.
- pose (IHl x). intuition.
+ induction l as [|y l]; simpl.
+ - split; [destruct 1 | apply gt_irrefl].
+ - destruct eq_dec as [->|Hneq]; rewrite IHl; intuition.
Qed.
- Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = [].
+ Theorem count_occ_inv_nil (l : list A) :
+ (forall x:A, count_occ l x = 0) <-> l = [].
Proof.
split.
- (* Case -> *)
- induction l as [|x l].
- trivial.
- intro H.
- elim (O_S (count_occ l x)).
- apply sym_eq.
- generalize (H x).
- simpl. destruct (eq_dec x x) as [|HF].
- trivial.
- elim HF; reflexivity.
- (* Case <- *)
- intro H; rewrite H; simpl; reflexivity.
+ - induction l as [|x l]; trivial.
+ intros H. specialize (H x). simpl in H.
+ destruct eq_dec as [_|NEQ]; [discriminate|now elim NEQ].
+ - now intros ->.
Qed.
Lemma count_occ_nil : forall (x : A), count_occ [] x = 0.
@@ -754,22 +745,11 @@ Section ListOps.
Hypothesis eq_dec : forall (x y : A), {x = y}+{x <> y}.
- Lemma list_eq_dec :
- forall l l':list A, {l = l'} + {l <> l'}.
- Proof.
- induction l as [| x l IHl]; destruct l' as [| y l'].
- left; trivial.
- right; apply nil_cons.
- right; unfold not; intro HF; apply (nil_cons (sym_eq HF)).
- destruct (eq_dec x y) as [xeqy|xneqy]; destruct (IHl l') as [leql'|lneql'];
- try (right; unfold not; intro HF; injection HF; intros; contradiction).
- rewrite xeqy; rewrite leql'; left; trivial.
- Qed.
-
+ Lemma list_eq_dec : forall l l':list A, {l = l'} + {l <> l'}.
+ Proof. decide equality. Defined.
End ListOps.
-
(***************************************************)
(** * Applying functions to the elements of a list *)
(***************************************************)
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
index d67baf57..b846c48d 100644
--- a/theories/Lists/ListSet.v
+++ b/theories/Lists/ListSet.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -85,15 +85,15 @@ Section first_definitions.
Lemma set_In_dec : forall (a:A) (x:set), {set_In a x} + {~ set_In a x}.
Proof.
- unfold set_In in |- *.
+ unfold set_In.
(*** Realizer set_mem. Program_all. ***)
simple induction x.
auto.
intros a0 x0 Ha0. case (Aeq_dec a a0); intro eq.
- rewrite eq; simpl in |- *; auto with datatypes.
+ rewrite eq; simpl; auto with datatypes.
elim Ha0.
auto with datatypes.
- right; simpl in |- *; unfold not in |- *; intros [Hc1| Hc2];
+ right; simpl; unfold not; intros [Hc1| Hc2];
auto with datatypes.
Qed.
@@ -102,7 +102,7 @@ Section first_definitions.
(set_In a x -> P y) -> P z -> P (if set_mem a x then y else z).
Proof.
- simple induction x; simpl in |- *; intros.
+ simple induction x; simpl; intros.
assumption.
elim (Aeq_dec a a0); auto with datatypes.
Qed.
@@ -113,11 +113,11 @@ Section first_definitions.
(~ set_In a x -> P z) -> P (if set_mem a x then y else z).
Proof.
- simple induction x; simpl in |- *; intros.
- apply H0; red in |- *; trivial.
+ simple induction x; simpl; intros.
+ apply H0; red; trivial.
case (Aeq_dec a a0); auto with datatypes.
intro; apply H; intros; auto.
- apply H1; red in |- *; intro.
+ apply H1; red; intro.
case H3; auto.
Qed.
@@ -125,7 +125,7 @@ Section first_definitions.
Lemma set_mem_correct1 :
forall (a:A) (x:set), set_mem a x = true -> set_In a x.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
discriminate.
intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
Qed.
