diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/Classes/EquivDec.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Classes/EquivDec.v')
-rw-r--r-- | theories/Classes/EquivDec.v | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/theories/Classes/EquivDec.v b/theories/Classes/EquivDec.v new file mode 100644 index 00000000..debe953a --- /dev/null +++ b/theories/Classes/EquivDec.v @@ -0,0 +1,158 @@ +(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *) +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* Decidable equivalences. + * + * Author: Matthieu Sozeau + * Institution: LRI, CNRS UMR 8623 - UniversitĂcopyright Paris Sud + * 91405 Orsay, France *) + +(* $Id: EquivDec.v 10919 2008-05-11 22:04:26Z msozeau $ *) + +Set Implicit Arguments. +Unset Strict Implicit. + +(** Export notations. *) + +Require Export Coq.Classes.Equivalence. + +(** The [DecidableSetoid] class asserts decidability of a [Setoid]. It can be useful in proofs to reason more + classically. *) + +Require Import Coq.Logic.Decidable. + +Open Scope equiv_scope. + +Class [ equiv : Equivalence A ] => DecidableEquivalence := + setoid_decidable : forall x y : A, decidable (x === y). + +(** The [EqDec] class gives a decision procedure for a particular setoid equality. *) + +Class [ equiv : Equivalence A ] => EqDec := + equiv_dec : forall x y : A, { x === y } + { x =/= y }. + +(** We define the [==] overloaded notation for deciding equality. It does not take precedence + of [==] defined in the type scope, hence we can have both at the same time. *) + +Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70). + +Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } := + match x with + | left H => @right _ _ H + | right H => @left _ _ H + end. + +Require Import Coq.Program.Program. + +Open Local Scope program_scope. + +(** Invert the branches. *) + +Program Definition nequiv_dec [ EqDec A ] (x y : A) : { x =/= y } + { x === y } := swap_sumbool (x == y). + +(** Overloaded notation for inequality. *) + +Infix "=/=" := nequiv_dec (no associativity, at level 70). + +(** Define boolean versions, losing the logical information. *) + +Definition equiv_decb [ EqDec A ] (x y : A) : bool := + if x == y then true else false. + +Definition nequiv_decb [ EqDec A ] (x y : A) : bool := + negb (equiv_decb x y). + +Infix "==b" := equiv_decb (no associativity, at level 70). +Infix "<>b" := nequiv_decb (no associativity, at level 70). + +(** Decidable leibniz equality instances. *) + +Require Import Coq.Arith.Peano_dec. + +(** The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about. *) + +Program Instance nat_eq_eqdec : ! EqDec nat eq := + equiv_dec := eq_nat_dec. + +Require Import Coq.Bool.Bool. + +Program Instance bool_eqdec : ! EqDec bool eq := + equiv_dec := bool_dec. + +Program Instance unit_eqdec : ! EqDec unit eq := + equiv_dec x y := in_left. + + Next Obligation. + Proof. + destruct x ; destruct y. + reflexivity. + Qed. + +Program Instance prod_eqdec [ EqDec A eq, EqDec B eq ] : + ! EqDec (prod A B) eq := + equiv_dec x y := + let '(x1, x2) := x in + let '(y1, y2) := y in + if x1 == y1 then + if x2 == y2 then in_left + else in_right + else in_right. + + Solve Obligations using unfold complement, equiv ; program_simpl. + +Program Instance sum_eqdec [ EqDec A eq, EqDec B eq ] : + ! EqDec (sum A B) eq := + equiv_dec x y := + match x, y with + | inl a, inl b => if a == b then in_left else in_right + | inr a, inr b => if a == b then in_left else in_right + | inl _, inr _ | inr _, inl _ => in_right + end. + + Solve Obligations using unfold complement, equiv ; program_simpl. + +(** Objects of function spaces with countable domains like bool have decidable equality. *) + +Require Import Coq.Program.FunctionalExtensionality. + +Program Instance bool_function_eqdec [ EqDec A eq ] : ! EqDec (bool -> A) eq := + equiv_dec f g := + if f true == g true then + if f false == g false then in_left + else in_right + else in_right. + + Solve Obligations using try red ; unfold equiv, complement ; program_simpl. + + Next Obligation. + Proof. + extensionality x. + destruct x ; auto. + Qed. + +Require Import List. + +Program Instance list_eqdec [ eqa : EqDec A eq ] : ! EqDec (list A) eq := + equiv_dec := + fix aux (x : list A) y { struct x } := + match x, y with + | nil, nil => in_left + | cons hd tl, cons hd' tl' => + if hd == hd' then + if aux tl tl' then in_left else in_right + else in_right + | _, _ => in_right + end. + + Solve Obligations using unfold equiv, complement in * ; program_simpl ; intuition (discriminate || eauto). + + Next Obligation. + Proof. clear aux. red in H0. subst. + destruct y; intuition (discriminate || eauto). + Defined.
\ No newline at end of file |