diff options
author | Stephane Glondu <steph@glondu.net> | 2011-12-25 13:19:42 +0100 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2011-12-25 13:19:42 +0100 |
commit | 300293c119981054c95182a90c829058530a6b6f (patch) | |
tree | d7303613741c5796b58ced7db24ec7203327dbb2 /test-suite/bugs/closed/shouldsucceed/2467.v | |
parent | 9d27ae09786866b6e3d7b79d1fa7667e5e2aa309 (diff) |
Imported Upstream version 8.3.pl3upstream/8.3.pl3
Diffstat (limited to 'test-suite/bugs/closed/shouldsucceed/2467.v')
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/2467.v | 49 |
1 files changed, 49 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/shouldsucceed/2467.v b/test-suite/bugs/closed/shouldsucceed/2467.v new file mode 100644 index 00000000..ad17814a --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2467.v @@ -0,0 +1,49 @@ +(* +In the code below, I would expect the + NameSetDec.fsetdec. +to solve the Lemma, but I need to do it in steps instead. + +This is a regression relative to FSet, + +I have v8.3 (13702). +*) + +Require Import Coq.MSets.MSets. + +Parameter Name : Set. +Parameter Name_compare : Name -> Name -> comparison. +Parameter Name_compare_sym : forall {x y : Name}, + Name_compare y x = CompOpp (Name_compare x y). +Parameter Name_compare_trans : forall {c : comparison} + {x y z : Name}, + Name_compare x y = c + -> Name_compare y z = c + -> Name_compare x z = c. +Parameter Name_eq_leibniz : forall {s s' : Name}, + Name_compare s s' = Eq + -> s = s'. + +Module NameOrderedTypeAlt. +Definition t := Name. +Definition compare := Name_compare. +Definition compare_sym := @Name_compare_sym. +Definition compare_trans := @Name_compare_trans. +End NameOrderedTypeAlt. + +Module NameOrderedType := OT_from_Alt(NameOrderedTypeAlt). + +Module NameOrderedTypeWithLeibniz. +Include NameOrderedType. +Definition eq_leibniz := @Name_eq_leibniz. +End NameOrderedTypeWithLeibniz. + +Module NameSetMod := MSetList.MakeWithLeibniz(NameOrderedTypeWithLeibniz). +Module NameSetDec := WDecide (NameSetMod). + +Lemma foo : forall (xs ys : NameSetMod.t) + (n : Name) + (H1 : NameSetMod.Equal xs (NameSetMod.add n ys)), + NameSetMod.In n xs. +Proof. +NameSetDec.fsetdec. +Qed. |