summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapFacts.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /theories/FSets/FMapFacts.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'theories/FSets/FMapFacts.v')
-rw-r--r--theories/FSets/FMapFacts.v447
1 files changed, 210 insertions, 237 deletions
diff --git a/theories/FSets/FMapFacts.v b/theories/FSets/FMapFacts.v
index d91eb87a..4c59971c 100644
--- a/theories/FSets/FMapFacts.v
+++ b/theories/FSets/FMapFacts.v
@@ -6,25 +6,22 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMapFacts.v 12187 2009-06-13 19:36:59Z msozeau $ *)
+(* $Id$ *)
(** * Finite maps library *)
(** This functor derives additional facts from [FMapInterface.S]. These
- facts are mainly the specifications of [FMapInterface.S] written using
- different styles: equivalence and boolean equalities.
+ facts are mainly the specifications of [FMapInterface.S] written using
+ different styles: equivalence and boolean equalities.
*)
Require Import Bool DecidableType DecidableTypeEx OrderedType Morphisms.
-Require Export FMapInterface.
+Require Export FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
Hint Extern 1 (Equivalence _) => constructor; congruence.
-Notation Leibniz := (@eq _) (only parsing).
-
-
(** * Facts about weak maps *)
Module WFacts_fun (E:DecidableType)(Import M:WSfun E).
@@ -46,7 +43,7 @@ destruct o; destruct o'; try rewrite H; auto.
symmetry; rewrite <- H; auto.
Qed.
-Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt),
+Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt),
MapsTo x e m -> MapsTo x e' m -> e=e'.
Proof.
intros.
@@ -56,7 +53,7 @@ Qed.
(** ** Specifications written using equivalences *)
-Section IffSpec.
+Section IffSpec.
Variable elt elt' elt'': Type.
Implicit Type m: t elt.
Implicit Type x y z: key.
@@ -101,7 +98,7 @@ Lemma not_find_in_iff : forall m x, ~In x m <-> find x m = None.
Proof.
split; intros.
rewrite eq_option_alt. intro e. rewrite <- find_mapsto_iff.
-split; intro H'; try discriminate. elim H; exists e; auto.
+split; try discriminate. intro H'; elim H; exists e; auto.
intros (e,He); rewrite find_mapsto_iff,H in He; discriminate.
Qed.
@@ -112,7 +109,7 @@ destruct mem; intuition.
Qed.
Lemma equal_iff : forall m m' cmp, Equivb cmp m m' <-> equal cmp m m' = true.
-Proof.
+Proof.
split; [apply equal_1|apply equal_2].
Qed.
@@ -127,16 +124,16 @@ unfold In.
split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
Qed.
-Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true.
-Proof.
+Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true.
+Proof.
split; [apply is_empty_1|apply is_empty_2].
Qed.
-Lemma add_mapsto_iff : forall m x y e e',
- MapsTo y e' (add x e m) <->
- (E.eq x y /\ e=e') \/
+Lemma add_mapsto_iff : forall m x y e e',
+ MapsTo y e' (add x e m) <->
+ (E.eq x y /\ e=e') \/
(~E.eq x y /\ MapsTo y e' m).
-Proof.
+Proof.
intros.
intuition.
destruct (eq_dec x y); [left|right].
@@ -147,7 +144,7 @@ subst; auto with map.
Qed.
Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
-Proof.
+Proof.
unfold In; split.
intros (e',H).
destruct (eq_dec x y) as [E|E]; auto.
@@ -161,13 +158,13 @@ destruct E; auto.
exists e'; apply add_2; auto.
Qed.
-Lemma add_neq_mapsto_iff : forall m x y e e',
+Lemma add_neq_mapsto_iff : forall m x y e e',
~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.
-Lemma add_neq_in_iff : forall m x y e,
+Lemma add_neq_in_iff : forall m x y e,
~ E.eq x y -> (In y (add x e m) <-> In y m).
Proof.
split; intros (e',H0); exists e'.
@@ -175,9 +172,9 @@ apply (add_3 H H0).
apply add_2; auto.
Qed.
-Lemma remove_mapsto_iff : forall m x y e,
+Lemma remove_mapsto_iff : forall m x y e,
MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
-Proof.
+Proof.
intros.
split; intros.
split.
@@ -188,7 +185,7 @@ apply remove_2; intuition.
Qed.
Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
-Proof.
+Proof.
unfold In; split.
intros (e,H).
split.
@@ -198,13 +195,13 @@ exists e; apply remove_3 with x; auto.
intros (H,(e,H0)); exists e; apply remove_2; auto.
Qed.
-Lemma remove_neq_mapsto_iff : forall m x y e,
+Lemma remove_neq_mapsto_iff : forall m x y e,
~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.
-Lemma remove_neq_in_iff : forall m x y,
+Lemma remove_neq_in_iff : forall m x y,
~ E.eq x y -> (In y (remove x m) <-> In y m).
Proof.
split; intros (e',H0); exists e'.
@@ -212,19 +209,19 @@ apply (remove_3 H0).
apply remove_2; auto.
Qed.
-Lemma elements_mapsto_iff : forall m x e,
+Lemma elements_mapsto_iff : forall m x e,
MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
-Proof.
+Proof.
split; [apply elements_1 | apply elements_2].
Qed.
-Lemma elements_in_iff : forall m x,
+Lemma elements_in_iff : forall m x,
In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
-Proof.
+Proof.
unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
Qed.
-Lemma map_mapsto_iff : forall m x b (f : elt -> elt'),
+Lemma map_mapsto_iff : forall m x b (f : elt -> elt'),
MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
Proof.
split.
