summaryrefslogtreecommitdiff
path: root/test-suite/ideal-features
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /test-suite/ideal-features
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'test-suite/ideal-features')
-rw-r--r--test-suite/ideal-features/Apply.v28
-rw-r--r--test-suite/ideal-features/Case3.v45
-rw-r--r--test-suite/ideal-features/Case4.v73
-rw-r--r--test-suite/ideal-features/Case8.v76
4 files changed, 109 insertions, 113 deletions
diff --git a/test-suite/ideal-features/Apply.v b/test-suite/ideal-features/Apply.v
index bba356f2..6fd0fe8b 100644
--- a/test-suite/ideal-features/Apply.v
+++ b/test-suite/ideal-features/Apply.v
@@ -6,21 +6,25 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* This needs unification on type *)
+(* This needs step by step unfolding *)
-Goal (n,m:nat)(eq nat (S m) (S n)).
-Intros.
-Apply f_equal.
+Fixpoint T (n:nat) : Prop :=
+ match n with
+ | O => True
+ | S p => n = n -> T p
+ end.
-(* f_equal : (A,B:Set; f:(A->B); x,y:A)x=y->(f x)=(f y) *)
-(* and A cannot be deduced from the goal but only from the type of f, x or y *)
+Require Import Arith.
+Goal T 3 -> T 1.
+intro H.
+apply H.
-(* This needs step by step unfolding *)
+(* This needs unification on type *)
-Fixpoint T [n:nat] : Prop := Cases n of O => True | (S p) => n=n->(T p) end.
-Require Arith.
+Goal forall n m : nat, S m = S n :>nat.
+intros.
+apply f_equal.
-Goal (T (3))->(T (1)).
-Intro H.
-Apply H.
+(* f_equal : forall (A B:Set) (f:A->B) (x y:A), x=y->(f x)=(f y) *)
+(* and A cannot be deduced from the goal but only from the type of f, x or y *)
diff --git a/test-suite/ideal-features/Case3.v b/test-suite/ideal-features/Case3.v
index e9dba1e3..de7784ae 100644
--- a/test-suite/ideal-features/Case3.v
+++ b/test-suite/ideal-features/Case3.v
@@ -1,28 +1,29 @@
-Inductive Le : nat->nat->Set :=
- LeO: (n:nat)(Le O n)
-| LeS: (n,m:nat)(Le n m) -> (Le (S n) (S m)).
+Inductive Le : nat -> nat -> Set :=
+ | LeO : forall n : nat, Le 0 n
+ | LeS : forall n m : nat, Le n m -> Le (S n) (S m).
-Parameter iguales : (n,m:nat)(h:(Le n m))Prop .
+Parameter discr_l : forall n : nat, S n <> 0.
-Type <[n,m:nat][h:(Le n m)]Prop>Cases (LeO O) of
- (LeO O) => True
- | (LeS (S x) (S y) H) => (iguales (S x) (S y) H)
- | _ => False end.
+Type
+ (fun n : nat =>
+ match n return (n = 0 \/ n <> 0) with
+ | O => or_introl (0 <> 0) (refl_equal 0)
+ | S O => or_intror (1 = 0) (discr_l 0)
+ | S (S x) => or_intror (S (S x) = 0) (discr_l (S x))
+ end).
+Parameter iguales : forall (n m : nat) (h : Le n m), Prop.
-Type <[n,m:nat][h:(Le n m)]Prop>Cases (LeO O) of
- (LeO O) => True
- | (LeS (S x) O H) => (iguales (S x) O H)
- | _ => False end.
-
-Parameter discr_l : (n:nat) ~((S n)=O).
-
-Type
-[n:nat]
- <[n:nat]n=O\/~n=O>Cases n of
- O => (or_introl ? ~O=O (refl_equal ? O))
- | (S O) => (or_intror (S O)=O ? (discr_l O))
- | (S (S x)) => (or_intror (S (S x))=O ? (discr_l (S x)))
-
+Type
+ match LeO 0 as h in (Le n m) return Prop with
+ | LeO O => True
+ | LeS (S x) (S y) H => iguales (S x) (S y) H
+ | _ => False
end.
