diff options
author | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2006-04-28 14:59:16 +0000 |
commit | 3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch) | |
tree | ad89c6bb57ceee608fcba2bb3435b74e0f57919e /test-suite/ideal-features | |
parent | 018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff) |
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'test-suite/ideal-features')
-rw-r--r-- | test-suite/ideal-features/Apply.v | 28 | ||||
-rw-r--r-- | test-suite/ideal-features/Case3.v | 45 | ||||
-rw-r--r-- | test-suite/ideal-features/Case4.v | 73 | ||||
-rw-r--r-- | test-suite/ideal-features/Case8.v | 76 |
4 files changed, 109 insertions, 113 deletions
diff --git a/test-suite/ideal-features/Apply.v b/test-suite/ideal-features/Apply.v index bba356f2..6fd0fe8b 100644 --- a/test-suite/ideal-features/Apply.v +++ b/test-suite/ideal-features/Apply.v @@ -6,21 +6,25 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* This needs unification on type *) +(* This needs step by step unfolding *) -Goal (n,m:nat)(eq nat (S m) (S n)). -Intros. -Apply f_equal. +Fixpoint T (n:nat) : Prop := + match n with + | O => True + | S p => n = n -> T p + end. -(* f_equal : (A,B:Set; f:(A->B); x,y:A)x=y->(f x)=(f y) *) -(* and A cannot be deduced from the goal but only from the type of f, x or y *) +Require Import Arith. +Goal T 3 -> T 1. +intro H. +apply H. -(* This needs step by step unfolding *) +(* This needs unification on type *) -Fixpoint T [n:nat] : Prop := Cases n of O => True | (S p) => n=n->(T p) end. -Require Arith. +Goal forall n m : nat, S m = S n :>nat. +intros. +apply f_equal. -Goal (T (3))->(T (1)). -Intro H. -Apply H. +(* f_equal : forall (A B:Set) (f:A->B) (x y:A), x=y->(f x)=(f y) *) +(* and A cannot be deduced from the goal but only from the type of f, x or y *) diff --git a/test-suite/ideal-features/Case3.v b/test-suite/ideal-features/Case3.v index e9dba1e3..de7784ae 100644 --- a/test-suite/ideal-features/Case3.v +++ b/test-suite/ideal-features/Case3.v @@ -1,28 +1,29 @@ -Inductive Le : nat->nat->Set := - LeO: (n:nat)(Le O n) -| LeS: (n,m:nat)(Le n m) -> (Le (S n) (S m)). +Inductive Le : nat -> nat -> Set := + | LeO : forall n : nat, Le 0 n + | LeS : forall n m : nat, Le n m -> Le (S n) (S m). -Parameter iguales : (n,m:nat)(h:(Le n m))Prop . +Parameter discr_l : forall n : nat, S n <> 0. -Type <[n,m:nat][h:(Le n m)]Prop>Cases (LeO O) of - (LeO O) => True - | (LeS (S x) (S y) H) => (iguales (S x) (S y) H) - | _ => False end. +Type + (fun n : nat => + match n return (n = 0 \/ n <> 0) with + | O => or_introl (0 <> 0) (refl_equal 0) + | S O => or_intror (1 = 0) (discr_l 0) + | S (S x) => or_intror (S (S x) = 0) (discr_l (S x)) + end). +Parameter iguales : forall (n m : nat) (h : Le n m), Prop. -Type <[n,m:nat][h:(Le n m)]Prop>Cases (LeO O) of - (LeO O) => True - | (LeS (S x) O H) => (iguales (S x) O H) - | _ => False end. - -Parameter discr_l : (n:nat) ~((S n)=O). - -Type -[n:nat] - <[n:nat]n=O\/~n=O>Cases n of - O => (or_introl ? ~O=O (refl_equal ? O)) - | (S O) => (or_intror (S O)=O ? (discr_l O)) - | (S (S x)) => (or_intror (S (S x))=O ? (discr_l (S x))) - +Type + match LeO 0 as h in (Le n m) return Prop with + | LeO O => True + | LeS (S x) (S y) H => iguales (S x) (S y) H + | _ => False end. +Type + match LeO 0 as h in (Le n m) return Prop with + | LeO O => True + | LeS (S x) O H => iguales (S x) 0 H + | _ => False + end. diff --git a/test-suite/ideal-features/Case4.v b/test-suite/ideal-features/Case4.v index d8f14a4e..cb076a71 100644 --- a/test-suite/ideal-features/Case4.v +++ b/test-suite/ideal-features/Case4.v @@ -1,39 +1,34 @@ -Inductive listn : nat-> Set := - niln : (listn O) -| consn : (n:nat)nat->(listn n) -> (listn (S n)). - -Inductive empty : (n:nat)(listn n)-> Prop := - intro_empty: (empty O niln). - -Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)). - -Type -[n:nat] [l:(listn n)] - <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of - niln => (or_introl ? ~(empty O niln) intro_empty) - | ((consn n O y) as b) => (or_intror (empty (S n) b) ? (inv_empty n O y)) - | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y)) - - end. - - -Type -[n:nat] [l:(listn n)] - <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of - niln => (or_introl ? ~(empty O niln) intro_empty) - | (consn n O y) => (or_intror (empty (S n) (consn n O y)) ? - (inv_empty n O y)) - | (consn n a y) => (or_intror (empty (S n) (consn n a y)) ? - (inv_empty n a y)) - - end. - -Type -[n:nat] [l:(listn n)] - <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of - niln => (or_introl ? ~(empty O niln) intro_empty) - | ((consn O a y) as b) => (or_intror (empty (S O) b) ? (inv_empty O a y)) - | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y)) - - end. - +Inductive listn : nat -> Set := + | niln : listn 0 + | consn : forall n : nat, nat -> listn n -> listn (S n). + +Inductive empty : forall n : nat, listn n -> Prop := + intro_empty : empty 0 niln. + +Parameter + inv_empty : forall (n a : nat) (l : listn n), ~ empty (S n) (consn n a l). + +Type + (fun (n : nat) (l : listn n) => + match l in (listn n) return (empty n l \/ ~ empty n l) with + | niln => or_introl (~ empty 0 niln) intro_empty + | consn n O y as b => or_intror (empty (S n) b) (inv_empty n 0 y) + | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y) + end). + + +Type + (fun (n : nat) (l : listn n) => + match l in (listn n) return (empty n l \/ ~ empty n l) with + | niln => or_introl (~ empty 0 niln) intro_empty + | consn n O y => or_intror (empty (S n) (consn n 0 y)) (inv_empty n 0 y) + | consn n a y => or_intror (empty (S n) (consn n a y)) (inv_empty n a y) + end). + +Type + (fun (n : nat) (l : listn n) => + match l in (listn n) return (empty n l \/ ~ empty n l) with + | niln => or_introl (~ empty 0 niln) intro_empty + | consn O a y as b => or_intror (empty 1 b) (inv_empty 0 a y) + | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y) + end). diff --git a/test-suite/ideal-features/Case8.v b/test-suite/ideal-features/Case8.v index 73b55028..2ac5bd8c 100644 --- a/test-suite/ideal-features/Case8.v +++ b/test-suite/ideal-features/Case8.v @@ -1,40 +1,36 @@ -Inductive listn : nat-> Set := - niln : (listn O) -| consn : (n:nat)nat->(listn n) -> (listn (S n)). - -Inductive empty : (n:nat)(listn n)-> Prop := - intro_empty: (empty O niln). - -Parameter inv_empty : (n,a:nat)(l:(listn n)) ~(empty (S n) (consn n a l)). - -Type -[n:nat] [l:(listn n)] - <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of - niln => (or_introl ? ~(empty O niln) intro_empty) - | ((consn n O y) as b) => (or_intror (empty (S n) b) ? (inv_empty n O y)) - | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y)) - - end. - - -Type -[n:nat] [l:(listn n)] - <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of - niln => (or_introl ? ~(empty O niln) intro_empty) - | (consn n O y) => (or_intror (empty (S n) (consn n O y)) ? - (inv_empty n O y)) - | (consn n a y) => (or_intror (empty (S n) (consn n a y)) ? - (inv_empty n a y)) - - end. - - - -Type -[n:nat] [l:(listn n)] - <[n:nat] [l:(listn n)](empty n l) \/ ~(empty n l)>Cases l of - niln => (or_introl ? ~(empty O niln) intro_empty) - | ((consn O a y) as b) => (or_intror (empty (S O) b) ? (inv_empty O a y)) - | ((consn n a y) as b) => (or_intror (empty (S n) b) ? (inv_empty n a y)) - - end. +Inductive listn : nat -> Set := + | niln : listn 0 + | consn : forall n : nat, nat -> listn n -> listn (S n). + +Inductive empty : forall n : nat, listn n -> Prop := + intro_empty : empty 0 niln. + +Parameter + inv_empty : forall (n a : nat) (l : listn n), ~ empty (S n) (consn n a l). + +Type + (fun (n : nat) (l : listn n) => + match l in (listn n) return (empty n l \/ ~ empty n l) with + | niln => or_introl (~ empty 0 niln) intro_empty + | consn n O y as b => or_intror (empty (S n) b) (inv_empty n 0 y) + | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y) + end). + + +Type + (fun (n : nat) (l : listn n) => + match l in (listn n) return (empty n l \/ ~ empty n l) with + | niln => or_introl (~ empty 0 niln) intro_empty + | consn n O y => or_intror (empty (S n) (consn n 0 y)) (inv_empty n 0 y) + | consn n a y => or_intror (empty (S n) (consn n a y)) (inv_empty n a y) + end). + + + +Type + (fun (n : nat) (l : listn n) => + match l in (listn n) return (empty n l \/ ~ empty n l) with + | niln => or_introl (~ empty 0 niln) intro_empty + | consn O a y as b => or_intror (empty 1 b) (inv_empty 0 a y) + | consn n a y as b => or_intror (empty (S n) b) (inv_empty n a y) + end). |