diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/FSets/FMapWeakList.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/FSets/FMapWeakList.v')
-rw-r--r-- | theories/FSets/FMapWeakList.v | 127 |
1 files changed, 62 insertions, 65 deletions
diff --git a/theories/FSets/FMapWeakList.v b/theories/FSets/FMapWeakList.v index 890485a8..be09e41a 100644 --- a/theories/FSets/FMapWeakList.v +++ b/theories/FSets/FMapWeakList.v @@ -6,39 +6,28 @@ (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) -(* $Id: FMapWeakList.v 8985 2006-06-23 16:12:45Z jforest $ *) +(* $Id: FMapWeakList.v 10616 2008-03-04 17:33:35Z letouzey $ *) (** * Finite map library *) (** This file proposes an implementation of the non-dependant interface - [FMapInterface.S] using lists of pairs, unordered but without redundancy. *) + [FMapInterface.WS] using lists of pairs, unordered but without redundancy. *) -Require Import FSetInterface. -Require Import FSetWeakInterface. -Require Import FMapWeakInterface. +Require Import FMapInterface. Set Implicit Arguments. Unset Strict Implicit. -Arguments Scope list [type_scope]. - Module Raw (X:DecidableType). -Module PX := KeyDecidableType X. -Import PX. +Module Import PX := KeyDecidableType X. Definition key := X.t. -Definition t (elt:Set) := list (X.t * elt). +Definition t (elt:Type) := list (X.t * elt). Section Elt. -Variable elt : Set. - -(* now in KeyDecidableType: -Definition eqk (p p':key*elt) := X.eq (fst p) (fst p'). -Definition eqke (p p':key*elt) := - X.eq (fst p) (fst p') /\ (snd p) = (snd p'). -*) +Variable elt : Type. Notation eqk := (eqk (elt:=elt)). Notation eqke := (eqke (elt:=elt)). @@ -221,10 +210,10 @@ Proof. destruct a as (x',e'). simpl; case (X.eq_dec x x'); inversion_clear Hm; auto. constructor; auto. - swap H. + contradict H. apply InA_eqk with (x,e); auto. constructor; auto. - swap H; apply add_3' with x e; auto. + contradict H; apply add_3' with x e; auto. Qed. (* Not part of the exported specifications, used later for [combine]. *) @@ -272,8 +261,8 @@ Proof. inversion_clear Hm. subst. - swap H0. - destruct H2 as (e,H2); unfold PX.MapsTo in H2. + contradict H0. + destruct H0 as (e,H2); unfold PX.MapsTo in H2. apply InA_eqk with (y,e); auto. compute; apply X.eq_trans with x; auto. @@ -323,7 +312,7 @@ Proof. destruct a as (x',e'). simpl; case (X.eq_dec x x'); auto. constructor; auto. - swap H; apply remove_3' with x; auto. + contradict H; apply remove_3' with x; auto. Qed. (** * [elements] *) @@ -340,20 +329,20 @@ Proof. auto. Qed. -Lemma elements_3 : forall m (Hm:NoDupA m), NoDupA (elements m). +Lemma elements_3w : forall m (Hm:NoDupA m), NoDupA (elements m). Proof. auto. Qed. (** * [fold] *) -Function fold (A:Set)(f:key->elt->A->A)(m:t elt) (acc : A) {struct m} : A := +Function fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc : A) {struct m} : A := match m with | nil => acc | (k,e)::m' => fold f m' (f k e acc) end. -Lemma fold_1 : forall m (A:Set)(i:A)(f:key->elt->A->A), +Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i. Proof. intros; functional induction (@fold A f m i); auto. @@ -377,7 +366,7 @@ Definition Submap cmp m m' := (forall k, In k m -> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true). -Definition Equal cmp m m' := +Definition Equivb cmp m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true). @@ -444,17 +433,17 @@ Qed. (** Specification of [equal] *) Lemma equal_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp, - Equal cmp m m' -> equal cmp m m' = true. + Equivb cmp m m' -> equal cmp m m' = true. Proof. - unfold Equal, equal. + unfold Equivb, equal. intuition. apply andb_true_intro; split; apply submap_1; unfold Submap; firstorder. Qed. Lemma equal_2 : forall m (Hm:NoDupA m) m' (Hm':NoDupA