summaryrefslogtreecommitdiff
path: root/test-suite/success
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-01-19 22:34:29 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-01-19 22:34:29 +0000
commit018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (patch)
treefbb91e2f74c73bb867ab62c58f248a704bbe6dec /test-suite/success
parent6497f27021fec4e01f2182014f2bb1989b4707f9 (diff)
Imported Upstream version 8.0pl3upstream/8.0pl3
Diffstat (limited to 'test-suite/success')
-rw-r--r--test-suite/success/TestRefine.v190
1 files changed, 190 insertions, 0 deletions
diff --git a/test-suite/success/TestRefine.v b/test-suite/success/TestRefine.v
new file mode 100644
index 00000000..ee3d7e3f
--- /dev/null
+++ b/test-suite/success/TestRefine.v
@@ -0,0 +1,190 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Petit bench vite fait, mal fait *)
+
+Require Refine.
+
+
+(************************************************************************)
+
+Lemma essai : (x:nat)x=x.
+
+Refine (([x0:nat]Cases x0 of
+ O => ?
+ | (S p) => ?
+ end) :: (x:nat)x=x). (* x0=x0 et x0=x0 *)
+
+Restart.
+
+Refine [x0:nat]<[n:nat]n=n>Case x0 of ? [p:nat]? end. (* OK *)
+
+Restart.
+
+Refine [x0:nat]<[n:nat]n=n>Cases x0 of O => ? | (S p) => ? end. (* OK *)
+
+Restart.
+
+(**
+Refine [x0:nat]Cases x0 of O => ? | (S p) => ? end. (* cannot be executed *)
+**)
+
+Abort.
+
+
+(************************************************************************)
+
+Lemma T : nat.
+
+Refine (S ?).
+
+Abort.
+
+
+(************************************************************************)
+
+Lemma essai2 : (x:nat)x=x.
+
+Refine Fix f{f/1 : (x:nat)x=x := [x:nat]? }.
+
+Restart.
+
+Refine Fix f{f/1 : (x:nat)x=x :=
+ [x:nat]<[n:nat](eq nat n n)>Case x of ? [p:nat]? end}.
+
+Restart.
+
+Refine Fix f{f/1 : (x:nat)x=x :=
+ [x:nat]<[n:nat]n=n>Cases x of O => ? | (S p) => ? end}.
+
+Restart.
+
+Refine Fix f{f/1 : (x:nat)x=x :=
+ [x:nat]<[n:nat](eq nat n n)>Case x of
+ ?
+ [p:nat](f_equal nat nat S p p ?) end}.
+
+Restart.
+
+Refine Fix f{f/1 : (x:nat)x=x :=
+ [x:nat]<[n:nat](eq nat n n)>Cases x of
+ O => ?
+ | (S p) =>(f_equal nat nat S p p ?) end}.
+
+Abort.
+
+
+(************************************************************************)
+
+Lemma essai : nat.
+
+Parameter f : nat*nat -> nat -> nat.
+
+Refine (f ? ([x:nat](? :: nat) O)).
+
+Restart.
+
+Refine (f ? O).
+
+Abort.
+
+
+(************************************************************************)
+
+Parameter P : nat -> Prop.
+
+Lemma essai : { x:nat | x=(S O) }.
+
+Refine (exist nat ? (S O) ?). (* ECHEC *)
+
+Restart.
+
+(* mais si on contraint par le but alors ca marche : *)
+(* Remarque : on peut toujours faire ça *)
+Refine ((exist nat ? (S O) ?) :: { x:nat | x=(S O) }).
+
+Restart.
+
+Refine (exist nat [x:nat](x=(S O)) (S O) ?).
+
+Abort.
+
+
+(************************************************************************)
+
+Lemma essai : (n:nat){ x:nat | x=(S n) }.
+
+Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end.
+
+Restart.
+
+Refine (([n:nat]Case n of ? [p:nat]? end) :: (n:nat){ x:nat | x=(S n) }).
+
+Restart.
+
+Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end.
+
+Restart.
+
+Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
+ [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end}.
+
+Restart.
+
+Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
+ [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end}.
+
+Exists (S O). Trivial.
+Elim (f0 p).
+Refine [x:nat][h:x=(S p)](exist nat [x:nat]x=(S (S p)) (S x) ?).
+Rewrite h. Auto.
+Save.
+
+
+
+(* Quelques essais de recurrence bien fondée *)
+
+Require Wf.
+Require Wf_nat.
+
+Lemma essai_wf : nat->nat.
+
+Refine [x:nat](well_founded_induction
+ nat
+ lt ?
+ [_:nat]nat->nat
+ [phi0:nat][w:(phi:nat)(lt phi phi0)->nat->nat](w x ?)
+ x x).
+Exact lt_wf.
+
+Abort.
+
+
+Require Compare_dec.
+Require Lt.
+
+Lemma fibo : nat -> nat.
+Refine (well_founded_induction
+ nat
+ lt ?
+ [_:nat]nat
+ [x0:nat][fib:(x:nat)(lt x x0)->nat]
+ Cases (zerop x0) of
+ (left _) => (S O)
+ | (right h1) => Cases (zerop (pred x0)) of
+ (left _) => (S O)
+ | (right h2) => (plus (fib (pred x0) ?)
+ (fib (pred (pred x0)) ?))
+ end
+ end).
+Exact lt_wf.
+Auto with arith.
+Apply lt_trans with m:=(pred x0); Auto with arith.
+Save.
+
+