summaryrefslogtreecommitdiff
path: root/plugins/micromega
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:04:54 +0100
committerGravatar Stephane Glondu <steph@glondu.net>2012-01-12 16:04:54 +0100
commit39efc41237ec906226a3a53d7396d51173495204 (patch)
tree87cd58d72d43469d2a2a0a127c1060d7c9e0206b /plugins/micromega
parent5fe4ac437bed43547b3695664974f492b55cb553 (diff)
parent97fefe1fcca363a1317e066e7f4b99b9c1e9987b (diff)
Remove non-DFSG contentsupstream/8.4_beta+dfsg
Diffstat (limited to 'plugins/micromega')
-rw-r--r--plugins/micromega/CheckerMaker.v5
-rw-r--r--plugins/micromega/Env.v16
-rw-r--r--plugins/micromega/EnvRing.v24
-rw-r--r--plugins/micromega/MExtraction.v19
-rw-r--r--plugins/micromega/OrderedRing.v2
-rw-r--r--plugins/micromega/Psatz.v20
-rw-r--r--plugins/micromega/QMicromega.v14
-rw-r--r--plugins/micromega/RMicromega.v480
-rw-r--r--plugins/micromega/Refl.v2
-rw-r--r--plugins/micromega/RingMicromega.v195
-rw-r--r--plugins/micromega/Tauto.v248
-rw-r--r--plugins/micromega/VarMap.v225
-rw-r--r--plugins/micromega/ZCoeff.v8
-rw-r--r--plugins/micromega/ZMicromega.v327
-rw-r--r--plugins/micromega/certificate.ml1244
-rw-r--r--plugins/micromega/coq_micromega.ml646
-rw-r--r--plugins/micromega/csdpcert.ml4
-rw-r--r--plugins/micromega/g_micromega.ml416
-rw-r--r--plugins/micromega/mfourier.ml179
-rw-r--r--plugins/micromega/micromega.ml4625
-rw-r--r--plugins/micromega/micromega.mli1080
-rw-r--r--plugins/micromega/micromega_plugin.mllib1
-rw-r--r--plugins/micromega/mutils.ml123
-rw-r--r--plugins/micromega/persistent_cache.ml79
-rw-r--r--plugins/micromega/polynomial.ml739
-rw-r--r--plugins/micromega/sos.ml74
-rw-r--r--plugins/micromega/sos.mli2
-rw-r--r--plugins/micromega/sos_types.ml2
28 files changed, 7785 insertions, 2614 deletions
diff --git a/plugins/micromega/CheckerMaker.v b/plugins/micromega/CheckerMaker.v
index 8f0f86c5..3031fd22 100644
--- a/plugins/micromega/CheckerMaker.v
+++ b/plugins/micromega/CheckerMaker.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,6 +12,8 @@
(* *)
(************************************************************************)
+(* FK: scheduled for deletion *)
+(*
Require Import Setoid.
Require Import Decidable.
Require Import List.
@@ -127,3 +129,4 @@ apply <- negate_correct. intro; now elim H3. exact (H1 H2).
Qed.
End CheckerMaker.
+*) \ No newline at end of file
diff --git a/plugins/micromega/Env.v b/plugins/micromega/Env.v
index 5aa30fed..5f6c60be 100644
--- a/plugins/micromega/Env.v
+++ b/plugins/micromega/Env.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -17,27 +17,21 @@ Require Import Coq.Arith.Max.
Require Import List.
Set Implicit Arguments.
-(* I have addded a Leaf constructor to the varmap data structure (/plugins/ring/Quote.v)
- -- this is harmless and spares a lot of Empty.
- This means smaller proof-terms.
- BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
-*)
-
Section S.
Variable D :Type.
Definition Env := positive -> D.
- Definition jump (j:positive) (e:Env) := fun x => e (Pplus x j).
+ Definition jump (j:positive) (e:Env) := fun x => e (Pplus x j).
- Definition nth (n:positive) (e : Env ) := e n.
+ Definition nth (n:positive) (e : Env ) := e n.
- Definition hd (x:D) (e: Env) := nth xH e.
+ Definition hd (x:D) (e: Env) := nth xH e.
Definition tail (e: Env) := jump xH e.
- Lemma psucc : forall p, (match p with
+ Lemma psucc : forall p, (match p with
| xI y' => xO (Psucc y')
| xO y' => xI y'
| 1%positive => 2%positive
diff --git a/plugins/micromega/EnvRing.v b/plugins/micromega/EnvRing.v
index 8968a014..309ebdef 100644
--- a/plugins/micromega/EnvRing.v
+++ b/plugins/micromega/EnvRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -43,7 +43,7 @@ Section MakeRingPol.
cO cI cadd cmul csub copp ceqb phi.
(* Power coefficients *)
- Variable Cpow : Set.
+ Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
@@ -105,12 +105,12 @@ Section MakeRingPol.
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
- match Pcompare j j' Eq with
+ match j ?= j' with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
- match Pcompare i i' Eq with
+ match i ?= i' with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
@@ -421,7 +421,7 @@ Section MakeRingPol.
_, mon0 => (Pc cO, P)
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
- match (j1 ?= j2) Eq with
+ match (j1 ?= j2) with
Eq => let (R,S) := MFactor P1 M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 (zmon (j2 - j1) M1) in
@@ -435,7 +435,7 @@ Section MakeRingPol.
let (R2, S2) := MFactor Q1 M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
- match (i ?= j) Eq with
+ match (i ?= j) with
Eq => let (R1,S1) := MFactor P1 (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 (vmon (j - i) M1) in
@@ -537,10 +537,10 @@ Section MakeRingPol.
Proof.
induction P;destruct P';simpl;intros;try discriminate;trivial.
apply (morph_eq CRmorph);trivial.
- assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
+ assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0);
try discriminate H.
rewrite (IHP P' H); rewrite H1;trivial;rrefl.
- assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
+ assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0);
try discriminate H.
rewrite H1;trivial. clear H1.
assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
@@ -1019,8 +1019,8 @@ Qed.
intros i P Hrec M l; case M; simpl; clear M.
rewrite (morph0 CRmorph); rsimpl.
intros j M.
- case_eq ((i ?= j) Eq); intros He; simpl.
- rewrite (Pcompare_Eq_eq _ _ He).
+ case_eq (i ?= j); intros He; simpl.
+ rewrite (Pos.compare_eq _ _ He).
generalize (Hrec M (jump j l)); case (MFactor P M);
simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
generalize (Hrec (zmon (j -i) M) (jump i l));
@@ -1048,8 +1048,8 @@ Qed.
rewrite (ARadd_comm ARth); rsimpl.
rewrite zmon_pred_ok;rsimpl.
intros j M1.
- case_eq ((i ?= j) Eq); intros He; simpl.
- rewrite (Pcompare_Eq_eq _ _ He).
+ case_eq (i ?= j); intros He; simpl.
+ rewrite (Pos.compare_eq _ _ He).
generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1));
simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
rewrite H; rewrite mkPX_ok; rsimpl.
diff --git a/plugins/micromega/MExtraction.v b/plugins/micromega/MExtraction.v
index 5afe7e37..19a98f87 100644
--- a/plugins/micromega/MExtraction.v
+++ b/plugins/micromega/MExtraction.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -23,7 +23,7 @@ Require Import NArith.
Require Import QArith.
Extract Inductive prod => "( * )" [ "(,)" ].
-Extract Inductive List.list => list [ "[]" "(::)" ].
+Extract Inductive list => list [ "[]" "(::)" ].
Extract Inductive bool => bool [ true false ].
Extract Inductive sumbool => bool [ true false ].
Extract Inductive option => option [ Some None ].
@@ -38,10 +38,23 @@ Extract Inductive sumor => option [ Some None ].
Let's rather use the ocaml && *)
Extract Inlined Constant andb => "(&&)".
+Require Import Reals.
+
+Extract Constant R => "int".
+Extract Constant R0 => "0".
+Extract Constant R1 => "1".
+Extract Constant Rplus => "( + )".
+Extract Constant Rmult => "( * )".
+Extract Constant Ropp => "fun x -> - x".
+Extract Constant Rinv => "fun x -> 1 / x".
+
Extraction "micromega.ml"
List.map simpl_cone (*map_cone indexes*)
denorm Qpower
- n_of_Z Nnat.N_of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find.
+ n_of_Z N_of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find.
+
+
+
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/OrderedRing.v b/plugins/micromega/OrderedRing.v
index e4f91fb6..97517957 100644
--- a/plugins/micromega/OrderedRing.v
+++ b/plugins/micromega/OrderedRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/micromega/Psatz.v b/plugins/micromega/Psatz.v
index fde0f29a..7f6cf79b 100644
--- a/plugins/micromega/Psatz.v
+++ b/plugins/micromega/Psatz.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -18,7 +18,7 @@ Require Import RMicromega.
Require Import QArith.
Require Export Ring_normalize.
Require Import ZArith.
-Require Import Raxioms.
+Require Import Rdefinitions.
Require Export RingMicromega.
Require Import VarMap.
Require Tauto.
@@ -66,6 +66,7 @@ Ltac psatzl dom :=
change (Tauto.eval_f (Qeval_formula (@find Q 0%Q __varmap)) __ff) ;
apply (QTautoChecker_sound __ff __wit); vm_compute ; reflexivity)
| R =>
+ unfold Rdiv in * ;
psatzl_R ;
(* If csdp is not installed, the previous step might not produce any
progress: the rest of the tactical will then fail. Hence the 'try'. *)
@@ -75,12 +76,25 @@ Ltac psatzl dom :=
| _ => fail "Unsupported domain"
end in tac.
+
+Ltac lra :=
+ first [ psatzl R | psatzl Q ].
+
Ltac lia :=
- xlia ;
+ zify ; unfold Zsucc in * ;
+ (*cbv delta - [Zplus Zminus Zopp Zmult Zpower Zgt Zge Zle Zlt iff not] ;*) xlia ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity.
+Ltac nia :=
+ zify ; unfold Zsucc in * ;
+ xnlia ;
+ intros __wit __varmap __ff ;
+ change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
+ apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity.
+
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
diff --git a/plugins/micromega/QMicromega.v b/plugins/micromega/QMicromega.v
index 5ff6a1a7..f64504a5 100644
--- a/plugins/micromega/QMicromega.v
+++ b/plugins/micromega/QMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -173,8 +173,15 @@ Require Import Tauto.
Definition Qnormalise := @cnf_normalise Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool.
Definition Qnegate := @cnf_negate Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool.
+Definition qunsat := check_inconsistent 0 Qeq_bool Qle_bool.
+
+Definition qdeduce := nformula_plus_nformula 0 Qplus Qeq_bool.
+
+
+
Definition QTautoChecker (f : BFormula (Formula Q)) (w: list QWitness) : bool :=
@tauto_checker (Formula Q) (NFormula Q)
+ qunsat qdeduce
Qnormalise
Qnegate QWitness QWeakChecker f w.
@@ -186,6 +193,11 @@ Proof.
unfold QTautoChecker.
apply (tauto_checker_sound Qeval_formula Qeval_nformula).
apply Qeval_nformula_dec.
+ intros until env.
+ unfold eval_nformula. unfold RingMicromega.eval_nformula.
+ destruct t.
+ apply (check_inconsistent_sound Qsor QSORaddon) ; auto.
+ unfold qdeduce. apply (nformula_plus_nformula_correct Qsor QSORaddon).
intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_normalise_correct Qsor QSORaddon).
intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_negate_correct Qsor QSORaddon).
intros t w0.
diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v
index 305d553c..2be99da1 100644
--- a/plugins/micromega/RMicromega.v
+++ b/plugins/micromega/RMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,6 +16,10 @@ Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
+Require Import QArith.
+Require Import Qfield.
+
+
Require Setoid.
(*Declare ML Module "micromega_plugin".*)
@@ -60,32 +64,405 @@ Proof.
apply (Rmult_lt_compat_r) ; auto.
Qed.
-Require ZMicromega.
-(* R with coeffs in Z *)
+Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.
+
+
+Lemma Rinv_elim : forall x y z,
+ y <> 0 -> (z * y = x <-> x * / y = z).
+Proof.
+ intros.
+ split ; intros.
+ subst.
+ rewrite Rmult_assoc.
+ rewrite Rinv_r; auto.
+ ring.
+ subst.
+ rewrite Rmult_assoc.
+ rewrite (Rmult_comm (/ y)).
+ rewrite Rinv_r ; auto.
+ ring.
+Qed.
+
+Ltac INR_nat_of_P :=
+ match goal with
+ | H : context[INR (nat_of_P ?X)] |- _ =>
+ revert H ;
+ let HH := fresh in
+ assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X))
+ | |- context[INR (nat_of_P ?X)] =>
+ let HH := fresh in
+ assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X))
+ end.
+
+Ltac add_eq expr val := set (temp := expr) ;
+ generalize (refl_equal temp) ;
+ unfold temp at 1 ; generalize temp ; intro val ; clear temp.
+
+Ltac Rinv_elim :=
+ match goal with
+ | |- context[?x * / ?y] =>
+ let z := fresh "v" in
+ add_eq (x * / y) z ;
+ let H := fresh in intro H ; rewrite <- Rinv_elim in H
+ end.
+
+Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
+Proof.
+ red. intros.
+ subst.
+ apply (Rlt_irrefl 0 H).
+Qed.
+
+
+Lemma Rinv_1 : forall x, x * / 1 = x.
+Proof.
+ intro.
+ Rinv_elim.
+ subst ; ring.
+ apply R1_neq_R0.
+Qed.
+
+Lemma Qeq_true : forall x y,
+ Qeq_bool x y = true ->
+ IQR x = IQR y.
+Proof.
+ unfold IQR.
+ simpl.
+ intros.
+ apply Qeq_bool_eq in H.
+ unfold Qeq in H.
+ assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
+ rewrite H. reflexivity.
+ repeat rewrite mult_IZR in H0.
+ simpl in H0.
+ revert H0.
+ repeat INR_nat_of_P.
+ intros.
+ apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
+ rewrite <- H2.
+ field.
+ split ; apply Rlt_neq ; auto.
+Qed.
+
+Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
+Proof.
+ intros.
+ apply Qeq_bool_neq in H.
+ intro. apply H. clear H.
+ unfold Qeq,IQR in *.
+ simpl in *.
+ revert H0.
+ repeat Rinv_elim.
+ intros.
+ subst.
+ assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
+ repeat rewrite mult_IZR.
+ simpl.
+ rewrite <- H0. rewrite <- H.
+ ring.
+ apply eq_IZR ; auto.
+ INR_nat_of_P; intros; apply Rlt_neq ; auto.
+ INR_nat_of_P; intros ; apply Rlt_neq ; auto.
+Qed.
+
+
+
+Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
+Proof.
+ intros.
+ apply Qle_bool_imp_le in H.
+ unfold Qle in H.
+ unfold IQR.
+ simpl in *.
+ apply IZR_le in H.
+ repeat rewrite mult_IZR in H.
+ simpl in H.
+ repeat INR_nat_of_P; intros.
+ assert (Hr := Rlt_neq r H).
+ assert (Hr0 := Rlt_neq r0 H0).
+ replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
+ replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
+ apply Rmult_le_compat_r ; auto.
+ apply Rmult_le_pos.
+ unfold Rle. left. apply Rinv_0_lt_compat ; auto.
+ unfold Rle. left. apply Rinv_0_lt_compat ; auto.
+ field ; intuition.
+ field ; intuition.
+Qed.
+
+
+
+Lemma IQR_0 : IQR 0 = 0.
+Proof.
+ compute. apply Rinv_1.
+Qed.
+
+Lemma IQR_1 : IQR 1 = 1.
+Proof.
+ compute. apply Rinv_1.
+Qed.
+
+Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
+Proof.
+ intros.
+ unfold IQR.
+ simpl in *.
+ rewrite plus_IZR in *.
+ rewrite mult_IZR in *.
+ simpl.
+ rewrite nat_of_P_mult_morphism.
+ rewrite mult_INR.
+ rewrite mult_IZR.
+ simpl.
+ repeat INR_nat_of_P.
+ intros. field.
+ split ; apply Rlt_neq ; auto.
+Qed.
+
+Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
+Proof.
+ intros.
+ unfold IQR.
+ simpl.
+ rewrite opp_IZR.
+ ring.
+Qed.
+
+Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
+Proof.
+ intros.
+ unfold Qminus.
+ rewrite IQR_plus.
+ rewrite IQR_opp.
+ ring.
+Qed.
+
+
+Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
+Proof.
+ unfold IQR ; intros.
+ simpl.
+ repeat rewrite mult_IZR.
+ simpl.
+ rewrite nat_of_P_mult_morphism.
+ rewrite mult_INR.
+ repeat INR_nat_of_P.
+ intros. field ; split ; apply Rlt_neq ; auto.
+Qed.
+
+Lemma IQR_inv_lt : forall x, (0 < x)%Q ->
+ IQR (/ x) = / IQR x.
+Proof.
+ unfold IQR ; simpl.
+ intros.
+ unfold Qlt in H.
+ revert H.
+ simpl.
+ intros.
+ unfold Qinv.
+ destruct x ; simpl in *.
+ destruct Qnum ; simpl.
+ exfalso. auto with zarith.
+ clear H.
+ repeat INR_nat_of_P.
+ intros.
+ assert (HH := Rlt_neq _ H).
+ assert (HH0 := Rlt_neq _ H0).
+ rewrite Rinv_mult_distr ; auto.
+ rewrite Rinv_involutive ; auto.
+ ring.
+ apply Rinv_0_lt_compat in H0.
+ apply Rlt_neq ; auto.
+ simpl in H.
+ exfalso.
+ rewrite Pmult_comm in H.
+ compute in H.
+ discriminate.
+Qed.
+
+Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
+Proof.
+ destruct x ; destruct Qnum ; reflexivity.
+Qed.
+
+Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
+Proof.
+ intros.
+ destruct x.
+ unfold Qopp.
+ simpl.
+ rewrite Zopp_involutive.
+ reflexivity.
+Qed.
+
+Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
+Proof.
+ intros.
+ rewrite <- (Ropp_involutive r).
+ apply Ropp_eq_0_compat ; auto.
+Qed.
+
+Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
+Proof.
+ destruct x ; simpl.
+ unfold IQR.
+ simpl.
+ INR_nat_of_P.
+ intros.
+ apply Rmult_integral in H0.
+ destruct H0.
+ apply eq_IZR_R0 in H0.
+ subst.
+ reflexivity.
+ exfalso.
+ apply Rinv_0_lt_compat in H.
+ rewrite <- H0 in H.
+ apply Rlt_irrefl in H. auto.
+Qed.
+
+
+Lemma IQR_inv_gt : forall x, (0 > x)%Q ->
+ IQR (/ x) = / IQR x.
+Proof.
+ intros.
+ rewrite <- (Qopp_involutive_strong x).
+ rewrite <- Qinv_opp.
+ rewrite IQR_opp.
+ rewrite IQR_inv_lt.
+ repeat rewrite IQR_opp.
+ rewrite Ropp_inv_permute.
+ auto.
+ intro.
+ apply Ropp_0 in H0.
+ apply IQR_x_0 in H0.
+ rewrite H0 in H.
+ compute in H. discriminate.
+ unfold Qlt in *.
+ destruct x ; simpl in *.
+ auto with zarith.
+Qed.
+
+Lemma IQR_inv : forall x, ~ x == 0 ->
+ IQR (/ x) = / IQR x.
+Proof.
+ intros.
+ assert ( 0 > x \/ 0 < x)%Q.
+ destruct x ; unfold Qlt, Qeq in * ; simpl in *.
+ rewrite Zmult_1_r in *.
+ destruct Qnum ; simpl in * ; intuition auto.
+ right. reflexivity.
+ left ; reflexivity.
+ destruct H0.
+ apply IQR_inv_gt ; auto.
+ apply IQR_inv_lt ; auto.
+Qed.
-Lemma RZSORaddon :
- SORaddon R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle (* ring elements *)
- 0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
- Zeq_bool Zle_bool
- IZR Nnat.nat_of_N pow.
+Lemma IQR_inv_ext : forall x,
+ IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
+Proof.
+ intros.
+ case_eq (Qeq_bool x 0).
+ intros.
+ apply Qeq_bool_eq in H.
+ destruct x ; simpl.
+ unfold Qeq in H.
+ simpl in H.
+ replace Qnum with 0%Z.
+ compute. rewrite Rinv_1.
+ reflexivity.
+ rewrite <- H. ring.
+ intros.
+ apply IQR_inv.
+ intro.
+ rewrite <- Qeq_bool_iff in H0.
+ congruence.
+Qed.
+
+
+Notation to_nat := N.to_nat. (*Nnat.nat_of_N*)
+
+Lemma QSORaddon :
+ @SORaddon R
+ R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle (* ring elements *)
+ Q 0%Q 1%Q Qplus Qmult Qminus Qopp (* coefficients *)
+ Qeq_bool Qle_bool
+ IQR nat to_nat pow.
Proof.
constructor.
constructor ; intros ; try reflexivity.
- apply plus_IZR.
- symmetry. apply Z_R_minus.
- apply mult_IZR.
- apply Ropp_Ropp_IZR.
- apply IZR_eq.
- apply Zeq_bool_eq ; auto.
+ apply IQR_0.
+ apply IQR_1.
+ apply IQR_plus.
+ apply IQR_minus.
+ apply IQR_mult.
+ apply IQR_opp.
+ apply Qeq_true ; auto.
apply R_power_theory.
- intros x y.
- intro.
- apply IZR_neq.
- apply Zeq_bool_neq ; auto.
- intros. apply IZR_le. apply Zle_bool_imp_le. auto.
+ apply Qeq_false.
+ apply Qle_true.
Qed.
+(* Syntactic ring coefficients.
+ For computing, we use Q. *)
+Inductive Rcst :=
+| C0
+| C1
+| CQ (r : Q)
+| CZ (r : Z)
+| CPlus (r1 r2 : Rcst)
+| CMinus (r1 r2 : Rcst)
+| CMult (r1 r2 : Rcst)
+| CInv (r : Rcst)
+| COpp (r : Rcst).
+
+
+Fixpoint Q_of_Rcst (r : Rcst) : Q :=
+ match r with
+ | C0 => 0 # 1
+ | C1 => 1 # 1
+ | CZ z => z # 1
+ | CQ q => q
+ | CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
+ | CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
+ | CMult r1 r2 => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
+ | CInv r => Qinv (Q_of_Rcst r)
+ | COpp r => Qopp (Q_of_Rcst r)
+ end.
+
+
+Fixpoint R_of_Rcst (r : Rcst) : R :=
+ match r with
+ | C0 => R0
+ | C1 => R1
+ | CZ z => IZR z
+ | CQ q => IQR q
+ | CPlus r1 r2 => (R_of_Rcst r1) + (R_of_Rcst r2)
+ | CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
+ | CMult r1 r2 => (R_of_Rcst r1) * (R_of_Rcst r2)
+ | CInv r =>
+ if Qeq_bool (Q_of_Rcst r) (0 # 1)
+ then R0
+ else Rinv (R_of_Rcst r)
+ | COpp r => - (R_of_Rcst r)
+ end.
+
+Lemma Q_of_RcstR : forall c, IQR (Q_of_Rcst c) = R_of_Rcst c.
+Proof.
+ induction c ; simpl ; try (rewrite <- IHc1 ; rewrite <- IHc2).
+ apply IQR_0.
+ apply IQR_1.
+ reflexivity.
+ unfold IQR. simpl. rewrite Rinv_1. reflexivity.
+ apply IQR_plus.
+ apply IQR_minus.
+ apply IQR_mult.
+ rewrite <- IHc.
+ apply IQR_inv_ext.
+ rewrite <- IHc.
+ apply IQR_opp.
+ Qed.
+
Require Import EnvRing.
Definition INZ (n:N) : R :=
@@ -94,7 +471,7 @@ Definition INZ (n:N) : R :=
| Npos p => IZR (Zpos p)
end.
-Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp IZR Nnat.nat_of_N pow.
+Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst nat_of_N pow.
Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
@@ -108,11 +485,15 @@ Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
end.
-Definition Reval_formula (e: PolEnv R) (ff : Formula Z) :=
+Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).
+
Definition Reval_formula' :=
- eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IZR Nnat.nat_of_N pow.
+ eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt nat_of_N pow R_of_Rcst.
+
+Definition QReval_formula :=
+ eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR nat_of_N pow .
Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Proof.
@@ -126,57 +507,74 @@ Proof.
apply Rle_ge.
Qed.
-Definition Reval_nformula :=
- eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt IZR.
+Definition Qeval_nformula :=
+ eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt IQR.
-Lemma Reval_nformula_dec : forall env d, (Reval_nformula env d) \/ ~ (Reval_nformula env d).
+Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
- exact (fun env d =>eval_nformula_dec Rsor IZR env d).
+ exact (fun env d =>eval_nformula_dec Rsor IQR env d).
Qed.
-Definition RWitness := Psatz Z.
+Definition RWitness := Psatz Q.
-Definition RWeakChecker := check_normalised_formulas 0%Z 1%Z Zplus Zmult Zeq_bool Zle_bool.
+Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult Qeq_bool Qle_bool.
Require Import List.
-Lemma RWeakChecker_sound : forall (l : list (NFormula Z)) (cm : RWitness),
+Lemma RWeakChecker_sound : forall (l : list (NFormula Q)) (cm : RWitness),
RWeakChecker l cm = true ->
- forall env, make_impl (Reval_nformula env) l False.
+ forall env, make_impl (Qeval_nformula env) l False.
Proof.
intros l cm H.
intro.
- unfold Reval_nformula.
- apply (checker_nf_sound Rsor RZSORaddon l cm).
+ unfold Qeval_nformula.
+ apply (checker_nf_sound Rsor QSORaddon l cm).
unfold RWeakChecker in H.
exact H.
Qed.
Require Import Tauto.
-Definition Rnormalise := @cnf_normalise Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
-Definition Rnegate := @cnf_negate Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
+Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
+Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
+
+Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.
-Definition RTautoChecker (f : BFormula (Formula Z)) (w: list RWitness) : bool :=
- @tauto_checker (Formula Z) (NFormula Z)
+Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.
+
+Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness) : bool :=
+ @tauto_checker (Formula Q) (NFormula Q)
+ runsat rdeduce
Rnormalise Rnegate
- RWitness RWeakChecker f w.
+ RWitness RWeakChecker (map_bformula (map_Formula Q_of_Rcst) f) w.
Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_f (Reval_formula env) f.
Proof.
intros f w.
unfold RTautoChecker.
- apply (tauto_checker_sound Reval_formula Reval_nformula).
+ intros TC env.
+ apply (tauto_checker_sound QReval_formula Qeval_nformula) with (env := env) in TC.
+ rewrite eval_f_map in TC.
+ rewrite eval_f_morph with (ev':= Reval_formula env) in TC ; auto.
+ intro.
+ unfold QReval_formula.
+ rewrite <- eval_formulaSC with (phiS := R_of_Rcst).
+ rewrite Reval_formula_compat.
+ tauto.
+ intro. rewrite Q_of_RcstR. reflexivity.
apply Reval_nformula_dec.
- intros. rewrite Reval_formula_compat.
- unfold Reval_formula'. now apply (cnf_normalise_correct Rsor RZSORaddon).
- intros. rewrite Reval_formula_compat. unfold Reval_formula. now apply (cnf_negate_correct Rsor RZSORaddon).
+ destruct t.
+ apply (check_inconsistent_sound Rsor QSORaddon) ; auto.
+ unfold rdeduce. apply (nformula_plus_nformula_correct Rsor QSORaddon).
+ now apply (cnf_normalise_correct Rsor QSORaddon).
+ intros. now apply (cnf_negate_correct Rsor QSORaddon).
intros t w0.
apply RWeakChecker_sound.
Qed.
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
diff --git a/plugins/micromega/Refl.v b/plugins/micromega/Refl.v
index 53413b4a..b839195c 100644
--- a/plugins/micromega/Refl.v
+++ b/plugins/micromega/Refl.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/micromega/RingMicromega.v b/plugins/micromega/RingMicromega.v
index b10cf784..4af65086 100644
--- a/plugins/micromega/RingMicromega.v
+++ b/plugins/micromega/RingMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -308,7 +308,7 @@ Definition map_option (A B:Type) (f : A -> option B) (o : option A) : option B :
| Some x => f x
end.
-Implicit Arguments map_option [A B].
+Arguments map_option [A B] f o.
Definition map_option2 (A B C : Type) (f : A -> B -> option C)
(o: option A) (o': option B) : option C :=
@@ -318,7 +318,7 @@ Definition map_option2 (A B C : Type) (f : A -> B -> option C)
| Some x , Some x' => f x x'
end.
-Implicit Arguments map_option2 [A B C].
+Arguments map_option2 [A B C] f o o'.
Definition Rops_wd := mk_reqe rplus rtimes ropp req
sor.(SORplus_wd)
@@ -355,6 +355,7 @@ Fixpoint eval_Psatz (l : list NFormula) (e : Psatz) {struct e} : option NFormula
| PsatzZ => Some (Pc cO, Equal) (* Just to make life easier *)
end.
+
Lemma pexpr_times_nformula_correct : forall (env: PolEnv) (e: PolC) (f f' : NFormula),
eval_nformula env f -> pexpr_times_nformula e f = Some f' ->
eval_nformula env f'.
@@ -490,6 +491,99 @@ Fixpoint xhyps_of_psatz (base:nat) (acc : list nat) (prf : Psatz) : list nat :=
| PsatzIn n => if ge_bool n base then (n::acc) else acc
end.
+Fixpoint nhyps_of_psatz (prf : Psatz) : list nat :=
+ match prf with
+ | PsatzC _ | PsatzZ | PsatzSquare _ => nil
+ | PsatzMulC _ prf => nhyps_of_psatz prf
+ | PsatzAdd e1 e2 | PsatzMulE e1 e2 => nhyps_of_psatz e1 ++ nhyps_of_psatz e2
+ | PsatzIn n => n :: nil
+ end.
+
+
+Fixpoint extract_hyps (l: list NFormula) (ln : list nat) : list NFormula :=
+ match ln with
+ | nil => nil
+ | n::ln => nth n l (Pc cO, Equal) :: extract_hyps l ln
+ end.
+
+Lemma extract_hyps_app : forall l ln1 ln2,
+ extract_hyps l (ln1 ++ ln2) = (extract_hyps l ln1) ++ (extract_hyps l ln2).
+Proof.
+ induction ln1.
+ reflexivity.
+ simpl.
+ intros.
+ rewrite IHln1. reflexivity.
+Qed.
+
+Ltac inv H := inversion H ; try subst ; clear H.
+
+Lemma nhyps_of_psatz_correct : forall (env : PolEnv) (e:Psatz) (l : list NFormula) (f: NFormula),
+ eval_Psatz l e = Some f ->
+ ((forall f', In f' (extract_hyps l (nhyps_of_psatz e)) -> eval_nformula env f') -> eval_nformula env f).
+Proof.
+ induction e ; intros.
+ (*PsatzIn*)
+ simpl in *.
+ apply H0. intuition congruence.
+ (* PsatzSquare *)
+ simpl in *.
+ inv H.
+ simpl.
+ unfold eval_pol.
+ rewrite (Psquare_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
+ now apply (Rtimes_square_nonneg sor).
+ (* PsatzMulC *)
+ simpl in *.
+ case_eq (eval_Psatz l e).
+ intros. rewrite H1 in H. simpl in H.
+ apply pexpr_times_nformula_correct with (2:= H).
+ apply IHe with (1:= H1); auto.
+ intros. rewrite H1 in H. simpl in H ; discriminate.
+ (* PsatzMulE *)
+ simpl in *.
+ revert H.
+ case_eq (eval_Psatz l e1).
+ case_eq (eval_Psatz l e2) ; simpl ; intros.
+ apply nformula_times_nformula_correct with (3:= H2).
+ apply IHe1 with (1:= H1) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ apply IHe2 with (1:= H) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ discriminate. simpl. discriminate.
+ (* PsatzAdd *)
+ simpl in *.
+ revert H.
+ case_eq (eval_Psatz l e1).
+ case_eq (eval_Psatz l e2) ; simpl ; intros.
+ apply nformula_plus_nformula_correct with (3:= H2).
+ apply IHe1 with (1:= H1) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ apply IHe2 with (1:= H) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ discriminate. simpl. discriminate.
+ (* PsatzC *)
+ simpl in H.
+ case_eq (cO [<] c).
+ intros. rewrite H1 in H. inv H.
+ unfold eval_nformula. simpl.
+ rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
+ intros. rewrite H1 in H. discriminate.
+ (* PsatzZ *)
+ simpl in *. inv H.
+ unfold eval_nformula. simpl.
+ apply addon.(SORrm).(morph0).
+Qed.
+
+
+
+
+
(* roughly speaking, normalise_pexpr_correct is a proof of
forall env p, eval_pexpr env p == eval_pol env (normalise_pexpr p) *)
@@ -546,6 +640,7 @@ apply cleb_sound in H1. now apply -> (Rle_ngt sor).
apply cltb_sound in H1. now apply -> (Rlt_nge sor).
Qed.
+
Definition check_normalised_formulas : list NFormula -> Psatz -> bool :=
fun l cm =>
match eval_Psatz l cm with
@@ -592,16 +687,17 @@ end.
Definition eval_pexpr (l : PolEnv) (pe : PExpr C) : R := PEeval rplus rtimes rminus ropp phi pow_phi rpow l pe.
-Record Formula : Type := {
- Flhs : PExpr C;
+Record Formula (T:Type) : Type := {
+ Flhs : PExpr T;
Fop : Op2;
- Frhs : PExpr C
+ Frhs : PExpr T
}.
-Definition eval_formula (env : PolEnv) (f : Formula) : Prop :=
+Definition eval_formula (env : PolEnv) (f : Formula C) : Prop :=
let (lhs, op, rhs) := f in
(eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
+
(* We normalize Formulas by moving terms to one side *)
Definition norm := norm_aux cO cI cplus ctimes cminus copp ceqb.
@@ -610,7 +706,7 @@ Definition psub := Psub cO cplus cminus copp ceqb.
Definition padd := Padd cO cplus ceqb.
-Definition normalise (f : Formula) : NFormula :=
+Definition normalise (f : Formula C) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -623,7 +719,7 @@ let (lhs, op, rhs) := f in
| OpLt => (psub rhs lhs, Strict)
end.
-Definition negate (f : Formula) : NFormula :=
+Definition negate (f : Formula C) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -659,7 +755,7 @@ Qed.
Theorem normalise_sound :
- forall (env : PolEnv) (f : Formula),
+ forall (env : PolEnv) (f : Formula C),
eval_formula env f -> eval_nformula env (normalise f).
Proof.
intros env f H; destruct f as [lhs op rhs]; simpl in *.
@@ -673,7 +769,7 @@ now apply -> (Rlt_lt_minus sor).
Qed.
Theorem negate_correct :
- forall (env : PolEnv) (f : Formula),
+ forall (env : PolEnv) (f : Formula C),
eval_formula env f <-> ~ (eval_nformula env (negate f)).
Proof.
intros env f; destruct f as [lhs op rhs]; simpl.
@@ -687,9 +783,9 @@ rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
Qed.
-(** Another normalistion - this is used for cnf conversion **)
+(** Another normalisation - this is used for cnf conversion **)
-Definition xnormalise (t:Formula) : list (NFormula) :=
+Definition xnormalise (t:Formula C) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -705,16 +801,16 @@ Definition xnormalise (t:Formula) : list (NFormula) :=
Require Import Tauto.
-Definition cnf_normalise (t:Formula) : cnf (NFormula) :=
+Definition cnf_normalise (t:Formula C) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnormalise t).
Add Ring SORRing : sor.(SORrt).
-Lemma cnf_normalise_correct : forall env t, eval_cnf (eval_nformula env) (cnf_normalise t) -> eval_formula env t.
+Lemma cnf_normalise_correct : forall env t, eval_cnf eval_nformula env (cnf_normalise t) -> eval_formula env t.
Proof.
unfold cnf_normalise, xnormalise ; simpl ; intros env t.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
@@ -730,7 +826,7 @@ Proof.
rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
Qed.
-Definition xnegate (t:Formula) : list (NFormula) :=
+Definition xnegate (t:Formula C) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -743,13 +839,13 @@ Definition xnegate (t:Formula) : list (NFormula) :=
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
-Definition cnf_negate (t:Formula) : cnf (NFormula) :=
+Definition cnf_negate (t:Formula C) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnegate t).
-Lemma cnf_negate_correct : forall env t, eval_cnf (eval_nformula env) (cnf_negate t) -> ~ eval_formula env t.
+Lemma cnf_negate_correct : forall env t, eval_cnf eval_nformula env (cnf_negate t) -> ~ eval_formula env t.
Proof.
unfold cnf_negate, xnegate ; simpl ; intros env t.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
@@ -841,6 +937,63 @@ Proof.
Qed.
+(** Sometimes it is convenient to make a distinction between "syntactic" coefficients and "real"
+coefficients that are used to actually compute *)
+
+
+
+Variable S : Type.
+
+Variable C_of_S : S -> C.
+
+Variable phiS : S -> R.
+
+Variable phi_C_of_S : forall c, phiS c = phi (C_of_S c).
+
+Fixpoint map_PExpr (e : PExpr S) : PExpr C :=
+ match e with
+ | PEc c => PEc (C_of_S c)
+ | PEX p => PEX _ p
+ | PEadd e1 e2 => PEadd (map_PExpr e1) (map_PExpr e2)
+ | PEsub e1 e2 => PEsub (map_PExpr e1) (map_PExpr e2)
+ | PEmul e1 e2 => PEmul (map_PExpr e1) (map_PExpr e2)
+ | PEopp e => PEopp (map_PExpr e)
+ | PEpow e n => PEpow (map_PExpr e) n
+ end.
+
+Definition map_Formula (f : Formula S) : Formula C :=
+ let (l,o,r) := f in
+ Build_Formula (map_PExpr l) o (map_PExpr r).
+
+
+Definition eval_sexpr (env : PolEnv) (e : PExpr S) : R :=
+ PEeval rplus rtimes rminus ropp phiS pow_phi rpow env e.
+
+Definition eval_sformula (env : PolEnv) (f : Formula S) : Prop :=
+ let (lhs, op, rhs) := f in
+ (eval_op2 op) (eval_sexpr env lhs) (eval_sexpr env rhs).
+
+Lemma eval_pexprSC : forall env s, eval_sexpr env s = eval_pexpr env (map_PExpr s).
+Proof.
+ unfold eval_pexpr, eval_sexpr.
+ induction s ; simpl ; try (rewrite IHs1 ; rewrite IHs2) ; try reflexivity.
+ apply phi_C_of_S.
+ rewrite IHs. reflexivity.
+ rewrite IHs. reflexivity.
+Qed.
+
+(** equality migth be (too) strong *)
+Lemma eval_formulaSC : forall env f, eval_sformula env f = eval_formula env (map_Formula f).
+Proof.
+ destruct f.
+ simpl.
+ repeat rewrite eval_pexprSC.
+ reflexivity.
+Qed.
+
+
+
+
(** Some syntactic simplifications of expressions *)
@@ -881,4 +1034,4 @@ End Micromega.
(* Local Variables: *)
(* coding: utf-8 *)
-(* End: *) \ No newline at end of file
+(* End: *)
diff --git a/plugins/micromega/Tauto.v b/plugins/micromega/Tauto.v
index 0706611c..b3ccdfcc 100644
--- a/plugins/micromega/Tauto.v
+++ b/plugins/micromega/Tauto.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
(* *)
(************************************************************************)
@@ -41,6 +41,37 @@ Set Implicit Arguments.
| I f1 f2 => (eval_f ev f1) -> (eval_f ev f2)
end.
+ Lemma eval_f_morph : forall A (ev ev' : A -> Prop) (f : BFormula A),
+ (forall a, ev a <-> ev' a) -> (eval_f ev f <-> eval_f ev' f).
+ Proof.
+ induction f ; simpl ; try tauto.
+ intros.
+ assert (H' := H a).
+ auto.
+ Qed.
+
+
+
+ Fixpoint map_bformula (T U : Type) (fct : T -> U) (f : BFormula T) : BFormula U :=
+ match f with
+ | TT => TT _
+ | FF => FF _
+ | X p => X _ p
+ | A a => A (fct a)
+ | Cj f1 f2 => Cj (map_bformula fct f1) (map_bformula fct f2)
+ | D f1 f2 => D (map_bformula fct f1) (map_bformula fct f2)
+ | N f => N (map_bformula fct f)
+ | I f1 f2 => I (map_bformula fct f1) (map_bformula fct f2)
+ end.
+
+ Lemma eval_f_map : forall T U (fct: T-> U) env f ,
+ eval_f env (map_bformula fct f) = eval_f (fun x => env (fct x)) f.
+ Proof.
+ induction f ; simpl ; try (rewrite IHf1 ; rewrite IHf2) ; auto.
+ rewrite <- IHf. auto.
+ Qed.
+
+
Lemma map_simpl : forall A B f l, @map A B f l = match l with
| nil => nil
@@ -52,6 +83,7 @@ Set Implicit Arguments.
+
Section S.
Variable Env : Type.
@@ -64,6 +96,15 @@ Set Implicit Arguments.
Variable no_middle_eval' : forall env d, (eval' env d) \/ ~ (eval' env d).
+ Variable unsat : Term' -> bool.
+
+ Variable unsat_prop : forall t, unsat t = true ->
+ forall env, eval' env t -> False.
+
+ Variable deduce : Term' -> Term' -> option Term'.
+
+ Variable deduce_prop : forall env t t' u,
+ eval' env t -> eval' env t' -> deduce t t' = Some u -> eval' env u.
Definition clause := list Term'.
Definition cnf := list clause.
@@ -76,8 +117,48 @@ Set Implicit Arguments.
Definition ff : cnf := cons (@nil Term') nil.
+ Fixpoint add_term (t: Term') (cl : clause) : option clause :=
+ match cl with
+ | nil =>
+ match deduce t t with
+ | None => Some (t ::nil)
+ | Some u => if unsat u then None else Some (t::nil)
+ end
+ | t'::cl =>
+ match deduce t t' with
+ | None =>
+ match add_term t cl with
+ | None => None
+ | Some cl' => Some (t' :: cl')
+ end
+ | Some u =>
+ if unsat u then None else
+ match add_term t cl with
+ | None => None
+ | Some cl' => Some (t' :: cl')
+ end
+ end
+ end.
+
+ Fixpoint or_clause (cl1 cl2 : clause) : option clause :=
+ match cl1 with
+ | nil => Some cl2
+ | t::cl => match add_term t cl2 with
+ | None => None
+ | Some cl' => or_clause cl cl'
+ end
+ end.
+
+(* Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
+ List.map (fun x => (t++x)) f. *)
+
Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
- List.map (fun x => (t++x)) f.
+ List.fold_right (fun e acc =>
+ match or_clause t e with
+ | None => acc
+ | Some cl => cl :: acc
+ end) nil f.
+
Fixpoint or_cnf (f : cnf) (f' : cnf) {struct f}: cnf :=
match f with
@@ -102,46 +183,154 @@ Set Implicit Arguments.
| I e1 e2 => (if pol then or_cnf else and_cnf) (xcnf (negb pol) e1) (xcnf pol e2)
end.
- Definition eval_cnf (env : Term' -> Prop) (f:cnf) := make_conj (fun cl => ~ make_conj env cl) f.
+ Definition eval_clause (env : Env) (cl : clause) := ~ make_conj (eval' env) cl.
+
+ Definition eval_cnf (env : Env) (f:cnf) := make_conj (eval_clause env) f.
+
+
+ Lemma eval_cnf_app : forall env x y, eval_cnf env (x++y) -> eval_cnf env x /\ eval_cnf env y.
+ Proof.
+ unfold eval_cnf.
+ intros.
+ rewrite make_conj_app in H ; auto.
+ Qed.
+
+
+ Definition eval_opt_clause (env : Env) (cl: option clause) :=
+ match cl with
+ | None => True
+ | Some cl => eval_clause env cl
+ end.
- Lemma eval_cnf_app : forall env x y, eval_cnf (eval' env) (x++y) -> eval_cnf (eval' env) x /\ eval_cnf (eval' env) y.
+ Lemma add_term_correct : forall env t cl , eval_opt_clause env (add_term t cl) -> eval_clause env (t::cl).
+ Proof.
+ induction cl.
+ (* BC *)
+ simpl.
+ case_eq (deduce t t) ; auto.
+ intros until 0.
+ case_eq (unsat t0) ; auto.
+ unfold eval_clause.
+ rewrite make_conj_cons.
+ intros. intro.
+ apply unsat_prop with (1:= H) (env := env).
+ apply deduce_prop with (3:= H0) ; tauto.
+ (* IC *)
+ simpl.
+ case_eq (deduce t a).
+ intro u.
+ case_eq (unsat u).
+ simpl. intros.
+ unfold eval_clause.
+ intro.
+ apply unsat_prop with (1:= H) (env:= env).
+ repeat rewrite make_conj_cons in H2.
+ apply deduce_prop with (3:= H0); tauto.
+ intro.
+ case_eq (add_term t cl) ; intros.
+ simpl in H2.
+ rewrite H0 in IHcl.
+ simpl in IHcl.
+ unfold eval_clause in *.
+ intros.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ rewrite H0 in IHcl ; simpl in *.
+ unfold eval_clause in *.
+ intros.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ case_eq (add_term t cl) ; intros.
+ simpl in H1.
+ unfold eval_clause in *.
+ repeat rewrite make_conj_cons in *.
+ rewrite H in IHcl.
+ simpl in IHcl.
+ tauto.
+ simpl in *.
+ rewrite H in IHcl.
+ simpl in IHcl.
+ unfold eval_clause in *.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ Qed.
+
+
+ Lemma or_clause_correct : forall cl cl' env, eval_opt_clause env (or_clause cl cl') -> eval_clause env cl \/ eval_clause env cl'.
Proof.
- unfold eval_cnf.
+ induction cl.
+ simpl. tauto.
+ intros until 0.
+ simpl.
+ assert (HH := add_term_correct env a cl').
+ case_eq (add_term a cl').
+ simpl in *.
+ intros.
+ apply IHcl in H0.
+ rewrite H in HH.
+ simpl in HH.
+ unfold eval_clause in *.
+ destruct H0.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ apply HH in H0.
+ apply not_make_conj_cons in H0 ; auto.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ simpl.
intros.
- rewrite make_conj_app in H ; auto.
+ rewrite H in HH.
+ simpl in HH.
+ unfold eval_clause in *.
+ assert (HH' := HH Coq.Init.Logic.I).
+ apply not_make_conj_cons in HH'; auto.
+ repeat rewrite make_conj_cons in *.
+ tauto.
Qed.
+
-
- Lemma or_clause_correct : forall env t f, eval_cnf (eval' env) (or_clause_cnf t f) -> (~ make_conj (eval' env) t) \/ (eval_cnf (eval' env) f).
+ Lemma or_clause_cnf_correct : forall env t f, eval_cnf env (or_clause_cnf t f) -> (eval_clause env t) \/ (eval_cnf env f).
Proof.
unfold eval_cnf.
unfold or_clause_cnf.
+ intros until t.
+ set (F := (fun (e : clause) (acc : list clause) =>
+ match or_clause t e with
+ | Some cl => cl :: acc
+ | None => acc
+ end)).
induction f.
- simpl.
- intros ; right;auto.
+ auto.
(**)
- rewrite map_simpl.
+ simpl.
intros.
- rewrite make_conj_cons in H.
- destruct H as [HH1 HH2].
- generalize (IHf HH2) ; clear IHf ; intro.
- destruct H.
- left ; auto.
- rewrite make_conj_cons.
- destruct (not_make_conj_app _ _ _ (no_middle_eval' env) HH1).
- tauto.
+ destruct f.
+ simpl in H.
+ simpl in IHf.
+ unfold F in H.
+ revert H.
+ intros.
+ apply or_clause_correct.
+ destruct (or_clause t a) ; simpl in * ; auto.
+ unfold F in H at 1.
+ revert H.
+ assert (HH := or_clause_correct t a env).
+ destruct (or_clause t a); simpl in HH ;
+ rewrite make_conj_cons in * ; intuition.
+ rewrite make_conj_cons in *.
tauto.
Qed.
- Lemma eval_cnf_cons : forall env a f, (~ make_conj (eval' env) a) -> eval_cnf (eval' env) f -> eval_cnf (eval' env) (a::f).
+
+ Lemma eval_cnf_cons : forall env a f, (~ make_conj (eval' env) a) -> eval_cnf env f -> eval_cnf env (a::f).
Proof.
intros.
unfold eval_cnf in *.
rewrite make_conj_cons ; eauto.
Qed.
- Lemma or_cnf_correct : forall env f f', eval_cnf (eval' env) (or_cnf f f') -> (eval_cnf (eval' env) f) \/ (eval_cnf (eval' env) f').
+ Lemma or_cnf_correct : forall env f f', eval_cnf env (or_cnf f f') -> (eval_cnf env f) \/ (eval_cnf env f').
Proof.
induction f.
unfold eval_cnf.
@@ -153,19 +342,19 @@ Set Implicit Arguments.
destruct (eval_cnf_app _ _ _ H).
clear H.
destruct (IHf _ H0).
- destruct (or_clause_correct _ _ _ H1).
+ destruct (or_clause_cnf_correct _ _ _ H1).
left.
apply eval_cnf_cons ; auto.
right ; auto.
right ; auto.
Qed.
- Variable normalise_correct : forall env t, eval_cnf (eval' env) (normalise t) -> eval env t.
+ Variable normalise_correct : forall env t, eval_cnf env (normalise t) -> eval env t.
- Variable negate_correct : forall env t, eval_cnf (eval' env) (negate t) -> ~ eval env t.
+ Variable negate_correct : forall env t, eval_cnf env (negate t) -> ~ eval env t.
- Lemma xcnf_correct : forall f pol env, eval_cnf (eval' env) (xcnf pol f) -> eval_f (eval env) (if pol then f else N f).
+ Lemma xcnf_correct : forall f pol env, eval_cnf env (xcnf pol f) -> eval_f (eval env) (if pol then f else N f).
Proof.
induction f.
(* TT *)
@@ -175,15 +364,19 @@ Set Implicit Arguments.
(* FF *)
unfold eval_cnf.
destruct pol; simpl ; auto.
+ unfold eval_clause ; simpl.
+ tauto.
(* P *)
simpl.
destruct pol ; intros ;simpl.
unfold eval_cnf in H.
(* Here I have to drop the proposition *)
simpl in H.
+ unfold eval_clause in H ; simpl in H.
tauto.
(* Here, I could store P in the clause *)
unfold eval_cnf in H;simpl in H.
+ unfold eval_clause in H ; simpl in H.
tauto.
(* A *)
simpl.
@@ -282,7 +475,7 @@ Set Implicit Arguments.
end
end.
- Lemma cnf_checker_sound : forall t w, cnf_checker t w = true -> forall env, eval_cnf (eval' env) t.
+ Lemma cnf_checker_sound : forall t w, cnf_checker t w = true -> forall env, eval_cnf env t.
Proof.
unfold eval_cnf.
induction t.
@@ -319,7 +512,6 @@ Set Implicit Arguments.
-
End S.
(* Local Variables: *)
diff --git a/plugins/micromega/VarMap.v b/plugins/micromega/VarMap.v
index 7d25524a..f41252b7 100644
--- a/plugins/micromega/VarMap.v
+++ b/plugins/micromega/VarMap.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -18,11 +18,12 @@ Require Import Coq.Arith.Max.
Require Import List.
Set Implicit Arguments.
-(* I have addded a Leaf constructor to the varmap data structure (/plugins/ring/Quote.v)
- -- this is harmless and spares a lot of Empty.
- This means smaller proof-terms.
- BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
-*)
+(*
+ * This adds a Leaf constructor to the varmap data structure (plugins/quote/Quote.v)
+ * --- it is harmless and spares a lot of Empty.
+ * It also means smaller proof-terms.
+ * As a side note, by dropping the polymorphism, one gets small, yet noticeable, speed-up.
+ *)
Section MakeVarMap.
Variable A : Type.
@@ -33,7 +34,7 @@ Section MakeVarMap.
| Leaf : A -> t
| Node : t -> A -> t -> t .
