diff options
author | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2013-05-08 18:03:54 +0200 |
commit | db38bb4ad9aff74576d3b7f00028d48f0447d5bd (patch) | |
tree | 09dafc3e5c7361d3a28e93677eadd2b7237d4f9f /plugins/omega/PreOmega.v | |
parent | 6e34b272d789455a9be589e27ad3a998cf25496b (diff) | |
parent | 499a11a45b5711d4eaabe84a80f0ad3ae539d500 (diff) |
Merge branch 'experimental/upstream' into upstream
Diffstat (limited to 'plugins/omega/PreOmega.v')
-rw-r--r-- | plugins/omega/PreOmega.v | 406 |
1 files changed, 183 insertions, 223 deletions
diff --git a/plugins/omega/PreOmega.v b/plugins/omega/PreOmega.v index a5a085a9..60e606a6 100644 --- a/plugins/omega/PreOmega.v +++ b/plugins/omega/PreOmega.v @@ -1,6 +1,14 @@ -Require Import Arith Max Min ZArith_base NArith Nnat. +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) -Open Local Scope Z_scope. +Require Import Arith Max Min BinInt BinNat Znat Nnat. + +Local Open Scope Z_scope. (** * zify: the Z-ification tactic *) @@ -15,20 +23,20 @@ Open Local Scope Z_scope. - { eq, le, lt, ge, gt } on { Z, positive, N, nat } Recognized operations: - - on Z: Zmin, Zmax, Zabs, Zsgn are translated in term of <= < = - - on nat: + * - S O pred min max nat_of_P nat_of_N Zabs_nat - - on positive: Zneg Zpos xI xO xH + * - Psucc Ppred Pmin Pmax P_of_succ_nat - - on N: N0 Npos + * - Nsucc Nmin Nmax N_of_nat Zabs_N + - on Z: Z.min, Z.max, Z.abs, Z.sgn are translated in term of <= < = + - on nat: + * - S O pred min max Pos.to_nat N.to_nat Z.abs_nat + - on positive: Zneg Zpos xI xO xH + * - Pos.succ Pos.pred Pos.min Pos.max Pos.of_succ_nat + - on N: N0 Npos + * - N.succ N.min N.max N.of_nat Z.abs_N *) -(** I) translation of Zmax, Zmin, Zabs, Zsgn into recognized equations *) +(** I) translation of Z.max, Z.min, Z.abs, Z.sgn into recognized equations *) Ltac zify_unop_core t thm a := (* Let's introduce the specification theorem for t *) - let H:= fresh "H" in assert (H:=thm a); + pose proof (thm a); (* Then we replace (t a) everywhere with a fresh variable *) let z := fresh "z" in set (z:=t a) in *; clearbody z. @@ -48,7 +56,7 @@ Ltac zify_unop t thm a := end. Ltac zify_unop_nored t thm a := - (* in this version, we don't try to reduce the unop (that can be (Zplus x)) *) + (* in this version, we don't try to reduce the unop (that can be (Z.add x)) *) let isz := isZcst a in match isz with | true => zify_unop_core t thm a @@ -72,14 +80,14 @@ Ltac zify_binop t thm a b:= Ltac zify_op_1 := match goal with - | |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b - | H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b - | |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b - | H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b - | |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a - | H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a - | |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a - | H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a + | |- context [ Z.max ?a ?b ] => zify_binop Z.max Z.max_spec a b + | H : context [ Z.max ?a ?b ] |- _ => zify_binop Z.max Z.max_spec a b + | |- context [ Z.min ?a ?b ] => zify_binop Z.min Z.min_spec a b + | H : context [ Z.min ?a ?b ] |- _ => zify_binop Z.min Z.min_spec a b + | |- context [ Z.sgn ?a ] => zify_unop Z.sgn Z.sgn_spec a + | H : context [ Z.sgn ?a ] |- _ => zify_unop Z.sgn Z.sgn_spec a + | |- context [ Z.abs ?a ] => zify_unop Z.abs Z.abs_spec a + | H : context [ Z.abs ?a ] |- _ => zify_unop Z.abs Z.abs_spec a end. Ltac zify_op := repeat zify_op_1. @@ -91,113 +99,95 @@ Ltac zify_op := repeat zify_op_1. (** II) Conversion from nat to Z *) -Definition Z_of_nat' := Z_of_nat. +Definition Z_of_nat' := Z.of_nat. Ltac hide_Z_of_nat t := - let z := fresh "z" in set (z:=Z_of_nat t) in *; - change Z_of_nat with Z_of_nat' in z; + let z := fresh "z" in set (z:=Z.of_nat t) in *; + change Z.of_nat with Z_of_nat' in z; unfold z in *; clear z. Ltac zify_nat_rel := match goal with (* I: equalities *) - | H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H - | |- (@eq nat ?a ?b) => apply (inj_eq_rev a b) - | H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H - | |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b) + | |- (@eq nat ?a ?b) => apply (Nat2Z.inj a b) (* shortcut *) + | H : context [ @eq nat ?a ?b ] |- _ => rewrite <- (Nat2Z.inj_iff a b) in H + | |- context [ @eq nat ?a ?b ] => rewrite <- (Nat2Z.inj_iff a b) (* II: less than *) - | H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H - | |- (lt ?a ?b) => apply (inj_lt_rev a b) - | H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H - | |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b) + | H : context [ lt ?a ?b ] |- _ => rewrite (Nat2Z.inj_lt a b) in H + | |- context [ lt ?a ?b ] => rewrite (Nat2Z.inj_lt a b) (* III: less or equal *) - | H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H - | |- (le ?a ?b) => apply (inj_le_rev a b) - | H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H - | |- context [ le ?a ?b ] => rewrite (inj_le_iff a b) + | H : context [ le ?a ?b ] |- _ => rewrite (Nat2Z.inj_le a b) in H + | |- context [ le ?a ?b ] => rewrite (Nat2Z.inj_le a b) (* IV: greater than *) - | H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H - | |- (gt ?a ?b) => apply (inj_gt_rev a b) - | H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H - | |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b) + | H : context [ gt ?a ?b ] |- _ => rewrite (Nat2Z.inj_gt a b) in H + | |- context [ gt ?a ?b ] => rewrite (Nat2Z.inj_gt a b) (* V: greater or equal *) - | H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H - | |- (ge ?a ?b) => apply (inj_ge_rev a b) - | H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H - | |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b) + | H : context [ ge ?a ?b ] |- _ => rewrite (Nat2Z.inj_ge a b) in H + | |- context [ ge ?a ?b ] => rewrite (Nat2Z.inj_ge a b) end. Ltac zify_nat_op := match goal with (* misc type conversions: positive/N/Z to nat *) - | H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H - | |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) - | H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H - | |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a) - | H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H - | |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a) - - (* plus -> Zplus *) - | H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H - | |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b) - - (* min -> Zmin *) - | H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H - | |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b) - - (* max -> Zmax *) - | H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H - | |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b) - - (* minus -> Zmax (Zminus ... ...) 0 *) - | H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H - | |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b) - - (* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *) - | H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H - | |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a) - - (* mult -> Zmult and a positivity hypothesis *) - | H : context [ Z_of_nat (mult ?a ?b) ] |- _ => - let H:= fresh "H" in - assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * - | |- context [ Z_of_nat (mult ?a ?b) ] => - let H:= fresh "H" in - assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * + | H : context [ Z.of_nat (Pos.to_nat ?a) ] |- _ => rewrite (positive_nat_Z a) in H + | |- context [ Z.of_nat (Pos.to_nat ?a) ] => rewrite (positive_nat_Z a) + | H : context [ Z.of_nat (N.to_nat ?a) ] |- _ => rewrite (N_nat_Z a) in H + | |- context [ Z.of_nat (N.to_nat ?a) ] => rewrite (N_nat_Z a) + | H : context [ Z.of_nat (Z.abs_nat ?a) ] |- _ => rewrite (Zabs2Nat.id_abs a) in H + | |- context [ Z.of_nat (Z.abs_nat ?a) ] => rewrite (Zabs2Nat.id_abs a) + + (* plus -> Z.add *) + | H : context [ Z.of_nat (plus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_add a b) in H + | |- context [ Z.of_nat (plus ?a ?b) ] => rewrite (Nat2Z.inj_add a b) + + (* min -> Z.min *) + | H : context [ Z.of_nat (min ?a ?b) ] |- _ => rewrite (Nat2Z.inj_min a b) in H + | |- context [ Z.of_nat (min ?a ?b) ] => rewrite (Nat2Z.inj_min a b) + + (* max -> Z.max *) + | H : context [ Z.of_nat (max ?a ?b) ] |- _ => rewrite (Nat2Z.inj_max a b) in H + | |- context [ Z.of_nat (max ?a ?b) ] => rewrite (Nat2Z.inj_max a b) + + (* minus -> Z.max (Z.sub ... ...) 