@@ -240,7 +237,7 @@ intros (a,(H,H0)).
subst b; auto with map.
Qed.
-Lemma map_in_iff : forall m x (f : elt -> elt'),
+Lemma map_in_iff : forall m x (f : elt -> elt'),
In x (map f m) <-> In x m.
Proof.
split; intros; eauto with map.
@@ -257,11 +254,11 @@ destruct (mapi_1 f H) as (y,(H0,H1)).
exists (f y a); auto.
Qed.
-(** Unfortunately, we don't have simple equivalences for [mapi]
- and [MapsTo]. The only correct one needs compatibility of [f]. *)
+(** Unfortunately, we don't have simple equivalences for [mapi]
+ and [MapsTo]. The only correct one needs compatibility of [f]. *)
-Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
- MapsTo x b (mapi f m) ->
+Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
+ MapsTo x b (mapi f m) ->
exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m.
Proof.
intros; case_eq (find x m); intros.
@@ -275,8 +272,8 @@ destruct (mapi_2 H1) as (a,H2).
rewrite (find_1 H2) in H0; discriminate.
Qed.
-Lemma mapi_1bis : forall m x e (f:key->elt->elt'),
- (forall x y e, E.eq x y -> f x e = f y e) ->
+Lemma mapi_1bis : forall m x e (f:key->elt->elt'),
+ (forall x y e, E.eq x y -> f x e = f y e) ->
MapsTo x e m -> MapsTo x (f x e) (mapi f m).
Proof.
intros.
@@ -286,7 +283,7 @@ auto.
Qed.
Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
- (forall x y e, E.eq x y -> f x e = f y e) ->
+ (forall x y e, E.eq x y -> f x e = f y e) ->
(MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
Proof.
split.
@@ -299,14 +296,14 @@ subst b.
apply mapi_1bis; auto.
Qed.
-(** Things are even worse for [map2] : we don't try to state any
+(** Things are even worse for [map2] : we don't try to state any
equivalence, see instead boolean results below. *)
End IffSpec.
(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
-
-Ltac map_iff :=
+
+Ltac map_iff :=
repeat (progress (
rewrite add_mapsto_iff || rewrite add_in_iff ||
rewrite remove_mapsto_iff || rewrite remove_in_iff ||
@@ -318,7 +315,7 @@ Ltac map_iff :=
Section BoolSpec.
-Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false.
+Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false.
Proof.
intros.
generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
@@ -336,7 +333,7 @@ Implicit Types x y z : key.
Implicit Types e : elt.
Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
-Proof.
+Proof.
intros.
generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
destruct (mem x m); destruct (mem y m); intuition.
@@ -362,14 +359,14 @@ generalize (mem_2 H).
rewrite empty_in_iff; intuition.
Qed.
-Lemma add_eq_o : forall m x y e,
+Lemma add_eq_o : forall m x y e,
E.eq x y -> find y (add x e m) = Some e.
Proof.
auto with map.
Qed.
-Lemma add_neq_o : forall m x y e,
- ~ E.eq x y -> find y (add x e m) = find y m.
+Lemma add_neq_o : forall m x y e,
+ ~ E.eq x y -> find y (add x e m) = find y m.
Proof.
intros. rewrite eq_option_alt. intro e'. rewrite <- 2 find_mapsto_iff.
apply add_neq_mapsto_iff; auto.
@@ -382,26 +379,26 @@ Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.
-Lemma add_eq_b : forall m x y e,
+Lemma add_eq_b : forall m x y e,
E.eq x y -> mem y (add x e m) = true.
Proof.
intros; rewrite mem_find_b; rewrite add_eq_o; auto.
Qed.
-Lemma add_neq_b : forall m x y e,
+Lemma add_neq_b : forall m x y e,
~E.eq x y -> mem y (add x e m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
Qed.
-Lemma add_b : forall m x y e,
- mem y (add x e m) = eqb x y || mem y m.
+Lemma add_b : forall m x y e,
+ mem y (add x e m) = eqb x y || mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
destruct (eq_dec x y); simpl; auto.
Qed.
-Lemma remove_eq_o : forall m x y,
+Lemma remove_eq_o : forall m x y,
E.eq x y -> find y (remove x m) = None.
Proof.
intros. rewrite eq_option_alt. intro e.
@@ -442,14 +439,14 @@ intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.
-Definition option_map (A B:Type)(f:A->B)(o:option A) : option B :=
- match o with
+Definition option_map (A B:Type)(f:A->B)(o:option A) : option B :=
+ match o with
| Some a => Some (f a)
| None => None
end.
-Lemma map_o : forall m x (f:elt->elt'),
- find x (map f m) = option_map f (find x m).
+Lemma map_o : forall m x (f:elt->elt'),
+ find x (map f m) = option_map f (find x m).
Proof.
intros.
generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
@@ -463,14 +460,14 @@ rewrite H0 in H2; discriminate.
rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
Qed.
-Lemma map_b : forall m x (f:elt->elt'),
+Lemma map_b : forall m x (f:elt->elt'),
mem x (map f m) = mem x m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite map_o.
destruct (find x m); simpl; auto.
Qed.
-Lemma mapi_b : forall m x (f:key->elt->elt'),
+Lemma mapi_b : forall m x (f:key->elt->elt'),
mem x (mapi f m) = mem x m.
Proof.
intros.
@@ -480,12 +477,12 @@ symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
rewrite <- H; rewrite H1; rewrite H0; auto.
Qed.