+Type
+ match LeO 0 as h in (Le n m) return Prop with
+ | LeO O => True
+ | LeS (S x) O H => iguales (S x) 0 H
+ | _ => False
+ end.
diff --git a/test-suite/ideal-features/Case4.v b/test-suite/ideal-features/Case4.v
index d8f14a4e..cb076a71 100644
--- a/test-suite/ideal-features/Case4.v
+++ b/test-suite/ideal-features/Case4.v
@@ -1,39 +1,34 @@
-Inductive listn : nat-> Set :=
- niln : (listn O)
-| consn : (n:nat)nat->(listn n) -> (listn (S n)).
-
-Inductive empty : (n:nat)(listn n)-> Prop :=
- intro_empty: (empty O niln).
-
-Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)).
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn n O y) as b) => (or_intror (empty (S n) b) ? (inv_empty n O y))
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
-
- end.
-
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | (consn n O y) => (or_intror (empty (S n) (consn n O y)) ?
- (inv_empty n O y))
- | (consn n a y) => (or_intror (empty (S n) (consn n a y)) ?
- (inv_empty n a y))
-
- end.
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn O a y) as b) => (or_intror (empty (S O) b) ? (inv_empty O a y))
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
-
- end.
-
+Inductive listn : nat -> Set :=
+ | niln : listn 0
+ | consn : forall n : nat, nat -> listn n -> listn (S n).
+
+Inductive empty : forall n : nat, listn n -> Prop :=
+ intro_empty : empty 0 niln.
+
+Parameter
+ inv_empty : forall (n a : nat) (l : listn n), ~ empty (S n) (consn n a l).
+
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn n O y as b => or_intror (empty (S n) b) (inv_empty n 0 y)
+ | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y)
+ end).
+
+
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn n O y => or_intror (empty (S n) (consn n 0 y)) (inv_empty n 0 y)
+ | consn n a y => or_intror (empty (S n) (consn n a y)) (inv_empty n a y)
+ end).
+
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn O a y as b => or_intror (empty 1 b) (inv_empty 0 a y)
+ | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y)
+ end).
diff --git a/test-suite/ideal-features/Case8.v b/test-suite/ideal-features/Case8.v
index 73b55028..2ac5bd8c 100644
--- a/test-suite/ideal-features/Case8.v
+++ b/test-suite/ideal-features/Case8.v
@@ -1,40 +1,36 @@
-Inductive listn : nat-> Set :=
- niln : (listn O)
-| consn : (n:nat)nat->(listn n) -> (listn (S n)).
-
-Inductive empty : (n:nat)(listn n)-> Prop :=
- intro_empty: (empty O niln).
-
-Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)).
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn n O y) as b) => (or_intror (empty (S n) b) ? (inv_empty n O y))
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
-
- end.
-
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | (consn n O y) => (or_intror (empty (S n) (consn n O y)) ?
- (inv_empty n O y))
- | (consn n a y) => (or_intror (empty (S n) (consn n a y)) ?
- (inv_empty n a y))
-
- end.
-
-
-
-Type
-[n:nat] [l:(listn n)]
- <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of
- niln => (or_introl ? ~(empty O niln) intro_empty)
- | ((consn O a y) as b) => (or_intror (empty (S O) b) ? (inv_empty O a y))
- | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y))
-
- end.
+Inductive listn : nat -> Set :=
+ | niln : listn 0
+ | consn : forall n : nat, nat -> listn n -> listn (S n).
+
+Inductive empty : forall n : nat, listn n -> Prop :=
+ intro_empty : empty 0 niln.
+
+Parameter
+ inv_empty : forall (n a : nat) (l : listn n), ~ empty (S n) (consn n a l).
+
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn n O y as b => or_intror (empty (S n) b) (inv_empty n 0 y)
+ | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y)
+ end).
+
+
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn n O y => or_intror (empty (S n) (consn n 0 y)) (inv_empty n 0 y)
+ | consn n a y => or_intror (empty (S n) (consn n a y)) (inv_empty n a y)
+ end).
+
+
+
+Type
+ (fun (n : nat) (l : listn n) =>
+ match l in (listn n) return (empty n l \/ ~ empty n l) with
+ | niln => or_introl (~ empty 0 niln) intro_empty
+ | consn O a y as b => or_intror (empty 1 b) (inv_empty 0 a y)
+ | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y)
+ end).