summaryrefslogtreecommitdiff
path: root/test-suite/bugs/closed/HoTT_coq_029.v
diff options
context:
space:
mode:
authorGravatar Enrico Tassi <gareuselesinge@debian.org>2015-01-25 14:42:51 +0100
committerGravatar Enrico Tassi <gareuselesinge@debian.org>2015-01-25 14:42:51 +0100
commit7cfc4e5146be5666419451bdd516f1f3f264d24a (patch)
treee4197645da03dc3c7cc84e434cc31d0a0cca7056 /test-suite/bugs/closed/HoTT_coq_029.v
parent420f78b2caeaaddc6fe484565b2d0e49c66888e5 (diff)
Imported Upstream version 8.5~beta1+dfsg
Diffstat (limited to 'test-suite/bugs/closed/HoTT_coq_029.v')
-rw-r--r--test-suite/bugs/closed/HoTT_coq_029.v335
1 files changed, 335 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/HoTT_coq_029.v b/test-suite/bugs/closed/HoTT_coq_029.v
new file mode 100644
index 00000000..4fd54b56
--- /dev/null
+++ b/test-suite/bugs/closed/HoTT_coq_029.v
@@ -0,0 +1,335 @@
+Module FirstComment.
+ Set Implicit Arguments.
+ Generalizable All Variables.
+ Set Asymmetric Patterns.
+ Set Universe Polymorphism.
+
+ Reserved Notation "x # y" (at level 40, left associativity).
+ Reserved Notation "x #m y" (at level 40, left associativity).
+
+ Delimit Scope object_scope with object.
+ Delimit Scope morphism_scope with morphism.
+ Delimit Scope category_scope with category.
+
+ Record Category (obj : Type) :=
+ {
+ Object :> _ := obj;
+ Morphism : obj -> obj -> Type;
+
+ Identity : forall x, Morphism x x;
+ Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d'
+ }.
+
+ Bind Scope object_scope with Object.
+ Bind Scope morphism_scope with Morphism.
+
+ Arguments Object {obj%type} C%category / : rename.
+ Arguments Morphism {obj%type} !C%category s d : rename. (* , simpl nomatch. *)
+ Arguments Identity {obj%type} [!C%category] x%object : rename.
+ Arguments Compose {obj%type} [!C%category s%object d%object d'%object] m1%morphism m2%morphism : rename.
+
+ Bind Scope category_scope with Category.
+
+ Record Functor
+ `(C : @Category objC)
+ `(D : @Category objD)
+ := {
+ ObjectOf :> objC -> objD;
+ MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
+ }.
+
+ Record NaturalTransformation
+ `(C : @Category objC)
+ `(D : @Category objD)
+ (F G : Functor C D)
+ := {
+ ComponentsOf :> forall c, D.(Morphism) (F c) (G c)
+ }.
+
+ Definition ProductCategory
+ `(C : @Category objC)
+ `(D : @Category objD)
+ : @Category (objC * objD)%type.
+ refine (@Build_Category _
+ (fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type)
+ (fun o => (Identity (fst o), Identity (snd o)))
+ (fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd m2) (snd m1)))).
+
+ Defined.
+
+ Infix "*" := ProductCategory : category_scope.
+
+ Record IsomorphismOf `{C : @Category objC} {s d} (m : C.(Morphism) s d) :=
+ {
+ IsomorphismOf_Morphism :> C.(Morphism) s d := m;
+ Inverse : C.(Morphism) d s
+ }.
+
+ Record NaturalIsomorphism
+ `(C : @Category objC)
+ `(D : @Category objD)
+ (F G : Functor C D)
+ := {
+ NaturalIsomorphism_Transformation :> NaturalTransformation F G;
+ NaturalIsomorphism_Isomorphism : forall x : objC, IsomorphismOf (NaturalIsomorphism_Transformation x)
+ }.
+
+ Section PreMonoidalCategory.
+ Context `(C : @Category objC).
+
+ Variable TensorProduct : Functor (C * C) C.
+
+ Let src {C : @Category objC} {s d} (_ : Morphism C s d) := s.
+ Let dst {C : @Category objC} {s d} (_ : Morphism C s d) := d.
+
+ Local Notation "A # B" := (TensorProduct (A, B)).
+ Local Notation "A #m B" := (TensorProduct.(MorphismOf) ((@src _ _ _ A, @src _ _ _ B)) ((@dst _ _ _ A, @dst _ _ _ B)) (A, B)%morphism).
+
+ Let TriMonoidalProductL_ObjectOf (abc : C * C * C) : C :=
+ (fst (fst abc) # snd (fst abc)) # snd abc.
+
+ Let TriMonoidalProductR_ObjectOf (abc : C * C * C) : C :=
+ fst (fst abc) # (snd (fst abc) # snd abc).
+
+ Let TriMonoidalProductL_MorphismOf (s d : C * C * C) (m : Morphism (C * C * C) s d) :
+ Morphism C (TriMonoidalProductL_ObjectOf s) (TriMonoidalProductL_ObjectOf d).
