summaryrefslogtreecommitdiff
path: root/plugins/micromega
diff options
context:
space:
mode:
authorGravatar Benjamin Barenblat <bbaren@debian.org>2019-02-02 19:29:23 -0500
committerGravatar Benjamin Barenblat <bbaren@debian.org>2019-02-02 19:29:23 -0500
commit9ebf44d84754adc5b64fcf612c6816c02c80462d (patch)
treebf5e06a28488e0e06a2f2011ff0d110e2e02f8fc /plugins/micromega
parent9043add656177eeac1491a73d2f3ab92bec0013c (diff)
Imported Upstream version 8.9.0upstream/8.9.0upstream
Diffstat (limited to 'plugins/micromega')
-rw-r--r--plugins/micromega/Fourier.v5
-rw-r--r--plugins/micromega/Fourier_util.v31
-rw-r--r--plugins/micromega/Tauto.v4
-rw-r--r--plugins/micromega/certificate.ml194
-rw-r--r--plugins/micromega/certificate.mli22
-rw-r--r--plugins/micromega/coq_micromega.ml323
-rw-r--r--plugins/micromega/coq_micromega.mli22
-rw-r--r--plugins/micromega/csdpcert.ml36
-rw-r--r--plugins/micromega/csdpcert.mli9
-rw-r--r--plugins/micromega/g_micromega.mlg (renamed from plugins/micromega/g_micromega.ml4)38
-rw-r--r--plugins/micromega/g_micromega.mli9
-rw-r--r--plugins/micromega/mfourier.ml85
-rw-r--r--plugins/micromega/mfourier.mli49
-rw-r--r--plugins/micromega/mutils.ml109
-rw-r--r--plugins/micromega/mutils.mli70
-rw-r--r--plugins/micromega/persistent_cache.mli47
-rw-r--r--plugins/micromega/polynomial.ml68
-rw-r--r--plugins/micromega/polynomial.mli118
-rw-r--r--plugins/micromega/sos.ml616
-rw-r--r--plugins/micromega/sos_lib.ml105
-rw-r--r--plugins/micromega/sos_lib.mli79
21 files changed, 595 insertions, 1444 deletions
diff --git a/plugins/micromega/Fourier.v b/plugins/micromega/Fourier.v
new file mode 100644
index 00000000..0153de1d
--- /dev/null
+++ b/plugins/micromega/Fourier.v
@@ -0,0 +1,5 @@
+Require Import Lra.
+Require Export Fourier_util.
+
+#[deprecated(since = "8.9.0", note = "Use lra instead.")]
+Ltac fourier := lra.
diff --git a/plugins/micromega/Fourier_util.v b/plugins/micromega/Fourier_util.v
new file mode 100644
index 00000000..b62153de
--- /dev/null
+++ b/plugins/micromega/Fourier_util.v
@@ -0,0 +1,31 @@
+Require Export Rbase.
+Require Import Lra.
+
+Open Scope R_scope.
+
+Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
+intros x y H H0; try assumption.
+replace 0 with (x * 0).
+apply Rmult_lt_compat_l; auto with real.
+ring.
+Qed.
+
+Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
+intros x H; try assumption.
+rewrite Rplus_comm.
+apply Rle_lt_0_plus_1.
+red; auto with real.
+Qed.
+
+Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
+ intros; lra.
+Qed.
+
+Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
+intros x y H H0; try assumption.
+case H; intros.
+red; left.
+apply Rlt_mult_inv_pos; auto with real.
+rewrite <- H1.
+red; right; ring.
+Qed.
diff --git a/plugins/micromega/Tauto.v b/plugins/micromega/Tauto.v
index 31f55ae9..458844e1 100644
--- a/plugins/micromega/Tauto.v
+++ b/plugins/micromega/Tauto.v
@@ -211,7 +211,7 @@ Set Implicit Arguments.
(* BC *)
simpl.
case_eq (deduce t t) ; auto.
- intros until 0.
+ intros *.
case_eq (unsat t0) ; auto.
unfold eval_clause.
rewrite make_conj_cons.
@@ -263,7 +263,7 @@ Set Implicit Arguments.
Proof.
induction cl.
simpl. tauto.
- intros until 0.
+ intros *.
simpl.
assert (HH := add_term_correct env a cl').
case_eq (add_term a cl').
diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml
index 9f39191f..3a9709b6 100644
--- a/plugins/micromega/certificate.ml
+++ b/plugins/micromega/certificate.ml
@@ -17,10 +17,9 @@
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
-type var = int
-
-
+let debug = false
+open Util
open Big_int
open Num
open Polynomial
@@ -59,9 +58,6 @@ let q_spec = {
eqb = Mc.qeq_bool
}
-let r_spec = z_spec
-
-
let dev_form n_spec p =
let rec dev_form p =
match p with
@@ -84,38 +80,6 @@ let dev_form n_spec p =
pow n in
dev_form p
-
-let monomial_to_polynomial mn =
- Monomial.fold
- (fun v i acc ->
- let v = Ml2C.positive v in
- let mn = if Int.equal i 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
- if Pervasives.(=) acc (Mc.PEc (Mc.Zpos Mc.XH)) (** FIXME *)
- then mn
- else Mc.PEmul(mn,acc))
- mn
- (Mc.PEc (Mc.Zpos Mc.XH))
-
-
-
-let list_to_polynomial vars l =
- assert (List.for_all (fun x -> ceiling_num x =/ x) l);
- let var x = monomial_to_polynomial (List.nth vars x) in
-
- let rec xtopoly p i = function
- | [] -> p
- | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
- else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
- let mn =
- if Pervasives.(=) c (Mc.PEc (Mc.Zpos Mc.XH))
- then var i
- else Mc.PEmul (c,var i) in
- let p' = if Pervasives.(=) p (Mc.PEc Mc.Z0) then mn else
- Mc.PEadd (mn, p) in
- xtopoly p' (i+1) l in
-
- xtopoly (Mc.PEc Mc.Z0) 0 l
-
let rec fixpoint f x =
let y' = f x in
if Pervasives.(=) y' x then y'
@@ -135,15 +99,6 @@ let rec_simpl_cone n_spec e =
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
-
-type cone_prod =
- Const of cone
-| Ideal of cone *cone
-| Mult of cone * cone
-| Other of cone
-and cone = Mc.zWitness
-
-
let factorise_linear_cone c =
@@ -224,14 +179,6 @@ let positivity l =
in
xpositivity 0 l
-
-let string_of_op = function
- | Mc.Strict -> "> 0"
- | Mc.NonStrict -> ">= 0"
- | Mc.Equal -> "= 0"
- | Mc.NonEqual -> "<> 0"
-
-
module MonSet = Set.Make(Monomial)
(* If the certificate includes at least one strict inequality,
@@ -261,9 +208,6 @@ let build_linear_system l =
op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
-
-let big_int_to_z = Ml2C.bigint
-
(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
let make_certificate n_spec (cert,li) =
@@ -296,8 +240,6 @@ let make_certificate n_spec (cert,li) =
(simplify_cone n_spec (scalar_product cert' li)))
-exception Found of Monomial.t
-
exception Strict
module MonMap = Map.Make(Monomial)
@@ -367,7 +309,7 @@ let simple_linear_prover l =
let linear_prover n_spec l =
let build_system n_spec l =
- let li = List.combine l (interval 0 (List.length l -1)) in
+ let li = List.combine l (CList.interval 0 (List.length l -1)) in
let (l1,l') = List.partition
(fun (x,_) -> if Pervasives.(=) (snd x) Mc.NonEqual then true else false) li in
List.map
@@ -397,7 +339,7 @@ let nlinear_prover prfdepth (sys: (Mc.q Mc.pExpr * Mc.op1) list) =
LinPoly.MonT.clear ();
max_nb_cstr := compute_max_nb_cstr sys prfdepth ;
(* Assign a proof to the initial hypotheses *)
- let sys = mapi (fun c i -> (c,Mc.PsatzIn (Ml2C.nat i))) sys in
+ let sys = List.mapi (fun i c -> (c,Mc.PsatzIn (Ml2C.nat i))) sys in
(* Add all the product of hypotheses *)
@@ -452,39 +394,6 @@ let nlinear_prover prfdepth (sys: (Mc.q Mc.pExpr * Mc.op1) list) =
| Mc.PsatzZ -> Mc.PsatzZ in
Some (map_psatz cert)
-
-
-let make_linear_system l =
- let l' = List.map fst l in
- let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
- (Poly.constant (Int 0)) l' in
- let monomials = Poly.fold
- (fun mn _ l -> if Pervasives.(=) mn Monomial.const then l else mn::l) monomials [] in
- (List.map (fun (c,op) ->
- {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
- op = op ;
- cst = minus_num ( (Poly.get Monomial.const c))}) l
- ,monomials)
-
-
-let pplus x y = Mc.PEadd(x,y)
-let pmult x y = Mc.PEmul(x,y)
-let pconst x = Mc.PEc x
-let popp x = Mc.PEopp x
-
-(* keep track of enumerated vectors *)
-let rec mem p x l =
- match l with [] -> false | e::l -> if p x e then true else mem p x l
-
-let rec remove_assoc p x l =
- match l with [] -> [] | e::l -> if p x (fst e) then
- remove_assoc p x l else e::(remove_assoc p x l)
-
-let eq x y = Int.equal (Vect.compare x y) 0
-
-let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
-
-
(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
@@ -494,38 +403,6 @@ let develop_constraint z_spec (e,k) =
| Mc.Equal -> (dev_form z_spec e , Eq)
| _ -> assert false
-
-let op_of_op_compat = function
- | Ge -> Mc.NonStrict
- | Eq -> Mc.Equal
-
-
-let integer_vector coeffs =
- let vars , coeffs = List.split coeffs in
- List.combine vars (List.map (fun x -> Big_int x) (rats_to_ints coeffs))
-
-let integer_cstr {coeffs = coeffs ; op = op ; cst = cst } =
- let vars , coeffs = List.split coeffs in
- match rats_to_ints (cst::coeffs) with
- | cst :: coeffs ->
- {
- coeffs = List.combine vars (List.map (fun x -> Big_int x) coeffs) ;
- op = op ; cst = Big_int cst}
- | _ -> assert false
-
-
-let pexpr_of_cstr_compat var cstr =
- let {coeffs = coeffs ; op = op ; cst = cst } = integer_cstr cstr in
- try
- let expr = list_to_polynomial var (Vect.to_list coeffs) in
- let d = Ml2C.bigint (denominator cst) in
- let n = Ml2C.bigint (numerator cst) in
- (pplus (pmult (pconst d) expr) (popp (pconst n)), op_of_op_compat op)
- with Failure _ -> failwith "pexpr_of_cstr_compat"
-
-
-
-
open Sos_types
let rec scale_term t =
@@ -555,18 +432,6 @@ let scale_term t =
let (s,t') = scale_term t in
s,t'
-
-let get_index_of_ith_match f i l =
- let rec get j res l =
- match l with
- | [] -> failwith "bad index"
- | e::l -> if f e
- then
- (if Int.equal j i then res else get (j+1) (res+1) l )
- else get j (res+1) l in
- get 0 0 l
-
-
let rec scale_certificate pos = match pos with
| Axiom_eq i -> unit_big_int , Axiom_eq i
| Axiom_le i -> unit_big_int , Axiom_le i
@@ -681,8 +546,6 @@ open Polynomial
module Env =
struct
- type t = int list
-
let id_of_hyp hyp l =
let rec xid_of_hyp i l =
match l with
@@ -749,9 +612,6 @@ let xlinear_prover sys =
| Inl _ -> None
-let output_num o n = output_string o (string_of_num n)
-let output_bigint o n = output_string o (string_of_big_int n)
-
let proof_of_farkas prf cert =
(* Printf.printf "\nproof_of_farkas %a , %a \n" (pp_list output_prf_rule) prf (pp_list output_bigint) cert ; *)
let rec mk_farkas acc prf cert =
@@ -894,23 +754,6 @@ let rec ext_gcd a b =
let (s,t) = ext_gcd b r in
(t, sub_big_int s (mult_big_int q t))
-
-let pp_ext_gcd a b =
- let a' = big_int_of_int a in
- let b' = big_int_of_int b in
-
- let (x,y) = ext_gcd a' b' in
- Printf.fprintf stdout "%s * %s + %s * %s = %s\n"
- (string_of_big_int x) (string_of_big_int a')
- (string_of_big_int y) (string_of_big_int b')
- (string_of_big_int (add_big_int (mult_big_int x a') (mult_big_int y b')))
-
-exception Result of (int * (proof * cstr_compat))
-
-let split_equations psys =
- List.partition (fun (c,p) -> c.op == Eq)
-
-
let extract_coprime (c1,p1) (c2,p2) =
let rec exist2 vect1 vect2 =
match vect1 , vect2 with
@@ -1058,29 +901,6 @@ let reduce_var_change psys =
Some (apply_and_normalise pivot_eq sys)
-
-
-
-let reduce_pivot psys =
- let is_equation (cstr,prf) =
- if cstr.op == Eq
- then
- try
- Some (fst (List.hd cstr.coeffs))
- with Not_found -> None
- else None in
- let (oeq,sys) = extract is_equation psys in
- match oeq with
- | None -> None (* Nothing to do *)
- | Some(v,pc) ->
- if debug then
- Printf.printf "Bad news : loss of completeness %a=%s" Vect.pp_vect (fst pc).coeffs (string_of_num (fst pc).cst);
- Some(pivot_sys v pc sys)
-
-
-
-
-
let iterate_until_stable f x =
let rec iter x =
match f x with
@@ -1225,7 +1045,7 @@ let xlia (can_enum:bool) reduction_equations sys =
| None -> None
| Some prf ->
(*Printf.printf "direct proof %a\n" output_proof prf ; *)
- let env = mapi (fun _ i -> i) sys in
+ let env = List.mapi (fun i _ -> i) sys in
let prf = compile_proof env prf in
(*try
if Mc.zChecker sys' prf then Some prf else
@@ -1244,7 +1064,7 @@ let lia (can_enum:bool) (prfdepth:int) sys =
max_nb_cstr := compute_max_nb_cstr sys prfdepth ;
let sys = List.map (develop_constraint z_spec) sys in
let (sys:cstr_compat list) = List.map cstr_compat_of_poly sys in
- let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ let sys = List.mapi (fun i c -> (c,Hyp i)) sys in
xlia can_enum reduction_equations sys
@@ -1252,7 +1072,7 @@ let nlia enum prfdepth sys =
LinPoly.MonT.clear ();
max_nb_cstr := compute_max_nb_cstr sys prfdepth;
let sys = List.map (develop_constraint z_spec) sys in
- let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ let sys = List.mapi (fun i c -> (c,Hyp i)) sys in
let is_linear = List.for_all (fun ((p,_),_) -> Poly.is_linear p) sys in
diff --git a/plugins/micromega/certificate.mli b/plugins/micromega/certificate.mli
new file mode 100644
index 00000000..13d50d1e
--- /dev/null
+++ b/plugins/micromega/certificate.mli
@@ -0,0 +1,22 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+module Mc = Micromega
+
+type 'a number_spec
+
+val q_cert_of_pos : Sos_types.positivstellensatz -> Mc.q Mc.psatz
+val z_cert_of_pos : Sos_types.positivstellensatz -> Mc.z Mc.psatz
+val lia : bool -> int -> (Mc.z Mc.pExpr * Mc.op1) list -> Mc.zArithProof option
+val nlia : bool -> int -> (Mc.z Mc.pExpr * Mc.op1) list -> Mc.zArithProof option
+val nlinear_prover : int -> (Mc.q Mc.pExpr * Mc.op1) list -> Mc.q Mc.psatz option
+val linear_prover_with_cert : int -> 'a number_spec ->
+ ('a Mc.pExpr * Mc.op1) list -> 'a Mc.psatz option
+val q_spec : Mc.q number_spec
diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml
index 168105e8..f22147f8 100644
--- a/plugins/micromega/coq_micromega.ml
+++ b/plugins/micromega/coq_micromega.ml
@@ -19,10 +19,11 @@
(************************************************************************)
open Pp
-open Mutils
-open Goptions
open Names
+open Goptions
+open Mutils
open Constr
+open Tactypes
(**
* Debug flag
@@ -30,19 +31,6 @@ open Constr
let debug = false
-(**
- * Time function
- *)
-
-let time str f x =
- let t0 = (Unix.times()).Unix.tms_utime in
- let res = f x in
- let t1 = (Unix.times()).Unix.tms_utime in
- (*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ;
- flush stdout);
- res
-
-
(* Limit the proof search *)
let max_depth = max_int
@@ -305,8 +293,7 @@ let rec add_term t0 = function
*)
module ISet = Set.Make(Int)
-module IMap = Map.Make(Int)
-
+
(**
* Given a set of integers s=\{i0,...,iN\} and a list m, return the list of
* elements of m that are at position i0,...,iN.
