summaryrefslogtreecommitdiff
path: root/test-suite/success
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
commita0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch)
treedabcac548e299fee1da464c93b3dba98484f45b1 /test-suite/success
parent2281410e38ef99d025ea77194585a9bc019fdaa9 (diff)
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'test-suite/success')
-rw-r--r--test-suite/success/AdvancedCanonicalStructure.v144
-rw-r--r--test-suite/success/Case18.v12
-rw-r--r--test-suite/success/Cases-bug1834.v13
-rw-r--r--test-suite/success/Cases.v5
-rw-r--r--test-suite/success/CasesDep.v58
-rw-r--r--test-suite/success/Discriminate.v23
-rw-r--r--test-suite/success/Fixpoint.v19
-rw-r--r--test-suite/success/ImplicitArguments.v17
-rw-r--r--test-suite/success/Injection.v27
-rw-r--r--test-suite/success/LetPat.v55
-rw-r--r--test-suite/success/Notations.v16
-rw-r--r--test-suite/success/Omega.v14
-rw-r--r--test-suite/success/OmegaPre.v127
-rw-r--r--test-suite/success/ROmega.v20
-rw-r--r--test-suite/success/ROmegaPre.v127
-rw-r--r--test-suite/success/apply.v193
-rw-r--r--test-suite/success/cc.v9
-rw-r--r--test-suite/success/change.v6
-rw-r--r--test-suite/success/clear.v13
-rw-r--r--test-suite/success/conv_pbs.v223
-rw-r--r--test-suite/success/decl_mode.v182
-rw-r--r--test-suite/success/dependentind.v100
-rw-r--r--test-suite/success/destruct.v32
-rw-r--r--test-suite/success/evars.v136
-rw-r--r--test-suite/success/extraction.v2
-rw-r--r--test-suite/success/fix.v59
-rw-r--r--test-suite/success/hyps_inclusion.v32
-rw-r--r--test-suite/success/implicit.v10
-rw-r--r--test-suite/success/ltac.v47
-rw-r--r--test-suite/success/options.v2
-rw-r--r--test-suite/success/parsing.v8
-rw-r--r--test-suite/success/pattern.v7
-rw-r--r--test-suite/success/refine.v30
-rw-r--r--test-suite/success/rewrite.v21
-rw-r--r--test-suite/success/setoid_test.v14
-rw-r--r--test-suite/success/setoid_test2.v4
-rw-r--r--test-suite/success/setoid_test_function_space.v12
-rw-r--r--test-suite/success/specialize.v48
-rw-r--r--test-suite/success/unification.v65
-rw-r--r--test-suite/success/univers.v4
40 files changed, 1887 insertions, 49 deletions
diff --git a/test-suite/success/AdvancedCanonicalStructure.v b/test-suite/success/AdvancedCanonicalStructure.v
new file mode 100644
index 00000000..8e613dca
--- /dev/null
+++ b/test-suite/success/AdvancedCanonicalStructure.v
@@ -0,0 +1,144 @@
+Section group_morphism.
+
+(* An example with default canonical structures *)
+
+Variable A B : Type.
+Variable plusA : A -> A -> A.
+Variable plusB : B -> B -> B.
+Variable zeroA : A.
+Variable zeroB : B.
+Variable eqA : A -> A -> Prop.
+Variable eqB : B -> B -> Prop.
+Variable phi : A -> B.
+
+Record img := {
+ ia : A;
+ ib :> B;
+ prf : phi ia = ib
+}.
+
+Parameter eq_img : forall (i1:img) (i2:img),
+ eqB (ib i1) (ib i2) -> eqA (ia i1) (ia i2).
+
+Lemma phi_img (a:A) : img.
+ intro a.
+ exists a (phi a).
+ refine ( refl_equal _).
+Defined.
+Canonical Structure phi_img.
+
+Lemma zero_img : img.
+ exists zeroA zeroB.
+ admit.
+Defined.
+Canonical Structure zero_img.
+
+Lemma plus_img : img -> img -> img.
+intros i1 i2.
+exists (plusA (ia i1) (ia i2)) (plusB (ib i1) (ib i2)).
+admit.
+Defined.
+Canonical Structure plus_img.
+
+(* Print Canonical Projections. *)
+
+Goal forall a1 a2, eqA (plusA a1 zeroA) a2.
+ intros a1 a2.
+ refine (eq_img _ _ _).
+change (eqB (plusB (phi a1) zeroB) (phi a2)).
+Admitted.
+
+End group_morphism.
+
+Open Scope type_scope.
+
+Section type_reification.
+
+Inductive term :Type :=
+ Fun : term -> term -> term
+ | Prod : term -> term -> term
+ | Bool : term
+ | SET :term
+ | PROP :term
+ | TYPE :term
+ | Var : Type -> term.
+
+Fixpoint interp (t:term) :=
+ match t with
+ Bool => bool
+ | SET => Set
+ | PROP => Prop
+ | TYPE => Type
+ | Fun a b => interp a -> interp b
+ | Prod a b => interp a * interp b
+ | Var x => x
+end.
+
+Record interp_pair :Type :=
+ { repr:>term;
+ abs:>Type;
+ link: abs = interp repr }.
+
+Lemma prod_interp :forall (a b:interp_pair),a * b = interp (Prod a b) .
+proof.
+let a:interp_pair,b:interp_pair.
+reconsider thesis as (a * b = interp a * interp b).
+thus thesis by (link a),(link b).
+end proof.
+Qed.
+
+Lemma fun_interp :forall (a b:interp_pair), (a -> b) = interp (Fun a b).
+proof.
+let a:interp_pair,b:interp_pair.
+reconsider thesis as ((a -> b) = (interp a -> interp b)).
+thus thesis using rewrite (link a);rewrite (link b);reflexivity.
+end proof.
+Qed.
+
+Canonical Structure ProdCan (a b:interp_pair) :=
+ Build_interp_pair (Prod a b) (a * b) (prod_interp a b).
+
+Canonical Structure FunCan (a b:interp_pair) :=
+ Build_interp_pair (Fun a b) (a -> b) (fun_interp a b).
+
+Canonical Structure BoolCan :=
+ Build_interp_pair Bool bool (refl_equal _).
+
+Canonical Structure VarCan (x:Type) :=
+ Build_interp_pair (Var x) x (refl_equal _).
+
+Canonical Structure SetCan :=
+ Build_interp_pair SET Set (refl_equal _).
+
+Canonical Structure PropCan :=
+ Build_interp_pair PROP Prop (refl_equal _).
+
+Canonical Structure TypeCan :=
+ Build_interp_pair TYPE Type (refl_equal _).
+
+(* Print Canonical Projections. *)
+
+Variable A:Type.
+
+Variable Inhabited: term -> Prop.
+
+Variable Inhabited_correct: forall p, Inhabited (repr p) -> abs p.
+
+Lemma L : Prop * A -> bool * (Type -> Set) .
+refine (Inhabited_correct _ _).
+change (Inhabited (Fun (Prod PROP (Var A)) (Prod Bool (Fun TYPE SET)))).
+Admitted.
+
+Check L : abs _ .
+
+End type_reification.
+
+
+
+
+
+
+
+
+
+
diff --git a/test-suite/success/Case18.v b/test-suite/success/Case18.v
index 91c80e88..be9ca8d4 100644
--- a/test-suite/success/Case18.v
+++ b/test-suite/success/Case18.v
@@ -12,3 +12,15 @@ Fixpoint max (n m:nat) {struct m} : nat :=
| S n', S m' => S (max n' m')
| 0, p | p, 0 => p
end.
+
+(* Check bug #1477 *)
+
+Inductive I : Set :=
+ | A : nat -> nat -> I
+ | B : nat -> nat -> I.
+
+Definition foo (x:I) : nat :=
+ match x with
+ | A a b | B b a => S b
+ end.
+
diff --git a/test-suite/success/Cases-bug1834.v b/test-suite/success/Cases-bug1834.v
new file mode 100644
index 00000000..543ca0c9
--- /dev/null
+++ b/test-suite/success/Cases-bug1834.v
@@ -0,0 +1,13 @@
+(* Bug in the computation of generalization *)
+
+(* The following bug, elaborated by Bruno Barras, is solved from r11083 *)
+
+Parameter P : unit -> Prop.
+Definition T := sig P.
+Parameter Q : T -> Prop.
+Definition U := sig Q.
+Parameter a : U.
+Check (match a with exist (exist tt e2) e3 => e3=e3 end).
+
+(* There is still a form submitted by Pierre Corbineau (#1834) which fails *)
+
diff --git a/test-suite/success/Cases.v b/test-suite/success/Cases.v
index 7c2b7c0b..499c0660 100644
--- a/test-suite/success/Cases.v
+++ b/test-suite/success/Cases.v
@@ -10,6 +10,10 @@ Type match 0, eq, 0 return nat with
| O, x, y => 0
| S x, y, z => x
end.
+Type match 0, eq, 0 return _ with
+ | O, x, y => 0
+ | S x, y, z => x
+ end.
(* Non dependent form of annotation *)
Type match 0, eq return nat with
@@ -406,7 +410,6 @@ Type match niln with
| x => 0
end.
-
Type match niln return nat with
| niln => 0
| consn n a l => a
diff --git a/test-suite/success/CasesDep.v b/test-suite/success/CasesDep.v
index 0477377e..49bd77fc 100644
--- a/test-suite/success/CasesDep.v
+++ b/test-suite/success/CasesDep.v
@@ -71,13 +71,9 @@ Inductive Setoid : Type :=
Definition elem (A : Setoid) := let (S, R, e) := A in S.
-(* <Warning> : Grammar is replaced by Notation *)
-
Definition equal (A : Setoid) :=
let (S, R, e) as s return (Relation (elem s)) := A in R.
-(* <Warning> : Grammar is replaced by Notation *)
-
Axiom prf_equiv : forall A : Setoid, Equivalence (elem A) (equal A).
Axiom prf_refl : forall A : Setoid, Reflexive (elem A) (equal A).
@@ -430,3 +426,57 @@ Definition f0 (F : False) (ty : bool) : bProp ty :=
| _, false => F
| _, true => I
end.
+
+(* Simplification of bug/wish #1671 *)
+
+Inductive I : unit -> Type :=
+| C : forall a, I a -> I tt.
+
+(*
+Definition F (l:I tt) : l = l :=
+match l return l = l with
+| C tt (C _ l') => refl_equal (C tt (C _ l'))
+end.
+
+one would expect that the compilation of F (this involves
+some kind of pattern-unification) would produce:
+*)
+
+Definition F (l:I tt) : l = l :=
+match l return l = l with
+| C tt l' => match l' return C _ l' = C _ l' with C _ l'' => refl_equal (C tt (C _ l'')) end
+end.
