diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /pretyping/cbv.ml |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'pretyping/cbv.ml')
-rw-r--r-- | pretyping/cbv.ml | 352 |
1 files changed, 352 insertions, 0 deletions
diff --git a/pretyping/cbv.ml b/pretyping/cbv.ml new file mode 100644 index 00000000..88f59ded --- /dev/null +++ b/pretyping/cbv.ml @@ -0,0 +1,352 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: cbv.ml,v 1.12.2.1 2004/07/16 19:30:44 herbelin Exp $ *) + +open Util +open Pp +open Term +open Names +open Environ +open Instantiate +open Univ +open Evd +open Closure +open Esubst + +(**** Call by value reduction ****) + +(* The type of terms with closure. The meaning of the constructors and + * the invariants of this datatype are the following: + * VAL(k,c) represents the constr c with a delayed shift of k. c must be + * in normal form and neutral (i.e. not a lambda, a construct or a + * (co)fix, because they may produce redexes by applying them, + * or putting them in a case) + * LAM(x,a,b,S) is the term [S]([x:a]b). the bindings is propagated + * only when the abstraction is applied, and then we use the rule + * ([S]([x:a]b) c) --> [S.c]b + * This corresponds to the usual strategy of weak reduction + * FIXP(op,bd,S,args) is the fixpoint (Fix or Cofix) of bodies bd under + * the bindings S, and then applied to args. Here again, + * weak reduction. + * CONSTR(c,args) is the constructor [c] applied to [args]. + * + * Note that any term has not an equivalent in cbv_value: for example, + * a product (x:A)B must be in normal form because only VAL may + * represent it, and the argument of VAL is always in normal + * form. This remark precludes coding a head reduction with these + * functions. Anyway, does it make sense to head reduce with a + * call-by-value strategy ? + *) +type cbv_value = + | VAL of int * constr + | LAM of name * constr * constr * cbv_value subs + | FIXP of fixpoint * cbv_value subs * cbv_value list + | COFIXP of cofixpoint * cbv_value subs * cbv_value list + | CONSTR of constructor * cbv_value list + +(* les vars pourraient etre des constr, + cela permet de retarder les lift: utile ?? *) + +(* relocation of a value; used when a value stored in a context is expanded + * in a larger context. e.g. [%k (S.t)](k+1) --> [^k]t (t is shifted of k) + *) +let rec shift_value n = function + | VAL (k,v) -> VAL ((k+n),v) + | LAM (x,a,b,s) -> LAM (x,a,b,subs_shft (n,s)) + | FIXP (fix,s,args) -> + FIXP (fix,subs_shft (n,s), List.map (shift_value n) args) + | COFIXP (cofix,s,args) -> + COFIXP (cofix,subs_shft (n,s), List.map (shift_value n) args) + | CONSTR (c,args) -> + CONSTR (c, List.map (shift_value n) args) + + +(* Contracts a fixpoint: given a fixpoint and a bindings, + * returns the corresponding fixpoint body, and the bindings in which + * it should be evaluated: its first variables are the fixpoint bodies + * (S, (fix Fi {F0 := T0 .. Fn-1 := Tn-1})) + * -> (S. [S]F0 . [S]F1 ... . [S]Fn-1, Ti) + *) +let contract_fixp env ((reci,i),(_,_,bds as bodies)) = + let make_body j = FIXP(((reci,j),bodies), env, []) in + let n = Array.length bds in + let rec subst_bodies_from_i i subs = + if i=n then subs + else subst_bodies_from_i (i+1) (subs_cons (make_body i, subs)) + in + subst_bodies_from_i 0 env, bds.(i) + +let contract_cofixp env (i,(_,_,bds as bodies)) = + let make_body j = COFIXP((j,bodies), env, []) in + let n = Array.length bds in + let rec subst_bodies_from_i i subs = + if i=n then subs + else subst_bodies_from_i (i+1) (subs_cons (make_body i, subs)) + in + subst_bodies_from_i 0 env, bds.