diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /test-suite/micromega | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'test-suite/micromega')
-rw-r--r-- | test-suite/micromega/bertot.v | 22 | ||||
-rw-r--r-- | test-suite/micromega/example.v | 347 | ||||
-rw-r--r-- | test-suite/micromega/heap3_vcgen_25.v | 38 | ||||
-rw-r--r-- | test-suite/micromega/qexample.v | 62 | ||||
-rw-r--r-- | test-suite/micromega/rexample.v | 62 | ||||
-rw-r--r-- | test-suite/micromega/square.v | 61 | ||||
-rw-r--r-- | test-suite/micromega/zomicron.v | 27 |
7 files changed, 619 insertions, 0 deletions
diff --git a/test-suite/micromega/bertot.v b/test-suite/micromega/bertot.v new file mode 100644 index 00000000..6951fcd3 --- /dev/null +++ b/test-suite/micromega/bertot.v @@ -0,0 +1,22 @@ +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import ZArith. +Require Import Micromegatac. + +Open Scope Z_scope. + +Goal (forall x y n, + ( ~ x < n /\ x <= n /\ 2 * y = x*(x+1) -> 2 * y = n*(n+1)) + /\ + (x < n /\ x <= n /\ 2 * y = x * (x+1) -> x + 1 <= n /\ 2 *(x+1+y) = (x+1)*(x+2))). +Proof. + intros. + micromega Z. +Qed. + diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v new file mode 100644 index 00000000..dc78ace5 --- /dev/null +++ b/test-suite/micromega/example.v @@ -0,0 +1,347 @@ +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import ZArith. +Require Import Micromegatac. +Require Import Ring_normalize. +Open Scope Z_scope. +Require Import ZMicromega. +Require Import VarMap. + +(* false in Q : x=1/2 and n=1 *) + +Lemma not_so_easy : forall x n : Z, + 2*x + 1 <= 2 *n -> x <= n-1. +Proof. + intros. + zfarkas. +Qed. + + +(* From Laurent Théry *) + +Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0. +Proof. + intros. + micromega Z. +Qed. + + +Lemma Zdiscr: forall a b c x, + a * x ^ 2 + b * x + c = 0 -> b ^ 2 - 4 * a * c >= 0. +Proof. + intros ; micromega Z. +Qed. + + +Lemma plus_minus : forall x y, + 0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y. +Proof. + intros. + zfarkas. +Qed. + + + +Lemma mplus_minus : forall x y, + x + y >= 0 -> x -y >= 0 -> x^2 - y^2 >= 0. +Proof. + intros; micromega Z. +Qed. + +Lemma pol3: forall x y, 0 <= x + y -> + x^3 + 3*x^2*y + 3*x* y^2 + y^3 >= 0. +Proof. + intros; micromega Z. +Qed. + + +(* Motivating example from: Expressiveness + Automation + Soundness: + Towards COmbining SMT Solvers and Interactive Proof Assistants *) +Parameter rho : Z. +Parameter rho_ge : rho >= 0. +Parameter correct : Z -> Z -> Prop. + + +Definition rbound1 (C:Z -> Z -> Z) : Prop := + forall p s t, correct p t /\ s <= t -> C p t - C p s <= (1-rho)*(t-s). + +Definition rbound2 (C:Z -> Z -> Z) : Prop := + forall p s t, correct p t /\ s <= t -> (1-rho)*(t-s) <= C p t - C p s. + + +Lemma bounded_drift : forall s t p q C D, s <= t /\ correct p t /\ correct q t /\ + rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D -> + Zabs (C p t - D q t) <= Zabs (C p s - D q s) + 2 * rho * (t- s). +Proof. + intros. + generalize (Zabs_eq (C p t - D q t)). + generalize (Zabs_non_eq (C p t - D q t)). + generalize (Zabs_eq (C p s -D q s)). + generalize (Zabs_non_eq (C