summaryrefslogtreecommitdiff
path: root/plugins/omega/PreOmega.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:02:20 +0100
committerGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:02:20 +0100
commit97fefe1fcca363a1317e066e7f4b99b9c1e9987b (patch)
tree97ec6b7d831cc5fb66328b0c63a11db1cbb2f158 /plugins/omega/PreOmega.v
parent300293c119981054c95182a90c829058530a6b6f (diff)
Imported Upstream version 8.4~betaupstream/8.4_beta
Diffstat (limited to 'plugins/omega/PreOmega.v')
-rw-r--r--plugins/omega/PreOmega.v115
1 files changed, 40 insertions, 75 deletions
diff --git a/plugins/omega/PreOmega.v b/plugins/omega/PreOmega.v
index a5a085a9..46fd5682 100644
--- a/plugins/omega/PreOmega.v
+++ b/plugins/omega/PreOmega.v
@@ -28,7 +28,7 @@ Open Local Scope Z_scope.
Ltac zify_unop_core t thm a :=
(* Let's introduce the specification theorem for t *)
- let H:= fresh "H" in assert (H:=thm a);
+ pose proof (thm a);
(* Then we replace (t a) everywhere with a fresh variable *)
let z := fresh "z" in set (z:=t a) in *; clearbody z.
@@ -159,11 +159,9 @@ Ltac zify_nat_op :=
(* mult -> Zmult and a positivity hypothesis *)
| H : context [ Z_of_nat (mult ?a ?b) ] |- _ =>
- let H:= fresh "H" in
- assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
+ pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
| |- context [ Z_of_nat (mult ?a ?b) ] =>
- let H:= fresh "H" in
- assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
+ pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
(* O -> Z0 *)
| H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H
@@ -184,20 +182,9 @@ Ltac zify_nat_op :=
end
(* atoms of type nat : we add a positivity condition (if not already there) *)
- | H : context [ Z_of_nat ?a ] |- _ =>
- match goal with
- | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a
- | H' : 0 <= Z_of_nat' a |- _ => fail
- | _ => let H:= fresh "H" in
- assert (H:=Zle_0_nat a); hide_Z_of_nat a
- end
- | |- context [ Z_of_nat ?a ] =>
- match goal with
- | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a
- | H' : 0 <= Z_of_nat' a |- _ => fail
- | _ => let H:= fresh "H" in
- assert (H:=Zle_0_nat a); hide_Z_of_nat a
- end
+ | _ : 0 <= Z_of_nat ?a |- _ => hide_Z_of_nat a
+ | _ : context [ Z_of_nat ?a ] |- _ => pose proof (Zle_0_nat a); hide_Z_of_nat a
+ | |- context [ Z_of_nat ?a ] => pose proof (Zle_0_nat a); hide_Z_of_nat a
end.
Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *.
@@ -223,17 +210,17 @@ Ltac zify_positive_rel :=
| H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H
| |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b)
(* II: less than *)
- | H : context [ (?a<?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
- | |- context [ (?a<?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
+ | H : context [ (?a < ?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
+ | |- context [ (?a < ?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
(* III: less or equal *)
- | H : context [ (?a<=?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
- | |- context [ (?a<=?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
+ | H : context [ (?a <= ?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
+ | |- context [ (?a <= ?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
(* IV: greater than *)
- | H : context [ (?a>?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
- | |- context [ (?a>?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
+ | H : context [ (?a > ?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
+ | |- context [ (?a > ?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
(* V: greater or equal *)
- | H : context [ (?a>=?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
- | |- context [ (?a>=?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
+ | H : context [ (?a >= ?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
+ | |- context [ (?a >= ?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
end.