@@ -373,7 +360,7 @@ struct
* ZMicromega.v
*)
- let gen_constant_in_modules s m n = EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules s m n)
+ let gen_constant_in_modules s m n = EConstr.of_constr (UnivGen.constr_of_global @@ Coqlib.gen_reference_in_modules s m n)
let init_constant = gen_constant_in_modules "ZMicromega" Coqlib.init_modules
let constant = gen_constant_in_modules "ZMicromega" coq_modules
let bin_constant = gen_constant_in_modules "ZMicromega" bin_module
@@ -395,16 +382,10 @@ struct
let coq_O = lazy (init_constant "O")
let coq_S = lazy (init_constant "S")
- let coq_nat = lazy (init_constant "nat")
let coq_N0 = lazy (bin_constant "N0")
let coq_Npos = lazy (bin_constant "Npos")
- let coq_pair = lazy (init_constant "pair")
- let coq_None = lazy (init_constant "None")
- let coq_option = lazy (init_constant "option")
-
- let coq_positive = lazy (bin_constant "positive")
let coq_xH = lazy (bin_constant "xH")
let coq_xO = lazy (bin_constant "xO")
let coq_xI = lazy (bin_constant "xI")
@@ -417,8 +398,6 @@ struct
let coq_Q = lazy (constant "Q")
let coq_R = lazy (constant "R")
- let coq_Build_Witness = lazy (constant "Build_Witness")
-
let coq_Qmake = lazy (constant "Qmake")
let coq_Rcst = lazy (constant "Rcst")
@@ -455,8 +434,6 @@ struct
let coq_Zmult = lazy (z_constant "Z.mul")
let coq_Zpower = lazy (z_constant "Z.pow")
- let coq_Qgt = lazy (constant "Qgt")
- let coq_Qge = lazy (constant "Qge")
let coq_Qle = lazy (constant "Qle")
let coq_Qlt = lazy (constant "Qlt")
let coq_Qeq = lazy (constant "Qeq")
@@ -476,7 +453,6 @@ struct
let coq_Rminus = lazy (r_constant "Rminus")
let coq_Ropp = lazy (r_constant "Ropp")
let coq_Rmult = lazy (r_constant "Rmult")
- let coq_Rdiv = lazy (r_constant "Rdiv")
let coq_Rinv = lazy (r_constant "Rinv")
let coq_Rpower = lazy (r_constant "pow")
let coq_IZR = lazy (r_constant "IZR")
@@ -509,12 +485,6 @@ struct
let coq_PsatzAdd = lazy (constant "PsatzAdd")
let coq_PsatzC = lazy (constant "PsatzC")
let coq_PsatzZ = lazy (constant "PsatzZ")
- let coq_coneMember = lazy (constant "coneMember")
-
- let coq_make_impl = lazy
- (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl")
- let coq_make_conj = lazy
- (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj")
let coq_TT = lazy
(gen_constant_in_modules "ZMicromega"
@@ -552,13 +522,6 @@ struct
let coq_QWitness = lazy
(gen_constant_in_modules "QMicromega"
[["Coq"; "micromega"; "QMicromega"]] "QWitness")
- let coq_ZWitness = lazy
- (gen_constant_in_modules "QMicromega"
- [["Coq"; "micromega"; "ZMicromega"]] "ZWitness")
-
- let coq_N_of_Z = lazy
- (gen_constant_in_modules "ZArithRing"
- [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")
let coq_Build = lazy
(gen_constant_in_modules "RingMicromega"
@@ -577,34 +540,16 @@ struct
* pp_* functions pretty-print Coq terms.
*)
- (* Error datastructures *)
-
- type parse_error =
- | Ukn
- | BadStr of string
- | BadNum of int
- | BadTerm of constr
- | Msg of string
- | Goal of (constr list ) * constr * parse_error
-
- let string_of_error = function
- | Ukn -> "ukn"
- | BadStr s -> s
- | BadNum i -> string_of_int i
- | BadTerm _ -> "BadTerm"
- | Msg s -> s
- | Goal _ -> "Goal"
-
exception ParseError
(* A simple but useful getter function *)
let get_left_construct sigma term =
match EConstr.kind sigma term with
- | Term.Construct((_,i),_) -> (i,[| |])
- | Term.App(l,rst) ->
+ | Construct((_,i),_) -> (i,[| |])
+ | App(l,rst) ->
(match EConstr.kind sigma l with
- | Term.Construct((_,i),_) -> (i,rst)
+ | Construct((_,i),_) -> (i,rst)
| _ -> raise ParseError
)
| _ -> raise ParseError
@@ -648,19 +593,6 @@ struct
| Mc.N0 -> Lazy.force coq_N0
| Mc.Npos p -> EConstr.mkApp(Lazy.force coq_Npos,[| dump_positive p|])
- let rec dump_index x =
- match x with
- | Mc.XH -> Lazy.force coq_xH
- | Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_index p |])
- | Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_index p |])
-
- let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)
-
- let pp_n o x = output_string o (string_of_int (CoqToCaml.n x))
-
- let dump_pair t1 t2 dump_t1 dump_t2 (x,y) =
- EConstr.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|])
-
let parse_z sigma term =
let (i,c) = get_left_construct sigma term in
match i with
@@ -677,18 +609,13 @@ struct
let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x))
- let dump_num bd1 =
- EConstr.mkApp(Lazy.force coq_Qmake,
- [|dump_z (CamlToCoq.bigint (numerator bd1)) ;
- dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |])
-
let dump_q q =
EConstr.mkApp(Lazy.force coq_Qmake,
[| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|])
let parse_q sigma term =
match EConstr.kind sigma term with
- | Term.App(c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then
+ | App(c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then
{Mc.qnum = parse_z sigma args.(0) ; Mc.qden = parse_positive sigma args.(1) }
else raise ParseError
| _ -> raise ParseError
@@ -719,29 +646,6 @@ struct
| Mc.CInv t -> EConstr.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |])
| Mc.COpp t -> EConstr.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |])
- let rec parse_Rcst sigma term =
- let (i,c) = get_left_construct sigma term in
- match i with
- | 1 -> Mc.C0
- | 2 -> Mc.C1
- | 3 -> Mc.CQ (parse_q sigma c.(0))
- | 4 -> Mc.CPlus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
- | 5 -> Mc.CMinus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
- | 6 -> Mc.CMult(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
- | 7 -> Mc.CInv(parse_Rcst sigma c.(0))
- | 8 -> Mc.COpp(parse_Rcst sigma c.(0))
- | _ -> raise ParseError
-
-
-
-
- let rec parse_list sigma parse_elt term =
- let (i,c) = get_left_construct sigma term in
- match i with
- | 1 -> []
- | 2 -> parse_elt sigma c.(1) :: parse_list sigma parse_elt c.(2)
- | i -> raise ParseError
-
let rec dump_list typ dump_elt l =
match l with
| [] -> EConstr.mkApp(Lazy.force coq_nil,[| typ |])
@@ -756,22 +660,8 @@ struct
| e::l -> Printf.fprintf o "%a ,%a" elt e _pp l in
Printf.fprintf o "%s%a%s" op _pp l cl
- let pp_var = pp_positive
-
let dump_var = dump_positive
- let pp_expr pp_z o e =
- let rec pp_expr o e =
- match e with
- | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n
- | Mc.PEc z -> pp_z o z
- | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2
- | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2
- | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e
- | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2
- | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n n in
- pp_expr o e
-
let dump_expr typ dump_z e =
let rec dump_expr e =
match e with
@@ -854,18 +744,6 @@ struct
| Mc.OpGt-> Lazy.force coq_OpGt
| Mc.OpLt-> Lazy.force coq_OpLt
- let pp_op o e=
- match e with
- | Mc.OpEq-> Printf.fprintf o "="
- | Mc.OpNEq-> Printf.fprintf o "<>"
- | Mc.OpLe -> Printf.fprintf o "=<"
- | Mc.OpGe -> Printf.fprintf o ">="
- | Mc.OpGt-> Printf.fprintf o ">"
- | Mc.OpLt-> Printf.fprintf o "<"
-
- let pp_cstr pp_z o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } =
- Printf.fprintf o"(%a %a %a)" (pp_expr pp_z) l pp_op op (pp_expr pp_z) r
-
let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} =
EConstr.mkApp(Lazy.force coq_Build,
[| typ; dump_expr typ dump_constant e1 ;
@@ -904,8 +782,8 @@ struct
let parse_zop gl (op,args) =
let sigma = gl.sigma in
match EConstr.kind sigma op with
- | Term.Const (x,_) -> (assoc_const sigma op zop_table, args.(0) , args.(1))
- | Term.Ind((n,0),_) ->
+ | Const (x,_) -> (assoc_const sigma op zop_table, args.(0) , args.(1))
+ | Ind((n,0),_) ->
if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_Z)
then (Mc.OpEq, args.(1), args.(2))
else raise ParseError
@@ -914,8 +792,8 @@ struct
let parse_rop gl (op,args) =
let sigma = gl.sigma in
match EConstr.kind sigma op with
- | Term.Const (x,_) -> (assoc_const sigma op rop_table, args.(0) , args.(1))
- | Term.Ind((n,0),_) ->
+ | Const (x,_) -> (assoc_const sigma op rop_table, args.(0) , args.(1))
+ | Ind((n,0),_) ->
if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_R)
then (Mc.OpEq, args.(1), args.(2))
else raise ParseError
@@ -924,11 +802,6 @@ struct
let parse_qop gl (op,args) =
(assoc_const gl.sigma op qop_table, args.(0) , args.(1))
- let is_constant sigma t = (* This is an approx *)
- match EConstr.kind sigma t with
- | Term.Construct(i,_) -> true
- | _ -> false
-
type 'a op =
| Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr)
| Opp
@@ -947,8 +820,6 @@ struct
module Env =
struct
- type t = EConstr.constr list
-
let compute_rank_add env sigma v =
let rec _add env n v =
match env with
@@ -1011,10 +882,10 @@ struct
try (Mc.PEc (parse_constant term) , env)
with ParseError ->
match EConstr.kind sigma term with
- | Term.App(t,args) ->
+ | App(t,args) ->
(
match EConstr.kind sigma t with
- | Term.Const c ->
+ | Const c ->
( match assoc_ops sigma t ops_spec with
| Binop f -> combine env f (args.(0),args.(1))
| Opp -> let (expr,env) = parse_expr env args.(0) in
@@ -1077,13 +948,13 @@ struct
let rec rconstant sigma term =
match EConstr.kind sigma term with
- | Term.Const x ->
+ | Const x ->
if EConstr.eq_constr sigma term (Lazy.force coq_R0)
then Mc.C0
else if EConstr.eq_constr sigma term (Lazy.force coq_R1)
then Mc.C1
else raise ParseError
- | Term.App(op,args) ->
+ | App(op,args) ->
begin
try
(* the evaluation order is important in the following *)
@@ -1153,7 +1024,7 @@ struct
if debug
then Feedback.msg_debug (Pp.str "parse_arith: " ++ Printer.pr_leconstr_env gl.env sigma cstr ++ fnl ());
match EConstr.kind sigma cstr with
- | Term.App(op,args) ->
+ | App(op,args) ->
let (op,lhs,rhs) = parse_op gl (op,args) in
let (e1,env) = parse_expr sigma env lhs in
let (e2,env) = parse_expr sigma env rhs in
@@ -1168,17 +1039,6 @@ struct
(* generic parsing of arithmetic expressions *)
- let rec f2f = function
- | TT -> Mc.TT
- | FF -> Mc.FF
- | X _ -> Mc.X
- | A (x,_,_) -> Mc.A x
- | C (a,b) -> Mc.Cj(f2f a,f2f b)
- | D (a,b) -> Mc.D(f2f a,f2f b)
- | N (a) -> Mc.N(f2f a)
- | I(a,_,b) -> Mc.I(f2f a,f2f b)
-
-
let mkC f1 f2 = C(f1,f2)
let mkD f1 f2 = D(f1,f2)
let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1))
@@ -1208,7 +1068,7 @@ struct
let rec xparse_formula env tg term =
match EConstr.kind sigma term with
- | Term.App(l,rst) ->
+ | App(l,rst) ->
(match rst with
| [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_and) ->
let f,env,tg = xparse_formula env tg a in
@@ -1225,7 +1085,7 @@ struct
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkIff term f g,env,tg
| _ -> parse_atom env tg term)
- | Term.Prod(typ,a,b) when EConstr.Vars.noccurn sigma 1 b ->
+ | Prod(typ,a,b) when EConstr.Vars.noccurn sigma 1 b ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkI term f g,env,tg
@@ -1323,31 +1183,6 @@ let dump_qexpr = lazy
dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) qop_table
}
- let dump_positive_as_R p =
- let mult = Lazy.force coq_Rmult in
- let add = Lazy.force coq_Rplus in
-
- let one = Lazy.force coq_R1 in
- let mk_add x y = EConstr.mkApp(add,[|x;y|]) in
- let mk_mult x y = EConstr.mkApp(mult,[|x;y|]) in
-
- let two = mk_add one one in
-
- let rec dump_positive p =
- match p with
- | Mc.XH -> one
- | Mc.XO p -> mk_mult two (dump_positive p)
- | Mc.XI p -> mk_add one (mk_mult two (dump_positive p)) in
-
- dump_positive p
-
-let dump_n_as_R n =
- let z = CoqToCaml.n n in
- if z = 0
- then Lazy.force coq_R0
- else dump_positive_as_R (CamlToCoq.positive z)
-
-
let rec dump_Rcst_as_R cst =
match cst with
| Mc.C0 -> Lazy.force coq_R0
@@ -1481,54 +1316,6 @@ end (**
open M
-let rec sig_of_cone = function
- | Mc.PsatzIn n -> [CoqToCaml.nat n]
- | Mc.PsatzMulE(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
- | Mc.PsatzMulC(w1,w2) -> (sig_of_cone w2)
- | Mc.PsatzAdd(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
- | _ -> []
-
-let same_proof sg cl1 cl2 =
- let rec xsame_proof sg =
- match sg with
- | [] -> true
- | n::sg ->
- (try Int.equal (List.nth cl1 n) (List.nth cl2 n) with Invalid_argument _ -> false)
- && (xsame_proof sg ) in
- xsame_proof sg
-
-let tags_of_clause tgs wit clause =
- let rec xtags tgs = function
- | Mc.PsatzIn n -> Names.Id.Set.union tgs
- (snd (List.nth clause (CoqToCaml.nat n) ))
- | Mc.PsatzMulC(e,w) -> xtags tgs w
- | Mc.PsatzMulE (w1,w2) | Mc.PsatzAdd(w1,w2) -> xtags (xtags tgs w1) w2
- | _ -> tgs in
- xtags tgs wit
-
-(*let tags_of_cnf wits cnf =
- List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
- Names.Id.Set.empty wits cnf *)
-
-let find_witness prover polys1 = try_any prover polys1
-
-let rec witness prover l1 l2 =
- match l2 with
- | [] -> Some []
- | e :: l2 ->
- match find_witness prover (e::l1) with
- | None -> None
- | Some w ->
- (match witness prover l1 l2 with
- | None -> None
- | Some l -> Some (w::l)
- )
-
-let rec apply_ids t ids =
- match ids with
- | [] -> t
- | i::ids -> apply_ids (mkApp(t,[| mkVar i |])) ids
-
let coq_Node =
lazy (gen_constant_in_modules "VarMap"
[["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node")
@@ -1559,15 +1346,6 @@ let vm_of_list env =
List.fold_left (fun vm (c,i) ->
Mc.vm_add d (CamlToCoq.positive i) c vm) Mc.Empty env
-
-let rec pp_varmap o vm =
- match vm with
- | Mc.Empty -> output_string o "[]"
- | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z z
- | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l pp_z z pp_varmap r
-
-
-
let rec dump_proof_term = function
| Micromega.DoneProof -> Lazy.force coq_doneProof
| Micromega.RatProof(cone,rst) ->
@@ -1662,45 +1440,11 @@ let qq_domain_spec = lazy {
dump_proof = dump_psatz coq_Q dump_q
}
-let rcst_domain_spec = lazy {
- typ = Lazy.force coq_R;
- coeff = Lazy.force coq_Rcst;
- dump_coeff = dump_Rcst;
- proof_typ = Lazy.force coq_QWitness ;
- dump_proof = dump_psatz coq_Q dump_q
-}
-
(** Naive topological sort of constr according to the subterm-ordering *)
(* An element is minimal x is minimal w.r.t y if
x <= y or (x and y are incomparable) *)
-let is_min le x y =
- if le x y then true
- else if le y x then false else true
-
-let is_minimal le l c = List.for_all (is_min le c) l
-
-let find_rem p l =
- let rec xfind_rem acc l =
- match l with
- | [] -> (None, acc)
- | x :: l -> if p x then (Some x, acc @ l)
- else xfind_rem (x::acc) l in
- xfind_rem [] l
-
-let find_minimal le l = find_rem (is_minimal le l) l
-
-let rec mk_topo_order le l =
- match find_minimal le l with
- | (None , _) -> []
- | (Some v,l') -> v :: (mk_topo_order le l')
-
-
-let topo_sort_constr l =
- mk_topo_order (fun c t -> Termops.dependent Evd.empty (** FIXME *) (EConstr.of_constr c) (EConstr.of_constr t)) l
-
-
(**
* Instanciate the current Coq goal with a Micromega formula, a varmap, and a
* witness.