+
+Inductive J : nat -> Type :=
+| D : forall a, J (S a) -> J a.
+
+(*
+Definition G (l:J O) : l = l :=
+match l return l = l with
+| D O (D 1 l') => refl_equal (D O (D 1 l'))
+| D _ _ => refl_equal _
+end.
+
+one would expect that the compilation of G (this involves inversion)
+would produce:
+*)
+
+Definition G (l:J O) : l = l :=
+match l return l = l with
+| D 0 l'' =>
+ match l'' as _l'' in J n return
+ match n return forall l:J n, Prop with
+ | O => fun _ => l = l
+ | S p => fun l'' => D p l'' = D p l''
+ end _l'' with
+ | D 1 l' => refl_equal (D O (D 1 l'))
+ | _ => refl_equal _
+ end
+| _ => refl_equal _
+end.
+
+Fixpoint app {A} {n m} (v : listn A n) (w : listn A m) : listn A (n + m) :=
+ match v with
+ | niln => w
+ | consn a n' v' => consn _ a _ (app v' w)
+ end.
diff --git a/test-suite/success/Discriminate.v b/test-suite/success/Discriminate.v
index f28c83de..b57c5478 100644
--- a/test-suite/success/Discriminate.v
+++ b/test-suite/success/Discriminate.v
@@ -9,3 +9,26 @@ Qed.
Lemma l2 : forall H : 0 = 1, H = H.
discriminate H.
Qed.
+
+(* Check the variants of discriminate *)
+
+Goal O = S O -> True.
+discriminate 1.
+Undo.
+intros.
+discriminate H.
+Undo.
+Ltac g x := discriminate x.
+g H.
+Abort.
+
+Goal (forall x y : nat, x = y -> x = S y) -> True.
+intros.
+try discriminate (H O) || exact I.
+Qed.
+
+Goal (forall x y : nat, x = y -> x = S y) -> True.
+intros.
+ediscriminate (H O).
+instantiate (1:=O).
+Abort.
diff --git a/test-suite/success/Fixpoint.v b/test-suite/success/Fixpoint.v
index 680046da..cf821073 100644
--- a/test-suite/success/Fixpoint.v
+++ b/test-suite/success/Fixpoint.v
@@ -29,3 +29,22 @@ CoFixpoint g (n:nat) (m:=pred n) (l:Stream m) (p:=S n) : Stream p :=
Eval compute in (fun l => match g 2 (Consn 0 6 l) with Consn _ a _ => a end).
+(* Check inference of simple types in presence of non ambiguous
+ dependencies (needs revision 10125) *)
+
+Section folding.
+
+Inductive vector (A:Type) : nat -> Type :=
+ | Vnil : vector A 0
+ | Vcons : forall (a:A) (n:nat), vector A n -> vector A (S n).
+
+Variables (B C : Set) (g : B -> C -> C) (c : C).
+
+Fixpoint foldrn n bs :=
+ match bs with
+ | Vnil => c
+ | Vcons b _ tl => g b (foldrn _ tl)
+ end.
+
+End folding.
+
diff --git a/test-suite/success/ImplicitArguments.v b/test-suite/success/ImplicitArguments.v
new file mode 100644
index 00000000..e7795733
--- /dev/null
+++ b/test-suite/success/ImplicitArguments.v
@@ -0,0 +1,17 @@
+Inductive vector {A : Type} : nat -> Type :=
+| vnil : vector 0
+| vcons : A -> forall {n'}, vector n' -> vector (S n').
+
+Require Import Coq.Program.Program.
+
+Program Definition head {A : Type} {n : nat} (v : vector A (S n)) : vector A n :=
+ match v with
+ | vnil => !
+ | vcons a n' v' => v'
+ end.
+
+Fixpoint app {A : Type} {n m : nat} (v : vector A n) (w : vector A m) : vector A (n + m) :=
+ match v in vector _ n return vector A (n + m) with
+ | vnil => w
+ | vcons a n' v' => vcons a (app v' w)
+ end.
diff --git a/test-suite/success/Injection.v b/test-suite/success/Injection.v
index 606e884a..867d7374 100644
--- a/test-suite/success/Injection.v
+++ b/test-suite/success/Injection.v
@@ -43,6 +43,29 @@ intros; injection H as Hyt Hxz.
exact Hxz.
Qed.
+(* Check the variants of injection *)
+
+Goal forall x y, S x = S y -> True.
+injection 1 as H'.
+Undo.
+intros.
+injection H as H'.
+Undo.
+Ltac f x := injection x.
+f H.
+Abort.
+
+Goal (forall x y : nat, x = y -> S x = S y) -> True.
+intros.
+try injection (H O) || exact I.
+Qed.
+
+Goal (forall x y : nat, x = y -> S x = S y) -> True.
+intros.
+einjection (H O).
+instantiate (1:=O).
+Abort.
+
(* Injection does not projects at positions in Prop... allow it?
Inductive t (A:Prop) : Set := c : A -> t A.
@@ -53,7 +76,7 @@ Abort.
*)
-(* Accept does not project on discriminable positions... allow it?
+(* Injection does not project on discriminable positions... allow it?
Goal 1=2 -> 1=0.
intro H.
@@ -61,4 +84,4 @@ injection H.
intro; assumption.
Qed.
- *)
+*)
diff --git a/test-suite/success/LetPat.v b/test-suite/success/LetPat.v
new file mode 100644
index 00000000..545b8aeb
--- /dev/null
+++ b/test-suite/success/LetPat.v
@@ -0,0 +1,55 @@
+(* Simple let-patterns *)
+Variable A B : Type.
+
+Definition l1 (t : A * B * B) : A := let '(x, y, z) := t in x.
+Print l1.
+Definition l2 (t : (A * B) * B) : A := let '((x, y), z) := t in x.
+Definition l3 (t : A * (B * B)) : A := let '(x, (y, z)) := t in x.
+Print l3.
+
+Record someT (A : Type) := mkT { a : nat; b: A }.
+
+Definition l4 A (t : someT A) : nat := let 'mkT x y := t in x.
+Print l4.
+Print sigT.
+
+Definition l5 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
+ let 'existT x y := t return B (projT1 t) in y.
+
+Definition l6 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
+ let 'existT x y as t' := t return B (projT1 t') in y.
+
+Definition l7 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
+ let 'existT x y as t' in sigT _ := t return B (projT1 t') in y.
+
+Definition l8 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
+ match t with
+ existT x y => y
+ end.
+
+(** An example from algebra, using let' and inference of return clauses
+ to deconstruct contexts. *)
+
+Record a_category (A : Type) (hom : A -> A -> Type) := { }.
+
+Definition category := { A : Type & { hom : A -> A -> Type & a_category A hom } }.
+
+Record a_functor (A : Type) (hom : A -> A -> Type) (C : a_category A hom) := { }.
+
+Notation " x :& y " := (@existT _ _ x y) (right associativity, at level 55) : core_scope.
+
+Definition functor (c d : category) :=
+ let ' A :& homA :& CA := c in
+ let ' B :& homB :& CB := d in
+ A -> B.
+
+Definition identity_functor (c : category) : functor c c :=
+ let 'A :& homA :& CA := c in
+ fun x => x.
+
+Definition functor_composition (a b c : category) : functor a b -> functor b c -> functor a c :=
+ let 'A :& homA :& CA := a in
+ let 'B :& homB :& CB := b in
+ let 'C :& homB :& CB := c in
+ fun f g =>
+ fun x => g (f x).
diff --git a/test-suite/success/Notations.v b/test-suite/success/Notations.v
index a9e2c59a..facd5509 100644
--- a/test-suite/success/Notations.v
+++ b/test-suite/success/Notations.v
@@ -1,5 +1,5 @@
(* Check that "where" clause behaves as if given independently of the *)
-(* definition (variant of bug #113? submitted by Assia Mahboubi) *)
+(* definition (variant of bug #1132 submitted by Assia Mahboubi) *)
Fixpoint plus1 (n m:nat) {struct n} : nat :=
match n with
@@ -7,3 +7,17 @@ Fixpoint plus1 (n m:nat) {struct n} : nat :=
| S p => S (p+m)
end
where "n + m" := (plus1 n m) : nat_scope.
+
+(* Check behaviour wrt yet empty levels (see Stephane's bug #1850) *)
+
+Parameter P : Type -> Type -> Type -> Type.
+Notation "e |= t --> v" := (P e t v) (at level 100, t at level 54).
+Check (nat |= nat --> nat).
+
+(* Check that first non empty definition at an empty level can be of any
+ associativity *)
+
+Definition marker := O.
+Notation "x +1" := (S x) (at level 8, left associativity).
+Reset marker.
+Notation "x +1" := (S x) (at level 8, right associativity).
diff --git a/test-suite/success/Omega.v b/test-suite/success/Omega.v
index 2d29a835..ecbf04e4 100644
--- a/test-suite/success/Omega.v
+++ b/test-suite/success/Omega.v
@@ -10,14 +10,14 @@ intros x y.
omega.
Qed.
-(* Proposed by Pierre Crégut *)
+(* Proposed by Pierre Crégut *)
Lemma lem2 : forall x : Z, (x < 4)%Z -> (x > 2)%Z -> x = 3%Z.
intro.
omega.
Qed.
-(* Proposed by Jean-Christophe Filliâtre *)
+(* Proposed by Jean-Christophe Filliâtre *)
Lemma lem3 : forall x y : Z, x = y -> (x + x)%Z = (y + y)%Z.
Proof.
@@ -25,7 +25,7 @@ intros.
omega.
Qed.
-(* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *)
+(* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *)
(* internal variable and a section variable (June 2001) *)
Section A.
@@ -87,10 +87,8 @@ Qed.
(* Check that the interpretation of mult on nat enforces its positivity *)
(* Submitted by Hubert Thierry (bug #743) *)
-(* Postponed... problem with goals of the form "(n*m=0)%nat -> (n*m=0)%Z"
-Require Omega.
-Lemma lem10 : (n, m : nat) (le n (plus n (mult n m))).
+(* Postponed... problem with goals of the form "(n*m=0)%nat -> (n*m=0)%Z" *)
+Lemma lem10 : forall n m:nat, le n (plus n (mult n m)).
Proof.
-Intros; Omega.
+intros; omega with *.
Qed.
-*)
diff --git a/test-suite/success/OmegaPre.v b/test-suite/success/OmegaPre.v
new file mode 100644
index 00000000..bb800b7a
--- /dev/null
+++ b/test-suite/success/OmegaPre.v
@@ -0,0 +1,127 @@
+Require Import ZArith Nnat Omega.
+Open Scope Z_scope.
