diff options
author | 2008-07-25 15:12:53 +0200 | |
---|---|---|
committer | 2008-07-25 15:12:53 +0200 | |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /test-suite/success/LetPat.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'test-suite/success/LetPat.v')
-rw-r--r-- | test-suite/success/LetPat.v | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/test-suite/success/LetPat.v b/test-suite/success/LetPat.v new file mode 100644 index 00000000..545b8aeb --- /dev/null +++ b/test-suite/success/LetPat.v @@ -0,0 +1,55 @@ +(* Simple let-patterns *) +Variable A B : Type. + +Definition l1 (t : A * B * B) : A := let '(x, y, z) := t in x. +Print l1. +Definition l2 (t : (A * B) * B) : A := let '((x, y), z) := t in x. +Definition l3 (t : A * (B * B)) : A := let '(x, (y, z)) := t in x. +Print l3. + +Record someT (A : Type) := mkT { a : nat; b: A }. + +Definition l4 A (t : someT A) : nat := let 'mkT x y := t in x. +Print l4. +Print sigT. + +Definition l5 A (B : A -> Type) (t : sigT B) : B (projT1 t) := + let 'existT x y := t return B (projT1 t) in y. + +Definition l6 A (B : A -> Type) (t : sigT B) : B (projT1 t) := + let 'existT x y as t' := t return B (projT1 t') in y. + +Definition l7 A (B : A -> Type) (t : sigT B) : B (projT1 t) := + let 'existT x y as t' in sigT _ := t return B (projT1 t') in y. + +Definition l8 A (B : A -> Type) (t : sigT B) : B (projT1 t) := + match t with + existT x y => y + end. + +(** An example from algebra, using let' and inference of return clauses + to deconstruct contexts. *) + +Record a_category (A : Type) (hom : A -> A -> Type) := { }. + +Definition category := { A : Type & { hom : A -> A -> Type & a_category A hom } }. + +Record a_functor (A : Type) (hom : A -> A -> Type) (C : a_category A hom) := { }. + +Notation " x :& y " := (@existT _ _ x y) (right associativity, at level 55) : core_scope. + +Definition functor (c d : category) := + let ' A :& homA :& CA := c in + let ' B :& homB :& CB := d in + A -> B. + +Definition identity_functor (c : category) : functor c c := + let 'A :& homA :& CA := c in + fun x => x. + +Definition functor_composition (a b c : category) : functor a b -> functor b c -> functor a c := + let 'A :& homA :& CA := a in + let 'B :& homB :& CB := b in + let 'C :& homB :& CB := c in + fun f g => + fun x => g (f x). |