-Lemma mapi_o : forall m x (f:key->elt->elt'),
- (forall x y e, E.eq x y -> f x e = f y e) ->
+Lemma mapi_o : forall m x (f:key->elt->elt'),
+ (forall x y e, E.eq x y -> f x e = f y e) ->
find x (mapi f m) = option_map (f x) (find x m).
Proof.
intros.
-generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x)
+generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x)
(fun b => mapi_mapsto_iff m x b H).
destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
@@ -496,9 +493,9 @@ rewrite H1 in H3; discriminate.
rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
Qed.
-Lemma map2_1bis : forall (m: t elt)(m': t elt') x
- (f:option elt->option elt'->option elt''),
- f None None = None ->
+Lemma map2_1bis : forall (m: t elt)(m': t elt') x
+ (f:option elt->option elt'->option elt''),
+ f None None = None ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros.
@@ -574,7 +571,7 @@ Qed.
(** First, [Equal] is [Equiv] with Leibniz on elements. *)
Lemma Equal_Equiv : forall (m m' : t elt),
- Equal m m' <-> Equiv (@Logic.eq elt) m m'.
+ Equal m m' <-> Equiv Logic.eq m m'.
Proof.
intros. rewrite Equal_mapsto_iff. split; intros.
split.
@@ -598,7 +595,7 @@ Section Cmp.
Variable eq_elt : elt->elt->Prop.
Variable cmp : elt->elt->bool.
-Definition compat_cmp :=
+Definition compat_cmp :=
forall e e', cmp e e' = true <-> eq_elt e e'.
Lemma Equiv_Equivb : compat_cmp ->
@@ -613,17 +610,17 @@ End Cmp.
(** Composition of the two last results: relation between [Equal]
and [Equivb]. *)
-Lemma Equal_Equivb : forall cmp,
- (forall e e', cmp e e' = true <-> e = e') ->
+Lemma Equal_Equivb : forall cmp,
+ (forall e e', cmp e e' = true <-> e = e') ->
forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
Proof.
intros; rewrite Equal_Equiv.
apply Equiv_Equivb; auto.
Qed.
-Lemma Equal_Equivb_eqdec :
+Lemma Equal_Equivb_eqdec :
forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }),
- let cmp := fun e e' => if eq_elt_dec e e' then true else false in
+ let cmp := fun e e' => if eq_elt_dec e e' then true else false in
forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
Proof.
intros; apply Equal_Equivb.
@@ -638,11 +635,11 @@ End Equalities.
Lemma Equal_refl : forall (elt:Type)(m : t elt), Equal m m.
Proof. red; reflexivity. Qed.
-Lemma Equal_sym : forall (elt:Type)(m m' : t elt),
+Lemma Equal_sym : forall (elt:Type)(m m' : t elt),
Equal m m' -> Equal m' m.
Proof. unfold Equal; auto. Qed.
-Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt),
+Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt),
Equal m m' -> Equal m' m'' -> Equal m m''.
Proof. unfold Equal; congruence. Qed.
@@ -651,15 +648,15 @@ Proof.
constructor; red; [apply Equal_refl | apply Equal_sym | apply Equal_trans].
Qed.
-Add Relation key E.eq
- reflexivity proved by E.eq_refl
+Add Relation key E.eq
+ reflexivity proved by E.eq_refl
symmetry proved by E.eq_sym
- transitivity proved by E.eq_trans
+ transitivity proved by E.eq_trans
as KeySetoid.
Implicit Arguments Equal [[elt]].
-Add Parametric Relation (elt : Type) : (t elt) Equal
+Add Parametric Relation (elt : Type) : (t elt) Equal
reflexivity proved by (@Equal_refl elt)
symmetry proved by (@Equal_sym elt)
transitivity proved by (@Equal_trans elt)
@@ -673,7 +670,7 @@ rewrite (In_iff m Hk), in_find_iff, in_find_iff, Hm; intuition.
Qed.
Add Parametric Morphism elt : (@MapsTo elt)
- with signature E.eq ==> Leibniz ==> Equal ==> iff as MapsTo_m.
+ with signature E.eq ==> eq ==> Equal ==> iff as MapsTo_m.
Proof.
unfold Equal; intros k k' Hk e m m' Hm.
rewrite (MapsTo_iff m e Hk), find_mapsto_iff, find_mapsto_iff, Hm;
@@ -689,28 +686,28 @@ rewrite Hm in H0; eauto.
Qed.
Add Parametric Morphism elt : (@is_empty elt)
- with signature Equal ==> Leibniz as is_empty_m.
+ with signature Equal ==> eq as is_empty_m.
Proof.
intros m m' Hm.
rewrite eq_bool_alt, <-is_empty_iff, <-is_empty_iff, Hm; intuition.
Qed.
Add Parametric Morphism elt : (@mem elt)
- with signature E.eq ==> Equal ==> Leibniz as mem_m.
+ with signature E.eq ==> Equal ==> eq as mem_m.
Proof.
intros k k' Hk m m' Hm.
rewrite eq_bool_alt, <- mem_in_iff, <-mem_in_iff, Hk, Hm; intuition.
Qed.
Add Parametric Morphism elt : (@find elt)
- with signature E.eq ==> Equal ==> Leibniz as find_m.
+ with signature E.eq ==> Equal ==> eq as find_m.
Proof.
intros k k' Hk m m' Hm. rewrite eq_option_alt. intro e.
rewrite <- 2 find_mapsto_iff, Hk, Hm. split; auto.
Qed.
Add Parametric Morphism elt : (@add elt)
- with signature E.eq ==> Leibniz ==> Equal ==> Equal as add_m.
+ with signature E.eq ==> eq ==> Equal ==> Equal as add_m.