0 *) + | H : context [ Z.of_nat (minus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_sub_max a b) in H + | |- context [ Z.of_nat (minus ?a ?b) ] => rewrite (Nat2Z.inj_sub_max a b) + + (* pred -> minus ... -1 -> Z.max (Z.sub ... -1) 0 *) + | H : context [ Z.of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H + | |- context [ Z.of_nat (pred ?a) ] => rewrite (pred_of_minus a) + + (* mult -> Z.mul and a positivity hypothesis *) + | H : context [ Z.of_nat (mult ?a ?b) ] |- _ => + pose proof (Nat2Z.is_nonneg (mult a b)); + rewrite (Nat2Z.inj_mul a b) in * + | |- context [ Z.of_nat (mult ?a ?b) ] => + pose proof (Nat2Z.is_nonneg (mult a b)); + rewrite (Nat2Z.inj_mul a b) in * (* O -> Z0 *) - | H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H - | |- context [ Z_of_nat O ] => simpl (Z_of_nat O) + | H : context [ Z.of_nat O ] |- _ => simpl (Z.of_nat O) in H + | |- context [ Z.of_nat O ] => simpl (Z.of_nat O) - (* S -> number or Zsucc *) - | H : context [ Z_of_nat (S ?a) ] |- _ => + (* S -> number or Z.succ *) + | H : context [ Z.of_nat (S ?a) ] |- _ => let isnat := isnatcst a in match isnat with - | true => simpl (Z_of_nat (S a)) in H - | _ => rewrite (inj_S a) in H + | true => simpl (Z.of_nat (S a)) in H + | _ => rewrite (Nat2Z.inj_succ a) in H end - | |- context [ Z_of_nat (S ?a) ] => + | |- context [ Z.of_nat (S ?a) ] => let isnat := isnatcst a in match isnat with - | true => simpl (Z_of_nat (S a)) - | _ => rewrite (inj_S a) + | true => simpl (Z.of_nat (S a)) + | _ => rewrite (Nat2Z.inj_succ a) end (* atoms of type nat : we add a positivity condition (if not already there) *) - | H : context [ Z_of_nat ?a ] |- _ => - match goal with - | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a - | H' : 0 <= Z_of_nat' a |- _ => fail - | _ => let H:= fresh "H" in - assert (H:=Zle_0_nat a); hide_Z_of_nat a - end - | |- context [ Z_of_nat ?a ] => - match goal with - | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a - | H' : 0 <= Z_of_nat' a |- _ => fail - | _ => let H:= fresh "H" in - assert (H:=Zle_0_nat a); hide_Z_of_nat a - end + | _ : 0 <= Z.of_nat ?a |- _ => hide_Z_of_nat a + | _ : context [ Z.of_nat ?a ] |- _ => + pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a + | |- context [ Z.of_nat ?a ] => + pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a end. Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *. @@ -218,22 +208,21 @@ Ltac hide_Zpos t := Ltac zify_positive_rel := match goal with (* I: equalities *) - | H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H - | |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b) - | H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H - | |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b) + | |- (@eq positive ?a ?b) => apply Pos2Z.inj + | H : context [ @eq positive ?a ?b ] |- _ => rewrite <- (Pos2Z.inj_iff a b) in H + | |- context [ @eq positive ?a ?b ] => rewrite <- (Pos2Z.inj_iff a b) (* II: less than *) - | H : context [ (?a<?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H - | |- context [ (?a<?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b) + | H : context [ (?a < ?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H + | |- context [ (?a < ?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b) (* III: less or equal *) - | H : context [ (?a<=?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H - | |- context [ (?a<=?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b) + | H : context [ (?a <= ?