- Fixpoint find (vm : t ) (p:positive) {struct vm} : A :=
+ Fixpoint find (vm : t) (p:positive) {struct vm} : A :=
match vm with
| Empty => default
| Leaf i => i
@@ -44,216 +45,6 @@ Section MakeVarMap.
end
end.
- (* an off_map (a map with offset) offers the same functionalites as /plugins/setoid_ring/BinList.v - it is used in EnvRing.v *)
-(*
- Definition off_map := (option positive *t )%type.
-
-
-
- Definition jump (j:positive) (l:off_map ) :=
- let (o,m) := l in
- match o with
- | None => (Some j,m)
- | Some j0 => (Some (j+j0)%positive,m)
- end.
-
- Definition nth (n:positive) (l: off_map ) :=
- let (o,m) := l in
- let idx := match o with
- | None => n
- | Some i => i + n
- end%positive in
- find idx m.
-
-
- Definition hd (l:off_map) := nth xH l.
-
-
- Definition tail (l:off_map ) := jump xH l.
-
-
- Lemma psucc : forall p, (match p with
- | xI y' => xO (Psucc y')
- | xO y' => xI y'
- | 1%positive => 2%positive
- end) = (p+1)%positive.
- Proof.
- destruct p.
- auto with zarith.
- rewrite xI_succ_xO.
- auto with zarith.
- reflexivity.
- Qed.
-
- Lemma jump_Pplus : forall i j l,
- (jump (i + j) l) = (jump i (jump j l)).
- Proof.
- unfold jump.
- destruct l.
- destruct o.
- rewrite Pplus_assoc.
- reflexivity.
- reflexivity.
- Qed.
-
- Lemma jump_simpl : forall p l,
- jump p l =
- match p with
- | xH => tail l
- | xO p => jump p (jump p l)
- | xI p => jump p (jump p (tail l))
- end.
- Proof.
- destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus.
- (* xI p = p + p + 1 *)
- rewrite xI_succ_xO.
- rewrite Pplus_diag.
- rewrite <- Pplus_one_succ_r.
- reflexivity.
- (* xO p = p + p *)
- rewrite Pplus_diag.
- reflexivity.
- reflexivity.
- Qed.
-
- Ltac jump_s :=
- repeat
- match goal with
- | |- context [jump xH ?e] => rewrite (jump_simpl xH)
- | |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p))
- | |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p))
- end.
-
- Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l).
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma jump_Psucc : forall j l,
- (jump (Psucc j) l) = (jump 1 (jump j l)).
- Proof.
- intros.
- rewrite <- jump_Pplus.
- rewrite Pplus_one_succ_r.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma jump_Pdouble_minus_one : forall i l,
- (jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)).
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite <- Pplus_one_succ_r.
- rewrite Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_diag.
- reflexivity.
- Qed.
-
- Lemma jump_x0_tail : forall p l, jump (xO p) (tail l) = jump (xI p) l.
- Proof.
- intros.
- jump_s.
- repeat rewrite <- jump_Pplus.
- reflexivity.
- Qed.
-
-
- Lemma nth_spec : forall p l,
- nth p l =
- match p with
- | xH => hd l
- | xO p => nth p (jump p l)
- | xI p => nth p (jump p (tail l))
- end.
- Proof.
- unfold nth.
- destruct l.
- destruct o.
- simpl.
- rewrite psucc.
- destruct p.
- replace (p0 + xI p)%positive with ((p + (p0 + 1) + p))%positive.
- reflexivity.
- rewrite xI_succ_xO.
- rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag.
- rewrite Pplus_comm.
- symmetry.
- rewrite (Pplus_comm p0).
- rewrite <- Pplus_assoc.
- rewrite (Pplus_comm 1)%positive.
- rewrite <- Pplus_assoc.
- reflexivity.
- (**)
- replace ((p0 + xO p))%positive with (p + p0 + p)%positive.
- reflexivity.
- rewrite <- Pplus_diag.
- rewrite <- Pplus_assoc.
- rewrite Pplus_comm.
- rewrite Pplus_assoc.
- reflexivity.
- reflexivity.
- simpl.
- destruct p.
- rewrite xI_succ_xO.
- rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag.
- symmetry.
- rewrite Pplus_comm.
- rewrite Pplus_assoc.
- reflexivity.
- rewrite Pplus_diag.
- reflexivity.
- reflexivity.
- Qed.
-
-
- Lemma nth_jump : forall p l, nth p (tail l) = hd (jump p l).
- Proof.
- destruct l.
- unfold tail.
- unfold hd.
- unfold jump.
- unfold nth.
- destruct o.
- symmetry.
- rewrite Pplus_comm.
- rewrite <- Pplus_assoc.
- rewrite (Pplus_comm p0).
- reflexivity.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma nth_Pdouble_minus_one :
- forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
- Proof.
- destruct l.
- unfold tail.
- unfold nth, jump.
- destruct o.
- rewrite ((Pplus_comm p)).
- rewrite <- (Pplus_assoc p0).
- rewrite Pplus_diag.
- rewrite <- Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_one_succ_r.
- rewrite (Pplus_comm (Pdouble_minus_one p)).
- rewrite Pplus_assoc.
- rewrite (Pplus_comm p0).
- reflexivity.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_diag.
- reflexivity.
- Qed.
-
-*)
End MakeVarMap.
diff --git a/plugins/micromega/ZCoeff.v b/plugins/micromega/ZCoeff.v
index cf2bca49..2bf3d8c3 100644
--- a/plugins/micromega/ZCoeff.v
+++ b/plugins/micromega/ZCoeff.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -138,7 +138,7 @@ Qed.
Lemma clt_morph : forall x y : Z, (x < y)%Z -> [x] < [y].
Proof.
-unfold Zlt; intros x y H;
+intros x y H.
do 2 rewrite (same_genZ sor.(SORsetoid) ring_ops_wd sor.(SORrt));
destruct x; destruct y; simpl in *; try discriminate.
apply phi_pos1_pos.
@@ -146,8 +146,8 @@ now apply clt_pos_morph.
apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
apply (Rlt_trans sor) with 0. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
apply phi_pos1_pos.
-rewrite Pcompare_antisym in H; simpl in H. apply -> (Ropp_lt_mono sor).
-now apply clt_pos_morph.
+apply -> (Ropp_lt_mono sor); apply clt_pos_morph.
+red. now rewrite Pos.compare_antisym.
Qed.
Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y].
diff --git a/plugins/micromega/ZMicromega.v b/plugins/micromega/ZMicromega.v
index d6245681..461f53b5 100644
--- a/plugins/micromega/ZMicromega.v
+++ b/plugins/micromega/ZMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* Frédéric Besson (Irisa/Inria) 2006-2011 *)
(* *)
(************************************************************************)
@@ -194,27 +194,27 @@ Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
| OpLe => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
end.
-Require Import Tauto.
+Require Import Tauto BinNums.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
-Lemma normalise_correct : forall env t, eval_cnf (eval_nformula env) (normalise t) <-> Zeval_formula env t.
+Lemma normalise_correct : forall env t, eval_cnf eval_nformula env (normalise t) <-> Zeval_formula env t.
Proof.
Opaque padd.
unfold normalise, xnormalise ; simpl; intros env t.
rewrite Zeval_formula_compat.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
+ (fun x : N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
+ (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
@@ -235,31 +235,34 @@ Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
-Lemma negate_correct : forall env t, eval_cnf (eval_nformula env) (negate t) <-> ~ Zeval_formula env t.
+Lemma negate_correct : forall env t, eval_cnf eval_nformula env (negate t) <-> ~ Zeval_formula env t.
Proof.
Proof.
Opaque padd.
intros env t.
rewrite Zeval_formula_compat.
unfold negate, xnegate ; simpl.
- unfold eval_cnf.
+ unfold eval_cnf,eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
+ (fun x : N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
+ (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
+Definition Zunsat := check_inconsistent 0 Zeq_bool Zle_bool.
+
+Definition Zdeduce := nformula_plus_nformula 0 Zplus Zeq_bool.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
- @tauto_checker (Formula Z) (NFormula Z) normalise negate ZWitness ZWeakChecker f w.
+ @tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZWitness ZWeakChecker f w.
(* To get a complete checker, the proof format has to be enriched *)
@@ -273,6 +276,26 @@ Definition ceiling (a b:Z) : Z :=
| _ => q + 1
end.
+
+Require Import Znumtheory.
+
+Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Zdiv a b.
+Proof.
+ unfold ceiling.
+ intros.
+ apply Zdivide_mod in H.
+ case_eq (Zdiv_eucl a b).
+ intros.
+ change z with (fst (z,z0)).
+ rewrite <- H0.
+ change (fst (Zdiv_eucl a b)) with (Zdiv a b).
+ change z0 with (snd (z,z0)).
+ rewrite <- H0.
+ change (snd (Zdiv_eucl a b)) with (Zmod a b).
+ rewrite H.
+ reflexivity.
+Qed.
+
Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a.
Proof.
unfold ceiling.
@@ -307,40 +330,13 @@ Inductive ZArithProof : Type :=
| DoneProof
| RatProof : ZWitness -> ZArithProof -> ZArithProof
| CutProof : ZWitness -> ZArithProof -> ZArithProof
-| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof.
-
-(* n/d <= x -> d*x - n >= 0 *)
-(*
-Definition makeLb (v:PExpr Z) (q:Q) : NFormula Z :=
- let (n,d) := q in (PEsub (PEmul (PEc (Zpos d)) v) (PEc n),NonStrict).
+| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof
+(*| SplitProof : PolC Z -> ZArithProof -> ZArithProof -> ZArithProof*).
-(* x <= n/d -> d * x <= d *)
-Definition makeUb (v:PExpr Z) (q:Q) : NFormula Z :=
- let (n,d) := q in
- (PEsub (PEc n) (PEmul (PEc (Zpos d)) v), NonStrict).
-Definition qceiling (q:Q) : Z :=
- let (n,d) := q in ceiling n (Zpos d).
-Definition qfloor (q:Q) : Z :=
- let (n,d) := q in Zdiv n (Zpos d).
-
-Definition makeLbCut (v:PExprC Z) (q:Q) : NFormula Z :=
- (PEsub v (PEc (qceiling q)), NonStrict).
-
-Definition neg_nformula (f : NFormula Z) :=
- let (e,o) := f in
- (PEopp (PEadd e (PEc 1%Z)), o).
+(* n/d <= x -> d*x - n >= 0 *)
-Lemma neg_nformula_sound : forall env f, snd f = NonStrict ->( ~ (Zeval_nformula env (neg_nformula f)) <-> Zeval_nformula env f).
-Proof.
- unfold neg_nformula.
- destruct f.
- simpl.
- intros ; subst ; simpl in *.
- split; auto with zarith.
-Qed.
-*)
(* In order to compute the 'cut', we need to express a polynomial P as a * Q + b.
- b is the constant
@@ -566,9 +562,11 @@ Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) :=
let (e,op) := f in
match op with
| Equal => let (g,c) := Zgcd_pol e in
- if andb (Zgt_bool g Z0) (andb (Zgt_bool c Z0) (negb (Zeq_bool (Zgcd g c) g)))
+ if andb (Zgt_bool g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Zgcd g c) g)))
then None (* inconsistent *)
- else Some (e, Z0,op) (* It could still be inconsistent -- but not a cut *)
+ else (* Could be optimised Zgcd_pol is recomputed *)
+ let (p,c) := makeCuttingPlane e in
+ Some (p,c,Equal)
| NonEqual => Some (e,Z0,op)
| Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in
Some (p,c,NonStrict)
@@ -596,16 +594,16 @@ Proof.
Qed.
-
-
-
Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) :=
eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool.
-Definition check_inconsistent := check_inconsistent 0 Zeq_bool Zle_bool.
-
-
+Definition valid_cut_sign (op:Op1) :=
+ match op with
+ | Equal => true
+ | NonStrict => true
+ | _ => false
+ end.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :=
match pf with
@@ -614,7 +612,7 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :
match eval_Psatz l w with
| None => false
| Some f =>
- if check_inconsistent f then true
+ if Zunsat f then true
else ZChecker (f::l) pf
end
| CutProof w pf =>
@@ -627,29 +625,24 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :
end
end
| EnumProof w1 w2 pf =>
- match eval_Psatz l w1 , eval_Psatz l w2 with
- | Some f1 , Some f2 =>
- match genCuttingPlane f1 , genCuttingPlane f2 with
- |Some (e1,z1,op1) , Some (e2,z2,op2) =>
- match op1 , op2 with
- | NonStrict , NonStrict =>
- if is_pol_Z0 (padd e1 e2)
- then
- (fix label (pfs:list ZArithProof) :=
- fun lb ub =>
- match pfs with
- | nil => if Zgt_bool lb ub then true else false
- | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
- end)
- pf (Zopp z1) z2
- else false
- | _ , _ => false
- end
- | _ , _ => false
- end
- | _ , _ => false
- end
- end.
+ match eval_Psatz l w1 , eval_Psatz l w2 with
+ | Some f1 , Some f2 =>
+ match genCuttingPlane f1 , genCuttingPlane f2 with
+ |Some (e1,z1,op1) , Some (e2,z2,op2) =>
+ if (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd e1 e2))
+ then
+ (fix label (pfs:list ZArithProof) :=
+ fun lb ub =>
+ match pfs with
+ | nil => if Zgt_bool lb ub then true else false
+ | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
+ end) pf (Zopp z1) z2
+ else false
+ | _ , _ => true
+ end
+ | _ , _ => false
+ end
+end.
@@ -702,7 +695,7 @@ Proof.
apply make_conj_in ; auto.
Qed.
-Lemma makeCuttingPlane_sound : forall env e e' c,
+Lemma makeCuttingPlane_ns_sound : forall env e e' c,
eval_nformula env (e, NonStrict) ->
makeCuttingPlane e = (e',c) ->
eval_nformula env (nformula_of_cutting_plane (e', c, NonStrict)).
@@ -729,7 +722,6 @@ Proof.
intros. inv H2. auto with zarith.
Qed.
-
Lemma cutting_plane_sound : forall env f p,
eval_nformula env f ->
genCuttingPlane f = Some p ->
@@ -741,13 +733,51 @@ Proof.
(* Equal *)
destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
- destruct (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
- intros. inv H1. unfold nformula_of_cutting_plane.
- unfold eval_nformula in *.
- unfold RingMicromega.eval_nformula in *.
- unfold eval_op1 in *.
- rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
- simpl. rewrite H0. reflexivity.
+ case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
+ case_eq (makeCuttingPlane e).
+ intros.
+ inv H3.
+ unfold makeCuttingPlane in H.
+ rewrite H1 in H.
+ revert H.
+ change (eval_pol env e = 0) in H2.
+ case_eq (Zgt_bool g 0).
+ intros.
+ rewrite <- Zgt_is_gt_bool in H.
+ rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith.
+ unfold nformula_of_cutting_plane.
+ change (eval_pol env (padd e' (Pc z)) = 0).
+ inv H3.
+ rewrite eval_pol_add.
+ set (x:=eval_pol env (Zdiv_pol (PsubC Zminus e c) g)) in *; clearbody x.
+ simpl.
+ rewrite andb_false_iff in H0.
+ destruct H0.
+ rewrite Zgt_is_gt_bool in H ; congruence.
+ rewrite andb_false_iff in H0.
+ destruct H0.
+ rewrite negb_false_iff in H0.
+ apply Zeq_bool_eq in H0.
+ subst. simpl.
+ rewrite Zplus_0_r in H2.
+ apply Zmult_integral in H2.
+ intuition auto with zarith.
+ rewrite negb_false_iff in H0.
+ apply Zeq_bool_eq in H0.
+ assert (HH := Zgcd_is_gcd g c).
+ rewrite H0 in HH.
+ inv HH.
+ apply Zdivide_opp_r in H4.
+ rewrite Zdivide_ceiling ; auto.
+ apply Zeq_minus.
+ apply Z.div_unique_exact ; auto with zarith.
+ intros.
+ unfold nformula_of_cutting_plane.
+ inv H3.
+ change (eval_pol env (padd e' (Pc 0)) = 0).
+ rewrite eval_pol_add.
+ simpl.
+ auto with zarith.
(* NonEqual *)
intros.
inv H0.
@@ -762,7 +792,7 @@ Proof.
case_eq (makeCuttingPlane (PsubC Zminus e 1)).
intros.
inv H1.
- apply makeCuttingPlane_sound with (env:=env) (2:= H).
+ apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
auto with zarith.
@@ -771,7 +801,7 @@ Proof.
case_eq (makeCuttingPlane e).
intros.
inv H1.
- apply makeCuttingPlane_sound with (env:=env) (2:= H).
+ apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
assumption.
Qed.
@@ -783,23 +813,24 @@ Proof.
destruct f.
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
- case_eq (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))).
+ case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))).
intros.
flatten_bool.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
- contradict H5.
rewrite <- Zgt_is_gt_bool in H3.
- rewrite <- Zgt_is_gt_bool in H.
- apply Zis_gcd_gcd; auto with zarith.
- constructor; auto with zarith.
+ rewrite negb_true_iff in H.
+ apply Zeq_bool_neq in H.
change (eval_pol env p = 0) in H2.
rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith.
set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x.
+ contradict H5.
+ apply Zis_gcd_gcd; auto with zarith.
+ constructor; auto with zarith.
exists (-x).
rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith.
(**)
- discriminate.
+ destruct (makeCuttingPlane p); discriminate.
discriminate.
destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate.
destruct (makeCuttingPlane p) ; discriminate.
@@ -816,11 +847,11 @@ Proof.
simpl.
intro l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
- case_eq (check_inconsistent f).
+ case_eq (Zunsat f).
intros.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
- unfold check_inconsistent in H0. assumption.
+ unfold Zunsat in H0. assumption.
intros.
assert (make_impl (eval_nformula env) (f::l) False).
apply H with (2:= H1).
@@ -868,55 +899,54 @@ Proof.
case_eq (eval_Psatz l w1) ; [ | discriminate].
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
- case_eq (genCuttingPlane f2) ; [ | discriminate].
+ case_eq (genCuttingPlane f2).
destruct p as [ [p1 z1] op1].
- case_eq (genCuttingPlane f1) ; [ | discriminate].
+ case_eq (genCuttingPlane f1).
destruct p as [ [p2 z2] op2].
- case_eq op1 ; case_eq op2 ; try discriminate.
- case_eq (is_pol_Z0 (padd p1 p2)) ; try discriminate.
- intros.
+ case_eq (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd p1 p2)).
+ intros Hcond.
+ flatten_bool.
+ rename H1 into HZ0.
+ rename H2 into Hop1.
+ rename H3 into Hop2.
+ intros HCutL HCutR Hfix env.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
intro.
assert (-z1 <= eval_pol env p1 <= z2).
split.
apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
- apply cutting_plane_sound with (1:= Hf2) in H4.
- unfold nformula_of_cutting_plane in H4.
- unfold eval_nformula in H4.
- unfold RingMicromega.eval_nformula in H4.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H4.
- unfold eval_op1 in H4.
- rewrite eval_pol_add in H4. simpl in H4.
- auto with zarith.
+ apply cutting_plane_sound with (1:= Hf2) in HCutR.
+ unfold nformula_of_cutting_plane in HCutR.
+ unfold eval_nformula in HCutR.
+ unfold RingMicromega.eval_nformula in HCutR.
+ change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutR.
+ unfold eval_op1 in HCutR.
+ destruct op1 ; simpl in Hop1 ; try discriminate;
+ rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith.
(**)
- apply is_pol_Z0_eval_pol with (env := env) in H0.
- rewrite eval_pol_add in H0.
+ apply is_pol_Z0_eval_pol with (env := env) in HZ0.
+ rewrite eval_pol_add in HZ0.
replace (eval_pol env p1) with (- eval_pol env p2) by omega.
apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
- apply cutting_plane_sound with (1:= Hf1) in H3.
- unfold nformula_of_cutting_plane in H3.
- unfold eval_nformula in H3.
- unfold RingMicromega.eval_nformula in H3.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H3.
- unfold eval_op1 in H3.
- rewrite eval_pol_add in H3. simpl in H3.
- omega.
- revert H5.
- set (FF := (fix label (pfs : list ZArithProof) (lb ub : Z) {struct pfs} : bool :=
- match pfs with
- | nil => if Z_gt_dec lb ub then true else false
- | pf :: rsr =>
- (ZChecker ((PsubC Zminus p1 lb, Equal) :: l) pf &&
- label rsr (lb + 1)%Z ub)%bool
- end)).
+ apply cutting_plane_sound with (1:= Hf1) in HCutL.
+ unfold nformula_of_cutting_plane in HCutL.
+ unfold eval_nformula in HCutL.
+ unfold RingMicromega.eval_nformula in HCutL.
+ change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutL.
+ unfold eval_op1 in HCutL.
+ rewrite eval_pol_add in HCutL. simpl in HCutL.
+ destruct op2 ; simpl in Hop2 ; try discriminate ; omega.
+ revert Hfix.
+ match goal with
+ | |- context[?F pf (-z1) z2 = true] => set (FF := F)
+ end.
intros.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z).
- clear H.
- clear H0 H1 H2 H3 H4 H7.
- revert H5.
+ clear HZ0 Hop1 Hop2 HCutL HCutR H0 H1.
+ revert Hfix.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
induction pf;simpl ;intros.
@@ -931,16 +961,22 @@ Proof.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
- destruct (IHpf _ _ H1 _ H3).
+ elim IHpf with (2:=H2) (3:= H4).
destruct H4.
- exists x0 ; split;auto.
+ intros.
+ exists x0 ; split;tauto.
+ intros until 1.
+ apply H ; auto.
+ unfold ltof in *.
+ simpl in *.
+ zify. omega.
(*/asser *)
- destruct (HH _ H7) as [pr [Hin Hcheker]].
+ destruct (HH _ H1) as [pr [Hin Hcheker]].
assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False).
apply (H pr);auto.
apply in_bdepth ; auto.
- rewrite <- make_conj_impl in H8.
- apply H8.
+ rewrite <- make_conj_impl in H2.
+ apply H2.
rewrite make_conj_cons.
split ;auto.
unfold eval_nformula.
@@ -948,10 +984,23 @@ Proof.
simpl.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
+ discriminate.
+ (* No cutting plane *)
+ intros.
+ rewrite <- make_conj_impl.
+ intros.
+ apply eval_Psatz_sound with (2:= Hf1) in H3.
+ apply genCuttingPlaneNone with (2:= H3) ; auto.
+ (* No Cutting plane (bis) *)
+ intros.
+ rewrite <- make_conj_impl.
+ intros.
+ apply eval_Psatz_sound with (2:= Hf2) in H2.
+ apply genCuttingPlaneNone with (2:= H2) ; auto.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ZArithProof): bool :=
- @tauto_checker (Formula Z) (NFormula Z) normalise negate ZArithProof ZChecker f w.
+ @tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZArithProof ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
@@ -959,6 +1008,11 @@ Proof.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula eval_nformula).
apply Zeval_nformula_dec.
+ intros until env.
+ unfold eval_nformula. unfold RingMicromega.eval_nformula.
+ destruct t.
+ apply (check_inconsistent_sound Zsor ZSORaddon) ; auto.
+ unfold Zdeduce. apply (nformula_plus_nformula_correct Zsor ZSORaddon).
intros env t.
rewrite normalise_correct ; auto.
intros env t.
@@ -1009,12 +1063,7 @@ Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
-Definition n_of_Z (z:Z) : BinNat.N :=
- match z with
- | Z0 => N0
- | Zpos p => Npos p
- | Zneg p => N0
- end.
+Notation n_of_Z := Z.to_N (only parsing).
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml
index bcab73ec..540d1b9c 100644
--- a/plugins/micromega/certificate.ml
+++ b/plugins/micromega/certificate.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -15,153 +15,18 @@
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
-(*open Micromega.Polynomial*)
+type var = int
+
+
+
open Big_int
open Num
-open Sos_lib
+open Polynomial
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
-let (<+>) = add_num
-let (<->) = minus_num
-let (<*>) = mult_num
-
-type var = Mc.positive
-
-module Monomial :
-sig
- type t
- val const : t
- val var : var -> t
- val find : var -> t -> int
- val mult : var -> t -> t
- val prod : t -> t -> t
- val compare : t -> t -> int
- val pp : out_channel -> t -> unit
- val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
-end
- =
-struct
- (* A monomial is represented by a multiset of variables *)
- module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
- open Map
-
- type t = int Map.t
-
- (* The monomial that corresponds to a constant *)
- let const = Map.empty
-
- (* The monomial 'x' *)
- let var x = Map.add x 1 Map.empty
-
- (* Get the degre of a variable in a monomial *)
- let find x m = try find x m with Not_found -> 0
-
- (* Multiply a monomial by a variable *)
- let mult x m = add x ( (find x m) + 1) m
-
- (* Product of monomials *)
- let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
-
- (* Total ordering of monomials *)
- let compare m1 m2 = Map.compare Pervasives.compare m1 m2
-
- let pp o m = Map.iter (fun k v ->
- if v = 1 then Printf.fprintf o "x%i." (C2Ml.index k)
- else Printf.fprintf o "x%i^%i." (C2Ml.index k) v) m
-
- let fold = fold
-
-end
-
-
-module Poly :
- (* A polynomial is a map of monomials *)
- (*
- This is probably a naive implementation
- (expected to be fast enough - Coq is probably the bottleneck)
- *The new ring contribution is using a sparse Horner representation.
- *)
-sig
- type t
- val get : Monomial.t -> t -> num
- val variable : var -> t
- val add : Monomial.t -> num -> t -> t
- val constant : num -> t
- val mult : Monomial.t -> num -> t -> t
- val product : t -> t -> t
- val addition : t -> t -> t
- val uminus : t -> t
- val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
- val pp : out_channel -> t -> unit
- val compare : t -> t -> int
- val is_null : t -> bool
-end =
-struct
- (*normalisation bug : 0*x ... *)
- module P = Map.Make(Monomial)
- open P
-
- type t = num P.t
-
- let pp o p = P.iter (fun k v ->
- if compare_num v (Int 0) <> 0
- then
- if Monomial.compare Monomial.const k = 0
- then Printf.fprintf o "%s " (string_of_num v)
- else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
-
- (* Get the coefficient of monomial mn *)
- let get : Monomial.t -> t -> num =
- fun mn p -> try find mn p with Not_found -> (Int 0)
-
-
- (* The polynomial 1.x *)
- let variable : var -> t =
- fun x -> add (Monomial.var x) (Int 1) empty
-
- (*The constant polynomial *)
- let constant : num -> t =
- fun c -> add (Monomial.const) c empty
-
- (* The addition of a monomial *)
-
- let add : Monomial.t -> num -> t -> t =
- fun mn v p ->
- let vl = (get mn p) <+> v in
- add mn vl p
-
-
- (** Design choice: empty is not a polynomial
- I do not remember why ....
- **)
-
- (* The product by a monomial *)
- let mult : Monomial.t -> num -> t -> t =
- fun mn v p ->
- fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
-
-
- let addition : t -> t -> t =
- fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
-
-
- let product : t -> t -> t =
- fun p1 p2 ->
- fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
-
-
- let uminus : t -> t =
- fun p -> map (fun v -> minus_num v) p
-
- let fold = P.fold
-
- let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
-
- let compare = compare compare_num
-end
open Mutils
type 'a number_spec = {
@@ -178,10 +43,10 @@ let z_spec = {
number_to_num = (fun x -> Big_int (C2Ml.z_big_int x));
zero = Mc.Z0;
unit = Mc.Zpos Mc.XH;
- mult = Mc.zmult;
+ mult = Mc.Z.mul;
eqb = Mc.zeq_bool
}
-
+
let q_spec = {
bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH});
@@ -195,56 +60,58 @@ let q_spec = {
let r_spec = z_spec
-
-
let dev_form n_spec p =
- let rec dev_form p =
+ let rec dev_form p =
match p with
| Mc.PEc z -> Poly.constant (n_spec.number_to_num z)
- | Mc.PEX v -> Poly.variable v
- | Mc.PEmul(p1,p2) ->
+ | Mc.PEX v -> Poly.variable (C2Ml.positive v)
+ | Mc.PEmul(p1,p2) ->
let p1 = dev_form p1 in
let p2 = dev_form p2 in
- Poly.product p1 p2
+ Poly.product p1 p2
| Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2)
| Mc.PEopp p -> Poly.uminus (dev_form p)
| Mc.PEsub(p1,p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
- | Mc.PEpow(p,n) ->
+ | Mc.PEpow(p,n) ->
let p = dev_form p in
let n = C2Ml.n n in
- let rec pow n =
- if n = 0
+ let rec pow n =
+ if n = 0
then Poly.constant (n_spec.number_to_num n_spec.unit)
else Poly.product p (pow (n-1)) in
pow n in
dev_form p
-let monomial_to_polynomial mn =
- Monomial.fold
- (fun v i acc ->
- let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
- if acc = Mc.PEc (Mc.Zpos Mc.XH)
- then mn
- else Mc.PEmul(mn,acc))
- mn
- (Mc.PEc (Mc.Zpos Mc.XH))
+let monomial_to_polynomial mn =
+ Monomial.fold
+ (fun v i acc ->
+ let v = Ml2C.positive v in
+ let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
+ if acc = Mc.PEc (Mc.Zpos Mc.XH)
+ then mn
+ else Mc.PEmul(mn,acc))
+ mn
+ (Mc.PEc (Mc.Zpos Mc.XH))
+
-let list_to_polynomial vars l =
+
+let list_to_polynomial vars l =
assert (List.for_all (fun x -> ceiling_num x =/ x) l);
let var x = monomial_to_polynomial (List.nth vars x) in
+
let rec xtopoly p i = function
| [] -> p
- | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
+ | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
- let mn =
+ let mn =
if c = Mc.PEc (Mc.Zpos Mc.XH)
then var i
else Mc.PEmul (c,var i) in
let p' = if p = Mc.PEc Mc.Z0 then mn else
Mc.PEadd (mn, p) in
xtopoly p' (i+1) l in
-
+
xtopoly (Mc.PEc Mc.Z0) 0 l
let rec fixpoint f x =
@@ -252,61 +119,54 @@ let rec fixpoint f x =
if y' = x then y'
else fixpoint f y'
-
-
-
-
-
-
-
-let rec_simpl_cone n_spec e =
- let simpl_cone =
+let rec_simpl_cone n_spec e =
+ let simpl_cone =
Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in
let rec rec_simpl_cone = function
- | Mc.PsatzMulE(t1, t2) ->
+ | Mc.PsatzMulE(t1, t2) ->
simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
- | Mc.PsatzAdd(t1,t2) ->
+ | Mc.PsatzAdd(t1,t2) ->
simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
| x -> simpl_cone x in
rec_simpl_cone e
-
-
+
+
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
-
-type cone_prod =
- Const of cone
- | Ideal of cone *cone
- | Mult of cone * cone
+
+type cone_prod =
+ Const of cone
+ | Ideal of cone *cone
+ | Mult of cone * cone
| Other of cone
and cone = Mc.zWitness
let factorise_linear_cone c =
-
- let rec cone_list c l =
+
+ let rec cone_list c l =
match c with
| Mc.PsatzAdd (x,r) -> cone_list r (x::l)
| _ -> c :: l in
-
+
let factorise c1 c2 =
match c1 , c2 with
- | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
+ | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None
- | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
+ | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None
| _ -> None in
-
+
let rec rebuild_cone l pending =
match l with
| [] -> (match pending with
| None -> Mc.PsatzZ
| Some p -> p
)
- | e::l ->
+ | e::l ->
(match pending with
- | None -> rebuild_cone l (Some e)
+ | None -> rebuild_cone l (Some e)
| Some p -> (match factorise p e with
| None -> Mc.PsatzAdd(p, rebuild_cone l (Some e))
| Some f -> rebuild_cone l (Some f) )
@@ -316,15 +176,15 @@ let factorise_linear_cone c =
-(* The binding with Fourier might be a bit obsolete
+(* The binding with Fourier might be a bit obsolete
-- how does it handle equalities ? *)
(* Certificates are elements of the cone such that P = 0 *)
(* To begin with, we search for certificates of the form:
- a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
+ a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
where pi >= 0 qi > 0
- ai >= 0
+ ai >= 0
bi >= 0
Sum bi + c >= 1
This is a linear problem: each monomial is considered as a variable.
@@ -334,216 +194,209 @@ let factorise_linear_cone c =
*)
open Mfourier
- (*module Fourier = Fourier(Vector.VList)(SysSet(Vector.VList))*)
- (*module Fourier = Fourier(Vector.VSparse)(SysSetAlt(Vector.VSparse))*)
-(*module Fourier = Mfourier.Fourier(Vector.VSparse)(*(SysSetAlt(Vector.VMap))*)*)
-
-(*module Vect = Fourier.Vect*)
-(*open Fourier.Cstr*)
(* fold_left followed by a rev ! *)
-let constrain_monomial mn l =
+let constrain_monomial mn l =
let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in
if mn = Monomial.const
- then
- { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
- op = Eq ;
+ then
+ { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
+ op = Eq ;
cst = Big_int zero_big_int }
else
- { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
- op = Eq ;
+ { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
+ op = Eq ;
cst = Big_int zero_big_int }
-
-let positivity l =
- let rec xpositivity i l =
+
+let positivity l =
+ let rec xpositivity i l =
match l with
| [] -> []
| (_,Mc.Equal)::l -> xpositivity (i+1) l
- | (_,_)::l ->
- {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
- op = Ge ;
+ | (_,_)::l ->
+ {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
+ op = Ge ;
cst = Int 0 } :: (xpositivity (i+1) l)
in
xpositivity 0 l
let string_of_op = function
- | Mc.Strict -> "> 0"
- | Mc.NonStrict -> ">= 0"
+ | Mc.Strict -> "> 0"
+ | Mc.NonStrict -> ">= 0"
| Mc.Equal -> "= 0"
| Mc.NonEqual -> "<> 0"
-(* If the certificate includes at least one strict inequality,
+(* If the certificate includes at least one strict inequality,
the obtained polynomial can also be 0 *)
let build_linear_system l =
- (* Gather the monomials: HINT add up of the polynomials *)
+ (* Gather the monomials: HINT add up of the polynomials ==> This does not work anymore *)
let l' = List.map fst l in
- let monomials =
- List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l'
+
+ let module MonSet = Set.Make(Monomial) in
+
+ let monomials =
+ List.fold_left (fun acc p ->
+ Poly.fold (fun m _ acc -> MonSet.add m acc) p acc)
+ (MonSet.singleton Monomial.const) l'
in (* For each monomial, compute a constraint *)
- let s0 =
- Poly.fold (fun mn _ res -> (constrain_monomial mn l')::res) monomials [] in
+ let s0 =
+ MonSet.fold (fun mn res -> (constrain_monomial mn l')::res) monomials [] in
(* I need at least something strictly positive *)
let strict = {
coeffs = Vect.from_list ((Big_int unit_big_int)::
- (List.map (fun (x,y) ->
- match y with Mc.Strict ->
- Big_int unit_big_int
+ (List.map (fun (x,y) ->
+ match y with Mc.Strict ->
+ Big_int unit_big_int
| _ -> Big_int zero_big_int) l));
op = Ge ; cst = Big_int unit_big_int } in
(* Add the positivity constraint *)
- {coeffs = Vect.from_list ([Big_int unit_big_int]) ;
- op = Ge ;
+ {coeffs = Vect.from_list ([Big_int unit_big_int]) ;
+ op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
let big_int_to_z = Ml2C.bigint
-
-(* For Q, this is a pity that the certificate has been scaled
+
+(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
-let make_certificate n_spec (cert,li) =
+let make_certificate n_spec (cert,li) =
let bint_to_cst = n_spec.bigint_to_number in
match cert with
| [] -> failwith "empty_certificate"
- | e::cert' ->
- let cst = match compare_big_int e zero_big_int with
+ | e::cert' ->
+(* let cst = match compare_big_int e zero_big_int with
| 0 -> Mc.PsatzZ
- | 1 -> Mc.PsatzC (bint_to_cst e)
- | _ -> failwith "positivity error"
- in
+ | 1 -> Mc.PsatzC (bint_to_cst e)
+ | _ -> failwith "positivity error"
+ in *)
let rec scalar_product cert l =
match cert with
| [] -> Mc.PsatzZ
- | c::cert -> match l with
- | [] -> failwith "make_certificate(1)"
- | i::l ->
- let r = scalar_product cert l in
- match compare_big_int c zero_big_int with
- | -1 -> Mc.PsatzAdd (
- Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
- r)
- | 0 -> r
- | _ -> Mc.PsatzAdd (
- Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
- r) in
-
- ((factorise_linear_cone
- (simplify_cone n_spec (Mc.PsatzAdd (cst, scalar_product cert' li)))))
+ | c::cert ->
+ match l with
+ | [] -> failwith "make_certificate(1)"
+ | i::l ->
+ let r = scalar_product cert l in
+ match compare_big_int c zero_big_int with
+ | -1 -> Mc.PsatzAdd (
+ Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
+ r)
+ | 0 -> r
+ | _ -> Mc.PsatzAdd (
+ Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
+ r) in
+ (factorise_linear_cone
+ (simplify_cone n_spec (scalar_product cert' li)))
exception Found of Monomial.t
exception Strict
-let primal l =
+let primal l =
let vr = ref 0 in
let module Mmn = Map.Make(Monomial) in
let vect_of_poly map p =
- Poly.fold (fun mn vl (map,vect) ->
- if mn = Monomial.const
+ Poly.fold (fun mn vl (map,vect) ->
+ if mn = Monomial.const
then (map,vect)
- else
+ else
let (mn,m) = try (Mmn.find mn map,map) with Not_found -> let res = (!vr, Mmn.add mn !vr map) in incr vr ; res in
(m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in
-
+
let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in
let cmp x y = Pervasives.compare (fst x) (fst y) in
snd (List.fold_right (fun (p,op) (map,l) ->
- let (mp,vect) = vect_of_poly map p in
+ let (mp,vect) = vect_of_poly map p in
let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in
(mp,cstr::l)) l (Mmn.empty,[]))
-let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
+let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
(* List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *)
-
-
+
let sys = build_linear_system l in
- try
+ try
match Fourier.find_point sys with
| Inr _ -> None
- | Inl cert -> Some (rats_to_ints (Vect.to_list cert))
+ | Inl cert -> Some (rats_to_ints (Vect.to_list cert))
(* should not use rats_to_ints *)
- with x ->
- if debug
- then (Printf.printf "raw certificate %s" (Printexc.to_string x);
+ with x ->
+ if debug
+ then (Printf.printf "raw certificate %s" (Printexc.to_string x);
flush stdout) ;
None
-let raw_certificate l =
- try
+let raw_certificate l =
+ try
let p = primal l in
match Fourier.find_point p with
- | Inr prf ->
- if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
+ | Inr prf ->
+ if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in
- if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
+ if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
Some (rats_to_ints (Vect.to_list cert))
| Inl _ -> None
- with Strict ->
+ with Strict ->
(* Fourier elimination should handle > *)
- dual_raw_certificate l
+ dual_raw_certificate l
-let simple_linear_prover (*to_constant*) l =
+let simple_linear_prover l =
let (lc,li) = List.split l in
match raw_certificate lc with
| None -> None (* No certificate *)
- | Some cert -> (* make_certificate to_constant*)Some (cert,li)
+ | Some cert -> Some (cert,li)
+
-let linear_prover n_spec l =
- let li = List.combine l (interval 0 (List.length l -1)) in
- let (l1,l') = List.partition
- (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
- let l' = List.map
- (fun ((x,y),i) -> match y with
- Mc.NonEqual -> failwith "cannot happen"
- | y -> ((dev_form n_spec x, y),i)) l' in
- simple_linear_prover (*n_spec*) l'
+let linear_prover n_spec l =
+ let build_system n_spec l =
+ let li = List.combine l (interval 0 (List.length l -1)) in
+ let (l1,l') = List.partition
+ (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
+ List.map
+ (fun ((x,y),i) -> match y with
+ Mc.NonEqual -> failwith "cannot happen"
+ | y -> ((dev_form n_spec x, y),i)) l' in
+ let l' = build_system n_spec l in
+ simple_linear_prover (*n_spec*) l'
let linear_prover n_spec l =
try linear_prover n_spec l with
x -> (print_string (Printexc.to_string x); None)
-let linear_prover_with_cert spec l =
+let linear_prover_with_cert spec l =
match linear_prover spec l with
| None -> None
| Some cert -> Some (make_certificate spec cert)
-(* zprover.... *)
-
-(* I need to gather the set of variables --->
- Then go for fold
- Once I have an interval, I need a certificate : 2 other fourier elims.
- (I could probably get the certificate directly
- as it is done in the fourier contrib.)
-*)
let make_linear_system l =
let l' = List.map fst l in
- let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
+ let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
(Poly.constant (Int 0)) l' in
- let monomials = Poly.fold
+ let monomials = Poly.fold
(fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in
- (List.map (fun (c,op) ->
- {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
- op = op ;
+ (List.map (fun (c,op) ->
+ {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
+ op = op ;
cst = minus_num ( (Poly.get Monomial.const c))}) l
,monomials)
@@ -552,130 +405,66 @@ let pplus x y = Mc.PEadd(x,y)
let pmult x y = Mc.PEmul(x,y)
let pconst x = Mc.PEc x
let popp x = Mc.PEopp x
-
+
let debug = false
-
+
(* keep track of enumerated vectors *)
-let rec mem p x l =
+let rec mem p x l =
match l with [] -> false | e::l -> if p x e then true else mem p x l
-let rec remove_assoc p x l =
+let rec remove_assoc p x l =
match l with [] -> [] | e::l -> if p x (fst e) then
- remove_assoc p x l else e::(remove_assoc p x l)
+ remove_assoc p x l else e::(remove_assoc p x l)
let eq x y = Vect.compare x y = 0
let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
-(* The prover is (probably) incomplete --
+(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
-let candidates sys =
- let ll = List.fold_right (
- fun (e,k) r ->
- match k with
- | Mc.NonStrict -> (dev_form z_spec e , Ge)::r
- | Mc.Equal -> (dev_form z_spec e , Eq)::r
- (* we already know the bound -- don't compute it again *)
- | _ -> failwith "Cannot happen candidates") sys [] in
-
- let (sys,var_mn) = make_linear_system ll in
- let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in
- (List.fold_left (fun l cstr ->
- let gcd = Big_int (Vect.gcd cstr.coeffs) in
- if gcd =/ (Int 1) && cstr.op = Eq
- then l
- else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars
-
-
-
-
-let rec xzlinear_prover planes sys =
- match linear_prover z_spec sys with
- | Some prf -> Some (Mc.RatProof (make_certificate z_spec prf,Mc.DoneProof))
- | None -> (* find the candidate with the smallest range *)
- (* Grrr - linear_prover is also calling 'make_linear_system' *)
- let ll = List.fold_right (fun (e,k) r -> match k with
- Mc.NonEqual -> r
- | k -> (dev_form z_spec e ,
- match k with
- Mc.NonStrict -> Ge
- | Mc.Equal -> Eq
- | Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in
- let (ll,var) = make_linear_system ll in
- let candidates = List.fold_left (fun acc vect ->
- match Fourier.optimise vect ll with
- | None -> acc
- | Some i ->
-(* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *)
- flush stdout ;
- (vect,i) ::acc) [] planes in
-
- let smallest_interval =
- match List.fold_left (fun (x1,i1) (x2,i2) ->
- if Itv.smaller_itv i1 i2
- then (x1,i1) else (x2,i2)) (Vect.null,(None,None)) candidates
- with
- | (x,(Some i, Some j)) -> Some(i,x,j)
- | x -> None (* This might be a cutting plane *)
- in
- match smallest_interval with
- | Some (lb,e,ub) ->
- let (lbn,lbd) =
- (Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
- Ml2C.bigint (denominator lb)) in
- let (ubn,ubd) =
- (Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
- Ml2C.bigint (denominator ub)) in
- let expr = list_to_polynomial var (Vect.to_list e) in
- (match
- (*x <= ub -> x > ub *)
- linear_prover z_spec
- ((pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
- Mc.NonStrict) :: sys),
- (* lb <= x -> lb > x *)
- linear_prover z_spec
- ((pplus (popp (pmult (pconst lbd) expr)) (pconst lbn),
- Mc.NonStrict)::sys)
- with
- | Some cub , Some clb ->
- (match zlinear_enum (remove e planes) expr
- (ceiling_num lb) (floor_num ub) sys
- with
- | None -> None
- | Some prf ->
- let bound_proof (c,l) = make_certificate z_spec (List.tl c , List.tl (List.map (fun x -> x -1) l)) in
-
- Some (Mc.EnumProof((*Ml2C.q lb,expr,Ml2C.q ub,*) bound_proof clb, bound_proof cub,prf)))
- | _ -> None
- )
- | _ -> None
-and zlinear_enum planes expr clb cub l =
- if clb >/ cub
- then Some []
- else
- let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in
- let sys' = (pexpr, Mc.Equal)::l in
- (*let enum = *)
- match xzlinear_prover planes sys' with
- | None -> if debug then print_string "zlp?"; None
- | Some prf -> if debug then print_string "zlp!";
- match zlinear_enum planes expr (clb +/ (Int 1)) cub l with
- | None -> None
- | Some prfl -> Some (prf :: prfl)
+let develop_constraint z_spec (e,k) =
+ match k with
+ | Mc.NonStrict -> (dev_form z_spec e , Ge)
+ | Mc.Equal -> (dev_form z_spec e , Eq)
+ | _ -> assert false
+
+
+let op_of_op_compat = function
+ | Ge -> Mc.NonStrict
+ | Eq -> Mc.Equal
+
+
+let integer_vector coeffs =
+ let vars , coeffs = List.split coeffs in
+ List.combine vars (List.map (fun x -> Big_int x) (rats_to_ints coeffs))
+
+let integer_cstr {coeffs = coeffs ; op = op ; cst = cst } =
+ let vars , coeffs = List.split coeffs in
+ match rats_to_ints (cst::coeffs) with
+ | cst :: coeffs ->
+ {
+ coeffs = List.combine vars (List.map (fun x -> Big_int x) coeffs) ;
+ op = op ; cst = Big_int cst}
+ | _ -> assert false
+
+
+let pexpr_of_cstr_compat var cstr =
+ let {coeffs = coeffs ; op = op ; cst = cst } = integer_cstr cstr in
+ try
+ let expr = list_to_polynomial var (Vect.to_list coeffs) in
+ let d = Ml2C.bigint (denominator cst) in
+ let n = Ml2C.bigint (numerator cst) in
+ (pplus (pmult (pconst d) expr) (popp (pconst n)), op_of_op_compat op)
+ with Failure _ -> failwith "pexpr_of_cstr_compat"
+
+
-let zlinear_prover sys =
- let candidates = candidates sys in
- (* Printf.printf "candidates %d" (List.length candidates) ; *)
- (*let t0 = Sys.time () in*)
- let res = xzlinear_prover candidates sys in
- (*Printf.printf "Time prover : %f" (Sys.time () -. t0) ;*) res
open Sos_types
-open Mutils
-let rec scale_term t =
+let rec scale_term t =
match t with
| Zero -> unit_big_int , Zero
| Const n -> (denominator n) , Const (Big_int (numerator n))
@@ -708,7 +497,7 @@ let get_index_of_ith_match f i l =
match l with
| [] -> failwith "bad index"
| e::l -> if f e
- then
+ then
(if j = i then res else get (j+1) (res+1) l )
else get j (res+1) l in
get 0 0 l
@@ -722,19 +511,19 @@ let rec scale_certificate pos = match pos with
| Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
| Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
| Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
- | Square t -> let s,t' = scale_term t in
+ | Square t -> let s,t' = scale_term t in
mult_big_int s s , Square t'
| Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
mult_big_int s1 s2 , Eqmul (y1,y2)
- | Sum (y, z) -> let s1,y1 = scale_certificate y
+ | Sum (y, z) -> let s1,y1 = scale_certificate y
and s2,y2 = scale_certificate z in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
- mult_big_int g (mult_big_int s1' s2'),
+ mult_big_int g (mult_big_int s1' s2'),
Sum (Product(Rational_le (Big_int s2'), y1),
Product (Rational_le (Big_int s1'), y2))
- | Product (y, z) ->
+ | Product (y, z) ->
let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
mult_big_int s1 s2 , Product (y1,y2)
@@ -743,7 +532,7 @@ open Micromega
let rec term_to_q_expr = function
| Const n -> PEc (Ml2C.q n)
| Zero -> PEc ( Ml2C.q (Int 0))
- | Var s -> PEX (Ml2C.index
+ | Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2)
| Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2)
@@ -755,20 +544,20 @@ open Micromega
let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e)
- let rec product l =
+ let rec product l =
match l with
| [] -> Mc.PsatzZ
| [i] -> Mc.PsatzIn (Ml2C.nat i)
| i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l)
-let q_cert_of_pos pos =
+let q_cert_of_pos pos =
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
- | Rational_eq n | Rational_le n | Rational_lt n ->
+ | Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.q n)
| Square t -> Mc.PsatzSquare (term_to_q_pol t)
@@ -781,7 +570,7 @@ let q_cert_of_pos pos =
let rec term_to_z_expr = function
| Const n -> PEc (Ml2C.bigint (big_int_of_num n))
| Zero -> PEc ( Z0)
- | Var s -> PEX (Ml2C.index
+ | Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2)
| Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2)
@@ -790,24 +579,649 @@ let q_cert_of_pos pos =
| Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)
| _ -> failwith "term_to_z_expr: not implemented"
- let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.zplus Mc.zmult Mc.zminus Mc.zopp Mc.zeq_bool (term_to_z_expr e)
+ let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.Z.add Mc.Z.mul Mc.Z.sub Mc.Z.opp Mc.zeq_bool (term_to_z_expr e)
-let z_cert_of_pos pos =
+let z_cert_of_pos pos =
let s,pos = (scale_certificate pos) in
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
- | Rational_eq n | Rational_le n | Rational_lt n ->
+ | Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.bigint (big_int_of_num n))
| Square t -> Mc.PsatzSquare (term_to_z_pol t)
- | Eqmul (t, y) -> Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
+ | Eqmul (t, y) ->
+ let is_unit =
+ match t with
+ | Const n -> n =/ Int 1
+ | _ -> false in
+ if is_unit
+ then _cert_of_pos y
+ else Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone z_spec (_cert_of_pos pos)
+(** All constraints (initial or derived) have an index and have a justification i.e., proof.
+ Given a constraint, all the coefficients are always integers.
+*)
+open Mutils
+open Mfourier
+open Num
+open Big_int
+open Polynomial
+
+(*module Mc = Micromega*)
+(*module Ml2C = Mutils.CamlToCoq
+module C2Ml = Mutils.CoqToCaml
+*)
+let debug = false
+
+
+
+module Env =
+struct
+
+ type t = int list
+
+ let id_of_hyp hyp l =
+ let rec xid_of_hyp i l =
+ match l with
+ | [] -> failwith "id_of_hyp"
+ | hyp'::l -> if hyp = hyp' then i else xid_of_hyp (i+1) l in
+ xid_of_hyp 0 l
+
+end
+
+
+let coq_poly_of_linpol (p,c) =
+
+ let pol_of_mon m =
+ Monomial.fold (fun x v p -> Mc.PEmul(Mc.PEpow(Mc.PEX(Ml2C.positive x),Ml2C.n v),p)) m (Mc.PEc (Mc.Zpos Mc.XH)) in
+
+ List.fold_left (fun acc (x,v) ->
+ let mn = LinPoly.MonT.retrieve x in
+ Mc.PEadd(Mc.PEmul(Mc.PEc (Ml2C.bigint (numerator v)), pol_of_mon mn),acc)) (Mc.PEc (Ml2C.bigint (numerator c))) p
+
+
+
+
+let rec cmpl_prf_rule env = function
+ | Hyp i | Def i -> Mc.PsatzIn (Ml2C.nat (Env.id_of_hyp i env))
+ | Cst i -> Mc.PsatzC (Ml2C.bigint i)
+ | Zero -> Mc.PsatzZ
+ | MulPrf(p1,p2) -> Mc.PsatzMulE(cmpl_prf_rule env p1, cmpl_prf_rule env p2)
+ | AddPrf(p1,p2) -> Mc.PsatzAdd(cmpl_prf_rule env p1 , cmpl_prf_rule env p2)
+ | MulC(lp,p) -> let lp = Mc.norm0 (coq_poly_of_linpol lp) in
+ Mc.PsatzMulC(lp,cmpl_prf_rule env p)
+ | Square lp -> Mc.PsatzSquare (Mc.norm0 (coq_poly_of_linpol lp))
+ | _ -> failwith "Cuts should already be compiled"
+
+
+let rec cmpl_proof env = function
+ | Done -> Mc.DoneProof
+ | Step(i,p,prf) ->
+ begin
+ match p with
+ | CutPrf p' ->
+ Mc.CutProof(cmpl_prf_rule env p', cmpl_proof (i::env) prf)
+ | _ -> Mc.RatProof(cmpl_prf_rule env p,cmpl_proof (i::env) prf)
+ end
+ | Enum(i,p1,_,p2,l) ->
+ Mc.EnumProof(cmpl_prf_rule env p1,cmpl_prf_rule env p2,List.map (cmpl_proof (i::env)) l)
+
+
+let compile_proof env prf =
+ let id = 1 + proof_max_id prf in
+ let _,prf = normalise_proof id prf in
+ if debug then Printf.fprintf stdout "compiled proof %a\n" output_proof prf;
+ cmpl_proof env prf
+
+type prf_sys = (cstr_compat * prf_rule) list
+
+
+let xlinear_prover sys =
+ match Fourier.find_point sys with
+ | Inr prf ->
+ if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
+ let cert = (*List.map (fun (x,n) -> x+1,n)*) (fst (List.hd (Proof.mk_proof sys prf))) in
+ if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
+ Some (rats_to_ints (Vect.to_list cert))
+ | Inl _ -> None
+
+
+let output_num o n = output_string o (string_of_num n)
+let output_bigint o n = output_string o (string_of_big_int n)
+
+let proof_of_farkas prf cert =
+(* Printf.printf "\nproof_of_farkas %a , %a \n" (pp_list output_prf_rule) prf (pp_list output_bigint) cert ; *)
+ let rec mk_farkas acc prf cert =
+ match prf, cert with
+ | _ , [] -> acc
+ | [] , _ -> failwith "proof_of_farkas : not enough hyps"
+ | p::prf,c::cert ->
+ mk_farkas (add_proof (mul_proof c p) acc) prf cert in
+ let res = mk_farkas Zero prf cert in
+ (*Printf.printf "==> %a" output_prf_rule res ; *)
+ res
+
+
+let linear_prover sys =
+ let (sysi,prfi) = List.split sys in
+ match xlinear_prover sysi with
+ | None -> None
+ | Some cert -> Some (proof_of_farkas prfi cert)
+
+let linear_prover =
+ if debug
+ then
+ fun sys ->
+ Printf.printf "<linear_prover"; flush stdout ;
+ let res = linear_prover sys in
+ Printf.printf ">"; flush stdout ;
+ res
+ else linear_prover
+
+
+
+
+(** A single constraint can be unsat for the following reasons:
+ - 0 >= c for c a negative constant
+ - 0 = c for c a non-zero constant
+ - e = c when the coeffs of e are all integers and c is rational
+*)
+
+type checksat =
+ | Tauto (* Tautology *)
+ | Unsat of prf_rule (* Unsatisfiable *)
+ | Cut of cstr_compat * prf_rule (* Cutting plane *)
+ | Normalise of cstr_compat * prf_rule (* coefficients are relatively prime *)
+
+
+(** [check_sat]
+ - detects constraints that are not satisfiable;
+ - normalises constraints and generate cuts.
+*)
+
+let check_sat (cstr,prf) =
+ let {coeffs=coeffs ; op=op ; cst=cst} = cstr in
+ match coeffs with
+ | [] ->
+ if eval_op op (Int 0) cst then Tauto else Unsat prf
+ | _ ->
+ let gcdi = (gcd_list (List.map snd coeffs)) in
+ let gcd = Big_int gcdi in
+ if eq_num gcd (Int 1)
+ then Normalise(cstr,prf)
+ else
+ if sign_num (mod_num cst gcd) = 0
+ then (* We can really normalise *)
+ begin
+ assert (sign_num gcd >=1 ) ;
+ let cstr = {
+ coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs;
+ op = op ; cst = cst // gcd
+ } in
+ Normalise(cstr,Gcd(gcdi,prf))
+ (* Normalise(cstr,CutPrf prf)*)
+ end
+ else
+ match op with
+ | Eq -> Unsat (CutPrf prf)
+ | Ge ->
+ let cstr = {
+ coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs;
+ op = op ; cst = ceiling_num (cst // gcd)
+ } in Cut(cstr,CutPrf prf)
+
+
+(** Proof generating pivoting over variable v *)
+let pivot v (c1,p1) (c2,p2) =
+ let {coeffs = v1 ; op = op1 ; cst = n1} = c1
+ and {coeffs = v2 ; op = op2 ; cst = n2} = c2 in
+
+
+
+ (* Could factorise gcd... *)
+ let xpivot cv1 cv2 =
+ (
+ {coeffs = Vect.add (Vect.mul cv1 v1) (Vect.mul cv2 v2) ;
+ op = Proof.add_op op1 op2 ;
+ cst = n1 */ cv1 +/ n2 */ cv2 },
+
+ AddPrf(mul_proof (numerator cv1) p1,mul_proof (numerator cv2) p2)) in
+
+ match Vect.get v v1 , Vect.get v v2 with
+ | None , _ | _ , None -> None
+ | Some a , Some b ->
+ if (sign_num a) * (sign_num b) = -1
+ then
+ let cv1 = abs_num b
+ and cv2 = abs_num a in
+ Some (xpivot cv1 cv2)
+ else
+ if op1 = Eq
+ then
+ let cv1 = minus_num (b */ (Int (sign_num a)))
+ and cv2 = abs_num a in
+ Some (xpivot cv1 cv2)
+ else if op2 = Eq
+ then
+ let cv1 = abs_num b
+ and cv2 = minus_num (a */ (Int (sign_num b))) in
+ Some (xpivot cv1 cv2)
+ else None (* op2 could be Eq ... this might happen *)
+
+exception FoundProof of prf_rule
+
+let rec simpl_sys sys =
+ List.fold_left (fun acc (c,p) ->
+ match check_sat (c,p) with
+ | Tauto -> acc
+ | Unsat prf -> raise (FoundProof prf)
+ | Cut(c,p) -> (c,p)::acc
+ | Normalise (c,p) -> (c,p)::acc) [] sys
+
+
+(** [ext_gcd a b] is the extended Euclid algorithm.
+ [ext_gcd a b = (x,y,g)] iff [ax+by=g]
+ Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
+*)
+let rec ext_gcd a b =
+ if sign_big_int b = 0
+ then (unit_big_int,zero_big_int)
+ else
+ let (q,r) = quomod_big_int a b in
+ let (s,t) = ext_gcd b r in
+ (t, sub_big_int s (mult_big_int q t))
+
+
+let pp_ext_gcd a b =
+ let a' = big_int_of_int a in
+ let b' = big_int_of_int b in
+
+ let (x,y) = ext_gcd a' b' in
+ Printf.fprintf stdout "%s * %s + %s * %s = %s\n"
+ (string_of_big_int x) (string_of_big_int a')
+ (string_of_big_int y) (string_of_big_int b')
+ (string_of_big_int (add_big_int (mult_big_int x a') (mult_big_int y b')))
+
+exception Result of (int * (proof * cstr_compat))
+
+let split_equations psys =
+ List.partition (fun (c,p) -> c.op = Eq)
+
+
+let extract_coprime (c1,p1) (c2,p2) =
+ let rec exist2 vect1 vect2 =
+ match vect1 , vect2 with
+ | _ , [] | [], _ -> None
+ | (v1,n1)::vect1' , (v2, n2) :: vect2' ->
+ if v1 = v2
+ then
+ if compare_big_int (gcd_big_int (numerator n1) (numerator n2)) unit_big_int = 0
+ then Some (v1,n1,n2)
+ else
+ exist2 vect1' vect2'
+ else
+ if v1 < v2
+ then exist2 vect1' vect2
+ else exist2 vect1 vect2' in
+
+ if c1.op = Eq && c2.op = Eq
+ then exist2 c1.coeffs c2.coeffs
+ else None
+
+let extract2 pred l =
+ let rec xextract2 rl l =
+ match l with
+ | [] -> (None,rl) (* Did not find *)
+ | e::l ->
+ match extract (pred e) l with
+ | None,_ -> xextract2 (e::rl) l
+ | Some (r,e'),l' -> Some (r,e,e'), List.rev_append rl l' in
+
+ xextract2 [] l
+
+
+let extract_coprime_equation psys =
+ extract2 extract_coprime psys
+
+
+let apply_and_normalise f psys =
+ List.fold_left (fun acc pc' ->
+ match f pc' with
+ | None -> pc'::acc
+ | Some pc' ->
+ match check_sat pc' with
+ | Tauto -> acc
+ | Unsat prf -> raise (FoundProof prf)
+ | Cut(c,p) -> (c,p)::acc
+ | Normalise (c,p) -> (c,p)::acc
+ ) [] psys
+
+
+
+
+let pivot_sys v pc psys = apply_and_normalise (pivot v pc) psys
+
+
+let reduce_coprime psys =
+ let oeq,sys = extract_coprime_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some((v,n1,n2),(c1,p1),(c2,p2) ) ->
+ let (l1,l2) = ext_gcd (numerator n1) (numerator n2) in
+ let l1' = Big_int l1 and l2' = Big_int l2 in
+ let cstr =
+ {coeffs = Vect.add (Vect.mul l1' c1.coeffs) (Vect.mul l2' c2.coeffs);
+ op = Eq ;
+ cst = (l1' */ c1.cst) +/ (l2' */ c2.cst)
+ } in
+ let prf = add_proof (mul_proof (numerator l1') p1) (mul_proof (numerator l2') p2) in
+
+ Some (pivot_sys v (cstr,prf) ((c1,p1)::sys))
+
+(** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *)
+let reduce_unary psys =
+ let is_unary_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ Some (fst (List.find (fun (_,n) -> n =/ (Int 1) || n=/ (Int (-1))) cstr.coeffs))
+ with Not_found -> None
+ else None in
+
+ let (oeq,sys) = extract is_unary_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ Some(pivot_sys v pc sys)
+
+let reduce_non_lin_unary psys =
+
+ let is_unary_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ let x = fst (List.find (fun (x,n) -> (n =/ (Int 1) || n=/ (Int (-1))) && Monomial.is_var (LinPoly.MonT.retrieve x) ) cstr.coeffs) in
+ let x' = LinPoly.MonT.retrieve x in
+ if List.for_all (fun (y,_) -> y = x || snd (Monomial.div (LinPoly.MonT.retrieve y) x') = 0) cstr.coeffs
+ then Some x
+ else None
+ with Not_found -> None
+ else None in
+
+
+ let (oeq,sys) = extract is_unary_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ Some(apply_and_normalise (LinPoly.pivot_eq v pc) sys)
+
+let reduce_var_change psys =
+
+ let rec rel_prime vect =
+ match vect with
+ | [] -> None
+ | (x,v)::vect ->
+ let v = numerator v in
+ try
+ let (x',v') = List.find (fun (_,v') ->
+ let v' = numerator v' in
+ eq_big_int (gcd_big_int v v') unit_big_int) vect in
+ Some ((x,v),(x',numerator v'))
+ with Not_found -> rel_prime vect in
+
+ let rel_prime (cstr,prf) = if cstr.op = Eq then rel_prime cstr.coeffs else None in
+
+ let (oeq,sys) = extract rel_prime psys in
+
+ match oeq with
+ | None -> None
+ | Some(((x,v),(x',v')),(c,p)) ->
+ let (l1,l2) = ext_gcd v v' in
+ let l1,l2 = Big_int l1 , Big_int l2 in
+
+ let get v vect =
+ match Vect.get v vect with
+ | None -> Int 0
+ | Some n -> n in
+
+ let pivot_eq (c',p') =
+ let {coeffs = coeffs ; op = op ; cst = cst} = c' in
+ let vx = get x coeffs in
+ let vx' = get x' coeffs in
+ let m = minus_num (vx */ l1 +/ vx' */ l2) in
+ Some ({coeffs =
+ Vect.add (Vect.mul m c.coeffs) coeffs ; op = op ; cst = m */ c.cst +/ cst} ,
+ AddPrf(MulC(([], m),p),p')) in
+
+ Some (apply_and_normalise pivot_eq sys)
+
+
+
+
+ let reduce_pivot psys =
+ let is_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ Some (fst (List.hd cstr.coeffs))
+ with Not_found -> None
+ else None in
+ let (oeq,sys) = extract is_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ if debug then
+ Printf.printf "Bad news : loss of completeness %a=%s" Vect.pp_vect (fst pc).coeffs (string_of_num (fst pc).cst);
+ Some(pivot_sys v pc sys)
+
+
+
+
+
+ let iterate_until_stable f x =
+ let rec iter x =
+ match f x with
+ | None -> x
+ | Some x' -> iter x' in
+ iter x
+
+ let rec app_funs l x =
+ match l with
+ | [] -> None
+ | f::fl ->
+ match f x with
+ | None -> app_funs fl x
+ | Some x' -> Some x'
+
+ let reduction_equations psys =
+ iterate_until_stable (app_funs
+ [reduce_unary ; reduce_coprime ;
+ reduce_var_change (*; reduce_pivot*)]) psys
+
+ let reduction_non_lin_equations psys =
+ iterate_until_stable (app_funs
+ [reduce_non_lin_unary (*; reduce_coprime ;
+ reduce_var_change ; reduce_pivot *)]) psys
+
+
+
+
+ (** [get_bound sys] returns upon success an interval (lb,e,ub) with proofs *)
+ let get_bound sys =
+ let is_small (v,i) =
+ match Itv.range i with
+ | None -> false
+ | Some i -> i <=/ (Int 1) in
+
+ let select_best (x1,i1) (x2,i2) =
+ if Itv.smaller_itv i1 i2
+ then (x1,i1) else (x2,i2) in
+
+ (* For lia, there are no equations => these precautions are not needed *)
+ (* For nlia, there are equations => do not enumerate over equations! *)
+ let all_planes sys =
+ let (eq,ineq) = List.partition (fun c -> c.op = Eq) sys in
+ match eq with
+ | [] -> List.rev_map (fun c -> c.coeffs) ineq
+ | _ ->
+ List.fold_left (fun acc c ->
+ if List.exists (fun c' -> Vect.equal c.coeffs c'.coeffs) eq
+ then acc else c.coeffs ::acc) [] ineq in
+
+ let smallest_interval =
+ List.fold_left
+ (fun acc vect ->
+ if is_small acc
+ then acc
+ else
+ match Fourier.optimise vect sys with
+ | None -> acc
+ | Some i ->
+ if debug then Printf.printf "Found a new bound %a" Vect.pp_vect vect ;
+ select_best (vect,i) acc) (Vect.null, (None,None)) (all_planes sys) in
+ let smallest_interval =
+ match smallest_interval
+ with
+ | (x,(Some i, Some j)) -> Some(i,x,j)
+ | x -> None (* This should not be possible *)
+ in
+ match smallest_interval with
+ | Some (lb,e,ub) ->
+ let (lbn,lbd) = (sub_big_int (numerator lb) unit_big_int, denominator lb) in
+ let (ubn,ubd) = (add_big_int unit_big_int (numerator ub) , denominator ub) in
+ (match
+ (* x <= ub -> x > ub *)
+ xlinear_prover ({coeffs = Vect.mul (Big_int ubd) e ; op = Ge ; cst = Big_int ubn} :: sys),
+ (* lb <= x -> lb > x *)
+ xlinear_prover
+ ({coeffs = Vect.mul (minus_num (Big_int lbd)) e ; op = Ge ; cst = minus_num (Big_int lbn)} :: sys)
+ with
+ | Some cub , Some clb -> Some(List.tl clb,(lb,e,ub), List.tl cub)
+ | _ -> failwith "Interval without proof"
+ )
+ | None -> None
+
+
+ let check_sys sys =
+ List.for_all (fun (c,p) -> List.for_all (fun (_,n) -> sign_num n <> 0) c.coeffs) sys
+
+
+ let xlia reduction_equations sys =
+
+ let rec enum_proof (id:int) (sys:prf_sys) : proof option =
+ if debug then (Printf.printf "enum_proof\n" ; flush stdout) ;
+ assert (check_sys sys) ;
+
+ let nsys,prf = List.split sys in
+ match get_bound nsys with
+ | None -> None (* Is the systeme really unbounded ? *)
+ | Some(prf1,(lb,e,ub),prf2) ->
+ if debug then Printf.printf "Found interval: %a in [%s;%s] -> " Vect.pp_vect e (string_of_num lb) (string_of_num ub) ;
+ (match start_enum id e (ceiling_num lb) (floor_num ub) sys
+ with
+ | Some prfl ->
+ Some(Enum(id,proof_of_farkas prf prf1,e, proof_of_farkas prf prf2,prfl))
+ | None -> None
+ )
+
+ and start_enum id e clb cub sys =
+ if clb >/ cub
+ then Some []
+ else
+ let eq = {coeffs = e ; op = Eq ; cst = clb} in
+ match aux_lia (id+1) ((eq, Def id) :: sys) with
+ | None -> None
+ | Some prf ->
+ match start_enum id e (clb +/ (Int 1)) cub sys with
+ | None -> None
+ | Some l -> Some (prf::l)
+
+ and aux_lia (id:int) (sys:prf_sys) : proof option =
+ assert (check_sys sys) ;
+ if debug then Printf.printf "xlia: %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ;
+ try
+ let sys = reduction_equations sys in
+ if debug then
+ Printf.printf "after reduction: %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ;
+ match linear_prover sys with
+ | Some prf -> Some (Step(id,prf,Done))
+ | None -> enum_proof id sys
+ with FoundProof prf ->
+ (* [reduction_equations] can find a proof *)
+ Some(Step(id,prf,Done)) in
+
+ (* let sys' = List.map (fun (p,o) -> Mc.norm0 p , o) sys in*)
+ let id = List.length sys in
+ let orpf =
+ try
+ let sys = simpl_sys sys in
+ aux_lia id sys
+ with FoundProof pr -> Some(Step(id,pr,Done)) in
+ match orpf with
+ | None -> None
+ | Some prf ->
+ (*Printf.printf "direct proof %a\n" output_proof prf ; *)
+ let env = mapi (fun _ i -> i) sys in
+ let prf = compile_proof env prf in
+ (*try
+ if Mc.zChecker sys' prf then Some prf else
+ raise Certificate.BadCertificate
+ with Failure s -> (Printf.printf "%s" s ; Some prf)
+ *) Some prf
+
+
+ let cstr_compat_of_poly (p,o) =
+ let (v,c) = LinPoly.linpol_of_pol p in
+ {coeffs = v ; op = o ; cst = minus_num c }
+
+
+ let lia sys =
+ LinPoly.MonT.clear ();
+ let sys = List.map (develop_constraint z_spec) sys in
+ let (sys:cstr_compat list) = List.map cstr_compat_of_poly sys in
+ let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ xlia reduction_equations sys
+
+
+ let nlia sys =
+ LinPoly.MonT.clear ();
+ let sys = List.map (develop_constraint z_spec) sys in
+ let sys = mapi (fun c i -> (c,Hyp i)) sys in
+
+ let is_linear = List.for_all (fun ((p,_),_) -> Poly.is_linear p) sys in
+
+ let module MonMap = Map.Make(Monomial) in
+
+ let collect_square =
+ List.fold_left (fun acc ((p,_),_) -> Poly.fold
+ (fun m _ acc ->
+ match Monomial.sqrt m with
+ | None -> acc
+ | Some s -> MonMap.add s m acc) p acc) MonMap.empty sys in
+ let sys = MonMap.fold (fun s m acc ->
+ let s = LinPoly.linpol_of_pol (Poly.add s (Int 1) (Poly.constant (Int 0))) in
+ let m = Poly.add m (Int 1) (Poly.constant (Int 0)) in
+ ((m, Ge), (Square s))::acc) collect_square sys in
+
+(* List.iter (fun ((p,_),_) -> Printf.printf "square %a\n" Poly.pp p) gen_square*)
+
+ let sys =
+ if is_linear then sys
+ else sys @ (all_sym_pairs (fun ((c,o),p) ((c',o'),p') ->
+ ((Poly.product c c',opMult o o'), MulPrf(p,p'))) sys) in
+
+ let sys = List.map (fun (c,p) -> cstr_compat_of_poly c,p) sys in
+ assert (check_sys sys) ;
+ xlia (if is_linear then reduction_equations else reduction_non_lin_equations) sys
+
+
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml
index 4eb26afd..1ad49bb8 100644
--- a/plugins/micromega/coq_micromega.ml
+++ b/plugins/micromega/coq_micromega.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,7 +12,7 @@
(* *)
(* - Modules ISet, M, Mc, Env, Cache, CacheZ *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2009 *)
+(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
(* *)
(************************************************************************)
@@ -55,7 +55,7 @@ type 'cst atom = 'cst Micromega.formula
* Micromega's encoding of formulas.
* By order of appearance: boolean constants, variables, atoms, conjunctions,
* disjunctions, negation, implication.
- *)
+*)
type 'cst formula =
| TT
@@ -86,6 +86,18 @@ let rec pp_formula o f =
| None -> "") pp_formula f2
| N(f) -> Printf.fprintf o "N(%a)" pp_formula f
+
+let rec map_atoms fct f =
+ match f with
+ | TT -> TT
+ | FF -> FF
+ | X x -> X x
+ | A (at,tg,cstr) -> A(fct at,tg,cstr)
+ | C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2)
+ | D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2)
+ | N f -> N(map_atoms fct f)
+ | I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2)
+
(**
* Collect the identifiers of a (string of) implications. Implication labels
* are inherited from Coq/CoC's higher order dependent type constructor (Pi).
@@ -125,7 +137,9 @@ let ff : 'cst cnf = [ [] ]
* and the freeform formulas ('cst formula) that is retrieved from Coq.
*)
-type 'cst mc_cnf = ('cst Micromega.nFormula) list list
+module Mc = Micromega
+
+type 'cst mc_cnf = ('cst Mc.nFormula) list list
(**
* From a freeform formula, build a cnf.
@@ -134,7 +148,12 @@ type 'cst mc_cnf = ('cst Micromega.nFormula) list list
* and RingMicromega.v).