Proof.
intros k k' Hk e m m' Hm y.
rewrite add_o, add_o; do 2 destruct eq_dec; auto.
@@ -728,7 +725,7 @@ elim n; rewrite Hk; auto.
Qed.
Add Parametric Morphism elt elt' : (@map elt elt')
- with signature Leibniz ==> Equal ==> Equal as map_m.
+ with signature eq ==> Equal ==> Equal as map_m.
Proof.
intros f m m' Hm y.
rewrite map_o, map_o, Hm; auto.
@@ -763,6 +760,16 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Notation eqke := (@eq_key_elt elt).
Notation eqk := (@eq_key elt).
+ Instance eqk_equiv : Equivalence eqk.
+ Proof. split; repeat red; eauto. Qed.
+
+ Instance eqke_equiv : Equivalence eqke.
+ Proof.
+ unfold eq_key_elt; split; repeat red; firstorder.
+ eauto with *.
+ congruence.
+ Qed.
+
(** Complements about InA, NoDupA and findA *)
Lemma InA_eqke_eqk : forall k1 k2 e1 e2 l,
@@ -790,12 +797,12 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
intros. symmetry.
unfold eqb.
rewrite <- findA_NoDupA, InA_rev, findA_NoDupA
- by eauto using NoDupA_rev; eauto.
+ by (eauto using NoDupA_rev with *); eauto.
case_eq (findA (eqb k) (rev l)); auto.
intros e.
unfold eqb.
rewrite <- findA_NoDupA, InA_rev, findA_NoDupA
- by eauto using NoDupA_rev.
+ by (eauto using NoDupA_rev with *).
intro Eq; rewrite Eq; auto.
Qed.
@@ -896,9 +903,10 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' ->
Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)).
intros k e a m' m'' H ? ? ?; eapply Hstep; eauto.
- revert H; unfold l; rewrite InA_rev, elements_mapsto_iff; auto.
+ revert H; unfold l; rewrite InA_rev, elements_mapsto_iff; auto with *.
assert (Hdup : NoDupA eqk l).
- unfold l. apply NoDupA_rev; try red; eauto. apply elements_3w.
+ unfold l. apply NoDupA_rev; try red; unfold eq_key ; eauto with *.
+ apply elements_3w.
assert (Hsame : forall k, find k m = findA (eqb k) l).
intros k. unfold l. rewrite elements_o, findA_rev; auto.
apply elements_3w.
@@ -979,7 +987,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
set (l:=rev (elements m)).
assert (Rstep' : forall k e a b, InA eqke (k,e) l ->
R a b -> R (f k e a) (g k e b)) by
- (intros; apply Rstep; auto; rewrite elements_mapsto_iff, <- InA_rev; auto).
+ (intros; apply Rstep; auto; rewrite elements_mapsto_iff, <- InA_rev; auto with *).
clearbody l; clear Rstep m.
induction l; simpl; auto.
apply Rstep'; auto.
@@ -1020,7 +1028,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff.
intro; elim (Heq k' e'); auto.
intros k e a m' m'' _ _ Hadd Heq k'.
- rewrite Hadd, 2 add_o, Heq; auto.
+ red in Heq. rewrite Hadd, 2 add_o, Heq; auto.
Qed.
Section Fold_More.
@@ -1034,8 +1042,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
(** This is more convenient than a [compat_op eqke ...].
In fact, every [compat_op], [compat_bool], etc, should
- become a [Morphism] someday. *)
- Hypothesis Comp : Morphism (E.eq==>Leibniz==>eqA==>eqA) f.
+ become a [Proper] someday. *)
+ Hypothesis Comp : Proper (E.eq==>eq==>eqA==>eqA) f.
Lemma fold_init :
forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i').
@@ -1086,77 +1094,53 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
contradict Hnotin; rewrite <- Hnotin; exists e0; auto.
Qed.
+ Hint Resolve NoDupA_eqk_eqke NoDupA_rev elements_3w : map.
+
Lemma fold_Equal : forall m1 m2 i, Equal m1 m2 ->
eqA (fold f m1 i) (fold f m2 i).
Proof.
- assert (eqke_refl : forall p, eqke p p).
- red; auto.
- assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
- intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
- assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
- intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
- intuition; eauto; congruence.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
- apply fold_right_equivlistA_restr with
- (R:=fun p p' => ~eqk p p') (eqA:=eqke) (eqB:=eqA); auto.
- intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; simpl in *; apply Comp; auto.
- unfold eq_key; auto.
- intros (k1,e1) (k2,e2) (k3,e3). unfold eq_key_elt, eq_key; simpl.
- intuition eauto.
+ assert (NoDupA eqk (rev (elements m1))) by (auto with *).
+ assert (NoDupA eqk (rev (elements m2))) by (auto with *).
+ apply fold_right_equivlistA_restr with (R:=complement eqk)(eqA:=eqke);
+ auto with *.
+ intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *; apply Comp; auto.
+ unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto.
intros (k,e) (k',e'); unfold eq_key; simpl; auto.
- apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
- apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
- apply ForallList2_equiv1 with (eqA:=eqk); try red; eauto.
- apply NoDupA_rev; try red; eauto. apply elements_3w.
- red; intros.
- do 2 rewrite InA_rev.
- destruct x; do 2 rewrite <- elements_mapsto_iff.
- do 2 rewrite find_mapsto_iff.
- rewrite H; split; auto.
+ rewrite <- NoDupA_altdef; auto.
+ intros (k,e).
+ rewrite 2 InA_rev, <- 2 elements_mapsto_iff, 2 find_mapsto_iff, H;
+ auto with *.