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H + | |- context [ (?a <= ?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b) (* IV: greater than *) - | H : context [ (?a>?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H - | |- context [ (?a>?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b) + | H : context [ (?a > ?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H + | |- context [ (?a > ?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b) (* V: greater or equal *) - | H : context [ (?a>=?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H - | |- context [ (?a>=?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b) + | H : context [ (?a >= ?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H + | |- context [ (?a >= ?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b) end. Ltac zify_positive_op := @@ -253,66 +242,66 @@ Ltac zify_positive_op := end (* misc type conversions: nat to positive *) - | H : context [ Zpos (P_of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H - | |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) + | H : context [ Zpos (Pos.of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H + | |- context [ Zpos (Pos.of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) - (* Pplus -> Zplus *) - | H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H - | |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) + (* Pos.add -> Z.add *) + | H : context [ Zpos (?a + ?b) ] |- _ => change (Zpos (a+b)) with (Zpos a + Zpos b) in H + | |- context [ Zpos (?a + ?b) ] => change (Zpos (a+b)) with (Zpos a + Zpos b) - (* Pmin -> Zmin *) - | H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H - | |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b) + (* Pos.min -> Z.min *) + | H : context [ Zpos (Pos.min ?a ?b) ] |- _ => rewrite (Pos2Z.inj_min a b) in H + | |- context [ Zpos (Pos.min ?a ?b) ] => rewrite (Pos2Z.inj_min a b) - (* Pmax -> Zmax *) - | H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H - | |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b) + (* Pos.max -> Z.max *) + | H : context [ Zpos (Pos.max ?a ?b) ] |- _ => rewrite (Pos2Z.inj_max a b) in H + | |- context [ Zpos (Pos.max ?a ?b) ] => rewrite (Pos2Z.inj_max a b) - (* Pminus -> Zmax 1 (Zminus ... ...) *) - | H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H - | |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b) + (* Pos.sub -> Z.max 1 (Z.sub ... ...) *) + | H : context [ Zpos (Pos.sub ?a ?b) ] |- _ => rewrite (Pos2Z.inj_sub a b) in H + | |- context [ Zpos (Pos.sub ?a ?b) ] => rewrite (Pos2Z.inj_sub a b) - (* Psucc -> Zsucc *) - | H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H - | |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a) + (* Pos.succ -> Z.succ *) + | H : context [ Zpos (Pos.succ ?a) ] |- _ => rewrite (Pos2Z.inj_succ a) in H + | |- context [ Zpos (Pos.succ ?a) ] => rewrite (Pos2Z.inj_succ a) - (* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *) - | H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H - | |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a) + (* Pos.pred -> Pos.sub ... -1 -> Z.max 1 (Z.sub ... - 1) *) + | H : context [ Zpos (Pos.pred ?a) ] |- _ => rewrite <- (Pos.sub_1_r a) in H + | |- context [ Zpos (Pos.pred ?a) ] => rewrite <- (Pos.sub_1_r a) - (* Pmult -> Zmult and a positivity hypothesis *) - | H : context [ Zpos (Pmult ?a ?b) ] |- _ => - let H:= fresh "H" in - assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * - | |- context [ Zpos (Pmult ?a ?b) ] => - let H:= fresh "H" in - assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * + (* Pos.mul -> Z.mul and a positivity hypothesis *) + | H : context [ Zpos (?a * ?b) ] |- _ => + pose proof (Pos2Z.is_pos (Pos.mul a b)); + change (Zpos (a*b)) with (Zpos a * Zpos b) in * + | |- context [ Zpos (?a * ?b) ] => + pose proof (Pos2Z.is_pos (Pos.mul a b)); + change (Zpos (a*b)) with (Zpos a * Zpos b) in * (* xO *) | H : context [ Zpos (xO ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) in