+ Admitted.
+
+ Let TriMonoidalProductR_MorphismOf (s d : C * C * C) (m : Morphism (C * C * C) s d) :
+ Morphism C (TriMonoidalProductR_ObjectOf s) (TriMonoidalProductR_ObjectOf d).
+ Admitted.
+
+ Definition TriMonoidalProductL : Functor (C * C * C) C.
+ refine (Build_Functor (C * C * C) C
+ TriMonoidalProductL_ObjectOf
+ TriMonoidalProductL_MorphismOf).
+ Defined.
+
+ Definition TriMonoidalProductR : Functor (C * C * C) C.
+ refine (Build_Functor (C * C * C) C
+ TriMonoidalProductR_ObjectOf
+ TriMonoidalProductR_MorphismOf).
+ Defined.
+
+ Variable Associator : NaturalIsomorphism TriMonoidalProductL TriMonoidalProductR.
+
+ Section AssociatorCoherenceCondition.
+ Variables a b c d : C.
+
+ (* going from top-left *)
+ Let AssociatorCoherenceConditionT0 : Morphism C (((a # b) # c) # d) ((a # (b # c)) # d)
+ := Associator (a, b, c) #m Identity (C := C) d.
+ Let AssociatorCoherenceConditionT1 : Morphism C ((a # (b # c)) # d) (a # ((b # c) # d))
+ := Associator (a, b # c, d).
+ Let AssociatorCoherenceConditionT2 : Morphism C (a # ((b # c) # d)) (a # (b # (c # d)))
+ := Identity (C := C) a #m Associator (b, c, d).
+ Let AssociatorCoherenceConditionB0 : Morphism C (((a # b) # c) # d) ((a # b) # (c # d))
+ := Associator (a # b, c, d).
+ Let AssociatorCoherenceConditionB1 : Morphism C ((a # b) # (c # d)) (a # (b # (c # d)))
+ := Associator (a, b, c # d).
+
+ Definition AssociatorCoherenceCondition' :=
+ Compose AssociatorCoherenceConditionT2 (Compose AssociatorCoherenceConditionT1 AssociatorCoherenceConditionT0)
+ = Compose AssociatorCoherenceConditionB1 AssociatorCoherenceConditionB0.
+ End AssociatorCoherenceCondition.
+
+ Definition AssociatorCoherenceCondition := Eval unfold AssociatorCoherenceCondition' in
+ forall a b c d : C, AssociatorCoherenceCondition' a b c d.
+ End PreMonoidalCategory.
+
+ Section MonoidalCategory.
+ Variable objC : Type.
+
+ Let AssociatorCoherenceCondition' := Eval unfold AssociatorCoherenceCondition in @AssociatorCoherenceCondition.
+
+ Record MonoidalCategory :=
+ {
+ MonoidalUnderlyingCategory :> @Category objC;
+ TensorProduct : Functor (MonoidalUnderlyingCategory * MonoidalUnderlyingCategory) MonoidalUnderlyingCategory;
+ IdentityObject : objC;
+ Associator : NaturalIsomorphism (TriMonoidalProductL TensorProduct) (TriMonoidalProductR TensorProduct);
+ AssociatorCoherent : AssociatorCoherenceCondition' Associator
+ }.
+ End MonoidalCategory.
+
+ Section EnrichedCategory.
+ Context `(M : @MonoidalCategory objM).
+ Let x : M := IdentityObject M.
+ (* Anomaly: apply_coercion_args: mismatch between arguments and coercion. Please report. *)
+ End EnrichedCategory.
+End FirstComment.
+
+Module SecondComment.
+ Set Implicit Arguments.
+ Set Universe Polymorphism.
+ Generalizable All Variables.
+
+ Record prod (A B : Type) := pair { fst : A; snd : B }.
+ Arguments fst {A B} _.
+ Arguments snd {A B} _.
+ Infix "*" := prod : type_scope.
+ Notation " ( x , y ) " := (@pair _ _ x y).
+ Record Category (obj : Type) :=
+ Build_Category {
+ Object :> _ := obj;
+ Morphism : obj -> obj -> Type;
+
+ Identity : forall x, Morphism x x;
+ Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d'
+ }.
+
+ Arguments Identity {obj%type} [!C] x : rename.
+ Arguments Compose {obj%type} [!C s d d'] m1 m2 : rename.
+
+ Record > Category' :=
+ {
+ LSObject : Type;
+
+ LSUnderlyingCategory :> @Category LSObject
+ }.
+
+ Section Functor.
+ Context `(C : @Category objC).
+ Context `(D : @Category objD).
+
+
+ Record Functor :=
+ {
+ ObjectOf :> objC -> objD;
+ MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
+ }.
+ End Functor.
+
+ Arguments MorphismOf {objC%type} [C] {objD%type} [D] F [s d] m : rename, simpl nomatch.
+
+ Section FunctorComposition.
+ Context `(C : @Category objC).
+ Context `(D : @Category objD).