Qed.
Lemma fold_Add : forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 ->
eqA (fold f m2 i) (f k e (fold f m1 i)).
Proof.
- assert (eqke_refl : forall p, eqke p p).
- red; auto.
- assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
- intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
- assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
- intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
- intuition; eauto; congruence.
intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
change (f k e (fold_right f' i (rev (elements m1))))
with (f' (k,e) (fold_right f' i (rev (elements m1)))).
+ assert (NoDupA eqk (rev (elements m1))) by (auto with *).
+ assert (NoDupA eqk (rev (elements m2))) by (auto with *).
apply fold_right_add_restr with
- (R:=fun p p'=>~eqk p p')(eqA:=eqke)(eqB:=eqA); auto.
- intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *. apply Comp; auto.
-
- unfold eq_key; auto.
- intros (k1,e1) (k2,e2) (k3,e3). unfold eq_key_elt, eq_key; simpl.
- intuition eauto.
+ (R:=complement eqk)(eqA:=eqke)(eqB:=eqA); auto with *.
+ intros (k1,e1) (k2,e2) (Hk,He) a a' Ha; unfold f'; simpl in *. apply Comp; auto.
+ unfold complement, eq_key_elt, eq_key; repeat red; intuition eauto.
unfold f'; intros (k1,e1) (k2,e2); unfold eq_key; simpl; auto.
- apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
- apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
- apply ForallList2_equiv1 with (eqA:=eqk); try red; eauto.
- apply NoDupA_rev; try red; eauto. apply elements_3w.
- rewrite InA_rev.
- contradict H.
- exists e.
- rewrite elements_mapsto_iff; auto.
- intros a.
- rewrite InA_cons; do 2 rewrite InA_rev;
- destruct a as (a,b); do 2 rewrite <- elements_mapsto_iff.
- do 2 rewrite find_mapsto_iff; unfold eq_key_elt; simpl.
+ rewrite <- NoDupA_altdef; auto.
+ rewrite InA_rev, <- elements_mapsto_iff by (auto with *). firstorder.
+ intros (a,b).
+ rewrite InA_cons, 2 InA_rev, <- 2 elements_mapsto_iff,
+ 2 find_mapsto_iff by (auto with *).
+ unfold eq_key_elt; simpl.
rewrite H0.
rewrite add_o.
- destruct (eq_dec k a); intuition.
- inversion H1; auto.
- f_equal; auto.
- elim H.
- exists b; apply MapsTo_1 with a; auto with map.
- elim n; auto.
+ destruct (eq_dec k a) as [EQ|NEQ]; split; auto.
+ intros EQ'; inversion EQ'; auto.
+ intuition; subst; auto.
+ elim H. exists b; rewrite EQ; auto with map.
+ intuition.
+ elim NEQ; auto.
Qed.
Lemma fold_add : forall m k e i, ~In k m ->
@@ -1188,7 +1172,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Equal m m' -> cardinal m = cardinal m'.
Proof.
intros; do 2 rewrite cardinal_fold.
- apply fold_Equal with (eqA:=Leibniz); compute; auto.
+ apply fold_Equal with (eqA:=eq); compute; auto.
Qed.
Lemma cardinal_1 : forall m : t elt, Empty m -> cardinal m = 0.
@@ -1201,22 +1185,22 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Proof.
intros; do 2 rewrite cardinal_fold.
change S with ((fun _ _ => S) x e).
- apply fold_Add with (eqA:=Leibniz); compute; auto.
+ apply fold_Add with (eqA:=eq); compute; auto.
Qed.
- Lemma cardinal_inv_1 : forall m : t elt,
+ Lemma cardinal_inv_1 : forall m : t elt,
cardinal m = 0 -> Empty m.
Proof.
- intros; rewrite cardinal_Empty; auto.
+ intros; rewrite cardinal_Empty; auto.
Qed.
Hint Resolve cardinal_inv_1 : map.
Lemma cardinal_inv_2 :
forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }.
- Proof.
+ Proof.
intros; rewrite M.cardinal_1 in *.
generalize (elements_mapsto_iff m).
- destruct (elements m); try discriminate.
+ destruct (elements m); try discriminate.
exists p; auto.
rewrite H0; destruct p; simpl; auto.
constructor; red; auto.
@@ -1242,16 +1226,16 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
(** * Emulation of some functions lacking in the interface *)
- Definition filter (f : key -> elt -> bool)(m : t elt) :=
+ Definition filter (f : key -> elt -> bool)(m : t elt) :=
fold (fun k e m => if f k e then add k e m else m) m (empty _).
- Definition for_all (f : key -> elt -> bool)(m : t elt) :=
+ Definition for_all (f : key -> elt -> bool)(m : t elt) :=
fold (fun k e b => if f k e then b else false) m true.
- Definition exists_ (f : key -> elt -> bool)(m : t elt) :=
+ Definition exists_ (f : key -> elt -> bool)(m : t elt) :=
fold (fun k e b => if f k e then true else b) m false.
- Definition partition (f : key -> elt -> bool)(m : t elt) :=
+ Definition partition (f : key -> elt -> bool)(m : t elt) :=
(filter f m, filter (fun k e => negb (f k e)) m).
(** [update] adds to [m1] all the bindings of [m2]. It can be seen as
@@ -1272,7 +1256,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Section Specs.
Variable f : key -> elt -> bool.
- Hypothesis Hf : Morphism (E.eq==>Leibniz==>Leibniz) f.
+ Hypothesis Hf : Proper (E.eq==>eq==>eq) f.