@@ -1778,13 +1522,6 @@ let witness_list prover l =
let witness_list_tags = witness_list
-(* *Deprecated* let is_singleton = function [] -> true | [e] -> true | _ -> false *)
-
-let pp_ml_list pp_elt o l =
- output_string o "[" ;
- List.iter (fun x -> Printf.fprintf o "%a ;" pp_elt x) l ;
- output_string o "]"
-
(**
* Prune the proof object, according to the 'diff' between two cnf formulas.
*)
@@ -1792,7 +1529,7 @@ let pp_ml_list pp_elt o l =
let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) =
let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
- let new_cl = Mutils.mapi (fun (f,_) i -> (f,i)) new_cl in
+ let new_cl = List.mapi (fun i (f,_) -> (f,i)) new_cl in
let remap i =
let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in
List.assoc formula new_cl in
@@ -1991,7 +1728,7 @@ let micromega_gen
let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in
let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in
- let ipat_of_name id = Some (CAst.make @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in
+ let ipat_of_name id = Some (CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) in
let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in
let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in
@@ -2106,7 +1843,7 @@ let micromega_genr prover tac =
let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in
let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in
- let ipat_of_name id = Some (CAst.make @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in
+ let ipat_of_name id = Some (CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) in
let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in
let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in
@@ -2158,7 +1895,11 @@ let lift_ratproof prover l =
| Some c -> Some (Mc.RatProof( c,Mc.DoneProof))
type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
+
+[@@@ocaml.warning "-37"]
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
+(* Used to read the result of the execution of csdpcert *)
+
type provername = string * int option
(**
@@ -2406,16 +2147,6 @@ let nlinear_Z = {
pp_f = fun o x -> pp_pol pp_z o (fst x)
}
-
-
-let tauto_lia ff =
- let prover = linear_Z in
- let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce ff in
- match witness_list_tags [prover] cnf_ff with
- | None -> None
- | Some l -> Some (List.map fst l)
-
-
(**
* Functions instantiating micromega_gen with the appropriate theories and
* solvers
diff --git a/plugins/micromega/coq_micromega.mli b/plugins/micromega/coq_micromega.mli
new file mode 100644
index 00000000..b91feb39
--- /dev/null
+++ b/plugins/micromega/coq_micromega.mli
@@ -0,0 +1,22 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+val psatz_Z : int -> unit Proofview.tactic -> unit Proofview.tactic
+val psatz_Q : int -> unit Proofview.tactic -> unit Proofview.tactic
+val psatz_R : int -> unit Proofview.tactic -> unit Proofview.tactic
+val xlia : unit Proofview.tactic -> unit Proofview.tactic
+val xnlia : unit Proofview.tactic -> unit Proofview.tactic
+val nra : unit Proofview.tactic -> unit Proofview.tactic
+val nqa : unit Proofview.tactic -> unit Proofview.tactic
+val sos_Z : unit Proofview.tactic -> unit Proofview.tactic
+val sos_Q : unit Proofview.tactic -> unit Proofview.tactic
+val sos_R : unit Proofview.tactic -> unit Proofview.tactic
+val lra_Q : unit Proofview.tactic -> unit Proofview.tactic
+val lra_R : unit Proofview.tactic -> unit Proofview.tactic
diff --git a/plugins/micromega/csdpcert.ml b/plugins/micromega/csdpcert.ml
index a1245b7c..9c1b4810 100644
--- a/plugins/micromega/csdpcert.ml
+++ b/plugins/micromega/csdpcert.ml
@@ -20,7 +20,6 @@ open Sos_types
open Sos_lib
module Mc = Micromega
-module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
@@ -28,7 +27,6 @@ type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
-let debug = false
let flags = [Open_append;Open_binary;Open_creat]
let chan = open_out_gen flags 0o666 "trace"
@@ -55,27 +53,6 @@ struct
end
open M
-open Mutils
-
-
-
-
-let canonical_sum_to_string = function s -> failwith "not implemented"
-
-let print_canonical_sum m = Format.print_string (canonical_sum_to_string m)
-
-let print_list_term o l =
- output_string o "print_list_term\n";
- List.iter (fun (e,k) -> Printf.fprintf o "q: %s %s ;"
- (string_of_poly (poly_of_term (expr_to_term e)))
- (match k with
- Mc.Equal -> "= "
- | Mc.Strict -> "> "
- | Mc.NonStrict -> ">= "
- | _ -> failwith "not_implemented")) (List.map (fun (e, o) -> Mc.denorm e , o) l) ;
- output_string o "\n"
-
-
let partition_expr l =
let rec f i = function
| [] -> ([],[],[])
@@ -125,7 +102,7 @@ let real_nonlinear_prover d l =
(sets_of_list neq) in
let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d ->
- list_try_find (fun m -> let (ci,cc) =
+ tryfind (fun m -> let (ci,cc) =
real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in
(ci,cc,snd m)) monoids) 0 in
@@ -144,7 +121,7 @@ let real_nonlinear_prover d l =
| l -> Monoid l in
List.fold_right (fun x y -> Product(x,y)) lt sq in
- let proof = list_fold_right_elements
+ let proof = end_itlist
(fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
S (Some proof)
with
@@ -158,7 +135,7 @@ let pure_sos l =
(* If there is no strict inequality,
I should nonetheless be able to try something - over Z > is equivalent to -1 >= *)
try
- let l = List.combine l (interval 0 (List.length l -1)) in
+ let l = List.combine l (CList.interval 0 (List.length l -1)) in
let (lt,i) = try (List.find (fun (x,_) -> Pervasives.(=) (snd x) Mc.Strict) l)
with Not_found -> List.hd l in
let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in
@@ -183,13 +160,6 @@ let run_prover prover pb =
| "pure_sos", None -> pure_sos pb
| prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1)
-
-let output_csdp_certificate o = function
- | S None -> output_string o "S None"
- | S (Some p) -> Printf.fprintf o "S (Some %a)" output_psatz p
- | F s -> Printf.fprintf o "F %s" s
-
-
let main () =
try
let (prover,poly) = (input_value stdin : provername * micromega_polys) in
diff --git a/plugins/micromega/csdpcert.mli b/plugins/micromega/csdpcert.mli
new file mode 100644
index 00000000..7c3ee600
--- /dev/null
+++ b/plugins/micromega/csdpcert.mli
@@ -0,0 +1,9 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
diff --git a/plugins/micromega/g_micromega.ml4 b/plugins/micromega/g_micromega.mlg
index 81140a46..21f0414e 100644
--- a/plugins/micromega/g_micromega.ml4
+++ b/plugins/micromega/g_micromega.mlg
@@ -16,70 +16,74 @@
(* *)
(************************************************************************)
+{
+
open Ltac_plugin
open Stdarg
open Tacarg
+}
+
DECLARE PLUGIN "micromega_plugin"
TACTIC EXTEND RED
-| [ "myred" ] -> [ Tactics.red_in_concl ]
+| [ "myred" ] -> { Tactics.red_in_concl }
END
TACTIC EXTEND PsatzZ
-| [ "psatz_Z" int_or_var(i) tactic(t) ] -> [ (Coq_micromega.psatz_Z i
+| [ "psatz_Z" int_or_var(i) tactic(t) ] -> { (Coq_micromega.psatz_Z i
(Tacinterp.tactic_of_value ist t))
- ]
-| [ "psatz_Z" tactic(t)] -> [ (Coq_micromega.psatz_Z (-1)) (Tacinterp.tactic_of_value ist t) ]
+ }
+| [ "psatz_Z" tactic(t)] -> { (Coq_micromega.psatz_Z (-1)) (Tacinterp.tactic_of_value ist t) }
END
TACTIC EXTEND Lia
-[ "xlia" tactic(t) ] -> [ (Coq_micromega.xlia (Tacinterp.tactic_of_value ist t)) ]
+| [ "xlia" tactic(t) ] -> { (Coq_micromega.xlia (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND Nia
-[ "xnlia" tactic(t) ] -> [ (Coq_micromega.xnlia (Tacinterp.tactic_of_value ist t)) ]
+| [ "xnlia" tactic(t) ] -> { (Coq_micromega.xnlia (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND NRA
-[ "xnra" tactic(t) ] -> [ (Coq_micromega.nra (Tacinterp.tactic_of_value ist t))]
+| [ "xnra" tactic(t) ] -> { (Coq_micromega.nra (Tacinterp.tactic_of_value ist t))}
END
TACTIC EXTEND NQA
-[ "xnqa" tactic(t) ] -> [ (Coq_micromega.nqa (Tacinterp.tactic_of_value ist t))]
+| [ "xnqa" tactic(t) ] -> { (Coq_micromega.nqa (Tacinterp.tactic_of_value ist t))}
END
TACTIC EXTEND Sos_Z
-| [ "sos_Z" tactic(t) ] -> [ (Coq_micromega.sos_Z (Tacinterp.tactic_of_value ist t)) ]
+| [ "sos_Z" tactic(t) ] -> { (Coq_micromega.sos_Z (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND Sos_Q
-| [ "sos_Q" tactic(t) ] -> [ (Coq_micromega.sos_Q (Tacinterp.tactic_of_value ist t)) ]
+| [ "sos_Q" tactic(t) ] -> { (Coq_micromega.sos_Q (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND Sos_R
-| [ "sos_R" tactic(t) ] -> [ (Coq_micromega.sos_R (Tacinterp.tactic_of_value ist t)) ]
+| [ "sos_R" tactic(t) ] -> { (Coq_micromega.sos_R (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND LRA_Q
-[ "lra_Q" tactic(t) ] -> [ (Coq_micromega.lra_Q (Tacinterp.tactic_of_value ist t)) ]
+| [ "lra_Q" tactic(t) ] -> { (Coq_micromega.lra_Q (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND LRA_R
-[ "lra_R" tactic(t) ] -> [ (Coq_micromega.lra_R (Tacinterp.tactic_of_value ist t)) ]
+| [ "lra_R" tactic(t) ] -> { (Coq_micromega.lra_R (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND PsatzR
-| [ "psatz_R" int_or_var(i) tactic(t) ] -> [ (Coq_micromega.psatz_R i (Tacinterp.tactic_of_value ist t)) ]
-| [ "psatz_R" tactic(t) ] -> [ (Coq_micromega.psatz_R (-1) (Tacinterp.tactic_of_value ist t)) ]
+| [ "psatz_R" int_or_var(i) tactic(t) ] -> { (Coq_micromega.psatz_R i (Tacinterp.tactic_of_value ist t)) }
+| [ "psatz_R" tactic(t) ] -> { (Coq_micromega.psatz_R (-1) (Tacinterp.tactic_of_value ist t)) }
END
TACTIC EXTEND PsatzQ
-| [ "psatz_Q" int_or_var(i) tactic(t) ] -> [ (Coq_micromega.psatz_Q i (Tacinterp.tactic_of_value ist t)) ]
-| [ "psatz_Q" tactic(t) ] -> [ (Coq_micromega.psatz_Q (-1) (Tacinterp.tactic_of_value ist t)) ]
+| [ "psatz_Q" int_or_var(i) tactic(t) ] -> { (Coq_micromega.psatz_Q i (Tacinterp.tactic_of_value ist t)) }
+| [ "psatz_Q" tactic(t) ] -> { (Coq_micromega.psatz_Q (-1) (Tacinterp.tactic_of_value ist t)) }
END
diff --git a/plugins/micromega/g_micromega.mli b/plugins/micromega/g_micromega.mli
new file mode 100644
index 00000000..7c3ee600
--- /dev/null
+++ b/plugins/micromega/g_micromega.mli
@@ -0,0 +1,9 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
diff --git a/plugins/micromega/mfourier.ml b/plugins/micromega/mfourier.ml
index 37799441..3328abda 100644
--- a/plugins/micromega/mfourier.ml
+++ b/plugins/micromega/mfourier.ml
@@ -1,13 +1,9 @@
+open Util
open Num
-module Utils = Mutils
open Polynomial
open Vect
-let map_option = Utils.map_option
-let from_option = Utils.from_option
-
let debug = false
-type ('a,'b) lr = Inl of 'a | Inr of 'b
let compare_float (p : float) q = Pervasives.compare p q
@@ -26,9 +22,6 @@ struct
Intervals needs to be explicitly normalised.