H - | _ => rewrite (Zpos_xO a) in H + | _ => rewrite (Pos2Z.inj_xO a) in H end | |- context [ Zpos (xO ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) - | _ => rewrite (Zpos_xO a) + | _ => rewrite (Pos2Z.inj_xO a) end (* xI *) | H : context [ Zpos (xI ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) in H - | _ => rewrite (Zpos_xI a) in H + | _ => rewrite (Pos2Z.inj_xI a) in H end | |- context [ Zpos (xI ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) - | _ => rewrite (Zpos_xI a) + | _ => rewrite (Pos2Z.inj_xI a) end (* xI : nothing to do, just prevent adding a useless positivity condition *) @@ -320,18 +309,9 @@ Ltac zify_positive_op := | |- context [ Zpos xH ] => hide_Zpos xH (* atoms of type positive : we add a positivity condition (if not already there) *) - | H : context [ Zpos ?a ] |- _ => - match goal with - | H' : Zpos a > 0 |- _ => hide_Zpos a - | H' : Zpos' a > 0 |- _ => fail - | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a - end - | |- context [ Zpos ?a ] => - match goal with - | H' : Zpos a > 0 |- _ => hide_Zpos a - | H' : Zpos' a > 0 |- _ => fail - | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a - end + | _ : 0 < Zpos ?a |- _ => hide_Zpos a + | _ : context [ Zpos ?a ] |- _ => pose proof (Pos2Z.is_pos a); hide_Zpos a + | |- context [ Zpos ?a ] => pose proof (Pos2Z.is_pos a); hide_Zpos a end. Ltac zify_positive := @@ -343,95 +323,75 @@ Ltac zify_positive := (* IV) conversion from N to Z *) -Definition Z_of_N' := Z_of_N. +Definition Z_of_N' := Z.of_N. Ltac hide_Z_of_N t := - let z := fresh "z" in set (z:=Z_of_N t) in *; - change Z_of_N with Z_of_N' in z; + let z := fresh "z" in set (z:=Z.of_N t) in *; + change Z.of_N with Z_of_N' in z; unfold z in *; clear z. Ltac zify_N_rel := match goal with (* I: equalities *) - | H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H - | |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b) - | H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H - | |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b) + | |- (@eq N ?a ?b) => apply (N2Z.inj a b) (* shortcut *) + | H : context [ @eq N ?a ?b ] |- _ => rewrite <- (N2Z.inj_iff a b) in H + | |- context [ @eq N ?a ?b ] => rewrite <- (N2Z.inj_iff a b) (* II: less than *) - | H : (?a<?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H - | |- (?a<?b)%N => apply (Z_of_N_lt_rev a b) - | H : context [ (?a<?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H - | |- context [ (?a<?b)%N ] => rewrite (Z_of_N_lt_iff a b) + | H : context [ (?a < ?b)%N ] |- _ => rewrite (N2Z.inj_lt a b) in H + | |- context [ (?a < ?b)%N ] => rewrite (N2Z.inj_lt a b) (* III: less or equal *) - | H : (?a<=?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H - | |- (?a<=?b)%N => apply (Z_of_N_le_rev a b) - | H : context [ (?a<=?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H - | |- context [ (?a<=?b)%N ] => rewrite (Z_of_N_le_iff a b) + | H : context [ (?a <= ?b)%N ] |- _ => rewrite (N2Z.inj_le a b) in H + | |- context [ (?a <= ?b)%N ] => rewrite (N2Z.inj_le a b) (* IV: greater than *) - | H : (?a>?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H - | |- (?a>?b)%N => apply (Z_of_N_gt_rev a b) - | H : context [ (?a>?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H - | |- context [ (?a>?b)%N ] => rewrite (Z_of_N_gt_iff a b) + | H : context [ (?a > ?b)%N ] |- _ => rewrite (N2Z.inj_gt a b) in H + | |- context [ (?a > ?b)%N ] => rewrite (N2Z.inj_gt a b) (* V: greater or equal *) - | H : (?a>=?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H - | |- (?a>=?b)%N => apply (Z_of_N_ge_rev a b) - | H : context [ (?a>=?