m') cmp, - equal cmp m m' = true -> Equal cmp m m'. + equal cmp m m' = true -> Equivb cmp m m'. Proof. - unfold Equal, equal. + unfold Equivb, equal. intros. destruct (andb_prop _ _ H); clear H. generalize (submap_2 Hm Hm' H0). @@ -462,7 +451,7 @@ Proof. firstorder. Qed. -Variable elt':Set. +Variable elt':Type. (** * [map] and [mapi] *) @@ -483,7 +472,7 @@ Section Elt2. (* A new section is necessary for previous definitions to work with different [elt], especially [MapsTo]... *) -Variable elt elt' : Set. +Variable elt elt' : Type. (** Specification of [map] *) @@ -533,12 +522,12 @@ Proof. destruct a as (x',e'). inversion_clear Hm. constructor; auto. - swap H. + contradict H. (* il faut un map_1 avec eqk au lieu de eqke *) clear IHm H0. induction m; simpl in *; auto. - inversion H1. - destruct a; inversion H1; auto. + inversion H. + destruct a; inversion H; auto. Qed. (** Specification of [mapi] *) @@ -593,17 +582,17 @@ Proof. destruct a as (x',e'). inversion_clear Hm; auto. constructor; auto. - swap H. + contradict H. clear IHm H0. induction m; simpl in *; auto. - inversion_clear H1. - destruct a; inversion_clear H1; auto. + inversion_clear H. + destruct a; inversion_clear H; auto. Qed. End Elt2. Section Elt3. -Variable elt elt' elt'' : Set. +Variable elt elt' elt'' : Type. Notation oee' := (option elt * option elt')%type. @@ -613,7 +602,7 @@ Definition combine_l (m:t elt)(m':t elt') : t oee' := Definition combine_r (m:t elt)(m':t elt') : t oee' := mapi (fun k e' => (find k m, Some e')) m'. -Definition fold_right_pair (A B C:Set)(f:A->B->C->C)(l:list (A*B))(i:C) := +Definition fold_right_pair (A B C:Type)(f:A->B->C->C)(l:list (A*B))(i:C) := List.fold_right (fun p => f (fst p) (snd p)) i l. Definition combine (m:t elt)(m':t elt') : t oee' := @@ -737,7 +726,7 @@ Qed. Variable f : option elt -> option elt' -> option elt''. -Definition option_cons (A:Set)(k:key)(o:option A)(l:list (key*A)) := +Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) := match o with | Some e => (k,e)::l | None => l @@ -765,13 +754,13 @@ Proof. inversion_clear H1. destruct a; destruct o; simpl; auto. constructor; auto. - swap H. + contradict H. clear IHl1. induction l1. - inversion H1. + inversion H. inversion_clear H0. destruct a; destruct o; simpl in *; auto. - inversion_clear H1; auto. + inversion_clear H; auto. Qed. Definition at_least_one_then_f (o:option elt)(o':option elt') := @@ -807,7 +796,7 @@ Proof. rewrite H2. unfold f'; simpl. destruct (f oo oo'); simpl. - destruct (X.eq_dec x k); try absurd_hyp n; auto. + destruct (X.eq_dec x k); try contradict n; auto. destruct (IHm0 H1) as (_,H4); apply H4; auto. case_eq (find x m0); intros; auto. elim H0. @@ -817,7 +806,7 @@ Proof. (* k < x *) unfold f'; simpl. destruct (f oo oo'); simpl. - destruct (X.eq_dec x k); [ absurd_hyp n; auto | auto]. + destruct (X.eq_dec x k); [ contradict n; auto | auto]. destruct (IHm0 H1) as (H3,_); apply H3; auto. destruct (IHm0 H1) as (H3,_); apply H3; auto. @@ -831,7 +820,7 @@ Proof. (* k < x *) unfold f'; simpl. destruct (f oo oo'); simpl. - destruct (X.eq_dec x k); [ absurd_hyp n; auto | auto]. + destruct (X.eq_dec x k); [ contradict n; auto | auto]. destruct (IHm0 H1) as (_,H4); apply H4; auto. destruct (IHm0 H1) as (_,H4); apply H4; auto. Qed. @@ -873,18 +862,18 @@ End Elt3. End Raw. -Module Make (X: DecidableType) <: S with Module E:=X. +Module Make (X: DecidableType) <: WS with Module E:=X. Module Raw := Raw X. Module E := X. Definition key := E.t. - Record slist (elt:Set) : Set := + Record slist (elt:Type) := {this :> Raw.t elt; NoDup : NoDupA (@Raw.PX.eqk elt) this}. - Definition t (elt:Set) := slist elt. + Definition t (elt:Type) := slist elt. Section Elt. - Variable elt elt' elt'':Set. + Variable elt elt' elt'':Type. Implicit Types m : t elt. Implicit Types x y : key. @@ -901,13 +890,18 @@ Section Elt. Definition map2 f m (m':t elt') : t elt'' := Build_slist (Raw.map2_NoDup f m.