summaryrefslogtreecommitdiff
path: root/test-suite/modules
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /test-suite/modules
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'test-suite/modules')
-rw-r--r--test-suite/modules/Demo.v32
-rw-r--r--test-suite/modules/Nametab.v48
-rw-r--r--test-suite/modules/Nat.v22
-rw-r--r--test-suite/modules/PO.v64
-rw-r--r--test-suite/modules/Przyklad.v226
-rw-r--r--test-suite/modules/Tescik.v32
-rw-r--r--test-suite/modules/fun_objects.v28
-rw-r--r--test-suite/modules/grammar.v22
-rw-r--r--test-suite/modules/ind.v18
-rw-r--r--test-suite/modules/mod_decl.v50
-rw-r--r--test-suite/modules/modeq.v18
-rw-r--r--test-suite/modules/modul.v34
-rw-r--r--test-suite/modules/obj.v12
-rw-r--r--test-suite/modules/objects.v28
-rw-r--r--test-suite/modules/pliczek.v2
-rw-r--r--test-suite/modules/plik.v5
-rw-r--r--test-suite/modules/sig.v28
-rw-r--r--test-suite/modules/sub_objects.v27
18 files changed, 317 insertions, 379 deletions
diff --git a/test-suite/modules/Demo.v b/test-suite/modules/Demo.v
index 1e9273f0..1f27fe1b 100644
--- a/test-suite/modules/Demo.v
+++ b/test-suite/modules/Demo.v
@@ -1,51 +1,51 @@
Module M.
- Definition t:=nat.
- Definition x:=O.
+ Definition t := nat.
+ Definition x := 0.
End M.
Print M.t.
Module Type SIG.
- Parameter t:Set.
- Parameter x:t.
+ Parameter t : Set.
+ Parameter x : t.
End SIG.
-Module F[X:SIG].
- Definition t:=X.t->X.t.
- Definition x:t.
- Intro.
- Exact X.x.
+Module F (X: SIG).
+ Definition t := X.t -> X.t.
+ Definition x : t.
+ intro.
+ exact X.x.
Defined.
- Definition y:=X.x.
+ Definition y := X.x.
End F.
Module N := F M.
Print N.t.
-Eval Compute in N.t.
+Eval compute in N.t.
Module N' : SIG := N.
Print N'.t.
-Eval Compute in N'.t.
+Eval compute in N'.t.
Module N'' <: SIG := F N.
Print N''.t.
-Eval Compute in N''.t.
+Eval compute in N''.t.
-Eval Compute in N''.x.
+Eval compute in N''.x.
-Module N''' : SIG with Definition t:=nat->nat := N.
+Module N''' : SIG with Definition t := nat -> nat := N.
Print N'''.t.
-Eval Compute in N'''.t.
+Eval compute in N'''.t.
Print N'''.x.
diff --git a/test-suite/modules/Nametab.v b/test-suite/modules/Nametab.v
deleted file mode 100644
index 61966c7c..00000000
--- a/test-suite/modules/Nametab.v
+++ /dev/null
@@ -1,48 +0,0 @@
-Module Q.
- Module N.
- Module K.
- Definition id:=Set.
- End K.
- End N.
-End Q.
-
-(* Bad *) Locate id.
-(* Bad *) Locate K.id.
-(* Bad *) Locate N.K.id.
-(* OK *) Locate Q.N.K.id.
-(* OK *) Locate Top.Q.N.K.id.
-
-(* Bad *) Locate K.
-(* Bad *) Locate N.K.
-(* OK *) Locate Q.N.K.
-(* OK *) Locate Top.Q.N.K.
-
-(* Bad *) Locate N.
-(* OK *) Locate Q.N.
-(* OK *) Locate Top.Q.N.
-
-(* OK *) Locate Q.
-(* OK *) Locate Top.Q.
-
-
-
-Import Q.N.
-
-
-(* Bad *) Locate id.
-(* OK *) Locate K.id.
-(* Bad *) Locate N.K.id.
-(* OK *) Locate Q.N.K.id.
-(* OK *) Locate Top.Q.N.K.id.
-
-(* OK *) Locate K.
-(* Bad *) Locate N.K.
-(* OK *) Locate Q.N.K.
-(* OK *) Locate Top.Q.N.K.
-
-(* Bad *) Locate N.