@@ -133,7 +133,7 @@ Section first_definitions.
Lemma set_mem_correct2 :
forall (a:A) (x:set), set_In a x -> set_mem a x = true.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
intro Ha; elim Ha.
intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
intros H1 H2 [H3| H4].
@@ -144,17 +144,17 @@ Section first_definitions.
Lemma set_mem_complete1 :
forall (a:A) (x:set), set_mem a x = false -> ~ set_In a x.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
tauto.
intros a0 l; elim (Aeq_dec a a0).
intros; discriminate H0.
- unfold not in |- *; intros; elim H1; auto with datatypes.
+ unfold not; intros; elim H1; auto with datatypes.
Qed.
Lemma set_mem_complete2 :
forall (a:A) (x:set), ~ set_In a x -> set_mem a x = false.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
tauto.
intros a0 l; elim (Aeq_dec a a0).
intros; elim H0; auto with datatypes.
@@ -165,7 +165,7 @@ Section first_definitions.
forall (a b:A) (x:set), set_In a x -> set_In a (set_add b x).
Proof.
- unfold set_In in |- *; simple induction x; simpl in |- *.
+ unfold set_In; simple induction x; simpl.
auto with datatypes.
intros a0 l H [Ha0a| Hal].
elim (Aeq_dec b a0); left; assumption.
@@ -176,11 +176,11 @@ Section first_definitions.
forall (a b:A) (x:set), a = b -> set_In a (set_add b x).
Proof.
- unfold set_In in |- *; simple induction x; simpl in |- *.
+ unfold set_In; simple induction x; simpl.
auto with datatypes.
intros a0 l H Hab.
elim (Aeq_dec b a0);
- [ rewrite Hab; intro Hba0; rewrite Hba0; simpl in |- *;
+ [ rewrite Hab; intro Hba0; rewrite Hba0; simpl;
auto with datatypes
| auto with datatypes ].
Qed.
@@ -198,13 +198,13 @@ Section first_definitions.
forall (a b:A) (x:set), set_In a (set_add b x) -> a = b \/ set_In a x.
Proof.
- unfold set_In in |- *.
+ unfold set_In.
simple induction x.
- simpl in |- *; intros [H1| H2]; auto with datatypes.
- simpl in |- *; do 3 intro.
+ simpl; intros [H1| H2]; auto with datatypes.
+ simpl; do 3 intro.
elim (Aeq_dec b a0).
- simpl in |- *; tauto.
- simpl in |- *; intros; elim H0.
+ simpl; tauto.
+ simpl; intros; elim H0.
trivial with datatypes.
tauto.
tauto.
@@ -220,7 +220,7 @@ Section first_definitions.
Lemma set_add_not_empty : forall (a:A) (x:set), set_add a x <> empty_set.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
discriminate.
intros; elim (Aeq_dec a a0); intros; discriminate.
Qed.
@@ -229,13 +229,13 @@ Section first_definitions.
Lemma set_union_intro1 :
forall (a:A) (x y:set), set_In a x -> set_In a (set_union x y).
Proof.
- simple induction y; simpl in |- *; auto with datatypes.
+ simple induction y; simpl; auto with datatypes.
Qed.
Lemma set_union_intro2 :
forall (a:A) (x y:set), set_In a y -> set_In a (set_union x y).
Proof.
- simple induction y; simpl in |- *.
+ simple induction y; simpl.
tauto.
intros; elim H0; auto with datatypes.
Qed.
@@ -253,7 +253,7 @@ Section first_definitions.
forall (a:A) (x y:set),
set_In a (set_union x y) -> set_In a x \/ set_In a y.
Proof.
- simple induction y; simpl in |- *.
+ simple induction y; simpl.
auto with datatypes.
intros.
generalize (set_add_elim _ _ _ H0).
@@ -280,11 +280,11 @@ Section first_definitions.
Proof.
simple induction x.
auto with datatypes.
- simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hy.
- simpl in |- *; rewrite Ha0a.
+ simpl; intros a0 l Hrec y [Ha0a| Hal] Hy.