Lemma filter_iff : forall m k e,
MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true.
@@ -1315,8 +1299,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
apply Hmapsto. rewrite Hadd, add_mapsto_iff; right; split; auto.
contradict Hn; exists e'; rewrite Hn; auto.
(* f k e = false *)
- split; intros H; try discriminate.
- rewrite <- Hfke. apply H.
+ split; try discriminate.
+ intros Hmapsto. rewrite <- Hfke. apply Hmapsto.
rewrite Hadd, add_mapsto_iff; auto.
Qed.
@@ -1328,7 +1312,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
set (f':=fun k e b => if f k e then true else b).
intro m. pattern m, (fold f' m false). apply fold_rec.
- intros m' Hm'. split; try (intros; discriminate).
+ intros m' Hm'. split; try discriminate.
intros ((k,e),(Hke,_)); simpl in *. elim (Hm' k e); auto.
intros k e b m1 m2 _ Hn Hadd IH. clear m.
@@ -1365,7 +1349,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Section Partition.
Variable f : key -> elt -> bool.
- Hypothesis Hf : Morphism (E.eq==>Leibniz==>Leibniz) f.
+ Hypothesis Hf : Proper (E.eq==>eq==>eq) f.
Lemma partition_iff_1 : forall m m1 k e,
m1 = fst (partition f m) ->
@@ -1494,7 +1478,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Lemma Partition_fold :
forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A),
- Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
transpose_neqkey eqA f ->
forall m m1 m2 i,
Partition m m1 m2 ->
@@ -1547,9 +1531,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
set (f:=fun (_:key)(_:elt)=>S).
setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)).
rewrite <- cardinal_fold.
- intros. apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto.
- apply Partition_fold with (eqA:=@Logic.eq _); try red; auto.
- compute; auto.
+ apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto.
+ apply Partition_fold with (eqA:=eq); repeat red; auto.
Qed.
Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 ->
@@ -1557,7 +1540,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)).
Proof.
intros m m1 m2 Hm f.
- assert (Hf : Morphism (E.eq==>Leibniz==>Leibniz) f).
+ assert (Hf : Proper (E.eq==>eq==>eq) f).
intros k k' Hk e e' _; unfold f; rewrite Hk; auto.
set (m1':= fst (partition f m)).
set (m2':= snd (partition f m)).
@@ -1673,7 +1656,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
End Elt.
Add Parametric Morphism elt : (@cardinal elt)
- with signature Equal ==> Leibniz as cardinal_m.
+ with signature Equal ==> eq as cardinal_m.
Proof. intros; apply Equal_cardinal; auto. Qed.
Add Parametric Morphism elt : (@Disjoint elt)
@@ -1761,7 +1744,7 @@ Module OrdProperties (M:S).
Import F.
Import M.
- Section Elt.
+ Section Elt.
Variable elt:Type.
Notation eqke := (@eqke elt).
@@ -1779,15 +1762,14 @@ Module OrdProperties (M:S).
Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt),
sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'.
Proof.
- apply SortA_equivlistA_eqlistA; eauto;
- unfold O.eqke, O.ltk; simpl; intuition; eauto.
+ apply SortA_equivlistA_eqlistA; eauto with *.
Qed.
Ltac clean_eauto := unfold O.eqke, O.ltk; simpl; intuition; eauto.
Definition gtb (p p':key*elt) :=
match E.compare (fst p) (fst p') with GT _ => true | _ => false end.
- Definition leb p := fun p' => negb (gtb p p').
+ Definition leb p := fun p' => negb (gtb p p').
Definition elements_lt p m := List.filter (gtb p) (elements m).
Definition elements_ge p m := List.filter (leb p) (elements m).
@@ -1804,10 +1786,10 @@ Module OrdProperties (M:S).
destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
- Lemma gtb_compat : forall p, compat_bool eqke (gtb p).
+ Lemma gtb_compat : forall p, Proper (eqke==>eq) (gtb p).
Proof.
red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H.
- generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e''));
+ generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e''));
destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); auto.
unfold O.ltk in *; simpl in *; intros.
symmetry; rewrite H2.
@@ -1819,7 +1801,7 @@ Module OrdProperties (M:S).
rewrite <- H2; auto.
Qed.
- Lemma leb_compat : forall p, compat_bool eqke (leb p).
+ Lemma leb_compat : forall p, Proper (eqke==>eq) (leb p).
Proof.
red; intros x a b H.
unfold leb; f_equal; apply gtb_compat; auto.
@@ -1827,11 +1809,11 @@ Module OrdProperties (M:S).
Hint Resolve gtb_compat leb_compat elements_3 : map.
- Lemma elements_split : forall p m,
+ Lemma elements_split : forall p m,
elements m = elements_lt p m ++ elements_ge p m.
Proof.
unfold elements_lt, elements_ge, leb; intros.
- apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with map.
+ apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with *.
intros; destruct x; destruct y; destruct p.
rewrite gtb_1 in H; unfold O.ltk in H; simpl in *.
assert (~ltk (t1,e0) (k,e1)).
@@ -1840,19 +1822,19 @@ Module OrdProperties (M:S).
unfold O.ltk in *; simpl in *; ME.order.
Qed.
- Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' ->
- eqlistA eqke (elements m')
+ Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' ->
+ eqlistA eqke (elements m')
(elements_lt (x,e) m ++ (x,e):: elements_ge (x,e) m).
Proof.
intros; unfold elements_lt, elements_ge.
- apply sort_equivlistA_eqlistA; auto with map.
- apply (@SortA_app _ eqke); auto with map.