-(* OK *) Locate Q.N.
-(* OK *) Locate Top.Q.N.
-
-(* OK *) Locate Q.
-(* OK *) Locate Top.Q.
diff --git a/test-suite/modules/Nat.v b/test-suite/modules/Nat.v
index d3e98ae4..57878a5f 100644
--- a/test-suite/modules/Nat.v
+++ b/test-suite/modules/Nat.v
@@ -1,19 +1,19 @@
-Definition T:=nat.
+Definition T := nat.
-Definition le:=Peano.le.
+Definition le := le.
-Hints Unfold le.
+Hint Unfold le.
-Lemma le_refl:(n:nat)(le n n).
- Auto.
+Lemma le_refl : forall n : nat, le n n.
+ auto.
Qed.
-Require Le.
+Require Import Le.
-Lemma le_trans:(n,m,k:nat)(le n m) -> (le m k) -> (le n k).
- EAuto with arith.
+Lemma le_trans : forall n m k : nat, le n m -> le m k -> le n k.
+ eauto with arith.
Qed.
-Lemma le_antis:(n,m:nat)(le n m) -> (le m n) -> n=m.
- EAuto with arith.
-Qed.
+Lemma le_antis : forall n m : nat, le n m -> le m n -> n = m.
+ eauto with arith.
+Qed. \ No newline at end of file
diff --git a/test-suite/modules/PO.v b/test-suite/modules/PO.v
index 9ba3fb2e..354c3957 100644
--- a/test-suite/modules/PO.v
+++ b/test-suite/modules/PO.v
@@ -1,57 +1,57 @@
-Implicit Arguments On.
+Set Implicit Arguments.
+Unset Strict Implicit.
-Implicits fst.
-Implicits snd.
+Implicit Arguments fst.
+Implicit Arguments snd.
Module Type PO.
- Parameter T:Set.
- Parameter le:T->T->Prop.
+ Parameter T : Set.
+ Parameter le : T -> T -> Prop.
- Axiom le_refl : (x:T)(le x x).
- Axiom le_trans : (x,y,z:T)(le x y) -> (le y z) -> (le x z).
- Axiom le_antis : (x,y:T)(le x y) -> (le y x) -> (x=y).
+ Axiom le_refl : forall x : T, le x x.
+ Axiom le_trans : forall x y z : T, le x y -> le y z -> le x z.
+ Axiom le_antis : forall x y : T, le x y -> le y x -> x = y.
- Hints Resolve le_refl le_trans le_antis.
+ Hint Resolve le_refl le_trans le_antis.
End PO.
-Module Pair[X:PO][Y:PO] <: PO.
- Definition T:=X.T*Y.T.
- Definition le:=[p1,p2]
- (X.le (fst p1) (fst p2)) /\ (Y.le (snd p1) (snd p2)).
+Module Pair (X: PO) (Y: PO) <: PO.
+ Definition T := (X.T * Y.T)%type.
+ Definition le p1 p2 := X.le (fst p1) (fst p2) /\ Y.le (snd p1) (snd p2).
- Hints Unfold le.
+ Hint Unfold le.
- Lemma le_refl : (p:T)(le p p).
- Info Auto.
+ Lemma le_refl : forall p : T, le p p.
+ info auto.
Qed.
- Lemma le_trans : (p1,p2,p3:T)(le p1 p2) -> (le p2 p3) -> (le p1 p3).
- Unfold le; Intuition; Info EAuto.
+ Lemma le_trans : forall p1 p2 p3 : T, le p1 p2 -> le p2 p3 -> le p1 p3.
+ unfold le in |- *; intuition; info eauto.
Qed.
- Lemma le_antis : (p1,p2:T)(le p1 p2) -> (le p2 p1) -> (p1=p2).
- NewDestruct p1.
- NewDestruct p2.
- Unfold le.
- Intuition.
- CutRewrite t=t1.
- CutRewrite t0=t2.
- Reflexivity.
+ Lemma le_antis : forall p1 p2 : T, le p1 p2 -> le p2 p1 -> p1 = p2.
+ destruct p1.
+ destruct p2.
+ unfold le in |- *.
+ intuition.
+ cutrewrite (t = t1).
+ cutrewrite (t0 = t2).
+ reflexivity.
- Info Auto.