p s - D q s)). + unfold rbound2 in H. + unfold rbound1 in H. + intuition. + generalize (H6 _ _ _ (conj H H4)). + generalize (H7 _ _ _ (conj H H4)). + generalize (H8 _ _ _ (conj H H4)). + generalize (H10 _ _ _ (conj H H4)). + generalize (H6 _ _ _ (conj H5 H4)). + generalize (H7 _ _ _ (conj H5 H4)). + generalize (H8 _ _ _ (conj H5 H4)). + generalize (H10 _ _ _ (conj H5 H4)). + generalize rho_ge. + micromega Z. +Qed. + +(* Rule of signs *) + +Lemma sign_pos_pos: forall x y, + x > 0 -> y > 0 -> x*y > 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_pos_zero: forall x y, + x > 0 -> y = 0 -> x*y = 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_pos_neg: forall x y, + x > 0 -> y < 0 -> x*y < 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_zer_pos: forall x y, + x = 0 -> y > 0 -> x*y = 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_zero_zero: forall x y, + x = 0 -> y = 0 -> x*y = 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_zero_neg: forall x y, + x = 0 -> y < 0 -> x*y = 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_neg_pos: forall x y, + x < 0 -> y > 0 -> x*y < 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_neg_zero: forall x y, + x < 0 -> y = 0 -> x*y = 0. +Proof. + intros; micromega Z. +Qed. + +Lemma sign_neg_neg: forall x y, + x < 0 -> y < 0 -> x*y > 0. +Proof. + intros; micromega Z. +Qed. + + +(* Other (simple) examples *) + +Lemma binomial : forall x y, (x+y)^2 = x^2 + 2*x*y + y^2. +Proof. + intros. + zfarkas. +Qed. + +Lemma product : forall x y, x >= 0 -> y >= 0 -> x * y >= 0. +Proof. + intros. + micromega Z. +Qed. + + +Lemma product_strict : forall x y, x > 0 -> y > 0 -> x * y > 0. +Proof. + intros. + micromega Z. +Qed. + + +Lemma pow_2_pos : forall x, x ^ 2 + 1 = 0 -> False. +Proof. + intros ; micromega Z. +Qed. + +(* Found in Parrilo's talk *) +(* BUG?: certificate with **very** big coefficients *) +Lemma parrilo_ex : forall x y, x - y^2 + 3 >= 0 -> y + x^2 + 2 = 0 -> False. +Proof. + intros. + micromega Z. +Qed. + + +(* from hol_light/Examples/sos.ml *) + +Lemma hol_light1 : forall a1 a2 b1 b2, + a1 >= 0 -> a2 >= 0 -> + (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) -> + (a1 * b1 + a2 * b2 = 0) -> a1 * a2 - b1 * b2 >= 0. +Proof. + intros ; micromega Z. +Qed. + + +Lemma hol_light2 : forall x a, + 3 * x + 7 * a < 4 -> 3 < 2 * x -> a < 0. +Proof. + intros ; micromega Z. +Qed. + +Lemma hol_light3 : forall b a c x, + b ^ 2 < 4 * a * c -> (a * x ^2 + b * x + c = 0) -> False. +Proof. +intros ; micromega Z. +Qed. + +Lemma hol_light4 : forall a c b x, + a * x ^ 2 + b * x + c = 0 -> b ^ 2 >= 4 * a * c. +Proof. +intros ; micromega Z. +Qed. + +Lemma hol_light5 : forall x y, + 0 <= x /\ x <= 1 /\ 0 <= y /\ y <= 1 + -> x ^ 2 + y ^ 2 < 1 \/ + (x - 1) ^ 2 + y ^ 2 < 1 \/ + x ^ 2 + (y - 1) ^ 2 < 1 \/ + (x - 1) ^ 2 + (y - 1) ^ 2 < 1. +Proof. +intros; micromega Z. +Qed. + + + +Lemma hol_light7 : forall x y z, + 0<= x /\ 0 <= y /\ 0 <= z /\ x + y + z <= 3 + -> x * y + x * z + y * z >= 3 * x * y * z. +Proof. +intros ; micromega Z. +Qed. + +Lemma hol_light8 : forall x y z, + x ^ 2 + y ^ 2 + z ^ 2 = 1 -> (x + y + z) ^ 2 <= 