*)
-let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) (f:'cst formula) =
+type 'a tagged_option = T of tag list | S of 'a
+
+let cnf
+ (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf)
+ (unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) =
+
let negate a t =
List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in
@@ -143,26 +162,79 @@ let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf)
let and_cnf x y = x @ y in
- let or_clause_cnf t f = List.map (fun x -> t@x) f in
+let rec add_term t0 = function
+ | [] ->
+ (match deduce (fst t0) (fst t0) with
+ | Some u -> if unsat u then T [snd t0] else S (t0::[])
+ | None -> S (t0::[]))
+ | t'::cl0 ->
+ (match deduce (fst t0) (fst t') with
+ | Some u ->
+ if unsat u
+ then T [snd t0 ; snd t']
+ else (match add_term t0 cl0 with
+ | S cl' -> S (t'::cl')
+ | T l -> T l)
+ | None ->
+ (match add_term t0 cl0 with
+ | S cl' -> S (t'::cl')
+ | T l -> T l)) in
+
+
+ let rec or_clause cl1 cl2 =
+ match cl1 with
+ | [] -> S cl2
+ | t0::cl ->
+ (match add_term t0 cl2 with
+ | S cl' -> or_clause cl cl'
+ | T l -> T l) in
+
+
+
+ let or_clause_cnf t f =
+ List.fold_right (fun e (acc,tg) ->
+ match or_clause t e with
+ | S cl -> (cl :: acc,tg)
+ | T l -> (acc,tg@l)) f ([],[]) in
+
let rec or_cnf f f' =
match f with
- | [] -> tt
- | e :: rst -> (or_cnf rst f') @ (or_clause_cnf e f') in
+ | [] -> tt,[]
+ | e :: rst ->
+ let (rst_f',t) = or_cnf rst f' in
+ let (e_f', t') = or_clause_cnf e f' in
+ (rst_f' @ e_f', t @ t') in
+
let rec xcnf (polarity : bool) f =
match f with
- | TT -> if polarity then tt else ff
- | FF -> if polarity then ff else tt
- | X p -> if polarity then ff else ff
- | A(x,t,_) -> if polarity then normalise x t else negate x t
+ | TT -> if polarity then (tt,[]) else (ff,[])
+ | FF -> if polarity then (ff,[]) else (tt,[])
+ | X p -> if polarity then (ff,[]) else (ff,[])
+ | A(x,t,_) -> ((if polarity then normalise x t else negate x t),[])
| N(e) -> xcnf (not polarity) e
- | C(e1,e2) ->
- (if polarity then and_cnf else or_cnf) (xcnf polarity e1) (xcnf polarity e2)
+ | C(e1,e2) ->
+ let e1,t1 = xcnf polarity e1 in
+ let e2,t2 = xcnf polarity e2 in
+ if polarity
+ then and_cnf e1 e2, t1 @ t2
+ else let f',t' = or_cnf e1 e2 in
+ (f', t1 @ t2 @ t')
| D(e1,e2) ->
- (if polarity then or_cnf else and_cnf) (xcnf polarity e1) (xcnf polarity e2)
+ let e1,t1 = xcnf polarity e1 in
+ let e2,t2 = xcnf polarity e2 in
+ if polarity
+ then let f',t' = or_cnf e1 e2 in
+ (f', t1 @ t2 @ t')
+ else and_cnf e1 e2, t1 @ t2
| I(e1,_,e2) ->
- (if polarity then or_cnf else and_cnf) (xcnf (not polarity) e1) (xcnf polarity e2) in
+ let e1 , t1 = (xcnf (not polarity) e1) in
+ let e2 , t2 = (xcnf polarity e2) in
+ if polarity
+ then let f',t' = or_cnf e1 e2 in
+ (f', t1 @ t2 @ t')
+ else and_cnf e1 e2, t1 @ t2 in
xcnf true f
@@ -212,6 +284,7 @@ struct
["RingMicromega"];
["EnvRing"];
["Coq"; "micromega"; "ZMicromega"];
+ ["Coq"; "micromega"; "RMicromega"];
["Coq" ; "micromega" ; "Tauto"];
["Coq" ; "micromega" ; "RingMicromega"];
["Coq" ; "micromega" ; "EnvRing"];
@@ -220,6 +293,13 @@ struct
["Coq";"Reals" ; "Rpow_def"];
["LRing_normalise"]]
+ let bin_module = [["Coq";"Numbers";"BinNums"]]
+
+ let r_modules =
+ [["Coq";"Reals" ; "Rdefinitions"];
+ ["Coq";"Reals" ; "Rpow_def"] ;
+]
+
(**
* Initialization : a large amount of Caml symbols are derived from
* ZMicromega.v
@@ -227,6 +307,8 @@ struct
let init_constant = gen_constant_in_modules "ZMicromega" init_modules
let constant = gen_constant_in_modules "ZMicromega" coq_modules
+ let bin_constant = gen_constant_in_modules "ZMicromega" bin_module
+ let r_constant = gen_constant_in_modules "ZMicromega" r_modules
(* let constant = gen_constant_in_modules "Omicron" coq_modules *)
let coq_and = lazy (init_constant "and")
@@ -244,34 +326,42 @@ struct
let coq_S = lazy (init_constant "S")
let coq_nat = lazy (init_constant "nat")
- let coq_NO = lazy
- (gen_constant_in_modules "N" [ ["Coq";"NArith";"BinNat" ]] "N0")
- let coq_Npos = lazy
- (gen_constant_in_modules "N" [ ["Coq";"NArith"; "BinNat"]] "Npos")
- (* let coq_n = lazy (constant "N")*)
+ let coq_N0 = lazy (bin_constant "N0")
+ let coq_Npos = lazy (bin_constant "Npos")
+
+ let coq_pair = lazy (init_constant "pair")
+ let coq_None = lazy (init_constant "None")
+ let coq_option = lazy (init_constant "option")
- let coq_pair = lazy (constant "pair")
- let coq_None = lazy (constant "None")
- let coq_option = lazy (constant "option")
- let coq_positive = lazy (constant "positive")
- let coq_xH = lazy (constant "xH")
- let coq_xO = lazy (constant "xO")
- let coq_xI = lazy (constant "xI")
+ let coq_positive = lazy (bin_constant "positive")
+ let coq_xH = lazy (bin_constant "xH")
+ let coq_xO = lazy (bin_constant "xO")
+ let coq_xI = lazy (bin_constant "xI")
- let coq_N0 = lazy (constant "N0")
- let coq_N0 = lazy (constant "Npos")
+ let coq_Z = lazy (bin_constant "Z")
+ let coq_ZERO = lazy (bin_constant "Z0")
+ let coq_POS = lazy (bin_constant "Zpos")
+ let coq_NEG = lazy (bin_constant "Zneg")
- let coq_Z = lazy (constant "Z")
let coq_Q = lazy (constant "Q")
let coq_R = lazy (constant "R")
- let coq_ZERO = lazy (constant "Z0")
- let coq_POS = lazy (constant "Zpos")
- let coq_NEG = lazy (constant "Zneg")
-
let coq_Build_Witness = lazy (constant "Build_Witness")
let coq_Qmake = lazy (constant "Qmake")
+
+ let coq_Rcst = lazy (constant "Rcst")
+ let coq_C0 = lazy (constant "C0")
+ let coq_C1 = lazy (constant "C1")
+ let coq_CQ = lazy (constant "CQ")
+ let coq_CZ = lazy (constant "CZ")
+ let coq_CPlus = lazy (constant "CPlus")
+ let coq_CMinus = lazy (constant "CMinus")
+ let coq_CMult = lazy (constant "CMult")
+ let coq_CInv = lazy (constant "CInv")
+ let coq_COpp = lazy (constant "COpp")
+
+
let coq_R0 = lazy (constant "R0")
let coq_R1 = lazy (constant "R1")
@@ -305,16 +395,20 @@ struct
let coq_Qmult = lazy (constant "Qmult")
let coq_Qpower = lazy (constant "Qpower")
- let coq_Rgt = lazy (constant "Rgt")
- let coq_Rge = lazy (constant "Rge")
- let coq_Rle = lazy (constant "Rle")
- let coq_Rlt = lazy (constant "Rlt")
-
- let coq_Rplus = lazy (constant "Rplus")
- let coq_Rminus = lazy (constant "Rminus")
- let coq_Ropp = lazy (constant "Ropp")
- let coq_Rmult = lazy (constant "Rmult")
- let coq_Rpower = lazy (constant "pow")
+ let coq_Rgt = lazy (r_constant "Rgt")
+ let coq_Rge = lazy (r_constant "Rge")
+ let coq_Rle = lazy (r_constant "Rle")
+ let coq_Rlt = lazy (r_constant "Rlt")
+
+ let coq_Rplus = lazy (r_constant "Rplus")
+ let coq_Rminus = lazy (r_constant "Rminus")
+ let coq_Ropp = lazy (r_constant "Ropp")
+ let coq_Rmult = lazy (r_constant "Rmult")
+ let coq_Rdiv = lazy (r_constant "Rdiv")
+ let coq_Rinv = lazy (r_constant "Rinv")
+ let coq_Rpower = lazy (r_constant "pow")
+ let coq_IQR = lazy (constant "IQR")
+ let coq_IZR = lazy (constant "IZR")
let coq_PEX = lazy (constant "PEX" )
let coq_PEc = lazy (constant"PEc")
@@ -444,8 +538,6 @@ struct
(* Access the Micromega module *)
- module Mc = Micromega
-
(* parse/dump/print from numbers up to expressions and formulas *)
let rec parse_nat term =
@@ -491,11 +583,6 @@ struct
let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)
- let rec dump_n x =
- match x with
- | Mc.N0 -> Lazy.force coq_NO
- | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p |])
-
let rec pp_n o x = output_string o (string_of_int (CoqToCaml.n x))
let dump_pair t1 t2 dump_t1 dump_t2 (x,y) =
@@ -515,7 +602,7 @@ struct
| Mc.Zpos p -> Term.mkApp(Lazy.force coq_POS,[| dump_positive p|])
| Mc.Zneg p -> Term.mkApp(Lazy.force coq_NEG,[| dump_positive p|])
- let pp_z o x = Printf.fprintf o "%i" (CoqToCaml.z x)
+ let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x))
let dump_num bd1 =
Term.mkApp(Lazy.force coq_Qmake,
@@ -533,6 +620,48 @@ struct
else raise ParseError
| _ -> raise ParseError
+
+ let rec pp_Rcst o cst =
+ match cst with
+ | Mc.C0 -> output_string o "C0"
+ | Mc.C1 -> output_string o "C1"
+ | Mc.CQ q -> output_string o "CQ _"
+ | Mc.CZ z -> pp_z o z
+ | Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y
+ | Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y
+ | Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y
+ | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t
+ | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t
+
+
+ let rec dump_Rcst cst =
+ match cst with
+ | Mc.C0 -> Lazy.force coq_C0
+ | Mc.C1 -> Lazy.force coq_C1
+ | Mc.CQ q -> Term.mkApp(Lazy.force coq_CQ, [| dump_q q |])
+ | Mc.CZ z -> Term.mkApp(Lazy.force coq_CZ, [| dump_z z |])
+ | Mc.CPlus(x,y) -> Term.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |])
+ | Mc.CMinus(x,y) -> Term.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |])
+ | Mc.CMult(x,y) -> Term.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |])
+ | Mc.CInv t -> Term.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |])
+ | Mc.COpp t -> Term.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |])
+
+ let rec parse_Rcst term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.C0
+ | 2 -> Mc.C1
+ | 3 -> Mc.CQ (parse_q c.(0))
+ | 4 -> Mc.CPlus(parse_Rcst c.(0), parse_Rcst c.(1))
+ | 5 -> Mc.CMinus(parse_Rcst c.(0), parse_Rcst c.(1))
+ | 6 -> Mc.CMult(parse_Rcst c.(0), parse_Rcst c.(1))
+ | 7 -> Mc.CInv(parse_Rcst c.(0))
+ | 8 -> Mc.COpp(parse_Rcst c.(0))
+ | _ -> raise ParseError
+
+
+
+
let rec parse_list parse_elt term =
let (i,c) = get_left_construct term in
match i with
@@ -768,12 +897,17 @@ struct
then (Pp.pp (Pp.str "parse_expr: ");
Pp.pp_flush ();Pp.pp (Printer.prterm term); Pp.pp_flush ());
+(*
let constant_or_variable env term =
try
( Mc.PEc (parse_constant term) , env)
with ParseError ->
let (env,n) = Env.compute_rank_add env term in
(Mc.PEX n , env) in
+*)
+ let parse_variable env term =
+ let (env,n) = Env.compute_rank_add env term in
+ (Mc.PEX n , env) in
let rec parse_expr env term =
let combine env op (t1,t2) =
@@ -781,32 +915,34 @@ struct
let (expr2,env) = parse_expr env t2 in
(op expr1 expr2,env) in
- match kind_of_term term with
- | App(t,args) ->
- (
- match kind_of_term t with
- | Const c ->
- ( match assoc_ops t ops_spec with
- | Binop f -> combine env f (args.(0),args.(1))
- | Opp -> let (expr,env) = parse_expr env args.(0) in
- (Mc.PEopp expr, env)
- | Power ->
- begin
- try
- let (expr,env) = parse_expr env args.(0) in
- let power = (parse_exp expr args.(1)) in
- (power , env)
- with _ -> (* if the exponent is a variable *)
- let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
- end
- | Ukn s ->
- if debug
- then (Printf.printf "unknown op: %s\n" s; flush stdout;);
- let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ try (Mc.PEc (parse_constant term) , env)
+ with ParseError ->
+ match kind_of_term term with
+ | App(t,args) ->
+ (
+ match kind_of_term t with
+ | Const c ->
+ ( match assoc_ops t ops_spec with
+ | Binop f -> combine env f (args.(0),args.(1))
+ | Opp -> let (expr,env) = parse_expr env args.(0) in
+ (Mc.PEopp expr, env)
+ | Power ->
+ begin
+ try
+ let (expr,env) = parse_expr env args.(0) in
+ let power = (parse_exp expr args.(1)) in
+ (power , env)
+ with _ -> (* if the exponent is a variable *)
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ end
+ | Ukn s ->
+ if debug
+ then (Printf.printf "unknown op: %s\n" s; flush stdout;);
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ )
+ | _ -> parse_variable env term
)
- | _ -> constant_or_variable env term
- )
- | _ -> constant_or_variable env term in
+ | _ -> parse_variable env term in
parse_expr env term
let zop_spec =
@@ -836,27 +972,57 @@ struct
let zconstant = parse_z
let qconstant = parse_q
- let rconstant term =
- if debug
- then (Pp.pp_flush ();
- Pp.pp (Pp.str "rconstant: ");
- Pp.pp (Printer.prterm term); Pp.pp_flush ());
+
+ let rconst_assoc =
+ [
+ coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ;
+ coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ;
+ coq_Rmult , (fun x y -> Mc.CMult(x,y)) ;
+ coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;
+ ]
+
+ let rec rconstant term =
match Term.kind_of_term term with
| Const x ->
if term = Lazy.force coq_R0
- then Mc.Z0
+ then Mc.C0
else if term = Lazy.force coq_R1
- then Mc.Zpos Mc.XH
+ then Mc.C1
else raise ParseError
+ | App(op,args) ->
+ begin
+ try
+ (assoc_const op rconst_assoc) (rconstant args.(0)) (rconstant args.(1))
+ with
+ ParseError ->
+ match op with
+ | op when op = Lazy.force coq_Rinv -> Mc.CInv(rconstant args.(0))
+ | op when op = Lazy.force coq_IQR -> Mc.CQ (parse_q args.(0))
+(* | op when op = Lazy.force coq_IZR -> Mc.CZ (parse_z args.(0))*)
+ | _ -> raise ParseError
+ end
+
| _ -> raise ParseError
+
+ let rconstant term =
+ if debug
+ then (Pp.pp_flush ();
+ Pp.pp (Pp.str "rconstant: ");
+ Pp.pp (Printer.prterm term); Pp.pp_flush ());
+ let res = rconstant term in
+ if debug then
+ (Printf.printf "rconstant -> %a" pp_Rcst res ; flush stdout) ;
+ res
+
+
let parse_zexpr = parse_expr
zconstant
(fun expr x ->
let exp = (parse_z x) in
match exp with
| Mc.Zneg _ -> Mc.PEc Mc.Z0
- | _ -> Mc.PEpow(expr, Mc.n_of_Z exp))
+ | _ -> Mc.PEpow(expr, Mc.Z.to_N exp))
zop_spec
let parse_qexpr = parse_expr
@@ -870,14 +1036,14 @@ struct
| Mc.PEc q -> Mc.PEc (Mc.qpower q exp)
| _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError
end
- | _ -> let exp = Mc.n_of_Z exp in
+ | _ -> let exp = Mc.Z.to_N exp in
Mc.PEpow(expr,exp))
qop_spec
let parse_rexpr = parse_expr
rconstant
(fun expr x ->
- let exp = Mc.n_of_nat (parse_nat x) in
+ let exp = Mc.N.of_nat (parse_nat x) in
Mc.PEpow(expr,exp))
rop_spec
@@ -932,7 +1098,7 @@ struct
* This is the big generic function for formula parsers.
*)
- let parse_formula parse_atom env term =
+ let parse_formula parse_atom env tg term =
let parse_atom env tg t = try let (at,env) = parse_atom env t in
(A(at,tg,t), env,Tag.next tg) with _ -> (X(t),env,tg) in
@@ -941,17 +1107,17 @@ struct
match kind_of_term term with
| App(l,rst) ->
(match rst with
- | [|a;b|] when l = Lazy.force coq_and ->
+ | [|a;b|] when eq_constr l (Lazy.force coq_and) ->
let f,env,tg = xparse_formula env tg a in
let g,env, tg = xparse_formula env tg b in
mkformula_binary mkC term f g,env,tg
- | [|a;b|] when l = Lazy.force coq_or ->
+ | [|a;b|] when eq_constr l (Lazy.force coq_or) ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkD term f g,env,tg
- | [|a|] when l = Lazy.force coq_not ->
+ | [|a|] when eq_constr l (Lazy.force coq_not) ->
let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg)
- | [|a;b|] when l = Lazy.force coq_iff ->
+ | [|a;b|] when eq_constr l (Lazy.force coq_iff) ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkIff term f g,env,tg
@@ -960,10 +1126,10 @@ struct
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkI term f g,env,tg
- | _ when term = Lazy.force coq_True -> (TT,env,tg)
- | _ when term = Lazy.force coq_False -> (FF,env,tg)
+ | _ when eq_constr term (Lazy.force coq_True) -> (TT,env,tg)
+ | _ when eq_constr term (Lazy.force coq_False) -> (FF,env,tg)
| _ -> X(term),env,tg in
- xparse_formula env term
+ xparse_formula env tg ((*Reductionops.whd_zeta*) term)
let dump_formula typ dump_atom f =
let rec xdump f =
@@ -1024,9 +1190,9 @@ let tags_of_clause tgs wit clause =
| _ -> tgs in
xtags tgs wit
-let tags_of_cnf wits cnf =
+(*let tags_of_cnf wits cnf =
List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
- Names.Idset.empty wits cnf
+ Names.Idset.empty wits cnf *)
let find_witness prover polys1 = try_any prover polys1
@@ -1103,6 +1269,27 @@ let rec dump_proof_term = function
[| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ;
dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])
+
+let rec size_of_psatz = function
+ | Micromega.PsatzIn _ -> 1
+ | Micromega.PsatzSquare _ -> 1
+ | Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p)
+ | Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2
+ | Micromega.PsatzC _ -> 1
+ | Micromega.PsatzZ -> 1
+
+let rec size_of_pf = function
+ | Micromega.DoneProof -> 1
+ | Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
+ | Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
+ | Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l)
+
+let dump_proof_term t =
+ if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t) ;
+ dump_proof_term t
+
+
+
let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden
@@ -1139,13 +1326,12 @@ let parse_goal parse_arith env hyps term =
(**
* The datastructures that aggregate theory-dependent proof values.
*)
-
-type ('d, 'prf) domain_spec = {
- typ : Term.constr; (* Z, Q , R *)
- coeff : Term.constr ; (* Z, Q *)
- dump_coeff : 'd -> Term.constr ;
- proof_typ : Term.constr ;
- dump_proof : 'prf -> Term.constr
+type ('synt_c, 'prf) domain_spec = {
+ typ : Term.constr; (* is the type of the interpretation domain - Z, Q, R*)
+ coeff : Term.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *)
+ dump_coeff : 'synt_c -> Term.constr ;
+ proof_typ : Term.constr ;
+ dump_proof : 'prf -> Term.constr
}
let zz_domain_spec = lazy {
@@ -1164,12 +1350,12 @@ let qq_domain_spec = lazy {
dump_proof = dump_psatz coq_Q dump_q
}
-let rz_domain_spec = lazy {
+let rcst_domain_spec = lazy {
typ = Lazy.force coq_R;
- coeff = Lazy.force coq_Z;
- dump_coeff = dump_z;
- proof_typ = Lazy.force coq_ZWitness ;
- dump_proof = dump_psatz coq_Z dump_z
+ coeff = Lazy.force coq_Rcst;
+ dump_coeff = dump_Rcst;
+ proof_typ = Lazy.force coq_QWitness ;
+ dump_proof = dump_psatz coq_Q dump_q
}
(**
@@ -1260,14 +1446,14 @@ let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) =
let remap i =
let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in
List.assoc formula new_cl in
- if debug then
+(* if debug then
begin
Printf.printf "\ncompact_proof : %a %a %a"
(pp_ml_list prover.pp_f) (List.map fst old_cl)
prover.pp_prf prf
(pp_ml_list prover.pp_f) (List.map fst new_cl) ;
flush stdout
- end ;
+ end ; *)
let res = try prover.compact prf remap with x ->
if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ;
(* This should not happen -- this is the recovery plan... *)
@@ -1327,6 +1513,20 @@ let abstract_formula hyps f =
| TT -> TT
in xabs f
+
+(* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *)
+let rec abstract_wrt_formula f1 f2 =
+ match f1 , f2 with
+ | X c , _ -> X c
+ | A _ , A _ -> f2
+ | C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b')
+ | D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b')
+ | I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b')
+ | FF , FF -> FF
+ | TT , TT -> TT
+ | N x , N y -> N(abstract_wrt_formula x y)
+ | _ -> failwith "abstract_wrt_formula"
+
(**
* This exception is raised by really_call_csdpcert if Coq's configure didn't
* find a CSDP executable.
@@ -1339,20 +1539,22 @@ exception CsdpNotFound
* prune unused fomulas, and finally modify the proof state.
*)
-let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
- let spec = Lazy.force spec in
-
- (* Express the goal as one big implication *)
- let (ff,ids) =
+let formula_hyps_concl hyps concl =
List.fold_right
(fun (id,f) (cc,ids) ->
match f with
X _ -> (cc,ids)
| _ -> (I(f,Some id,cc), id::ids))
- polys1 (polys2,[]) in
+ hyps (concl,[])
+
+
+let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl =
+
+ (* Express the goal as one big implication *)
+ let (ff,ids) = formula_hyps_concl polys1 polys2 in
(* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *)
- let cnf_ff = cnf negate normalise ff in
+ let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in
if debug then
begin
@@ -1365,19 +1567,19 @@ let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
end;
match witness_list_tags prover cnf_ff with
- | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | None -> None
| Some res -> (*Printf.printf "\nList %i" (List.length `res); *)
let hyps = List.fold_left (fun s (cl,(prf,p)) ->
let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in
if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ;
(*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in
- TagSet.union s tags) TagSet.empty (List.combine cnf_ff res) in
+ TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in
if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout;
Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ;
let ff' = abstract_formula hyps ff in
- let cnf_ff' = cnf negate normalise ff' in
+ let cnf_ff',_ = cnf negate normalise unsat deduce ff' in
if debug then
begin
@@ -1400,41 +1602,124 @@ let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
end ; *)
let res' = compact_proofs cnf_ff res cnf_ff' in
- let (ff',res',ids) = (ff',res',List.map Term.mkVar (ids_of_formula ff')) in
+ let (ff',res',ids) = (ff',res', ids_of_formula ff') in
let res' = dump_list (spec.proof_typ) spec.dump_proof res' in
- (Tacticals.tclTHENSEQ
- [
- Tactics.generalize ids ;
- micromega_order_change spec res'
- (Term.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env ff'
- ]) gl
+ Some (ids,ff',res')
+
+
(**
* Parse the proof environment, and call micromega_tauto
*)
let micromega_gen
- parse_arith
+ parse_arith
(negate:'cst atom -> 'cst mc_cnf)
(normalise:'cst atom -> 'cst mc_cnf)
+ unsat deduce
spec prover gl =
let concl = Tacmach.pf_concl gl in
let hyps = Tacmach.pf_hyps_types gl in
try
let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
let env = Env.elements env in
- micromega_tauto negate normalise spec prover env hyps concl gl
+ let spec = Lazy.force spec in
+
+ match micromega_tauto negate normalise unsat deduce spec prover env hyps concl gl with
+ | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | Some (ids,ff',res') ->
+ (Tacticals.tclTHENSEQ
+ [
+ Tactics.generalize (List.map Term.mkVar ids) ;
+ micromega_order_change spec res'
+ (Term.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env ff'
+ ]) gl
with
- | Failure x -> flush stdout ; Pp.pp_flush () ;
- Tacticals.tclFAIL 0 (Pp.str x) gl
+(* | Failure x -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str x) gl *)
| ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl
| CsdpNotFound -> flush stdout ; Pp.pp_flush () ;
Tacticals.tclFAIL 0 (Pp.str
(" Skipping what remains of this tactic: the complexity of the goal requires "
^ "the use of a specialized external tool called csdp. \n\n"
- ^ "Unfortunately this instance of Coq isn't aware of the presence of any \"csdp\" executable. \n\n"
- ^ "This executable should be in PATH")) gl
+ ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
+ ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) gl
+
+
+
+let micromega_order_changer cert env ff gl =
+ let coeff = Lazy.force coq_Rcst in
+ let dump_coeff = dump_Rcst in
+ let typ = Lazy.force coq_R in
+ let cert_typ = (Term.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in
+
+ let formula_typ = (Term.mkApp (Lazy.force coq_Cstr,[| coeff|])) in
+ let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in
+ let vm = dump_varmap (typ) env in
+ Tactics.change_in_concl None
+ (set
+ [
+ ("__ff", ff, Term.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
+ ("__varmap", vm, Term.mkApp
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|]));
+ ("__wit", cert, cert_typ)
+ ]
+ (Tacmach.pf_concl gl)
+ )
+ gl
+
+
+let micromega_genr prover gl =
+ let parse_arith = parse_rarith in
+ let negate = Mc.rnegate in
+ let normalise = Mc.rnormalise in
+ let unsat = Mc.runsat in
+ let deduce = Mc.rdeduce in
+ let spec = lazy {
+ typ = Lazy.force coq_R;
+ coeff = Lazy.force coq_Rcst;
+ dump_coeff = dump_q;
+ proof_typ = Lazy.force coq_QWitness ;
+ dump_proof = dump_psatz coq_Q dump_q
+ } in
+
+ let concl = Tacmach.pf_concl gl in
+ let hyps = Tacmach.pf_hyps_types gl in
+ try
+ let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
+ let env = Env.elements env in
+ let spec = Lazy.force spec in
+
+ let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in
+ let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in
+
+ match micromega_tauto negate normalise unsat deduce spec prover env hyps' concl' gl with
+ | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | Some (ids,ff',res') ->
+ let (ff,ids') = formula_hyps_concl
+ (List.filter (fun (n,_) -> List.mem n ids) hyps) concl in
+
+ (Tacticals.tclTHENSEQ
+ [
+ Tactics.generalize (List.map Term.mkVar ids) ;
+ micromega_order_changer res' env (abstract_wrt_formula ff' ff)
+ ]) gl
+ with
+(* | Failure x -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str x) gl *)
+ | ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl
+ | CsdpNotFound -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str
+ (" Skipping what remains of this tactic: the complexity of the goal requires "
+ ^ "the use of a specialized external tool called csdp. \n\n"
+ ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
+ ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) gl
+
+
+
+
let lift_ratproof prover l =
match prover l with
@@ -1462,13 +1747,13 @@ let csdp_cache = "csdp.cache"
(**
* Build the command to call csdpcert, and launch it. This in turn will call
* the sos driver to the csdp executable.
- * Throw CsdpNotFound if a Coq isn't aware of any csdp executable.
+ * Throw CsdpNotFound if Coq isn't aware of any csdp executable.