+ info auto.
- Info Auto.
+ info auto.
Qed.
End Pair.
-Read Module Nat.
+Require Nat.
Module NN := Pair Nat Nat.
-Lemma zz_min : (p:NN.T)(NN.le (O,O) p).
- Info Auto with arith.
-Qed.
+Lemma zz_min : forall p : NN.T, NN.le (0, 0) p.
+ info auto with arith.
+Qed. \ No newline at end of file
diff --git a/test-suite/modules/Przyklad.v b/test-suite/modules/Przyklad.v
index 4f4c2066..014f6c60 100644
--- a/test-suite/modules/Przyklad.v
+++ b/test-suite/modules/Przyklad.v
@@ -1,38 +1,40 @@
-Definition ifte := [T:Set][A:Prop][B:Prop][s:(sumbool A B)][th:T][el:T]
- if s then [_]th else [_]el.
+Definition ifte (T : Set) (A B : Prop) (s : {A} + {B})
+ (th el : T) := if s then th else el.
-Implicits ifte.
+Implicit Arguments ifte.
-Lemma Reflexivity_provable :
- (A:Set)(a:A)(s:{a=a}+{~a=a})(EXT x| s==(left ? ? x)).
-Intros.
-Elim s.
-Intro x.
-Split with x; Reflexivity.
+Lemma Reflexivity_provable :
+ forall (A : Set) (a : A) (s : {a = a} + {a <> a}),
+ exists x : _, s = left _ x.
+intros.
+elim s.
+intro x.
+split with x; reflexivity.
-Intro.
-Absurd a=a; Auto.
+intro.
+ absurd (a = a); auto.
-Save.
+Qed.
-Lemma Disequality_provable :
- (A:Set)(a,b:A)(~a=b)->(s:{a=b}+{~a=b})(EXT x| s==(right ? ? x)).
-Intros.
-Elim s.
-Intro.
-Absurd a=a; Auto.
+Lemma Disequality_provable :
+ forall (A : Set) (a b : A),
+ a <> b -> forall s : {a = b} + {a <> b}, exists x : _, s = right _ x.
+intros.
+elim s.
+intro.
+ absurd (a = a); auto.
-Intro.
-Split with b0; Reflexivity.
+intro.
+split with b0; reflexivity.
-Save.
+Qed.
Module Type ELEM.
Parameter T : Set.
- Parameter eq_dec : (a,a':T){a=a'}+{~ a=a'}.
+ Parameter eq_dec : forall a a' : T, {a = a'} + {a <> a'}.
End ELEM.
-Module Type SET[Elt : ELEM].
+Module Type SET (Elt: ELEM).
Parameter T : Set.
Parameter empty : T.
Parameter add : Elt.T -> T -> T.
@@ -40,56 +42,52 @@ Module Type SET[Elt : ELEM].
(* Axioms *)
- Axiom find_empty_false :
- (e:Elt.T) (find e empty) = false.
+ Axiom find_empty_false : forall e : Elt.T, find e empty = false.
- Axiom find_add_true :
- (s:T) (e:Elt.T) (find e (add e s)) = true.
+ Axiom find_add_true : forall (s : T) (e : Elt.T), find e (add e s) = true.
- Axiom find_add_false :
- (s:T) (e:Elt.T) (e':Elt.T) ~(e=e') ->
- (find e (add e' s))=(find e s).
+ Axiom
+ find_add_false :
+ forall (s : T) (e e' : Elt.T), e <> e' -> find e (add e' s) = find e s.
End SET.
-Module FuncDict[E : ELEM].
+Module FuncDict (E: ELEM).
Definition T := E.T -> bool.
- Definition empty := [e':E.T] false.
- Definition find := [e':E.T] [s:T] (s e').
- Definition add := [e:E.T][s:T][e':E.T]
- (ifte (E.eq_dec e e') true (find e' s)).
+ Definition empty (e' : E.T) := false.
+ Definition find (e' : E.T) (s : T) := s e'.
+ Definition add (e : E.T) (s : T) (e' : E.T) :=
+ ifte (E.eq_dec e e') true (find e' s).
- Lemma find_empty_false : (e:E.T) (find e empty) = false.
- Auto.
+ Lemma find_empty_false : forall e : E.T, find e empty = false.
+ auto.
Qed.