- apply (@filter_sort _ eqke); auto with map; clean_eauto.
+ apply sort_equivlistA_eqlistA; auto with *.
+ apply (@SortA_app _ eqke); auto with *.
+ apply (@filter_sort _ eqke); auto with *; clean_eauto.
constructor; auto with map.
- apply (@filter_sort _ eqke); auto with map; clean_eauto.
- rewrite (@InfA_alt _ eqke); auto with map; try (clean_eauto; fail).
+ apply (@filter_sort _ eqke); auto with *; clean_eauto.
+ rewrite (@InfA_alt _ eqke); auto with *; try (clean_eauto; fail).
intros.
- rewrite filter_InA in H1; auto with map; destruct H1.
+ rewrite filter_InA in H1; auto with *; destruct H1.
rewrite leb_1 in H2.
destruct y; unfold O.ltk in *; simpl in *.
rewrite <- elements_mapsto_iff in H1.
@@ -1860,24 +1842,22 @@ Module OrdProperties (M:S).
contradict H.
exists e0; apply MapsTo_1 with t0; auto.
ME.order.
- apply (@filter_sort _ eqke); auto with map; clean_eauto.
+ apply (@filter_sort _ eqke); auto with *; clean_eauto.
intros.
- rewrite filter_InA in H1; auto with map; destruct H1.
+ rewrite filter_InA in H1; auto with *; destruct H1.
rewrite gtb_1 in H3.
destruct y; destruct x0; unfold O.ltk in *; simpl in *.
inversion_clear H2.
red in H4; simpl in *; destruct H4.
ME.order.
- rewrite filter_InA in H4; auto with map; destruct H4.
+ rewrite filter_InA in H4; auto with *; destruct H4.
rewrite leb_1 in H4.
unfold O.ltk in *; simpl in *; ME.order.
red; intros a; destruct a.
- rewrite InA_app_iff; rewrite InA_cons.
- do 2 (rewrite filter_InA; auto with map).
- do 2 rewrite <- elements_mapsto_iff.
- rewrite leb_1; rewrite gtb_1.
- rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
- rewrite add_mapsto_iff.
+ rewrite InA_app_iff, InA_cons, 2 filter_InA,
+ <-2 elements_mapsto_iff, leb_1, gtb_1,
+ find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
+ add_mapsto_iff by (auto with *).
unfold O.eqke, O.ltk; simpl.
destruct (E.compare t0 x); intuition.
right; split; auto; ME.order.
@@ -1889,13 +1869,13 @@ Module OrdProperties (M:S).
right; split; auto; ME.order.
Qed.
- Lemma elements_Add_Above : forall m m' x e,
- Above x m -> Add x e m m' ->
+ Lemma elements_Add_Above : forall m m' x e,
+ Above x m -> Add x e m m' ->
eqlistA eqke (elements m') (elements m ++ (x,e)::nil).
Proof.
intros.
- apply sort_equivlistA_eqlistA; auto with map.
- apply (@SortA_app _ eqke); auto with map.
+ apply sort_equivlistA_eqlistA; auto with *.
+ apply (@SortA_app _ eqke); auto with *.
intros.
inversion_clear H2.
destruct x0; destruct y.
@@ -1905,27 +1885,26 @@ Module OrdProperties (M:S).
apply H; firstorder.
inversion H3.
red; intros a; destruct a.
- rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil.
- do 2 rewrite <- elements_mapsto_iff.
- rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
- rewrite add_mapsto_iff; unfold O.eqke; simpl.
- intuition.
+ rewrite InA_app_iff, InA_cons, InA_nil, <- 2 elements_mapsto_iff,
+ find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
+ add_mapsto_iff by (auto with *).
+ unfold O.eqke; simpl. intuition.
destruct (E.eq_dec x t0); auto.
- elimtype False.
+ exfalso.
assert (In t0 m).
exists e0; auto.
generalize (H t0 H1).
ME.order.
Qed.
- Lemma elements_Add_Below : forall m m' x e,
- Below x m -> Add x e m m' ->
+ Lemma elements_Add_Below : forall m m' x e,
+ Below x m -> Add x e m m' ->
eqlistA eqke (elements m') ((x,e)::elements m).
Proof.
intros.
- apply sort_equivlistA_eqlistA; auto with map.
+ apply sort_equivlistA_eqlistA; auto with *.
change (sort ltk (((x,e)::nil) ++ elements m)).
- apply (@SortA_app _ eqke); auto with map.
+ apply (@SortA_app _ eqke); auto with *.
intros.
inversion_clear H1.
destruct y; destruct x0.
@@ -1935,24 +1914,23 @@ Module OrdProperties (M:S).
apply H; firstorder.
inversion H3.
red; intros a; destruct a.
- rewrite InA_cons.
- do 2 rewrite <- elements_mapsto_iff.
- rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
- rewrite add_mapsto_iff; unfold O.eqke; simpl.
- intuition.
+ rewrite InA_cons, <- 2 elements_mapsto_iff,
+ find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
+ add_mapsto_iff by (auto with *).
+ unfold O.eqke; simpl. intuition.
destruct (E.eq_dec x t0); auto.
- elimtype False.
+ exfalso.
assert (In t0 m).
exists e0; auto.
generalize (H t0 H1).
ME.order.
Qed.
- Lemma elements_Equal_eqlistA : forall (m m': t elt),
+ Lemma elements_Equal_eqlistA : forall (m m': t elt),
Equal m m' -> eqlistA eqke (elements m) (elements m').
Proof.
intros.
- apply sort_equivlistA_eqlistA; auto with map.