*)
- type who = Left | Right
-
-
(** if then interval [itv] is empty, [norm_itv itv] returns [None]
otherwise, it returns [Some itv] *)
@@ -37,14 +30,6 @@ struct
| Some a , Some b -> if a <=/ b then Some itv else None
| _ -> Some itv
- (** [opp_itv itv] computes the opposite interval *)
- let opp_itv itv =
- let (l,r) = itv in
- (map_option minus_num r, map_option minus_num l)
-
-
-
-
(** [inter i1 i2 = None] if the intersection of intervals is empty
[inter i1 i2 = Some i] if [i] is the intersection of the intervals [i1] and [i2] *)
let inter i1 i2 =
@@ -92,10 +77,6 @@ type vector = Vect.t
module ISet = Set.Make(Int)
-
-module PSet = ISet
-
-
module System = Hashtbl.Make(Vect)
type proof =
@@ -131,14 +112,6 @@ and cstr_info = {
(** To be thrown when a system has no solution *)
exception SystemContradiction of proof
-let hyps prf =
- let rec hyps prf acc =
- match prf with
- | Assum i -> ISet.add i acc
- | Elim(_,prf1,prf2)
- | And(prf1,prf2) -> hyps prf1 (hyps prf2 acc) in
- hyps prf ISet.empty
-
(** Pretty printing *)
let rec pp_proof o prf =
@@ -147,26 +120,6 @@ let hyps prf =
| Elim(v, prf1,prf2) -> Printf.fprintf o "E(%i,%a,%a)" v pp_proof prf1 pp_proof prf2
| And(prf1,prf2) -> Printf.fprintf o "A(%a,%a)" pp_proof prf1 pp_proof prf2
-let pp_bound o = function
- | None -> output_string o "oo"
- | Some a -> output_string o (string_of_num a)
-
-let pp_itv o (l,r) = Printf.fprintf o "(%a,%a)" pp_bound l pp_bound r
-
-
-let pp_iset o s =
- output_string o "{" ;
- ISet.fold (fun i _ -> Printf.fprintf o "%i " i) s ();
- output_string o "}"
-
-let pp_pset o s =
- output_string o "{" ;
- PSet.fold (fun i _ -> Printf.fprintf o "%i " i) s ();
- output_string o "}"
-
-
-let pp_info o i = pp_itv o i.bound
-
let pp_cstr o (vect,bnd) =
let (l,r) = bnd in
(match l with
@@ -183,11 +136,6 @@ let pp_system o sys=
System.iter (fun vect ibnd ->
pp_cstr o (vect,(!ibnd).bound)) sys
-
-
-let pp_split_cstr o (vl,v,c,_) =
- Printf.fprintf o "(val x = %s ,%a,%s)" (string_of_num vl) pp_vect v (string_of_num c)
-
(** [merge_cstr_info] takes:
- the intersection of bounds and
- the union of proofs
@@ -243,8 +191,8 @@ let normalise_cstr vect cinfo =
(if n <>/ Int 1 then List.map (fun (x,nx) -> (x,nx // n)) vect else vect),
let divn x = x // n in
if Int.equal (sign_num n) 1
- then{cinfo with bound = (map_option divn l , map_option divn r) }
- else {cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (map_option divn r , map_option divn l)})
+ then{cinfo with bound = (Option.map divn l , Option.map divn r) }
+ else {cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (Option.map divn r , Option.map divn l)})
(** For compatibility, there is an external representation of constraints *)
@@ -281,7 +229,7 @@ let load_system l =
let sys = System.create 1000 in
- let li = Mutils.mapi (fun e i -> (e,i)) l in
+ let li = List.mapi (fun i e -> (e,i)) l in
let vars = List.fold_left (fun vrs (cstr,i) ->
match norm_cstr cstr i with
@@ -335,9 +283,6 @@ let add (v1,c1) (v2,c2) =
(* Printf.printf "add(%a,%s,%a,%s) -> %a\n" pp_vect v1 (string_of_num c1) pp_vect v2 (string_of_num c2) pp_vect (fst res) ;*)
res
-type tlr = (num * vector * cstr_info) list
-type tm = (vector * cstr_info ) list
-
(** To perform Fourier elimination, constraints are categorised depending on the sign of the variable to eliminate. *)
(** [split x vect info (l,m,r)]
@@ -381,8 +326,8 @@ let project vr sys =
let {neg = n1 ; pos = p1 ; bound = bound1 ; prf = prf1} = info1
and {neg = n2 ; pos = p2 ; bound = bound2 ; prf = prf2} = info2 in
- let bnd1 = from_option (fst bound1)
- and bnd2 = from_option (fst bound2) in
+ let bnd1 = Option.get (fst bound1)
+ and bnd2 = Option.get (fst bound2) in
let bound = (bnd1 // v1) +/ (bnd2 // minus_num v2) in
let vres,(n,p) = add (vect1,v1) (vect2,minus_num v2) in
(vres,{neg = n ; pos = p ; bound = (Some bound, None); prf = Elim(vr,info1.prf,info2.prf)}) in
@@ -419,13 +364,13 @@ let project_using_eq vr c vect bound prf (vect',info') =
let bndres =
let f x = cst +/ x // c2 in
let (l,r) = info'.bound in
- (map_option f l , map_option f r) in
+ (Option.map f l , Option.map f r) in
(vres,{neg = n ; pos = p ; bound = bndres ; prf = Elim(vr,prf,info'.prf)})
| None -> (vect',info')
let elim_var_using_eq vr vect cst prf sys =
- let c = from_option (get vr vect) in
+ let c = Option.get (get vr vect) in
let elim_var = project_using_eq vr c vect cst prf in
@@ -444,9 +389,7 @@ let elim_var_using_eq vr vect cst prf sys =
(** [size sys] computes the number of entries in the system of constraints *)
let size sys = System.fold (fun v iref s -> s + (!iref).neg + (!iref).pos) sys 0
-module IMap = Map.Make(Int)
-
-let pp_map o map = IMap.fold (fun k elt () -> Printf.fprintf o "%i -> %s\n" k (string_of_num elt)) map ()
+module IMap = CMap.Make(Int)
(** [eval_vect map vect] evaluates vector [vect] using the values of [map].
If [map] binds all the variables of [vect], we get
@@ -475,8 +418,8 @@ let restrict_bound n sum (itv:interval) =
| 0 -> if in_bound itv sum
then (None,None) (* redundant *)
else failwith "SystemContradiction"
- | 1 -> map_option f l , map_option f r
- | _ -> map_option f r , map_option f l
+ | 1 -> Option.map f l , Option.map f r
+ | _ -> Option.map f r , Option.map f l
(** [bound_of_variable map v sys] computes the interval of [v] in
@@ -613,12 +556,6 @@ struct
|(Some a, Some b) -> a =/ b
| _ -> false
- let eq_bound bnd c =
- match bnd with
- |(Some a, Some b) -> a =/ b && c =/ b
- | _ -> false
-
-
let rec unroll_until v l =
match l with
| [] -> (false,[])
diff --git a/plugins/micromega/mfourier.mli b/plugins/micromega/mfourier.mli
new file mode 100644
index 00000000..f1d8edea
--- /dev/null
+++ b/plugins/micromega/mfourier.mli
@@ -0,0 +1,49 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+module Itv : sig
+
+ type interval = Num.num option * Num.num option
+ val range : interval -> Num.num option
+ val smaller_itv : interval -> interval -> bool
+
+end
+
+module IMap : CSig.MapS with type key = int
+
+type proof
+
+module Fourier : sig
+
+ val find_point : Polynomial.cstr_compat list ->
+ ((IMap.key * Num.num) list, proof) Util.union
+
+ val optimise : Polynomial.Vect.t ->
+ Polynomial.cstr_compat list ->
+ Itv.interval option
+
+end
+
+val pp_proof : out_channel -> proof -> unit
+
+module Proof : sig
+
+ val mk_proof : Polynomial.cstr_compat list ->
+ proof -> (Polynomial.Vect.t * Polynomial.cstr_compat) list
+
+ val add_op : Polynomial.op -> Polynomial.op -> Polynomial.op
+
+end
+
+val max_nb_cstr : int ref
+
+val eval_op : Polynomial.op -> Num.num -> Num.num -> bool
+
+exception TimeOut
diff --git a/plugins/micromega/mutils.ml b/plugins/micromega/mutils.ml
index 82367c0b..9d03560b 100644
--- a/plugins/micromega/mutils.ml
+++ b/plugins/micromega/mutils.ml
@@ -19,8 +19,6 @@
(* *)
(************************************************************************)
-let debug = false
-
let rec pp_list f o l =
match l with
| [] -> ()
@@ -36,15 +34,6 @@ let finally f rst =
with any -> raise reraise
); raise reraise
-let map_option f x =
- match x with
- | None -> None
- | Some v -> Some (f v)
-
-let from_option = function
- | None -> failwith "from_option"
- | Some v -> v
-
let rec try_any l x =
match l with
| [] -> None
@@ -52,13 +41,6 @@ let rec try_any l x =
| None -> try_any l x
| x -> x
-let iteri f l =
- let rec xiter i l =
- match l with
- | [] -> ()
- | e::l -> f i e ; xiter (i+1) l in
- xiter 0 l
-
let all_sym_pairs f l =
let pair_with acc e l = List.fold_left (fun acc x -> (f e x) ::acc) acc l in
@@ -77,14 +59,6 @@ let all_pairs f l =
| e::lx -> xpairs (pair_with acc e l) lx in
xpairs [] l
-
-
-let rec map3 f l1 l2 l3 =
- match l1 , l2 ,l3 with
- | [] , [] , [] -> []
- | e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3)
- | _ -> invalid_arg "map3"
-
let rec is_sublist f l1 l2 =
match l1 ,l2 with
| [] ,_ -> true
@@ -93,26 +67,6 @@ let rec is_sublist f l1 l2 =
if f e e' then is_sublist f l1' l2'
else is_sublist f l1 l2'
-let list_try_find f =
- let rec try_find_f = function
- | [] -> failwith "try_find"
- | h::t -> try f h with Failure _ -> try_find_f t
- in
- try_find_f
-
-let list_fold_right_elements f l =
- let rec aux = function
- | [] -> invalid_arg "list_fold_right_elements"
- | [x] -> x
- | x::l -> f x (aux l) in
- aux l
-
-let interval n m =
- let rec interval_n (l,m) =
- if n > m then l else interval_n (m::l,pred m)
- in
- interval_n ([],m)
-
let extract pred l =
List.fold_left (fun (fd,sys) e ->
match fd with
@@ -163,51 +117,7 @@ let rats_to_ints l =
List.map (fun x -> (div_big_int (mult_big_int (numerator x) c)
(denominator x))) l
-(* Nasty reordering of lists - useful to trim certificate down *)
-let mapi f l =
- let rec xmapi i l =
- match l with
- | [] -> []
- | e::l -> (f e i)::(xmapi (i+1) l) in
- xmapi 0 l
-
-let concatMapi f l = List.rev (mapi (fun e i -> (i,f e)) l)
-
(* assoc_pos j [a0...an] = [j,a0....an,j+n],j+n+1 *)
-let assoc_pos j l = (mapi (fun e i -> e,i+j) l, j + (List.length l))
-
-let assoc_pos_assoc l =
- let rec xpos i l =
- match l with
- | [] -> []
- | (x,l) ::rst -> let (l',j) = assoc_pos i l in
- (x,l')::(xpos j rst) in
- xpos 0 l
-
-let filter_pos f l =
- (* Could sort ... take care of duplicates... *)
- let rec xfilter l =
- match l with
- | [] -> []
- | (x,e)::l ->
- if List.exists (fun ee -> List.mem ee f) (List.map snd e)
- then (x,e)::(xfilter l)
- else xfilter l in
- xfilter l
-
-let select_pos lpos l =
- let rec xselect i lpos l =
- match lpos with
- | [] -> []
- | j::rpos ->
- match l with
- | [] -> failwith "select_pos"
- | e::l ->
- if Int.equal i j
- then e:: (xselect (i+1) rpos l)
- else xselect (i+1) lpos l in
- xselect 0 lpos l
-
(**
* MODULE: Coq to Caml data-structure mappings
*)
@@ -238,12 +148,6 @@ struct
| XI i -> 1+(2*(index i))
| XO i -> 2*(index i)
- let z x =
- match x with
- | Z0 -> 0
- | Zpos p -> (positive p)
- | Zneg p -> - (positive p)
-
open Big_int
let rec positive_big_int p =
@@ -258,8 +162,6 @@ struct
| Zpos p -> (positive_big_int p)
| Zneg p -> minus_big_int (positive_big_int p)
- let num x = Num.Big_int (z_big_int x)
-
let q_to_num {qnum = x ; qden = y} =
Big_int (z_big_int x) // (Big_int (z_big_int (Zpos y)))
@@ -352,17 +254,6 @@ struct
let c = cmp e1 e2 in
if Int.equal c 0 then compare_list cmp l1 l2 else c
-(**
- * hash_list takes a hash function and a list, and computes an integer which
- * is the hash value of the list.
- *)
- let hash_list hash l =
- let rec _hash_list l h =
- match l with
- | [] -> h lxor (Hashtbl.hash [])
- | e::l -> _hash_list l ((hash e) lxor h)
- in _hash_list l 0
-
end
(**
diff --git a/plugins/micromega/mutils.mli b/plugins/micromega/mutils.mli
new file mode 100644
index 00000000..094429ea
--- /dev/null
+++ b/plugins/micromega/mutils.mli
@@ -0,0 +1,70 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+val numerator : Num.num -> Big_int.big_int
+val denominator : Num.num -> Big_int.big_int
+
+module Cmp : sig
+
+ val compare_list : ('a -> 'b -> int) -> 'a list -> 'b list -> int
+ val compare_lexical : (unit -> int) list -> int
+
+end
+
+module Tag : sig
+
+ type t
+
+ val pp : out_channel -> t -> unit
+ val next : t -> t
+ val from : int -> t
+
+end
+
+module TagSet : CSig.SetS with type elt = Tag.t
+
+val pp_list : (out_channel -> 'a -> unit) -> out_channel -> 'a list -> unit
+
+module CamlToCoq : sig
+
+ val positive : int -> Micromega.positive
+ val bigint : Big_int.big_int -> Micromega.z
+ val n : int -> Micromega.n
+ val nat : int -> Micromega.nat
+ val q : Num.num -> Micromega.q
+ val index : int -> Micromega.positive
+ val z : int -> Micromega.z
+ val positive_big_int : Big_int.big_int -> Micromega.positive
+
+end
+
+module CoqToCaml : sig
+
+ val z_big_int : Micromega.z -> Big_int.big_int
+ val q_to_num : Micromega.q -> Num.num
+ val positive : Micromega.positive -> int
+ val n : Micromega.n -> int
+ val nat : Micromega.nat -> int
+ val index : Micromega.positive -> int
+
+end
+
+val rats_to_ints : Num.num list -> Big_int.big_int list
+
+val all_pairs : ('a -> 'a -> 'b) -> 'a list -> 'b list
+val all_sym_pairs : ('a -> 'a -> 'b) -> 'a list -> 'b list
+val try_any : (('a -> 'b option) * 'c) list -> 'a -> 'b option
+val is_sublist : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
+
+val gcd_list : Num.num list -> Big_int.big_int
+
+val extract : ('a -> 'b option) -> 'a list -> ('b * 'a) option * 'a list
+
+val command : string -> string array -> 'a -> 'b
diff --git a/plugins/micromega/persistent_cache.mli b/plugins/micromega/persistent_cache.mli
new file mode 100644
index 00000000..240fa490
--- /dev/null
+++ b/plugins/micromega/persistent_cache.mli
@@ -0,0 +1,47 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+open Hashtbl
+
+module type PHashtable =
+ sig
+ type 'a t
+ type key
+
+ val create : int -> string -> 'a t
+ (** [create i f] creates an empty persistent table
+ with initial size i associated with file [f] *)
+
+
+ val open_in : string -> 'a t
+ (** [open_in f] rebuilds a table from the records stored in file [f].