+ simpl; rewrite Ha0a.
generalize (set_mem_correct1 a y).
generalize (set_mem_complete1 a y).
- elim (set_mem a y); simpl in |- *; intros.
+ elim (set_mem a y); simpl; intros.
auto with datatypes.
absurd (set_In a y); auto with datatypes.
elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ].
@@ -295,9 +295,9 @@ Section first_definitions.
Proof.
simple induction x.
auto with datatypes.
- simpl in |- *; intros a0 l Hrec y.
+ simpl; intros a0 l Hrec y.
generalize (set_mem_correct1 a0 y).
- elim (set_mem a0 y); simpl in |- *; intros.
+ elim (set_mem a0 y); simpl; intros.
elim H0; eauto with datatypes.
eauto with datatypes.
Qed.
@@ -306,10 +306,10 @@ Section first_definitions.
forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a y.
Proof.
simple induction x.
- simpl in |- *; tauto.
- simpl in |- *; intros a0 l Hrec y.
+ simpl; tauto.
+ simpl; intros a0 l Hrec y.
generalize (set_mem_correct1 a0 y).
- elim (set_mem a0 y); simpl in |- *; intros.
+ elim (set_mem a0 y); simpl; intros.
elim H0;
[ intro Hr; rewrite <- Hr; eauto with datatypes | eauto with datatypes ].
eauto with datatypes.
@@ -329,8 +329,8 @@ Section first_definitions.
set_In a x -> ~ set_In a y -> set_In a (set_diff x y).
Proof.
simple induction x.
- simpl in |- *; tauto.
- simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hay.
+ simpl; tauto.
+ simpl; intros a0 l Hrec y [Ha0a| Hal] Hay.
rewrite Ha0a; generalize (set_mem_complete2 _ _ Hay).
elim (set_mem a y);
[ intro Habs; discriminate Habs | auto with datatypes ].
@@ -341,8 +341,8 @@ Section first_definitions.
forall (a:A) (x y:set), set_In a (set_diff x y) -> set_In a x.
Proof.
simple induction x.
- simpl in |- *; tauto.
- simpl in |- *; intros a0 l Hrec y; elim (set_mem a0 y).
+ simpl; tauto.
+ simpl; intros a0 l Hrec y; elim (set_mem a0 y).
eauto with datatypes.
intro; generalize (set_add_elim _ _ _ H).
intros [H1| H2]; eauto with datatypes.
@@ -350,7 +350,7 @@ Section first_definitions.
Lemma set_diff_elim2 :
forall (a:A) (x y:set), set_In a (set_diff x y) -> ~ set_In a y.
- intros a x y; elim x; simpl in |- *.
+ intros a x y; elim x; simpl.
intros; contradiction.
intros a0 l Hrec.
apply set_mem_ind2; auto.
@@ -359,7 +359,7 @@ Section first_definitions.
Qed.
Lemma set_diff_trivial : forall (a:A) (x:set), ~ set_In a (set_diff x x).
- red in |- *; intros a x H.
+ red; intros a x H.
apply (set_diff_elim2 _ _ _ H).
apply (set_diff_elim1 _ _ _ H).
Qed.
diff --git a/theories/Lists/ListTactics.v b/theories/Lists/ListTactics.v
index 3343aa6f..74336555 100644
--- a/theories/Lists/ListTactics.v
+++ b/theories/Lists/ListTactics.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -60,7 +60,7 @@ Ltac Find_at a l :=
match l with
| nil => fail 100 "anomaly: Find_at"
| a :: _ => eval compute in n
- | _ :: ?l => find (Psucc n) l
+ | _ :: ?l => find (Pos.succ n) l
end
in find 1%positive l.
diff --git a/theories/Lists/SetoidList.v b/theories/Lists/SetoidList.v
index 97915055..0fd1693e 100644
--- a/theories/Lists/SetoidList.v
+++ b/theories/Lists/SetoidList.v
@@ -7,7 +7,7 @@
(***********************************************************************)
Require Export List.
-Require Export Sorting.
