summaryrefslogtreecommitdiff
path: root/theories/Init/Wf.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/Init/Wf.v
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/Init/Wf.v')
-rwxr-xr-xtheories/Init/Wf.v171
1 files changed, 171 insertions, 0 deletions
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v
new file mode 100755
index 00000000..7ab3723d
--- /dev/null
+++ b/theories/Init/Wf.v
@@ -0,0 +1,171 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Set Implicit Arguments.
+
+(*i $Id: Wf.v,v 1.17.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+
+(** This module proves the validity of
+ - well-founded recursion (also called course of values)
+ - well-founded induction
+
+ from a well-founded ordering on a given set *)
+
+Require Import Notations.
+Require Import Logic.
+Require Import Datatypes.
+
+(** Well-founded induction principle on Prop *)
+
+Section Well_founded.
+
+ Variable A : Set.
+ Variable R : A -> A -> Prop.
+
+ (** The accessibility predicate is defined to be non-informative *)
+
+ Inductive Acc : A -> Prop :=
+ Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc x.
+
+ Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y.
+ destruct 1; trivial.
+ Defined.
+
+ (** the informative elimination :
+ [let Acc_rec F = let rec wf x = F x wf in wf] *)
+
+ Section AccRecType.
+ Variable P : A -> Type.
+ Variable
+ F :
+ forall x:A,
+ (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
+
+ Fixpoint Acc_rect (x:A) (a:Acc x) {struct a} : P x :=
+ F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (x:=y) (Acc_inv a h)).
+
+ End AccRecType.
+
+ Definition Acc_rec (P:A -> Set) := Acc_rect P.
+
+ (** A simplified version of Acc_rec(t) *)
+
+ Section AccIter.
+ Variable P : A -> Type.
+ Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
+
+ Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x :=
+ F (fun (y:A) (h:R y x) => Acc_iter (x:=y) (Acc_inv a h)).
+
+ End AccIter.
+
+ (** A relation is well-founded if every element is accessible *)
+
+ Definition well_founded := forall a:A, Acc a.
+
+ (** well-founded induction on Set and Prop *)
+
+ Hypothesis Rwf : well_founded.
+
+ Theorem well_founded_induction_type :
+ forall P:A -> Type,
+ (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
+ Proof.
+ intros; apply (Acc_iter P); auto.
+ Defined.
+
+ Theorem well_founded_induction :
+ forall P:A -> Set,
+ (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
+ Proof.
+ exact (fun P:A -> Set => well_founded_induction_type P).
+ Defined.
+
+ Theorem well_founded_ind :
+ forall P:A -> Prop,
+ (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
+ Proof.
+ exact (fun P:A -> Prop => well_founded_induction_type P).
+ Defined.
+
+(** Building fixpoints *)
+
+Section FixPoint.
+
+Variable P : A -> Set.
+Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
+
+Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
+ F (fun (y:A) (p:R y x) => Fix_F (x:=y) (Acc_inv r p)).
+
+Definition Fix (x:A) := Fix_F (Rwf x).
+
+(** Proof that [well_founded_induction] satisfies the fixpoint equation.
+ It requires an extra property of the functional *)
+
+Hypothesis
+ F_ext :
+ forall (x:A) (f g:forall y:A, R y x -> P y),
+ (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g.
+
+Scheme Acc_inv_dep := Induction for Acc Sort Prop.
+
+Lemma Fix_F_eq :
+ forall (x:A) (r:Acc x),
+ F (fun (y:A) (p:R y x) => Fix_F (Acc_inv r p)) = Fix_F r.
+destruct r using Acc_inv_dep; auto.
+Qed.
+
+Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F r = Fix_F s.
+intro x; induction (Rwf x); intros.
+rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros.
+apply F_ext; auto.
+Qed.
+
+
+Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
+intro x; unfold Fix in |- *.
+rewrite <- (Fix_F_eq (x:=x)).
+apply F_ext; intros.
+apply Fix_F_inv.
+Qed.
+
+End FixPoint.
+
+End Well_founded.
+
+(** A recursor over pairs *)
+
+Section Well_founded_2.
+
+ Variables A B : Set.
+ Variable R : A * B -> A * B -> Prop.
+
+ Variable P : A -> B -> Type.
+ Variable
+ F :
+ forall (x:A) (x':B),
+ (forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x'.
+
+ Fixpoint Acc_iter_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} :
+ P x x' :=
+ F
+ (fun (y:A) (y':B) (h:R (y, y') (x, x')) =>
+ Acc_iter_2 (x:=y) (x':=y') (Acc_inv a (y, y') h)).
+
+ Hypothesis Rwf : well_founded R.
+
+ Theorem well_founded_induction_type_2 :
+ (forall (x:A) (x':B),
+ (forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x') ->
+ forall (a:A) (b:B), P a b.
+ Proof.
+ intros; apply Acc_iter_2; auto.
+ Defined.
+
+End Well_founded_2.