+ As marshaling is not type-safe, it migth segault.
+ *)
+
+ val find : 'a t -> key -> 'a
+ (** find has the specification of Hashtable.find *)
+
+ val add : 'a t -> key -> 'a -> unit
+ (** [add tbl key elem] adds the binding [key] [elem] to the table [tbl].
+ (and writes the binding to the file associated with [tbl].)
+ If [key] is already bound, raises KeyAlreadyBound *)
+
+ val close : 'a t -> unit
+ (** [close tbl] is closing the table.
+ Once closed, a table cannot be used.
+ i.e, find,add will raise UnboundTable *)
+
+ val memo : string -> (key -> 'a) -> (key -> 'a)
+ (** [memo cache f] returns a memo function for [f] using file [cache] as persistent table.
+ Note that the cache will only be loaded when the function is used for the first time *)
+
+ end
+
+module PHashtable(Key:HashedType) : PHashtable with type key = Key.t
diff --git a/plugins/micromega/polynomial.ml b/plugins/micromega/polynomial.ml
index db8b73a2..1d18a26f 100644
--- a/plugins/micromega/polynomial.ml
+++ b/plugins/micromega/polynomial.ml
@@ -20,9 +20,9 @@ open Utils
type var = int
+let debug = false
let (<+>) = add_num
-let (<->) = minus_num
let (<*>) = mult_num
@@ -33,8 +33,6 @@ sig
val is_const : t -> bool
val var : var -> t
val is_var : t -> bool
- val find : var -> t -> int
- val mult : var -> t -> t
val prod : t -> t -> t
val exp : t -> int -> t
val div : t -> t -> t * int
@@ -99,9 +97,6 @@ struct
(* Get the degre of a variable in a monomial *)
let find x m = try find x m with Not_found -> 0
- (* Multiply a monomial by a variable *)
- let mult x m = add x ( (find x m) + 1) m
-
(* Product of monomials *)
let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
@@ -145,14 +140,10 @@ sig
val variable : var -> t
val add : Monomial.t -> num -> t -> t
val constant : num -> t
- val mult : Monomial.t -> num -> t -> t
val product : t -> t -> t
val addition : t -> t -> t
val uminus : t -> t
val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
- val pp : out_channel -> t -> unit
- val compare : t -> t -> int
- val is_null : t -> bool
val is_linear : t -> bool
end =
struct
@@ -162,12 +153,6 @@ struct
type t = num P.t
- let pp o p = P.iter
- (fun k v ->
- if Monomial.compare Monomial.const k = 0
- then Printf.fprintf o "%s " (string_of_num v)
- else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
-
(* Get the coefficient of monomial mn *)
let get : Monomial.t -> t -> num =
fun mn p -> try find mn p with Not_found -> (Int 0)
@@ -220,10 +205,6 @@ struct
let fold = P.fold
- let is_null p = fold (fun mn vl b -> b && sign_num vl = 0) p true
-
- let compare = compare compare_num
-
let is_linear p = P.fold (fun m _ acc -> acc && (Monomial.is_const m || Monomial.is_var m)) p true
(* let is_linear p =
@@ -277,7 +258,6 @@ module Vect =
xfrom_list 0 l
let zero_num = Int 0
- let unit_num = Int 1
let to_list m =
@@ -311,11 +291,6 @@ module Vect =
| 1 -> (k,v) :: (set i n l)
| _ -> failwith "compare_num"
- let gcd m =
- let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int x (Utils.numerator e)) Big_int.zero_big_int m in
- if Big_int.compare_big_int res Big_int.zero_big_int = 0
- then Big_int.unit_big_int else res
-
let mul z t =
match z with
| Int 0 -> []
@@ -345,7 +320,7 @@ module Vect =
- let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical
+ let compare : t -> t -> int = Mutils.Cmp.compare_list (fun x y -> Mutils.Cmp.compare_lexical
[
(fun () -> Int.compare (fst x) (fst y));
(fun () -> compare_num (snd x) (snd y))])
@@ -395,18 +370,8 @@ let opMult o1 o2 =
| Eq , Ge | Ge , Eq -> Ge
| Ge , Ge -> Ge
-let opAdd o1 o2 =
- match o1 , o2 with
- | Eq , _ | _ , Eq -> Eq
- | Ge , Ge -> Ge
-
-
-
-
open Big_int
-type index = int
-
type prf_rule =
| Hyp of int
| Def of int
@@ -550,35 +515,6 @@ let mul_proof_ext (p,c) prf =
| _ -> MulC((p,c),prf)
-
-(*
- let rec scale_prf_rule = function
- | Hyp i -> (unit_big_int, Hyp i)
- | Def i -> (unit_big_int, Def i)
- | Cst c -> (unit_big_int, Cst i)
- | Zero -> (unit_big_int, Zero)
- | Square p -> (unit_big_int,Square p)
- | Div(c,pr) ->
- let (bi,pr') = scale_prf_rule pr in
- (mult_big_int c bi , pr')
- | MulC(p,pr) ->
- let bi,pr' = scale_prf_rule pr in
- (bi,MulC p,pr')
- | MulPrf(p1,p2) ->
- let b1,p1 = scale_prf_rule p1 in
- let b2,p2 = scale_prf_rule p2 in
-
-
- | AddPrf(p1,p2) ->
- let b1,p1 = scale_prf_rule p1 in
- let b2,p2 = scale_prf_rule p2 in
- let g = gcd_big_int
-*)
-
-
-
-
-
module LinPoly =
struct
type t = Vect.t * num
diff --git a/plugins/micromega/polynomial.mli b/plugins/micromega/polynomial.mli
new file mode 100644
index 00000000..4c095202
--- /dev/null
+++ b/plugins/micromega/polynomial.mli
@@ -0,0 +1,118 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+type var = int
+
+module Monomial : sig
+
+ type t
+ val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
+ val const : t
+ val sqrt : t -> t option
+ val is_var : t -> bool
+ val div : t -> t -> t * int
+
+ val compare : t -> t -> int
+
+end
+
+module Poly : sig
+
+ type t
+
+ val constant : Num.num -> t
+ val variable : var -> t
+ val addition : t -> t -> t
+ val product : t -> t -> t
+ val uminus : t -> t
+ val get : Monomial.t -> t -> Num.num
+ val fold : (Monomial.t -> Num.num -> 'a -> 'a) -> t -> 'a -> 'a
+
+ val is_linear : t -> bool
+
+ val add : Monomial.t -> Num.num -> t -> t
+
+end
+
+module Vect : sig
+
+ type var = int
+ type t = (var * Num.num) list
+ val hash : t -> int
+ val equal : t -> t -> bool
+ val compare : t -> t -> int
+ val pp_vect : 'a -> t -> unit
+
+ val get : var -> t -> Num.num option
+ val set : var -> Num.num -> t -> t
+ val fresh : (int * 'a) list -> int
+ val update : Int.t -> (Num.num -> Num.num) ->
+ (Int.t * Num.num) list -> (Int.t * Num.num) list
+ val null : t
+
+ val from_list : Num.num list -> t
+ val to_list : t -> Num.num list
+
+ val add : t -> t -> t
+ val mul : Num.num -> t -> t
+
+end
+
+type cstr_compat = {coeffs : Vect.t ; op : op ; cst : Num.num}
+and op = Eq | Ge
+
+type prf_rule =
+ | Hyp of int
+ | Def of int
+ | Cst of Big_int.big_int
+ | Zero
+ | Square of (Vect.t * Num.num)
+ | MulC of (Vect.t * Num.num) * prf_rule
+ | Gcd of Big_int.big_int * prf_rule
+ | MulPrf of prf_rule * prf_rule
+ | AddPrf of prf_rule * prf_rule
+ | CutPrf of prf_rule
+
+type proof =
+ | Done
+ | Step of int * prf_rule * proof
+ | Enum of int * prf_rule * Vect.t * prf_rule * proof list
+
+val proof_max_id : proof -> int
+
+val normalise_proof : int -> proof -> int * proof
+
+val output_proof : out_channel -> proof -> unit
+
+val add_proof : prf_rule -> prf_rule -> prf_rule
+val mul_proof : Big_int.big_int -> prf_rule -> prf_rule
+
+module LinPoly : sig
+
+ type t = Vect.t * Num.num
+
+ module MonT : sig
+
+ val clear : unit -> unit
+ val retrieve : int -> Monomial.t
+
+ end
+
+ val pivot_eq : Vect.var ->
+ cstr_compat * prf_rule ->
+ cstr_compat * prf_rule -> (cstr_compat * prf_rule) option
+
+ val linpol_of_pol : Poly.t -> t
+
+end
+
+val output_cstr : out_channel -> cstr_compat -> unit
+
+val opMult : op -> op -> op
diff --git a/plugins/micromega/sos.ml b/plugins/micromega/sos.ml
index e1ceabe9..42a41e17 100644
--- a/plugins/micromega/sos.ml
+++ b/plugins/micromega/sos.ml
@@ -95,7 +95,7 @@ let dim (v:vector) = fst v;;
let vector_const c n =
if c =/ Int 0 then vector_0 n
- else (n,itlist (fun k -> k |-> c) (1--n) undefined :vector);;
+ else (n,List.fold_right (fun k -> k |-> c) (1--n) undefined :vector);;
let vector_cmul c (v:vector) =
let n = dim v in
@@ -104,7 +104,7 @@ let vector_cmul c (v:vector) =
let vector_of_list l =
let n = List.length l in
- (n,itlist2 (|->) (1--n) l undefined :vector);;
+ (n,List.fold_right2 (|->) (1--n) l undefined :vector);;
(* ------------------------------------------------------------------------- *)
(* Matrices; again rows and columns indexed from 1. *)
@@ -242,7 +242,7 @@ let string_of_monomial m =
if m = monomial_1 then "1" else
let vps = List.fold_right (fun (x,k) a -> string_of_varpow x k :: a)
(sort humanorder_varpow (graph m)) [] in
- end_itlist (fun s t -> s^"*"^t) vps;;
+ String.concat "*" vps;;
let string_of_cmonomial (c,m) =
if m = monomial_1 then string_of_num c
@@ -310,7 +310,7 @@ let rec poly_of_term t = match t with
let sdpa_of_vector (v:vector) =
let n = dim v in
let strs = List.map (o (decimalize 20) (element v)) (1--n) in
- end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
+ String.concat " " strs ^ "\n";;
(* ------------------------------------------------------------------------- *)
(* String for a matrix numbered k, in SDPA sparse format. *)
@@ -321,7 +321,7 @@ let sdpa_of_matrix k (m:matrix) =
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
(snd m) [] in
let mss = sort (increasing fst) ms in
- itlist (fun ((i,j),c) a ->
+ List.fold_right (fun ((i,j),c) a ->
pfx ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
@@ -340,7 +340,7 @@ let sdpa_of_problem comment obj mats =
"1\n" ^
string_of_int n ^ "\n" ^
sdpa_of_vector obj ^
- itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
+ List.fold_right2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
(1--List.length mats) mats "";;
(* ------------------------------------------------------------------------- *)
@@ -489,11 +489,11 @@ let scale_then =
and maximal_element amat acc =
foldl (fun maxa m c -> max_num maxa (abs_num c)) acc amat in
fun solver obj mats ->
- let cd1 = itlist common_denominator mats (Int 1)
+ let cd1 = List.fold_right common_denominator mats (Int 1)
and cd2 = common_denominator (snd obj) (Int 1) in
let mats' = List.map (mapf (fun x -> cd1 */ x)) mats
and obj' = vector_cmul cd2 obj in
- let max1 = itlist maximal_element mats' (Int 0)
+ let max1 = List.fold_right maximal_element mats' (Int 0)
and max2 = maximal_element (snd obj') (Int 0) in
let scal1 = pow2 (20-int_of_float(log(float_of_num max1) /. log 2.0))
and scal2 = pow2 (20-int_of_float(log(float_of_num max2) /. log 2.0)) in
@@ -551,7 +551,7 @@ let minimal_convex_hull =
| (m::ms) -> if in_convex_hull ms m then ms else ms@[m] in
let augment m ms = funpow 3 augment1 (m::ms) in
fun mons ->
- let mons' = itlist augment (List.tl mons) [List.hd mons] in
+ let mons' = List.fold_right augment (List.tl mons) [List.hd mons] in
funpow (List.length mons') augment1 mons';;
(* ------------------------------------------------------------------------- *)
@@ -612,11 +612,11 @@ let newton_polytope pol =
let vars = poly_variables pol in
let mons = List.map (fun m -> List.map (fun x -> monomial_degree x m) vars) (dom pol)
and ds = List.map (fun x -> (degree x pol + 1) / 2) vars in
- let all = itlist (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]]
+ let all = List.fold_right (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]]
and mons' = minimal_convex_hull mons in
let all' =
List.filter (fun m -> in_convex_hull mons' (List.map (fun x -> 2 * x) m)) all in
- List.map (fun m -> itlist2 (fun v i a -> if i = 0 then a else (v |-> i) a)
+ List.map (fun m -> List.fold_right2 (fun v i a -> if i = 0 then a else (v |-> i) a)
vars m monomial_1) (List.rev all');;
(* ------------------------------------------------------------------------- *)
@@ -657,8 +657,8 @@ let deration d =
foldl (fun a i c -> gcd_num a (numerator c)) (Int 0) (snd l) in
(c // (a */ a)),mapa (fun x -> a */ x) l in
let d' = List.map adj d in
- let a = itlist ((o) lcm_num ( (o) denominator fst)) d' (Int 1) //
- itlist ((o) gcd_num ( (o) numerator fst)) d' (Int 0) in
+ let a = List.fold_right ((o) lcm_num ( (o) denominator fst)) d' (Int 1) //
+ List.fold_right ((o) gcd_num ( (o) numerator fst)) d' (Int 0) in
(Int 1 // a),List.map (fun (c,l) -> (a */ c,l)) d';;
(* ------------------------------------------------------------------------- *)
@@ -719,7 +719,7 @@ let sdpa_of_blockdiagonal k m =
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
- itlist (fun ((b,i,j),c) a ->
+ List.fold_right (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
@@ -732,10 +732,10 @@ let sdpa_of_blockproblem comment nblocks blocksizes obj mats =
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
string_of_int nblocks ^ "\n" ^
- (end_itlist (fun s t -> s^" "^t) (List.map string_of_int blocksizes)) ^
+ (String.concat " " (List.map string_of_int blocksizes)) ^
"\n" ^
sdpa_of_vector obj ^
- itlist2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a)
+ List.fold_right2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a)
(1--List.length mats) mats "";;
(* ------------------------------------------------------------------------- *)
@@ -791,14 +791,14 @@ let blocks blocksizes bm =
(fun a (b,i,j) c -> if b = b0 then ((i,j) |-> c) a else a)
undefined bm in
(((bs,bs),m):matrix))
- (zip blocksizes (1--List.length blocksizes));;
+ (List.combine blocksizes (1--List.length blocksizes));;
(* ------------------------------------------------------------------------- *)
(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
(* ------------------------------------------------------------------------- *)
let real_positivnullstellensatz_general linf d eqs leqs pol =
- let vars = itlist ((o) union poly_variables) (pol::eqs @ List.map fst leqs) [] in
+ let vars = List.fold_right ((o) union poly_variables) (pol::eqs @ List.map fst leqs) [] in
let monoid =
if linf then
(poly_const num_1,Rational_lt num_1)::
@@ -808,16 +808,16 @@ let real_positivnullstellensatz_general linf d eqs leqs pol =
let mk_idmultiplier k p =
let e = d - multidegree p in
let mons = enumerate_monomials e vars in
- let nons = zip mons (1--List.length mons) in