+Require Export Sorted.
Require Export Setoid Basics Morphisms.
Set Implicit Arguments.
Unset Strict Implicit.
@@ -199,7 +199,29 @@ Proof.
rewrite <- In_rev; auto.
Qed.
+(** Some more facts about InA *)
+Lemma InA_singleton x y : InA x (y::nil) <-> eqA x y.
+Proof.
+ rewrite InA_cons, InA_nil; tauto.
+Qed.
+
+Lemma InA_double_head x y l :
+ InA x (y :: y :: l) <-> InA x (y :: l).
+Proof.
+ rewrite !InA_cons; tauto.
+Qed.
+
+Lemma InA_permute_heads x y z l :
+ InA x (y :: z :: l) <-> InA x (z :: y :: l).
+Proof.
+ rewrite !InA_cons; tauto.
+Qed.
+
+Lemma InA_app_idem x l : InA x (l ++ l) <-> InA x l.
+Proof.
+ rewrite InA_app_iff; tauto.
+Qed.
Section NoDupA.
@@ -270,7 +292,56 @@ Proof.
eapply NoDupA_split; eauto.
Qed.
-Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y ->
+Lemma NoDupA_singleton x : NoDupA (x::nil).
+Proof.
+ repeat constructor. inversion 1.
+Qed.
+
+End NoDupA.
+
+Section EquivlistA.
+
+Global Instance equivlistA_cons_proper:
+ Proper (eqA ==> equivlistA ==> equivlistA) (@cons A).
+Proof.
+ intros ? ? E1 ? ? E2 ?; now rewrite !InA_cons, E1, E2.
+Qed.
+
+Global Instance equivlistA_app_proper:
+ Proper (equivlistA ==> equivlistA ==> equivlistA) (@app A).
+Proof.
+ intros ? ? E1 ? ? E2 ?. now rewrite !InA_app_iff, E1, E2.
+Qed.
+
+Lemma equivlistA_cons_nil x l : ~ equivlistA (x :: l) nil.
+Proof.
+ intros E. now eapply InA_nil, E, InA_cons_hd.
+Qed.
+
+Lemma equivlistA_nil_eq l : equivlistA l nil -> l = nil.
+Proof.
+ destruct l.
+ - trivial.
+ - intros H. now apply equivlistA_cons_nil in H.
+Qed.
+
+Lemma equivlistA_double_head x l : equivlistA (x :: x :: l) (x :: l).
+Proof.
+ intro. apply InA_double_head.
+Qed.
+
+Lemma equivlistA_permute_heads x y l :
+ equivlistA (x :: y :: l) (y :: x :: l).
+Proof.
+ intro. apply InA_permute_heads.
+Qed.
+
+Lemma equivlistA_app_idem l : equivlistA (l ++ l) l.
+Proof.
+ intro. apply InA_app_idem.
+Qed.
+
+Lemma equivlistA_NoDupA_split l l1 l2 x y : eqA x y ->
NoDupA (x::l) -> NoDupA (l1++y::l2) ->
equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
Proof.
@@ -290,9 +361,7 @@ Proof.
rewrite <-H,<-EQN; auto.
Qed.
-End NoDupA.
-
-
+End EquivlistA.
Section Fold.
@@ -588,10 +657,9 @@ Proof.
Qed.
(** For compatibility, can be deduced from [InfA_compat] *)
-Lemma InfA_eqA :
- forall l x y, eqA x y -> InfA y l -> InfA x l.
+Lemma InfA_eqA l x y : eqA x y -> InfA y l -> InfA x l.
Proof.
- intros l x y H; rewrite H; auto.
+ intros H; now rewrite H.
Qed.
Hint Immediate InfA_ltA InfA_eqA.
@@ -785,9 +853,11 @@ Qed.
End Filter.
End Type_with_equality.
-
Hint Constructors InA eqlistA NoDupA sort lelistA.
+Arguments equivlistA_cons_nil {A} eqA {eqA_equiv} x l _.
