diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/Init/Wf.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/Init/Wf.v')
-rwxr-xr-x | theories/Init/Wf.v | 171 |
1 files changed, 171 insertions, 0 deletions
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v new file mode 100755 index 00000000..7ab3723d --- /dev/null +++ b/theories/Init/Wf.v @@ -0,0 +1,171 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Set Implicit Arguments. + +(*i $Id: Wf.v,v 1.17.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) + +(** This module proves the validity of + - well-founded recursion (also called course of values) + - well-founded induction + + from a well-founded ordering on a given set *) + +Require Import Notations. +Require Import Logic. +Require Import Datatypes. + +(** Well-founded induction principle on Prop *) + +Section Well_founded. + + Variable A : Set. + Variable R : A -> A -> Prop. + + (** The accessibility predicate is defined to be non-informative *) + + Inductive Acc : A -> Prop := + Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc x. + + Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y. + destruct 1; trivial. + Defined. + + (** the informative elimination : + [let Acc_rec F = let rec wf x = F x wf in wf] *) + + Section AccRecType. + Variable P : A -> Type. + Variable + F : + forall x:A, + (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x. + + Fixpoint Acc_rect (x:A) (a:Acc x) {struct a} : P x := + F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (x:=y) (Acc_inv a h)). + + End AccRecType. + + Definition Acc_rec (P:A -> Set) := Acc_rect P. + + (** A simplified version of Acc_rec(t) *) + + Section AccIter. + Variable P : A -> Type. + Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x. + + Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x := + F (fun (y:A) (h:R y x) => Acc_iter (x:=y) (Acc_inv a h)). + + End AccIter. + + (** A relation is well-founded if every element is accessible *) + + Definition well_founded := forall a:A, Acc a. + + (** well-founded induction on Set and Prop *) + + Hypothesis Rwf : well_founded. + + Theorem well_founded_induction_type : + forall P:A -> Type, + (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a. + Proof. + intros; apply (Acc_iter P); auto. + Defined. + + Theorem well_founded_induction : + forall P:A -> Set, + (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a. + Proof. + exact (fun P:A -> Set => well_founded_induction_type P). + Defined. + + Theorem well_founded_ind : + forall P:A -> Prop, + (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a. + Proof. + exact (fun P:A -> Prop => well_founded_induction_type P). + Defined. + +(** Building fixpoints *) + +Section FixPoint. + +Variable P : A -> Set. +Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x. + +Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x := + F (fun (y:A) (p:R y x) => Fix_F (x:=y) (Acc_inv r p)). + +Definition Fix (x:A) := Fix_F (Rwf x). + +(** Proof that [well_founded_induction] satisfies the fixpoint equation. + It requires an extra property of the functional *) + +Hypothesis + F_ext : + forall (x:A) (f g:forall y:A, R y x -> P y), + (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g. + +Scheme Acc_inv_dep := Induction for Acc Sort Prop. + +Lemma Fix_F_eq : + forall (x:A) (r:Acc x), + F (fun (y:A) (p:R y x) => Fix_F (Acc_inv r p)) = Fix_F r. +destruct r using Acc_inv_dep; auto. +Qed. + +Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F r = Fix_F s. +intro x; induction (Rwf x); intros. +rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros. +apply F_ext; auto. +Qed. + + +Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y). +intro x; unfold Fix in |- *. +rewrite <- (Fix_F_eq (x:=x)). +apply F_ext; intros. +apply Fix_F_inv. +Qed. + +End FixPoint. + +End Well_founded. + +(** A recursor over pairs *) + +Section Well_founded_2. + + Variables A B : Set. + Variable R : A * B -> A * B -> Prop. + + Variable P : A -> B -> Type. + Variable + F : + forall (x:A) (x':B), + (forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x'. + + Fixpoint Acc_iter_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} : + P x x' := + F + (fun (y:A) (y':B) (h:R (y, y') (x, x')) => + Acc_iter_2 (x:=y) (x':=y') (Acc_inv a (y, y') h)). + + Hypothesis Rwf : well_founded R. + + Theorem well_founded_induction_type_2 : + (forall (x:A) (x':B), + (forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x') -> + forall (a:A) (b:B), P a b. + Proof. + intros; apply Acc_iter_2; auto. + Defined. + +End Well_founded_2. |