+ let nons = List.combine mons (1--List.length mons) in
mons,
- itlist (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in
+ List.fold_right (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in
let mk_sqmultiplier k (p,c) =
let e = (d - multidegree p) / 2 in
let mons = enumerate_monomials e vars in
- let nons = zip mons (1--List.length mons) in
+ let nons = List.combine mons (1--List.length mons) in
mons,
- itlist (fun (m1,n1) ->
- itlist (fun (m2,n2) a ->
+ List.fold_right (fun (m1,n1) ->
+ List.fold_right (fun (m2,n2) a ->
let m = monomial_mul m1 m2 in
if n1 > n2 then a else
let c = if n1 = n2 then Int 1 else Int 2 in
@@ -825,17 +825,17 @@ let real_positivnullstellensatz_general linf d eqs leqs pol =
(m |-> equation_add ((k,n1,n2) |=> c) e) a)
nons)
nons undefined in
- let sqmonlist,sqs = unzip(List.map2 mk_sqmultiplier (1--List.length monoid) monoid)
- and idmonlist,ids = unzip(List.map2 mk_idmultiplier (1--List.length eqs) eqs) in
+ let sqmonlist,sqs = List.split(List.map2 mk_sqmultiplier (1--List.length monoid) monoid)
+ and idmonlist,ids = List.split(List.map2 mk_idmultiplier (1--List.length eqs) eqs) in
let blocksizes = List.map List.length sqmonlist in
let bigsum =
- itlist2 (fun p q a -> epoly_pmul p q a) eqs ids
- (itlist2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs
+ List.fold_right2 (fun p q a -> epoly_pmul p q a) eqs ids
+ (List.fold_right2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs
(epoly_of_poly(poly_neg pol))) in
let eqns = foldl (fun a m e -> e::a) [] bigsum in
let pvs,assig = eliminate_all_equations (0,0,0) eqns in
let qvars = (0,0,0)::pvs in
- let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
+ let allassig = List.fold_right (fun v -> (v |-> (v |=> Int 1))) pvs assig in
let mk_matrix v =
foldl (fun m (b,i,j) ass -> if b < 0 then m else
let c = tryapplyd ass v (Int 0) in
@@ -858,8 +858,8 @@ let real_positivnullstellensatz_general linf d eqs leqs pol =
else ());
let vec = nice_vector d raw_vec in
let blockmat = iter (1,dim vec)
- (fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (el i mats)) a)
- (bmatrix_neg (el 0 mats)) in
+ (fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (List.nth mats i)) a)
+ (bmatrix_neg (List.nth mats 0)) in
let allmats = blocks blocksizes blockmat in
vec,List.map diag allmats in
let vec,ratdias =
@@ -867,7 +867,7 @@ let real_positivnullstellensatz_general linf d eqs leqs pol =
else tryfind find_rounding (List.map Num.num_of_int (1--31) @
List.map pow2 (5--66)) in
let newassigs =
- itlist (fun k -> el (k - 1) pvs |-> element vec k)
+ List.fold_right (fun k -> List.nth pvs (k - 1) |-> element vec k)
(1--dim vec) ((0,0,0) |=> Int(-1)) in
let finalassigs =
foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs
@@ -877,17 +877,17 @@ let real_positivnullstellensatz_general linf d eqs leqs pol =
undefined p in
let mk_sos mons =
let mk_sq (c,m) =
- c,itlist (fun k a -> (el (k - 1) mons |--> element m k) a)
+ c,List.fold_right (fun k a -> (List.nth mons (k - 1) |--> element m k) a)
(1--List.length mons) undefined in
List.map mk_sq in
let sqs = List.map2 mk_sos sqmonlist ratdias
and cfs = List.map poly_of_epoly ids in
let msq = List.filter (fun (a,b) -> b <> []) (List.map2 (fun a b -> a,b) monoid sqs) in
- let eval_sq sqs = itlist
+ let eval_sq sqs = List.fold_right
(fun (c,q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in
let sanity =
- itlist (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq
- (itlist2 (fun p q -> poly_add (poly_mul p q)) cfs eqs
+ List.fold_right (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq
+ (List.fold_right2 (fun p q -> poly_add (poly_mul p q)) cfs eqs
(poly_neg pol)) in
if not(is_undefined sanity) then raise Sanity else
cfs,List.map (fun (a,b) -> snd a,b) msq;;
@@ -913,8 +913,8 @@ let monomial_order =
fun m1 m2 ->
if m2 = monomial_1 then true else if m1 = monomial_1 then false else
let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in
- let deg1 = itlist ((o) (+) snd) mon1 0
- and deg2 = itlist ((o) (+) snd) mon2 0 in
+ let deg1 = List.fold_right ((o) (+) snd) mon1 0
+ and deg2 = List.fold_right ((o) (+) snd) mon2 0 in
if deg1 < deg2 then false else if deg1 > deg2 then true
else lexorder mon1 mon2;;
@@ -929,7 +929,7 @@ let term_of_varpow =
let term_of_monomial =
fun m -> if m = monomial_1 then Const num_1 else
let m' = dest_monomial m in
- let vps = itlist (fun (x,k) a -> term_of_varpow x k :: a) m' [] in
+ let vps = List.fold_right (fun (x,k) a -> term_of_varpow x k :: a) m' [] in
end_itlist (fun s t -> Mul (s,t)) vps;;
let term_of_cmonomial =
@@ -953,202 +953,12 @@ let term_of_sos (pr,sqs) =
else Product(pr,end_itlist (fun a b -> Sum(a,b)) (List.map term_of_sqterm sqs));;
(* ------------------------------------------------------------------------- *)
-(* Interface to HOL. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let REAL_NONLINEAR_PROVER translator (eqs,les,lts) =
- let eq0 = map (poly_of_term o lhand o concl) eqs
- and le0 = map (poly_of_term o lhand o concl) les
- and lt0 = map (poly_of_term o lhand o concl) lts in
- let eqp0 = map (fun (t,i) -> t,Axiom_eq i) (zip eq0 (0--(length eq0 - 1)))
- and lep0 = map (fun (t,i) -> t,Axiom_le i) (zip le0 (0--(length le0 - 1)))
- and ltp0 = map (fun (t,i) -> t,Axiom_lt i) (zip lt0 (0--(length lt0 - 1))) in
- let keq,eq = partition (fun (p,_) -> multidegree p = 0) eqp0
- and klep,lep = partition (fun (p,_) -> multidegree p = 0) lep0
- and kltp,ltp = partition (fun (p,_) -> multidegree p = 0) ltp0 in
- let trivial_axiom (p,ax) =
- match ax with
- Axiom_eq n when eval undefined p <>/ num_0 -> el n eqs
- | Axiom_le n when eval undefined p </ num_0 -> el n les
- | Axiom_lt n when eval undefined p <=/ num_0 -> el n lts
- | _ -> failwith "not a trivial axiom" in
- try let th = tryfind trivial_axiom (keq @ klep @ kltp) in
- CONV_RULE (LAND_CONV REAL_POLY_CONV THENC REAL_RAT_RED_CONV) th
- with Failure _ ->
- let pol = itlist poly_mul (map fst ltp) (poly_const num_1) in
- let leq = lep @ ltp in
- let tryall d =
- let e = multidegree pol in
- let k = if e = 0 then 0 else d / e in
- let eq' = map fst eq in
- tryfind (fun i -> d,i,real_positivnullstellensatz_general false d eq' leq
- (poly_neg(poly_pow pol i)))
- (0--k) in
- let d,i,(cert_ideal,cert_cone) = deepen tryall 0 in
- let proofs_ideal =
- map2 (fun q (p,ax) -> Eqmul(term_of_poly q,ax)) cert_ideal eq
- and proofs_cone = map term_of_sos cert_cone
- and proof_ne =
- if ltp = [] then Rational_lt num_1 else
- let p = end_itlist (fun s t -> Product(s,t)) (map snd ltp) in
- funpow i (fun q -> Product(p,q)) (Rational_lt num_1) in
- let proof = end_itlist (fun s t -> Sum(s,t))
- (proof_ne :: proofs_ideal @ proofs_cone) in
- print_string("Translating proof certificate to HOL");
- print_newline();
- translator (eqs,les,lts) proof;;
-*)
-(* ------------------------------------------------------------------------- *)
-(* A wrapper that tries to substitute away variables first. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let REAL_NONLINEAR_SUBST_PROVER =
- let zero = `&0:real`
- and mul_tm = `( * ):real->real->real`
- and shuffle1 =
- CONV_RULE(REWR_CONV(REAL_ARITH `a + x = (y:real) <=> x = y - a`))
- and shuffle2 =
- CONV_RULE(REWR_CONV(REAL_ARITH `x + a = (y:real) <=> x = y - a`)) in
- let rec substitutable_monomial fvs tm =
- match tm with
- Var(_,Tyapp("real",[])) when not (mem tm fvs) -> Int 1,tm
- | Comb(Comb(Const("real_mul",_),c),(Var(_,_) as t))
- when is_ratconst c && not (mem t fvs)
- -> rat_of_term c,t
- | Comb(Comb(Const("real_add",_),s),t) ->
- (try substitutable_monomial (union (frees t) fvs) s
- with Failure _ -> substitutable_monomial (union (frees s) fvs) t)
- | _ -> failwith "substitutable_monomial"
- and isolate_variable v th =
- match lhs(concl th) with
- x when x = v -> th
- | Comb(Comb(Const("real_add",_),(Var(_,Tyapp("real",[])) as x)),t)
- when x = v -> shuffle2 th
- | Comb(Comb(Const("real_add",_),s),t) ->
- isolate_variable v(shuffle1 th) in
- let make_substitution th =
- let (c,v) = substitutable_monomial [] (lhs(concl th)) in
- let th1 = AP_TERM (mk_comb(mul_tm,term_of_rat(Int 1 // c))) th in
- let th2 = CONV_RULE(BINOP_CONV REAL_POLY_MUL_CONV) th1 in
- CONV_RULE (RAND_CONV REAL_POLY_CONV) (isolate_variable v th2) in
- fun translator ->
- let rec substfirst(eqs,les,lts) =
- try let eth = tryfind make_substitution eqs in
- let modify =
- CONV_RULE(LAND_CONV(SUBS_CONV[eth] THENC REAL_POLY_CONV)) in
- substfirst(filter (fun t -> lhand(concl t) <> zero) (map modify eqs),
- map modify les,map modify lts)
- with Failure _ -> REAL_NONLINEAR_PROVER translator (eqs,les,lts) in
- substfirst;;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Overall function. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let REAL_SOS =
- let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
- and pure = GEN_REAL_ARITH REAL_NONLINEAR_SUBST_PROVER in
- fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Add hacks for division. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let REAL_SOSFIELD =
- let inv_tm = `inv:real->real` in
- let prenex_conv =
- TOP_DEPTH_CONV BETA_CONV THENC
- PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div;
- REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC
- NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
- PRENEX_CONV
- and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
- and core_rule t =
- try REAL_ARITH t
- with Failure _ -> try REAL_RING t
- with Failure _ -> REAL_SOS t
- and is_inv =
- let is_div = is_binop `(/):real->real->real` in
- fun tm -> (is_div tm or (is_comb tm && rator tm = inv_tm)) &&
- not(is_ratconst(rand tm)) in
- let BASIC_REAL_FIELD tm =
- let is_freeinv t = is_inv t && free_in t tm in
- let itms = setify(map rand (find_terms is_freeinv tm)) in
- let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in
- let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
- let itms' = map (curry mk_comb inv_tm) itms in
- let gvs = map (genvar o type_of) itms' in
- let tm'' = subst (zip gvs itms') tm' in
- let th1 = setup_conv tm'' in
- let cjs = conjuncts(rand(concl th1)) in
- let ths = map core_rule cjs in
- let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
- rev_itlist (C MP) hyps (INST (zip itms' gvs) th2) in
- fun tm ->
- let th0 = prenex_conv tm in
- let tm0 = rand(concl th0) in
- let avs,bod = strip_forall tm0 in
- let th1 = setup_conv bod in
- let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in
- EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Integer version. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let INT_SOS =
- let atom_CONV =
- let pth = prove
- (`(~(x <= y) <=> y + &1 <= x:int) /\
- (~(x < y) <=> y <= x) /\
- (~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\
- (x < y <=> x + &1 <= y)`,
- REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in
- GEN_REWRITE_CONV I [pth]
- and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV
- [int_eq; int_le; int_lt; int_ge; int_gt;
- int_of_num_th; int_neg_th; int_add_th; int_mul_th;
- int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in
- let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in
- let NNF_NORM_CONV = GEN_NNF_CONV false
- (base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in
- let init_CONV =
- GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; EXISTS_SIMP] THENC
- GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC
- CONDS_ELIM_CONV THENC NNF_NORM_CONV in
- let p_tm = `p:bool`
- and not_tm = `(~)` in
- let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in
- fun tm ->
- let th0 = INST [tm,p_tm] pth
- and th1 = NNF_NORM_CONV(mk_neg tm) in
- let th2 = REAL_SOS(mk_neg(rand(concl th1))) in
- EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Natural number version. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let SOS_RULE tm =
- let avs = frees tm in
- let tm' = list_mk_forall(avs,tm) in
- let th1 = NUM_TO_INT_CONV tm' in
- let th2 = INT_SOS (rand(concl th1)) in
- SPECL avs (EQ_MP (SYM th1) th2);;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Now pure SOS stuff. *)
-(* ------------------------------------------------------------------------- *)
-
-(*prioritize_real();;*)
-
-(* ------------------------------------------------------------------------- *)
(* Some combinatorial helper functions. *)
(* ------------------------------------------------------------------------- *)
let rec allpermutations l =
if l = [] then [[]] else
- itlist (fun h acc -> List.map (fun t -> h::t)
+ List.fold_right (fun h acc -> List.map (fun t -> h::t)
(allpermutations (subtract l [h])) @ acc) l [];;
let changevariables_monomial zoln (m:monomial) =
@@ -1165,14 +975,14 @@ let changevariables zoln pol =
let sdpa_of_vector (v:vector) =
let n = dim v in
let strs = List.map (o (decimalize 20) (element v)) (1--n) in
- end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
+ String.concat " " strs ^ "\n";;
let sdpa_of_matrix k (m:matrix) =
let pfx = string_of_int k ^ " 1 " in
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
(snd m) [] in
let mss = sort (increasing fst) ms in
- itlist (fun ((i,j),c) a ->
+ List.fold_right (fun ((i,j),c) a ->
pfx ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
@@ -1184,7 +994,7 @@ let sdpa_of_problem comment obj mats =
"1\n" ^
string_of_int n ^ "\n" ^
sdpa_of_vector obj ^
- itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
+ List.fold_right2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
(1--List.length mats) mats "";;
let run_csdp dbg obj mats =
@@ -1224,9 +1034,9 @@ let sumofsquares_general_symmetry tool pol =
let sym_eqs =
let invariants = List.filter
(fun vars' ->
- is_undefined(poly_sub pol (changevariables (zip vars vars') pol)))
+ is_undefined(poly_sub pol (changevariables (List.combine vars vars') pol)))
(allpermutations vars) in
- let lpns = zip lpps (1--List.length lpps) in
+ let lpns = List.combine lpps (1--List.length lpps) in
let lppcs =
List.filter (fun (m,(n1,n2)) -> n1 <= n2)
(allpairs
@@ -1234,8 +1044,8 @@ let sumofsquares_general_symmetry tool pol =
let clppcs = end_itlist (@)
(List.map (fun ((m1,m2),(n1,n2)) ->
List.map (fun vars' ->
- (changevariables_monomial (zip vars vars') m1,
- changevariables_monomial (zip vars vars') m2),(n1,n2))
+ (changevariables_monomial (List.combine vars vars') m1,
+ changevariables_monomial (List.combine vars vars') m2),(n1,n2))
invariants)
lppcs) in
let clppcs_dom = setify(List.map fst clppcs) in
@@ -1247,7 +1057,7 @@ let sumofsquares_general_symmetry tool pol =
[] -> raise Sanity
| [h] -> acc
| h::t -> List.map (fun k -> (k |-> Int(-1)) (h |=> Int 1)) t @ acc in
- itlist mk_eq eqvcls [] in
+ List.fold_right mk_eq eqvcls [] in
let eqs = foldl (fun a x y -> y::a) []
(itern 1 lpps (fun m1 n1 ->
itern 1 lpps (fun m2 n2 f ->
@@ -1259,7 +1069,7 @@ let sumofsquares_general_symmetry tool pol =
undefined pol)) @
sym_eqs in
let pvs,assig = eliminate_all_equations (0,0) eqs in
- let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
+ let allassig = List.fold_right (fun v -> (v |-> (v |=> Int 1))) pvs assig in
let qvars = (0,0)::pvs in
let diagents =
end_itlist equation_add (List.map (fun i -> apply allassig (i,i)) (1--n)) in
@@ -1281,18 +1091,18 @@ let sumofsquares_general_symmetry tool pol =
else ());
let vec = nice_vector d raw_vec in
let mat = iter (1,dim vec)
- (fun i a -> matrix_add (matrix_cmul (element vec i) (el i mats)) a)
- (matrix_neg (el 0 mats)) in
+ (fun i a -> matrix_add (matrix_cmul (element vec i) (List.nth mats i)) a)
+ (matrix_neg (List.nth mats 0)) in
deration(diag mat) in
let rat,dia =
if pvs = [] then
- let mat = matrix_neg (el 0 mats) in
+ let mat = matrix_neg (List.nth mats 0) in
deration(diag mat)
else
tryfind find_rounding (List.map Num.num_of_int (1--31) @
List.map pow2 (5--66)) in
let poly_of_lin(d,v) =
- d,foldl(fun a i c -> (el (i - 1) lpps |-> c) a) undefined (snd v) in
+ d,foldl(fun a i c -> (List.nth lpps (i - 1) |-> c) a) undefined (snd v) in
let lins = List.map poly_of_lin dia in
let sqs = List.map (fun (d,l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in
let sos = poly_cmul rat (end_itlist poly_add sqs) in
@@ -1300,325 +1110,3 @@ let sumofsquares_general_symmetry tool pol =
let sumofsquares = sumofsquares_general_symmetry csdp;;
-(* ------------------------------------------------------------------------- *)
-(* Pure HOL SOS conversion. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let SOS_CONV =
- let mk_square =
- let pow_tm = `(pow)` and two_tm = `2` in
- fun tm -> mk_comb(mk_comb(pow_tm,tm),two_tm)
- and mk_prod = mk_binop `( * )`
- and mk_sum = mk_binop `(+)` in
- fun tm ->
- let k,sos = sumofsquares(poly_of_term tm) in
- let mk_sqtm(c,p) =
- mk_prod (term_of_rat(k */ c)) (mk_square(term_of_poly p)) in
- let tm' = end_itlist mk_sum (map mk_sqtm sos) in
- let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in
- TRANS th (SYM th');;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Attempt to prove &0 <= x by direct SOS decomposition. *)
-(* ------------------------------------------------------------------------- *)
-(*
-let PURE_SOS_TAC =
- let tac =
- MATCH_ACCEPT_TAC(REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE) ORELSE
- MATCH_ACCEPT_TAC REAL_LE_SQUARE ORELSE
- (MATCH_MP_TAC REAL_LE_ADD THEN CONJ_TAC) ORELSE
- (MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) ORELSE
- CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV THENC REAL_RAT_LE_CONV) in
- REPEAT GEN_TAC THEN REWRITE_TAC[real_ge] THEN
- GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN
- CONV_TAC(RAND_CONV SOS_CONV) THEN
- REPEAT tac THEN NO_TAC;;
-
-let PURE_SOS tm = prove(tm,PURE_SOS_TAC);;
-*)
-(* ------------------------------------------------------------------------- *)
-(* Examples. *)
-(* ------------------------------------------------------------------------- *)
-
-(*****
-
-time REAL_SOS
- `a1 >= &0 /\ a2 >= &0 /\
- (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\
- (a1 * b1 + a2 * b2 = &0)
- ==> a1 * a2 - b1 * b2 >= &0`;;
-
-time REAL_SOS `&3 * x + &7 * a < &4 /\ &3 < &2 * x ==> a < &0`;;
-
-time REAL_SOS
- `b pow 2 < &4 * a * c ==> ~(a * x pow 2 + b * x + c = &0)`;;
-
-time REAL_SOS
- `(a * x pow 2 + b * x + c = &0) ==> b pow 2 >= &4 * a * c`;;
-
-time REAL_SOS
- `&0 <= x /\ x <= &1 /\ &0 <= y /\ y <= &1
- ==> x pow 2 + y pow 2 < &1 \/
- (x - &1) pow 2 + y pow 2 < &1 \/
- x pow 2 + (y - &1) pow 2 < &1 \/
- (x - &1) pow 2 + (y - &1) pow 2 < &1`;;
-
-time REAL_SOS
- `&0 <= b /\ &0 <= c /\ &0 <= x /\ &0 <= y /\
- (x pow 2 = c) /\ (y pow 2 = a pow 2 * c + b)
- ==> a * c <= y * x`;;
-
-time REAL_SOS
- `&0 <= x /\ &0 <= y /\ &0 <= z /\ x + y + z <= &3
- ==> x * y + x * z + y * z >= &3 * x * y * z`;;
-
-time REAL_SOS
- `(x pow 2 + y pow 2 + z pow 2 = &1) ==> (x + y + z) pow 2 <= &3`;;
-
-time REAL_SOS
- `(w pow 2 + x pow 2 + y pow 2 + z pow 2 = &1)
- ==> (w + x + y + z) pow 2 <= &4`;;
-
-time REAL_SOS
- `x >= &1 /\ y >= &1 ==> x * y >= x + y - &1`;;
-
-time REAL_SOS
- `x > &1 /\ y > &1 ==> x * y > x + y - &1`;;
-
-time REAL_SOS
- `abs(x) <= &1
- ==> abs(&64 * x pow 7 - &112 * x pow 5 + &56 * x pow 3 - &7 * x) <= &1`;;
-
-time REAL_SOS
- `abs(x - z) <= e /\ abs(y - z) <= e /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
- ==> abs((u * x + v * y) - z) <= e`;;
-
-(* ------------------------------------------------------------------------- *)
-(* One component of denominator in dodecahedral example. *)
-(* ------------------------------------------------------------------------- *)
-
-time REAL_SOS
- `&2 <= x /\ x <= &125841 / &50000 /\
- &2 <= y /\ y <= &125841 / &50000 /\
- &2 <= z /\ z <= &125841 / &50000
- ==> &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= &0`;;
-
-(* ------------------------------------------------------------------------- *)
-(* Over a larger but simpler interval. *)
-(* ------------------------------------------------------------------------- *)
-
-time REAL_SOS
- `&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
- ==> &0 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
-
-(* ------------------------------------------------------------------------- *)
-(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *)
-(* ------------------------------------------------------------------------- *)
-
-time REAL_SOS
- `&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
- ==> &12 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
-
-(* ------------------------------------------------------------------------- *)
-(* Gloptipoly example. *)
-(* ------------------------------------------------------------------------- *)
-
-(*** This works but normalization takes minutes
-
-time REAL_SOS
- `(x - y - &2 * x pow 4 = &0) /\ &0 <= x /\ x <= &2 /\ &0 <= y /\ y <= &3
- ==> y pow 2 - &7 * y - &12 * x + &17 >= &0`;;
-
- ***)
-
-(* ------------------------------------------------------------------------- *)
-(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *)
-(* ------------------------------------------------------------------------- *)
-
-time REAL_SOS
- `&0 <= x /\ &0 <= y /\ (x * y = &1)
- ==> x + y <= x pow 2 + y pow 2`;;
-
-time REAL_SOS
- `&0 <= x /\ &0 <= y /\ (x * y = &1)
- ==> x * y * (x + y) <= x pow 2 + y pow 2`;;
-
-time REAL_SOS
- `&0 <= x /\ &0 <= y ==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2`;;
-
-(* ------------------------------------------------------------------------- *)
-(* Some examples over integers and natural numbers. *)
-(* ------------------------------------------------------------------------- *)
-
-time SOS_RULE `!m n. 2 * m + n = (n + m) + m`;;
-time SOS_RULE `!n. ~(n = 0) ==> (0 MOD n = 0)`;;
-time SOS_RULE `!m n. m < n ==> (m DIV n = 0)`;;
-time SOS_RULE `!n:num. n <= n * n`;;
-time SOS_RULE `!m n. n * (m DIV n) <= m`;;
-time SOS_RULE `!n. ~(n = 0) ==> (0 DIV n = 0)`;;
-time SOS_RULE `!m n p. ~(p = 0) /\ m <= n ==> m DIV p <= n DIV p`;;
-time SOS_RULE `!a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)`;;
-
-(* ------------------------------------------------------------------------- *)
-(* This is particularly gratifying --- cf hideous manual proof in arith.ml *)
-(* ------------------------------------------------------------------------- *)
-
-(*** This doesn't now seem to work as well as it did; what changed?
-
-time SOS_RULE
- `!a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b`;;
-
- ***)
-
-(* ------------------------------------------------------------------------- *)
-(* Key lemma for injectivity of Cantor-type pairing functions. *)
-(* ------------------------------------------------------------------------- *)
-
-time SOS_RULE
- `!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1)
- ==> (x1 + y1 = x2 + y2)`;;
-
-time SOS_RULE
- `!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1) /\
- (x1 + y1 = x2 + y2)
- ==> (x1 = x2) /\ (y1 = y2)`;;
-
-time SOS_RULE
- `!x1 y1 x2 y2.
- (((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
- ((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2)
- ==> (x1 + y1 = x2 + y2)`;;
-
-time SOS_RULE
- `!x1 y1 x2 y2.
- (((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
- ((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2) /\
- (x1 + y1 = x2 + y2)
- ==> (x1 = x2) /\ (y1 = y2)`;;
-
-(* ------------------------------------------------------------------------- *)
-(* Reciprocal multiplication (actually just ARITH_RULE does these). *)
-(* ------------------------------------------------------------------------- *)
-
-time SOS_RULE `x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)`;;
-
-time SOS_RULE `x < 2 EXP 16 ==> ((104858 * x) DIV (2 EXP 20) = x DIV 10)`;;
-
-(* ------------------------------------------------------------------------- *)
-(* This is more impressive since it's really nonlinear. See REMAINDER_DECODE *)
-(* ------------------------------------------------------------------------- *)
-
-time SOS_RULE `0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)`;;
-
-(* ------------------------------------------------------------------------- *)
-(* Some conversion examples. *)
-(* ------------------------------------------------------------------------- *)
-
-time SOS_CONV
- `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;
-
-time SOS_CONV
- `x pow 4 - (&2 * y * z + &1) * x pow 2 +
- (y pow 2 * z pow 2 + &2 * y * z + &2)`;;
-
-time SOS_CONV `&4 * x pow 4 +
- &4 * x pow 3 * y - &7 * x pow 2 * y pow 2 - &2 * x * y pow 3 +
- &10 * y pow 4`;;
-
-time SOS_CONV `&4 * x pow 4 * y pow 6 + x pow 2 - x * y pow 2 + y pow 2`;;
-
-time SOS_CONV
- `&4096 * (x pow 4 + x pow 2 + z pow 6 - &3 * x pow 2 * z pow 2) + &729`;;
-
-time SOS_CONV
- `&120 * x pow 2 - &63 * x pow 4 + &10 * x pow 6 +
- &30 * x * y - &120 * y pow 2 + &120 * y pow 4 + &31`;;
-
-time SOS_CONV
- `&9 * x pow 2 * y pow 4 + &9 * x pow 2 * z pow 4 + &36 * x pow 2 * y pow 3 +
- &36 * x pow 2 * y pow 2 - &48 * x * y * z pow 2 + &4 * y pow 4 +
- &4 * z pow 4 - &16 * y pow 3 + &16 * y pow 2`;;
-
-time SOS_CONV
- `(x pow 2 + y pow 2 + z pow 2) *
- (x pow 4 * y pow 2 + x pow 2 * y pow 4 +
- z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2)`;;
-
-time SOS_CONV
- `x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3`;;
-
-(*** I think this will work, but normalization is slow
-
-time SOS_CONV
- `&100 * (x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z) + &212`;;
-
- ***)
-
-time SOS_CONV
- `&100 * ((&2 * x - &2) pow 2 + (x pow 3 - &8 * x - &2) pow 2) - &588`;;
-
-time SOS_CONV
- `x pow 2 * (&120 - &63 * x pow 2 + &10 * x pow 4) + &30 * x * y +
- &30 * y pow 2 * (&4 * y pow 2 - &4) + &31`;;
-
-(* ------------------------------------------------------------------------- *)
-(* Example of basic rule. *)
-(* ------------------------------------------------------------------------- *)
-
-time PURE_SOS
- `!x. x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3
- >= &1 / &7`;;
-
-time PURE_SOS
- `&0 <= &98 * x pow 12 +
- -- &980 * x pow 10 +
- &3038 * x pow 8 +
- -- &2968 * x pow 6 +
- &1022 * x pow 4 +
- -- &84 * x pow 2 +
- &2`;;
-
-time PURE_SOS
- `!x. &0 <= &2 * x pow 14 +
- -- &84 * x pow 12 +
- &1022 * x pow 10 +
- -- &2968 * x pow 8 +
- &3038 * x pow 6 +
- -- &980 * x pow 4 +
- &98 * x pow 2`;;
-
-(* ------------------------------------------------------------------------- *)
-(* From Zeng et al, JSC vol 37 (2004), p83-99. *)
-(* All of them work nicely with pure SOS_CONV, except (maybe) the one noted. *)
-(* ------------------------------------------------------------------------- *)
-
-PURE_SOS
- `x pow 6 + y pow 6 + z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2 >= &0`;;
-
-PURE_SOS `x pow 4 + y pow 4 + z pow 4 + &1 - &4*x*y*z >= &0`;;
-
-PURE_SOS `x pow 4 + &2*x pow 2*z + x pow 2 - &2*x*y*z + &2*y pow 2*z pow 2 +
-&2*y*z pow 2 + &2*z pow 2 - &2*x + &2* y*z + &1 >= &0`;;
-
-(**** This is harder. Interestingly, this fails the pure SOS test, it seems.
