summaryrefslogtreecommitdiff
path: root/theories/Arith/Compare.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-11-21 21:38:49 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-11-21 21:38:49 +0000
commit208a0f7bfa5249f9795e6e225f309cbe715c0fad (patch)
tree591e9e512063e34099782e2518573f15ffeac003 /theories/Arith/Compare.v
parentde0085539583f59dc7c4bf4e272e18711d565466 (diff)
Imported Upstream version 8.1~gammaupstream/8.1.gamma
Diffstat (limited to 'theories/Arith/Compare.v')
-rw-r--r--theories/Arith/Compare.v30
1 files changed, 13 insertions, 17 deletions
diff --git a/theories/Arith/Compare.v b/theories/Arith/Compare.v
index b11f0517..06898658 100644
--- a/theories/Arith/Compare.v
+++ b/theories/Arith/Compare.v
@@ -6,21 +6,17 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Compare.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Compare.v 9302 2006-10-27 21:21:17Z barras $ i*)
(** Equality is decidable on [nat] *)
+
Open Local Scope nat_scope.
-(*
-Lemma not_eq_sym : (A:Set)(p,q:A)(~p=q) -> ~(q=p).
-Proof sym_not_eq.
-Hints Immediate not_eq_sym : arith.
-*)
Notation not_eq_sym := sym_not_eq.
Implicit Types m n p q : nat.
-Require Import Arith.
+Require Import Arith_base.
Require Import Peano_dec.
Require Import Compare_dec.
@@ -41,17 +37,17 @@ Proof le_lt_or_eq.
(* By special request of G. Kahn - Used in Group Theory *)
Lemma discrete_nat :
- forall n m, n < m -> S n = m \/ (exists r : nat, m = S (S (n + r))).
+ forall n m, n < m -> S n = m \/ (exists r : nat, m = S (S (n + r))).
Proof.
-intros m n H.
-lapply (lt_le_S m n); auto with arith.
-intro H'; lapply (le_lt_or_eq (S m) n); auto with arith.
-induction 1; auto with arith.
-right; exists (n - S (S m)); simpl in |- *.
-rewrite (plus_comm m (n - S (S m))).
-rewrite (plus_n_Sm (n - S (S m)) m).
-rewrite (plus_n_Sm (n - S (S m)) (S m)).
-rewrite (plus_comm (n - S (S m)) (S (S m))); auto with arith.
+ intros m n H.
+ lapply (lt_le_S m n); auto with arith.
+ intro H'; lapply (le_lt_or_eq (S m) n); auto with arith.
+ induction 1; auto with arith.
+ right; exists (n - S (S m)); simpl in |- *.
+ rewrite (plus_comm m (n - S (S m))).
+ rewrite (plus_n_Sm (n - S (S m)) m).
+ rewrite (plus_n_Sm (n - S (S m)) (S m)).
+ rewrite (plus_comm (n - S (S m)) (S (S m))); auto with arith.
Qed.
Require Export Wf_nat.