summaryrefslogtreecommitdiff
path: root/theories/Init/Specif.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /theories/Init/Specif.v
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'theories/Init/Specif.v')
-rw-r--r--[-rwxr-xr-x]theories/Init/Specif.v54
1 files changed, 32 insertions, 22 deletions
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v
index 6855e689..e7fc1ac4 100755..100644
--- a/theories/Init/Specif.v
+++ b/theories/Init/Specif.v
@@ -6,21 +6,21 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Specif.v,v 1.25.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+(*i $Id: Specif.v 8642 2006-03-17 10:09:02Z notin $ i*)
-Set Implicit Arguments.
+(** Basic specifications : sets that may contain logical information *)
-(** Basic specifications : Sets containing logical information *)
+Set Implicit Arguments.
Require Import Notations.
Require Import Datatypes.
Require Import Logic.
-(** Subsets *)
+(** Subsets and Sigma-types *)
-(** [(sig A P)], or more suggestively [{x:A | (P x)}], denotes the subset
+(** [(sig A P)], or more suggestively [{x:A | P x}], denotes the subset
of elements of the Set [A] which satisfy the predicate [P].
- Similarly [(sig2 A P Q)], or [{x:A | (P x) & (Q x)}], denotes the subset
+ Similarly [(sig2 A P Q)], or [{x:A | P x & Q x}], denotes the subset
of elements of the Set [A] which satisfy both [P] and [Q]. *)
Inductive sig (A:Set) (P:A -> Prop) : Set :=
@@ -29,8 +29,8 @@ Inductive sig (A:Set) (P:A -> Prop) : Set :=
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
exist2 : forall x:A, P x -> Q x -> sig2 (A:=A) P Q.
-(** [(sigS A P)], or more suggestively [{x:A & (P x)}], is a subtle variant
- of subset where [P] is now of type [Set].
+(** [(sigS A P)], or more suggestively [{x:A & (P x)}] is a Sigma-type.
+ It is a variant of subset where [P] is now of type [Set].
Similarly for [(sigS2 A P Q)], also written [{x:A & (P x) & (Q x)}]. *)
Inductive sigS (A:Set) (P:A -> Set) : Set :=
@@ -57,7 +57,13 @@ Add Printing Let sigS.
Add Printing Let sigS2.
-(** Projections of sig *)
+(** Projections of [sig]
+
+ An element [y] of a subset [{x:A & (P x)}] is the pair of an [a]
+ of type [A] and of a proof [h] that [a] satisfies [P]. Then
+ [(proj1_sig y)] is the witness [a] and [(proj2_sig y)] is the
+ proof of [(P a)] *)
+
Section Subset_projections.
@@ -76,18 +82,18 @@ Section Subset_projections.
End Subset_projections.
-(** Projections of sigS *)
+(** Projections of [sigS]
+
+ An element [x] of a sigma-type [{y:A & P y}] is a dependent pair
+ made of an [a] of type [A] and an [h] of type [P a]. Then,
+ [(projS1 x)] is the first projection and [(projS2 x)] is the
+ second projection, the type of which depends on the [projS1]. *)
Section Projections.
Variable A : Set.
Variable P : A -> Set.
- (** An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] of
- type [A] and of a proof [h] that [a] satisfies [P].
- Then [(projS1 y)] is the witness [a]
- and [(projS2 y)] is the proof of [(P a)] *)
-
Definition projS1 (x:sigS P) : A := match x with
| existS a _ => a
end.
@@ -99,7 +105,8 @@ Section Projections.
End Projections.
-(** Extended_booleans *)
+(** [sumbool] is a boolean type equipped with the justification of
+ their value *)
Inductive sumbool (A B:Prop) : Set :=
| left : A -> {A} + {B}
@@ -108,6 +115,9 @@ Inductive sumbool (A B:Prop) : Set :=
Add Printing If sumbool.
+(** [sumor] is an option type equipped with the justification of why
+ it may not be a regular value *)
+
Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft : A -> A + {B}
| inright : B -> A + {B}
@@ -115,12 +125,10 @@ Inductive sumor (A:Set) (B:Prop) : Set :=
Add Printing If sumor.
-(** Choice *)
+(** Various forms of the axiom of choice for specifications *)
Section Choice_lemmas.
- (** The following lemmas state various forms of the axiom of choice *)
-
Variables S S' : Set.
Variable R : S -> S' -> Prop.
Variable R' : S -> S' -> Set.
@@ -167,8 +175,10 @@ End Choice_lemmas.
(** A result of type [(Exc A)] is either a normal value of type [A] or
an [error] :
- [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)]
- it is implemented using the option type. *)
+
+ [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)].
+
+ It is implemented using the option type. *)
Definition Exc := option.
Definition value := Some.
@@ -189,7 +199,7 @@ Qed.
Hint Resolve left right inleft inright: core v62.
-(** Sigma Type at Type level [sigT] *)
+(** Sigma-type for types in [Type] *)
Inductive sigT (A:Type) (P:A -> Type) : Type :=
existT : forall x:A, P x -> sigT (A:=A) P.