diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /theories/Init/Specif.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories/Init/Specif.v')
-rw-r--r--[-rwxr-xr-x] | theories/Init/Specif.v | 54 |
1 files changed, 32 insertions, 22 deletions
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v index 6855e689..e7fc1ac4 100755..100644 --- a/theories/Init/Specif.v +++ b/theories/Init/Specif.v @@ -6,21 +6,21 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Specif.v,v 1.25.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) +(*i $Id: Specif.v 8642 2006-03-17 10:09:02Z notin $ i*) -Set Implicit Arguments. +(** Basic specifications : sets that may contain logical information *) -(** Basic specifications : Sets containing logical information *) +Set Implicit Arguments. Require Import Notations. Require Import Datatypes. Require Import Logic. -(** Subsets *) +(** Subsets and Sigma-types *) -(** [(sig A P)], or more suggestively [{x:A | (P x)}], denotes the subset +(** [(sig A P)], or more suggestively [{x:A | P x}], denotes the subset of elements of the Set [A] which satisfy the predicate [P]. - Similarly [(sig2 A P Q)], or [{x:A | (P x) & (Q x)}], denotes the subset + Similarly [(sig2 A P Q)], or [{x:A | P x & Q x}], denotes the subset of elements of the Set [A] which satisfy both [P] and [Q]. *) Inductive sig (A:Set) (P:A -> Prop) : Set := @@ -29,8 +29,8 @@ Inductive sig (A:Set) (P:A -> Prop) : Set := Inductive sig2 (A:Set) (P Q:A -> Prop) : Set := exist2 : forall x:A, P x -> Q x -> sig2 (A:=A) P Q. -(** [(sigS A P)], or more suggestively [{x:A & (P x)}], is a subtle variant - of subset where [P] is now of type [Set]. +(** [(sigS A P)], or more suggestively [{x:A & (P x)}] is a Sigma-type. + It is a variant of subset where [P] is now of type [Set]. Similarly for [(sigS2 A P Q)], also written [{x:A & (P x) & (Q x)}]. *) Inductive sigS (A:Set) (P:A -> Set) : Set := @@ -57,7 +57,13 @@ Add Printing Let sigS. Add Printing Let sigS2. -(** Projections of sig *) +(** Projections of [sig] + + An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] + of type [A] and of a proof [h] that [a] satisfies [P]. Then + [(proj1_sig y)] is the witness [a] and [(proj2_sig y)] is the + proof of [(P a)] *) + Section Subset_projections. @@ -76,18 +82,18 @@ Section Subset_projections. End Subset_projections. -(** Projections of sigS *) +(** Projections of [sigS] + + An element [x] of a sigma-type [{y:A & P y}] is a dependent pair + made of an [a] of type [A] and an [h] of type [P a]. Then, + [(projS1 x)] is the first projection and [(projS2 x)] is the + second projection, the type of which depends on the [projS1]. *) Section Projections. Variable A : Set. Variable P : A -> Set. - (** An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] of - type [A] and of a proof [h] that [a] satisfies [P]. - Then [(projS1 y)] is the witness [a] - and [(projS2 y)] is the proof of [(P a)] *) - Definition projS1 (x:sigS P) : A := match x with | existS a _ => a end. @@ -99,7 +105,8 @@ Section Projections. End Projections. -(** Extended_booleans *) +(** [sumbool] is a boolean type equipped with the justification of + their value *) Inductive sumbool (A B:Prop) : Set := | left : A -> {A} + {B} @@ -108,6 +115,9 @@ Inductive sumbool (A B:Prop) : Set := Add Printing If sumbool. +(** [sumor] is an option type equipped with the justification of why + it may not be a regular value *) + Inductive sumor (A:Set) (B:Prop) : Set := | inleft : A -> A + {B} | inright : B -> A + {B} @@ -115,12 +125,10 @@ Inductive sumor (A:Set) (B:Prop) : Set := Add Printing If sumor. -(** Choice *) +(** Various forms of the axiom of choice for specifications *) Section Choice_lemmas. - (** The following lemmas state various forms of the axiom of choice *) - Variables S S' : Set. Variable R : S -> S' -> Prop. Variable R' : S -> S' -> Set. @@ -167,8 +175,10 @@ End Choice_lemmas. (** A result of type [(Exc A)] is either a normal value of type [A] or an [error] : - [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)] - it is implemented using the option type. *) + + [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)]. + + It is implemented using the option type. *) Definition Exc := option. Definition value := Some. @@ -189,7 +199,7 @@ Qed. Hint Resolve left right inleft inright: core v62. -(** Sigma Type at Type level [sigT] *) +(** Sigma-type for types in [Type] *) Inductive sigT (A:Type) (P:A -> Type) : Type := existT : forall x:A, P x -> sigT (A:=A) P. |