- Lemma find_add_true :
- (s:T) (e:E.T) (find e (add e s)) = true.
+ Lemma find_add_true : forall (s : T) (e : E.T), find e (add e s) = true.
- Intros.
- Unfold find add.
- Elim (Reflexivity_provable ? ? (E.eq_dec e e)).
- Intros.
- Rewrite H.
- Auto.
+ intros.
+ unfold find, add in |- *.
+ elim (Reflexivity_provable _ _ (E.eq_dec e e)).
+ intros.
+ rewrite H.
+ auto.
Qed.
Lemma find_add_false :
- (s:T) (e:E.T) (e':E.T) ~(e=e') ->
- (find e (add e' s))=(find e s).
- Intros.
- Unfold add find.
- Cut (EXT x:? | (E.eq_dec e' e)==(right ? ? x)).
- Intros.
- Elim H0.
- Intros.
- Rewrite H1.
- Unfold ifte.
- Reflexivity.
-
- Apply Disequality_provable.
- Auto.
+ forall (s : T) (e e' : E.T), e <> e' -> find e (add e' s) = find e s.
+ intros.
+ unfold add, find in |- *.
+ cut (exists x : _, E.eq_dec e' e = right _ x).
+ intros.
+ elim H0.
+ intros.
+ rewrite H1.
+ unfold ifte in |- *.
+ reflexivity.
+
+ apply Disequality_provable.
+ auto.
Qed.
@@ -99,84 +97,81 @@ Module F : SET := FuncDict.
Module Nat.
- Definition T:=nat.
- Lemma eq_dec : (a,a':T){a=a'}+{~ a=a'}.
- Decide Equality.
+ Definition T := nat.
+ Lemma eq_dec : forall a a' : T, {a = a'} + {a <> a'}.
+ decide equality.
Qed.
End Nat.
-Module SetNat:=F Nat.
+Module SetNat := F Nat.
-Lemma no_zero_in_empty:(SetNat.find O SetNat.empty)=false.
-Apply SetNat.find_empty_false.
-Save.
+Lemma no_zero_in_empty : SetNat.find 0 SetNat.empty = false.
+apply SetNat.find_empty_false.
+Qed.
(***************************************************************************)
-Module Lemmas[G:SET][E:ELEM].
+Module Lemmas (G: SET) (E: ELEM).
- Module ESet:=G E.
+ Module ESet := G E.
- Lemma commute : (S:ESet.T)(a1,a2:E.T)
- let S1 = (ESet.add a1 (ESet.add a2 S)) in
- let S2 = (ESet.add a2 (ESet.add a1 S)) in
- (a:E.T)(ESet.find a S1)=(ESet.find a S2).
+ Lemma commute :
+ forall (S : ESet.T) (a1 a2 : E.T),
+ let S1 := ESet.add a1 (ESet.add a2 S) in
+ let S2 := ESet.add a2 (ESet.add a1 S) in
+ forall a : E.T, ESet.find a S1 = ESet.find a S2.
- Intros.
- Unfold S1 S2.
- Elim (E.eq_dec a a1); Elim (E.eq_dec a a2); Intros H1 H2;
- Try Rewrite <- H1; Try Rewrite <- H2;
- Repeat
- (Try (Rewrite ESet.find_add_true; Auto);
- Try (Rewrite ESet.find_add_false; Auto);
- Auto).
- Save.
+ intros.
+ unfold S1, S2 in |- *.
+ elim (E.eq_dec a a1); elim (E.eq_dec a a2); intros H1 H2;
+ try rewrite <- H1; try rewrite <- H2;
+ repeat
+ (try ( rewrite ESet.find_add_true; auto);
+ try ( rewrite ESet.find_add_false; auto); auto).
+ Qed.
End Lemmas.
-Inductive list [A:Set] : Set := nil : (list A)
- | cons : A -> (list A) -> (list A).
+Inductive list (A : Set) : Set :=
+ | nil : list A
+ | cons : A -> list A -> list A.
-Module ListDict[E : ELEM].
- Definition T := (list E.T).
+Module ListDict (E: ELEM).
+ Definition T := list E.T.
Definition elt := E.T.
- Definition empty := (nil elt).
- Definition add := [e:elt][s:T] (cons elt e s).
