summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetFacts.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
commita0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch)
treedabcac548e299fee1da464c93b3dba98484f45b1 /theories/FSets/FSetFacts.v
parent2281410e38ef99d025ea77194585a9bc019fdaa9 (diff)
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/FSets/FSetFacts.v')
-rw-r--r--theories/FSets/FSetFacts.v120
1 files changed, 105 insertions, 15 deletions
diff --git a/theories/FSets/FSetFacts.v b/theories/FSets/FSetFacts.v
index aa57f066..b4b834b1 100644
--- a/theories/FSets/FSetFacts.v
+++ b/theories/FSets/FSetFacts.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetFacts.v 8882 2006-05-31 21:55:30Z letouzey $ *)
+(* $Id: FSetFacts.v 10765 2008-04-08 16:15:23Z msozeau $ *)
(** * Finite sets library *)
@@ -16,16 +16,19 @@
Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
*)
+Require Import DecidableTypeEx.
Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
-Module Facts (M: S).
-Module ME := OrderedTypeFacts M.E.
-Import ME.
-Import M.
-Import Logic. (* to unmask [eq] *)
-Import Peano. (* to unmask [lt] *)
+(** First, a functor for Weak Sets. Since the signature [WS] includes
+ an EqualityType and not a stronger DecidableType, this functor
+ should take two arguments in order to compensate this. *)
+
+Module WFacts (Import E : DecidableType)(Import M : WSfun E).
+
+Notation eq_dec := E.eq_dec.
+Definition eqb x y := if eq_dec x y then true else false.
(** * Specifications written using equivalences *)
@@ -259,6 +262,8 @@ symmetry.
rewrite H0; intros.
destruct H1 as (_,H1).
apply H1; auto.
+rewrite H2.
+rewrite InA_alt; eauto.
Qed.
Lemma exists_b : compat_bool E.eq f ->
@@ -271,7 +276,8 @@ destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); auto.
-exists a; auto.
+exists a; split; auto.
+rewrite H2; rewrite InA_alt; eauto.
symmetry.
rewrite H0.
destruct H1 as (_,H1).
@@ -289,17 +295,25 @@ End BoolSpec.
Definition E_ST : Setoid_Theory elt E.eq.
Proof.
-constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
+constructor ; red; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
Qed.
-Add Setoid elt E.eq E_ST as EltSetoid.
-
Definition Equal_ST : Setoid_Theory t Equal.
Proof.
-constructor; [apply eq_refl | apply eq_sym | apply eq_trans].
+constructor ; red; [apply eq_refl | apply eq_sym | apply eq_trans].
Qed.
-Add Setoid t Equal Equal_ST as EqualSetoid.
+Add Relation elt E.eq
+ reflexivity proved by E.eq_refl
+ symmetry proved by E.eq_sym
+ transitivity proved by E.eq_trans
+ as EltSetoid.
+
+Add Relation t Equal
+ reflexivity proved by eq_refl
+ symmetry proved by eq_sym
+ transitivity proved by eq_trans
+ as EqualSetoid.
Add Morphism In with signature E.eq ==> Equal ==> iff as In_m.
Proof.
@@ -325,7 +339,7 @@ exact (H1 (refl_equal true) _ Ha).
Qed.
Add Morphism Empty with signature Equal ==> iff as Empty_m.
-Proof.
+Proof.
intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
Qed.
@@ -340,7 +354,9 @@ Qed.
Add Morphism singleton : singleton_m.
Proof.
unfold Equal; intros x y H a.
-do 2 rewrite singleton_iff; split; order.
+do 2 rewrite singleton_iff; split; intros.
+apply E.eq_trans with x; auto.
+apply E.eq_trans with y; auto.
Qed.
Add Morphism add : add_m.
@@ -396,6 +412,63 @@ rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
+
+(* [Subset] is a setoid order *)
+
+Lemma Subset_refl : forall s, s[<=]s.
+Proof. red; auto. Defined.
+
+Lemma Subset_trans : forall s s' s'', s[<=]s'->s'[<=]s''->s[<=]s''.
+Proof. unfold Subset; eauto. Defined.
+
+Add Relation t Subset
+ reflexivity proved by Subset_refl
+ transitivity proved by Subset_trans
+ as SubsetSetoid.
+(* NB: for the moment, it is important to use Defined and not Qed in
+ the two previous lemmas, in order to allow conversion of
+ SubsetSetoid coming from separate Facts modules. See bug #1738. *)
+
+Instance In_s_m : Morphism (E.eq ==> Subset ++> impl) In | 1.
+Proof.
+ simpl_relation. eauto with set.
+Qed.
+
+Add Morphism Empty with signature Subset --> impl as Empty_s_m.
+Proof.
+unfold Subset, Empty, impl; firstorder.
+Qed.
+
+Add Morphism add with signature E.eq ==> Subset ++> Subset as add_s_m.
+Proof.
+unfold Subset; intros x y H s s' H0 a.
+do 2 rewrite add_iff; rewrite H; intuition.
+Qed.
+
+Add Morphism remove with signature E.eq ==> Subset ++> Subset as remove_s_m.
+Proof.
+unfold Subset; intros x y H s s' H0 a.
+do 2 rewrite remove_iff; rewrite H; intuition.
+Qed.
+
+Add Morphism union with signature Subset ++> Subset ++> Subset as union_s_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite union_iff; intuition.
+Qed.
+
+Add Morphism inter with signature Subset ++> Subset ++> Subset as inter_s_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite inter_iff; intuition.
+Qed.
+
+Add Morphism diff with signature Subset ++> Subset --> Subset as diff_s_m.
+Proof.
+unfold Subset; intros s s' H s'' s''' H0 a.
+do 2 rewrite diff_iff; intuition.
+Qed.
+
(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
without additional hypothesis on [f]. For instance: *)
@@ -405,6 +478,12 @@ Proof.
unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
Qed.
+Lemma filter_subset : forall f, compat_bool E.eq f ->
+ forall s s', s[<=]s' -> filter f s [<=] filter f s'.
+Proof.
+unfold Subset; intros; rewrite filter_iff in *; intuition.
+Qed.
+
(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
structures on [list elt] and [option elt]. *)
@@ -412,4 +491,15 @@ Qed.
Add Morphism cardinal ; cardinal_m.
*)
+End WFacts.
+
+
+(** Now comes a special version dedicated to full sets. For this
+ one, only one argument [(M:S)] is necessary. *)
+
+Module Facts (Import M:S).
+ Module D:=OT_as_DT M.E.
+ Include WFacts D M.
+
End Facts.
+