diff options
author | Stephane Glondu <steph@glondu.net> | 2009-02-01 00:54:40 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2009-02-01 00:54:40 +0100 |
commit | cfbfe13f5b515ae2e3c6cdd97e2ccee03bc26e56 (patch) | |
tree | b7832bd5d412a5a5d69cb36ae2ded62c71124c22 /test-suite/success | |
parent | 113b703a695acbe31ac6dd6a8c4aa94f6fda7545 (diff) |
Imported Upstream version 8.2~rc2+dfsgupstream/8.2.rc2+dfsg
Diffstat (limited to 'test-suite/success')
-rw-r--r-- | test-suite/success/Equations.v | 321 | ||||
-rw-r--r-- | test-suite/success/Generalization.v | 13 | ||||
-rw-r--r-- | test-suite/success/Inversion.v | 8 | ||||
-rw-r--r-- | test-suite/success/Notations.v | 5 | ||||
-rw-r--r-- | test-suite/success/Record.v | 81 | ||||
-rw-r--r-- | test-suite/success/Reordering.v | 15 | ||||
-rw-r--r-- | test-suite/success/apply.v | 53 | ||||
-rw-r--r-- | test-suite/success/dependentind.v | 87 | ||||
-rw-r--r-- | test-suite/success/guard.v | 11 | ||||
-rw-r--r-- | test-suite/success/refine.v | 5 | ||||
-rw-r--r-- | test-suite/success/rewrite_iterated.v | 30 | ||||
-rw-r--r-- | test-suite/success/setoid_test.v | 14 | ||||
-rw-r--r-- | test-suite/success/simpl.v | 23 | ||||
-rw-r--r-- | test-suite/success/unicode_utf8.v | 102 |
14 files changed, 733 insertions, 35 deletions
diff --git a/test-suite/success/Equations.v b/test-suite/success/Equations.v new file mode 100644 index 00000000..e31135c2 --- /dev/null +++ b/test-suite/success/Equations.v @@ -0,0 +1,321 @@ +Require Import Program. + +Equations neg (b : bool) : bool := +neg true := false ; +neg false := true. + +Eval compute in neg. + +Require Import Coq.Lists.List. + +Equations head A (default : A) (l : list A) : A := +head A default nil := default ; +head A default (cons a v) := a. + +Eval compute in head. + +Equations tail {A} (l : list A) : (list A) := +tail A nil := nil ; +tail A (cons a v) := v. + +Eval compute in @tail. + +Eval compute in (tail (cons 1 nil)). + +Reserved Notation " x ++ y " (at level 60, right associativity). + +Equations app' {A} (l l' : list A) : (list A) := +app' A nil l := l ; +app' A (cons a v) l := cons a (app' v l). + +Equations app (l l' : list nat) : list nat := + [] ++ l := l ; + (a :: v) ++ l := a :: (v ++ l) + +where " x ++ y " := (app x y). + +Eval compute in @app'. + +Equations zip' {A} (f : A -> A -> A) (l l' : list A) : (list A) := +zip' A f nil nil := nil ; +zip' A f (cons a v) (cons b w) := cons (f a b) (zip' f v w) ; +zip' A f nil (cons b w) := nil ; +zip' A f (cons a v) nil := nil. + + +Eval compute in @zip'. + +Equations zip'' {A} (f : A -> A -> A) (l l' : list A) (def : list A) : (list A) := +zip'' A f nil nil def := nil ; +zip'' A f (cons a v) (cons b w) def := cons (f a b) (zip'' f v w def) ; +zip'' A f nil (cons b w) def := def ; +zip'' A f (cons a v) nil def := def. + +Eval compute in @zip''. + +Inductive fin : nat -> Set := +| fz : Π {n}, fin (S n) +| fs : Π {n}, fin n -> fin (S n). + +Inductive finle : Π (n : nat) (x : fin n) (y : fin n), Prop := +| leqz : Π {n j}, finle (S n) fz j +| leqs : Π {n i j}, finle n i j -> finle (S n) (fs i) (fs j). + +Scheme finle_ind_dep := Induction for finle Sort Prop. + +Instance finle_ind_pack n x y : DependentEliminationPackage (finle n x y) := + { elim_type := _ ; elim := finle_ind_dep }. + +Implicit Arguments finle [[n]]. + +Require Import Bvector. + +Implicit Arguments Vnil [[A]]. +Implicit Arguments Vcons [[A] [n]]. + +Equations vhead {A n} (v : vector A (S n)) : A := +vhead A n (Vcons a v) := a. + +Equations vmap {A B} (f : A -> B) {n} (v : vector A n) : (vector B n) := +vmap A B f 0 Vnil := Vnil ; +vmap A B f (S n) (Vcons a v) := Vcons (f a) (vmap f v). + +Eval compute in (vmap id (@Vnil nat)). +Eval compute in (vmap id (@Vcons nat 2 _ Vnil)). +Eval compute in @vmap. + +Equations Below_nat (P : nat -> Type) (n : nat) : Type := +Below_nat P 0 := unit ; +Below_nat P (S n) := prod (P n) (Below_nat P n). + +Equations below_nat (P : nat -> Type) n (step : Π (n : nat), Below_nat P n -> P n) : Below_nat P n := +below_nat P 0 step := tt ; +below_nat P (S n) step := let rest := below_nat P n step in + (step n rest, rest). + +Class BelowPack (A : Type) := + { Below : Type ; below : Below }. + +Instance nat_BelowPack : BelowPack nat := + { Below := Π P n step, Below_nat P n ; + below := λ P n step, below_nat P n (step P) }. + +Definition rec_nat (P : nat -> Type) n (step : Π n, Below_nat P n -> P n) : P n := + step n (below_nat P n step). + +Fixpoint Below_vector (P : Π A n, vector A n -> Type) A n (v : vector A n) : Type := + match v with Vnil => unit | Vcons a n' v' => prod (P A n' v') (Below_vector P A n' v') end. + +Equations below_vector (P : Π A n, vector A n -> Type) A n (v : vector A n) + (step : Π A n (v : vector A n), Below_vector P A n v -> P A n v) : Below_vector P A n v := +below_vector P A ?(0) Vnil step := tt ; +below_vector P A ?(S n) (Vcons a v) step := + let rest := below_vector P A n v step in + (step A n v rest, rest). + +Instance vector_BelowPack : BelowPack (Π A n, vector A n) := + { Below := Π P A n v step, Below_vector P A n v ; + below := λ P A n v step, below_vector P A n v (step P) }. + +Instance vector_noargs_BelowPack A n : BelowPack (vector A n) := + { Below := Π P v step, Below_vector P A n v ; + below := λ P v step, below_vector P A n v (step P) }. + +Definition rec_vector (P : Π A n, vector A n -> Type) A n v + (step : Π A n (v : vector A n), Below_vector P A n v -> P A n v) : P A n v := + step A n v (below_vector P A n v step). + +Class Recursor (A : Type) (BP : BelowPack A) := + { rec_type : Π x : A, Type ; rec : Π x : A, rec_type x }. + +Instance nat_Recursor : Recursor nat nat_BelowPack := + { rec_type := λ n, Π P step, P n ; + rec := λ n P step, rec_nat P n (step P) }. + +(* Instance vect_Recursor : Recursor (Π A n, vector A n) vector_BelowPack := *) +(* rec_type := Π (P : Π A n, vector A n -> Type) step A n v, P A n v; *) +(* rec := λ P step A n v, rec_vector P A n v step. *) + +Instance vect_Recursor_noargs A n : Recursor (vector A n) (vector_noargs_BelowPack A n) := + { rec_type := λ v, Π (P : Π A n, vector A n -> Type) step, P A n v; + rec := λ v P step, rec_vector P A n v step }. + +Implicit Arguments Below_vector [P A n]. + +Notation " x ~= y " := (@JMeq _ x _ y) (at level 70, no associativity). + +(** Won't pass the guardness check which diverges anyway. *) + +(* Equations trans {n} {i j k : fin n} (p : finle i j) (q : finle j k) : finle i k := *) +(* trans ?(S n) ?(fz) ?(j) ?(k) leqz q := leqz ; *) +(* trans ?(S n) ?(fs i) ?(fs j) ?(fs k) (leqs p) (leqs q) := leqs (trans p q). *) + +(* Lemma trans_eq1 n (j k : fin (S n)) (q : finle j k) : trans leqz q = leqz. *) +(* Proof. intros. simplify_equations ; reflexivity. Qed. *) + +(* Lemma trans_eq2 n i j k p q : @trans (S n) (fs i) (fs j) (fs k) (leqs p) (leqs q) = leqs (trans p q). *) +(* Proof. intros. simplify_equations ; reflexivity. Qed. *) + +Section Image. + Context {S T : Type}. + Variable f : S -> T. + + Inductive Imf : T -> Type := imf (s : S) : Imf (f s). + + Equations inv (t : T) (im : Imf t) : S := + inv (f s) (imf s) := s. + +End Image. + +Section Univ. + + Inductive univ : Set := + | ubool | unat | uarrow (from:univ) (to:univ). + + Equations interp (u : univ) : Type := + interp ubool := bool ; interp unat := nat ; + interp (uarrow from to) := interp from -> interp to. + + Equations foo (u : univ) (el : interp u) : interp u := + foo ubool true := false ; + foo ubool false := true ; + foo unat t := t ; + foo (uarrow from to) f := id ∘ f. + + Eval lazy beta delta [ foo foo_obligation_1 foo_obligation_2 ] iota zeta in foo. + +End Univ. + +Eval compute in (foo ubool false). +Eval compute in (foo (uarrow ubool ubool) negb). +Eval compute in (foo (uarrow ubool ubool) id). + +Inductive foobar : Set := bar | baz. + +Equations bla (f : foobar) : bool := +bla bar := true ; +bla baz := false. + +Eval simpl in bla. +Print refl_equal. + +Notation "'refl'" := (@refl_equal _ _). + +Equations K {A} (x : A) (P : x = x -> Type) (p : P (refl_equal x)) (p : x = x) : P p := +K A x P p refl := p. + +Equations eq_sym {A} (x y : A) (H : x = y) : y = x := +eq_sym A x x refl := refl. + +Equations eq_trans {A} (x y z : A) (p : x = y) (q : y = z) : x = z := +eq_trans A x x x refl refl := refl. + +Lemma eq_trans_eq A x : @eq_trans A x x x refl refl = refl. +Proof. reflexivity. Qed. + +Equations nth {A} {n} (v : vector A n) (f : fin n) : A := +nth A (S n) (Vcons a v) fz := a ; +nth A (S n) (Vcons a v) (fs f) := nth v f. + +Equations tabulate {A} {n} (f : fin n -> A) : vector A n := +tabulate A 0 f := Vnil ; +tabulate A (S n) f := Vcons (f fz) (tabulate (f ∘ fs)). + +Equations vlast {A} {n} (v : vector A (S n)) : A := +vlast A 0 (Vcons a Vnil) := a ; +vlast A (S n) (Vcons a (n:=S n) v) := vlast v. + +Print Assumptions vlast. + +Equations vlast' {A} {n} (v : vector A (S n)) : A := +vlast' A ?(0) (Vcons a Vnil) := a ; +vlast' A ?(S n) (Vcons a (n:=S n) v) := vlast' v. + +Lemma vlast_equation1 A (a : A) : vlast' (Vcons a Vnil) = a. +Proof. intros. simplify_equations. reflexivity. Qed. + +Lemma vlast_equation2 A n a v : @vlast' A (S n) (Vcons a v) = vlast' v. +Proof. intros. simplify_equations ; reflexivity. Qed. + +Print Assumptions vlast'. +Print Assumptions nth. +Print Assumptions tabulate. + +Extraction vlast. +Extraction vlast'. + +Equations vliat {A} {n} (v : vector A (S n)) : vector A n := +vliat A 0 (Vcons a Vnil) := Vnil ; +vliat A (S n) (Vcons a v) := Vcons a (vliat v). + +Eval compute in (vliat (Vcons 2 (Vcons 5 (Vcons 4 Vnil)))). + +Equations vapp' {A} {n m} (v : vector A n) (w : vector A m) : vector A (n + m) := +vapp' A ?(0) m Vnil w := w ; +vapp' A ?(S n) m (Vcons a v) w := Vcons a (vapp' v w). + +Eval compute in @vapp'. + +Fixpoint vapp {A n m} (v : vector A n) (w : vector A m) : vector A (n + m) := + match v with + | Vnil => w + | Vcons a n' v' => Vcons a (vapp v' w) + end. + +Lemma JMeq_Vcons_inj A n m a (x : vector A n) (y : vector A m) : n = m -> JMeq x y -> JMeq (Vcons a x) (Vcons a y). +Proof. intros until y. simplify_dep_elim. reflexivity. Qed. + +Equations NoConfusion_fin (P : Prop) {n : nat} (x y : fin n) : Prop := +NoConfusion_fin P (S n) fz fz := P -> P ; +NoConfusion_fin P (S n) fz (fs y) := P ; +NoConfusion_fin P (S n) (fs x) fz := P ; +NoConfusion_fin P (S n) (fs x) (fs y) := (x = y -> P) -> P. + +Eval compute in NoConfusion_fin. +Eval compute in NoConfusion_fin_comp. + +Print Assumptions NoConfusion_fin. + +Eval compute in (fun P n => NoConfusion_fin P (n:=S n) fz fz). + +(* Equations noConfusion_fin P (n : nat) (x y : fin n) (H : x = y) : NoConfusion_fin P x y := *) +(* noConfusion_fin P (S n) fz fz refl := λ p _, p ; *) +(* noConfusion_fin P (S n) (fs x) (fs x) refl := λ p : x = x -> P, p refl. *) + +Equations_nocomp NoConfusion_vect (P : Prop) {A n} (x y : vector A n) : Prop := +NoConfusion_vect P A 0 Vnil Vnil := P -> P ; +NoConfusion_vect P A (S n) (Vcons a x) (Vcons b y) := (a = b -> x = y -> P) -> P. + +Equations noConfusion_vect (P : Prop) A n (x y : vector A n) (H : x = y) : NoConfusion_vect P x y := +noConfusion_vect P A 0 Vnil Vnil refl := λ p, p ; +noConfusion_vect P A (S n) (Vcons a v) (Vcons a v) refl := λ p : a = a -> v = v -> P, p refl refl. + +(* Instance fin_noconf n : NoConfusionPackage (fin n) := *) +(* NoConfusion := λ P, Π x y, x = y -> NoConfusion_fin P x y ; *) +(* noConfusion := λ P x y, noConfusion_fin P n x y. *) + +Instance vect_noconf A n : NoConfusionPackage (vector A n) := + { NoConfusion := λ P, Π x y, x = y -> NoConfusion_vect P x y ; + noConfusion := λ P x y, noConfusion_vect P A n x y }. + +Equations fog {n} (f : fin n) : nat := +fog (S n) fz := 0 ; fog (S n) (fs f) := S (fog f). + +Inductive Split {X : Set}{m n : nat} : vector X (m + n) -> Set := + append : Π (xs : vector X m)(ys : vector X n), Split (vapp xs ys). + +Implicit Arguments Split [[X]]. + +Equations_nocomp split {X : Set}(m n : nat) (xs : vector X (m + n)) : Split m n xs := +split X 0 n xs := append Vnil xs ; +split X (S m) n (Vcons x xs) := + let 'append xs' ys' in Split _ _ vec := split m n xs return Split (S m) n (Vcons x vec) in + append (Vcons x xs') ys'. + +Eval compute in (split 0 1 (vapp Vnil (Vcons 2 Vnil))). +Eval compute in (split _ _ (vapp (Vcons 3 Vnil) (Vcons 2 Vnil))). + +Extraction Inline split_obligation_1 split_obligation_2. +Recursive Extraction split. + +Eval compute in @split. diff --git a/test-suite/success/Generalization.v b/test-suite/success/Generalization.v new file mode 100644 index 00000000..6b503e95 --- /dev/null +++ b/test-suite/success/Generalization.v @@ -0,0 +1,13 @@ + +Check `(a = 0). +Check `(a = 0)%type. +Definition relation A := A -> A -> Prop. +Definition equivalence `(R : relation A) := True. +Check (`(@equivalence A R)). + +Definition a_eq_b : `( a = 0 /\ a = b /\ b > c \/ d = e /\ d = 1). +Admitted. +Print a_eq_b. + + + diff --git a/test-suite/success/Inversion.v b/test-suite/success/Inversion.v index f83328e8..b08ffcc3 100644 --- a/test-suite/success/Inversion.v +++ b/test-suite/success/Inversion.v @@ -99,3 +99,11 @@ Lemma depinv : forall a b, foo a b -> True. intros a b H. inversion H. Abort. + +(* Check non-regression of bug #1968 *) + +Inductive foo2 : option nat -> Prop := Foo : forall t, foo2 (Some t). +Goal forall o, foo2 o -> 0 = 1. +intros. +eapply trans_eq. +inversion H. diff --git a/test-suite/success/Notations.v b/test-suite/success/Notations.v index 6dce0401..4bdd579a 100644 --- a/test-suite/success/Notations.v +++ b/test-suite/success/Notations.v @@ -26,3 +26,8 @@ Notation "x +1" := (S x) (at level 8, right associativity). right order *) Notation "' 'C_' G ( A )" := (A,G) (at level 8, G at level 2). + +(* Check import of notations from within a section *) + +Notation "+1 x" := (S x) (at level 25, x at level 9). +Section A. Global Notation "'Z'" := O (at level 9). End A. diff --git a/test-suite/success/Record.v b/test-suite/success/Record.v index 7fdbcda7..885fff48 100644 --- a/test-suite/success/Record.v +++ b/test-suite/success/Record.v @@ -1,3 +1,82 @@ (* Nijmegen expects redefinition of sorts *) Definition CProp := Prop. -Record test : CProp := {n : nat}. +Record test : CProp := {n : nat ; m : bool ; _ : n <> 0 }. +Require Import Program. +Require Import List. + +Record vector {A : Type} {n : nat} := { vec_list : list A ; vec_len : length vec_list = n }. +Implicit Arguments vector []. + +Coercion vec_list : vector >-> list. + +Hint Rewrite @vec_len : datatypes. + +Ltac crush := repeat (program_simplify ; autorewrite with list datatypes ; auto with *). + +Obligation Tactic := crush. + +Program Definition vnil {A} : vector A 0 := {| vec_list := [] |}. + +Program Definition vcons {A n} (a : A) (v : vector A n) : vector A (S n) := + {| vec_list := cons a (vec_list v) |}. + +Hint Rewrite map_length rev_length : datatypes. + +Program Definition vmap {A B n} (f : A -> B) (v : vector A n) : vector B n := + {| vec_list := map f v |}. + +Program Definition vreverse {A n} (v : vector A n) : vector A n := + {| vec_list := rev v |}. + +Fixpoint va_list {A B} (v : list (A -> B)) (w : list A) : list B := + match v, w with + | nil, nil => nil + | cons f fs, cons x xs => cons (f x) (va_list fs xs) + | _, _ => nil + end. + +Program Definition va {A B n} (v : vector (A -> B) n) (w : vector A n) : vector B n := + {| vec_list := va_list v w |}. + +Next Obligation. + destruct v as [v Hv]; destruct w as [w Hw] ; simpl. + subst n. revert w Hw. induction v ; destruct w ; crush. + rewrite IHv ; auto. +Qed. + +(* Correct type inference of record notation. Initial example by Spiwack. *) + +Inductive Machin := { + Bazar : option Machin +}. + +Definition bli : Machin := + {| Bazar := Some ({| Bazar := None |}:Machin) |}. + +Definition bli' : option (option Machin) := + Some (Some {| Bazar := None |} ). + +Definition bli'' : Machin := + {| Bazar := Some {| Bazar := None |} |}. + +Definition bli''' := {| Bazar := Some {| Bazar := None |} |}. + +(** Correctly use scoping information *) + +Require Import ZArith. + +Record Foo := { bar : Z }. +Definition foo := {| bar := 0 |}. + +(** Notations inside records *) + +Require Import Relation_Definitions. + +Record DecidableOrder : Type := +{ A : Type +; le : relation A where "x <= y" := (le x y) +; le_refl : reflexive _ le +; le_antisym : antisymmetric _ le +; le_trans : transitive _ le +; le_total : forall x y, {x <= y}+{y <= x} +}. diff --git a/test-suite/success/Reordering.v b/test-suite/success/Reordering.v new file mode 100644 index 00000000..de9b9975 --- /dev/null +++ b/test-suite/success/Reordering.v @@ -0,0 +1,15 @@ +(* Testing the reordering of hypothesis required by pattern, fold and change. *) +Goal forall (A:Set) (x:A) (A':=A), True. +intros. +fold A' in x. (* suceeds: x is moved after A' *) +Undo. +pattern A' in x. +Undo. +change A' in x. +Abort. + +(* p and m should be moved before H *) +Goal forall n:nat, n=n -> forall m:nat, let p := (m,n) in True. +intros. +change n with (snd p) in H. +Abort. diff --git a/test-suite/success/apply.v b/test-suite/success/apply.v index fcce68b9..952890ee 100644 --- a/test-suite/success/apply.v +++ b/test-suite/success/apply.v @@ -12,6 +12,44 @@ intros; apply Znot_le_gt, Zgt_lt in H. apply Zmult_lt_reg_r, Zlt_le_weak in H0; auto. Qed. +(* Test application under tuples *) + +Goal (forall x, x=0 <-> 0=x) -> 1=0 -> 0=1. +intros H H'. +apply H in H'. +exact H'. +Qed. + +(* Test as clause *) + +Goal (forall x, x=0 <-> (0=x /\ True)) -> 1=0 -> True. +intros H H'. +apply H in H' as (_,H'). +exact H'. +Qed. + +(* Test application modulo conversion *) + +Goal (forall x, id x = 0 -> 0 = x) -> 1 = id 0 -> 0 = 1. +intros H H'. +apply H in H'. +exact H'. +Qed. + +(* Check apply/eapply distinction in presence of open terms *) + +Parameter h : forall x y z : nat, x = z -> x = y. +Implicit Arguments h [[x] [y]]. +Goal 1 = 0 -> True. +intro H. +apply h in H || exact I. +Qed. + +Goal False -> 1 = 0. +intro H. +apply h || contradiction. +Qed. + (* Check if it unfolds when there are not enough premises *) Goal forall n, n = S n -> False. @@ -201,3 +239,18 @@ Axiom silly_axiom : forall v : exp, v = v -> False. Lemma silly_lemma : forall x : atom, False. intros x. apply silly_axiom with (v := x). (* fails *) + +(* Test non-regression of (temporary) bug 1981 *) + +Goal exists n : nat, True. +eapply ex_intro. +exact O. +trivial. +Qed. + +(* Test non-regression of (temporary) bug 1980 *) + +Goal True. +try eapply ex_intro. +trivial. +Qed. diff --git a/test-suite/success/dependentind.v b/test-suite/success/dependentind.v index 48255386..488b057f 100644 --- a/test-suite/success/dependentind.v +++ b/test-suite/success/dependentind.v @@ -1,10 +1,10 @@ Require Import Coq.Program.Program. -Set Implicit Arguments. -Unset Strict Implicit. +Set Manual Implicit Arguments. + Variable A : Set. -Inductive vector : nat -> Type := vnil : vector 0 | vcons : A -> forall n, vector n -> vector (S n). +Inductive vector : nat -> Type := vnil : vector 0 | vcons : A -> forall {n}, vector n -> vector (S n). Goal forall n, forall v : vector (S n), vector n. Proof. @@ -35,51 +35,55 @@ Inductive ctx : Type := | empty : ctx | snoc : ctx -> type -> ctx. -Notation " Γ , τ " := (snoc Γ τ) (at level 25, t at next level, left associativity). +Bind Scope context_scope with ctx. +Delimit Scope context_scope with ctx. + +Arguments Scope snoc [context_scope]. + +Notation " Γ ,, τ " := (snoc Γ τ) (at level 25, t at next level, left associativity). -Fixpoint conc (Γ Δ : ctx) : ctx := +Fixpoint conc (Δ Γ : ctx) : ctx := match Δ with | empty => Γ - | snoc Δ' x => snoc (conc Γ Δ') x + | snoc Δ' x => snoc (conc Δ' Γ) x end. -Notation " Γ ; Δ " := (conc Γ Δ) (at level 25, left associativity). +Notation " Γ ;; Δ " := (conc Δ Γ) (at level 25, left associativity) : context_scope. Inductive term : ctx -> type -> Type := -| ax : forall Γ τ, term (Γ, τ) τ -| weak : forall Γ τ, term Γ τ -> forall τ', term (Γ, τ') τ -| abs : forall Γ τ τ', term (Γ , τ) τ' -> term Γ (τ --> τ') +| ax : forall Γ τ, term (snoc Γ τ) τ +| weak : forall Γ τ, term Γ τ -> forall τ', term (Γ ,, τ') τ +| abs : forall Γ τ τ', term (snoc Γ τ) τ' -> term Γ (τ --> τ') | app : forall Γ τ τ', term Γ (τ --> τ') -> term Γ τ -> term Γ τ'. -Lemma weakening : forall Γ Δ τ, term (Γ ; Δ) τ -> - forall τ', term (Γ , τ' ; Δ) τ. -Proof with simpl in * ; auto ; simpl_depind. +Hint Constructors term : lambda. + +Open Local Scope context_scope. + +Notation " Γ |-- τ " := (term Γ τ) (at level 0) : type_scope. + +Lemma weakening : forall Γ Δ τ, term (Γ ;; Δ) τ -> + forall τ', term (Γ ,, τ' ;; Δ) τ. +Proof with simpl in * ; reverse ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda. intros Γ Δ τ H. dependent induction H. destruct Δ... - apply weak ; apply ax. - - apply ax. - - destruct Δ... - specialize (IHterm Γ empty)... - apply weak... - - apply weak... destruct Δ... - apply weak ; apply abs ; apply H. + destruct Δ... apply abs... - specialize (IHterm Γ0 (Δ, t, τ))... + + specialize (IHterm (Δ,, t,, τ)%ctx Γ0)... + intro. apply app with τ... Qed. -Lemma exchange : forall Γ Δ α β τ, term (Γ, α, β ; Δ) τ -> term (Γ, β, α ; Δ) τ. -Proof with simpl in * ; simpl_depind ; auto. +Lemma exchange : forall Γ Δ α β τ, term (Γ,, α,, β ;; Δ) τ -> term (Γ,, β,, α ;; Δ) τ. +Proof with simpl in * ; subst ; reverse ; simplify_dep_elim ; simplify_IH_hyps ; auto. intros until 1. dependent induction H. @@ -89,12 +93,37 @@ Proof with simpl in * ; simpl_depind ; auto. apply ax. destruct Δ... - pose (weakening (Γ:=Γ0) (Δ:=(empty, α)))... + pose (weakening Γ0 (empty,, α))... apply weak... - apply abs... - specialize (IHterm Γ0 α β (Δ, τ))... + apply abs... + specialize (IHterm (Δ ,, τ))... eapply app with τ... Save. + +(** Example by Andrew Kenedy, uses simplification of the first component of dependent pairs. *) + +Unset Manual Implicit Arguments. + +Inductive Ty := + | Nat : Ty + | Prod : Ty -> Ty -> Ty. + +Inductive Exp : Ty -> Type := +| Const : nat -> Exp Nat +| Pair : forall t1 t2, Exp t1 -> Exp t2 -> Exp (Prod t1 t2) +| Fst : forall t1 t2, Exp (Prod t1 t2) -> Exp t1. + +Inductive Ev : forall t, Exp t -> Exp t -> Prop := +| EvConst : forall n, Ev (Const n) (Const n) +| EvPair : forall t1 t2 (e1:Exp t1) (e2:Exp t2) e1' e2', + Ev e1 e1' -> Ev e2 e2' -> Ev (Pair e1 e2) (Pair e1' e2') +| EvFst : forall t1 t2 (e:Exp (Prod t1 t2)) e1 e2, + Ev e (Pair e1 e2) -> + Ev (Fst e) e1. + +Lemma EvFst_inversion : forall t1 t2 (e:Exp (Prod t1 t2)) e1, Ev (Fst e) e1 -> exists e2, Ev e (Pair e1 e2). +intros t1 t2 e e1 ev. dependent destruction ev. exists e2 ; assumption. +Qed. diff --git a/test-suite/success/guard.v b/test-suite/success/guard.v new file mode 100644 index 00000000..b9181d43 --- /dev/null +++ b/test-suite/success/guard.v @@ -0,0 +1,11 @@ +(* Specific tests about guard condition *) + +(* f must unfold to x, not F (de Bruijn mix-up!) *) +Check let x (f:nat->nat) k := f k in + fun (y z:nat->nat) => + let f:=x in (* f := Rel 3 *) + fix F (n:nat) : nat := + match n with + | 0 => 0 + | S k => f F k (* here Rel 3 = F ! *) + end. diff --git a/test-suite/success/refine.v b/test-suite/success/refine.v index 4b636618..b654277c 100644 --- a/test-suite/success/refine.v +++ b/test-suite/success/refine.v @@ -117,3 +117,8 @@ refine let fn := fact_rec (n-1) _ in n * fn). Abort. + +(* Wish 1988: that fun forces unfold in refine *) + +Goal (forall A : Prop, A -> ~~A). +Proof. refine(fun A a f => _). diff --git a/test-suite/success/rewrite_iterated.v b/test-suite/success/rewrite_iterated.v new file mode 100644 index 00000000..962dada3 --- /dev/null +++ b/test-suite/success/rewrite_iterated.v @@ -0,0 +1,30 @@ +Require Import Arith Omega. + +Lemma test : forall p:nat, p<>0 -> p-1+1=p. +Proof. + intros; omega. +Qed. + +(** Test of new syntax for rewrite : ! ? and so on... *) + +Lemma but : forall a b c, a<>0 -> b<>0 -> c<>0 -> + (a-1+1)+(b-1+1)+(c-1+1)=a+b+c. +Proof. +intros. +rewrite test. +Undo. +rewrite test,test. +Undo. +rewrite 2 test. (* or rewrite 2test or rewrite 2!test *) +Undo. +rewrite 2!test,2?test. +Undo. +(*rewrite 4!test. --> error *) +rewrite 3!test. +Undo. +rewrite <- 3?test. +Undo. +(*rewrite <-?test. --> loops*) +rewrite !test by auto. +reflexivity. +Qed. diff --git a/test-suite/success/setoid_test.v b/test-suite/success/setoid_test.v index f49f58e5..be5999df 100644 --- a/test-suite/success/setoid_test.v +++ b/test-suite/success/setoid_test.v @@ -116,3 +116,17 @@ Add Morphism (@f A) : f_morph. Proof. unfold rel, f. trivial. Qed. + +(* Submitted by Nicolas Tabareau *) +(* Needs unification.ml to support environments with de Bruijn *) + +Goal forall + (f : Prop -> Prop) + (Q : (nat -> Prop) -> Prop) + (H : forall (h : nat -> Prop), Q (fun x : nat => f (h x)) <-> True) + (h:nat -> Prop), + Q (fun x : nat => f (Q (fun b : nat => f (h x)))) <-> True. +intros f0 Q H. +setoid_rewrite H. +tauto. +Qed. diff --git a/test-suite/success/simpl.v b/test-suite/success/simpl.v index 8d32b1d9..b4de4932 100644 --- a/test-suite/success/simpl.v +++ b/test-suite/success/simpl.v @@ -21,4 +21,27 @@ with copy_of_compute_size_tree (t:tree) : nat := Eval simpl in (copy_of_compute_size_forest leaf). +(* Another interesting case: Hrec has to occurrences: one cannot be folded + back to f while the second can. *) +Parameter g : (nat->nat)->nat->nat->nat. +Definition f (n n':nat) := + nat_rec (fun _ => nat -> nat) + (fun x => x) + (fun k Hrec => g Hrec (Hrec k)) + n n'. + +Goal forall a b, f (S a) b = b. +intros. +simpl. +admit. +Qed. (* Qed will fail if simpl performs eta-expansion *) + +(* Yet another example. *) + +Require Import List. + +Goal forall A B (a:A) l f (i:B), fold_right f i ((a :: l))=i. +simpl. +admit. +Qed. (* Qed will fail if simplification is incorrect (de Bruijn!) *) diff --git a/test-suite/success/unicode_utf8.v b/test-suite/success/unicode_utf8.v index 19e306fe..8b7764e5 100644 --- a/test-suite/success/unicode_utf8.v +++ b/test-suite/success/unicode_utf8.v @@ -1,12 +1,104 @@ -(* Check correct separation of identifiers followed by unicode symbols *) - Notation "x 〈 w" := (plus x w) (at level 30). - Check fun x => x〈x. +(** PARSER TESTS *) -(* Check Greek letters *) +(** Check correct separation of identifiers followed by unicode symbols *) +Notation "x ⊕ w" := (plus x w) (at level 30). +Check fun x => x⊕x. + +(** Check Greek letters *) Definition test_greek : nat -> nat := fun Δ => Δ. Parameter ℝ : Set. Parameter π : ℝ. -(* Check indices *) +(** Check indices *) Definition test_indices : nat -> nat := fun x₁ => x₁. Definition π₂ := snd. + +(** More unicode in identifiers *) +Definition αβ_áà_אב := 0. + + +(** UNICODE IN STRINGS *) + +Require Import List Ascii String. +Open Scope string_scope. + +Definition test_string := "azertyαβ∀ééé". +Eval compute in length test_string. + (** last six "chars" are unicode, hence represented by 2 bytes, + except the forall which is 3 bytes *) + +Fixpoint string_to_list s := + match s with + | EmptyString => nil + | String c s => c :: string_to_list s + end. + +Eval compute in (string_to_list test_string). + (** for instance, α is \206\177 whereas ∀ is \226\136\128 *) +Close Scope string_scope. + + + +(** INTERFACE TESTS *) + +Require Import Utf8. + +(** Printing of unicode notation, in *goals* *) +Lemma test : forall A:Prop, A -> A. +Proof. +auto. +Qed. + +(** Parsing of unicode notation, in *goals* *) +Lemma test2 : ∀A:Prop, A → A. +Proof. +intro. +intro. +auto. +Qed. + +(** Printing of unicode notation, in *response* *) +Check fun (X:Type)(x:X) => x. + +(** Parsing of unicode notation, in *response* *) +Check ∀Δ, Δ → Δ. +Check ∀x, x=0 ∨ x=0 → x=0. + + +(** ISSUES: *) + +Notation "x ≠ y" := (x<>y) (at level 70). + +Notation "x ≤ y" := (x<=y) (at level 70, no associativity). + +(** First Issue : ≤ is attached to "le" of nat, not to notation <= *) + +Require Import ZArith. +Open Scope Z_scope. +Locate "≤". (* still le, not Zle *) +Notation "x ≤ y" := (x<=y) (at level 70, no associativity). +Locate "≤". +Close Scope Z_scope. + +(** ==> How to proceed modularly ? *) + + +(** Second Issue : notation for -> generates useless parenthesis + if followed by a binder *) + +Check 0≠0 → ∀x:nat,x=x. + +(** Example of real situation : *) + +Definition pred : ∀x, x≠0 → ∃y, x = S y. +Proof. +destruct x. +destruct 1; auto. +intros _. +exists x; auto. +Defined. + +Print pred. + + + |