*)
let require_csdp =
- match System.search_exe_in_path "csdp" with
- | Some _ -> lazy ()
- | _ -> lazy (raise CsdpNotFound)
+ if System.is_in_system_path "csdp"
+ then lazy ()
+ else lazy (raise CsdpNotFound)
let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option =
fun provername poly ->
@@ -1607,15 +1892,17 @@ let linear_prover_Q = {
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
+
let linear_prover_R = {
name = "linear prover";
- prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.z_spec) ;
+ prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.q_spec) ;
hyps = hyps_of_cone ;
compact = compact_cone ;
- pp_prf = pp_psatz pp_z ;
- pp_f = fun o x -> pp_pol pp_z o (fst x)
+ pp_prf = pp_psatz pp_q ;
+ pp_f = fun o x -> pp_pol pp_q o (fst x)
}
+
let non_linear_prover_Q str o = {
name = "real nonlinear prover";
prover = call_csdpcert_q (str, o);
@@ -1627,11 +1914,11 @@ let non_linear_prover_Q str o = {
let non_linear_prover_R str o = {
name = "real nonlinear prover";
- prover = call_csdpcert_z (str, o);
+ prover = call_csdpcert_q (str, o);
hyps = hyps_of_cone;
compact = compact_cone;
- pp_prf = pp_psatz pp_z;
- pp_f = fun o x -> pp_pol pp_z o (fst x)
+ pp_prf = pp_psatz pp_q;
+ pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let non_linear_prover_Z str o = {
@@ -1649,7 +1936,13 @@ module CacheZ = PHashtable(struct
let hash = Hashtbl.hash
end)
-let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.zlinear_prover)
+let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.lia)
+let memo_nlia = CacheZ.memo "nlia.cache" (lift_pexpr_prover Certificate.nlia)
+
+(*let memo_zlinear_prover = (lift_pexpr_prover Lia.lia)*)
+(*let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.zlinear_prover)*)
+
+
let linear_Z = {
name = "lia";
@@ -1660,50 +1953,81 @@ let linear_Z = {
pp_f = fun o x -> pp_pol pp_z o (fst x)
}
+let nlinear_Z = {
+ name = "nlia";
+ prover = memo_nlia ;
+ hyps = hyps_of_pt;
+ compact = compact_pt;
+ pp_prf = pp_proof_term;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+
+
+let tauto_lia ff =
+ let prover = linear_Z in
+ let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce ff in
+ match witness_list_tags [prover] cnf_ff with
+ | None -> None
+ | Some l -> Some (List.map fst l)
+
+
(**
* Functions instantiating micromega_gen with the appropriate theories and
* solvers
*)
let psatzl_Z gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
[ linear_prover_Z ] gl
let psatzl_Q gl =
- micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec
[ linear_prover_Q ] gl
let psatz_Q i gl =
- micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec
[ non_linear_prover_Q "real_nonlinear_prover" (Some i) ] gl
+
let psatzl_R gl =
- micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
- [ linear_prover_R ] gl
+ micromega_genr [ linear_prover_R ] gl
+
let psatz_R i gl =
- micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
- [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] gl
+ micromega_genr [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] gl
+
let psatz_Z i gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
- [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] gl
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
+ [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] gl
let sos_Z gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
[ non_linear_prover_Z "pure_sos" None ] gl
let sos_Q gl =
- micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec
[ non_linear_prover_Q "pure_sos" None ] gl
+
let sos_R gl =
- micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
- [ non_linear_prover_R "pure_sos" None ] gl
+ micromega_genr [ non_linear_prover_R "pure_sos" None ] gl
+
let xlia gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
- [ linear_Z ] gl
+ try
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
+ [ linear_Z ] gl
+ with z -> (*Printexc.print_backtrace stdout ;*) raise z
+
+let xnlia gl =
+ try
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
+ [ nlinear_Z ] gl
+ with z -> (*Printexc.print_backtrace stdout ;*) raise z
+
+
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/csdpcert.ml b/plugins/micromega/csdpcert.ml
index 3b47007c..1604b0eb 100644
--- a/plugins/micromega/csdpcert.ml
+++ b/plugins/micromega/csdpcert.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -28,7 +28,7 @@ type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
-let debug = true
+let debug = false
let flags = [Open_append;Open_binary;Open_creat]
let chan = open_out_gen flags 0o666 "trace"
diff --git a/plugins/micromega/g_micromega.ml4 b/plugins/micromega/g_micromega.ml4
index 9b6842bd..3b6b6987 100644
--- a/plugins/micromega/g_micromega.ml4
+++ b/plugins/micromega/g_micromega.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,18 +8,18 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
+(* * Mappings from Coq tactics to Caml function calls *)
+(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_micromega.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Quote
open Ring
open Mutils
-open Rawterm
+open Glob_term
open Util
let out_arg = function
@@ -35,6 +35,11 @@ TACTIC EXTEND ZOmicron
[ "xlia" ] -> [ Coq_micromega.xlia]
END
+TACTIC EXTEND Nlia
+[ "xnlia" ] -> [ Coq_micromega.xnlia]
+END
+
+
TACTIC EXTEND Sos_Z
| [ "sos_Z" ] -> [ Coq_micromega.sos_Z]
@@ -57,8 +62,6 @@ TACTIC EXTEND QOmicron
[ "psatzl_Q" ] -> [ Coq_micromega.psatzl_Q]
END
-
-
TACTIC EXTEND ROmicron
[ "psatzl_R" ] -> [ Coq_micromega.psatzl_R]
END
@@ -68,7 +71,6 @@ TACTIC EXTEND RMicromega
| [ "psatz_R" ] -> [ Coq_micromega.psatz_R (-1) ]
END
-
TACTIC EXTEND QMicromega
| [ "psatz_Q" int_or_var(i) ] -> [ Coq_micromega.psatz_Q (out_arg i) ]
| [ "psatz_Q" ] -> [ Coq_micromega.psatz_Q (-1) ]
diff --git a/plugins/micromega/mfourier.ml b/plugins/micromega/mfourier.ml
index 6250e324..d9201722 100644
--- a/plugins/micromega/mfourier.ml
+++ b/plugins/micromega/mfourier.ml
@@ -1,5 +1,8 @@
open Num
module Utils = Mutils
+open Polynomial
+open Vect
+
let map_option = Utils.map_option
let from_option = Utils.from_option
@@ -7,132 +10,6 @@ let from_option = Utils.from_option
let debug = false
type ('a,'b) lr = Inl of 'a | Inr of 'b
-
-module Vect =
- struct
- (** [t] is the type of vectors.
- A vector [(x1,v1) ; ... ; (xn,vn)] is such that:
- - variables indexes are ordered (x1 < ... < xn
- - values are all non-zero
- *)
- type var = int
- type t = (var * num) list
-
-(** [equal v1 v2 = true] if the vectors are syntactically equal.
- ([num] is not handled by [Pervasives.equal] *)
-
- let rec equal v1 v2 =
- match v1 , v2 with
- | [] , [] -> true
- | [] , _ -> false
- | _::_ , [] -> false
- | (i1,n1)::v1 , (i2,n2)::v2 ->
- (i1 = i2) && n1 =/ n2 && equal v1 v2
-
- let hash v =
- let rec hash i = function
- | [] -> i
- | (vr,vl)::l -> hash (i + (Hashtbl.hash (vr, float_of_num vl))) l in
- Hashtbl.hash (hash 0 v )
-
-
- let null = []
-
- let pp_vect o vect =
- List.iter (fun (v,n) -> Printf.printf "%sx%i + " (string_of_num n) v) vect
-
- let from_list (l: num list) =
- let rec xfrom_list i l =
- match l with
- | [] -> []
- | e::l ->
- if e <>/ Int 0
- then (i,e)::(xfrom_list (i+1) l)
- else xfrom_list (i+1) l in
-
- xfrom_list 0 l
-
- let zero_num = Int 0
- let unit_num = Int 1
-
-
- let to_list m =
- let rec xto_list i l =
- match l with
- | [] -> []
- | (x,v)::l' ->
- if i = x then v::(xto_list (i+1) l') else zero_num ::(xto_list (i+1) l) in
- xto_list 0 m
-
-
- let cons i v rst = if v =/ Int 0 then rst else (i,v)::rst
-
- let rec update i f t =
- match t with
- | [] -> cons i (f zero_num) []
- | (k,v)::l ->
- match Pervasives.compare i k with
- | 0 -> cons k (f v) l
- | -1 -> cons i (f zero_num) t
- | 1 -> (k,v) ::(update i f l)
- | _ -> failwith "compare_num"
-
- let rec set i n t =
- match t with
- | [] -> cons i n []
- | (k,v)::l ->
- match Pervasives.compare i k with
- | 0 -> cons k n l
- | -1 -> cons i n t
- | 1 -> (k,v) :: (set i n l)
- | _ -> failwith "compare_num"
-
- let gcd m =
- let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int x (Utils.numerator e)) Big_int.zero_big_int m in
- if Big_int.compare_big_int res Big_int.zero_big_int = 0
- then Big_int.unit_big_int else res
-
- let rec mul z t =
- match z with
- | Int 0 -> []
- | Int 1 -> t
- | _ -> List.map (fun (i,n) -> (i, mult_num z n)) t
-
- let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical
- [
- (fun () -> Pervasives.compare (fst x) (fst y));
- (fun () -> compare_num (snd x) (snd y))])
-
- (** [tail v vect] returns
- - [None] if [v] is not a variable of the vector [vect]
- - [Some(vl,rst)] where [vl] is the value of [v] in vector [vect]
- and [rst] is the remaining of the vector
- We exploit that vectors are ordered lists
- *)
- let rec tail (v:var) (vect:t) =
- match vect with
- | [] -> None
- | (v',vl)::vect' ->
- match Pervasives.compare v' v with
- | 0 -> Some (vl,vect) (* Ok, found *)
- | -1 -> tail v vect' (* Might be in the tail *)
- | _ -> None (* Hopeless *)
-
- let get v vect =
- match tail v vect with
- | None -> None
- | Some(vl,_) -> Some vl
-
-
- let rec fresh v =
- match v with
- | [] -> 1
- | [v,_] -> v + 1
- | _::v -> fresh v
-
- end
-open Vect
-
(** Implementation of intervals *)
module Itv =
struct
@@ -203,11 +80,11 @@ let in_bound bnd v =
| Some a , None -> a <=/ v
| Some a , Some b -> a <=/ v && v <=/ b
+
end
open Itv
type vector = Vect.t
-type cstr = { coeffs : vector ; bound : interval }
(** 'cstr' is the type of constraints.
{coeffs = v ; bound = (l,r) } models the constraints l <= v <= r
**)
@@ -275,10 +152,6 @@ let pp_bound o = function
let pp_itv o (l,r) = Printf.fprintf o "(%a,%a)" pp_bound l pp_bound r
-let rec pp_list f o l =
- match l with
- | [] -> ()
- | e::l -> f o e ; output_string o ";" ; pp_list f o l
let pp_iset o s =
output_string o "{" ;
@@ -366,12 +239,7 @@ let normalise_cstr vect cinfo =
then{cinfo with bound = (map_option divn l , map_option divn r) }
else {cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (map_option divn r , map_option divn l)})
-(** For compatibility, there an external representation of constraints *)
-
-type cstr_compat = {coeffs : vector ; op : op ; cst : num}
-and op = |Eq | Ge
-
-let string_of_op = function Eq -> "=" | Ge -> ">="
+(** For compatibility, there is an external representation of constraints *)
let eval_op = function
@@ -653,7 +521,7 @@ let solve_sys black_v choose_eq choose_variable sys sys_l =
let vars = choose_variable sys in
try
let (v,est) = (List.find (fun (v,_) -> v <> black_v) vars) in
- if debug then (Printf.printf "\nV : %i esimate %f\n" v est ; flush stdout) ;
+ if debug then (Printf.printf "\nV : %i estimate %f\n" v est ; flush stdout) ;
let sys' = project v sys in
solve_sys sys' ((v,sys)::sys_l)
with Not_found -> (* we are done *) Inl (sys,sys_l) in
@@ -666,7 +534,7 @@ let solve black_v choose_eq choose_variable cstrs =
try
let sys = load_system cstrs in
-(* Printf.printf "solve :\n %a" pp_system sys.sys ; *)
+ if debug then Printf.printf "solve :\n %a" pp_system sys.sys ;
solve_sys black_v choose_eq choose_variable sys []
with SystemContradiction prf -> Inr prf
@@ -752,20 +620,33 @@ struct
else if i < v then unroll_until v rl else (false,l)
+ let rec choose_simple_equation eqs =
+ match eqs with
+ | [] -> None
+ | (vect,a,prf,ln)::eqs ->
+ match vect with
+ | [i,_] -> Some (i,vect,a,prf,ln)
+ | _ -> choose_simple_equation eqs
+
+
+
let choose_primal_equation eqs sys_l =
+ (* Counts the number of equations refering to variable [v] --
+ It looks like nb_cst is dead...
+ *)
let is_primal_equation_var v =
- List.fold_left (fun (nb_eq,nb_cst) (vect,info) ->
+ List.fold_left (fun nb_eq (vect,info) ->
if fst (unroll_until v vect)
- then if itv_point info.bound then (nb_eq + 1,nb_cst) else (nb_eq,nb_cst)
- else (nb_eq,nb_cst)) (0,0) sys_l in
+ then if itv_point info.bound then nb_eq + 1 else nb_eq
+ else nb_eq) 0 sys_l in
let rec find_var vect =
match vect with
| [] -> None
| (i,_)::vect ->
- let (nb_eq,nb_cst) = is_primal_equation_var i in
- if nb_eq = 2 && nb_cst = 0
+ let nb_eq = is_primal_equation_var i in
+ if nb_eq = 2
then Some i else find_var vect in
let rec find_eq_var eqs =
@@ -776,10 +657,9 @@ struct
| None -> find_eq_var l
| Some r -> Some (r,vect,a,prf,ln)
in
-
-
- find_eq_var eqs
-
+ match choose_simple_equation eqs with
+ | None -> find_eq_var eqs
+ | Some res -> Some res
@@ -913,7 +793,8 @@ struct
| None , _ | _ , None -> None
| Some a , Some b ->
if (sign_num a) * (sign_num b) = -1
- then Some (add (p1,abs_num a) (p2,abs_num b) ,
+ then
+ Some (add (p1,abs_num a) (p2,abs_num b) ,
{coeffs = add (v1,abs_num a) (v2,abs_num b) ;
op = add_op op1 op2 ;
cst = n1 // (abs_num a) +/ n2 // (abs_num b) })
diff --git a/plugins/micromega/micromega.ml b/plugins/micromega/micromega.ml
index c350ed0f..564126d2 100644
--- a/plugins/micromega/micromega.ml
+++ b/plugins/micromega/micromega.ml
@@ -1,447 +1,2786 @@
+type __ = Obj.t
+let __ = let rec f _ = Obj.repr f in Obj.repr f
+
(** val negb : bool -> bool **)
let negb = function
- | true -> false
- | false -> true
+| true -> false
+| false -> true
type nat =
- | O
- | S of nat
+| O
+| S of nat
+
+(** val fst : ('a1 * 'a2) -> 'a1 **)
+
+let fst = function
+| x,y -> x
+
+(** val snd : ('a1 * 'a2) -> 'a2 **)
+
+let snd = function
+| x,y -> y
+
+(** val app : 'a1 list -> 'a1 list -> 'a1 list **)
+
+let rec app l m =
+ match l with
+ | [] -> m
+ | a::l1 -> a::(app l1 m)
type comparison =
- | Eq
- | Lt
- | Gt
+| Eq
+| Lt
+| Gt
(** val compOpp : comparison -> comparison **)
let compOpp = function
- | Eq -> Eq
- | Lt -> Gt
- | Gt -> Lt
+| Eq -> Eq
+| Lt -> Gt
+| Gt -> Lt
-(** val plus : nat -> nat -> nat **)
+type compareSpecT =
+| CompEqT
+| CompLtT
+| CompGtT
-let rec plus n0 m =
- match n0 with
- | O -> m
- | S p -> S (plus p m)
+(** val compareSpec2Type : comparison -> compareSpecT **)
-(** val app : 'a1 list -> 'a1 list -> 'a1 list **)
+let compareSpec2Type = function
+| Eq -> CompEqT
+| Lt -> CompLtT
+| Gt -> CompGtT
-let rec app l m =
- match l with
- | [] -> m
- | a :: l1 -> a :: (app l1 m)
+type 'a compSpecT = compareSpecT
-(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)
+(** val compSpec2Type : 'a1 -> 'a1 -> comparison -> 'a1 compSpecT **)
-let rec nth n0 l default =
+let compSpec2Type x y c =
+ compareSpec2Type c
+
+type 'a sig0 =
+ 'a
+ (* singleton inductive, whose constructor was exist *)
+
+(** val plus : nat -> nat -> nat **)
+
+let rec plus n0 m =
match n0 with
- | O -> (match l with
- | [] -> default
- | x :: l' -> x)
- | S m -> (match l with
- | [] -> default
- | x :: t0 -> nth m t0 default)
+ | O -> m
+ | S p -> S (plus p m)
-(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)
+(** val nat_iter : nat -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
-let rec map f = function
- | [] -> []
- | a :: t0 -> (f a) :: (map f t0)
+let rec nat_iter n0 f x =
+ match n0 with
+ | O -> x
+ | S n' -> f (nat_iter n' f x)
type positive =
- | XI of positive
- | XO of positive
- | XH
+| XI of positive
+| XO of positive
+| XH
-(** val psucc : positive -> positive **)
+type n =
+| N0
+| Npos of positive
-let rec psucc = function
- | XI p -> XO (psucc p)
+type z =
+| Z0
+| Zpos of positive
+| Zneg of positive
+
+module type TotalOrder' =
+ sig
+ type t
+ end
+
+module MakeOrderTac =
+ functor (O:TotalOrder') ->
+ struct
+
+ end
+
+module MaxLogicalProperties =
+ functor (O:TotalOrder') ->
+ functor (M:sig
+ val max : O.t -> O.t -> O.t
+ end) ->
+ struct
+ module T = MakeOrderTac(O)
+ end
+
+module Pos =
+ struct
+ type t = positive
+
+ (** val succ : positive -> positive **)
+
+ let rec succ = function
+ | XI p -> XO (succ p)
| XO p -> XI p
| XH -> XO XH
-
-(** val pplus : positive -> positive -> positive **)
-
-let rec pplus x y =
- match x with
+
+ (** val add : positive -> positive -> positive **)
+
+ let rec add x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> XO (pplus_carry p q0)
- | XO q0 -> XI (pplus p q0)
- | XH -> XO (psucc p))
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
| XO p ->
- (match y with
- | XI q0 -> XI (pplus p q0)
- | XO q0 -> XO (pplus p q0)
- | XH -> XI p)
+ (match y with
+ | XI q0 -> XI (add p q0)
+ | XO q0 -> XO (add p q0)
+ | XH -> XI p)
| XH ->
- (match y with
- | XI q0 -> XO (psucc q0)
- | XO q0 -> XI q0
- | XH -> XO XH)
-
-(** val pplus_carry : positive -> positive -> positive **)
-
-and pplus_carry x y =
- match x with
+ (match y with
+ | XI q0 -> XO (succ q0)
+ | XO q0 -> XI q0
+ | XH -> XO XH)
+
+ (** val add_carry : positive -> positive -> positive **)
+
+ and add_carry x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> XI (pplus_carry p q0)
- | XO q0 -> XO (pplus_carry p q0)
- | XH -> XI (psucc p))
+ (match y with
+ | XI q0 -> XI (add_carry p q0)
+ | XO q0 -> XO (add_carry p q0)
+ | XH -> XI (succ p))
| XO p ->
- (match y with
- | XI q0 -> XO (pplus_carry p q0)
- | XO q0 -> XI (pplus p q0)
- | XH -> XO (psucc p))
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
| XH ->
- (match y with
- | XI q0 -> XI (psucc q0)
- | XO q0 -> XO (psucc q0)
- | XH -> XI XH)
-
-(** val p_of_succ_nat : nat -> positive **)
-
-let rec p_of_succ_nat = function
- | O -> XH
- | S x -> psucc (p_of_succ_nat x)
-
-(** val pdouble_minus_one : positive -> positive **)
-
-let rec pdouble_minus_one = function
+ (match y with
+ | XI q0 -> XI (succ q0)
+ | XO q0 -> XO (succ q0)
+ | XH -> XI XH)
+
+ (** val pred_double : positive -> positive **)
+
+ let rec pred_double = function
| XI p -> XI (XO p)
- | XO p -> XI (pdouble_minus_one p)
+ | XO p -> XI (pred_double p)
| XH -> XH
-
-type positive_mask =
+
+ (** val pred : positive -> positive **)
+
+ let pred = function
+ | XI p -> XO p
+ | XO p -> pred_double p
+ | XH -> XH
+
+ (** val pred_N : positive -> n **)
+
+ let pred_N = function
+ | XI p -> Npos (XO p)
+ | XO p -> Npos (pred_double p)
+ | XH -> N0
+
+ type mask =
| IsNul
| IsPos of positive
| IsNeg
-
-(** val pdouble_plus_one_mask : positive_mask -> positive_mask **)
-
-let pdouble_plus_one_mask = function
+
+ (** val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rect f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rec f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val succ_double_mask : mask -> mask **)
+
+ let succ_double_mask = function
| IsNul -> IsPos XH
| IsPos p -> IsPos (XI p)
| IsNeg -> IsNeg
-
-(** val pdouble_mask : positive_mask -> positive_mask **)
-
-let pdouble_mask = function
- | IsNul -> IsNul
+
+ (** val double_mask : mask -> mask **)
+
+ let double_mask = function
| IsPos p -> IsPos (XO p)
- | IsNeg -> IsNeg
-
-(** val pdouble_minus_two : positive -> positive_mask **)
-
-let pdouble_minus_two = function
+ | x0 -> x0
+
+ (** val double_pred_mask : positive -> mask **)
+
+ let double_pred_mask = function
| XI p -> IsPos (XO (XO p))
- | XO p -> IsPos (XO (pdouble_minus_one p))
+ | XO p -> IsPos (XO (pred_double p))
| XH -> IsNul
-
-(** val pminus_mask : positive -> positive -> positive_mask **)
-
-let rec pminus_mask x y =
- match x with
+
+ (** val pred_mask : mask -> mask **)
+
+ let pred_mask = function
+ | IsPos q0 ->
+ (match q0 with
+ | XH -> IsNul
+ | _ -> IsPos (pred q0))
+ | _ -> IsNeg
+
+ (** val sub_mask : positive -> positive -> mask **)
+
+ let rec sub_mask x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> pdouble_mask (pminus_mask p q0)
- | XO q0 -> pdouble_plus_one_mask (pminus_mask p q0)
- | XH -> IsPos (XO p))
+ (match y with
+ | XI q0 -> double_mask (sub_mask p q0)
+ | XO q0 -> succ_double_mask (sub_mask p q0)
+ | XH -> IsPos (XO p))
| XO p ->
- (match y with
- | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
- | XO q0 -> pdouble_mask (pminus_mask p q0)
- | XH -> IsPos (pdouble_minus_one p))
- | XH -> (match y with
- | XH -> IsNul
- | _ -> IsNeg)
-
-(** val pminus_mask_carry : positive -> positive -> positive_mask **)
-
-and pminus_mask_carry x y =
- match x with
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
+ | XH ->
+ (match y with
+ | XH -> IsNul
+ | _ -> IsNeg)
+
+ (** val sub_mask_carry : positive -> positive -> mask **)
+
+ and sub_mask_carry x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
- | XO q0 -> pdouble_mask (pminus_mask p q0)
- | XH -> IsPos (pdouble_minus_one p))
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
| XO p ->
- (match y with
- | XI q0 -> pdouble_mask (pminus_mask_carry p q0)
- | XO q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
- | XH -> pdouble_minus_two p)
+ (match y with
+ | XI q0 -> double_mask (sub_mask_carry p q0)
+ | XO q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XH -> double_pred_mask p)
| XH -> IsNeg
-
-(** val pminus : positive -> positive -> positive **)
-
-let pminus x y =
- match pminus_mask x y with
+
+ (** val sub : positive -> positive -> positive **)
+
+ let sub x y =
+ match sub_mask x y with
| IsPos z0 -> z0
| _ -> XH
-
-(** val pmult : positive -> positive -> positive **)
-
-let rec pmult x y =
- match x with
- | XI p -> pplus y (XO (pmult p y))
- | XO p -> XO (pmult p y)
+
+ (** val mul : positive -> positive -> positive **)
+
+ let rec mul x y =
+ match x with
+ | XI p -> add y (XO (mul p y))
+ | XO p -> XO (mul p y)
| XH -> y
-
-(** val pcompare : positive -> positive -> comparison -> comparison **)
-
-let rec pcompare x y r =
- match x with
+
+ (** val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let rec iter n0 f x =
+ match n0 with
+ | XI n' -> f (iter n' f (iter n' f x))
+ | XO n' -> iter n' f (iter n' f x)
+ | XH -> f x
+
+ (** val pow : positive -> positive -> positive **)
+
+ let pow x y =
+ iter y (mul x) XH
+
+ (** val div2 : positive -> positive **)
+
+ let div2 = function
+ | XI p2 -> p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val div2_up : positive -> positive **)
+
+ let div2_up = function
+ | XI p2 -> succ p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val size_nat : positive -> nat **)
+
+ let rec size_nat = function
+ | XI p2 -> S (size_nat p2)
+ | XO p2 -> S (size_nat p2)
+ | XH -> S O
+
+ (** val size : positive -> positive **)
+
+ let rec size = function
+ | XI p2 -> succ (size p2)
+ | XO p2 -> succ (size p2)
+ | XH -> XH
+
+ (** val compare_cont : positive -> positive -> comparison -> comparison **)
+
+ let rec compare_cont x y r =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 r
+ | XO q0 -> compare_cont p q0 Gt
+ | XH -> Gt)
+ | XO p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 Lt
+ | XO q0 -> compare_cont p q0 r
+ | XH -> Gt)
+ | XH ->
+ (match y with
+ | XH -> r
+ | _ -> Lt)
+
+ (** val compare : positive -> positive -> comparison **)
+
+ let compare x y =
+ compare_cont x y Eq
+
+ (** val min : positive -> positive -> positive **)
+
+ let min p p' =
+ match compare p p' with
+ | Gt -> p'
+ | _ -> p
+
+ (** val max : positive -> positive -> positive **)
+
+ let max p p' =
+ match compare p p' with
+ | Gt -> p
+ | _ -> p'
+
+ (** val eqb : positive -> positive -> bool **)
+
+ let rec eqb p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> eqb p2 q1
+ | _ -> false)
+ | XO p2 ->
+ (match q0 with
+ | XO q1 -> eqb p2 q1
+ | _ -> false)
+ | XH ->
+ (match q0 with
+ | XH -> true
+ | _ -> false)
+
+ (** val leb : positive -> positive -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : positive -> positive -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask)
+ -> positive * mask **)
+
+ let sqrtrem_step f g = function
+ | s,y ->
+ (match y with
+ | IsPos r ->
+ let s' = XI (XO s) in