+
+(** Test of the zify preprocessor for (R)Omega *)
+
+(* More details in file PreOmega.v
+
+ (r)omega with Z : starts with zify_op
+ (r)omega with nat : starts with zify_nat
+ (r)omega with positive : starts with zify_positive
+ (r)omega with N : starts with uses zify_N
+ (r)omega with * : starts zify (a saturation of the others)
+*)
+
+(* zify_op *)
+
+Goal forall a:Z, Zmax a a = a.
+intros.
+omega with *.
+Qed.
+
+Goal forall a b:Z, Zmax a b = Zmax b a.
+intros.
+omega with *.
+Qed.
+
+Goal forall a b c:Z, Zmax a (Zmax b c) = Zmax (Zmax a b) c.
+intros.
+omega with *.
+Qed.
+
+Goal forall a b:Z, Zmax a b + Zmin a b = a + b.
+intros.
+omega with *.
+Qed.
+
+Goal forall a:Z, (Zabs a)*(Zsgn a) = a.
+intros.
+zify.
+intuition; subst; omega. (* pure multiplication: omega alone can't do it *)
+Qed.
+
+Goal forall a:Z, Zabs a = a -> a >= 0.
+intros.
+omega with *.
+Qed.
+
+Goal forall a:Z, Zsgn a = a -> a = 1 \/ a = 0 \/ a = -1.
+intros.
+omega with *.
+Qed.
+
+(* zify_nat *)
+
+Goal forall m: nat, (m<2)%nat -> (0<= m+m <=2)%nat.
+intros.
+omega with *.
+Qed.
+
+Goal forall m:nat, (m<1)%nat -> (m=0)%nat.
+intros.
+omega with *.
+Qed.
+
+Goal forall m: nat, (m<=100)%nat -> (0<= m+m <=200)%nat.
+intros.
+omega with *.
+Qed.
+(* 2000 instead of 200: works, but quite slow *)
+
+Goal forall m: nat, (m*m>=0)%nat.
+intros.
+omega with *.
+Qed.
+
+(* zify_positive *)
+
+Goal forall m: positive, (m<2)%positive -> (2 <= m+m /\ m+m <= 2)%positive.
+intros.
+omega with *.
+Qed.
+
+Goal forall m:positive, (m<2)%positive -> (m=1)%positive.
+intros.
+omega with *.
+Qed.
+
+Goal forall m: positive, (m<=1000)%positive -> (2<=m+m/\m+m <=2000)%positive.
+intros.
+omega with *.
+Qed.
+
+Goal forall m: positive, (m*m>=1)%positive.
+intros.
+omega with *.
+Qed.
+
+(* zify_N *)
+
+Goal forall m:N, (m<2)%N -> (0 <= m+m /\ m+m <= 2)%N.
+intros.
+omega with *.
+Qed.
+
+Goal forall m:N, (m<1)%N -> (m=0)%N.
+intros.
+omega with *.
+Qed.
+
+Goal forall m:N, (m<=1000)%N -> (0<=m+m/\m+m <=2000)%N.
+intros.
+omega with *.
+Qed.
+
+Goal forall m:N, (m*m>=0)%N.
+intros.
+omega with *.
+Qed.
+
+(* mix of datatypes *)
+
+Goal forall p, Z_of_N (N_of_nat (nat_of_N (Npos p))) = Zpos p.
+intros.
+omega with *.
+Qed.
+
+
diff --git a/test-suite/success/ROmega.v b/test-suite/success/ROmega.v
index ff1f57df..0c37c59a 100644
--- a/test-suite/success/ROmega.v
+++ b/test-suite/success/ROmega.v
@@ -68,31 +68,29 @@ Variable n : nat.
Variable ap_n : n <> 0.
Let delta := f n ap_n.
Lemma lem7 : n = n.
- (*romega. ---> ROMEGA CANT DEAL WITH NAT*)
-Admitted.
+ romega with nat.
+Qed.
End C.
(* Problem of dependencies *)
Require Import Omega.
Lemma lem8 : forall H : 0 = 0 -> 0 = 0, H = H -> 0 = 0.
intros.
-(* romega. ---> ROMEGA CANT DEAL WITH NAT*)
-Admitted.
+romega with nat.
+Qed.
(* Bug that what caused by the use of intro_using in Omega *)
Require Import Omega.
Lemma lem9 :
forall p q : nat, ~ (p <= q /\ p < q \/ q <= p /\ p < q) -> p < p \/ p <= p.
intros.
-(* romega. ---> ROMEGA CANT DEAL WITH NAT*)
-Admitted.
+romega with nat.
+Qed.
(* Check that the interpretation of mult on nat enforces its positivity *)
(* Submitted by Hubert Thierry (bug #743) *)
-(* Postponed... problem with goals of the form "(n*m=0)%nat -> (n*m=0)%Z"
-Require Omega.
-Lemma lem10 : (n, m : nat) (le n (plus n (mult n m))).
+(* Postponed... problem with goals of the form "(n*m=0)%nat -> (n*m=0)%Z" *)
+Lemma lem10 : forall n m : nat, le n (plus n (mult n m)).
Proof.
-Intros; Omega.
+intros; romega with nat.
Qed.
-*)
diff --git a/test-suite/success/ROmegaPre.v b/test-suite/success/ROmegaPre.v
new file mode 100644
index 00000000..550edca5
--- /dev/null
+++ b/test-suite/success/ROmegaPre.v
@@ -0,0 +1,127 @@
+Require Import ZArith Nnat ROmega.
+Open Scope Z_scope.
+
+(** Test of the zify preprocessor for (R)Omega *)
+
+(* More details in file PreOmega.v
+
+ (r)omega with Z : starts with zify_op
+ (r)omega with nat : starts with zify_nat
+ (r)omega with positive : starts with zify_positive
+ (r)omega with N : starts with uses zify_N
+ (r)omega with * : starts zify (a saturation of the others)
+*)
+
+(* zify_op *)
+
+Goal forall a:Z, Zmax a a = a.
+intros.
+romega with *.
+Qed.
+
+Goal forall a b:Z, Zmax a b = Zmax b a.
+intros.
+romega with *.
+Qed.
+
+Goal forall a b c:Z, Zmax a (Zmax b c) = Zmax (Zmax a b) c.
+intros.
+romega with *.
+Qed.
+
+Goal forall a b:Z, Zmax a b + Zmin a b = a + b.
+intros.
+romega with *.
+Qed.
+
+Goal forall a:Z, (Zabs a)*(Zsgn a) = a.
+intros.
+zify.
+intuition; subst; romega. (* pure multiplication: omega alone can't do it *)
+Qed.
+
+Goal forall a:Z, Zabs a = a -> a >= 0.
+intros.
+romega with *.
+Qed.
+
+Goal forall a:Z, Zsgn a = a -> a = 1 \/ a = 0 \/ a = -1.
+intros.
+romega with *.
+Qed.
+
+(* zify_nat *)
+
+Goal forall m: nat, (m<2)%nat -> (0<= m+m <=2)%nat.
+intros.
+romega with *.
+Qed.
+
+Goal forall m:nat, (m<1)%nat -> (m=0)%nat.
+intros.
+romega with *.
+Qed.
+
+Goal forall m: nat, (m<=100)%nat -> (0<= m+m <=200)%nat.
+intros.
+romega with *.
+Qed.
+(* 2000 instead of 200: works, but quite slow *)
+
+Goal forall m: nat, (m*m>=0)%nat.
+intros.
+romega with *.
+Qed.
+
+(* zify_positive *)
+
+Goal forall m: positive, (m<2)%positive -> (2 <= m+m /\ m+m <= 2)%positive.
+intros.
+romega with *.
+Qed.
+
+Goal forall m:positive, (m<2)%positive -> (m=1)%positive.
+intros.
+romega with *.
+Qed.
+
+Goal forall m: positive, (m<=1000)%positive -> (2<=m+m/\m+m <=2000)%positive.
+intros.
+romega with *.
+Qed.
+
+Goal forall m: positive, (m*m>=1)%positive.
+intros.
+romega with *.
+Qed.
+
+(* zify_N *)
+
+Goal forall m:N, (m<2)%N -> (0 <= m+m /\ m+m <= 2)%N.
+intros.
+romega with *.
+Qed.
+
+Goal forall m:N, (m<1)%N -> (m=0)%N.
+intros.
+romega with *.
+Qed.
+
+Goal forall m:N, (m<=1000)%N -> (0<=m+m/\m+m <=2000)%N.
+intros.
+romega with *.
+Qed.
+
+Goal forall m:N, (m*m>=0)%N.
+intros.
+romega with *.
+Qed.
+
+(* mix of datatypes *)
+
+Goal forall p, Z_of_N (N_of_nat (nat_of_N (Npos p))) = Zpos p.
+intros.
+romega with *.
+Qed.
+
+
diff --git a/test-suite/success/apply.v b/test-suite/success/apply.v
index 4f260696..fcce68b9 100644
--- a/test-suite/success/apply.v
+++ b/test-suite/success/apply.v
@@ -7,8 +7,197 @@ assumption.
Qed.
Require Import ZArith.
-Open Scope Z_scope.
-Goal forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y.
+Goal (forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y)%Z.
intros; apply Znot_le_gt, Zgt_lt in H.
apply Zmult_lt_reg_r, Zlt_le_weak in H0; auto.
Qed.
+
+(* Check if it unfolds when there are not enough premises *)
+
+Goal forall n, n = S n -> False.
+intros.
+apply n_Sn in H.
+assumption.
+Qed.
+
+(* Check naming in with bindings; printing used to be inconsistent before *)
+(* revision 9450 *)
+
+Notation S':=S (only parsing).
+Goal (forall S, S = S' S) -> (forall S, S = S' S).
+intros.
+apply H with (S0 := S).
+Qed.
+
+(* Check inference of implicit arguments in bindings *)
+
+Goal exists y : nat -> Type, y 0 = y 0.
+exists (fun x => True).
+trivial.
+Qed.
+
+(* Check universe handling in typed unificationn *)
+
+Definition E := Type.
+Goal exists y : E, y = y.
+exists Prop.
+trivial.
+Qed.
+
+Variable Eq : Prop = (Prop -> Prop) :> E.
+Goal Prop.
+rewrite Eq.
+Abort.
+
+(* Check insertion of coercions in bindings *)
+
+Coercion eq_true : bool >-> Sortclass.
+Goal exists A:Prop, A = A.
+exists true.
+trivial.
+Qed.
+
+(* Check use of unification of bindings types in specialize *)
+
+Variable P : nat -> Prop.
+Variable L : forall (l : nat), P l -> P l.
+Goal P 0 -> True.
+intros.
+specialize L with (1:=H).
+Abort.
+Reset P.
