diff options
author | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
commit | db38bb4ad9aff74576d3b7f00028d48f0447d5bd (patch) | |
tree | 09dafc3e5c7361d3a28e93677eadd2b7237d4f9f /plugins/setoid_ring/Ncring_polynom.v | |
parent | 6e34b272d789455a9be589e27ad3a998cf25496b (diff) | |
parent | 499a11a45b5711d4eaabe84a80f0ad3ae539d500 (diff) |
Merge branch 'experimental/upstream' into upstream
Diffstat (limited to 'plugins/setoid_ring/Ncring_polynom.v')
-rw-r--r-- | plugins/setoid_ring/Ncring_polynom.v | 584 |
1 files changed, 584 insertions, 0 deletions
diff --git a/plugins/setoid_ring/Ncring_polynom.v b/plugins/setoid_ring/Ncring_polynom.v new file mode 100644 index 00000000..8e4b613f --- /dev/null +++ b/plugins/setoid_ring/Ncring_polynom.v @@ -0,0 +1,584 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* A <X1,...,Xn>: non commutative polynomials on a commutative ring A *) + +Set Implicit Arguments. +Require Import Setoid. +Require Import BinList. +Require Import BinPos. +Require Import BinNat. +Require Import BinInt. +Require Export Ring_polynom. (* n'utilise que PExpr *) +Require Export Ncring. + +Section MakeRingPol. + +Context (C R:Type) `{Rh:Ring_morphism C R}. + +Variable phiCR_comm: forall (c:C)(x:R), x * [c] == [c] * x. + + Ltac rsimpl := repeat (gen_rewrite || rewrite phiCR_comm). + Ltac add_push := gen_add_push . + +(* Definition of non commutative multivariable polynomials + with coefficients in C : + *) + + Inductive Pol : Type := + | Pc : C -> Pol + | PX : Pol -> positive -> positive -> Pol -> Pol. + (* PX P i n Q represents P * X_i^n + Q *) +Definition cO:C . exact ring0. Defined. +Definition cI:C . exact ring1. Defined. + + Definition P0 := Pc 0. + Definition P1 := Pc 1. + +Variable Ceqb:C->C->bool. +Class Equalityb (A : Type):= {equalityb : A -> A -> bool}. +Notation "x =? y" := (equalityb x y) (at level 70, no associativity). +Variable Ceqb_eq: forall x y:C, Ceqb x y = true -> (x == y). + +Instance equalityb_coef : Equalityb C := + {equalityb x y := Ceqb x y}. + + Fixpoint Peq (P P' : Pol) {struct P'} : bool := + match P, P' with + | Pc c, Pc c' => c =? c' + | PX P i n Q, PX P' i' n' Q' => + match Pos.compare i i', Pos.compare n n' with + | Eq, Eq => if Peq P P' then Peq Q Q' else false + | _,_ => false + end + | _, _ => false + end. + +Instance equalityb_pol : Equalityb Pol := + {equalityb x y := Peq x y}. + +(* Q a ses variables de queue < i *) + Definition mkPX P i n Q := + match P with + | Pc c => if c =? 0 then Q else PX P i n Q + | PX P' i' n' Q' => + match Pos.compare i i' with + | Eq => if Q' =? P0 then PX P' i (n + n') Q else PX P i n Q + | _ => PX P i n Q + end + end. + + Definition mkXi i n := PX P1 i n P0. + + Definition mkX i := mkXi i 1. + + (** Opposite of addition *) + + Fixpoint Popp (P:Pol) : Pol := + match P with + | Pc c => Pc (- c) + | PX P i n Q => PX (Popp P) i n (Popp Q) + end. + + Notation "-- P" := (Popp P)(at level 30). + + (** Addition et subtraction *) + + Fixpoint PaddCl (c:C)(P:Pol) {struct P} : Pol := + match P with + | Pc c1 => Pc (c + c1) + | PX P i n Q => PX P i n (PaddCl c Q) + end. + +(* Q quelconque *) + +Section PaddX. +Variable Padd:Pol->Pol->Pol. +Variable P:Pol. + +(* Xi^n * P + Q +les variables de tete de Q ne sont pas forcement < i +mais Q est normalisé : variables de tete decroissantes *) + +Fixpoint PaddX (i n:positive)(Q:Pol){struct