+ Context `(E : @Category objE).
+
+ Definition ComposeFunctors (G : Functor D E) (F : Functor C D) : Functor C E.
+ Admitted.
+ End FunctorComposition.
+
+ Section IdentityFunctor.
+ Context `(C : @Category objC).
+
+
+ Definition IdentityFunctor : Functor C C.
+ refine {| ObjectOf := (fun x => x);
+ MorphismOf := (fun _ _ x => x)
+ |}.
+ Defined.
+ End IdentityFunctor.
+
+ Section ProductCategory.
+ Context `(C : @Category objC).
+ Context `(D : @Category objD).
+
+ Definition ProductCategory : @Category (objC * objD)%type.
+ refine (@Build_Category _
+ (fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type)
+ (fun o => (Identity (fst o), Identity (snd o)))
+ (fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd m2) (snd m1)))).
+ Defined.
+ End ProductCategory.
+
+ Definition OppositeCategory `(C : @Category objC) : Category objC :=
+ @Build_Category objC
+ (fun s d => Morphism C d s)
+ (Identity (C := C))
+ (fun _ _ _ m1 m2 => Compose m2 m1).
+
+ Parameter FunctorCategory : forall `(C : @Category objC) `(D : @Category objD), @Category (Functor C D).
+
+ Parameter TerminalCategory : Category unit.
+
+ Section ComputableCategory.
+ Variable I : Type.
+ Variable Index2Object : I -> Type.
+ Variable Index2Cat : forall i : I, @Category (@Index2Object i).
+
+ Local Coercion Index2Cat : I >-> Category.
+
+ Definition ComputableCategory : @Category I.
+ refine (@Build_Category _
+ (fun C D : I => Functor C D)
+ (fun o : I => IdentityFunctor o)
+ (fun C D E : I => ComposeFunctors (C := C) (D := D) (E := E))).
+ Defined.
+ End ComputableCategory.
+
+ Section SmallCat.
+ Definition LocallySmallCat := ComputableCategory _ LSUnderlyingCategory.
+ End SmallCat.
+
+ Section CommaCategory.
+ Context `(A : @Category objA).
+ Context `(B : @Category objB).
+ Context `(C : @Category objC).
+ Variable S : Functor A C.
+ Variable T : Functor B C.
+
+ Record CommaCategory_Object := { CommaCategory_Object_Member :> { ab : objA * objB & C.(Morphism) (S (fst ab)) (T (snd ab)) } }.
+
+ Let SortPolymorphic_Helper (A T : Type) (Build_T : A -> T) := A.
+
+ Definition CommaCategory_ObjectT := Eval hnf in SortPolymorphic_Helper Build_CommaCategory_Object.
+ Definition Build_CommaCategory_Object' (mem : CommaCategory_ObjectT) := Build_CommaCategory_Object mem.
+ Global Coercion Build_CommaCategory_Object' : CommaCategory_ObjectT >-> CommaCategory_Object.
+
+ Definition CommaCategory : @Category CommaCategory_Object.
+ Admitted.
+ End CommaCategory.
+
+ Definition SliceCategory_Functor `(C : @Category objC) (a : C) : Functor TerminalCategory C
+ := {| ObjectOf := (fun _ => a);
+ MorphismOf := (fun _ _ _ => Identity a)
+ |}.
+
+ Definition SliceCategoryOver
+ : forall (objC : Type) (C : Category objC) (a : C),
+ Category
+ (CommaCategory_Object (IdentityFunctor C)
+ (SliceCategory_Functor C a)).
+ admit.
+ Defined.
+
+ Section CommaCategoryProjectionFunctor.
+ Context `(A : Category objA).
+ Context `(B : Category objB).
+ Context `(C : Category objC).
+
+ Variable S : (OppositeCategory (FunctorCategory A C)).
+ Variable T : (FunctorCategory B C).
+
+ Definition CommaCategoryProjection : Functor (CommaCategory S T) (ProductCategory A B).
+ Admitted.
+
+ Definition CommaCategoryProjectionFunctor_ObjectOf
+ : @SliceCategoryOver _ LocallySmallCat (ProductCategory A B)
+ :=
+ existT _
+ ((CommaCategory S T) : Category', tt)
+ (CommaCategoryProjection) :
+ CommaCategory_ObjectT (IdentityFunctor _)
+ (SliceCategory_Functor LocallySmallCat
+ (ProductCategory A B)).
+ (* Anomaly: apply_coercion_args: mismatch between arguments and coercion. Please report. *)
+ (* Toplevel input, characters 110-142:
+Error:
+In environment
+objA : Type
+A : Category objA
+objB : Type
+B : Category objB
+objC : Type
+C : Category objC
+S : OppositeCategory (FunctorCategory A C)
+T : FunctorCategory B C
+The term "ProductCategory A B:Category (objA * objB)" has type
+ "Category (objA * objB)" while it is expected to have type
+ "Object LocallySmallCat".
+ *)
+ End CommaCategoryProjectionFunctor.
+End SecondComment.