+
+(* Two examples that show that hnf_constr is used when unifying types
+ of bindings (a simplification of a script from Field_Theory) *)
+
+Require Import List.
+Open Scope list_scope.
+Fixpoint P (l : list nat) : Prop :=
+ match l with
+ | nil => True
+ | e1 :: nil => e1 = e1
+ | e1 :: l1 => e1 = e1 /\ P l1
+ end.
+Variable L : forall n l, P (n::l) -> P l.
+
+Goal forall (x:nat) l, P (x::l) -> P l.
+intros.
+apply L with (1:=H).
+Qed.
+
+Goal forall (x:nat) l, match l with nil => x=x | _::_ => x=x /\ P l end -> P l.
+intros.
+apply L with (1:=H).
+Qed.
+
+(* The following call to auto fails if the type of the clause
+ associated to the H is not beta-reduced [but apply H works]
+ (a simplification of a script from FSetAVL) *)
+
+Definition apply (f:nat->Prop) := forall x, f x.
+Goal apply (fun n => n=0) -> 1=0.
+intro H.
+auto.
+Qed.
+
+(* The following fails if the coercion Zpos is not introduced around p
+ before trying a subterm that matches the left-hand-side of the equality
+ (a simplication of an example taken from Nijmegen/QArith) *)
+
+Require Import ZArith.
+Coercion Zpos : positive >-> Z.
+Variable f : Z -> Z -> Z.
+Variable g : forall q1 q2 p : Z, f (f q1 p) (f q2 p) = Z0.
+Goal forall p q1 q2, f (f q1 (Zpos p)) (f q2 (Zpos p)) = Z0.
+intros; rewrite g with (p:=p).
+reflexivity.
+Qed.
+
+(* A funny example where the behavior differs depending on which of a
+ multiple solution to a unification problem is chosen (an instance
+ of this case can be found in the proof of Buchberger.BuchRed.nf_divp) *)
+
+Definition succ x := S x.
+Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
+ (forall x y, P x -> Q x y) ->
+ (forall x, P (S x)) -> forall y: I (S 0), Q (succ 0) y.
+intros.
+apply H with (y:=y).
+(* [x] had two possible instances: [S 0], coming from unifying the
+ type of [y] with [I ?n] and [succ 0] coming from the unification with
+ the goal; only the first one allows to make the next apply (which
+ does not work modulo delta) working *)
+apply H0.
+Qed.
+
+(* A similar example with a arbitrary long conversion between the two
+ possible instances *)
+
+Fixpoint compute_succ x :=
+ match x with O => S 0 | S n => S (compute_succ n) end.
+
+Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
+ (forall x y, P x -> Q x y) ->
+ (forall x, P (S x)) -> forall y: I (S 100), Q (compute_succ 100) y.
+intros.
+apply H with (y:=y).
+apply H0.
+Qed.
+
+(* Another example with multiple convertible solutions to the same
+ metavariable (extracted from Algebra.Hom_module.Hom_module, 10th
+ subgoal which precisely fails) *)
+
+Definition ID (A:Type) := A.
+Goal forall f:Type -> Type,
+ forall (P : forall A:Type, A -> Prop),
+ (forall (B:Type) x, P (f B) x -> P (f B) x) ->
+ (forall (A:Type) x, P (f (f A)) x) ->
+ forall (A:Type) (x:f (f A)), P (f (ID (f A))) x.
+intros.
+apply H.
+(* The parameter [B] had two possible instances: [ID (f A)] by direct
+ unification and [f A] by unification of the type of [x]; only the
+ first choice makes the next command fail, as it was
+ (unfortunately?) in Hom_module *)
+try apply H.
+unfold ID; apply H0.
+Qed.
+
+(* Test coercion below product and on non meta-free terms in with bindings *)
+(* Cf wishes #1408 from E. Makarov *)
+
+Parameter bool_Prop :> bool -> Prop.
+Parameter r : bool -> bool -> bool.
+Axiom ax : forall (A : Set) (R : A -> A -> Prop) (x y : A), R x y.
+
+Theorem t : r true false.
+apply ax with (R := r).
+Qed.
+
+(* Check verification of type at unification (submitted by Stéphane Lengrand):
+ without verification, the first "apply" works what leads to the incorrect
+ instantiation of x by Prop *)
+
+Theorem u : ~(forall x:Prop, ~x).
+unfold not.
+intro.
+eapply H.
+apply (forall B:Prop,B->B) || (instantiate (1:=True); exact I).
+Defined.
+
+(* Fine-tuning coercion insertion in presence of unfolding (bug #1883) *)
+
+Parameter name : Set.
+Definition atom := name.
+
+Inductive exp : Set :=
+ | var : atom -> exp.
+
+Coercion var : atom >-> exp.
+
+Axiom silly_axiom : forall v : exp, v = v -> False.
+
+Lemma silly_lemma : forall x : atom, False.
+intros x.
+apply silly_axiom with (v := x). (* fails *)
diff --git a/test-suite/success/cc.v b/test-suite/success/cc.v
index fecc8977..94d827fd 100644
--- a/test-suite/success/cc.v
+++ b/test-suite/success/cc.v
@@ -78,6 +78,14 @@ intros.
congruence.
Qed.
+(* example with implications *)
+
+Theorem arrow : forall (A B: Prop) (C D:Set) , A=B -> C=D ->
+(A -> C) = (B -> D).
+congruence.
+Qed.
+
+
Set Implicit Arguments.
Parameter elt: Set.
@@ -94,5 +102,6 @@ Proof.
auto.
Qed.
+
\ No newline at end of file
diff --git a/test-suite/success/change.v b/test-suite/success/change.v
new file mode 100644
index 00000000..cea01712
--- /dev/null
+++ b/test-suite/success/change.v
@@ -0,0 +1,6 @@
+(* A few tests of the syntax of clauses and of the interpretation of change *)
+
+Goal let a := 0+0 in a=a.
+intro.
+change 0 in (value of a).
+change ((fun A:Type => A) nat) in (type of a).
diff --git a/test-suite/success/clear.v b/test-suite/success/clear.v
index 444146f7..8169361c 100644
--- a/test-suite/success/clear.v
+++ b/test-suite/success/clear.v
@@ -1,6 +1,15 @@
Goal forall x:nat, (forall x, x=0 -> True)->True.
intros; eapply H.
instantiate (1:=(fun y => _) (S x)).
- simpl.
- clear x || trivial.
+ simpl.
+ clear x. trivial.
Qed.
+
+Goal forall y z, (forall x:nat, x=y -> True) -> y=z -> True.
+ intros; eapply H.
+ rename z into z'.
+ clear H0.
+ clear z'.
+ reflexivity.
+Qed.
+
diff --git a/test-suite/success/conv_pbs.v b/test-suite/success/conv_pbs.v
new file mode 100644
index 00000000..062c3ee5
--- /dev/null
+++ b/test-suite/success/conv_pbs.v
@@ -0,0 +1,223 @@
+(* A bit complex but realistic example whose last fixpoint definition
+ used to fail in 8.1 because of wrong environment in conversion
+ problems (see revision 9664) *)
+
+Require Import List.
+Require Import Arith.
+
+Parameter predicate : Set.
+Parameter function : Set.
+Definition variable := nat.
+Definition x0 := 0.
+Definition var_eq_dec := eq_nat_dec.
+
+Inductive term : Set :=
+ | App : function -> term -> term
+ | Var : variable -> term.
+
+Definition atom := (predicate * term)%type.
+
+Inductive formula : Set :=
+ | Atom : atom -> formula
+ | Imply : formula -> formula -> formula
+ | Forall : variable -> formula -> formula.
+
+Notation "A --> B" := (Imply A B) (at level 40).
+
+Definition substitution range := list (variable * range).
+
+Fixpoint remove_assoc (A:Set)(x:variable)(rho: substitution A){struct rho}
+ : substitution A :=
+ match rho with
+ | nil => rho
+ | (y,t) :: rho => if var_eq_dec x y then remove_assoc A x rho
+ else (y,t) :: remove_assoc A x rho
+ end.
+
+Fixpoint assoc (A:Set)(x:variable)(rho:substitution A){struct rho}
+ : option A :=
+ match rho with
+ | nil => None
+ | (y,t) :: rho => if var_eq_dec x y then Some t
+ else assoc A x rho
+ end.
+
+Fixpoint subst_term (rho:substitution term)(t:term){struct t} : term :=
+ match t with
+ | Var x => match assoc _ x rho with
+ | Some a => a
+ | None => Var x
+ end
+ | App f t' => App f (subst_term rho t')
+ end.
+
+Fixpoint subst_formula (rho:substitution term)(A:formula){struct A}:formula :=
+ match A with
+ | Atom (p,t) => Atom (p, subst_term rho t)
+ | A --> B => subst_formula rho A --> subst_formula rho B
+ | Forall y A => Forall y (subst_formula (remove_assoc _ y rho) A)
+ (* assume t closed *)
+ end.
+
+Definition subst A x t := subst_formula ((x,t):: nil) A.
+
+Record Kripke : Type := {
+ worlds: Set;
+ wle : worlds -> worlds -> Type;
+ wle_refl : forall w, wle w w ;
+ wle_trans : forall w w' w'', wle w w' -> wle w' w'' -> wle w w'';
+ domain : Set;
+ vars : variable -> domain;
+ funs : function -> domain -> domain;
+ atoms : worlds -> predicate * domain -> Type;
+ atoms_mon : forall w w', wle w w' -> forall P, atoms w P -> atoms w' P
+}.
+
+Section Sem.
+
+Variable K : Kripke.
+
+Fixpoint sem (rho: substitution (domain K))(t:term){struct t} : domain K :=
+ match t with
+ | Var x => match assoc _ x rho with
+ | Some a => a
+ | None => vars K x
+ end
+ | App f t' => funs K f (sem rho t')
+ end.
+
+End Sem.
+
+Notation "w <= w'" := (wle _ w w').
+
+Set Implicit Arguments.
+
+Reserved Notation "w ||- A" (at level 70).
+
+Definition context := list formula.
+
+Variable fresh : variable -> context -> Prop.
+
+Variable fresh_out : context -> variable.
+
+Axiom fresh_out_spec : forall Gamma, fresh (fresh_out Gamma) Gamma.
+
+Axiom fresh_peel : forall x A Gamma, fresh x (A::Gamma) -> fresh x Gamma.
+
+Fixpoint force (K:Kripke)(rho: substitution (domain K))(w:worlds K)(A:formula)
+ {struct A} : Type :=
+ match A with
+ | Atom (p,t) => atoms K w (p, sem K rho t)
+ | A --> B => forall w', w <= w' -> force K rho w' A -> force K rho w' B
+ | Forall x A => forall w', w <= w' -> forall t, force K ((x,t)::remove_assoc _ x rho) w' A
+ end.
