diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/FSets/FMapFacts.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/FSets/FMapFacts.v')
-rw-r--r-- | theories/FSets/FMapFacts.v | 447 |
1 files changed, 210 insertions, 237 deletions
diff --git a/theories/FSets/FMapFacts.v b/theories/FSets/FMapFacts.v index d91eb87a..4c59971c 100644 --- a/theories/FSets/FMapFacts.v +++ b/theories/FSets/FMapFacts.v @@ -6,25 +6,22 @@ (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) -(* $Id: FMapFacts.v 12187 2009-06-13 19:36:59Z msozeau $ *) +(* $Id$ *) (** * Finite maps library *) (** This functor derives additional facts from [FMapInterface.S]. These - facts are mainly the specifications of [FMapInterface.S] written using - different styles: equivalence and boolean equalities. + facts are mainly the specifications of [FMapInterface.S] written using + different styles: equivalence and boolean equalities. *) Require Import Bool DecidableType DecidableTypeEx OrderedType Morphisms. -Require Export FMapInterface. +Require Export FMapInterface. Set Implicit Arguments. Unset Strict Implicit. Hint Extern 1 (Equivalence _) => constructor; congruence. -Notation Leibniz := (@eq _) (only parsing). - - (** * Facts about weak maps *) Module WFacts_fun (E:DecidableType)(Import M:WSfun E). @@ -46,7 +43,7 @@ destruct o; destruct o'; try rewrite H; auto. symmetry; rewrite <- H; auto. Qed. -Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt), +Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt), MapsTo x e m -> MapsTo x e' m -> e=e'. Proof. intros. @@ -56,7 +53,7 @@ Qed. (** ** Specifications written using equivalences *) -Section IffSpec. +Section IffSpec. Variable elt elt' elt'': Type. Implicit Type m: t elt. Implicit Type x y z: key. @@ -101,7 +98,7 @@ Lemma not_find_in_iff : forall m x, ~In x m <-> find x m = None. Proof. split; intros. rewrite eq_option_alt. intro e. rewrite <- find_mapsto_iff. -split; intro H'; try discriminate. elim H; exists e; auto. +split; try discriminate. intro H'; elim H; exists e; auto. intros (e,He); rewrite find_mapsto_iff,H in He; discriminate. Qed. @@ -112,7 +109,7 @@ destruct mem; intuition. Qed. Lemma equal_iff : forall m m' cmp, Equivb cmp m m' <-> equal cmp m m' = true. -Proof. +Proof. split; [apply equal_1|apply equal_2]. Qed. @@ -127,16 +124,16 @@ unfold In. split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition. Qed. -Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true. -Proof. +Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true. +Proof. split; [apply is_empty_1|apply is_empty_2]. Qed. -Lemma add_mapsto_iff : forall m x y e e', - MapsTo y e' (add x e m) <-> - (E.eq x y /\ e=e') \/ +Lemma add_mapsto_iff : forall m x y e e', + MapsTo y e' (add x e m) <-> + (E.eq x y /\ e=e') \/ (~E.eq x y /\ MapsTo y e' m). -Proof. +Proof. intros. intuition. destruct (eq_dec x y); [left|right]. @@ -147,7 +144,7 @@ subst; auto with map. Qed. Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m. -Proof. +Proof. unfold In; split. intros (e',H). destruct (eq_dec x y) as [E|E]; auto. @@ -161,13 +158,13 @@ destruct E; auto. exists e'; apply add_2; auto. Qed. -Lemma add_neq_mapsto_iff : forall m x y e e', +Lemma add_neq_mapsto_iff : forall m x y e e', ~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m). Proof. split; [apply add_3|apply add_2]; auto. Qed. -Lemma add_neq_in_iff : forall m x y e, +Lemma add_neq_in_iff : forall m x y e, ~ E.eq x y -> (In y (add x e m) <-> In y m). Proof. split; intros (e',H0); exists e'. @@ -175,9 +172,9 @@ apply (add_3 H H0). apply add_2; auto. Qed. -Lemma remove_mapsto_iff : forall m x y e, +Lemma remove_mapsto_iff : forall m x y e, MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m. -Proof. +Proof. intros. split; intros. split. @@ -188,7 +185,7 @@ apply remove_2; intuition. Qed. Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m. -Proof. +Proof. unfold In; split. intros (e,H). split. @@ -198,13 +195,13 @@ exists e; apply remove_3 with x; auto. intros (H,(e,H0)); exists e; apply remove_2; auto. Qed. -Lemma remove_neq_mapsto_iff : forall m x y e, +Lemma remove_neq_mapsto_iff : forall m x y e, ~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m). Proof. split; [apply remove_3|apply remove_2]; auto. Qed. -Lemma remove_neq_in_iff : forall m x y, +Lemma remove_neq_in_iff : forall m x y, ~ E.eq x y -> (In y (remove x m) <-> In y m). Proof. split; intros (e',H0); exists e'. @@ -212,19 +209,19 @@ apply (remove_3 H0). apply remove_2; auto. Qed. -Lemma elements_mapsto_iff : forall m x e, +Lemma elements_mapsto_iff : forall m x e, MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m). -Proof. +Proof. split; [apply elements_1 | apply elements_2]. Qed. -Lemma elements_in_iff : forall m x, +Lemma elements_in_iff : forall m x, In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m). -Proof. +Proof. unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto. Qed. -Lemma