diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /test-suite/failure/subtyping2.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'test-suite/failure/subtyping2.v')
-rw-r--r-- | test-suite/failure/subtyping2.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/test-suite/failure/subtyping2.v b/test-suite/failure/subtyping2.v index 0a75ae45..addd3b45 100644 --- a/test-suite/failure/subtyping2.v +++ b/test-suite/failure/subtyping2.v @@ -61,7 +61,7 @@ End Inverse_Image. Section Burali_Forti_Paradox. - Definition morphism (A : Type) (R : A -> A -> Prop) + Definition morphism (A : Type) (R : A -> A -> Prop) (B : Type) (S : B -> B -> Prop) (f : A -> B) := forall x y : A, R x y -> S (f x) (f y). @@ -69,7 +69,7 @@ Section Burali_Forti_Paradox. assumes there exists an universal system of notations, i.e: - A type A0 - An injection i0 from relations on any type into A0 - - The proof that i0 is injective modulo morphism + - The proof that i0 is injective modulo morphism *) Variable A0 : Type. (* Type_i *) Variable i0 : forall X : Type, (X -> X -> Prop) -> A0. (* X: Type_j *) @@ -82,7 +82,7 @@ Section Burali_Forti_Paradox. (* Embedding of x in y: x and y are images of 2 well founded relations R1 and R2, the ordinal of R2 being strictly greater than that of R1. *) - Record emb (x y : A0) : Prop := + Record emb (x y : A0) : Prop := {X1 : Type; R1 : X1 -> X1 -> Prop; eqx : x = i0 X1 R1; @@ -166,7 +166,7 @@ Defined. End Subsets. - Definition fsub (a b : A0) (H : emb a b) (x : sub a) : + Definition fsub (a b : A0) (H : emb a b) (x : sub a) : sub b := Build_sub _ (witness _ x) (emb_trans _ _ _ (emb_wit _ x) H). (* F is a morphism: a < b => F(a) < F(b) |