diff options
author | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
commit | db38bb4ad9aff74576d3b7f00028d48f0447d5bd (patch) | |
tree | 09dafc3e5c7361d3a28e93677eadd2b7237d4f9f /plugins/setoid_ring/ZArithRing.v | |
parent | 6e34b272d789455a9be589e27ad3a998cf25496b (diff) | |
parent | 499a11a45b5711d4eaabe84a80f0ad3ae539d500 (diff) |
Merge branch 'experimental/upstream' into upstream
Diffstat (limited to 'plugins/setoid_ring/ZArithRing.v')
-rw-r--r-- | plugins/setoid_ring/ZArithRing.v | 12 |
1 files changed, 4 insertions, 8 deletions
diff --git a/plugins/setoid_ring/ZArithRing.v b/plugins/setoid_ring/ZArithRing.v index 362542b9..3c4f6b86 100644 --- a/plugins/setoid_ring/ZArithRing.v +++ b/plugins/setoid_ring/ZArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -27,11 +27,7 @@ Ltac isZpow_coef t := | _ => constr:false end. -Definition N_of_Z x := - match x with - | Zpos p => Npos p - | _ => N0 - end. +Notation N_of_Z := Z.to_N (only parsing). Ltac Zpow_tac t := match isZpow_coef t with @@ -43,14 +39,14 @@ Ltac Zpower_neg := repeat match goal with | [|- ?G] => match G with - | context c [Zpower _ (Zneg _)] => + | context c [Z.pow _ (Zneg _)] => let t := context c [Z0] in change t end end. Add Ring Zr : Zth - (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Zsucc], + (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Z.succ], power_tac Zpower_theory [Zpow_tac], (* The two following option are not needed, it is the default chose when the set of coefficiant is usual ring Z *) |