- Fixpoint find [e:elt; s:T] : bool :=
- Cases s of
- nil => false
- | (cons e' s') => (ifte (E.eq_dec e e')
- true
- (find e s'))
- end.
-
- Definition find_empty_false := [e:elt] (refl_equal bool false).
-
- Lemma find_add_true :
- (s:T) (e:E.T) (find e (add e s)) = true.
- Intros.
- Simpl.
- Elim (Reflexivity_provable ? ? (E.eq_dec e e)).
- Intros.
- Rewrite H.
- Auto.
+ Definition empty := nil elt.
+ Definition add (e : elt) (s : T) := cons elt e s.
+ Fixpoint find (e : elt) (s : T) {struct s} : bool :=
+ match s with
+ | nil => false
+ | cons e' s' => ifte (E.eq_dec e e') true (find e s')
+ end.
+
+ Definition find_empty_false (e : elt) := refl_equal false.
+
+ Lemma find_add_true : forall (s : T) (e : E.T), find e (add e s) = true.
+ intros.
+ simpl in |- *.
+ elim (Reflexivity_provable _ _ (E.eq_dec e e)).
+ intros.
+ rewrite H.
+ auto.
Qed.
Lemma find_add_false :
- (s:T) (e:E.T) (e':E.T) ~(e=e') ->
- (find e (add e' s))=(find e s).
- Intros.
- Simpl.
- Elim (Disequality_provable ? ? ? H (E.eq_dec e e')).
- Intros.
- Rewrite H0.
- Simpl.
- Reflexivity.
- Save.
+ forall (s : T) (e e' : E.T), e <> e' -> find e (add e' s) = find e s.
+ intros.
+ simpl in |- *.
+ elim (Disequality_provable _ _ _ H (E.eq_dec e e')).
+ intros.
+ rewrite H0.
+ simpl in |- *.
+ reflexivity.
+ Qed.
End ListDict.
@@ -190,4 +185,3 @@ Module L : SET := ListDict.
-
diff --git a/test-suite/modules/Tescik.v b/test-suite/modules/Tescik.v
index 13c28418..8dadace7 100644
--- a/test-suite/modules/Tescik.v
+++ b/test-suite/modules/Tescik.v
@@ -1,30 +1,30 @@
Module Type ELEM.
- Parameter A:Set.
- Parameter x:A.
+ Parameter A : Set.
+ Parameter x : A.
End ELEM.
Module Nat.
- Definition A:=nat.
- Definition x:=O.
+ Definition A := nat.
+ Definition x := 0.
End Nat.
-Module List[X:ELEM].
- Inductive list : Set := nil : list
- | cons : X.A -> list -> list.
+Module List (X: ELEM).
+ Inductive list : Set :=
+ | nil : list
+ | cons : X.A -> list -> list.
- Definition head :=
- [l:list]Cases l of
- nil => X.x
- | (cons x _) => x
- end.
+ Definition head (l : list) := match l with
+ | nil => X.x
+ | cons x _ => x
+ end.
- Definition singl := [x:X.A] (cons x nil).
+ Definition singl (x : X.A) := cons x nil.
- Lemma head_singl : (x:X.A)(head (singl x))=x.
- Auto.
+ Lemma head_singl : forall x : X.A, head (singl x) = x.
+ auto.
Qed.
End List.
-Module N:=(List Nat).
+Module N := List Nat. \ No newline at end of file
diff --git a/test-suite/modules/fun_objects.v b/test-suite/modules/fun_objects.v
index 0f8eef84..f4dc19b3 100644
--- a/test-suite/modules/fun_objects.v
+++ b/test-suite/modules/fun_objects.v
@@ -1,32 +1,32 @@
-Implicit Arguments On.
+Set Implicit Arguments.
+Unset Strict Implicit.
Module Type SIG.
- Parameter id:(A:Set)A->A.
+ Parameter id : forall A : Set, A -> A.
End SIG.
-Module M[X:SIG].
- Definition idid := (X.id X.id).
- Definition id := (idid X.id).
+Module M (X: SIG).
+ Definition idid := X.id X.id.
+ Definition id := idid X.id.
End M.
-Module N:=M.
+Module N := M.
Module Nat.
Definition T := nat.
- Definition x := O.
- Definition id := [A:Set][x:A]x.
+ Definition x := 0.