Q}:= + match Q with + | Pc c => mkPX P i n Q + | PX P' i' n' Q' => + match Pos.compare i i' with + | (* i > i' *) + Gt => mkPX P i n Q + | (* i < i' *) + Lt => mkPX P' i' n' (PaddX i n Q') + | (* i = i' *) + Eq => match Z.pos_sub n n' with + | (* n > n' *) + Zpos k => mkPX (PaddX i k P') i' n' Q' + | (* n = n' *) + Z0 => mkPX (Padd P P') i n Q' + | (* n < n' *) + Zneg k => mkPX (Padd P (mkPX P' i k P0)) i n Q' + end + end + end. + +End PaddX. + +Fixpoint Padd (P1 P2: Pol) {struct P1} : Pol := + match P1 with + | Pc c => PaddCl c P2 + | PX P' i' n' Q' => + PaddX Padd P' i' n' (Padd Q' P2) + end. + + Notation "P ++ P'" := (Padd P P'). + +Definition Psub(P P':Pol):= P ++ (--P'). + + Notation "P -- P'" := (Psub P P')(at level 50). + + (** Multiplication *) + + Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol := + match P with + | Pc c' => Pc (c' * c) + | PX P i n Q => mkPX (PmulC_aux P c) i n (PmulC_aux Q c) + end. + + Definition PmulC P c := + if c =? 0 then P0 else + if c =? 1 then P else PmulC_aux P c. + + Fixpoint Pmul (P1 P2 : Pol) {struct P2} : Pol := + match P2 with + | Pc c => PmulC P1 c + | PX P i n Q => + PaddX Padd (Pmul P1 P) i n (Pmul P1 Q) + end. + + Notation "P ** P'" := (Pmul P P')(at level 40). + + Definition Psquare (P:Pol) : Pol := P ** P. + + + (** Evaluation of a polynomial towards R *) + + Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R := + match P with + | Pc c => [c] + | PX P i n Q => + let x := nth 0 i l in + let xn := pow_pos x n in + (Pphi l P) * xn + (Pphi l Q) + end. + + Reserved Notation "P @ l " (at level 10, no associativity). + Notation "P @ l " := (Pphi l P). + + (** Proofs *) + + Ltac destr_pos_sub H := + match goal with |- context [Z.pos_sub ?x ?y] => + assert (H := Z.pos_sub_discr x y); destruct (Z.pos_sub x y) + end. + + Lemma Peq_ok : forall P P', + (P =? P') = true -> forall l, P@l == P'@ l. + Proof. + induction P;destruct P';simpl;intros ;try easy. + - now apply ring_morphism_eq, Ceqb_eq. + - specialize (IHP1 P'1). specialize (IHP2 P'2). + simpl in IHP1, IHP2. + destruct (Pos.compare_spec p p1); try discriminate; + destruct (Pos.compare_spec p0 p2); try discriminate. + destruct (Peq P2 P'1); try discriminate. + subst; now rewrite IHP1, IHP2. + Qed. + + Lemma Pphi0 : forall l, P0@l == 0. + Proof. + intros;simpl. + rewrite ring_morphism0. reflexivity. + Qed. + + Lemma Pphi1 : forall l, P1@l == 1. + Proof. + intros;simpl; rewrite ring_morphism1. reflexivity. + Qed. + + Lemma mkPX_ok : forall l P i n Q, + (mkPX P i n Q)@l == P@l * (pow_pos (nth 0 i l) n) + Q@l. + Proof. + intros l P i n Q;unfold mkPX. + destruct P;try (simpl;reflexivity). + assert (Hh := ring_morphism_eq c 0). +simpl; case_eq (Ceqb c 0);simpl;try reflexivity. +intros. + rewrite Hh. rewrite ring_morphism0. + rsimpl. apply Ceqb_eq. trivial. + destruct (Pos.compare_spec i p). + assert (Hh := @Peq_ok P3 P0). case_eq (P3=? P0). intro. simpl. + rewrite Hh. + rewrite Pphi0. rsimpl. rewrite Pos.add_comm. rewrite pow_pos_add;rsimpl. + subst;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity. + simpl. reflexivity. + Qed. + +Ltac Esimpl := + repeat (progress ( + match goal with + | |- context [?P@?l] => + match P with + | P0 => rewrite (Pphi0 l) + | P1 => rewrite (Pphi1 l) + | (mkPX ?P ?i ?n ?Q) => rewrite (mkPX_ok l P i n Q) + end + | |- context [[?c]] => + match c with + | 0 => rewrite ring_morphism0 + | 1 => rewrite ring_morphism1 + | ?x + ?y => rewrite ring_morphism_add + | ?x * ?y => rewrite ring_morphism_mul + | ?x - ?y => rewrite ring_morphism_sub + | - ?x => rewrite ring_morphism_opp + end + end)); + simpl; rsimpl. + + Lemma PaddCl_ok : forall c P l, (PaddCl c P)@l == [c] + P@l . + Proof. + induction P; simpl; intros; Esimpl; try reflexivity. + rewrite IHP2. rsimpl. +rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0) [c]). +reflexivity. + Qed. + + Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c]. + Proof. + induction P;simpl;intros. rewrite ring_morphism_mul. +try reflexivity. + simpl. Esimpl. rewrite IHP1;rewrite IHP2;rsimpl. + Qed. + + Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c]. + Proof. + intros c P l; unfold PmulC. + assert (Hh:= ring_morphism_eq c 0);case_eq (c =? 0). intros. + rewrite Hh;Esimpl. apply Ceqb_eq;trivial. + assert (H1h:= ring_morphism_eq c 1);case_eq (c =? 1);intros. + rewrite H1h;Esimpl. apply Ceqb_eq;trivial. + apply PmulC_aux_ok. + Qed. + + Lemma Popp_ok : forall P l, (--P)@l == - P@l. + Proof. + induction P;simpl;intros. + Esimpl. + rewrite IHP1;rewrite IHP2;rsimpl. + Qed. + + Ltac Esimpl2 := + Esimpl; + repeat (progress ( + match goal with + | |- context [(PaddCl ?c ?P)@?l] => rewrite (PaddCl_ok c P l) + | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l) + | |- context [(--?P)@?l] => rewrite (Popp_ok P l) + end)); Esimpl. + +Lemma PaddXPX: forall P i n Q, + PaddX Padd P i n Q = + match Q with + | Pc c => mkPX P i n Q + | PX P' i' n' Q' => + match Pos.compare i i' with + | (* i > i' *) + Gt => mkPX P i n Q + | (* i < i' *) + Lt => mkPX P' i' n' (PaddX Padd P i n Q') + | (* i = i' *) + Eq => match Z.pos_sub n n' with + | (* n > n' *) + Zpos k => mkPX (PaddX Padd P i k P') i' n' Q' + | (* n = n' *) + Z0 => mkPX (Padd P P') i n Q' + | (* n < n' *) + Zneg k => mkPX (Padd P (mkPX P' i k P0)) i n Q' + end + end + end. +induction Q; reflexivity. +Qed. + +Lemma PaddX_ok2 : forall P2, + (forall P l, (P2 ++ P) @ l == P2 @ l + P @ l) + /\ + (forall P k n l, + (PaddX Padd P2 k n P) @ l == + P2 @ l * pow_pos (nth 0 k l) n + P @ l). +induction P2;simpl;intros. split. intros. apply PaddCl_ok. + induction P. unfold PaddX. intros. rewrite mkPX_ok. + simpl. rsimpl. +intros. simpl. + destruct (Pos.compare_spec k p) as [Hh|Hh|Hh]. + destr_pos_sub H1h. Esimpl2. +rewrite Hh; trivial. rewrite H1h. reflexivity. +simpl. rewrite mkPX_ok. rewrite IHP1. Esimpl2. + rewrite Pos.add_comm in H1h. +rewrite H1h. +rewrite pow_pos_add. Esimpl2. +rewrite Hh; trivial. reflexivity. +rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pos.add_comm in H1h. +rewrite H1h. Esimpl2. rewrite pow_pos_add. Esimpl2. +rewrite Hh; trivial. reflexivity. +rewrite mkPX_ok. rewrite IHP2. Esimpl2. +rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0) + ([c] * pow_pos (nth 0 k l) n)). +reflexivity. assert (H1h := ring_morphism_eq c 0);case_eq (Ceqb c 0); + intros; simpl. +rewrite H1h;trivial. Esimpl2. apply Ceqb_eq; trivial. reflexivity. +decompose [and] IHP2_1. decompose [and] IHP2_2. clear IHP2_1 IHP2_2. +split. intros. rewrite H0. rewrite H1. +Esimpl2. +induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. reflexivity. +intros. rewrite PaddXPX. +destruct (Pos.compare_spec k p1) as [H3h|H3h|H3h]. +destr_pos_sub H4h. +rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. Esimpl2. +rewrite H4h. rewrite