summaryrefslogtreecommitdiff
path: root/theories/Arith/Wf_nat.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
commite0d682ec25282a348d35c5b169abafec48555690 (patch)
tree1a46f0142a85df553388c932110793881f3af52f /theories/Arith/Wf_nat.v
parent86535d84cc3cffeee1dcd8545343f234e7285530 (diff)
Imported Upstream version 8.4dfsgupstream/8.4dfsg
Diffstat (limited to 'theories/Arith/Wf_nat.v')
-rw-r--r--theories/Arith/Wf_nat.v22
1 files changed, 11 insertions, 11 deletions
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index b4468dd1..b5545123 100644
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -10,7 +10,7 @@
Require Import Lt.
-Open Local Scope nat_scope.
+Local Open Scope nat_scope.
Implicit Types m n p : nat.
@@ -24,14 +24,14 @@ Definition gtof (a b:A) := f b > f a.
Theorem well_founded_ltof : well_founded ltof.
Proof.
- red in |- *.
+ red.
cut (forall n (a:A), f a < n -> Acc ltof a).
intros H a; apply (H (S (f a))); auto with arith.
induction n.
intros; absurd (f a < 0); auto with arith.
intros a ltSma.
apply Acc_intro.
- unfold ltof in |- *; intros b ltfafb.
+ unfold ltof; intros b ltfafb.
apply IHn.
apply lt_le_trans with (f a); auto with arith.
Defined.
@@ -73,7 +73,7 @@ Proof.
intros; absurd (f a < 0); auto with arith.
intros a ltSma.
apply F.
- unfold ltof in |- *; intros b ltfafb.
+ unfold ltof; intros b ltfafb.
apply IHn.
apply lt_le_trans with (f a); auto with arith.
Defined.
@@ -108,7 +108,7 @@ Hypothesis H_compat : forall x y:A, R x y -> f x < f y.
Theorem well_founded_lt_compat : well_founded R.
Proof.
- red in |- *.
+ red.
cut (forall n (a:A), f a < n -> Acc R a).
intros H a; apply (H (S (f a))); auto with arith.
induction n.
@@ -161,8 +161,8 @@ Lemma lt_wf_double_rec :
(forall p q, p < n -> P p q) ->
(forall p, p < m -> P n p) -> P n m) -> forall n m, P n m.
Proof.
- intros P Hrec p; pattern p in |- *; apply lt_wf_rec.
- intros n H q; pattern q in |- *; apply lt_wf_rec; auto with arith.
+ intros P Hrec p; pattern p; apply lt_wf_rec.
+ intros n H q; pattern q; apply lt_wf_rec; auto with arith.
Defined.
Lemma lt_wf_double_ind :
@@ -171,8 +171,8 @@ Lemma lt_wf_double_ind :
(forall p (q:nat), p < n -> P p q) ->
(forall p, p < m -> P n p) -> P n m) -> forall n m, P n m.
Proof.
- intros P Hrec p; pattern p in |- *; apply lt_wf_ind.
- intros n H q; pattern q in |- *; apply lt_wf_ind; auto with arith.
+ intros P Hrec p; pattern p; apply lt_wf_ind.
+ intros n H q; pattern q; apply lt_wf_ind; auto with arith.
Qed.
Hint Resolve lt_wf: arith.
@@ -190,7 +190,7 @@ Section LT_WF_REL.
Remark acc_lt_rel : forall x:A, (exists n, F x n) -> Acc R x.
Proof.
intros x [n fxn]; generalize dependent x.
- pattern n in |- *; apply lt_wf_ind; intros.
+ pattern n; apply lt_wf_ind; intros.
constructor; intros.
destruct (F_compat y x) as (x0,H1,H2); trivial.
apply (H x0); auto.