map_mapsto_iff : forall m x b (f : elt -> elt'), +Lemma map_mapsto_iff : forall m x b (f : elt -> elt'), MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m. Proof. split. @@ -240,7 +237,7 @@ intros (a,(H,H0)). subst b; auto with map. Qed. -Lemma map_in_iff : forall m x (f : elt -> elt'), +Lemma map_in_iff : forall m x (f : elt -> elt'), In x (map f m) <-> In x m. Proof. split; intros; eauto with map. @@ -257,11 +254,11 @@ destruct (mapi_1 f H) as (y,(H0,H1)). exists (f y a); auto. Qed. -(** Unfortunately, we don't have simple equivalences for [mapi] - and [MapsTo]. The only correct one needs compatibility of [f]. *) +(** Unfortunately, we don't have simple equivalences for [mapi] + and [MapsTo]. The only correct one needs compatibility of [f]. *) -Lemma mapi_inv : forall m x b (f : key -> elt -> elt'), - MapsTo x b (mapi f m) -> +Lemma mapi_inv : forall m x b (f : key -> elt -> elt'), + MapsTo x b (mapi f m) -> exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m. Proof. intros; case_eq (find x m); intros. @@ -275,8 +272,8 @@ destruct (mapi_2 H1) as (a,H2). rewrite (find_1 H2) in H0; discriminate. Qed. -Lemma mapi_1bis : forall m x e (f:key->elt->elt'), - (forall x y e, E.eq x y -> f x e = f y e) -> +Lemma mapi_1bis : forall m x e (f:key->elt->elt'), + (forall x y e, E.eq x y -> f x e = f y e) -> MapsTo x e m -> MapsTo x (f x e) (mapi f m). Proof. intros. @@ -286,7 +283,7 @@ auto. Qed. Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'), - (forall x y e, E.eq x y -> f x e = f y e) -> + (forall x y e, E.eq x y -> f x e = f y e) -> (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m). Proof. split. @@ -299,14 +296,14 @@ subst b. apply mapi_1bis; auto. Qed. -(** Things are even worse for [map2] : we don't try to state any +(** Things are even worse for [map2] : we don't try to state any equivalence, see instead boolean results below. *) End IffSpec. (** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *) - -Ltac map_iff := + +Ltac map_iff := repeat (progress ( rewrite add_mapsto_iff || rewrite add_in_iff || rewrite remove_mapsto_iff || rewrite remove_in_iff || @@ -318,7 +315,7 @@ Ltac map_iff := Section BoolSpec. -Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false. +Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false. Proof. intros. generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In. @@ -336,7 +333,7 @@ Implicit Types x y z : key. Implicit Types e : elt. Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m. -Proof. +Proof. intros. generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H). destruct (mem x m); destruct (mem y m); intuition. @@ -362,14 +359,14 @@ generalize (mem_2 H). rewrite empty_in_iff; intuition. Qed. -Lemma add_eq_o : forall m x y e, +Lemma add_eq_o : forall m x y e, E.eq x y -> find y (add x e m) = Some e. Proof. auto with map. Qed. -Lemma add_neq_o : forall m x y e, - ~ E.eq x y -> find y (add x e m) = find y m. +Lemma add_neq_o : forall m x y e, + ~ E.eq x y -> find y (add x e m) = find y m. Proof. intros. rewrite eq_option_alt. intro e'. rewrite <- 2 find_mapsto_iff. apply add_neq_mapsto_iff; auto. @@ -382,26 +379,26 @@ Proof. intros; destruct (eq_dec x y); auto with map. Qed. -Lemma add_eq_b : forall m x y e, +Lemma add_eq_b : forall m x y e, E.eq x y -> mem y (add x e m) = true. Proof. intros; rewrite mem_find_b; rewrite add_eq_o; auto. Qed. -Lemma add_neq_b : forall m x y e, +Lemma add_neq_b : forall m x y e, ~E.eq x y -> mem y (add x e m) = mem y m. Proof. intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto. Qed. -Lemma add_b : forall m x y e, - mem y (add x e m) = eqb x y || mem y m. +Lemma add_b : forall m x y e, + mem y (add x e m) = eqb x y || mem y m. Proof. intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb. destruct (eq_dec x y); simpl; auto. Qed. -Lemma remove_eq_o : forall m x y, +Lemma remove_eq_o : forall m x y, E.eq x y -> find y (remove x m) = None. Proof. intros. rewrite eq_option_alt. intro e. @@ -442,14 +439,14 @@ intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb. destruct (eq_dec x y); auto. Qed. -Definition option_map (A B:Type)(f:A->B)(o:option A) : option B := - match o with +Definition option_map (A B:Type)(f:A->B)(o:option A) : option B := + match o with | Some a => Some (f a) | None => None end. -Lemma map_o : forall m x (f:elt->elt'), - find x (map f m) = option_map f (find x m). +Lemma map_o : forall m x (f:elt->elt'), + find x (map f m) = option_map f (find x m). Proof. intros. generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x) @@ -463,14 +460,14 @@ rewrite H0 in H2; discriminate. rewrite <- H; rewrite H1; exists e; rewrite H0; auto. Qed. -Lemma map_b : forall m x (f:elt->elt'), +Lemma map_b : forall m x (f:elt->elt'), mem x (map f m) = mem x m. Proof. intros; do 2 rewrite mem_find_b; rewrite map_o. destruct (find x m); simpl; auto. Qed. -Lemma mapi_b : forall m x (f:key->elt->elt'), +Lemma mapi_b : forall m x (f:key->elt->elt'), mem x (mapi f m) = mem x m. Proof. intros. @@ -480,12 +477,12 @@ symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto. rewrite <- H; rewrite H1; rewrite H0; auto. Qed. -Lemma mapi_o : forall m x (f:key->elt->elt'), - (forall x y e, E.eq x y -> f x e = f y e) -> +Lemma mapi_o : forall m x (f:key->elt->elt'), + (forall x y e, E.eq x y -> f x e = f y e) -> find x (mapi f m) = option_map (f x) (find x m). Proof. intros. -generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x) +generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x) (fun b => mapi_mapsto_iff m x b H). destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros. rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto. @@ -496,9 +493,9 @@ rewrite H1 in H3; discriminate. rewrite <- H0; rewrite H2; exists e; rewrite H1; auto. Qed. -Lemma map2_1bis : forall (m: t elt)(m': t elt') x - (f:option elt->option elt'->option elt''), - f None None = None -> +Lemma map2_1bis : forall (m: t elt)(m': t elt') x + (f:option elt->option elt'->option elt''), + f None None = None -> find x (map2 f m m') = f (find x m) (find x m'). Proof. intros. @@ -574,7 +571,7 @@ Qed. (** First, [Equal] is [Equiv] with Leibniz on elements. *) Lemma Equal_Equiv : forall (m m' : t elt), - Equal m m' <-> Equiv (@Logic.eq elt) m m'. + Equal m m' <-> Equiv Logic.eq m m'. Proof. intros. rewrite Equal_mapsto_iff. split; intros. split. @@ -598,7 +595,7 @@ Section Cmp. Variable eq_elt : elt->elt->Prop. Variable cmp : elt->elt->bool. -Definition compat_cmp := +Definition compat_cmp := forall e e', cmp e e' = true <-> eq_elt e e'. Lemma Equiv_Equivb : compat_cmp -> @@ -613,17 +610,17 @@ End Cmp. (** Composition of the two last results: relation between [Equal] and [Equivb]. *) -Lemma Equal_Equivb : forall cmp, - (forall e e', cmp e e' = true <-> e = e') -> +Lemma Equal_Equivb : forall cmp, + (forall e e', cmp e e' = true <-> e = e') -> forall (m m':t elt), Equal m m' <-> Equivb cmp m m'. Proof. intros; rewrite Equal_Equiv. apply Equiv_Equivb; auto. Qed. -Lemma Equal_Equivb_eqdec : +Lemma Equal_Equivb_eqdec : forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }), - let cmp := fun e e' => if eq_elt_dec e e' then true else false in + let cmp := fun e e' => if eq_elt_dec e e' then true else false in forall (m m':t elt), Equal m m' <-> Equivb cmp m m'. Proof. intros; apply Equal_Equivb. @@ -638,11 +635,11 @@ End Equalities. Lemma Equal_refl : forall (elt:Type)(m : t elt), Equal m m. Proof. red; reflexivity. Qed. -Lemma Equal_sym : forall (elt:Type)(m m' : t elt), +Lemma Equal_sym : forall (elt:Type)(m m' : t elt), Equal m m' -> Equal m' m. Proof. unfold Equal; auto. Qed. -Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt), +Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt), Equal m m' -> Equal m' m'' -> Equal m m''. Proof. unfold Equal; congruence. Qed. @@ -651,15 +648,15 @@ Proof. constructor; red; [apply Equal_refl | apply Equal_sym | apply Equal_trans]. Qed. -Add Relation key E.eq - reflexivity proved by E.eq_refl +Add Relation key E.eq + reflexivity proved by E.eq_refl symmetry proved by E.eq_sym - transitivity proved by E.eq_trans + transitivity proved by E.eq_trans as KeySetoid. Implicit Arguments Equal [[elt]]. -Add Parametric Relation (elt : Type) : (t elt) Equal +Add Parametric Relation (elt : Type) : (t elt) Equal reflexivity proved by (@Equal_refl elt) symmetry proved by (@Equal_sym elt) transitivity proved by (@Equal_trans elt) @@ -673,7 +670,7 @@ rewrite (In_iff m Hk), in_find_iff, in_find_iff, Hm; intuition. Qed. Add Parametric Morphism elt : (@MapsTo elt) - with signature E.eq ==> Leibniz ==> Equal ==> iff as MapsTo_m. + with signature E.eq ==> eq ==> Equal ==> iff as MapsTo_m. Proof. unfold Equal; intros k k' Hk e m m' Hm. rewrite (MapsTo_iff m e Hk), find_mapsto_iff, find_mapsto_iff, Hm; @@ -689,28 +686,28 @@ rewrite Hm in H0; eauto. Qed. Add Parametric Morphism elt : (@is_empty elt) - with signature Equal ==> Leibniz as is_empty_m. + with signature Equal ==> eq as is_empty_m. Proof. intros m m' Hm. rewrite eq_bool_alt, <-is_empty_iff, <-is_empty_iff, Hm; intuition. Qed. Add Parametric Morphism elt : (@mem elt) - with signature E.eq ==> Equal ==> Leibniz as mem_m. + with signature E.eq ==> Equal ==> eq as mem_m. Proof. intros k k' Hk m m' Hm. rewrite eq_bool_alt, <- mem_in_iff, <-mem_in_iff, Hk, Hm; intuition. Qed. Add Parametric Morphism elt : (@find elt) - with signature E.eq ==> Equal ==> Leibniz as find_m. + with signature E.eq ==> Equal ==> eq as find_m. Proof. intros k k' Hk m m' Hm. rewrite eq_option_alt. intro e. rewrite <- 2 find_mapsto_iff, Hk, Hm. split; auto. Qed. Add Parametric Morphism elt : (@add elt) - with signature E.eq ==> Leibniz ==> Equal ==> Equal as add_m. + with