+
+Notation "w ||- A" := (force _ nil w A).
+
+Reserved Notation "Gamma |- A" (at level 70).
+Reserved Notation "Gamma ; A |- C" (at level 70, A at next level).
+
+Inductive context_prefix (Gamma:context) : context -> Type :=
+ | CtxPrefixRefl : context_prefix Gamma Gamma
+ | CtxPrefixTrans : forall A Gamma', context_prefix Gamma Gamma' -> context_prefix Gamma (cons A Gamma').
+
+Inductive in_context (A:formula) : list formula -> Prop :=
+ | InAxiom : forall Gamma, in_context A (cons A Gamma)
+ | OmWeak : forall Gamma B, in_context A Gamma -> in_context A (cons B Gamma).
+
+Inductive prove : list formula -> formula -> Type :=
+ | ProofImplyR : forall A B Gamma, prove (cons A Gamma) B
+ -> prove Gamma (A --> B)
+ | ProofForallR : forall x A Gamma, (forall y, fresh y (A::Gamma)
+ -> prove Gamma (subst A x (Var y))) -> prove Gamma (Forall x A)
+ | ProofCont : forall A Gamma Gamma' C, context_prefix (A::Gamma) Gamma'
+ -> (prove_stoup Gamma' A C) -> (Gamma' |- C)
+
+where "Gamma |- A" := (prove Gamma A)
+
+ with prove_stoup : list formula -> formula -> formula -> Type :=
+ | ProofAxiom Gamma C: Gamma ; C |- C
+ | ProofImplyL Gamma C : forall A B, (Gamma |- A)
+ -> (prove_stoup Gamma B C) -> (prove_stoup Gamma (A --> B) C)
+ | ProofForallL Gamma C : forall x t A, (prove_stoup Gamma (subst A x t) C)
+ -> (prove_stoup Gamma (Forall x A) C)
+
+where " Gamma ; B |- A " := (prove_stoup Gamma B A).
+
+Axiom context_prefix_trans :
+ forall Gamma Gamma' Gamma'',
+ context_prefix Gamma Gamma'
+ -> context_prefix Gamma' Gamma''
+ -> context_prefix Gamma Gamma''.
+
+Axiom Weakening :
+ forall Gamma Gamma' A,
+ context_prefix Gamma Gamma' -> Gamma |- A -> Gamma' |- A.
+
+Axiom universal_weakening :
+ forall Gamma Gamma', context_prefix Gamma Gamma'
+ -> forall P, Gamma |- Atom P -> Gamma' |- Atom P.
+
+Canonical Structure Universal := Build_Kripke
+ context
+ context_prefix
+ CtxPrefixRefl
+ context_prefix_trans
+ term
+ Var
+ App
+ (fun Gamma P => Gamma |- Atom P)
+ universal_weakening.
+
+Axiom subst_commute :
+ forall A rho x t,
+ subst_formula ((x,t)::rho) A = subst (subst_formula rho A) x t.
+
+Axiom subst_formula_atom :
+ forall rho p t,
+ Atom (p, sem _ rho t) = subst_formula rho (Atom (p,t)).
+
+Fixpoint universal_completeness (Gamma:context)(A:formula){struct A}
+ : forall rho:substitution term,
+ force _ rho Gamma A -> Gamma |- subst_formula rho A
+ :=
+ match A
+ return forall rho, force _ rho Gamma A
+ -> Gamma |- subst_formula rho A
+ with
+ | Atom (p,t) => fun rho H => eq_rect _ (fun A => Gamma |- A) H _ (subst_formula_atom rho p t)
+ | A --> B => fun rho HImplyAB =>
+ let A' := subst_formula rho A in
+ ProofImplyR (universal_completeness (A'::Gamma) B rho
+ (HImplyAB (A'::Gamma)(CtxPrefixTrans A' (CtxPrefixRefl Gamma))
+ (universal_completeness_stoup A rho (fun C Gamma' Hle p
+ => ProofCont Hle p))))
+ | Forall x A => fun rho HForallA
+ => ProofForallR x (fun y Hfresh
+ => eq_rect _ _ (universal_completeness Gamma A _
+ (HForallA Gamma (CtxPrefixRefl Gamma)(Var y))) _ (subst_commute _ _ _ _ ))
+ end
+with universal_completeness_stoup (Gamma:context)(A:formula){struct A}
+ : forall rho, (forall C Gamma', context_prefix Gamma Gamma'
+ -> Gamma' ; subst_formula rho A |- C -> Gamma' |- C)
+ -> force _ rho Gamma A
+ :=
+ match A return forall rho,
+ (forall C Gamma', context_prefix Gamma Gamma'
+ -> Gamma' ; subst_formula rho A |- C
+ -> Gamma' |- C)
+ -> force _ rho Gamma A
+ with
+ | Atom (p,t) as C => fun rho H
+ => H _ Gamma (CtxPrefixRefl Gamma)(ProofAxiom _ _)
+ | A --> B => fun rho H => fun Gamma' Hle HA
+ => universal_completeness_stoup B rho (fun C Gamma'' Hle' p
+ => H C Gamma'' (context_prefix_trans Hle Hle')
+ (ProofImplyL (Weakening Hle' (universal_completeness Gamma' A rho HA)) p))
+ | Forall x A => fun rho H => fun Gamma' Hle t
+ => (universal_completeness_stoup A ((x,t)::remove_assoc _ x rho)
+ (fun C Gamma'' Hle' p =>
+ H C Gamma'' (context_prefix_trans Hle Hle')
+ (ProofForallL x t (subst_formula (remove_assoc _ x rho) A)
+ (eq_rect _ (fun D => Gamma'' ; D |- C) p _ (subst_commute _ _ _ _)))))
+ end.
diff --git a/test-suite/success/decl_mode.v b/test-suite/success/decl_mode.v
new file mode 100644
index 00000000..fede31a8
--- /dev/null
+++ b/test-suite/success/decl_mode.v
@@ -0,0 +1,182 @@
+(* \sqrt 2 is irrationnal, (c) 2006 Pierre Corbineau *)
+
+Set Firstorder Depth 1.
+Require Import ArithRing Wf_nat Peano_dec Div2 Even Lt.
+
+Lemma double_div2: forall n, div2 (double n) = n.
+proof.
+ assume n:nat.
+ per induction on n.
+ suppose it is 0.
+ suffices (0=0) to show thesis.
+ thus thesis.
+ suppose it is (S m) and Hrec:thesis for m.
+ have (div2 (double (S m))= div2 (S (S (double m)))).
+ ~= (S (div2 (double m))).
+ thus ~= (S m) by Hrec.
+ end induction.
+end proof.
+Show Script.
+Qed.
+
+Lemma double_inv : forall n m, double n = double m -> n = m .
+proof.
+ let n, m be such that H:(double n = double m).
+have (n = div2 (double n)) by double_div2,H.
+ ~= (div2 (double m)) by H.
+ thus ~= m by double_div2.
+end proof.
+Qed.
+
+Lemma double_mult_l : forall n m, (double (n * m)=n * double m).
+proof.
+ assume n:nat and m:nat.
+ have (double (n * m) = n*m + n * m).
+ ~= (n * (m+m)) by * using ring.
+ thus ~= (n * double m).
+end proof.
+Qed.
+
+Lemma double_mult_r : forall n m, (double (n * m)=double n * m).
+proof.
+ assume n:nat and m:nat.
+ have (double (n * m) = n*m + n * m).
+ ~= ((n + n) * m) by * using ring.
+ thus ~= (double n * m).
+end proof.
+Qed.
+
+Lemma even_is_even_times_even: forall n, even (n*n) -> even n.
+proof.
+ let n be such that H:(even (n*n)).
+ per cases of (even n \/ odd n) by even_or_odd.
+ suppose (odd n).
+ hence thesis by H,even_mult_inv_r.
+ end cases.
+end proof.
+Qed.
+
+Lemma main_thm_aux: forall n,even n ->
+double (double (div2 n *div2 n))=n*n.
+proof.
+ given n such that H:(even n).
+ *** have (double (double (div2 n * div2 n))
+ = double (div2 n) * double (div2 n))
+ by double_mult_l,double_mult_r.
+ thus ~= (n*n) by H,even_double.
+end proof.
+Qed.
+
+Require Omega.
+
+Lemma even_double_n: (forall m, even (double m)).
+proof.
+ assume m:nat.
+ per induction on m.
+ suppose it is 0.
+ thus thesis.
+ suppose it is (S mm) and thesis for mm.
+ then H:(even (S (S (mm+mm)))).
+ have (S (S (mm + mm)) = S mm + S mm) using omega.
+ hence (even (S mm +S mm)) by H.
+ end induction.
+end proof.
+Qed.
+
+Theorem main_theorem: forall n p, n*n=double (p*p) -> p=0.
+proof.
+ assume n0:nat.
+ define P n as (forall p, n*n=double (p*p) -> p=0).
+ claim rec_step: (forall n, (forall m,m<n-> P m) -> P n).
+ let n be such that H:(forall m : nat, m < n -> P m) and p:nat .
+ per cases of ({n=0}+{n<>0}) by eq_nat_dec.
+ suppose H1:(n=0).
+ per cases on p.
+ suppose it is (S p').
+ assume (n * n = double (S p' * S p')).
+ =~ 0 by H1,mult_n_O.
+ ~= (S ( p' + p' * S p' + S p'* S p'))
+ by plus_n_Sm.
+ hence thesis .
+ suppose it is 0.
+ thus thesis.
+ end cases.
+ suppose H1:(n<>0).
+ assume H0:(n*n=double (p*p)).
+ have (even (double (p*p))) by even_double_n .
+ then (even (n*n)) by H0.
+ then H2:(even n) by even_is_even_times_even.
+ then (double (double (div2 n *div2 n))=n*n)
+ by main_thm_aux.
+ ~= (double (p*p)) by H0.
+ then H':(double (div2 n *div2 n)= p*p) by double_inv.
+ have (even (double (div2 n *div2 n))) by even_double_n.
+ then (even (p*p)) by even_double_n,H'.
+ then H3:(even p) by even_is_even_times_even.
+ have (double(double (div2 n * div2 n)) = n*n)
+ by H2,main_thm_aux.
+ ~= (double (p*p)) by H0.
+ ~= (double(double (double (div2 p * div2 p))))
+ by H3,main_thm_aux.
+ then H'':(div2 n * div2 n = double (div2 p * div2 p))
+ by double_inv.
+ then (div2 n < n) by lt_div2,neq_O_lt,H1.
+ then H4:(div2 p=0) by (H (div2 n)),H''.
+ then (double (div2 p) = double 0).