(i) + +let make_constr_ref n = function + | FarRelKey p -> mkRel (n+p) + | VarKey id -> mkVar id + | ConstKey cst -> mkConst cst + + +(* type of terms with a hole. This hole can appear only under App or Case. + * TOP means the term is considered without context + * APP(l,stk) means the term is applied to l, and then we have the context st + * this corresponds to the application stack of the KAM. + * The members of l are values: we evaluate arguments before the function. + * CASE(t,br,pat,S,stk) means the term is in a case (which is himself in stk + * t is the type of the case and br are the branches, all of them under + * the subs S, pat is information on the patterns of the Case + * (Weak reduction: we propagate the sub only when the selected branch + * is determined) + * + * Important remark: the APPs should be collapsed: + * (APP (l,(APP ...))) forbidden + *) + +type cbv_stack = + | TOP + | APP of cbv_value list * cbv_stack + | CASE of constr * constr array * case_info * cbv_value subs * cbv_stack + +(* Adds an application list. Collapse APPs! *) +let stack_app appl stack = + match (appl, stack) with + | ([], _) -> stack + | (_, APP(args,stk)) -> APP(appl@args,stk) + | _ -> APP(appl, stack) + + +open RedFlags + +let red_set_ref flags = function + | FarRelKey _ -> red_set flags fDELTA + | VarKey id -> red_set flags (fVAR id) + | ConstKey sp -> red_set flags (fCONST sp) + +(* Transfer application lists from a value to the stack + * useful because fixpoints may be totally applied in several times + *) +let strip_appl head stack = + match head with + | FIXP (fix,env,app) -> (FIXP(fix,env,[]), stack_app app stack) + | COFIXP (cofix,env,app) -> (COFIXP(cofix,env,[]), stack_app app stack) + | CONSTR (c,app) -> (CONSTR(c,[]), stack_app app stack) + | _ -> (head, stack) + + +(* Tests if fixpoint reduction is possible. A reduction function is given as + argument *) +let rec check_app_constr = function + | ([], _) -> false + | ((CONSTR _)::_, 0) -> true + | (_::l, n) -> check_app_constr (l,(pred n)) + +let fixp_reducible flgs ((reci,i),_) stk = + if red_set flgs fIOTA then + match stk with (* !!! for Acc_rec: reci.(i) = -2 *) + | APP(appl,_) -> reci.(i) >=0 & check_app_constr (appl, reci.(i)) + | _ -> false + else + false + +let cofixp_reducible flgs _ stk = + if red_set flgs fIOTA then + match stk with + | (CASE _ | APP(_,CASE _)) -> true + | _ -> false + else + false + +(* The main recursive functions + * + * Go under applications and cases (pushed in the stack), expand head + * constants or substitued de Bruijn, and try to make appear a + * constructor, a lambda or a fixp in the head. If not, it is a value + * and is completely computed here. The head redexes are NOT reduced: + * the function returns the pair of a cbv_value and its stack. * + * Invariant: if the result of norm_head is CONSTR or (CO)FIXP, it last + * argument is []. Because we must put all the applied terms in the + * stack. *) + +let rec norm_head info env t stack = + (* no reduction under binders *) + match kind_of_term t with + (* stack grows (remove casts) *) + | App (head,args) -> (* Applied terms are normalized immediately; + they could be computed when getting out of the stack *) + let nargs = Array.map (cbv_stack_term info TOP env) args in + norm_head info env head (stack_app (Array.to_list nargs) stack) + | Case (ci,p,c,v) -> norm_head info env c (CASE(p,v,ci,env,stack)) + | Cast (ct,_) -> norm_head info env ct stack + + (* constants, axioms + * the first pattern is CRUCIAL, n=0 happens very often: + * when reducing closed terms, n is always 0 *) + | Rel i -> + (match expand_rel i env with + | Inl (0,v) -> strip_appl v stack + | Inl (n,v) -> strip_appl (shift_value n v) stack + | Inr (n,None) -> (VAL(0, mkRel n), stack) + | Inr (n,Some p) -> norm_head_ref (n-p) info env stack (FarRelKey p)) + + | Var id -> norm_head_ref 0 info env stack (VarKey id) + + | Const sp -> norm_head_ref 0 info env stack (ConstKey sp) + + | LetIn (x, b, t, c) -> + (* zeta means letin are contracted; delta without zeta means we *) + (* allow bindings but leave let's in place *) + let zeta = red_set (info_flags info) fZETA in + let env' = + if zeta + (* New rule: for Cbv, Delta does not apply to locally bound variables + or red_set (info_flags info) fDELTA + *) + then + subs_cons (cbv_stack_term info TOP env b,env) + else + subs_lift env in + if zeta then + norm_head info env' c stack + else + let normt = + mkLetIn (x, cbv_norm_term info env b, + cbv_norm_term info env t, + cbv_norm_term info env' c) in + (VAL(0,normt), stack) (* Considérer une coupure commutative ? *) + + (* non-neutral cases *) + | Lambda (x,a,b) -> (LAM(x,a,b,env), stack) + | Fix fix -> (FIXP(fix,env,[]), stack) + | CoFix cofix -> (COFIXP(cofix,env,[]), stack) + | Construct c -> (CONSTR(c, []), stack) + + (* neutral cases *) + | (Sort _ | Meta _ | Ind _|Evar _) -> (VAL(0, t), stack) + | Prod (x,t,c) -> + (VAL(0, mkProd (x, cbv_norm_term info env t, + cbv_norm_term info (subs_lift env) c)), + stack) + +and norm_head_ref k info env stack normt = + if red_set_ref (info_flags info) normt then + match ref_value_cache info normt with + | Some body -> strip_appl (shift_value k body) stack + | None -> (VAL(0,make_constr_ref k normt), stack) + else (VAL(0,make_constr_ref k normt), stack) + +(* cbv_stack_term performs weak reduction on constr t under the subs + * env, with context stack, i.e. ([env]t stack). First computes weak + * head normal form of t and checks if a redex appears with the stack. + * If so, recursive call to reach the real head normal form. If not, + * we build a value. + *) +and cbv_stack_term info stack env t = + match norm_head info env t stack with + (* a lambda meets an application -> BETA *) + | (LAM (x,a,b,env), APP (arg::args, stk)) + when red_set (info_flags info) fBETA -> + let subs = subs_cons (arg,env) in + cbv_stack_term info (stack_app args stk) subs b + + (* a Fix applied enough -> IOTA *) + | (FIXP(fix,env,_), stk) + when fixp_reducible (info_flags info) fix stk -> + let (envf,redfix) = contract_fixp env fix in + cbv_stack_term info stk envf redfix + + (* constructor guard satisfied or Cofix in a Case -> IOTA *) + | (COFIXP(cofix,env,_), stk) + when cofixp_reducible (info_flags info) cofix stk-> + let (envf,redfix) = contract_cofixp env cofix in + cbv_stack_term info stk envf redfix + + (* constructor in a Case -> IOTA *) + | (CONSTR((sp,n),_), APP(args,CASE(_,br,ci,env,stk))) + when red_set (info_flags info) fIOTA -> + let real_args = list_skipn ci.ci_npar args in + cbv_stack_term info (stack_app real_args stk) env br.(n-1) + + (* constructor of arity 0 in a Case -> IOTA *) + | (CONSTR((_,n),_), CASE(_,br,_,env,stk)) + when red_set (info_flags info) fIOTA -> + cbv_stack_term info stk env br.(n-1) + + (* may be reduced later by application *) + | (head, TOP) -> head + | (FIXP(fix,env,_), APP(appl,TOP)) -> FIXP(fix,env,appl) + | (COFIXP(cofix,env,_), APP(appl,TOP)) -> COFIXP(cofix,env,appl) + | (CONSTR(c,_), APP(appl,TOP)) -> CONSTR(c,appl) + + (* definitely a value *) + | (head,stk) -> VAL(0,apply_stack info (cbv_norm_value info head) stk) + + +(* When we are sure t will never produce a redex with its stack, we + * normalize (even under binders) the applied terms and we build the + * final term + *) +and apply_stack info t = function + | TOP -> t + | APP (args,st) -> + apply_stack info (applistc t (List.map (cbv_norm_value info) args)) st + | CASE (ty,br,ci,env,st) -> + apply_stack info + (mkCase (ci, cbv_norm_term info env ty, t, + Array.map (cbv_norm_term info env) br)) + st + + +(* performs the reduction on a constr, and returns a constr *) +and cbv_norm_term info env t = + (* reduction under binders *) + cbv_norm_value info (cbv_stack_term info TOP env t) + +(* reduction of a cbv_value to a constr *) +and cbv_norm_value info = function (* reduction under binders *) + | VAL (n,v) -> lift n v + | LAM (x,a,b,env) -> + mkLambda (x, cbv_norm_term info env a, + cbv_norm_term info (subs_lift env) b) + | FIXP ((lij,(names,lty,bds)),env,args) -> + applistc + (mkFix (lij, + (names, + Array.map (cbv_norm_term info env) lty, + Array.map (cbv_norm_term info + (subs_liftn (Array.length lty) env)) bds))) + (List.map (cbv_norm_value info) args) + | COFIXP ((j,(names,lty,bds)),env,args) -> + applistc + (mkCoFix (j, + (names,Array.map (cbv_norm_term info env) lty, + Array.map (cbv_norm_term info + (subs_liftn (Array.length lty) env)) bds))) + (List.map (cbv_norm_value info) args) + | CONSTR (c,args) -> + applistc + (mkConstruct c) + (List.map (cbv_norm_value info) args) + +(* with profiling *) +let cbv_norm infos constr = + with_stats (lazy (cbv_norm_term infos (ESID 0) constr)) + + +type cbv_infos = cbv_value infos + +(* constant bodies are normalized at the first expansion *) +let create_cbv_infos flgs env = + create + (fun old_info c -> cbv_stack_term old_info TOP (ESID 0) c) + flgs + env |