signature E.eq ==> eq ==> Equal ==> Equal as add_m. Proof. intros k k' Hk e m m' Hm y. rewrite add_o, add_o; do 2 destruct eq_dec; auto. @@ -728,7 +725,7 @@ elim n; rewrite Hk; auto. Qed. Add Parametric Morphism elt elt' : (@map elt elt') - with signature Leibniz ==> Equal ==> Equal as map_m. + with signature eq ==> Equal ==> Equal as map_m. Proof. intros f m m' Hm y. rewrite map_o, map_o, Hm; auto. @@ -763,6 +760,16 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Notation eqke := (@eq_key_elt elt). Notation eqk := (@eq_key elt). + Instance eqk_equiv : Equivalence eqk. + Proof. split; repeat red; eauto. Qed. + + Instance eqke_equiv : Equivalence eqke. + Proof. + unfold eq_key_elt; split; repeat red; firstorder. + eauto with *. + congruence. + Qed. + (** Complements about InA, NoDupA and findA *) Lemma InA_eqke_eqk : forall k1 k2 e1 e2 l, @@ -790,12 +797,12 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). intros. symmetry. unfold eqb. rewrite <- findA_NoDupA, InA_rev, findA_NoDupA - by eauto using NoDupA_rev; eauto. + by (eauto using NoDupA_rev with *); eauto. case_eq (findA (eqb k) (rev l)); auto. intros e. unfold eqb. rewrite <- findA_NoDupA, InA_rev, findA_NoDupA - by eauto using NoDupA_rev. + by (eauto using NoDupA_rev with *). intro Eq; rewrite Eq; auto. Qed. @@ -896,9 +903,10 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' -> Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)). intros k e a m' m'' H ? ? ?; eapply Hstep; eauto. - revert H; unfold l; rewrite InA_rev, elements_mapsto_iff; auto. + revert H; unfold l; rewrite InA_rev, elements_mapsto_iff; auto with *. assert (Hdup : NoDupA eqk l). - unfold l. apply NoDupA_rev; try red; eauto. apply elements_3w. + unfold l. apply NoDupA_rev; try red; unfold eq_key ; eauto with *. + apply elements_3w. assert (Hsame : forall k, find k m = findA (eqb k) l). intros k. unfold l. rewrite elements_o, findA_rev; auto. apply elements_3w. @@ -979,7 +987,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). set (l:=rev (elements m)). assert (Rstep' : forall k e a b, InA eqke (k,e) l -> R a b -> R (f k e a) (g k e b)) by - (intros; apply Rstep; auto; rewrite elements_mapsto_iff, <- InA_rev; auto). + (intros; apply Rstep; auto; rewrite elements_mapsto_iff, <- InA_rev; auto with *). clearbody l; clear Rstep m. induction l; simpl; auto. apply Rstep'; auto. @@ -1020,7 +1028,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff. intro; elim (Heq k' e'); auto. intros k e a m' m'' _ _ Hadd Heq k'. - rewrite Hadd, 2 add_o, Heq; auto. + red in Heq. rewrite Hadd, 2 add_o, Heq; auto. Qed. Section Fold_More. @@ -1034,8 +1042,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). (** This is more convenient than a [compat_op eqke ...]. In fact, every [compat_op], [compat_bool], etc, should - become a [Morphism] someday. *) - Hypothesis Comp : Morphism (E.eq==>Leibniz==>eqA==>eqA) f. + become a [Proper] someday. *) + Hypothesis Comp : Proper (E.eq==>eq==>eqA==>eqA) f. Lemma fold_init : forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i'). @@ -1086,77 +1094,53 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). contradict Hnotin; rewrite <- Hnotin; exists e0; auto. Qed. + Hint Resolve NoDupA_eqk_eqke NoDupA_rev elements_3w : map. + Lemma fold_Equal : forall m1 m2 i, Equal m1 m2 -> eqA (fold f m1 i) (fold f m2 i). Proof. - assert (eqke_refl : forall p, eqke p p). - red; auto. - assert (eqke_sym : forall p p', eqke p p' -> eqke p' p). - intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition. - assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p''). - intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl. - intuition; eauto; congruence. intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right. - apply fold_right_equivlistA_restr with - (R:=fun p p' => ~eqk p p') (eqA:=eqke) (eqB:=eqA); auto. - intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; simpl in *; apply Comp; auto. - unfold eq_key; auto. - intros (k1,e1) (k2,e2) (k3,e3). unfold eq_key_elt, eq_key; simpl. - intuition eauto. + assert (NoDupA eqk (rev (elements m1))) by (auto with *). + assert (NoDupA eqk (rev (elements m2))) by (auto with *). + apply fold_right_equivlistA_restr with (R:=complement eqk)(eqA:=eqke); + auto with *. + intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *; apply Comp; auto. + unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto. intros (k,e) (k',e'); unfold eq_key; simpl; auto. - apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w. - apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w. - apply ForallList2_equiv1 with (eqA:=eqk); try red; eauto. - apply NoDupA_rev; try red; eauto. apply elements_3w. - red; intros. - do 2 rewrite InA_rev. - destruct x; do 2 rewrite <- elements_mapsto_iff. - do 2 rewrite find_mapsto_iff. - rewrite H; split; auto. + rewrite <- NoDupA_altdef; auto. + intros (k,e). + rewrite 2 InA_rev, <- 2 elements_mapsto_iff, 2 find_mapsto_iff, H; + auto with *. Qed. Lemma fold_Add : forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 -> eqA (fold f m2 i) (f k e (fold f m1 i)). Proof. - assert (eqke_refl : forall p, eqke p p). - red; auto. - assert (eqke_sym : forall p p', eqke p p' -> eqke p' p). - intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition. - assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p''). - intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl. - intuition; eauto; congruence. intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right. set (f':=fun y x0 => f (fst y) (snd y) x0) in *. change (f k e (fold_right f' i (rev (elements m1)))) with (f' (k,e) (fold_right f' i (rev (elements m1)))). + assert (NoDupA eqk (rev (elements m1))) by (auto with *). + assert (NoDupA eqk (rev (elements m2))) by (auto with *). apply fold_right_add_restr with - (R:=fun p p'=>~eqk p p')(eqA:=eqke)(eqB:=eqA); auto. - intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *. apply Comp; auto. - - unfold eq_key; auto. - intros (k1,e1) (k2,e2) (k3,e3). unfold eq_key_elt, eq_key; simpl. - intuition eauto. + (R:=complement eqk)(eqA:=eqke)(eqB:=eqA); auto with *. + intros (k1,e1) (k2,e2) (Hk,He) a a' Ha; unfold f'; simpl in *. apply Comp; auto. + unfold complement, eq_key_elt, eq_key; repeat red; intuition eauto. unfold f'; intros (k1,e1) (k2,e2); unfold eq_key; simpl; auto. - apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w. - apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w. - apply ForallList2_equiv1 with (eqA:=eqk); try red; eauto. - apply NoDupA_rev; try red; eauto. apply elements_3w. - rewrite InA_rev. - contradict H. - exists e. - rewrite elements_mapsto_iff; auto. - intros a. - rewrite InA_cons; do 2 rewrite InA_rev; - destruct a as (a,b); do 2 rewrite <- elements_mapsto_iff. - do 2 rewrite find_mapsto_iff; unfold eq_key_elt; simpl. + rewrite <- NoDupA_altdef; auto. + rewrite InA_rev, <- elements_mapsto_iff by (auto with *). firstorder. + intros (a,b). + rewrite InA_cons, 2 InA_rev, <- 2 elements_mapsto_iff, + 2 find_mapsto_iff by (auto with *). + unfold eq_key_elt; simpl. rewrite H0. rewrite add_o. - destruct (eq_dec k a); intuition. - inversion H1; auto. - f_equal; auto. - elim H. - exists b; apply MapsTo_1 with a; auto with map. - elim n; auto. + destruct (eq_dec k a) as [EQ|NEQ]; split; auto. + intros EQ'; inversion EQ'; auto. + intuition; subst; auto. + elim H. exists b; rewrite EQ; auto with map. + intuition. + elim NEQ; auto. Qed. Lemma fold_add : forall m k e i, ~In k m -> @@ -1188,7 +1172,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Equal m m' -> cardinal m = cardinal m'. Proof. intros; do 2 rewrite cardinal_fold. - apply fold_Equal with (eqA:=Leibniz); compute; auto. + apply fold_Equal with (eqA:=eq); compute; auto. Qed. Lemma cardinal_1 : forall m : t elt, Empty m -> cardinal m = 0. @@ -1201,22 +1185,22 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Proof. intros; do 2 rewrite cardinal_fold. change S with ((fun _ _ => S) x e). - apply fold_Add with (eqA:=Leibniz); compute; auto. + apply fold_Add with (eqA:=eq); compute; auto. Qed. - Lemma cardinal_inv_1 : forall m : t elt, + Lemma cardinal_inv_1 : forall m : t elt, cardinal m = 0 -> Empty m. Proof. - intros; rewrite cardinal_Empty; auto. + intros; rewrite cardinal_Empty; auto. Qed. Hint Resolve cardinal_inv_1 : map. Lemma cardinal_inv_2 : forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }. - Proof. + Proof. intros; rewrite M.cardinal_1 in *. generalize (elements_mapsto_iff m). - destruct (elements m); try discriminate. + destruct (elements m); try discriminate. exists p; auto. rewrite H0; destruct p; simpl; auto. constructor; red; auto. @@ -1242,16 +1226,16 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). (** * Emulation of some functions lacking in the interface *) - Definition filter (f : key -> elt -> bool)(m : t elt) := + Definition filter (f : key -> elt -> bool)(m : t elt) := fold (fun k e m => if f k e then add k e m else m) m (empty _). - Definition for_all (f : key -> elt -> bool)(m : t elt) := + Definition for_all (f : key -> elt -> bool)(m : t elt) := fold (fun k e b => if f k e then b else false) m true. - Definition exists_ (f : key -> elt -> bool)(m : t elt) := + Definition exists_ (f : key -> elt -> bool)(m : t elt) := fold (fun k e b => if f k e then true else b) m false. - Definition partition (f : key -> elt -> bool)(m : t elt) := + Definition partition (f : key -> elt -> bool)(m : t elt) := (filter f m, filter (fun k e => negb (f k e)) m). (** [update] adds to [m1] all the bindings of [m2]. It can be seen as @@ -1272,7 +1256,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Section Specs. Variable f : key -> elt -> bool. - Hypothesis Hf : Morphism (E.eq==>Leibniz==>Leibniz) f. + Hypothesis Hf : Proper (E.eq==>eq==>eq) f. Lemma filter_iff : forall m k e, MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true. @@ -1315,8 +1299,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). apply Hmapsto. rewrite Hadd, add_mapsto_iff; right; split; auto. contradict Hn; exists e'; rewrite Hn; auto. (* f k e = false *) - split; intros H; try discriminate. - rewrite <- Hfke. apply H. + split; try discriminate. + intros Hmapsto. rewrite <- Hfke. apply Hmapsto. rewrite Hadd, add_mapsto_iff; auto. Qed. @@ -1328,7 +1312,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). set (f':=fun k e b => if f k e then true else b). intro m. pattern m, (fold f' m false). apply fold_rec. - intros m' Hm'. split; try (intros; discriminate). + intros m' Hm'. split; try discriminate. intros ((k,e),(Hke,_)); simpl in *. elim (Hm' k e); auto. intros k e b m1 m2 _ Hn Hadd IH. clear m. @@ -1365,7 +1349,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Section Partition. Variable f : key -> elt -> bool. - Hypothesis Hf : Morphism (E.eq==>Leibniz==>Leibniz) f. + Hypothesis Hf : Proper (E.eq==>eq==>eq) f. Lemma partition_iff_1 : forall m m1 k e, m1 = fst (partition f m) -> @@ -1494,7 +1478,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Lemma Partition_fold : forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A), - Morphism (E.eq==>Leibniz==>eqA==>eqA) f -> + Proper (E.eq==>eq==>eqA==>eqA) f -> transpose_neqkey eqA f -> forall m m1 m2 i, Partition m m1 m2 -> @@ -1547,9 +1531,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). set (f:=fun (_:key)(_:elt)=>S). setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)). rewrite <- cardinal_fold. - intros. apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto. - apply Partition_fold with (eqA:=@Logic.eq _); try red; auto. - compute; auto. + apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto. + apply Partition_fold with (eqA:=eq); repeat red; auto. Qed. Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 -> @@ -1557,7 +1540,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)). Proof. intros m m1 m2 Hm f. - assert (Hf : Morphism (E.eq==>Leibniz==>Leibniz) f). + assert (Hf : Proper (E.eq==>eq==>eq) f). intros k k' Hk e e' _; unfold f; rewrite Hk; auto. set (m1':= fst (partition f m)). set (m2':= snd (partition f m)). @@ -1673,7 +1656,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E). End Elt. Add Parametric Morphism elt : (@cardinal elt) - with signature Equal ==> Leibniz as cardinal_m. + with signature Equal ==> eq as cardinal_m. Proof. intros; apply Equal_cardinal; auto. Qed. Add Parametric Morphism elt : (@Disjoint elt) @@ -1761,7 +1744,7 @@ Module OrdProperties (M:S). Import F. Import M. - Section Elt. + Section Elt. Variable elt:Type. Notation eqke := (@eqke elt). @@ -1779,15 +1762,14 @@ Module OrdProperties (M:S). Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt), sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'. Proof. - apply SortA_equivlistA_eqlistA; eauto; - unfold O.eqke, O.ltk; simpl; intuition; eauto. + apply SortA_equivlistA_eqlistA; eauto with *. Qed. Ltac clean_eauto := unfold O.eqke, O.ltk; simpl; intuition; eauto. Definition gtb (p p':key*elt) := match E.compare (fst p) (fst p') with GT _ => true | _ => false end. - Definition leb p := fun p' => negb (gtb p p'). + Definition leb p := fun p' => negb (gtb p p'). Definition elements_lt p m := List.filter (gtb p) (elements m). Definition elements_ge p m := List.filter (leb p) (elements m). @@ -1804,10 +1786,10 @@ Module OrdProperties (M:S). destruct (E.compare x y); intuition; try discriminate; ME.order. Qed. - Lemma gtb_compat : forall p, compat_bool eqke (gtb p). + Lemma gtb_compat : forall p, Proper (eqke==>eq) (gtb p). Proof. red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H. - generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e'')); + generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e'')); destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); auto. unfold O.ltk in *; simpl in *; intros. symmetry; rewrite H2. @@ -1819,7 +1801,7 @@ Module OrdProperties (M:S). rewrite <- H2; auto. Qed. - Lemma leb_compat : forall p, compat_bool eqke (leb p). + Lemma leb_compat : forall p, Proper (eqke==>eq) (leb p). Proof. red; intros x a b H. unfold leb; f_equal; apply gtb_compat; auto. @@ -1827,11 +1809,11 @@ Module OrdProperties (M:S). Hint Resolve gtb_compat leb_compat elements_3 : map. - Lemma elements_split : forall p m, + Lemma elements_split : forall p m, elements m = elements_lt p m ++ elements_ge p m. Proof. unfold elements_lt, elements_ge, leb; intros. - apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with map. + apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with *. intros; destruct x; destruct y; destruct p. rewrite gtb_1 in H; unfold O.ltk in H; simpl in *. assert (~ltk (t1,e0) (k,e1)). @@ -1840,19 +1822,19 @@ Module OrdProperties (M:S). unfold O.ltk in *; simpl in *; ME.order. Qed. - Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' -> - eqlistA eqke (elements m') + Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' -> + eqlistA eqke (elements m') (elements_lt (x,e) m ++ (x,e):: elements_ge (x,e) m). Proof. intros; unfold elements_lt, elements_ge. - apply sort_equivlistA_eqlistA; auto with map. - apply (@SortA_app _ eqke); auto with map. - apply (@filter_sort _ eqke); auto with map; clean_eauto. + apply sort_equivlistA_eqlistA; auto with *. + apply (@SortA_app _ eqke); auto with *. + apply (@filter_sort _ eqke); auto with *; clean_eauto. constructor; auto with map. - apply (@filter_sort _ eqke); auto with map; clean_eauto. - rewrite (@InfA_alt _ eqke); auto with map; try (clean_eauto; fail). + apply (@filter_sort _ eqke); auto with *; clean_eauto. + rewrite (@InfA_alt _ eqke); auto with *; try (clean_eauto; fail). intros. - rewrite filter_InA in H1; auto with map; destruct H1. + rewrite filter_InA in H1; auto with *; destruct H1. rewrite leb_1 in H2. destruct y; unfold O.ltk in *; simpl in *. rewrite <- elements_mapsto_iff in H1. @@ -1860,24 +1842,22 @@ Module OrdProperties (M:S). contradict H. exists e0; apply MapsTo_1 with t0; auto. ME.order. - apply (@filter_sort _ eqke); auto with map; clean_eauto. + apply (@filter_sort _ eqke); auto with *; clean_eauto. intros. - rewrite filter_InA in H1; auto with map; destruct H1. + rewrite filter_InA in H1; auto with *; destruct H1. rewrite gtb_1 in H3. destruct y; destruct x0; unfold O.ltk in *; simpl in *. inversion_clear H2. red in H4; simpl in *; destruct H4. ME.order. - rewrite filter_InA in H4; auto with map; destruct H4. + rewrite filter_InA in H4; auto with *; destruct H4. rewrite leb_1 in H4. unfold O.ltk in *; simpl in *; ME.order. red; intros a; destruct a. - rewrite InA_app_iff; rewrite InA_cons. - do 2 (rewrite filter_InA; auto with map). - do 2 rewrite <- elements_mapsto_iff. - rewrite leb_1; rewrite gtb_1. - rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff. - rewrite add_mapsto_iff. + rewrite InA_app_iff, InA_cons, 2 filter_InA, + <-2 elements_mapsto_iff, leb_1, gtb_1, + find_mapsto_iff, (H0 t0), <- find_mapsto_iff, + add_mapsto_iff by (auto with *). unfold O.eqke, O.ltk; simpl. destruct (E.compare t0 x); intuition. right; split; auto; ME.order. @@ -1889,13 +1869,13 @@ Module OrdProperties (M:S). right; split; auto; ME.order. Qed. - Lemma elements_Add_Above : forall m m' x e, - Above x m -> Add x e m m' -> + Lemma elements_Add_Above : forall m m' x e, + Above x m -> Add x e m m' -> eqlistA eqke (elements m') (elements m ++ (x,e)::nil). Proof. intros. - apply sort_equivlistA_eqlistA; auto with map. - apply (@SortA_app _ eqke); auto with map. + apply sort_equivlistA_eqlistA; auto with *. + apply (@SortA_app _ eqke); auto with *. intros. inversion_clear H2. destruct x0; destruct y. @@ -1905,27 +1885,26 @@ Module OrdProperties (M:S). apply H; firstorder. inversion H3. red; intros a; destruct a. - rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil. - do 2 rewrite <- elements_mapsto_iff. - rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff. - rewrite add_mapsto_iff; unfold O.eqke; simpl. - intuition. + rewrite InA_app_iff, InA_cons, InA_nil, <- 2 elements_mapsto_iff, + find_mapsto_iff, (H0 t0), <- find_mapsto_iff, + add_mapsto_iff by (auto with *). + unfold O.eqke; simpl. intuition. destruct (E.eq_dec x t0); auto. - elimtype False. + exfalso. assert (In t0 m). exists e0; auto. generalize (H t0 H1). ME.order. Qed. - Lemma elements_Add_Below : forall m m' x e, - Below x m -> Add x e m m' -> + Lemma elements_Add_Below : forall m m' x e, + Below x m -> Add x e m m' -> eqlistA eqke (elements m') ((x,e)::elements m). Proof. intros. - apply sort_equivlistA_eqlistA; auto with map. + apply sort_equivlistA_eqlistA; auto with *. change (sort ltk (((x,e)::nil) ++ elements m)). - apply (@SortA_app _ eqke); auto with map. + apply (@SortA_app _ eqke); auto with *. intros. inversion_clear H1. destruct y; destruct x0. @@ -1935,24 +1914,23 @@ Module OrdProperties (M:S). apply H; firstorder. inversion H3. red; intros a; destruct a. - rewrite InA_cons. - do 2 rewrite <- elements_mapsto_iff. - rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff. - rewrite add_mapsto_iff; unfold O.eqke; simpl. - intuition. + rewrite InA_cons, <- 2 elements_mapsto_iff, + find_mapsto_iff, (H0 t0), <- find_mapsto_iff, + add_mapsto_iff by (auto with *). + unfold O.eqke; simpl. intuition. destruct (E.eq_dec x t0); auto. - elimtype False. + exfalso. assert (In t0 m). exists e0; auto. generalize (H t0 H1). ME.order. Qed. - Lemma elements_Equal_eqlistA : forall (m m': t elt), + Lemma elements_Equal_eqlistA : forall (m m': t elt), Equal m m' -> eqlistA eqke (elements m) (elements m'). Proof. intros. - apply sort_equivlistA_eqlistA; auto with map. + apply