diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /test-suite/modules/fun_objects.v | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'test-suite/modules/fun_objects.v')
-rw-r--r-- | test-suite/modules/fun_objects.v | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/test-suite/modules/fun_objects.v b/test-suite/modules/fun_objects.v index 0f8eef84..f4dc19b3 100644 --- a/test-suite/modules/fun_objects.v +++ b/test-suite/modules/fun_objects.v @@ -1,32 +1,32 @@ -Implicit Arguments On. +Set Implicit Arguments. +Unset Strict Implicit. Module Type SIG. - Parameter id:(A:Set)A->A. + Parameter id : forall A : Set, A -> A. End SIG. -Module M[X:SIG]. - Definition idid := (X.id X.id). - Definition id := (idid X.id). +Module M (X: SIG). + Definition idid := X.id X.id. + Definition id := idid X.id. End M. -Module N:=M. +Module N := M. Module Nat. Definition T := nat. - Definition x := O. - Definition id := [A:Set][x:A]x. + Definition x := 0. + Definition id (A : Set) (x : A) := x. End Nat. -Module Z:=(N Nat). +Module Z := N Nat. -Check (Z.idid O). +Check (Z.idid 0). -Module P[Y:SIG] := N. +Module P (Y: SIG) := N. -Module Y:=P Nat Z. - -Check (Y.id O). +Module Y := P Nat Z. +Check (Y.id 0). |