+ apply sort_equivlistA_eqlistA; auto with *.
red; intros.
destruct x; do 2 rewrite <- elements_mapsto_iff.
do 2 rewrite find_mapsto_iff; rewrite H; split; auto.
@@ -1963,15 +1941,15 @@ Module OrdProperties (M:S).
Section Min_Max_Elt.
(** We emulate two [max_elt] and [min_elt] functions. *)
-
- Fixpoint max_elt_aux (l:list (key*elt)) := match l with
- | nil => None
+
+ Fixpoint max_elt_aux (l:list (key*elt)) := match l with
+ | nil => None
| (x,e)::nil => Some (x,e)
| (x,e)::l => max_elt_aux l
end.
Definition max_elt m := max_elt_aux (elements m).
- Lemma max_elt_Above :
+ Lemma max_elt_Above :
forall m x e, max_elt m = Some (x,e) -> Above x (remove x m).
Proof.
red; intros.
@@ -2010,8 +1988,8 @@ Module OrdProperties (M:S).
red; eauto.
inversion H2; auto.
Qed.
-
- Lemma max_elt_MapsTo :
+
+ Lemma max_elt_MapsTo :
forall m x e, max_elt m = Some (x,e) -> MapsTo x e m.
Proof.
intros.
@@ -2024,7 +2002,7 @@ Module OrdProperties (M:S).
constructor 2; auto.
Qed.
- Lemma max_elt_Empty :
+ Lemma max_elt_Empty :
forall m, max_elt m = None -> Empty m.
Proof.
intros.
@@ -2035,12 +2013,12 @@ Module OrdProperties (M:S).
assert (H':=IHl H); discriminate.
Qed.
- Definition min_elt m : option (key*elt) := match elements m with
+ Definition min_elt m : option (key*elt) := match elements m with
| nil => None
| (x,e)::_ => Some (x,e)
end.
- Lemma min_elt_Below :
+ Lemma min_elt_Below :
forall m x e, min_elt m = Some (x,e) -> Below x (remove x m).
Proof.
unfold min_elt, Below; intros.
@@ -2054,14 +2032,11 @@ Module OrdProperties (M:S).
inversion_clear H1.
red in H2; destruct H2; simpl in *; ME.order.
inversion_clear H4.
- rewrite (@InfA_alt _ eqke) in H3; eauto.
+ rewrite (@InfA_alt _ eqke) in H3; eauto with *.
apply (H3 (y,x0)); auto.
- unfold lt_key; simpl; intuition; eauto.
- intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
- intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
Qed.
-
- Lemma min_elt_MapsTo :
+
+ Lemma min_elt_MapsTo :
forall m x e, min_elt m = Some (x,e) -> MapsTo x e m.
Proof.
intros.
@@ -2073,7 +2048,7 @@ Module OrdProperties (M:S).
injection H; intros; subst; constructor; red; auto.
Qed.
- Lemma min_elt_Empty :
+ Lemma min_elt_Empty :
forall m, min_elt m = None -> Empty m.
Proof.
intros.
@@ -2108,7 +2083,7 @@ Module OrdProperties (M:S).
assert (S n = S (cardinal (remove k m))).
rewrite Heqn.
eapply cardinal_2; eauto with map.
- inversion H1; auto.
+ inversion H1; auto.
eapply max_elt_Above; eauto.
apply X; apply max_elt_Empty; auto.
@@ -2135,7 +2110,7 @@ Module OrdProperties (M:S).
assert (S n = S (cardinal (remove k m))).
rewrite Heqn.
eapply cardinal_2; eauto with map.
- inversion H1; auto.
+ inversion H1; auto.
eapply min_elt_Below; eauto.
apply X; apply min_elt_Empty; auto.
@@ -2150,7 +2125,7 @@ Module OrdProperties (M:S).
Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
(f:key->elt->A->A)(i:A),
- Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
Equal m1 m2 ->
eqA (fold f m1 i) (fold f m2 i).
Proof.
@@ -2158,13 +2133,12 @@ Module OrdProperties (M:S).
do 2 rewrite fold_1.
do 2 rewrite <- fold_left_rev_right.
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
- intros (k,e) (k',e') a a' (Hk,He) Ha; simpl in *; apply Hf; auto.
+ intros (k,e) (k',e') (Hk,He) a a' Ha; simpl in *; apply Hf; auto.
apply eqlistA_rev. apply elements_Equal_eqlistA. auto.
Qed.
Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
- (f:key->elt->A->A)(i:A),
- Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
+ (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f),
Above x m1 -> Add x e m1 m2 ->
eqA (fold f m2 i) (f x e (fold f m1 i)).
Proof.
@@ -2172,7 +2146,7 @@ Module OrdProperties (M:S).
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
transitivity (fold_right f' i (rev (elements m1 ++ (x,e)::nil))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
- intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *; apply H; auto.
+ intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *. apply P; auto.
apply eqlistA_rev.
apply elements_Add_Above; auto.
rewrite distr_rev; simpl.
@@ -2180,8 +2154,7 @@ Module OrdProperties (M:S).
Qed.
Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
- (f:key->elt->A->A)(i:A),
- Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
+ (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f),
Below x m1 -> Add x e m1 m2 ->
eqA (fold f m2 i) (fold f m1 (f x e i)).
Proof.
@@ -2189,7 +2162,7 @@ Module OrdProperties (M:S).
set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
transitivity (fold_right f' i (rev (((x,e)::nil)++elements m1))).
apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
- intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *; apply H; auto.
+ intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *; apply P; auto.
apply eqlistA_rev.
simpl; apply elements_Add_Below; auto.
rewrite distr_rev; simpl.