+ =~ p by even_double,H3.
+ thus ~= 0.
+ end cases.
+ end claim.
+ hence thesis by (lt_wf_ind n0 P).
+end proof.
+Qed.
+
+Require Import Reals Field.
+(*Coercion INR: nat >->R.
+Coercion IZR: Z >->R.*)
+
+Open Scope R_scope.
+
+Lemma square_abs_square:
+ forall p,(INR (Zabs_nat p) * INR (Zabs_nat p)) = (IZR p * IZR p).
+proof.
+ assume p:Z.
+ per cases on p.
+ suppose it is (0%Z).
+ thus thesis.
+ suppose it is (Zpos z).
+ thus thesis.
+ suppose it is (Zneg z).
+ have ((INR (Zabs_nat (Zneg z)) * INR (Zabs_nat (Zneg z))) =
+ (IZR (Zpos z) * IZR (Zpos z))).
+ ~= ((- IZR (Zpos z)) * (- IZR (Zpos z))).
+ thus ~= (IZR (Zneg z) * IZR (Zneg z)).
+ end cases.
+end proof.
+Qed.
+
+Definition irrational (x:R):Prop :=
+ forall (p:Z) (q:nat),q<>0%nat -> x<> (IZR p/INR q).
+
+Theorem irrationnal_sqrt_2: irrational (sqrt (INR 2%nat)).
+proof.
+ let p:Z,q:nat be such that H:(q<>0%nat)
+ and H0:(sqrt (INR 2%nat)=(IZR p/INR q)).
+ have H_in_R:(INR q<>0:>R) by H.
+ have triv:((IZR p/INR q* INR q) =IZR p :>R) by * using field.
+ have sqrt2:((sqrt (INR 2%nat) * sqrt (INR 2%nat))= INR 2%nat:>R) by sqrt_def.
+ have (INR (Zabs_nat p * Zabs_nat p)
+ = (INR (Zabs_nat p) * INR (Zabs_nat p)))
+ by mult_INR.
+ ~= (IZR p* IZR p) by square_abs_square.
+ ~= ((IZR p/INR q*INR q)*(IZR p/INR q*INR q)) by triv. (* we have to factor because field is too weak *)
+ ~= ((IZR p/INR q)*(IZR p/INR q)*(INR q*INR q)) using ring.
+ ~= (sqrt (INR 2%nat) * sqrt (INR 2%nat)*(INR q*INR q)) by H0.
+ ~= (INR (2%nat * (q*q))) by sqrt2,mult_INR.
+ then (Zabs_nat p * Zabs_nat p = 2* (q * q))%nat.
+ ~= ((q*q)+(q*q))%nat.
+ ~= (Div2.double (q*q)).
+ then (q=0%nat) by main_theorem.
+ hence thesis by H.
+end proof.
+Qed.
diff --git a/test-suite/success/dependentind.v b/test-suite/success/dependentind.v
new file mode 100644
index 00000000..48255386
--- /dev/null
+++ b/test-suite/success/dependentind.v
@@ -0,0 +1,100 @@
+Require Import Coq.Program.Program.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Variable A : Set.
+
+Inductive vector : nat -> Type := vnil : vector 0 | vcons : A -> forall n, vector n -> vector (S n).
+
+Goal forall n, forall v : vector (S n), vector n.
+Proof.
+ intros n H.
+ dependent destruction H.
+ assumption.
+Save.
+
+Require Import ProofIrrelevance.
+
+Goal forall n, forall v : vector (S n), exists v' : vector n, exists a : A, v = vcons a v'.
+Proof.
+ intros n v.
+ dependent destruction v.
+ exists v ; exists a.
+ reflexivity.
+Save.
+
+(* Extraction Unnamed_thm. *)
+
+Inductive type : Type :=
+| base : type
+| arrow : type -> type -> type.
+
+Notation " t --> t' " := (arrow t t') (at level 20, t' at next level).
+
+Inductive ctx : Type :=
+| empty : ctx
+| snoc : ctx -> type -> ctx.
+
+Notation " Γ , τ " := (snoc Γ τ) (at level 25, t at next level, left associativity).
+
+Fixpoint conc (Γ Δ : ctx) : ctx :=
+ match Δ with
+ | empty => Γ
+ | snoc Δ' x => snoc (conc Γ Δ') x
+ end.
+
+Notation " Γ ; Δ " := (conc Γ Δ) (at level 25, left associativity).
+
+Inductive term : ctx -> type -> Type :=
+| ax : forall Γ τ, term (Γ, τ) τ
+| weak : forall Γ τ, term Γ τ -> forall τ', term (Γ, τ') τ
+| abs : forall Γ τ τ', term (Γ , τ) τ' -> term Γ (τ --> τ')
+| app : forall Γ τ τ', term Γ (τ --> τ') -> term Γ τ -> term Γ τ'.
+
+Lemma weakening : forall Γ Δ τ, term (Γ ; Δ) τ ->
+ forall τ', term (Γ , τ' ; Δ) τ.
+Proof with simpl in * ; auto ; simpl_depind.
+ intros Γ Δ τ H.
+
+ dependent induction H.
+
+ destruct Δ...
+ apply weak ; apply ax.
+
+ apply ax.
+
+ destruct Δ...
+ specialize (IHterm Γ empty)...
+ apply weak...
+
+ apply weak...
+
+ destruct Δ...
+ apply weak ; apply abs ; apply H.
+
+ apply abs...
+ specialize (IHterm Γ0 (Δ, t, τ))...
+
+ apply app with Ï„...
+Qed.
+
+Lemma exchange : forall Γ Δ α β τ, term (Γ, α, β ; Δ) τ -> term (Γ, β, α ; Δ) τ.
+Proof with simpl in * ; simpl_depind ; auto.
+ intros until 1.
+ dependent induction H.
+
+ destruct Δ...
+ apply weak ; apply ax.
+
+ apply ax.
+
+ destruct Δ...
+ pose (weakening (Γ:=Γ0) (Δ:=(empty, α)))...
+
+ apply weak...
+
+ apply abs...
+ specialize (IHterm Γ0 α β (Δ, τ))...
+
+ eapply app with Ï„...
+Save.
diff --git a/test-suite/success/destruct.v b/test-suite/success/destruct.v
index 9f938e10..5aa78816 100644
--- a/test-suite/success/destruct.v
+++ b/test-suite/success/destruct.v
@@ -23,3 +23,35 @@ set (b := true) in *.
try destruct b.
Abort.
+(* Used to fail with error "n is used in conclusion" before revision 9447 *)
+
+Goal forall n, n = S n.
+induction S.
+Abort.
+
+(* Check that elimination with remaining evars do not raise an bad
+ error message *)
+
+Theorem Refl : forall P, P <-> P. tauto. Qed.
+Goal True.
+case Refl || ecase Refl.
+Abort.
+
+
+(* Submitted by B. Baydemir (bug #1882) *)
+
+Require Import List.
+
+Definition alist R := list (nat * R)%type.
+
+Section Properties.
+ Variables A : Type.
+ Variables a : A.
+ Variables E : alist A.
+
+ Lemma silly : E = E.
+ Proof.
+ clear. induction E. (* this fails. *)
+ Abort.
+
+End Properties.
diff --git a/test-suite/success/evars.v b/test-suite/success/evars.v
index ad69ced1..082cbfbe 100644
--- a/test-suite/success/evars.v
+++ b/test-suite/success/evars.v
@@ -68,9 +68,145 @@ Proof. trivial. Qed.
Hint Resolve contradiction.
Goal False.
eauto.
+Abort.
(* This used to fail in V8.1beta because first-order unification was
used before using type information *)
Check (exist _ O (refl_equal 0) : {n:nat|n=0}).
Check (exist _ O I : {n:nat|True}).
+
+(* An example (initially from Marseille/Fairisle) that involves an evar with
+ different solutions (Input, Output or bool) that may or may not be
+ considered distinct depending on which kind of conversion is used *)
+
+Section A.
+Definition STATE := (nat * bool)%type.
+Let Input := bool.
+Let Output := bool.
+Parameter Out : STATE -> Output.
+Check fun (s : STATE) (reg : Input) => reg = Out s.
+End A.
+
+(* The return predicate found should be: "in _=U return U" *)
+(* (feature already available in V8.0) *)
+
+Definition g (T1 T2:Type) (x:T1) (e:T1=T2) : T2 :=
+ match e with
+ | refl_equal => x
+ end.
+
+(* An example extracted from FMapAVL which (may) test restriction on
+ evars problems of the form ?n[args1]=?n[args2] with distinct args1
+ and args2 *)
+
+Set Implicit Arguments.
+Parameter t:Set->Set.
+Parameter map:forall elt elt' : Set, (elt -> elt') -> t elt -> t elt'.
+Parameter avl: forall elt : Set, t elt -> Prop.
+Parameter bst: forall elt : Set, t elt -> Prop.
+Parameter map_avl: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
+ avl m -> avl (map f m).
+Parameter map_bst: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
+ bst m -> bst (map f m).
+Record bbst (elt:Set) : Set :=
+ Bbst {this :> t elt; is_bst : bst this; is_avl: avl this}.
+Definition t' := bbst.
+Section B.
+Variables elt elt': Set.
+Definition map' f (m:t' elt) : t' elt' :=
+ Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)).
+End B.
+Unset Implicit Arguments.
+
+(* An example from Lexicographic_Exponentiation that tests the
+ contraction of reducible fixpoints in type inference *)
+
+Require Import List.
+Check (fun (A:Set) (a b x:A) (l:list A)
+ (H : l ++ cons x nil = cons b (cons a nil)) =>
+ app_inj_tail l (cons b nil) _ _ H).
+
+(* An example from NMake (simplified), that uses restriction in solve_refl *)
+
+Parameter h:(nat->nat)->(nat->nat).
+Fixpoint G p cont {struct p} :=
+ h (fun n => match p with O => cont | S p => G p cont end n).
+
+(* An example from Bordeaux/Cantor that applies evar restriction
+ below a binder *)
+
+Require Import Relations.
+Parameter lex : forall (A B : Set), (forall (a1 a2:A), {a1=a2}+{a1<>a2})
+-> relation A -> relation B -> A * B -> A * B -> Prop.
+Check
+ forall (A B : Set) eq_A_dec o1 o2,
+ antisymmetric A o1 -> transitive A o1 -> transitive B o2 ->
+ transitive _ (lex _ _ eq_A_dec o1 o2).
+
+(* Another example from Julien Forest that tests unification below binders *)
+
+Require Import List.
+Set Implicit Arguments.
+Parameter
+ merge : forall (A B : Set) (eqA : forall (a1 a2 : A), {a1=a2}+{a1<>a2})
+ (eqB : forall (b1 b2 : B), {b1=b2}+{b1<>b2})
+ (partial_res l : list (A*B)), option (list (A*B)).