+Arguments equivlistA_nil_eq {A} eqA {eqA_equiv} l _.
+
Section Find.
Variable A B : Type.
@@ -838,7 +908,6 @@ Qed.
End Find.
-
(** Compatibility aliases. [Proper] is rather to be used directly now.*)
Definition compat_bool {A} (eqA:A->A->Prop)(f:A->bool) :=
@@ -852,4 +921,3 @@ Definition compat_P {A} (eqA:A->A->Prop)(P:A->Prop) :=
Definition compat_op {A B} (eqA:A->A->Prop)(eqB:B->B->Prop)(f:A->B->B) :=
Proper (eqA==>eqB==>eqB) f.
-
diff --git a/theories/Lists/SetoidPermutation.v b/theories/Lists/SetoidPermutation.v
new file mode 100644
index 00000000..b0657b63
--- /dev/null
+++ b/theories/Lists/SetoidPermutation.v
@@ -0,0 +1,125 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+Require Import SetoidList.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** Permutations of list modulo a setoid equality. *)
+
+(** Contribution by Robbert Krebbers (Nijmegen University). *)
+
+Section Permutation.
+Context {A : Type} (eqA : relation A) (e : Equivalence eqA).
+
+Inductive PermutationA : list A -> list A -> Prop :=
+ | permA_nil: PermutationA nil nil
+ | permA_skip x₁ x₂ l₁ l₂ :
+ eqA x₁ x₂ -> PermutationA l₁ l₂ -> PermutationA (x₁ :: l₁) (x₂ :: l₂)
+ | permA_swap x y l : PermutationA (y :: x :: l) (x :: y :: l)
+ | permA_trans l₁ l₂ l₃ :
+ PermutationA l₁ l₂ -> PermutationA l₂ l₃ -> PermutationA l₁ l₃.
+Local Hint Constructors PermutationA.
+
+Global Instance: Equivalence PermutationA.
+Proof.
+ constructor.
+ - intro l. induction l; intuition.
+ - intros l₁ l₂. induction 1; eauto. apply permA_skip; intuition.
+ - exact permA_trans.
+Qed.
+
+Global Instance PermutationA_cons :
+ Proper (eqA ==> PermutationA ==> PermutationA) (@cons A).
+Proof.
+ repeat intro. now apply permA_skip.
+Qed.
+
+Lemma PermutationA_app_head l₁ l₂ l :
+ PermutationA l₁ l₂ -> PermutationA (l ++ l₁) (l ++ l₂).
+Proof.
+ induction l; trivial; intros. apply permA_skip; intuition.
+Qed.
+
+Global Instance PermutationA_app :
+ Proper (PermutationA ==> PermutationA ==> PermutationA) (@app A).
+Proof.
+ intros l₁ l₂ Pl k₁ k₂ Pk.
+ induction Pl.
+ - easy.
+ - now apply permA_skip.
+ - etransitivity.
+ * rewrite <-!app_comm_cons. now apply permA_swap.
+ * rewrite !app_comm_cons. now apply PermutationA_app_head.
+ - do 2 (etransitivity; try eassumption).
+ apply PermutationA_app_head. now symmetry.
+Qed.
+
+Lemma PermutationA_app_tail l₁ l₂ l :
+ PermutationA l₁ l₂ -> PermutationA (l₁ ++ l) (l₂ ++ l).
+Proof.
+ intros E. now rewrite E.
+Qed.
+
+Lemma PermutationA_cons_append l x :
+ PermutationA (x :: l) (l ++ x :: nil).
+Proof.
+ induction l.
+ - easy.
+ - simpl. rewrite <-IHl. intuition.
+Qed.
+
+Lemma PermutationA_app_comm l₁ l₂ :
+ PermutationA (l₁ ++ l₂) (l₂ ++ l₁).
+Proof.
+ induction l₁.
+ - now rewrite app_nil_r.
+ - rewrite <-app_comm_cons, IHl₁, app_comm_cons.
+ now rewrite PermutationA_cons_append, <-app_assoc.
+Qed.
