summaryrefslogtreecommitdiff
path: root/theories/Lists/SetoidPermutation.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
commite0d682ec25282a348d35c5b169abafec48555690 (patch)
tree1a46f0142a85df553388c932110793881f3af52f /theories/Lists/SetoidPermutation.v
parent86535d84cc3cffeee1dcd8545343f234e7285530 (diff)
Imported Upstream version 8.4dfsgupstream/8.4dfsg
Diffstat (limited to 'theories/Lists/SetoidPermutation.v')
-rw-r--r--theories/Lists/SetoidPermutation.v125
1 files changed, 125 insertions, 0 deletions
diff --git a/theories/Lists/SetoidPermutation.v b/theories/Lists/SetoidPermutation.v
new file mode 100644
index 00000000..b0657b63
--- /dev/null
+++ b/theories/Lists/SetoidPermutation.v
@@ -0,0 +1,125 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+Require Import SetoidList.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** Permutations of list modulo a setoid equality. *)
+
+(** Contribution by Robbert Krebbers (Nijmegen University). *)
+
+Section Permutation.
+Context {A : Type} (eqA : relation A) (e : Equivalence eqA).
+
+Inductive PermutationA : list A -> list A -> Prop :=
+ | permA_nil: PermutationA nil nil
+ | permA_skip x₁ x₂ l₁ l₂ :
+ eqA x₁ x₂ -> PermutationA l₁ l₂ -> PermutationA (x₁ :: l₁) (x₂ :: l₂)
+ | permA_swap x y l : PermutationA (y :: x :: l) (x :: y :: l)
+ | permA_trans l₁ l₂ l₃ :
+ PermutationA l₁ l₂ -> PermutationA l₂ l₃ -> PermutationA l₁ l₃.
+Local Hint Constructors PermutationA.
+
+Global Instance: Equivalence PermutationA.
+Proof.
+ constructor.
+ - intro l. induction l; intuition.
+ - intros l₁ l₂. induction 1; eauto. apply permA_skip; intuition.
+ - exact permA_trans.
+Qed.
+
+Global Instance PermutationA_cons :
+ Proper (eqA ==> PermutationA ==> PermutationA) (@cons A).
+Proof.
+ repeat intro. now apply permA_skip.
+Qed.
+
+Lemma PermutationA_app_head l₁ l₂ l :
+ PermutationA l₁ l₂ -> PermutationA (l ++ l₁) (l ++ l₂).
+Proof.
+ induction l; trivial; intros. apply permA_skip; intuition.
+Qed.
+
+Global Instance PermutationA_app :
+ Proper (PermutationA ==> PermutationA ==> PermutationA) (@app A).
+Proof.
+ intros l₁ l₂ Pl k₁ k₂ Pk.
+ induction Pl.
+ - easy.
+ - now apply permA_skip.
+ - etransitivity.
+ * rewrite <-!app_comm_cons. now apply permA_swap.
+ * rewrite !app_comm_cons. now apply PermutationA_app_head.
+ - do 2 (etransitivity; try eassumption).
+ apply PermutationA_app_head. now symmetry.
+Qed.
+
+Lemma PermutationA_app_tail l₁ l₂ l :
+ PermutationA l₁ l₂ -> PermutationA (l₁ ++ l) (l₂ ++ l).
+Proof.
+ intros E. now rewrite E.
+Qed.
+
+Lemma PermutationA_cons_append l x :
+ PermutationA (x :: l) (l ++ x :: nil).
+Proof.
+ induction l.
+ - easy.
+ - simpl. rewrite <-IHl. intuition.
+Qed.
+
+Lemma PermutationA_app_comm l₁ l₂ :
+ PermutationA (l₁ ++ l₂) (l₂ ++ l₁).
+Proof.
+ induction l₁.
+ - now rewrite app_nil_r.
+ - rewrite <-app_comm_cons, IHl₁, app_comm_cons.
+ now rewrite PermutationA_cons_append, <-app_assoc.
+Qed.
+
+Lemma PermutationA_cons_app l l₁ l₂ x :
+ PermutationA l (l₁ ++ l₂) -> PermutationA (x :: l) (l₁ ++ x :: l₂).
+Proof.
+ intros E. rewrite E.
+ now rewrite app_comm_cons, PermutationA_cons_append, <-app_assoc.
+Qed.
+
+Lemma PermutationA_middle l₁ l₂ x :
+ PermutationA (x :: l₁ ++ l₂) (l₁ ++ x :: l₂).
+Proof.
+ now apply PermutationA_cons_app.
+Qed.
+
+Lemma PermutationA_equivlistA l₁ l₂ :
+ PermutationA l₁ l₂ -> equivlistA eqA l₁ l₂.
+Proof.
+ induction 1.
+ - reflexivity.
+ - now apply equivlistA_cons_proper.
+ - now apply equivlistA_permute_heads.
+ - etransitivity; eassumption.
+Qed.
+
+Lemma NoDupA_equivlistA_PermutationA l₁ l₂ :
+ NoDupA eqA l₁ -> NoDupA eqA l₂ ->
+ equivlistA eqA l₁ l₂ -> PermutationA l₁ l₂.
+Proof.
+ intros Pl₁. revert l₂. induction Pl₁ as [|x l₁ E1].
+ - intros l₂ _ H₂. symmetry in H₂. now rewrite (equivlistA_nil_eq eqA).
+ - intros l₂ Pl₂ E2.
+ destruct (@InA_split _ eqA l₂ x) as [l₂h [y [l₂t [E3 ?]]]].
+ { rewrite <-E2. intuition. }
+ subst. transitivity (y :: l₁); [intuition |].
+ apply PermutationA_cons_app, IHPl₁.
+ now apply NoDupA_split with y.
+ apply equivlistA_NoDupA_split with x y; intuition.
+Qed.
+
+End Permutation.