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H - | |- context [ (?a>=?b)%N ] => rewrite (Z_of_N_ge_iff a b) + | H : context [ (?a >= ?b)%N ] |- _ => rewrite (N2Z.inj_ge a b) in H + | |- context [ (?a >= ?b)%N ] => rewrite (N2Z.inj_ge a b) end. Ltac zify_N_op := match goal with (* misc type conversions: nat to positive *) - | H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H - | |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a) - | H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H - | |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a) - | H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H - | |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a) - | H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H - | |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0 - - (* Nplus -> Zplus *) - | H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H - | |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b) - - (* Nmin -> Zmin *) - | H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H - | |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b) - - (* Nmax -> Zmax *) - | H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H - | |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b) - - (* Nminus -> Zmax 0 (Zminus ... ...) *) - | H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H - | |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b) - - (* Nsucc -> Zsucc *) - | H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H - | |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a) - - (* Nmult -> Zmult and a positivity hypothesis *) - | H : context [ Z_of_N (Nmult ?a ?b) ] |- _ => - let H:= fresh "H" in - assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * - | |- context [ Z_of_N (Nmult ?a ?b) ] => - let H:= fresh "H" in - assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * + | H : context [ Z.of_N (N.of_nat ?a) ] |- _ => rewrite (nat_N_Z a) in H + | |- context [ Z.of_N (N.of_nat ?a) ] => rewrite (nat_N_Z a) + | H : context [ Z.of_N (Z.abs_N ?a) ] |- _ => rewrite (N2Z.inj_abs_N a) in H + | |- context [ Z.of_N (Z.abs_N ?a) ] => rewrite (N2Z.inj_abs_N a) + | H : context [ Z.of_N (Npos ?a) ] |- _ => rewrite (N2Z.inj_pos a) in H + | |- context [ Z.of_N (Npos ?a) ] => rewrite (N2Z.inj_pos a) + | H : context [ Z.of_N N0 ] |- _ => change (Z.of_N N0) with Z0 in H + | |- context [ Z.of_N N0 ] => change (Z.of_N N0) with Z0 + + (* N.add -> Z.add *) + | H : context [ Z.of_N (N.add ?a ?b) ] |- _ => rewrite (N2Z.inj_add a b) in H + | |- context [ Z.of_N (N.add ?a ?b) ] => rewrite (N2Z.inj_add a b) + + (* N.min -> Z.min *) + | H : context [ Z.of_N (N.min ?a ?b) ] |- _ => rewrite (N2Z.inj_min a b) in H + | |- context [ Z.of_N (N.min ?a ?b) ] => rewrite (N2Z.inj_min a b) + + (* N.max -> Z.max *) + | H : context [ Z.of_N (N.max ?a ?b) ] |- _ => rewrite (N2Z.inj_max a b) in H + | |- context [ Z.of_N (N.max ?a ?b) ] => rewrite (N2Z.inj_max a b) + + (* N.sub -> Z.max 0 (Z.sub ... ...) *) + | H : context [ Z.of_N (N.sub ?a ?b) ] |- _ => rewrite (N2Z.inj_sub_max a b) in H + | |- context [ Z.of_N (N.sub ?a ?b) ] => rewrite (N2Z.inj_sub_max a b) + + (* N.succ -> Z.succ *) + | H : context [ Z.of_N (N.succ ?a) ] |- _ => rewrite (N2Z.inj_succ a) in H + | |- context [ Z.of_N (N.succ ?a) ] => rewrite (N2Z.inj_succ a) + + (* N.mul -> Z.mul and a positivity hypothesis *) + | H : context [ Z.of_N (N.mul ?a ?b) ] |- _ => + pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in * + | |- context [ Z.of_N (N.mul ?a ?b) ] => + pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in * (* atoms of type N : we add a positivity condition (if not already there) *) - | H : context [ Z_of_N ?a ] |- _ => - match goal with - | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a - | H' : 0 <= Z_of_N' a |- _ => fail - | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a - end - | |- context [ Z_of_N ?a ] => - match goal with - | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a - | H' : 0 <= Z_of_N' a |- _ => fail - | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a - end + | _ : 0 <= Z.of_N ?a |- _ => hide_Z_of_N a + | _ : context [ Z.of_N ?a ] |- _ => pose proof (N2Z.is_nonneg a); hide_Z_of_N a + | |- context [ Z.of_N ?a ] => pose proof (N2Z.is_nonneg a); hide_Z_of_N a end. Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *. |