summaryrefslogtreecommitdiff
path: root/test-suite/failure/subtyping2.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /test-suite/failure/subtyping2.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'test-suite/failure/subtyping2.v')
-rw-r--r--test-suite/failure/subtyping2.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/test-suite/failure/subtyping2.v b/test-suite/failure/subtyping2.v
index 0a75ae45..addd3b45 100644
--- a/test-suite/failure/subtyping2.v
+++ b/test-suite/failure/subtyping2.v
@@ -61,7 +61,7 @@ End Inverse_Image.
Section Burali_Forti_Paradox.
- Definition morphism (A : Type) (R : A -> A -> Prop)
+ Definition morphism (A : Type) (R : A -> A -> Prop)
(B : Type) (S : B -> B -> Prop) (f : A -> B) :=
forall x y : A, R x y -> S (f x) (f y).
@@ -69,7 +69,7 @@ Section Burali_Forti_Paradox.
assumes there exists an universal system of notations, i.e:
- A type A0
- An injection i0 from relations on any type into A0
- - The proof that i0 is injective modulo morphism
+ - The proof that i0 is injective modulo morphism
*)
Variable A0 : Type. (* Type_i *)
Variable i0 : forall X : Type, (X -> X -> Prop) -> A0. (* X: Type_j *)
@@ -82,7 +82,7 @@ Section Burali_Forti_Paradox.
(* Embedding of x in y: x and y are images of 2 well founded relations
R1 and R2, the ordinal of R2 being strictly greater than that of R1.
*)
- Record emb (x y : A0) : Prop :=
+ Record emb (x y : A0) : Prop :=
{X1 : Type;
R1 : X1 -> X1 -> Prop;
eqx : x = i0 X1 R1;
@@ -166,7 +166,7 @@ Defined.
End Subsets.
- Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
+ Definition fsub (a b : A0) (H : emb a b) (x : sub a) :
sub b := Build_sub _ (witness _ x) (emb_trans _ _ _ (emb_wit _ x) H).
(* F is a morphism: a < b => F(a) < F(b)