- Yet only on rounding(!?) Poor Newton polytope optimization or something?
- But REAL_SOS does finally converge on the second run at level 12!
-
-REAL_SOS
-`x pow 4*y pow 4 - &2*x pow 5*y pow 3*z pow 2 + x pow 6*y pow 2*z pow 4 + &2*x
-pow 2*y pow 3*z - &4* x pow 3*y pow 2*z pow 3 + &2*x pow 4*y*z pow 5 + z pow
-2*y pow 2 - &2*z pow 4*y*x + z pow 6*x pow 2 >= &0`;;
-
- ****)
-
-PURE_SOS
-`x pow 4 + &4*x pow 2*y pow 2 + &2*x*y*z pow 2 + &2*x*y*w pow 2 + y pow 4 + z
-pow 4 + w pow 4 + &2*z pow 2*w pow 2 + &2*x pow 2*w + &2*y pow 2*w + &2*x*y +
-&3*w pow 2 + &2*z pow 2 + &1 >= &0`;;
-
-PURE_SOS
-`w pow 6 + &2*z pow 2*w pow 3 + x pow 4 + y pow 4 + z pow 4 + &2*x pow 2*w +
-&2*x pow 2*z + &3*x pow 2 + w pow 2 + &2*z*w + z pow 2 + &2*z + &2*w + &1 >=
-&0`;;
-
-*****)
diff --git a/plugins/micromega/sos_lib.ml b/plugins/micromega/sos_lib.ml
index 6b8b820a..6aebc4ca 100644
--- a/plugins/micromega/sos_lib.ml
+++ b/plugins/micromega/sos_lib.ml
@@ -9,8 +9,6 @@
open Num
-let debugging = ref false;;
-
(* ------------------------------------------------------------------------- *)
(* Comparisons that are reflexive on NaN and also short-circuiting. *)
(* ------------------------------------------------------------------------- *)
@@ -21,7 +19,6 @@ let (=?) = fun x y -> cmp x y = 0;;
let (<?) = fun x y -> cmp x y < 0;;
let (<=?) = fun x y -> cmp x y <= 0;;
let (>?) = fun x y -> cmp x y > 0;;
-let (>=?) = fun x y -> cmp x y >= 0;;
(* ------------------------------------------------------------------------- *)
(* Combinators. *)
@@ -59,48 +56,29 @@ let lcm_num x y =
(* ------------------------------------------------------------------------- *)
-(* List basics. *)
-(* ------------------------------------------------------------------------- *)
-
-let rec el n l =
- if n = 0 then List.hd l else el (n - 1) (List.tl l);;
-
-
-(* ------------------------------------------------------------------------- *)
(* Various versions of list iteration. *)
(* ------------------------------------------------------------------------- *)
-let rec itlist f l b =
- match l with
- [] -> b
- | (h::t) -> f h (itlist f t b);;
-
let rec end_itlist f l =
match l with
[] -> failwith "end_itlist"
| [x] -> x
| (h::t) -> f h (end_itlist f t);;
-let rec itlist2 f l1 l2 b =
- match (l1,l2) with
- ([],[]) -> b
- | (h1::t1,h2::t2) -> f h1 h2 (itlist2 f t1 t2 b)
- | _ -> failwith "itlist2";;
-
(* ------------------------------------------------------------------------- *)
(* All pairs arising from applying a function over two lists. *)
(* ------------------------------------------------------------------------- *)
let rec allpairs f l1 l2 =
match l1 with
- h1::t1 -> itlist (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2)
+ h1::t1 -> List.fold_right (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2)
| [] -> [];;
(* ------------------------------------------------------------------------- *)
(* String operations (surely there is a better way...) *)
(* ------------------------------------------------------------------------- *)
-let implode l = itlist (^) l "";;
+let implode l = List.fold_right (^) l "";;
let explode s =
let rec exap n l =
@@ -110,13 +88,6 @@ let explode s =
(* ------------------------------------------------------------------------- *)
-(* Attempting function or predicate applications. *)
-(* ------------------------------------------------------------------------- *)
-
-let can f x = try (f x; true) with Failure _ -> false;;
-
-
-(* ------------------------------------------------------------------------- *)
(* Repetition of a function. *)
(* ------------------------------------------------------------------------- *)
@@ -126,36 +97,20 @@ let rec funpow n f x =
(* ------------------------------------------------------------------------- *)
-(* Replication and sequences. *)
+(* Sequences. *)
(* ------------------------------------------------------------------------- *)
-let rec replicate x n =
- if n < 1 then []
- else x::(replicate x (n - 1));;
-
let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);;
(* ------------------------------------------------------------------------- *)
(* Various useful list operations. *)
(* ------------------------------------------------------------------------- *)
-let rec forall p l =
- match l with
- [] -> true
- | h::t -> p(h) && forall p t;;
-
let rec tryfind f l =
match l with
[] -> failwith "tryfind"
| (h::t) -> try f h with Failure _ -> tryfind f t;;
-let index x =
- let rec ind n l =
- match l with
- [] -> failwith "index"
- | (h::t) -> if x =? h then n else ind (n + 1) t in
- ind 0;;
-
(* ------------------------------------------------------------------------- *)
(* "Set" operations on lists. *)
(* ------------------------------------------------------------------------- *)
@@ -168,46 +123,16 @@ let rec mem x lis =
let insert x l =
if mem x l then l else x::l;;
-let union l1 l2 = itlist insert l1 l2;;
+let union l1 l2 = List.fold_right insert l1 l2;;
let subtract l1 l2 = List.filter (fun x -> not (mem x l2)) l1;;
(* ------------------------------------------------------------------------- *)
-(* Merging and bottom-up mergesort. *)
-(* ------------------------------------------------------------------------- *)
-
-let rec merge ord l1 l2 =
- match l1 with
- [] -> l2
- | h1::t1 -> match l2 with
- [] -> l1
- | h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
- else h2::(merge ord l1 t2);;
-
-
-(* ------------------------------------------------------------------------- *)
(* Common measure predicates to use with "sort". *)
(* ------------------------------------------------------------------------- *)
let increasing f x y = f x <? f y;;
-let decreasing f x y = f x >? f y;;
-
-(* ------------------------------------------------------------------------- *)
-(* Zipping, unzipping etc. *)
-(* ------------------------------------------------------------------------- *)
-
-let rec zip l1 l2 =
- match (l1,l2) with
- ([],[]) -> []
- | (h1::t1,h2::t2) -> (h1,h2)::(zip t1 t2)
- | _ -> failwith "zip";;
-
-let rec unzip =
- function [] -> [],[]
- | ((a,b)::rest) -> let alist,blist = unzip rest in
- (a::alist,b::blist);;
-
(* ------------------------------------------------------------------------- *)
(* Iterating functions over lists. *)
(* ------------------------------------------------------------------------- *)
@@ -443,8 +368,6 @@ let apply f = applyd f (fun x -> failwith "apply");;
let tryapplyd f a d = applyd f (fun x -> d) a;;
-let defined f x = try apply f x; true with Failure _ -> false;;
-
(* ------------------------------------------------------------------------- *)
(* Undefinition. *)
(* ------------------------------------------------------------------------- *)
@@ -490,8 +413,6 @@ let graph f = setify (foldl (fun a x y -> (x,y)::a) [] f);;
let dom f = setify(foldl (fun a x y -> x::a) [] f);;
-let ran f = setify(foldl (fun a x y -> y::a) [] f);;
-
(* ------------------------------------------------------------------------- *)
(* More parser basics. *)
(* ------------------------------------------------------------------------- *)
@@ -499,7 +420,7 @@ let ran f = setify(foldl (fun a x y -> y::a) [] f);;
exception Noparse;;
-let isspace,issep,isbra,issymb,isalpha,isnum,isalnum =
+let isspace,isnum =
let charcode s = Char.code(String.get s 0) in
let spaces = " \t\n\r"
and separators = ",;"
@@ -508,7 +429,7 @@ let isspace,issep,isbra,issymb,isalpha,isnum,isalnum =
and alphas = "'abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"
and nums = "0123456789" in
let allchars = spaces^separators^brackets^symbs^alphas^nums in
- let csetsize = itlist ((o) max charcode) (explode allchars) 256 in
+ let csetsize = List.fold_right ((o) max charcode) (explode allchars) 256 in
let ctable = Array.make csetsize 0 in
do_list (fun c -> Array.set ctable (charcode c) 1) (explode spaces);
do_list (fun c -> Array.set ctable (charcode c) 2) (explode separators);
@@ -517,13 +438,8 @@ let isspace,issep,isbra,issymb,isalpha,isnum,isalnum =
do_list (fun c -> Array.set ctable (charcode c) 16) (explode alphas);
do_list (fun c -> Array.set ctable (charcode c) 32) (explode nums);
let isspace c = Array.get ctable (charcode c) = 1
- and issep c = Array.get ctable (charcode c) = 2
- and isbra c = Array.get ctable (charcode c) = 4
- and issymb c = Array.get ctable (charcode c) = 8
- and isalpha c = Array.get ctable (charcode c) = 16
- and isnum c = Array.get ctable (charcode c) = 32
- and isalnum c = Array.get ctable (charcode c) >= 16 in
- isspace,issep,isbra,issymb,isalpha,isnum,isalnum;;
+ and isnum c = Array.get ctable (charcode c) = 32 in
+ isspace,isnum;;
let parser_or parser1 parser2 input =
try parser1 input
@@ -566,9 +482,6 @@ let rec atleast n prs i =
(if n <= 0 then many prs
else prs ++ atleast (n - 1) prs >> (fun (h,t) -> h::t)) i;;
-let finished input =
- if input = [] then 0,input else failwith "Unparsed input";;
-
(* ------------------------------------------------------------------------- *)
let temp_path = Filename.get_temp_dir_name ();;
@@ -589,7 +502,7 @@ let strings_of_file filename =
(Pervasives.close_in fd; data);;
let string_of_file filename =
- end_itlist (fun s t -> s^"\n"^t) (strings_of_file filename);;
+ String.concat "\n" (strings_of_file filename);;
let file_of_string filename s =
let fd = Pervasives.open_out filename in
diff --git a/plugins/micromega/sos_lib.mli b/plugins/micromega/sos_lib.mli
new file mode 100644
index 00000000..8b53b815
--- /dev/null
+++ b/plugins/micromega/sos_lib.mli
@@ -0,0 +1,79 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+val o : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
+
+val num_1 : Num.num
+val pow10 : int -> Num.num
+val pow2 : int -> Num.num
+
+val implode : string list -> string
+val explode : string -> string list
+
+val funpow : int -> ('a -> 'a) -> 'a -> 'a
+val tryfind : ('a -> 'b) -> 'a list -> 'b
+
+type ('a,'b) func =
+ | Empty
+ | Leaf of int * ('a*'b) list
+ | Branch of int * int * ('a,'b) func * ('a,'b) func
+
+val undefined : ('a, 'b) func
+val is_undefined : ('a, 'b) func -> bool
+val (|->) : 'a -> 'b -> ('a, 'b) func -> ('a, 'b) func
+val (|=>) : 'a -> 'b -> ('a, 'b) func
+val choose : ('a, 'b) func -> 'a * 'b
+val combine : ('a -> 'a -> 'a) -> ('a -> bool) -> ('b, 'a) func -> ('b, 'a) func -> ('b, 'a) func
+val (--) : int -> int -> int list
+
+val tryapplyd : ('a, 'b) func -> 'a -> 'b -> 'b
+val apply : ('a, 'b) func -> 'a -> 'b
+
+val foldl : ('a -> 'b -> 'c -> 'a) -> 'a -> ('b, 'c) func -> 'a
+val foldr : ('a -> 'b -> 'c -> 'c) -> ('a, 'b) func -> 'c -> 'c
+val mapf : ('a -> 'b) -> ('c, 'a) func -> ('c, 'b) func
+
+val undefine : 'a -> ('a, 'b) func -> ('a, 'b) func
+
+val dom : ('a, 'b) func -> 'a list
+val graph : ('a, 'b) func -> ('a * 'b) list
+
+val union : 'a list -> 'a list -> 'a list
+val subtract : 'a list -> 'a list -> 'a list
+val sort : ('a -> 'a -> bool) -> 'a list -> 'a list
+val setify : 'a list -> 'a list
+val increasing : ('a -> 'b) -> 'a -> 'a -> bool
+val allpairs : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
+
+val gcd_num : Num.num -> Num.num -> Num.num
+val lcm_num : Num.num -> Num.num -> Num.num
+val numerator : Num.num -> Num.num
+val denominator : Num.num -> Num.num
+val end_itlist : ('a -> 'a -> 'a) -> 'a list -> 'a
+
+val (>>) : ('a -> 'b * 'c) -> ('b -> 'd) -> 'a -> 'd * 'c
+val (++) : ('a -> 'b * 'c) -> ('c -> 'd * 'e) -> 'a -> ('b * 'd) * 'e
+
+val a : 'a -> 'a list -> 'a * 'a list
+val many : ('a -> 'b * 'a) -> 'a -> 'b list * 'a
+val some : ('a -> bool) -> 'a list -> 'a * 'a list
+val possibly : ('a -> 'b * 'a) -> 'a -> 'b list * 'a
+val isspace : string -> bool
+val parser_or : ('a -> 'b) -> ('a -> 'b) -> 'a -> 'b
+val isnum : string -> bool
+val atleast : int -> ('a -> 'b * 'a) -> 'a -> 'b list * 'a
+val listof : ('a -> 'b * 'c) -> ('c -> 'd * 'a) -> string -> 'a -> 'b list * 'c
+
+val temp_path : string
+val string_of_file : string -> string
+val file_of_string : string -> string -> unit
+
+val deepen_until : int -> (int -> 'a) -> int -> 'a
+exception TooDeep