Ltac zify_positive_op :=
@@ -282,11 +269,9 @@ Ltac zify_positive_op :=
(* Pmult -> Zmult and a positivity hypothesis *)
| H : context [ Zpos (Pmult ?a ?b) ] |- _ =>
- let H:= fresh "H" in
- assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
+ pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
| |- context [ Zpos (Pmult ?a ?b) ] =>
- let H:= fresh "H" in
- assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
+ pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
(* xO *)
| H : context [ Zpos (xO ?a) ] |- _ =>
@@ -320,18 +305,9 @@ Ltac zify_positive_op :=
| |- context [ Zpos xH ] => hide_Zpos xH
(* atoms of type positive : we add a positivity condition (if not already there) *)
- | H : context [ Zpos ?a ] |- _ =>
- match goal with
- | H' : Zpos a > 0 |- _ => hide_Zpos a
- | H' : Zpos' a > 0 |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a
- end
- | |- context [ Zpos ?a ] =>
- match goal with
- | H' : Zpos a > 0 |- _ => hide_Zpos a
- | H' : Zpos' a > 0 |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a
- end
+ | _ : Zpos ?a > 0 |- _ => hide_Zpos a
+ | _ : context [ Zpos ?a ] |- _ => pose proof (Zgt_pos_0 a); hide_Zpos a
+ | |- context [ Zpos ?a ] => pose proof (Zgt_pos_0 a); hide_Zpos a
end.
Ltac zify_positive :=
@@ -358,25 +334,25 @@ Ltac zify_N_rel :=
| H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H
| |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b)
(* II: less than *)
- | H : (?a<?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H
- | |- (?a<?b)%N => apply (Z_of_N_lt_rev a b)
- | H : context [ (?a<?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H
- | |- context [ (?a<?b)%N ] => rewrite (Z_of_N_lt_iff a b)
+ | H : (?a < ?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H
+ | |- (?a < ?b)%N => apply (Z_of_N_lt_rev a b)
+ | H : context [ (?a < ?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H
+ | |- context [ (?a < ?b)%N ] => rewrite (Z_of_N_lt_iff a b)
(* III: less or equal *)
- | H : (?a<=?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H
- | |- (?a<=?b)%N => apply (Z_of_N_le_rev a b)
- | H : context [ (?a<=?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H
- | |- context [ (?a<=?b)%N ] => rewrite (Z_of_N_le_iff a b)
+ | H : (?a <= ?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H
+ | |- (?a <= ?b)%N => apply (Z_of_N_le_rev a b)
+ | H : context [ (?a <= ?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H
+ | |- context [ (?a <= ?b)%N ] => rewrite (Z_of_N_le_iff a b)
(* IV: greater than *)
- | H : (?a>?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H
- | |- (?a>?b)%N => apply (Z_of_N_gt_rev a b)
- | H : context [ (?a>?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H
- | |- context [ (?a>?b)%N ] => rewrite (Z_of_N_gt_iff a b)
+ | H : (?a > ?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H
+ | |- (?a > ?b)%N => apply (Z_of_N_gt_rev a b)
+ | H : context [ (?a > ?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H
+ | |- context [ (?a > ?b)%N ] => rewrite (Z_of_N_gt_iff a b)
(* V: greater or equal *)
- | H : (?a>=?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H
- | |- (?a>=?b)%N => apply (Z_of_N_ge_rev a b)
- | H : context [ (?a>=?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H
- | |- context [ (?a>=?b)%N ] => rewrite (Z_of_N_ge_iff a b)
+ | H : (?a >= ?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H
+ | |- (?a >= ?b)%N => apply (Z_of_N_ge_rev a b)
+ | H : context [ (?a >= ?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H
+ | |- context [ (?a >= ?b)%N ] => rewrite (Z_of_N_ge_iff a b)
end.
Ltac zify_N_op :=
@@ -413,25 +389,14 @@ Ltac zify_N_op :=
(* Nmult -> Zmult and a positivity hypothesis *)
| H : context [ Z_of_N (Nmult ?a ?b) ] |- _ =>
- let H:= fresh "H" in
- assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
+ pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
| |- context [ Z_of_N (Nmult ?a ?b) ] =>
- let H:= fresh "H" in
- assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
+ pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
(* atoms of type N : we add a positivity condition (if not already there) *)
- | H : context [ Z_of_N ?a ] |- _ =>
- match goal with
- | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a
- | H' : 0 <= Z_of_N' a |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a
- end
- | |- context [ Z_of_N ?a ] =>
- match goal with
- | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a
- | H' : 0 <= Z_of_N' a |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a
- end
+ | _ : 0 <= Z_of_N ?a |- _ => hide_Z_of_N a
+ | _ : context [ Z_of_N ?a ] |- _ => pose proof (Z_of_N_le_0 a); hide_Z_of_N a
+ | |- context [ Z_of_N ?a ] => pose proof (Z_of_N_le_0 a); hide_Z_of_N a
end.
Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *.