diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /test-suite/success/rewrite.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'test-suite/success/rewrite.v')
-rw-r--r-- | test-suite/success/rewrite.v | 19 |
1 files changed, 19 insertions, 0 deletions
diff --git a/test-suite/success/rewrite.v b/test-suite/success/rewrite.v new file mode 100644 index 00000000..9629b213 --- /dev/null +++ b/test-suite/success/rewrite.v @@ -0,0 +1,19 @@ +(* Check that dependent rewrite applies on arbitrary terms *) + +Inductive listn : nat -> Set := + | niln : listn 0 + | consn : forall n : nat, nat -> listn n -> listn (S n). + +Axiom + ax : + forall (n n' : nat) (l : listn (n + n')) (l' : listn (n' + n)), + existS _ (n + n') l = existS _ (n' + n) l'. + +Lemma lem : + forall (n n' : nat) (l : listn (n + n')) (l' : listn (n' + n)), + n + n' = n' + n /\ existT _ (n + n') l = existT _ (n' + n) l'. +Proof. +intros n n' l l'. + dependent rewrite (ax n n' l l'). +split; reflexivity. +Qed. |