+ Definition id (A : Set) (x : A) := x.
End Nat.
-Module Z:=(N Nat).
+Module Z := N Nat.
-Check (Z.idid O).
+Check (Z.idid 0).
-Module P[Y:SIG] := N.
+Module P (Y: SIG) := N.
-Module Y:=P Nat Z.
-
-Check (Y.id O).
+Module Y := P Nat Z.
+Check (Y.id 0).
diff --git a/test-suite/modules/grammar.v b/test-suite/modules/grammar.v
index fb734b5d..9657c685 100644
--- a/test-suite/modules/grammar.v
+++ b/test-suite/modules/grammar.v
@@ -1,15 +1,15 @@
Module N.
-Definition f:=plus.
-Syntax constr level 7: plus [ (f $n $m)] -> [ $n:L "+" $m:E].
-Check (f O O).
+Definition f := plus.
+(* <Warning> : Syntax is discontinued *)
+Check (f 0 0).
End N.
-Check (N.f O O).
+Check (N.f 0 0).
Import N.
-Check (N.f O O).
-Check (f O O).
-Module M:=N.
-Check (f O O).
-Check (N.f O O).
+Check (f 0 0).
+Check (f 0 0).
+Module M := N.
+Check (f 0 0).
+Check (f 0 0).
Import M.
-Check (f O O).
-Check (N.f O O).
+Check (f 0 0).
+Check (N.f 0 0). \ No newline at end of file
diff --git a/test-suite/modules/ind.v b/test-suite/modules/ind.v
index 94c344bb..a4f9d3a2 100644
--- a/test-suite/modules/ind.v
+++ b/test-suite/modules/ind.v
@@ -1,13 +1,17 @@
Module Type SIG.
- Inductive w:Set:=A:w.
- Parameter f : w->w.
+ Inductive w : Set :=
+ A : w.
+ Parameter f : w -> w.
End SIG.
-Module M:SIG.
- Inductive w:Set:=A:w.
- Definition f:=[x]Cases x of A => A end.
+Module M : SIG.
+ Inductive w : Set :=
+ A : w.
+ Definition f x := match x with
+ | A => A
+ end.
End M.
-Module N:=M.
+Module N := M.
-Check (N.f M.A).
+Check (N.f M.A). \ No newline at end of file
diff --git a/test-suite/modules/mod_decl.v b/test-suite/modules/mod_decl.v
index 867b8a11..aad493ce 100644
--- a/test-suite/modules/mod_decl.v
+++ b/test-suite/modules/mod_decl.v
@@ -1,55 +1,49 @@
Module Type SIG.
- Definition A:Set. (*error*)
- Axiom A:Set.
+ Axiom A : Set.
End SIG.
Module M0.
- Definition A:Set.
- Exact nat.
- Save.
+ Definition A : Set.
+ exact nat.
+ Qed.
End M0.
-Module M1:SIG.
- Definition A:=nat.
+Module M1 : SIG.
+ Definition A := nat.
End M1.
-Module M2<:SIG.
- Definition A:=nat.
+Module M2 <: SIG.
+ Definition A := nat.
End M2.
-Module M3:=M0.
+Module M3 := M0.
-Module M4:SIG:=M0.
+Module M4 : SIG := M0.
-Module M5<:SIG:=M0.
+Module M5 <: SIG := M0.
-Module F[X:SIG]:=X.
-
-
-Declare Module M6.
+Module F (X: SIG) := X.
Module Type T.
- Declare Module M0.
- Lemma A:Set (*error*).
- Axiom A:Set.
+ Module M0.
+ Axiom A : Set.
End M0.
- Declare Module M1:SIG.
+ Declare Module M1: SIG.
- Declare Module M2<:SIG.
- Definition A:=nat.
+ Declare Module M2 <: SIG.
+ Definition A := nat.
End M2.
- Declare Module M3:=M0.
+ Module M3 := M0.
- Declare Module M4:SIG:=M0. (* error *)
+ Module M4 : SIG := M0.
- Declare Module M5<:SIG:=M0.
+ Module M5 <: SIG := M0.
- Declare Module M6:=F M0. (* error *)
+ Module M6 := F M0.
- Module M7.