sort_equivlistA_eqlistA; auto with *. red; intros. destruct x; do 2 rewrite <- elements_mapsto_iff. do 2 rewrite find_mapsto_iff; rewrite H; split; auto. @@ -1963,15 +1941,15 @@ Module OrdProperties (M:S). Section Min_Max_Elt. (** We emulate two [max_elt] and [min_elt] functions. *) - - Fixpoint max_elt_aux (l:list (key*elt)) := match l with - | nil => None + + Fixpoint max_elt_aux (l:list (key*elt)) := match l with + | nil => None | (x,e)::nil => Some (x,e) | (x,e)::l => max_elt_aux l end. Definition max_elt m := max_elt_aux (elements m). - Lemma max_elt_Above : + Lemma max_elt_Above : forall m x e, max_elt m = Some (x,e) -> Above x (remove x m). Proof. red; intros. @@ -2010,8 +1988,8 @@ Module OrdProperties (M:S). red; eauto. inversion H2; auto. Qed. - - Lemma max_elt_MapsTo : + + Lemma max_elt_MapsTo : forall m x e, max_elt m = Some (x,e) -> MapsTo x e m. Proof. intros. @@ -2024,7 +2002,7 @@ Module OrdProperties (M:S). constructor 2; auto. Qed. - Lemma max_elt_Empty : + Lemma max_elt_Empty : forall m, max_elt m = None -> Empty m. Proof. intros. @@ -2035,12 +2013,12 @@ Module OrdProperties (M:S). assert (H':=IHl H); discriminate. Qed. - Definition min_elt m : option (key*elt) := match elements m with + Definition min_elt m : option (key*elt) := match elements m with | nil => None | (x,e)::_ => Some (x,e) end. - Lemma min_elt_Below : + Lemma min_elt_Below : forall m x e, min_elt m = Some (x,e) -> Below x (remove x m). Proof. unfold min_elt, Below; intros. @@ -2054,14 +2032,11 @@ Module OrdProperties (M:S). inversion_clear H1. red in H2; destruct H2; simpl in *; ME.order. inversion_clear H4. - rewrite (@InfA_alt _ eqke) in H3; eauto. + rewrite (@InfA_alt _ eqke) in H3; eauto with *. apply (H3 (y,x0)); auto. - unfold lt_key; simpl; intuition; eauto. - intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto. - intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto. Qed. - - Lemma min_elt_MapsTo : + + Lemma min_elt_MapsTo : forall m x e, min_elt m = Some (x,e) -> MapsTo x e m. Proof. intros. @@ -2073,7 +2048,7 @@ Module OrdProperties (M:S). injection H; intros; subst; constructor; red; auto. Qed. - Lemma min_elt_Empty : + Lemma min_elt_Empty : forall m, min_elt m = None -> Empty m. Proof. intros. @@ -2108,7 +2083,7 @@ Module OrdProperties (M:S). assert (S n = S (cardinal (remove k m))). rewrite Heqn. eapply cardinal_2; eauto with map. - inversion H1; auto. + inversion H1; auto. eapply max_elt_Above; eauto. apply X; apply max_elt_Empty; auto. @@ -2135,7 +2110,7 @@ Module OrdProperties (M:S). assert (S n = S (cardinal (remove k m))). rewrite Heqn. eapply cardinal_2; eauto with map. - inversion H1; auto. + inversion H1; auto. eapply min_elt_Below; eauto. apply X; apply min_elt_Empty; auto. @@ -2150,7 +2125,7 @@ Module OrdProperties (M:S). Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) (f:key->elt->A->A)(i:A), - Morphism (E.eq==>Leibniz==>eqA==>eqA) f -> + Proper (E.eq==>eq==>eqA==>eqA) f -> Equal m1 m2 -> eqA (fold f m1 i) (fold f m2 i). Proof. @@ -2158,13 +2133,12 @@ Module OrdProperties (M:S). do 2 rewrite fold_1. do 2 rewrite <- fold_left_rev_right. apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. - intros (k,e) (k',e') a a' (Hk,He) Ha; simpl in *; apply Hf; auto. + intros (k,e) (k',e') (Hk,He) a a' Ha; simpl in *; apply Hf; auto. apply eqlistA_rev. apply elements_Equal_eqlistA. auto. Qed. Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) - (f:key->elt->A->A)(i:A), - Morphism (E.eq==>Leibniz==>eqA==>eqA) f -> + (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f), Above x m1 -> Add x e m1 m2 -> eqA (fold f m2 i) (f x e (fold f m1 i)). Proof. @@ -2172,7 +2146,7 @@ Module OrdProperties (M:S). set (f':=fun y x0 => f (fst y) (snd y) x0) in *. transitivity (fold_right f' i (rev (elements m1 ++ (x,e)::nil))). apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. - intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *; apply H; auto. + intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *. apply P; auto. apply eqlistA_rev. apply elements_Add_Above; auto. rewrite distr_rev; simpl. @@ -2180,8 +2154,7 @@ Module OrdProperties (M:S). Qed. Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) - (f:key->elt->A->A)(i:A), - Morphism (E.eq==>Leibniz==>eqA==>eqA) f -> + (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f), Below x m1 -> Add x e m1 m2 -> eqA (fold f m2 i) (fold f m1 (f x e i)). Proof. @@ -2189,7 +2162,7 @@ Module OrdProperties (M:S). set (f':=fun y x0 => f (fst y) (snd y) x0) in *. transitivity (fold_right f' i (rev (((x,e)::nil)++elements m1))). apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. - intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *; apply H; auto. + intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *; apply P; auto. apply eqlistA_rev. simpl; apply elements_Add_Below; auto. rewrite distr_rev; simpl. |