summaryrefslogtreecommitdiff
path: root/test-suite/success/apply.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
commita0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch)
treedabcac548e299fee1da464c93b3dba98484f45b1 /test-suite/success/apply.v
parent2281410e38ef99d025ea77194585a9bc019fdaa9 (diff)
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'test-suite/success/apply.v')
-rw-r--r--test-suite/success/apply.v193
1 files changed, 191 insertions, 2 deletions
diff --git a/test-suite/success/apply.v b/test-suite/success/apply.v
index 4f260696..fcce68b9 100644
--- a/test-suite/success/apply.v
+++ b/test-suite/success/apply.v
@@ -7,8 +7,197 @@ assumption.
Qed.
Require Import ZArith.
-Open Scope Z_scope.
-Goal forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y.
+Goal (forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y)%Z.
intros; apply Znot_le_gt, Zgt_lt in H.
apply Zmult_lt_reg_r, Zlt_le_weak in H0; auto.
Qed.
+
+(* Check if it unfolds when there are not enough premises *)
+
+Goal forall n, n = S n -> False.
+intros.
+apply n_Sn in H.
+assumption.
+Qed.
+
+(* Check naming in with bindings; printing used to be inconsistent before *)
+(* revision 9450 *)
+
+Notation S':=S (only parsing).
+Goal (forall S, S = S' S) -> (forall S, S = S' S).
+intros.
+apply H with (S0 := S).
+Qed.
+
+(* Check inference of implicit arguments in bindings *)
+
+Goal exists y : nat -> Type, y 0 = y 0.
+exists (fun x => True).
+trivial.
+Qed.
+
+(* Check universe handling in typed unificationn *)
+
+Definition E := Type.
+Goal exists y : E, y = y.
+exists Prop.
+trivial.
+Qed.
+
+Variable Eq : Prop = (Prop -> Prop) :> E.
+Goal Prop.
+rewrite Eq.
+Abort.
+
+(* Check insertion of coercions in bindings *)
+
+Coercion eq_true : bool >-> Sortclass.
+Goal exists A:Prop, A = A.
+exists true.
+trivial.
+Qed.
+
+(* Check use of unification of bindings types in specialize *)
+
+Variable P : nat -> Prop.
+Variable L : forall (l : nat), P l -> P l.
+Goal P 0 -> True.
+intros.
+specialize L with (1:=H).
+Abort.
+Reset P.
+
+(* Two examples that show that hnf_constr is used when unifying types
+ of bindings (a simplification of a script from Field_Theory) *)
+
+Require Import List.
+Open Scope list_scope.
+Fixpoint P (l : list nat) : Prop :=
+ match l with
+ | nil => True
+ | e1 :: nil => e1 = e1
+ | e1 :: l1 => e1 = e1 /\ P l1
+ end.
+Variable L : forall n l, P (n::l) -> P l.
+
+Goal forall (x:nat) l, P (x::l) -> P l.
+intros.
+apply L with (1:=H).
+Qed.
+
+Goal forall (x:nat) l, match l with nil => x=x | _::_ => x=x /\ P l end -> P l.
+intros.
+apply L with (1:=H).
+Qed.
+
+(* The following call to auto fails if the type of the clause
+ associated to the H is not beta-reduced [but apply H works]
+ (a simplification of a script from FSetAVL) *)
+
+Definition apply (f:nat->Prop) := forall x, f x.
+Goal apply (fun n => n=0) -> 1=0.
+intro H.
+auto.
+Qed.
+
+(* The following fails if the coercion Zpos is not introduced around p
+ before trying a subterm that matches the left-hand-side of the equality
+ (a simplication of an example taken from Nijmegen/QArith) *)
+
+Require Import ZArith.
+Coercion Zpos : positive >-> Z.
+Variable f : Z -> Z -> Z.
+Variable g : forall q1 q2 p : Z, f (f q1 p) (f q2 p) = Z0.
+Goal forall p q1 q2, f (f q1 (Zpos p)) (f q2 (Zpos p)) = Z0.
+intros; rewrite g with (p:=p).
+reflexivity.
+Qed.
+
+(* A funny example where the behavior differs depending on which of a
+ multiple solution to a unification problem is chosen (an instance
+ of this case can be found in the proof of Buchberger.BuchRed.nf_divp) *)
+
+Definition succ x := S x.
+Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
+ (forall x y, P x -> Q x y) ->
+ (forall x, P (S x)) -> forall y: I (S 0), Q (succ 0) y.
+intros.
+apply H with (y:=y).
+(* [x] had two possible instances: [S 0], coming from unifying the
+ type of [y] with [I ?n] and [succ 0] coming from the unification with
+ the goal; only the first one allows to make the next apply (which
+ does not work modulo delta) working *)
+apply H0.
+Qed.
+
+(* A similar example with a arbitrary long conversion between the two
+ possible instances *)
+
+Fixpoint compute_succ x :=
+ match x with O => S 0 | S n => S (compute_succ n) end.
+
+Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
+ (forall x y, P x -> Q x y) ->
+ (forall x, P (S x)) -> forall y: I (S 100), Q (compute_succ 100) y.
+intros.
+apply H with (y:=y).
+apply H0.
+Qed.
+
+(* Another example with multiple convertible solutions to the same
+ metavariable (extracted from Algebra.Hom_module.Hom_module, 10th
+ subgoal which precisely fails) *)
+
+Definition ID (A:Type) := A.
+Goal forall f:Type -> Type,
+ forall (P : forall A:Type, A -> Prop),
+ (forall (B:Type) x, P (f B) x -> P (f B) x) ->
+ (forall (A:Type) x, P (f (f A)) x) ->
+ forall (A:Type) (x:f (f A)), P (f (ID (f A))) x.
+intros.
+apply H.
+(* The parameter [B] had two possible instances: [ID (f A)] by direct
+ unification and [f A] by unification of the type of [x]; only the
+ first choice makes the next command fail, as it was
+ (unfortunately?) in Hom_module *)
+try apply H.
+unfold ID; apply H0.
+Qed.
+
+(* Test coercion below product and on non meta-free terms in with bindings *)
+(* Cf wishes #1408 from E. Makarov *)
+
+Parameter bool_Prop :> bool -> Prop.
+Parameter r : bool -> bool -> bool.
+Axiom ax : forall (A : Set) (R : A -> A -> Prop) (x y : A), R x y.
+
+Theorem t : r true false.
+apply ax with (R := r).
+Qed.
+
+(* Check verification of type at unification (submitted by Stéphane Lengrand):
+ without verification, the first "apply" works what leads to the incorrect
+ instantiation of x by Prop *)
+
+Theorem u : ~(forall x:Prop, ~x).
+unfold not.
+intro.
+eapply H.
+apply (forall B:Prop,B->B) || (instantiate (1:=True); exact I).
+Defined.
+
+(* Fine-tuning coercion insertion in presence of unfolding (bug #1883) *)
+
+Parameter name : Set.
+Definition atom := name.
+
+Inductive exp : Set :=
+ | var : atom -> exp.
+
+Coercion var : atom >-> exp.
+
+Axiom silly_axiom : forall v : exp, v = v -> False.
+
+Lemma silly_lemma : forall x : atom, False.
+intros x.
+apply silly_axiom with (v := x). (* fails *)