+Axiom merge_correct :
+ forall (A B : Set) eqA eqB (l1 l2 : list (A*B)),
+ (forall a2 b2 c2, In (a2,b2) l2 -> In (a2,c2) l2 -> b2 = c2) ->
+ match merge eqA eqB l1 l2 with _ => True end.
+Unset Implicit Arguments.
+
+(* An example from Bordeaux/Additions that tests restriction below binders *)
+
+Section Additions_while.
+
+Variable A : Set.
+Variables P Q : A -> Prop.
+Variable le : A -> A -> Prop.
+Hypothesis Q_dec : forall s : A, P s -> {Q s} + {~ Q s}.
+Hypothesis le_step : forall s : A, ~ Q s -> P s -> {s' | P s' /\ le s' s}.
+Hypothesis le_wf : well_founded le.
+
+Lemma loopexec : forall s : A, P s -> {s' : A | P s' /\ Q s'}.
+refine
+ (well_founded_induction_type le_wf (fun s => _ -> {s' : A | _ /\ _})
+ (fun s hr i =>
+ match Q_dec s i with
+ | left _ => _
+ | right _ =>
+ match le_step s _ _ with
+ | exist s' h' =>
+ match hr s' _ _ with
+ | exist s'' _ => exist _ s'' _
+ end
+ end
+ end)).
+Abort.
+
+End Additions_while.
+
+(* Two examples from G. Melquiond (bugs #1878 and #1884) *)
+
+Parameter F1 G1 : nat -> Prop.
+Goal forall x : nat, F1 x -> G1 x.
+refine (fun x H => proj2 (_ x H)).
+Abort.
+
+Goal forall x : nat, F1 x -> G1 x.
+refine (fun x H => proj2 (_ x H) _).
+Abort.
+
+(* Remark: the following example does not succeed any longer in 8.2 because,
+ the algorithm is more general and does exclude a solution that it should
+ exclude for typing reason. Handling of types and backtracking is still to
+ be done
+
+Section S.
+Variables A B : nat -> Prop.
+Goal forall x : nat, A x -> B x.
+refine (fun x H => proj2 (_ x H) _).
+Abort.
+End S.
+*)
diff --git a/test-suite/success/extraction.v b/test-suite/success/extraction.v
index 0b3060d5..74d87ffa 100644
--- a/test-suite/success/extraction.v
+++ b/test-suite/success/extraction.v
@@ -84,7 +84,7 @@ Extraction test12.
(* type test12 = (__ -> __ -> __) -> __ *)
-Definition test13 := match left True I with
+Definition test13 := match @left True True I with
| left x => 1
| right x => 0
end.
diff --git a/test-suite/success/fix.v b/test-suite/success/fix.v
index f4a4d36d..78b01f3e 100644
--- a/test-suite/success/fix.v
+++ b/test-suite/success/fix.v
@@ -1,10 +1,3 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
(* Ancien bug signale par Laurent Thery sur la condition de garde *)
Require Import Bool.
@@ -50,3 +43,55 @@ Fixpoint maxVar (e : rExpr) : rNat :=
| rNode n p q => rmax (maxVar p) (maxVar q)
end.
+(* Check bug #1491 *)
+
+Require Import Streams.
+
+Definition decomp (s:Stream nat) : Stream nat :=
+ match s with Cons _ s => s end.
+
+CoFixpoint bx0 : Stream nat := Cons 0 bx1
+with bx1 : Stream nat := Cons 1 bx0.
+
+Lemma bx0bx : decomp bx0 = bx1.
+simpl. (* used to return bx0 in V8.1 and before instead of bx1 *)
+reflexivity.
+Qed.
+
+(* Check mutually inductive statements *)
+
+Require Import ZArith_base Omega.
+Open Scope Z_scope.
+
+Inductive even: Z -> Prop :=
+| even_base: even 0
+| even_succ: forall n, odd (n - 1) -> even n
+with odd: Z -> Prop :=
+| odd_succ: forall n, even (n - 1) -> odd n.
+
+Lemma even_pos_odd_pos: forall n, even n -> n >= 0
+with odd_pos_even_pos : forall n, odd n -> n >= 1.
+Proof.
+ intros.
+ destruct H.
+ omega.
+ apply odd_pos_even_pos in H.
+ omega.
+ intros.
+ destruct H.
+ apply even_pos_odd_pos in H.
+ omega.
+Qed.
+
+CoInductive a : Prop := acons : b -> a
+with b : Prop := bcons : a -> b.
+
+Lemma a1 : a
+with b1 : b.
+Proof.
+apply acons.
+assumption.
+
+apply bcons.
+assumption.
+Qed.
diff --git a/test-suite/success/hyps_inclusion.v b/test-suite/success/hyps_inclusion.v
new file mode 100644
index 00000000..21bfc075
--- /dev/null
+++ b/test-suite/success/hyps_inclusion.v
@@ -0,0 +1,32 @@
+(* Simplified example for bug #1325 *)
+
+(* Explanation: the proof engine see section variables as goal
+ variables; especially, it can change their types so that, at
+ type-checking, the section variables are not recognized
+ (Typeops.check_hyps_inclusion raises "types do no match"). It
+ worked before the introduction of polymorphic inductive types because
+ tactics were using Typing.type_of and not Typeops.typing; the former
+ was not checking hyps inclusion so that the discrepancy in the types
+ of section variables seen as goal variables was not a problem (at the
+ end, when the proof is completed, the section variable recovers its
+ original type and all is correct for Typeops) *)
+
+Section A.
+Variable H:not True.
+Lemma f:nat->nat. destruct H. exact I. Defined.
+Goal f 0=f 1.
+red in H.
+(* next tactic was failing wrt bug #1325 because type-checking the goal
+ detected a syntactically different type for the section variable H *)
+case 0.
+Reset A.
+
+(* Variant with polymorphic inductive types for bug #1325 *)
+
+Section A.
+Variable H:not True.
+Inductive I (n:nat) : Type := C : H=H -> I n.
+Goal I 0.
+red in H.
+case 0.
+Reset A.
diff --git a/test-suite/success/implicit.v b/test-suite/success/implicit.v
index 47c58f04..9034d6a6 100644
--- a/test-suite/success/implicit.v
+++ b/test-suite/success/implicit.v
@@ -36,3 +36,13 @@ Check (fun x => @ rhs _ _ (f x)).
Fixpoint g n := match n with O => true | S n => g n end.
Inductive P n : nat -> Prop := c : P n n.
+
+(* Avoid evars in the computation of implicit arguments (cf r9827) *)
+
+Require Import List.
+
+Fixpoint plus n m {struct n} :=
+ match n with
+ | 0 => m
+ | S p => S (plus p m)
+ end.
diff --git a/test-suite/success/ltac.v b/test-suite/success/ltac.v
index 3f25f703..757cf6a4 100644
--- a/test-suite/success/ltac.v
+++ b/test-suite/success/ltac.v
@@ -173,5 +173,50 @@ Abort.
empty args *)
Goal True.
-match None with @None => exact I end.
+match constr:@None with @None => exact I end.
Abort.
+
+(* Check second-order pattern unification *)
+
+Ltac to_exist :=
+ match goal with
+ |- forall x y, @?P x y =>
+ let Q := eval lazy beta in (exists x, forall y, P x y) in
+ assert (Q->Q)
+ end.
+
+Goal forall x y : nat, x = y.
+to_exist. exact (fun H => H).
+Abort.
+
+(* Used to fail in V8.1 *)
+
+Tactic Notation "test" constr(t) integer(n) :=
+ set (k := t) in |- * at n.
+
+Goal forall x : nat, x = 1 -> x + x + x = 3.
+intros x H.
+test x 2.
+Abort.
+
+(* Utilisation de let rec sans arguments *)
+
+Ltac is :=
+ let rec i := match goal with |- ?A -> ?B => intro; i | _ => idtac end in
+ i.
+
+Goal True -> True -> True.
+is.
+exact I.
+Abort.
+
+(* Interférence entre espaces des noms *)
+
+Ltac O := intro.
+Ltac Z1 t := set (x:=t).
+Ltac Z2 t := t.
+Goal True -> True.
+Z1 O.
+Z2 ltac:O.
+exact I.
+Qed.
diff --git a/test-suite/success/options.v b/test-suite/success/options.v
index bb678150..f43a4694 100644
--- a/test-suite/success/options.v
+++ b/test-suite/success/options.v
@@ -20,7 +20,7 @@ Parameter i : bool -> nat.
Coercion i : bool >-> nat.
Add Printing Coercion i.
Remove Printing Coercion i.
-Test Printing Coercion i.
+Test Printing Coercion for i.
Test Printing Let.
Test Printing If.
diff --git a/test-suite/success/parsing.v b/test-suite/success/parsing.v
new file mode 100644
index 00000000..d1b679d5
--- /dev/null
+++ b/test-suite/success/parsing.v
@@ -0,0 +1,8 @@
+Section A.
+Notation "*" := O (at level 8).
+Notation "**" := O (at level 99).
+Notation "***" := O (at level 9).
+End A.
+Notation "*" := O (at level 8).
+Notation "**" := O (at level 99).
+Notation "***" := O (at level 9).
diff --git a/test-suite/success/pattern.v b/test-suite/success/pattern.v
new file mode 100644
index 00000000..28d0bd55
--- /dev/null
+++ b/test-suite/success/pattern.v
@@ -0,0 +1,7 @@
+(* Test pattern with dependent occurrences; Note that it does not
+ behave as the succession of three generalize because each
+ quantification introduces new occurrences that are automatically
+ abstracted with the numbering still based on the original statement *)
+
+Goal (id true,id false)=(id true,id true).
+generalize bool at 2 4 6 8 10 as B, true at 3 as tt, false as ff.
diff --git a/test-suite/success/refine.v b/test-suite/success/refine.v
index 4346ce9a..4b636618 100644
--- a/test-suite/success/refine.v
+++ b/test-suite/success/refine.v
@@ -87,3 +87,33 @@ refine
| exist _ _ => _
end).
Abort.
+
+
+(* Use to fail because sigma was not propagated to get_type_of *)
+(* Revealed by r9310, fixed in r9359 *)
+
+Goal
+ forall f : forall a (H:a=a), Prop,
+ (forall a (H:a = a :> nat), f a H -> True /\ True) ->
+ True.
+intros.
+refine (@proj1 _ _ (H 0 _ _)).
+Abort.
+
+(* Use to fail because let-in with metas in the body where rejected
+ because a priori considered as dependent *)
+
+Require Import Peano_dec.
