diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /test-suite/output/Search.out | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'test-suite/output/Search.out')
-rw-r--r-- | test-suite/output/Search.out | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/test-suite/output/Search.out b/test-suite/output/Search.out new file mode 100644 index 00000000..99e736dd --- /dev/null +++ b/test-suite/output/Search.out @@ -0,0 +1,36 @@ +le_S: forall n m : nat, n <= m -> n <= S m +le_n: forall n : nat, n <= n +false: bool +true: bool +sumor_beq: + forall (A : Type) (B : Prop), + (A -> A -> bool) -> (B -> B -> bool) -> A + {B} -> A + {B} -> bool +sumbool_beq: + forall A B : Prop, + (A -> A -> bool) -> (B -> B -> bool) -> {A} + {B} -> {A} + {B} -> bool +xorb: bool -> bool -> bool +sum_beq: + forall A B : Type, + (A -> A -> bool) -> (B -> B -> bool) -> A + B -> A + B -> bool +prod_beq: + forall A B : Type, + (A -> A -> bool) -> (B -> B -> bool) -> A * B -> A * B -> bool +orb: bool -> bool -> bool +option_beq: forall A : Type, (A -> A -> bool) -> option A -> option A -> bool +negb: bool -> bool +nat_beq: nat -> nat -> bool +list_beq: forall A : Type, (A -> A -> bool) -> list A -> list A -> bool +implb: bool -> bool -> bool +comparison_beq: comparison -> comparison -> bool +bool_beq: bool -> bool -> bool +andb: bool -> bool -> bool +Empty_set_beq: Empty_set -> Empty_set -> bool +pred_Sn: forall n : nat, n = pred (S n) +plus_n_Sm: forall n m : nat, S (n + m) = n + S m +plus_n_O: forall n : nat, n = n + 0 +plus_Sn_m: forall n m : nat, S n + m = S (n + m) +plus_O_n: forall n : nat, 0 + n = n +mult_n_Sm: forall n m : nat, n * m + n = n * S m +mult_n_O: forall n : nat, 0 = n * 0 +eq_add_S: forall n m : nat, S n = S m -> n = m +eq_S: forall x y : nat, x = y -> S x = S y |