diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /theories/Arith/Div2.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'theories/Arith/Div2.v')
-rw-r--r-- | theories/Arith/Div2.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v index c32759b2..1216a545 100644 --- a/theories/Arith/Div2.v +++ b/theories/Arith/Div2.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Div2.v 9245 2006-10-17 12:53:34Z notin $ i*) +(*i $Id: Div2.v 10625 2008-03-06 11:21:01Z notin $ i*) Require Import Lt. Require Import Plus. @@ -169,12 +169,12 @@ Hint Resolve even_double double_even odd_double double_odd: arith. Lemma even_2n : forall n, even n -> {p : nat | n = double p}. Proof. intros n H. exists (div2 n). auto with arith. -Qed. +Defined. Lemma odd_S2n : forall n, odd n -> {p : nat | n = S (double p)}. Proof. intros n H. exists (div2 n). auto with arith. -Qed. +Defined. (** Doubling before dividing by two brings back to the initial number. *) |