summaryrefslogtreecommitdiff
path: root/test-suite/output/Search.out
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /test-suite/output/Search.out
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'test-suite/output/Search.out')
-rw-r--r--test-suite/output/Search.out36
1 files changed, 36 insertions, 0 deletions
diff --git a/test-suite/output/Search.out b/test-suite/output/Search.out
new file mode 100644
index 00000000..99e736dd
--- /dev/null
+++ b/test-suite/output/Search.out
@@ -0,0 +1,36 @@
+le_S: forall n m : nat, n <= m -> n <= S m
+le_n: forall n : nat, n <= n
+false: bool
+true: bool
+sumor_beq:
+ forall (A : Type) (B : Prop),
+ (A -> A -> bool) -> (B -> B -> bool) -> A + {B} -> A + {B} -> bool
+sumbool_beq:
+ forall A B : Prop,
+ (A -> A -> bool) -> (B -> B -> bool) -> {A} + {B} -> {A} + {B} -> bool
+xorb: bool -> bool -> bool
+sum_beq:
+ forall A B : Type,
+ (A -> A -> bool) -> (B -> B -> bool) -> A + B -> A + B -> bool
+prod_beq:
+ forall A B : Type,
+ (A -> A -> bool) -> (B -> B -> bool) -> A * B -> A * B -> bool
+orb: bool -> bool -> bool
+option_beq: forall A : Type, (A -> A -> bool) -> option A -> option A -> bool
+negb: bool -> bool
+nat_beq: nat -> nat -> bool
+list_beq: forall A : Type, (A -> A -> bool) -> list A -> list A -> bool
+implb: bool -> bool -> bool
+comparison_beq: comparison -> comparison -> bool
+bool_beq: bool -> bool -> bool
+andb: bool -> bool -> bool
+Empty_set_beq: Empty_set -> Empty_set -> bool
+pred_Sn: forall n : nat, n = pred (S n)
+plus_n_Sm: forall n m : nat, S (n + m) = n + S m
+plus_n_O: forall n : nat, n = n + 0
+plus_Sn_m: forall n m : nat, S n + m = S (n + m)
+plus_O_n: forall n : nat, 0 + n = n
+mult_n_Sm: forall n m : nat, n * m + n = n * S m
+mult_n_O: forall n : nat, 0 = n * 0
+eq_add_S: forall n m : nat, S n = S m -> n = m
+eq_S: forall x y : nat, x = y -> S x = S y