-End T. \ No newline at end of file
+End T.
diff --git a/test-suite/modules/modeq.v b/test-suite/modules/modeq.v
index 73448dc7..45cf9f12 100644
--- a/test-suite/modules/modeq.v
+++ b/test-suite/modules/modeq.v
@@ -1,22 +1,22 @@
Module M.
- Definition T:=nat.
- Definition x:T:=O.
+ Definition T := nat.
+ Definition x : T := 0.
End M.
Module Type SIG.
- Declare Module M:=Top.M.
+ Module M := Top.M.
Module Type SIG.
- Parameter T:Set.
+ Parameter T : Set.
End SIG.
- Declare Module N:SIG.
+ Declare Module N: SIG.
End SIG.
Module Z.
- Module M:=Top.M.
+ Module M := Top.M.
Module Type SIG.
- Parameter T:Set.
+ Parameter T : Set.
End SIG.
- Module N:=M.
+ Module N := M.
End Z.
-Module A:SIG:=Z.
+Module A : SIG := Z. \ No newline at end of file
diff --git a/test-suite/modules/modul.v b/test-suite/modules/modul.v
index 84942da1..9d24d6ce 100644
--- a/test-suite/modules/modul.v
+++ b/test-suite/modules/modul.v
@@ -1,39 +1,35 @@
Module M.
- Parameter rel:nat -> nat -> Prop.
+ Parameter rel : nat -> nat -> Prop.
- Axiom w : (n:nat)(rel O (S n)).
+ Axiom w : forall n : nat, rel 0 (S n).
- Hints Resolve w.
+ Hint Resolve w.
- Grammar constr constr8 :=
- not_eq [ constr7($a) "#" constr7($b) ] -> [ (rel $a $b) ].
+ (* <Warning> : Grammar is replaced by Notation *)
Print Hint *.
- Lemma w1 : (O#(S O)).
- Auto.
- Save.
+ Lemma w1 : rel 0 1.
+ auto.
+ Qed.
End M.
+Locate Module M.
+
(*Lemma w1 : (M.rel O (S O)).
Auto.
*)
Import M.
-Print Hint *.
-Lemma w1 : (O#(S O)).
-Print Hint.
-Print Hint *.
-
-Auto.
-Save.
+Lemma w1 : rel 0 1.
+auto.
+Qed.
-Check (O#O).
+Check (rel 0 0).
Locate rel.
-Locate Library M.
-
-Module N:=Top.M.
+Locate Module M.
+Module N := Top.M.
diff --git a/test-suite/modules/obj.v b/test-suite/modules/obj.v
index 2231e084..97337a12 100644
--- a/test-suite/modules/obj.v
+++ b/test-suite/modules/obj.v
@@ -1,16 +1,17 @@
-Implicit Arguments On.
+Set Implicit Arguments.
+Unset Strict Implicit.
Module M.
- Definition a:=[s:Set]s.
+ Definition a (s : Set) := s.
Print a.
End M.
Print M.a.
Module K.
- Definition app:=[A,B:Set; f:(A->B); x:A](f x).
+ Definition app (A B : Set) (f : A -> B) (x : A) := f x.
Module N.
- Definition apap:=[A,B:Set](app (app 1!A 2!B)).
+ Definition apap (A B : Set) := app (app (A:=A) (B:=B)).
Print app.
Print apap.
End N.
@@ -20,7 +21,6 @@ End K.
Print K.app.
Print K.N.apap.
-Module W:=K.N.
+Module W := K.N.
Print W.apap.
-
diff --git a/test-suite/modules/objects.v b/test-suite/modules/objects.v
index 418ece44..070f859e 100644
--- a/test-suite/modules/objects.v
+++ b/test-suite/modules/objects.v
@@ -1,33 +1,33 @@
Module Type SET.
- Axiom T:Set.
- Axiom x:T.
+ Axiom T : Set.
+ Axiom x : T.
End SET.
-Implicit Arguments On.
+Set Implicit Arguments.
+Unset Strict Implicit.
-Module M[X:SET].
+Module M (X: SET).
Definition T := nat.
- Definition x := O.
- Definition f := [A:Set][x:A]X.x.
+ Definition x := 0.
+ Definition f (A : Set) (x : A) := X.x.
End M.
-Module N:=M.
+Module N := M.
Module Nat.
Definition T := nat.
- Definition x := O.
+ Definition x := 0.
End Nat.
