diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/Arith/Le.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/Arith/Le.v')
-rwxr-xr-x | theories/Arith/Le.v | 122 |
1 files changed, 122 insertions, 0 deletions
diff --git a/theories/Arith/Le.v b/theories/Arith/Le.v new file mode 100755 index 00000000..a5378cff --- /dev/null +++ b/theories/Arith/Le.v @@ -0,0 +1,122 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Le.v,v 1.14.2.1 2004/07/16 19:31:00 herbelin Exp $ i*) + +(** Order on natural numbers *) +Open Local Scope nat_scope. + +Implicit Types m n p : nat. + +(** Reflexivity *) + +Theorem le_refl : forall n, n <= n. +Proof. +exact le_n. +Qed. + +(** Transitivity *) + +Theorem le_trans : forall n m p, n <= m -> m <= p -> n <= p. +Proof. + induction 2; auto. +Qed. +Hint Resolve le_trans: arith v62. + +(** Order, successor and predecessor *) + +Theorem le_n_S : forall n m, n <= m -> S n <= S m. +Proof. + induction 1; auto. +Qed. + +Theorem le_n_Sn : forall n, n <= S n. +Proof. + auto. +Qed. + +Theorem le_O_n : forall n, 0 <= n. +Proof. + induction n; auto. +Qed. + +Hint Resolve le_n_S le_n_Sn le_O_n le_n_S: arith v62. + +Theorem le_pred_n : forall n, pred n <= n. +Proof. +induction n; auto with arith. +Qed. +Hint Resolve le_pred_n: arith v62. + +Theorem le_Sn_le : forall n m, S n <= m -> n <= m. +Proof. +intros n m H; apply le_trans with (S n); auto with arith. +Qed. +Hint Immediate le_Sn_le: arith v62. + +Theorem le_S_n : forall n m, S n <= S m -> n <= m. +Proof. +intros n m H; change (pred (S n) <= pred (S m)) in |- *. +elim H; simpl in |- *; auto with arith. +Qed. +Hint Immediate le_S_n: arith v62. + +Theorem le_pred : forall n m, n <= m -> pred n <= pred m. +Proof. +induction n as [| n IHn]. simpl in |- *. auto with arith. +destruct m as [| m]. simpl in |- *. intro H. inversion H. +simpl in |- *. auto with arith. +Qed. + +(** Comparison to 0 *) + +Theorem le_Sn_O : forall n, ~ S n <= 0. +Proof. +red in |- *; intros n H. +change (IsSucc 0) in |- *; elim H; simpl in |- *; auto with arith. +Qed. +Hint Resolve le_Sn_O: arith v62. + +Theorem le_n_O_eq : forall n, n <= 0 -> 0 = n. +Proof. +induction n; auto with arith. +intro; contradiction le_Sn_O with n. +Qed. +Hint Immediate le_n_O_eq: arith v62. + +(** Negative properties *) + +Theorem le_Sn_n : forall n, ~ S n <= n. +Proof. +induction n; auto with arith. +Qed. +Hint Resolve le_Sn_n: arith v62. + +(** Antisymmetry *) + +Theorem le_antisym : forall n m, n <= m -> m <= n -> n = m. +Proof. +intros n m h; destruct h as [| m0 H]; auto with arith. +intros H1. +absurd (S m0 <= m0); auto with arith. +apply le_trans with n; auto with arith. +Qed. +Hint Immediate le_antisym: arith v62. + +(** A different elimination principle for the order on natural numbers *) + +Lemma le_elim_rel : + forall P:nat -> nat -> Prop, + (forall p, P 0 p) -> + (forall p (q:nat), p <= q -> P p q -> P (S p) (S q)) -> + forall n m, n <= m -> P n m. +Proof. +induction n; auto with arith. +intros m Le. +elim Le; auto with arith. +Qed.
\ No newline at end of file |