(NoDup) m'.(NoDup)). Definition elements m : list (key*elt) := @Raw.elements elt m.(this). - Definition fold (A:Set)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i. + Definition cardinal m := length m.(this). + Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i. Definition equal cmp m m' : bool := @Raw.equal elt cmp m.(this) m'.(this). - Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e m.(this). Definition In x m : Prop := Raw.PX.In x m.(this). Definition Empty m : Prop := Raw.Empty m.(this). - Definition Equal cmp m m' : Prop := @Raw.Equal elt cmp m.(this) m'.(this). + + Definition Equal m m' := forall y, find y m = find y m'. + Definition Equiv (eq_elt:elt->elt->Prop) m m' := + (forall k, In k m <-> In k m') /\ + (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e'). + Definition Equivb cmp m m' : Prop := @Raw.Equivb elt cmp m.(this) m'.(this). Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt. Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.PX.eqke elt. @@ -951,36 +945,39 @@ Section Elt. Proof. intros m; exact (@Raw.elements_1 elt m.(this)). Qed. Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m. Proof. intros m; exact (@Raw.elements_2 elt m.(this)). Qed. - Lemma elements_3 : forall m, NoDupA eq_key (elements m). - Proof. intros m; exact (@Raw.elements_3 elt m.(this) m.(NoDup)). Qed. + Lemma elements_3w : forall m, NoDupA eq_key (elements m). + Proof. intros m; exact (@Raw.elements_3w elt m.(this) m.(NoDup)). Qed. + + Lemma cardinal_1 : forall m, cardinal m = length (elements m). + Proof. intros; reflexivity. Qed. - Lemma fold_1 : forall m (A : Set) (i : A) (f : key -> elt -> A -> A), + Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i. Proof. intros m; exact (@Raw.fold_1 elt m.(this)). Qed. - Lemma equal_1 : forall m m' cmp, Equal cmp m m' -> equal cmp m m' = true. + Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true. Proof. intros m m'; exact (@Raw.equal_1 elt m.(this) m.(NoDup) m'.(this) m'.(NoDup)). Qed. - Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equal cmp m m'. + Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'. Proof. intros m m'; exact (@Raw.equal_2 elt m.(this) m.(NoDup) m'.(this) m'.(NoDup)). Qed. End Elt. - Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'), + Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'), MapsTo x e m -> MapsTo x (f e) (map f m). Proof. intros elt elt' m; exact (@Raw.map_1 elt elt' m.(this)). Qed. - Lemma map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'), + Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m. Proof. intros elt elt' m; exact (@Raw.map_2 elt elt' m.(this)). Qed. - Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt) + Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt) (f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). Proof. intros elt elt' m; exact (@Raw.mapi_1 elt elt' m.(this)). Qed. - Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key) + Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key) (f:key->elt->elt'), In x (mapi f m) -> In x m. Proof. intros elt elt' m; exact (@Raw.mapi_2 elt elt' m.(this)). Qed. - Lemma map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt') + Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m'). @@ -988,7 +985,7 @@ Section Elt. intros elt elt' elt'' m m' x f; exact (@Raw.map2_1 elt elt' elt'' f m.(this) m.(NoDup) m'.(this) m'.(NoDup) x). Qed. - Lemma map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt') + Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x (map2 f m m') -> In x m \/ In x m'. Proof. |