-Module Z:=(N Nat).
+Module Z := N Nat.
-Check (Z.f O).
+Check (Z.f 0).
-Module P[Y:SET] := N.
+Module P (Y: SET) := N.
-Module Y:=P Z Nat.
-
-Check (Y.f O).
+Module Y := P Z Nat.
+Check (Y.f 0).
diff --git a/test-suite/modules/pliczek.v b/test-suite/modules/pliczek.v
index 6061ace3..f806a7c4 100644
--- a/test-suite/modules/pliczek.v
+++ b/test-suite/modules/pliczek.v
@@ -1,3 +1,3 @@
Require Export plik.
-Definition tutu := [X:Set](toto X).
+Definition tutu (X : Set) := toto X. \ No newline at end of file
diff --git a/test-suite/modules/plik.v b/test-suite/modules/plik.v
index f1f59df0..50bfd960 100644
--- a/test-suite/modules/plik.v
+++ b/test-suite/modules/plik.v
@@ -1,4 +1,3 @@
-Definition toto:=[x:Set]x.
+Definition toto (x : Set) := x.
-Grammar constr constr8 :=
- toto [ "#" constr7($b) ] -> [ (toto $b) ].
+(* <Warning> : Grammar is replaced by Notation *) \ No newline at end of file
diff --git a/test-suite/modules/sig.v b/test-suite/modules/sig.v
index eb8736bb..4cb6291d 100644
--- a/test-suite/modules/sig.v
+++ b/test-suite/modules/sig.v
@@ -1,29 +1,29 @@
Module M.
Module Type SIG.
- Parameter T:Set.
- Parameter x:T.
+ Parameter T : Set.
+ Parameter x : T.
End SIG.
- Module N:SIG.
- Definition T:=nat.
- Definition x:=O.
+ Module N : SIG.
+ Definition T := nat.
+ Definition x := 0.
End N.
End M.
-Module N:=M.
+Module N := M.
Module Type SPRYT.
- Declare Module N.
- Definition T:=M.N.T.
- Parameter x:T.
+ Module N.
+ Definition T := M.N.T.
+ Parameter x : T.
End N.
End SPRYT.
-Module K:SPRYT:=N.
-Module K':SPRYT:=M.
+Module K : SPRYT := N.
+Module K' : SPRYT := M.
Module Type SIG.
- Definition T:Set:=M.N.T.
- Parameter x:T.
+ Definition T : Set := M.N.T.
+ Parameter x : T.
End SIG.
-Module J:SIG:=M.N.
+Module J : SIG := M.N. \ No newline at end of file
diff --git a/test-suite/modules/sub_objects.v b/test-suite/modules/sub_objects.v
index 1bd4faef..5eec0775 100644
--- a/test-suite/modules/sub_objects.v
+++ b/test-suite/modules/sub_objects.v
@@ -1,33 +1,32 @@
Set Implicit Arguments.
+Unset Strict Implicit.
Module M.
- Definition id:=[A:Set][x:A]x.
+ Definition id (A : Set) (x : A) := x.
Module Type SIG.
- Parameter idid:(A:Set)A->A.
+ Parameter idid : forall A : Set, A -> A.
End SIG.
Module N.
- Definition idid:=[A:Set][x:A](id x).
- Grammar constr constr8 :=
- not_eq [ "#" constr7($b) ] -> [ (idid $b) ].
- Notation inc := (plus (S O)).
+ Definition idid (A : Set) (x : A) := id x.
+ (* <Warning> : Grammar is replaced by Notation *)
+ Notation inc := (plus 1).
End N.
- Definition zero:=(N.idid O).
+ Definition zero := N.idid 0.
End M.
-Definition zero := (M.N.idid O).
-Definition jeden := (M.N.inc O).
+Definition zero := M.N.idid 0.
+Definition jeden := M.N.inc 0.
-Module Goly:=M.N.
+Module Goly := M.N.
-Definition Gole_zero := (Goly.idid O).
-Definition Goly_jeden := (Goly.inc O).
+Definition Gole_zero := Goly.idid 0.
+Definition Goly_jeden := Goly.inc 0.
Module Ubrany : M.SIG := M.N.
-Definition Ubrane_zero := (Ubrany.idid O).
-
+Definition Ubrane_zero := Ubrany.idid 0.