+
+Lemma PermutationA_cons_app l l₁ l₂ x :
+ PermutationA l (l₁ ++ l₂) -> PermutationA (x :: l) (l₁ ++ x :: l₂).
+Proof.
+ intros E. rewrite E.
+ now rewrite app_comm_cons, PermutationA_cons_append, <-app_assoc.
+Qed.
+
+Lemma PermutationA_middle l₁ l₂ x :
+ PermutationA (x :: l₁ ++ l₂) (l₁ ++ x :: l₂).
+Proof.
+ now apply PermutationA_cons_app.
+Qed.
+
+Lemma PermutationA_equivlistA l₁ l₂ :
+ PermutationA l₁ l₂ -> equivlistA eqA l₁ l₂.
+Proof.
+ induction 1.
+ - reflexivity.
+ - now apply equivlistA_cons_proper.
+ - now apply equivlistA_permute_heads.
+ - etransitivity; eassumption.
+Qed.
+
+Lemma NoDupA_equivlistA_PermutationA l₁ l₂ :
+ NoDupA eqA l₁ -> NoDupA eqA l₂ ->
+ equivlistA eqA l₁ l₂ -> PermutationA l₁ l₂.
+Proof.
+ intros Pl₁. revert l₂. induction Pl₁ as [|x l₁ E1].
+ - intros l₂ _ H₂. symmetry in H₂. now rewrite (equivlistA_nil_eq eqA).
+ - intros l₂ Pl₂ E2.
+ destruct (@InA_split _ eqA l₂ x) as [l₂h [y [l₂t [E3 ?]]]].
+ { rewrite <-E2. intuition. }
+ subst. transitivity (y :: l₁); [intuition |].
+ apply PermutationA_cons_app, IHPl₁.
+ now apply NoDupA_split with y.
+ apply equivlistA_NoDupA_split with x y; intuition.
+Qed.
+
+End Permutation.
diff --git a/theories/Lists/StreamMemo.v b/theories/Lists/StreamMemo.v
index 45490c62..67882cde 100644
--- a/theories/Lists/StreamMemo.v
+++ b/theories/Lists/StreamMemo.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -32,10 +32,10 @@ Fixpoint memo_get (n:nat) (l:Stream A) : A :=
Theorem memo_get_correct: forall n, memo_get n memo_list = f n.
Proof.
assert (F1: forall n m, memo_get n (memo_make m) = f (n + m)).
- induction n as [| n Hrec]; try (intros m; refine (refl_equal _)).
+{ induction n as [| n Hrec]; try (intros m; reflexivity).
intros m; simpl; rewrite Hrec.
- rewrite plus_n_Sm; auto.
-intros n; apply trans_equal with (f (n + 0)); try exact (F1 n 0).
+ rewrite plus_n_Sm; auto. }
+intros n; transitivity (f (n + 0)); try exact (F1 n 0).
rewrite <- plus_n_O; auto.
Qed.
@@ -57,11 +57,10 @@ Definition imemo_list := let f0 := f 0 in
Theorem imemo_get_correct: forall n, memo_get n imemo_list = f n.
Proof.
-assert (F1: forall n m,
- memo_get n (imemo_make (f m)) = f (S (n + m))).
- induction n as [| n Hrec]; try (intros m; exact (sym_equal (Hg_correct m))).
- simpl; intros m; rewrite <- Hg_correct; rewrite Hrec; rewrite <- plus_n_Sm; auto.
-destruct n as [| n]; try apply refl_equal.
+assert (F1: forall n m, memo_get n (imemo_make (f m)) = f (S (n + m))).
+{ induction n as [| n Hrec]; try (intros m; exact (eq_sym (Hg_correct m))).
+ simpl; intros m; rewrite <- Hg_correct, Hrec, <- plus_n_Sm; auto. }
+destruct n as [| n]; try reflexivity.
unfold imemo_list; simpl; rewrite F1.
rewrite <- plus_n_O; auto.
Qed.