3. +Proof. + intros ; micromega Z. +Qed. + +Lemma hol_light9 : forall w x y z, + w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = 1 + -> (w + x + y + z) ^ 2 <= 4. +Proof. + intros;micromega Z. +Qed. + +Lemma hol_light10 : forall x y, + x >= 1 /\ y >= 1 -> x * y >= x + y - 1. +Proof. + intros ; micromega Z. +Qed. + +Lemma hol_light11 : forall x y, + x > 1 /\ y > 1 -> x * y > x + y - 1. +Proof. + intros ; micromega Z. +Qed. + + +Lemma hol_light12: forall x y z, + 2 <= x /\ x <= 125841 / 50000 /\ + 2 <= y /\ y <= 125841 / 50000 /\ + 2 <= z /\ z <= 125841 / 50000 + -> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= 0. +Proof. + intros x y z ; set (e:= (125841 / 50000)). + compute in e. + unfold e ; intros ; micromega Z. +Qed. + +Lemma hol_light14 : forall x y z, + 2 <= x /\ x <= 4 /\ 2 <= y /\ y <= 4 /\ 2 <= z /\ z <= 4 + -> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z). +Proof. + intros ;micromega Z. +Qed. + +(* ------------------------------------------------------------------------- *) +(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *) +(* ------------------------------------------------------------------------- *) + +Lemma hol_light16 : forall x y, + 0 <= x /\ 0 <= y /\ (x * y = 1) + -> x + y <= x ^ 2 + y ^ 2. +Proof. + intros ; micromega Z. +Qed. + +Lemma hol_light17 : forall x y, + 0 <= x /\ 0 <= y /\ (x * y = 1) + -> x * y * (x + y) <= x ^ 2 + y ^ 2. +Proof. + intros ; micromega Z. +Qed. + +Lemma hol_light18 : forall x y, + 0 <= x /\ 0 <= y -> x * y * (x + y) ^ 2 <= (x ^ 2 + y ^ 2) ^ 2. +Proof. + intros ; micromega Z. +Qed. + +(* ------------------------------------------------------------------------- *) +(* Some examples over integers and natural numbers. *) +(* ------------------------------------------------------------------------- *) + +Lemma hol_light19 : forall m n, 2 * m + n = (n + m) + m. +Proof. + intros ; zfarkas. +Qed. + +Lemma hol_light22 : forall n, n >= 0 -> n <= n * n. +Proof. + intros. + micromega Z. +Qed. + + +Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0 -> + ((x1 + y1) ^2 + x1 + 1 = (x2 + y2) ^ 2 + x2 + 1) + -> (x1 + y1 = x2 + y2). +Proof. + intros. + micromega Z. +Qed. + +Lemma motzkin' : forall x y, (x^2+y^2+1)*(x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0. +Proof. + intros ; sos Z. +Qed. + + + +Lemma motzkin : forall x y, (x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0. +Proof. + intros. + generalize (motzkin' x y). + micromega Z. +Qed. diff --git a/test-suite/micromega/heap3_vcgen_25.v b/test-suite/micromega/heap3_vcgen_25.v new file mode 100644 index 00000000..ec88b68d --- /dev/null +++ b/test-suite/micromega/heap3_vcgen_25.v @@ -0,0 +1,38 @@ +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import ZArith. +Require Import Micromegatac. + +Open Scope Z_scope. + +Lemma vcgen_25 : forall + (n : Z) + (m : Z) + (jt : Z) + (j : Z) + (it : Z) + (i : Z) + (H0 : 1 * it + -2 * i + -1 = 0) + (H : 1 * jt + -2 * j + -1 = 0) + (H1 : 1 * n + -10 = 0) + (H2 : 0 <= -4028 * i + 6222 * j + 705 * m + -16674) + (H3 : 0 <= -418 * i + 651 * j + 94 * m + -1866) + (H4 : 0 <= -209 * i + 302 * j + 47 * m + -839) + (H5 : 0 <= -1 * i + 1 * j + -1) + (H6 : 0 <= -1 * j + 1 * m + 0) + (H7 : 0 <= 1 * j + 5 * m + -27) + (H8 : 0 <= 2 * j + -1 * m + 2) + (H9 : 0 <= 7 * j + 10 * m + -74) + (H10 : 0 <= 18 * j + -139 * m + 1188) + (H11 : 0 <= 1 * i + 0) + (H13 : 0 <= 121 * i + 810 * j + -7465 * m + 64350), + (1 = -2 * i + it). +Proof. + intros ; zfarkas. +Qed. diff --git a/test-suite/micromega/qexample.v b/test-suite/micromega/qexample.v new file mode 100644 index 00000000..42aff5a4 --- /dev/null +++ b/test-suite/micromega/qexample.v @@ -0,0 +1,62 @@ +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import Micromegatac. +Require Import QArith. +Require Import Ring_normalize. + +Lemma plus_minus : forall x y, + 0 == x + y -> 0 == x -y -> 0 == x /\ 0 == y. +Proof. + intros. + omicron Q. +Qed. + +(* Other (simple) examples *) +Open Scope Q_scope. + +Lemma binomial : forall x y:Q, ((x+y)^2 == x^2 + (2 # 1) *x*y + y^2). +Proof. + intros. + omicron Q. +Qed. + + +Lemma hol_light19 : forall m n, (2 # 1) * m + n == (n + m) + m. +Proof. + intros ; omicron Q. +Qed. +Open Scope Z_scope. +Open Scope Q_scope. + +Lemma vcgen_25 : forall + (n : Q) + (m : Q) + (jt : Q) + (j : Q) + (it : Q) + (i : Q) + (H0 : 1 * it + (-2 # 1) * i + (-1 # 1) == 0) + (H : 1 * jt + (-2 # 1) * j + (-1 # 1) == 0) + (H1 : 1 * n + (-10 # 1) = 0) + (H2 : 0 <= (-4028 # 1) * i + (6222 # 1) * j + (705 # 1) * m + (-16674 # 1)) + (H3 : 0 <= (-418 # 1) * i + (651 # 1) * j + (94 # 1) * m + (-1866 # 1)) + (H4 : 0 <= (-209 # 1) * i + (302 # 1) * j + (47 # 1) * m + (-839 # 1)) + (H5 : 0 <= (-1 # 1) * i + 1 * j + (-1 # 1)) + (H6 : 0 <= (-1 # 1) * j + 1 * m + (0 # 1)) + (H7 : 0 <= (1 # 1) * j + (5 # 1) * m + (-27 # 1)) + (H8 : 0 <= (2 # 1) * j + (-1 # 1) * m + (2 # 1)) + (H9 : 0 <= (7 # 1) * j + (10 # 1) * m + (-74 # 1)) + (H10 : 0 <= (18 # 1) * j + (-139 # 1) * m + (1188 # 1)) + (H11 : 0 <= 1 * i + (0 # 1)) + (H13 : 0 <= (121 # 1) * i + (810 # 1) * j + (-7465 # 1) * m + (64350 # 1)), + (( 1# 1) == (-2 # 1) * i + it). +Proof. + intros. + omicron Q. +Qed. diff --git a/test-suite/micromega/rexample.v b/test-suite/micromega/rexample.v new file mode 100644 index 00000000..5132dc4e --- /dev/null +++ b/test-suite/micromega/rexample.v @@ -0,0 +1,62 @@ +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import Micromegatac. +Require Import Reals. +Require Import Ring_normalize. + +Open Scope R_scope. + +Lemma plus_minus : forall x y, + 0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y. +Proof. + intros. + omicron R. +Qed. + +(* Other (simple) examples *) + +Lemma binomial : forall x y, ((x+y)^2 = x^2 + 2 *x*y + y^2). +Proof. + intros. + omicron R. +Qed. + + +Lemma hol_light19 : forall m n, 2 * m + n = (n + m) + m. +Proof. + intros ; omicron R. +Qed. + + +Lemma vcgen_25 : forall + (n : R) + (m : R) + (jt : R) + (j : R) + (it : R) + (i : R) + (H0 : 1 * it + (-2%R ) * i + (-1%R ) = 0) + (H : 1 * jt + (-2 ) * j + (-1 ) = 0) + (H1 : 1 * n + (-10 ) = 0) + (H2 : 0 <= (-4028 ) * i + (6222 ) * j + (705 ) * m + (-16674 )) + (H3 : 0 <= (-418 ) * i + (651 ) * j + (94 ) * m + (-1866 )) + (H4 : 0 <= (-209 ) * i + (302 ) * j + (47 ) * m + (-839 )) + (H5 : 0 <= (-1 ) * i + 1 * j + (-1 )) + (H6 : 0 <= (-1 ) * j + 1 * m + (0 )) + (H7 : 0 <= (1 ) * j + (5 ) * m + (-27 )) + (H8 : 0 <= (2 ) * j + (-1 ) * m + (2 )) + (H9 : 0 <= (7 ) * j + (10 ) * m + (-74 )) + (H10 : 0 <= (18 ) * j + (-139 ) * m + (1188 )) + (H11 : 0 <= 1 * i + (0 )) + (H13 : 0 <= (121 ) * i + (810 ) * j + (-7465 ) * m + (64350 )), + (( 1 ) = (-2 ) * i + it). +Proof. + intros. + omicron R. +Qed. diff --git a/test-suite/micromega/square.v b/test-suite/micromega/square.v new file mode 100644 index 00000000..30c72e8c --- /dev/null +++ b/test-suite/micromega/square.v @@ -0,0 +1,61 @@ +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import ZArith Zwf Micromegatac QArith. +Open Scope Z_scope. + +Lemma Zabs_square : forall x, (Zabs x)^2 = x^2. +Proof. + intros ; case (Zabs_dec x) ; intros ; micromega Z. +Qed. +Hint Resolve Zabs_pos Zabs_square. + +Lemma integer_statement : ~exists n, exists p, n^2 = 2*p^2 /\ n <> 0. +Proof. +intros [n [p [Heq Hnz]]]; pose (n' := Zabs n); pose (p':=Zabs p). +assert (facts : 0 <= Zabs n /\ 0 <= Zabs p /\ Zabs n^2=n^2 + /\ Zabs p^2 = p^2) by auto. +assert (H : (0 < n' /\ 0 <= p' /\ n' ^2 = 2* p' ^2)) by + (destruct facts as [Hf1 [Hf2 [Hf3 Hf4]]]; unfold n', p' ; micromega Z). +generalize p' H; elim n' using (well_founded_ind (Zwf_well_founded 0)); clear. +intros n IHn p [Hn [Hp Heq]]. +assert (Hzwf : Zwf 0 (2*p-n) n) by (unfold Zwf; micromega Z). +assert (Hdecr : 0 < 2*p-n /\ 0 <= n-p /\ (2*p-n)^2=2*(n-p)^2) by micromega Z. +apply (IHn (2*p-n) Hzwf (n-p) Hdecr). +Qed. + +Open Scope Q_scope. + +Lemma QnumZpower : forall x : Q, Qnum (x ^ 2)%Q = ((Qnum x) ^ 2) %Z. +Proof. + intros. + destruct x. + cbv beta iota zeta delta - [Zmult]. + ring. +Qed. + + +Lemma QdenZpower : forall x : Q, ' Qden (x ^ 2)%Q = ('(Qden x) ^ 2) %Z. +Proof. + intros. + destruct x. + cbv beta iota zeta delta - [Pmult]. + rewrite Pmult_1_r. + reflexivity. +Qed. + +Theorem sqrt2_not_rational : ~exists x:Q, x^2==2#1. +Proof. + unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Zmult_1_r. + intros HQeq. + assert (Heq : (Qnum x ^ 2 = 2 * ' Qden x ^ 2%Q)%Z) by + (rewrite QnumZpower in HQeq ; rewrite QdenZpower in HQeq ; auto). + assert (Hnx : (Qnum x <> 0)%Z) + by (intros Hx; simpl in HQeq; rewrite Hx in HQeq; discriminate HQeq). + apply integer_statement; exists (Qnum x); exists (' Qden x); auto. +Qed. diff --git a/test-suite/micromega/zomicron.v b/test-suite/micromega/zomicron.v new file mode 100644 index 00000000..b13654d6 --- /dev/null +++ b/test-suite/micromega/zomicron.v @@ -0,0 +1,27 @@ +Require Import ZArith. +Require Import Micromegatac. +Open Scope Z_scope. + +Lemma two_x_eq_1 : forall x, 2 * x = 1 -> False. +Proof. + intros. + omicron Z. +Qed. + +Lemma two_x_y_eq_1 : forall x y, 2 * x + 2 * y = 1 -> False. +Proof. + intros. + omicron Z. +Qed. + +Lemma two_x_y_z_eq_1 : forall x y z, 2 * x + 2 * y + 2 * z= 1 -> False. +Proof. + intros. + omicron Z. +Qed. + +Lemma omega_nightmare : forall x y, 27 <= 11 * x + 13 * y <= 45 -> 7 * x - 9 * y = 4 -> -10 <= 7 * x - 9 * y <= 4 -> False. +Proof. + intros ; intuition auto. + omicron Z. +Qed. |