diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories/Arith/EqNat.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories/Arith/EqNat.v')
-rwxr-xr-x | theories/Arith/EqNat.v | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v new file mode 100755 index 00000000..2e99e068 --- /dev/null +++ b/theories/Arith/EqNat.v @@ -0,0 +1,77 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: EqNat.v,v 1.14.2.1 2004/07/16 19:31:00 herbelin Exp $ i*) + +(** Equality on natural numbers *) + +Open Local Scope nat_scope. + +Implicit Types m n x y : nat. + +Fixpoint eq_nat n m {struct n} : Prop := + match n, m with + | O, O => True + | O, S _ => False + | S _, O => False + | S n1, S m1 => eq_nat n1 m1 + end. + +Theorem eq_nat_refl : forall n, eq_nat n n. +induction n; simpl in |- *; auto. +Qed. +Hint Resolve eq_nat_refl: arith v62. + +Theorem eq_eq_nat : forall n m, n = m -> eq_nat n m. +induction 1; trivial with arith. +Qed. +Hint Immediate eq_eq_nat: arith v62. + +Theorem eq_nat_eq : forall n m, eq_nat n m -> n = m. +induction n; induction m; simpl in |- *; contradiction || auto with arith. +Qed. +Hint Immediate eq_nat_eq: arith v62. + +Theorem eq_nat_elim : + forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m. +intros; replace m with n; auto with arith. +Qed. + +Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}. +induction n. +destruct m as [| n]. +auto with arith. +intros; right; red in |- *; trivial with arith. +destruct m as [| n0]. +right; red in |- *; auto with arith. +intros. +simpl in |- *. +apply IHn. +Defined. + +Fixpoint beq_nat n m {struct n} : bool := + match n, m with + | O, O => true + | O, S _ => false + | S _, O => false + | S n1, S m1 => beq_nat n1 m1 + end. + +Lemma beq_nat_refl : forall n, true = beq_nat n n. +Proof. + intro x; induction x; simpl in |- *; auto. +Qed. + +Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y. +Proof. + double induction x y; simpl in |- *. + reflexivity. + intros; discriminate H0. + intros; discriminate H0. + intros; case (H0 _ H1); reflexivity. +Defined. |