@@ -82,7 +81,7 @@ Inductive memo_val: Type :=
Fixpoint is_eq (n m : nat) : {n = m} + {True} :=
match n, m return {n = m} + {True} with
- | 0, 0 =>left True (refl_equal 0)
+ | 0, 0 =>left True (eq_refl 0)
| 0, S m1 => right (0 = S m1) I
| S n1, 0 => right (S n1 = 0) I
| S n1, S m1 =>
@@ -98,7 +97,7 @@ match v with
match is_eq n m with
| left H =>
match H in (eq _ y) return (A y -> A n) with
- | refl_equal => fun v1 : A n => v1
+ | eq_refl => fun v1 : A n => v1
end
| right _ => fun _ : A m => f n
end x
@@ -115,7 +114,7 @@ Proof.
intros n; unfold dmemo_get, dmemo_list.
rewrite (memo_get_correct memo_val mf n); simpl.
case (is_eq n n); simpl; auto; intros e.
-assert (e = refl_equal n).
+assert (e = eq_refl n).
apply eq_proofs_unicity.
induction x as [| x Hx]; destruct y as [| y].
left; auto.
@@ -144,7 +143,7 @@ Proof.
intros n; unfold dmemo_get, dimemo_list.
rewrite (imemo_get_correct memo_val mf mg); simpl.
case (is_eq n n); simpl; auto; intros e.
-assert (e = refl_equal n).
+assert (e = eq_refl n).
apply eq_proofs_unicity.
induction x as [| x Hx]; destruct y as [| y].
left; auto.
@@ -169,11 +168,11 @@ Open Scope Z_scope.
Fixpoint tfact (n: nat) :=
match n with
| O => 1
- | S n1 => Z_of_nat n * tfact n1
+ | S n1 => Z.of_nat n * tfact n1
end.
Definition lfact_list :=
- dimemo_list _ tfact (fun n z => (Z_of_nat (S n) * z)).
+ dimemo_list _ tfact (fun n z => (Z.of_nat (S n) * z)).
Definition lfact n := dmemo_get _ tfact n lfact_list.
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v
index 7a6f38fc..e1122cf9 100644
--- a/theories/Lists/Streams.v
+++ b/theories/Lists/Streams.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -49,21 +49,21 @@ Qed.
Lemma tl_nth_tl :
forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s).
Proof.
- simple induction n; simpl in |- *; auto.
+ simple induction n; simpl; auto.
Qed.
Hint Resolve tl_nth_tl: datatypes v62.
Lemma Str_nth_tl_plus :
forall (n m:nat) (s:Stream),
Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s.
-simple induction n; simpl in |- *; intros; auto with datatypes.
+simple induction n; simpl; intros; auto with datatypes.
rewrite <- H.
rewrite tl_nth_tl; trivial with datatypes.
Qed.
Lemma Str_nth_plus :
forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s.
-intros; unfold Str_nth in |- *; rewrite Str_nth_tl_plus;
+intros; unfold Str_nth; rewrite Str_nth_tl_plus;
trivial with datatypes.
Qed.
@@ -89,7 +89,7 @@ Qed.
Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1.
coinduction Eq_sym.
-case H; intros; symmetry in |- *; assumption.
+case H; intros; symmetry ; assumption.
case H; intros; assumption.
Qed.
@@ -110,10 +110,10 @@ Qed.
Theorem eqst_ntheq :
forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2.
-unfold Str_nth in |- *; simple induction n.
+unfold Str_nth; simple induction n.
intros s1 s2 H; case H; trivial with datatypes.
intros m hypind.
-simpl in |- *.
+simpl.
intros s1 s2 H.
apply hypind.
case H; trivial with datatypes.
diff --git a/theories/Lists/vo.itarget b/theories/Lists/vo.itarget
index adcfba49..04994f59 100644
--- a/theories/Lists/vo.itarget
+++ b/theories/Lists/vo.itarget
@@ -2,5 +2,6 @@ ListSet.vo
ListTactics.vo
List.vo
SetoidList.vo
+SetoidPermutation.vo
StreamMemo.vo
Streams.vo