diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/Lists/ListSet.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Lists/ListSet.v')
-rw-r--r-- | theories/Lists/ListSet.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v index 4e009ed5..021a64c1 100644 --- a/theories/Lists/ListSet.v +++ b/theories/Lists/ListSet.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: ListSet.v 6844 2005-03-16 13:09:55Z herbelin $ i*) +(*i $Id: ListSet.v 10616 2008-03-04 17:33:35Z letouzey $ i*) (** A Library for finite sets, implemented as lists *) @@ -20,7 +20,7 @@ Set Implicit Arguments. Section first_definitions. - Variable A : Set. + Variable A : Type. Hypothesis Aeq_dec : forall x y:A, {x = y} + {x <> y}. Definition set := list A. @@ -100,7 +100,7 @@ Section first_definitions. Qed. Lemma set_mem_ind : - forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set), + forall (B:Type) (P:B -> Prop) (y z:B) (a:A) (x:set), (set_In a x -> P y) -> P z -> P (if set_mem a x then y else z). Proof. @@ -110,7 +110,7 @@ Section first_definitions. Qed. Lemma set_mem_ind2 : - forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set), + forall (B:Type) (P:B -> Prop) (y z:B) (a:A) (x:set), (set_In a x -> P y) -> (~ set_In a x -> P z) -> P (if set_mem a x then y else z). @@ -373,7 +373,7 @@ End first_definitions. Section other_definitions. - Variables A B : Set. + Variables A B : Type. Definition set_prod : set A -> set B -> set (A * B) := list_prod (A:=A) (B:=B). |