diff options
author | Stephane Glondu <steph@glondu.net> | 2009-02-01 00:54:40 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2009-02-01 00:54:40 +0100 |
commit | cfbfe13f5b515ae2e3c6cdd97e2ccee03bc26e56 (patch) | |
tree | b7832bd5d412a5a5d69cb36ae2ded62c71124c22 /theories/Init/Peano.v | |
parent | 113b703a695acbe31ac6dd6a8c4aa94f6fda7545 (diff) |
Imported Upstream version 8.2~rc2+dfsgupstream/8.2.rc2+dfsg
Diffstat (limited to 'theories/Init/Peano.v')
-rw-r--r-- | theories/Init/Peano.v | 38 |
1 files changed, 17 insertions, 21 deletions
diff --git a/theories/Init/Peano.v b/theories/Init/Peano.v index 9ef63cc8..43b1f634 100644 --- a/theories/Init/Peano.v +++ b/theories/Init/Peano.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Peano.v 11115 2008-06-12 16:03:32Z werner $ i*) +(*i $Id: Peano.v 11735 2009-01-02 17:22:31Z herbelin $ i*) (** The type [nat] of Peano natural numbers (built from [O] and [S]) is defined in [Datatypes.v] *) @@ -47,7 +47,7 @@ Hint Resolve (f_equal pred): v62. Theorem pred_Sn : forall n:nat, n = pred (S n). Proof. - simpl; reflexivity. + simpl; reflexivity. Qed. (** Injectivity of successor *) @@ -59,13 +59,13 @@ Proof. rewrite Sn_eq_Sm; trivial. Qed. -Hint Immediate eq_add_S: core v62. +Hint Immediate eq_add_S: core. Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m. Proof. red in |- *; auto. Qed. -Hint Resolve not_eq_S: core v62. +Hint Resolve not_eq_S: core. Definition IsSucc (n:nat) : Prop := match n with @@ -80,13 +80,13 @@ Proof. unfold not; intros n H. inversion H. Qed. -Hint Resolve O_S: core v62. +Hint Resolve O_S: core. Theorem n_Sn : forall n:nat, n <> S n. Proof. induction n; auto. Qed. -Hint Resolve n_Sn: core v62. +Hint Resolve n_Sn: core. (** Addition *) @@ -105,7 +105,7 @@ Lemma plus_n_O : forall n:nat, n = n + 0. Proof. induction n; simpl in |- *; auto. Qed. -Hint Resolve plus_n_O: core v62. +Hint Resolve plus_n_O: core. Lemma plus_O_n : forall n:nat, 0 + n = n. Proof. @@ -116,7 +116,7 @@ Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m. Proof. intros n m; induction n; simpl in |- *; auto. Qed. -Hint Resolve plus_n_Sm: core v62. +Hint Resolve plus_n_Sm: core. Lemma plus_Sn_m : forall n m:nat, S n + m = S (n + m). Proof. @@ -138,13 +138,13 @@ Fixpoint mult (n m:nat) {struct n} : nat := where "n * m" := (mult n m) : nat_scope. -Hint Resolve (f_equal2 mult): core v62. +Hint Resolve (f_equal2 mult): core. Lemma mult_n_O : forall n:nat, 0 = n * 0. Proof. induction n; simpl in |- *; auto. Qed. -Hint Resolve mult_n_O: core v62. +Hint Resolve mult_n_O: core. Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m. Proof. @@ -152,7 +152,7 @@ Proof. destruct H; rewrite <- plus_n_Sm; apply (f_equal S). pattern m at 1 3 in |- *; elim m; simpl in |- *; auto. Qed. -Hint Resolve mult_n_Sm: core v62. +Hint Resolve mult_n_Sm: core. (** Standard associated names *) @@ -165,16 +165,12 @@ Fixpoint minus (n m:nat) {struct n} : nat := match n, m with | O, _ => n | S k, O => n -(*======= - - | O, _ => n - | S k, O => S k *) | S k, S l => k - l end where "n - m" := (minus n m) : nat_scope. -(** Definition of the usual orders, the basic properties of [le] and [lt] +(** Definition of the usual orders, the basic properties of [le] and [lt] can be found in files Le and Lt *) Inductive le (n:nat) : nat -> Prop := @@ -183,21 +179,21 @@ Inductive le (n:nat) : nat -> Prop := where "n <= m" := (le n m) : nat_scope. -Hint Constructors le: core v62. -(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*) +Hint Constructors le: core. +(*i equivalent to : "Hints Resolve le_n le_S : core." i*) Definition lt (n m:nat) := S n <= m. -Hint Unfold lt: core v62. +Hint Unfold lt: core. Infix "<" := lt : nat_scope. Definition ge (n m:nat) := m <= n. -Hint Unfold ge: core v62. +Hint Unfold ge: core. Infix ">=" := ge : nat_scope. Definition gt (n m:nat) := m < n. -Hint Unfold gt: core v62. +Hint Unfold gt: core. Infix ">" := gt : nat_scope. |