H3h;trivial. reflexivity. +rewrite mkPX_ok. rewrite IHP1. Esimpl2. rewrite H3h;trivial. +rewrite Pos.add_comm in H4h. +rewrite H4h. rewrite pow_pos_add. Esimpl2. +rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. +rewrite mkPX_ok. + Esimpl2. rewrite H3h;trivial. + rewrite Pos.add_comm in H4h. +rewrite H4h. rewrite pow_pos_add. Esimpl2. +rewrite mkPX_ok. simpl. rewrite IHP2. Esimpl2. +gen_add_push (P2 @ l * pow_pos (nth 0 p1 l) p2). try reflexivity. +rewrite mkPX_ok. simpl. reflexivity. +Qed. + +Lemma Padd_ok : forall P Q l, (P ++ Q) @ l == P @ l + Q @ l. +intro P. elim (PaddX_ok2 P); auto. +Qed. + +Lemma PaddX_ok : forall P2 P k n l, + (PaddX Padd P2 k n P) @ l == P2 @ l * pow_pos (nth 0 k l) n + P @ l. +intro P2. elim (PaddX_ok2 P2); auto. +Qed. + + Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l. +unfold Psub. intros. rewrite Padd_ok. rewrite Popp_ok. rsimpl. + Qed. + + Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. +induction P'; simpl; intros. rewrite PmulC_ok. reflexivity. +rewrite PaddX_ok. rewrite IHP'1. rewrite IHP'2. Esimpl2. +Qed. + + Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l. + Proof. + intros. unfold Psquare. apply Pmul_ok. + Qed. + + (** Definition of polynomial expressions *) + +(* + Inductive PExpr : Type := + | PEc : C -> PExpr + | PEX : positive -> PExpr + | PEadd : PExpr -> PExpr -> PExpr + | PEsub : PExpr -> PExpr -> PExpr + | PEmul : PExpr -> PExpr -> PExpr + | PEopp : PExpr -> PExpr + | PEpow : PExpr -> N -> PExpr. +*) + + (** Specification of the power function *) + Section POWER. + Variable Cpow : Set. + Variable Cp_phi : N -> Cpow. + Variable rpow : R -> Cpow -> R. + + Record power_theory : Prop := mkpow_th { + rpow_pow_N : forall r n, (rpow r (Cp_phi n))== (pow_N r n) + }. + + End POWER. + Variable Cpow : Set. + Variable Cp_phi : N -> Cpow. + Variable rpow : R -> Cpow -> R. + Variable pow_th : power_theory Cp_phi rpow. + + (** evaluation of polynomial expressions towards R *) + Fixpoint PEeval (l:list R) (pe:PExpr C) {struct pe} : R := + match pe with + | PEc c => [c] + | PEX j => nth 0 j l + | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2) + | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2) + | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2) + | PEopp pe1 => - (PEeval l pe1) + | PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n) + end. + +Strategy expand [PEeval]. + + Definition mk_X j := mkX j. + + (** Correctness proofs *) + + Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l. + Proof. + destruct p;simpl;intros;Esimpl;trivial. + Qed. + + Ltac Esimpl3 := + repeat match goal with + | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P1 P2 l) + | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P1 P2 l) + end;try Esimpl2;try reflexivity;try apply ring_add_comm. + +(* Power using the chinise algorithm *) + +Section POWER2. + Variable subst_l : Pol -> Pol. + Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol := + match p with + | xH => subst_l (Pmul P res) + | xO p => Ppow_pos (Ppow_pos res P p) P p + | xI p => subst_l (Pmul P (Ppow_pos (Ppow_pos res P p) P p)) + end. + + Definition Ppow_N P n := + match n with + | N0 => P1 + | Npos p => Ppow_pos P1 P p + end. + + Fixpoint pow_pos_gen (R:Type)(m:R->R->R)(x:R) (i:positive) {struct i}: R := + match i with + | xH => x + | xO i => let p := pow_pos_gen m x i in m p p + | xI i => let p := pow_pos_gen m x i in m x (m p p) + end. + +Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> + forall res P p, (Ppow_pos res P p)@l == (pow_pos_gen Pmul P p)@l * res@l. + Proof. + intros l subst_l_ok res P p. generalize res;clear res. + induction p;simpl;intros. try rewrite subst_l_ok. + repeat rewrite Pmul_ok. repeat rewrite IHp. + rsimpl. repeat rewrite Pmul_ok. repeat rewrite IHp. rsimpl. + try rewrite subst_l_ok. + repeat rewrite Pmul_ok. reflexivity. + Qed. + +Definition pow_N_gen (R:Type)(x1:R)(m:R->R->R)(x:R) (p:N) := + match p with + | N0 => x1 + | Npos p => pow_pos_gen m x p + end. + + Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> + forall P n, (Ppow_N P n)@l == (pow_N_gen P1 Pmul P n)@l. + Proof. destruct n;simpl. reflexivity. rewrite Ppow_pos_ok; trivial. Esimpl. Qed. + + End POWER2. + + (** Normalization and rewriting *) + + Section NORM_SUBST_REC. + Let subst_l (P:Pol) := P. + Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2). + Let Ppow_subst := Ppow_N subst_l. + + Fixpoint norm_aux (pe:PExpr C) : Pol := + match pe with + | PEc c => Pc c + | PEX j => mk_X j + | PEadd pe1 (PEopp pe2) => + Psub (norm_aux pe1) (norm_aux pe2) + | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2) + | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2) + | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2) + | PEopp pe1 => Popp (norm_aux pe1) + | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n + end. + + Definition norm_subst pe := subst_l (norm_aux pe). + + + Lemma norm_aux_spec : + forall l pe, + PEeval l pe == (norm_aux pe)@l. + Proof. + intros. + induction pe. +Esimpl3. Esimpl3. simpl. + rewrite IHpe1;rewrite IHpe2. + destruct pe2; Esimpl3. +unfold Psub. +destruct pe1; destruct pe2; rewrite Padd_ok; rewrite Popp_ok; reflexivity. +simpl. unfold Psub. rewrite IHpe1;rewrite IHpe2. +destruct pe1. destruct pe2; rewrite Padd_ok; rewrite Popp_ok; try reflexivity. +Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. + Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. +simpl. rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. reflexivity. +simpl. rewrite IHpe; Esimpl3. +simpl. + rewrite Ppow_N_ok; (intros;try reflexivity). + rewrite rpow_pow_N. Esimpl3. + induction n;simpl. Esimpl3. induction p; simpl. + try rewrite IHp;try rewrite IHpe; + repeat rewrite Pms_ok; + repeat rewrite Pmul_ok;reflexivity. +rewrite Pmul_ok. try rewrite IHp;try rewrite IHpe; + repeat rewrite Pms_ok; + repeat rewrite Pmul_ok;reflexivity. trivial. +exact pow_th. + Qed. + + Lemma norm_subst_spec : + forall l pe, + PEeval l pe == (norm_subst pe)@l. + Proof. + intros;unfold norm_subst. + unfold subst_l. apply norm_aux_spec. + Qed. + + End NORM_SUBST_REC. + + Fixpoint interp_PElist (l:list R) (lpe:list (PExpr C * PExpr C)) {struct lpe} : Prop := + match lpe with + | nil => True + | (me,pe)::lpe => + match lpe with + | nil => PEeval l me == PEeval l pe + | _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe + end + end. + + + Lemma norm_subst_ok : forall l pe, + PEeval l pe == (norm_subst pe)@l. + Proof. + intros;apply norm_subst_spec. + Qed. + + + Lemma ring_correct : forall l pe1 pe2, + (norm_subst pe1 =? norm_subst pe2) = true -> + PEeval l pe1 == PEeval l pe2. + Proof. + simpl;intros. + do 2 (rewrite (norm_subst_ok l);trivial). + apply Peq_ok;trivial. + Qed. + +End MakeRingPol. |