+
+Definition fact_F :
+ forall (n:nat),
+ (forall m, m<n -> nat) ->
+ nat.
+refine
+ (fun n fact_rec =>
+ if eq_nat_dec n 0 then
+ 1
+ else
+ let fn := fact_rec (n-1) _ in
+ n * fn).
+Abort.
diff --git a/test-suite/success/rewrite.v b/test-suite/success/rewrite.v
index 9629b213..86e55922 100644
--- a/test-suite/success/rewrite.v
+++ b/test-suite/success/rewrite.v
@@ -17,3 +17,24 @@ intros n n' l l'.
dependent rewrite (ax n n' l l').
split; reflexivity.
Qed.
+
+(* Used to raise an anomaly instead of an error in 8.1 *)
+(* Submitted by Y. Makarov *)
+
+Parameter N : Set.
+Parameter E : N -> N -> Prop.
+
+Axiom e : forall (A : Set) (EA : A -> A -> Prop) (a : A), EA a a.
+
+Theorem th : forall x : N, E x x.
+intro x. try rewrite e.
+Abort.
+
+(* Behavior of rewrite wrt conversion *)
+
+Require Import Arith.
+
+Goal forall n, 0 + n = n -> True.
+intros n H.
+rewrite plus_0_l in H.
+Abort.
diff --git a/test-suite/success/setoid_test.v b/test-suite/success/setoid_test.v
index dd1022f0..f49f58e5 100644
--- a/test-suite/success/setoid_test.v
+++ b/test-suite/success/setoid_test.v
@@ -18,7 +18,7 @@ Definition same (s t : set) : Prop := forall a : A, In a s <-> In a t.
Lemma setoid_set : Setoid_Theory set same.
-unfold same in |- *; split.
+unfold same in |- *; split ; red.
red in |- *; auto.
red in |- *.
@@ -104,3 +104,15 @@ setoid_rewrite <- H.
trivial.
Qed.
+(* Unifying the domain up to delta-conversion (example from emakarov) *)
+
+Definition id: Set -> Set := fun A => A.
+Definition rel : forall A : Set, relation (id A) := @eq.
+Definition f: forall A : Set, A -> A := fun A x => x.
+
+Add Relation (id A) (rel A) as eq_rel.
+
+Add Morphism (@f A) : f_morph.
+Proof.
+unfold rel, f. trivial.
+Qed.
diff --git a/test-suite/success/setoid_test2.v b/test-suite/success/setoid_test2.v
index bac1cf14..34fff9d1 100644
--- a/test-suite/success/setoid_test2.v
+++ b/test-suite/success/setoid_test2.v
@@ -120,6 +120,8 @@ Axiom eqS1: S1 -> S1 -> Prop.
Axiom SetoidS1 : Setoid_Theory S1 eqS1.
Add Setoid S1 eqS1 SetoidS1 as S1setoid.
+Instance eqS1_default : DefaultRelation S1 eqS1.
+
Axiom eqS1': S1 -> S1 -> Prop.
Axiom SetoidS1' : Setoid_Theory S1 eqS1'.
Axiom SetoidS1'_bis : Setoid_Theory S1 eqS1'.
@@ -218,6 +220,8 @@ Axiom eqS1_test8: S1_test8 -> S1_test8 -> Prop.
Axiom SetoidS1_test8 : Setoid_Theory S1_test8 eqS1_test8.
Add Setoid S1_test8 eqS1_test8 SetoidS1_test8 as S1_test8setoid.
+Instance eqS1_test8_default : DefaultRelation S1_test8 eqS1_test8.
+
Axiom f_test8 : S2 -> S1_test8.
Add Morphism f_test8 : f_compat_test8. Admitted.
diff --git a/test-suite/success/setoid_test_function_space.v b/test-suite/success/setoid_test_function_space.v
index 1602991d..ead93d91 100644
--- a/test-suite/success/setoid_test_function_space.v
+++ b/test-suite/success/setoid_test_function_space.v
@@ -26,14 +26,14 @@ Hint Unfold feq. Hint Resolve feq_refl feq_sym feq_trans.
Variable K:(nat -> nat)->Prop.
Variable K_ext:forall a b, (K a)->(a =f b)->(K b).
-Add Relation (fun A B:Type => A -> B) feq
- reflexivity proved by feq_refl
- symmetry proved by feq_sym
- transitivity proved by feq_trans as funsetoid.
+Add Parametric Relation (A B : Type) : (A -> B) (@feq A B)
+ reflexivity proved by (@feq_refl A B)
+ symmetry proved by (@feq_sym A B)
+ transitivity proved by (@feq_trans A B) as funsetoid.
-Add Morphism K with signature feq ==> iff as K_ext1.
+Add Morphism K with signature (@feq nat nat) ==> iff as K_ext1.
intuition. apply (K_ext H0 H).
-intuition. assert (x2 =f x1);auto. apply (K_ext H0 H1).
+intuition. assert (y =f x);auto. apply (K_ext H0 H1).
Qed.
Lemma three:forall n, forall a, (K a)->(a =f (fun m => (a (n+m))))-> (K (fun m
diff --git a/test-suite/success/specialize.v b/test-suite/success/specialize.v
new file mode 100644
index 00000000..4929ae4c
--- /dev/null
+++ b/test-suite/success/specialize.v
@@ -0,0 +1,48 @@
+
+Goal forall a b c : nat, a = b -> b = c -> forall d, a+d=c+d.
+intros.
+
+(* "compatibility" mode: specializing a global name
+ means a kind of generalize *)
+
+specialize trans_equal. intros _.
+specialize trans_equal with (1:=H)(2:=H0). intros _.
+specialize trans_equal with (x:=a)(y:=b)(z:=c). intros _.
+specialize trans_equal with (1:=H)(z:=c). intros _.
+specialize trans_equal with nat a b c. intros _.
+specialize (@trans_equal nat). intros _.
+specialize (@trans_equal _ a b c). intros _.
+specialize (trans_equal (x:=a)). intros _.
+specialize (trans_equal (x:=a)(y:=b)). intros _.
+specialize (trans_equal H H0). intros _.
+specialize (trans_equal H0 (z:=b)). intros _.
+
+(* local "in place" specialization *)
+assert (Eq:=trans_equal).
+
+specialize Eq.
+specialize Eq with (1:=H)(2:=H0). Undo.
+specialize Eq with (x:=a)(y:=b)(z:=c). Undo.
+specialize Eq with (1:=H)(z:=c). Undo.
+specialize Eq with nat a b c. Undo.
+specialize (Eq nat). Undo.
+specialize (Eq _ a b c). Undo.
+(* no implicit argument for Eq, hence no (Eq (x:=a)) *)
+specialize (Eq _ _ _ _ H H0). Undo.
+specialize (Eq _ _ _ b H0). Undo.
+
+(*
+(** strange behavior to inspect more precisely *)
+
+(* 1) proof aspect : let H:= ... in (fun H => ..) H
+ presque ok... *)
+
+(* 2) echoue moins lorsque zero premise de mangé *)
+specialize trans_equal with (1:=Eq). (* mal typé !! *)
+
+(* 3) *)
+specialize trans_equal with _ a b c. intros _.
+(* Anomaly: Evar ?88 was not declared. Please report. *)
+*)
+
+Abort. \ No newline at end of file
diff --git a/test-suite/success/unification.v b/test-suite/success/unification.v
index 68869621..91ee18ea 100644
--- a/test-suite/success/unification.v
+++ b/test-suite/success/unification.v
@@ -15,6 +15,12 @@ Proof.
intros; apply (H _ H0).
Qed.
+Lemma l3 : (forall P, ~(exists x:nat, P x))
+ -> forall P:nat->Prop, ~(exists x:nat, P x -> P x).
+Proof.
+intros; apply H.
+Qed.
+
(* Example submitted for Zenon *)
@@ -56,10 +62,67 @@ Require Import Arith.
Parameter x y : nat.
Parameter G:x=y->x=y->Prop.
Parameter K:x<>y->x<>y->Prop.
-Lemma l3 : (forall f:x=y->Prop, forall g:x<>y->Prop,
+Lemma l4 : (forall f:x=y->Prop, forall g:x<>y->Prop,
match eq_nat_dec x y with left a => f a | right a => g a end)
-> match eq_nat_dec x y with left a => G a a | right a => K a a end.
Proof.
intros.
apply H.
Qed.
+
+
+(* Test unification modulo eta-expansion (if possible) *)
+
+(* In this example, two instances for ?P (argument of hypothesis H) can be
+ inferred (one is by unifying the type [Q true] and [?P true] of the
+ goal and type of [H]; the other is by unifying the argument of [f]);
+ we need to unify both instances up to allowed eta-expansions of the
+ instances (eta is allowed if the meta was applied to arguments)
+
+ This used to fail before revision 9389 in trunk
+*)
+
+Lemma l5 :
+ forall f : (forall P, P true), (forall P, f P = f P) ->
+ forall Q, f (fun x => Q x) = f (fun x => Q x).
+Proof.
+intros.
+apply H.
+Qed.
+
+(* Test instanciation of evars by unification *)
+
+Goal (forall x, 0 * x = 0 -> True) -> True.
+intros; eapply H.
+rewrite <- plus_n_Sm. (* should refine ?x with S ?x' *)
+Abort.
+
+(* Check handling of identity equation between evars *)
+(* The example failed to pass until revision 10623 *)
+
+Lemma l6 :
+ (forall y, (forall x, (forall z, y = 0 -> y + z = 0) -> y + x = 0) -> True)
+ -> True.
+intros.
+eapply H.
+intros.
+apply H0. (* Check that equation ?n[H] = ?n[H] is correctly considered true *)
+reflexivity.
+Qed.
+
+(* Check treatment of metas erased by K-redexes at the time of turning
+ them to evas *)
+
+Inductive nonemptyT (t : Type) : Prop := nonemptyT_intro : t -> nonemptyT t.
+Goal True.
+try case nonemptyT_intro. (* check that it fails w/o anomaly *)
+Abort.
+
+(* Test handling of return type and when it is decided to make the
+ predicate dependent or not - see "bug" #1851 *)
+
+Goal forall X (a:X) (f':nat -> X), (exists f : nat -> X, True).
+intros.
+exists (fun n => match n with O => a | S n' => f' n' end).
+constructor.
+Qed.
diff --git a/test-suite/success/univers.v b/test-suite/success/univers.v
index 87edc4de..3c2c0883 100644
--- a/test-suite/success/univers.v
+++ b/test-suite/success/univers.v
@@ -56,3 +56,7 @@ intro.
set (C := forall m, Q m -> Q m).
exact I.
Qed.
+
+(* Submitted by Danko Ilik (bug report #1507); related to LetIn *)
+
+Record U : Type := { A:=Type; a:A }.