+ let r' = g (f r) in
+ if leb s' r' then (XI s),(sub_mask r' s') else (XO s),(IsPos r')
+ | _ -> (XO s),(sub_mask (g (f XH)) (XO (XO XH))))
+
+ (** val sqrtrem : positive -> positive * mask **)
+
+ let rec sqrtrem = function
+ | XI p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XI x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XI x) (sqrtrem p3)
+ | XH -> XH,(IsPos (XO XH)))
+ | XO p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XO x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XO x) (sqrtrem p3)
+ | XH -> XH,(IsPos XH))
+ | XH -> XH,IsNul
+
+ (** val sqrt : positive -> positive **)
+
+ let sqrt p =
+ fst (sqrtrem p)
+
+ (** val gcdn : nat -> positive -> positive -> positive **)
+
+ let rec gcdn n0 a b =
+ match n0 with
+ | O -> XH
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a
+ | Lt -> gcdn n1 (sub b' a') a
+ | Gt -> gcdn n1 (sub a' b') b)
+ | XO b0 -> gcdn n1 a b0
+ | XH -> XH)
+ | XO a0 ->
+ (match b with
+ | XI p -> gcdn n1 a0 b
+ | XO b0 -> XO (gcdn n1 a0 b0)
+ | XH -> XH)
+ | XH -> XH)
+
+ (** val gcd : positive -> positive -> positive **)
+
+ let gcd a b =
+ gcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val ggcdn :
+ nat -> positive -> positive -> positive * (positive * positive) **)
+
+ let rec ggcdn n0 a b =
+ match n0 with
+ | O -> XH,(a,b)
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a,(XH,XH)
+ | Lt ->
+ let g,p = ggcdn n1 (sub b' a') a in
+ let ba,aa = p in g,(aa,(add aa (XO ba)))
+ | Gt ->
+ let g,p = ggcdn n1 (sub a' b') b in
+ let ab,bb = p in g,((add bb (XO ab)),bb))
+ | XO b0 ->
+ let g,p = ggcdn n1 a b0 in let aa,bb = p in g,(aa,(XO bb))
+ | XH -> XH,(a,XH))
+ | XO a0 ->
+ (match b with
+ | XI p ->
+ let g,p2 = ggcdn n1 a0 b in let aa,bb = p2 in g,((XO aa),bb)
+ | XO b0 -> let g,p = ggcdn n1 a0 b0 in (XO g),p
+ | XH -> XH,(a,XH))
+ | XH -> XH,(XH,b))
+
+ (** val ggcd : positive -> positive -> positive * (positive * positive) **)
+
+ let ggcd a b =
+ ggcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val coq_Nsucc_double : n -> n **)
+
+ let coq_Nsucc_double = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (XI p)
+
+ (** val coq_Ndouble : n -> n **)
+
+ let coq_Ndouble = function
+ | N0 -> N0
+ | Npos p -> Npos (XO p)
+
+ (** val coq_lor : positive -> positive -> positive **)
+
+ let rec coq_lor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XI (coq_lor p2 q1)
+ | XH -> p)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XO (coq_lor p2 q1)
+ | XH -> XI p2)
+ | XH ->
+ (match q0 with
+ | XO q1 -> XI q1
+ | _ -> q0)
+
+ (** val coq_land : positive -> positive -> n **)
+
+ let rec coq_land p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> Npos XH)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> N0)
+ | XH ->
+ (match q0 with
+ | XO q1 -> N0
+ | _ -> Npos XH)
+
+ (** val ldiff : positive -> positive -> n **)
+
+ let rec ldiff p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Nsucc_double (ldiff p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Ndouble (ldiff p2 q1)
+ | XH -> Npos p)
+ | XH ->
+ (match q0 with
+ | XO q1 -> Npos XH
+ | _ -> N0)
+
+ (** val coq_lxor : positive -> positive -> n **)
+
+ let rec coq_lxor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XO q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XO q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XH -> Npos (XI p2))
+ | XH ->
+ (match q0 with
+ | XI q1 -> Npos (XO q1)
+ | XO q1 -> Npos (XI q1)
+ | XH -> N0)
+
+ (** val shiftl_nat : positive -> nat -> positive **)
+
+ let shiftl_nat p n0 =
+ nat_iter n0 (fun x -> XO x) p
+
+ (** val shiftr_nat : positive -> nat -> positive **)
+
+ let shiftr_nat p n0 =
+ nat_iter n0 div2 p
+
+ (** val shiftl : positive -> n -> positive **)
+
+ let shiftl p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 (fun x -> XO x) p
+
+ (** val shiftr : positive -> n -> positive **)
+
+ let shiftr p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 div2 p
+
+ (** val testbit_nat : positive -> nat -> bool **)
+
+ let rec testbit_nat p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | O -> true
+ | S n' -> testbit_nat p2 n')
+ | XO p2 ->
+ (match n0 with
+ | O -> false
+ | S n' -> testbit_nat p2 n')
+ | XH ->
+ (match n0 with
+ | O -> true
+ | S n1 -> false)
+
+ (** val testbit : positive -> n -> bool **)
+
+ let rec testbit p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | N0 -> true
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XO p2 ->
+ (match n0 with
+ | N0 -> false
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XH ->
+ (match n0 with
+ | N0 -> true
+ | Npos p2 -> false)
+
+ (** val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1 **)
+
+ let rec iter_op op p a =
+ match p with
+ | XI p2 -> op a (iter_op op p2 (op a a))
+ | XO p2 -> iter_op op p2 (op a a)
+ | XH -> a
+
+ (** val to_nat : positive -> nat **)
+
+ let to_nat x =
+ iter_op plus x (S O)
+
+ (** val of_nat : nat -> positive **)
+
+ let rec of_nat = function
+ | O -> XH
+ | S x ->
+ (match x with
+ | O -> XH
+ | S n1 -> succ (of_nat x))
+
+ (** val of_succ_nat : nat -> positive **)
+
+ let rec of_succ_nat = function
+ | O -> XH
+ | S x -> succ (of_succ_nat x)
+ end
+
+module Coq_Pos =
+ struct
+ module Coq__1 = struct
+ type t = positive
+ end
+ type t = Coq__1.t
+
+ (** val succ : positive -> positive **)
+
+ let rec succ = function
+ | XI p -> XO (succ p)
+ | XO p -> XI p
+ | XH -> XO XH
+
+ (** val add : positive -> positive -> positive **)
+
+ let rec add x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XI (add p q0)
+ | XO q0 -> XO (add p q0)
+ | XH -> XI p)
+ | XH ->
+ (match y with
+ | XI q0 -> XO (succ q0)
+ | XO q0 -> XI q0
+ | XH -> XO XH)
+
+ (** val add_carry : positive -> positive -> positive **)
+
+ and add_carry x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XI (add_carry p q0)
+ | XO q0 -> XO (add_carry p q0)
+ | XH -> XI (succ p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
+ | XH ->
+ (match y with
+ | XI q0 -> XI (succ q0)
+ | XO q0 -> XO (succ q0)
+ | XH -> XI XH)
+
+ (** val pred_double : positive -> positive **)
+
+ let rec pred_double = function
+ | XI p -> XI (XO p)
+ | XO p -> XI (pred_double p)
+ | XH -> XH
+
+ (** val pred : positive -> positive **)
+
+ let pred = function
+ | XI p -> XO p
+ | XO p -> pred_double p
+ | XH -> XH
+
+ (** val pred_N : positive -> n **)
+
+ let pred_N = function
+ | XI p -> Npos (XO p)
+ | XO p -> Npos (pred_double p)
+ | XH -> N0
+
+ type mask = Pos.mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ (** val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rect f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rec f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val succ_double_mask : mask -> mask **)
+
+ let succ_double_mask = function
+ | IsNul -> IsPos XH
+ | IsPos p -> IsPos (XI p)
+ | IsNeg -> IsNeg
+
+ (** val double_mask : mask -> mask **)
+
+ let double_mask = function
+ | IsPos p -> IsPos (XO p)
+ | x0 -> x0
+
+ (** val double_pred_mask : positive -> mask **)
+
+ let double_pred_mask = function
+ | XI p -> IsPos (XO (XO p))
+ | XO p -> IsPos (XO (pred_double p))
+ | XH -> IsNul
+
+ (** val pred_mask : mask -> mask **)
+
+ let pred_mask = function
+ | IsPos q0 ->
+ (match q0 with
+ | XH -> IsNul
+ | _ -> IsPos (pred q0))
+ | _ -> IsNeg
+
+ (** val sub_mask : positive -> positive -> mask **)
+
+ let rec sub_mask x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> double_mask (sub_mask p q0)
+ | XO q0 -> succ_double_mask (sub_mask p q0)
+ | XH -> IsPos (XO p))
+ | XO p ->
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
+ | XH ->
+ (match y with
+ | XH -> IsNul
+ | _ -> IsNeg)
+
+ (** val sub_mask_carry : positive -> positive -> mask **)
+
+ and sub_mask_carry x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> pcompare p q0 r
- | XO q0 -> pcompare p q0 Gt
- | XH -> Gt)
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
| XO p ->
- (match y with
- | XI q0 -> pcompare p q0 Lt
- | XO q0 -> pcompare p q0 r
- | XH -> Gt)
- | XH -> (match y with
- | XH -> r
- | _ -> Lt)
-
-(** val psize : positive -> nat **)
-
-let rec psize = function
- | XI p2 -> S (psize p2)
- | XO p2 -> S (psize p2)
+ (match y with
+ | XI q0 -> double_mask (sub_mask_carry p q0)
+ | XO q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XH -> double_pred_mask p)
+ | XH -> IsNeg
+
+ (** val sub : positive -> positive -> positive **)
+
+ let sub x y =
+ match sub_mask x y with
+ | IsPos z0 -> z0
+ | _ -> XH
+
+ (** val mul : positive -> positive -> positive **)
+
+ let rec mul x y =
+ match x with
+ | XI p -> add y (XO (mul p y))
+ | XO p -> XO (mul p y)
+ | XH -> y
+
+ (** val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let rec iter n0 f x =
+ match n0 with
+ | XI n' -> f (iter n' f (iter n' f x))
+ | XO n' -> iter n' f (iter n' f x)
+ | XH -> f x
+
+ (** val pow : positive -> positive -> positive **)
+
+ let pow x y =
+ iter y (mul x) XH
+
+ (** val div2 : positive -> positive **)
+
+ let div2 = function
+ | XI p2 -> p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val div2_up : positive -> positive **)
+
+ let div2_up = function
+ | XI p2 -> succ p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val size_nat : positive -> nat **)
+
+ let rec size_nat = function
+ | XI p2 -> S (size_nat p2)
+ | XO p2 -> S (size_nat p2)
| XH -> S O
-
-type n =
- | N0
- | Npos of positive
+
+ (** val size : positive -> positive **)
+
+ let rec size = function
+ | XI p2 -> succ (size p2)
+ | XO p2 -> succ (size p2)
+ | XH -> XH
+
+ (** val compare_cont : positive -> positive -> comparison -> comparison **)
+
+ let rec compare_cont x y r =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 r
+ | XO q0 -> compare_cont p q0 Gt
+ | XH -> Gt)
+ | XO p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 Lt
+ | XO q0 -> compare_cont p q0 r
+ | XH -> Gt)
+ | XH ->
+ (match y with
+ | XH -> r
+ | _ -> Lt)
+
+ (** val compare : positive -> positive -> comparison **)
+
+ let compare x y =
+ compare_cont x y Eq
+
+ (** val min : positive -> positive -> positive **)
+
+ let min p p' =
+ match compare p p' with
+ | Gt -> p'
+ | _ -> p
+
+ (** val max : positive -> positive -> positive **)
+
+ let max p p' =
+ match compare p p' with
+ | Gt -> p
+ | _ -> p'
+
+ (** val eqb : positive -> positive -> bool **)
+
+ let rec eqb p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> eqb p2 q1
+ | _ -> false)
+ | XO p2 ->
+ (match q0 with
+ | XO q1 -> eqb p2 q1
+ | _ -> false)
+ | XH ->
+ (match q0 with
+ | XH -> true
+ | _ -> false)
+
+ (** val leb : positive -> positive -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : positive -> positive -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask)
+ -> positive * mask **)
+
+ let sqrtrem_step f g = function
+ | s,y ->
+ (match y with
+ | IsPos r ->
+ let s' = XI (XO s) in
+ let r' = g (f r) in
+ if leb s' r' then (XI s),(sub_mask r' s') else (XO s),(IsPos r')
+ | _ -> (XO s),(sub_mask (g (f XH)) (XO (XO XH))))
+
+ (** val sqrtrem : positive -> positive * mask **)
+
+ let rec sqrtrem = function
+ | XI p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XI x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XI x) (sqrtrem p3)
+ | XH -> XH,(IsPos (XO XH)))
+ | XO p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XO x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XO x) (sqrtrem p3)
+ | XH -> XH,(IsPos XH))
+ | XH -> XH,IsNul
+
+ (** val sqrt : positive -> positive **)
+
+ let sqrt p =
+ fst (sqrtrem p)
+
+ (** val gcdn : nat -> positive -> positive -> positive **)
+
+ let rec gcdn n0 a b =
+ match n0 with
+ | O -> XH
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a
+ | Lt -> gcdn n1 (sub b' a') a
+ | Gt -> gcdn n1 (sub a' b') b)
+ | XO b0 -> gcdn n1 a b0
+ | XH -> XH)
+ | XO a0 ->
+ (match b with
+ | XI p -> gcdn n1 a0 b
+ | XO b0 -> XO (gcdn n1 a0 b0)
+ | XH -> XH)
+ | XH -> XH)
+
+ (** val gcd : positive -> positive -> positive **)
+
+ let gcd a b =
+ gcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val ggcdn :
+ nat -> positive -> positive -> positive * (positive * positive) **)
+
+ let rec ggcdn n0 a b =
+ match n0 with
+ | O -> XH,(a,b)
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a,(XH,XH)
+ | Lt ->
+ let g,p = ggcdn n1 (sub b' a') a in
+ let ba,aa = p in g,(aa,(add aa (XO ba)))
+ | Gt ->
+ let g,p = ggcdn n1 (sub a' b') b in
+ let ab,bb = p in g,((add bb (XO ab)),bb))
+ | XO b0 ->
+ let g,p = ggcdn n1 a b0 in let aa,bb = p in g,(aa,(XO bb))
+ | XH -> XH,(a,XH))
+ | XO a0 ->
+ (match b with
+ | XI p ->
+ let g,p2 = ggcdn n1 a0 b in let aa,bb = p2 in g,((XO aa),bb)
+ | XO b0 -> let g,p = ggcdn n1 a0 b0 in (XO g),p
+ | XH -> XH,(a,XH))
+ | XH -> XH,(XH,b))
+
+ (** val ggcd : positive -> positive -> positive * (positive * positive) **)
+
+ let ggcd a b =
+ ggcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val coq_Nsucc_double : n -> n **)
+
+ let coq_Nsucc_double = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (XI p)
+
+ (** val coq_Ndouble : n -> n **)
+
+ let coq_Ndouble = function
+ | N0 -> N0
+ | Npos p -> Npos (XO p)
+
+ (** val coq_lor : positive -> positive -> positive **)
+
+ let rec coq_lor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XI (coq_lor p2 q1)
+ | XH -> p)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XO (coq_lor p2 q1)
+ | XH -> XI p2)
+ | XH ->
+ (match q0 with
+ | XO q1 -> XI q1
+ | _ -> q0)
+
+ (** val coq_land : positive -> positive -> n **)
+
+ let rec coq_land p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> Npos XH)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> N0)
+ | XH ->
+ (match q0 with
+ | XO q1 -> N0
+ | _ -> Npos XH)
+
+ (** val ldiff : positive -> positive -> n **)
+
+ let rec ldiff p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Nsucc_double (ldiff p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Ndouble (ldiff p2 q1)
+ | XH -> Npos p)
+ | XH ->
+ (match q0 with
+ | XO q1 -> Npos XH
+ | _ -> N0)
+
+ (** val coq_lxor : positive -> positive -> n **)
+
+ let rec coq_lxor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XO q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XO q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XH -> Npos (XI p2))
+ | XH ->
+ (match q0 with
+ | XI q1 -> Npos (XO q1)
+ | XO q1 -> Npos (XI q1)
+ | XH -> N0)
+
+ (** val shiftl_nat : positive -> nat -> positive **)
+
+ let shiftl_nat p n0 =
+ nat_iter n0 (fun x -> XO x) p
+
+ (** val shiftr_nat : positive -> nat -> positive **)
+
+ let shiftr_nat p n0 =
+ nat_iter n0 div2 p
+
+ (** val shiftl : positive -> n -> positive **)
+
+ let shiftl p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 (fun x -> XO x) p
+
+ (** val shiftr : positive -> n -> positive **)
+
+ let shiftr p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 div2 p
+
+ (** val testbit_nat : positive -> nat -> bool **)
+
+ let rec testbit_nat p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | O -> true
+ | S n' -> testbit_nat p2 n')
+ | XO p2 ->
+ (match n0 with
+ | O -> false
+ | S n' -> testbit_nat p2 n')
+ | XH ->
+ (match n0 with
+ | O -> true
+ | S n1 -> false)
+
+ (** val testbit : positive -> n -> bool **)
+
+ let rec testbit p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | N0 -> true
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XO p2 ->
+ (match n0 with
+ | N0 -> false
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XH ->
+ (match n0 with
+ | N0 -> true
+ | Npos p2 -> false)
+
+ (** val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1 **)
+
+ let rec iter_op op p a =
+ match p with
+ | XI p2 -> op a (iter_op op p2 (op a a))
+ | XO p2 -> iter_op op p2 (op a a)
+ | XH -> a
+
+ (** val to_nat : positive -> nat **)
+
+ let to_nat x =
+ iter_op plus x (S O)
+
+ (** val of_nat : nat -> positive **)
+
+ let rec of_nat = function
+ | O -> XH
+ | S x ->
+ (match x with
+ | O -> XH
+ | S n1 -> succ (of_nat x))
+
+ (** val of_succ_nat : nat -> positive **)
+
+ let rec of_succ_nat = function
+ | O -> XH
+ | S x -> succ (of_succ_nat x)
+
+ (** val eq_dec : positive -> positive -> bool **)
+
+ let rec eq_dec p y0 =
+ match p with
+ | XI p2 ->
+ (match y0 with
+ | XI p3 -> eq_dec p2 p3
+ | _ -> false)
+ | XO p2 ->
+ (match y0 with
+ | XO p3 -> eq_dec p2 p3
+ | _ -> false)
+ | XH ->
+ (match y0 with
+ | XH -> true
+ | _ -> false)
+
+ (** val peano_rect : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1 **)
+
+ let rec peano_rect a f p =
+ let f2 = peano_rect (f XH a) (fun p2 x -> f (succ (XO p2)) (f (XO p2) x))
+ in
+ (match p with
+ | XI q0 -> f (XO q0) (f2 q0)
+ | XO q0 -> f2 q0
+ | XH -> a)
+
+ (** val peano_rec : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1 **)
+
+ let peano_rec =
+ peano_rect
+
+ type coq_PeanoView =
+ | PeanoOne
+ | PeanoSucc of positive * coq_PeanoView
+
+ (** val coq_PeanoView_rect :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1 **)
+
+ let rec coq_PeanoView_rect f f0 p = function
+ | PeanoOne -> f
+ | PeanoSucc (p3, p4) -> f0 p3 p4 (coq_PeanoView_rect f f0 p3 p4)
+
+ (** val coq_PeanoView_rec :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1 **)
+
+ let rec coq_PeanoView_rec f f0 p = function
+ | PeanoOne -> f
+ | PeanoSucc (p3, p4) -> f0 p3 p4 (coq_PeanoView_rec f f0 p3 p4)
+
+ (** val peanoView_xO : positive -> coq_PeanoView -> coq_PeanoView **)
+
+ let rec peanoView_xO p = function
+ | PeanoOne -> PeanoSucc (XH, PeanoOne)
+ | PeanoSucc (p2, q1) ->
+ PeanoSucc ((succ (XO p2)), (PeanoSucc ((XO p2), (peanoView_xO p2 q1))))
+
+ (** val peanoView_xI : positive -> coq_PeanoView -> coq_PeanoView **)
+
+ let rec peanoView_xI p = function
+ | PeanoOne -> PeanoSucc ((succ XH), (PeanoSucc (XH, PeanoOne)))
+ | PeanoSucc (p2, q1) ->
+ PeanoSucc ((succ (XI p2)), (PeanoSucc ((XI p2), (peanoView_xI p2 q1))))
+
+ (** val peanoView : positive -> coq_PeanoView **)
+
+ let rec peanoView = function
+ | XI p2 -> peanoView_xI p2 (peanoView p2)
+ | XO p2 -> peanoView_xO p2 (peanoView p2)
+ | XH -> PeanoOne
+
+ (** val coq_PeanoView_iter :
+ 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> coq_PeanoView -> 'a1 **)
+
+ let rec coq_PeanoView_iter a f p = function
+ | PeanoOne -> a
+ | PeanoSucc (p2, q1) -> f p2 (coq_PeanoView_iter a f p2 q1)
+
+ (** val switch_Eq : comparison -> comparison -> comparison **)
+
+ let switch_Eq c = function
+ | Eq -> c
+ | x -> x
+
+ (** val mask2cmp : mask -> comparison **)
+
+ let mask2cmp = function
+ | IsNul -> Eq
+ | IsPos p2 -> Gt
+ | IsNeg -> Lt
+
+ module T =
+ struct
+
+ end
+
+ module ORev =
+ struct
+ type t = Coq__1.t
+ end
+
+ module MRev =
+ struct
+ (** val max : t -> t -> t **)
+
+ let max x y =
+ min y x
+ end
+
+ module MPRev = MaxLogicalProperties(ORev)(MRev)
+
+ module P =
+ struct
+ (** val max_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let max_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat n0 (max n0 m) __ (hl __)
+ | _ -> compat m (max n0 m) __ (hr __))
+
+ (** val max_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 x1 =
+ max_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val max_dec : t -> t -> bool **)
+
+ let max_dec n0 m =
+ max_case n0 m (fun x y _ h0 -> h0) true false
+
+ (** val min_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let min_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat m (min n0 m) __ (hr __)
+ | _ -> compat n0 (min n0 m) __ (hl __))
+
+ (** val min_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 x1 =
+ min_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val min_dec : t -> t -> bool **)
+
+ let min_dec n0 m =
+ min_case n0 m (fun x y _ h0 -> h0) true false
+ end
+
+ (** val max_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let max_case_strong n0 m x x0 =
+ P.max_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val max_case : t -> t -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 =
+ max_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val max_dec : t -> t -> bool **)
+
+ let max_dec =
+ P.max_dec
+
+ (** val min_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let min_case_strong n0 m x x0 =
+ P.min_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val min_case : t -> t -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 =
+ min_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val min_dec : t -> t -> bool **)
+
+ let min_dec =
+ P.min_dec
+ end
+
+module N =
+ struct
+ type t = n
+
+ (** val zero : n **)
+
+ let zero =
+ N0
+
+ (** val one : n **)
+
+ let one =
+ Npos XH
+
+ (** val two : n **)
+
+ let two =
+ Npos (XO XH)
+
+ (** val succ_double : n -> n **)
+
+ let succ_double = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (XI p)
+
+ (** val double : n -> n **)
+
+ let double = function
+ | N0 -> N0
+ | Npos p -> Npos (XO p)
+
+ (** val succ : n -> n **)
+
+ let succ = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (Coq_Pos.succ p)
+
+ (** val pred : n -> n **)
+
+ let pred = function
+ | N0 -> N0
+ | Npos p -> Coq_Pos.pred_N p
+
+ (** val succ_pos : n -> positive **)
+
+ let succ_pos = function
+ | N0 -> XH
+ | Npos p -> Coq_Pos.succ p
+
+ (** val add : n -> n -> n **)
+
+ let add n0 m =
+ match n0 with
+ | N0 -> m
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Npos (Coq_Pos.add p q0))
+
+ (** val sub : n -> n -> n **)
+
+ let sub n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos n' ->
+ (match m with
+ | N0 -> n0
+ | Npos m' ->
+ (match Coq_Pos.sub_mask n' m' with
+ | Coq_Pos.IsPos p -> Npos p
+ | _ -> N0))
+
+ (** val mul : n -> n -> n **)
+
+ let mul n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos p ->
+ (match m with
+ | N0 -> N0
+ | Npos q0 -> Npos (Coq_Pos.mul p q0))
+
+ (** val compare : n -> n -> comparison **)
+
+ let compare n0 m =
+ match n0 with
+ | N0 ->
+ (match m with
+ | N0 -> Eq
+ | Npos m' -> Lt)
+ | Npos n' ->
+ (match m with
+ | N0 -> Gt
+ | Npos m' -> Coq_Pos.compare n' m')
+
+ (** val eqb : n -> n -> bool **)
+
+ let rec eqb n0 m =
+ match n0 with
+ | N0 ->
+ (match m with
+ | N0 -> true
+ | Npos p -> false)
+ | Npos p ->
+ (match m with
+ | N0 -> false
+ | Npos q0 -> Coq_Pos.eqb p q0)
+
+ (** val leb : n -> n -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : n -> n -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val min : n -> n -> n **)
+
+ let min n0 n' =
+ match compare n0 n' with
+ | Gt -> n'
+ | _ -> n0
+
+ (** val max : n -> n -> n **)
+
+ let max n0 n' =
+ match compare n0 n' with
+ | Gt -> n0
+ | _ -> n'
+
+ (** val div2 : n -> n **)
+
+ let div2 = function
+ | N0 -> N0
+ | Npos p2 ->
+ (match p2 with
+ | XI p -> Npos p
+ | XO p -> Npos p
+ | XH -> N0)
+
+ (** val even : n -> bool **)
+
+ let even = function
+ | N0 -> true
+ | Npos p ->
+ (match p with
+ | XO p2 -> true
+ | _ -> false)
+
+ (** val odd : n -> bool **)
+
+ let odd n0 =
+ negb (even n0)
+
+ (** val pow : n -> n -> n **)
+
+ let pow n0 = function
+ | N0 -> Npos XH
+ | Npos p2 ->
+ (match n0 with
+ | N0 -> N0
+ | Npos q0 -> Npos (Coq_Pos.pow q0 p2))
+
+ (** val log2 : n -> n **)
+
+ let log2 = function
+ | N0 -> N0
+ | Npos p2 ->
+ (match p2 with
+ | XI p -> Npos (Coq_Pos.size p)
+ | XO p -> Npos (Coq_Pos.size p)
+ | XH -> N0)
+
+ (** val size : n -> n **)
+
+ let size = function
+ | N0 -> N0
+ | Npos p -> Npos (Coq_Pos.size p)
+
+ (** val size_nat : n -> nat **)
+
+ let size_nat = function
+ | N0 -> O
+ | Npos p -> Coq_Pos.size_nat p
+
+ (** val pos_div_eucl : positive -> n -> n * n **)
+
+ let rec pos_div_eucl a b =
+ match a with
+ | XI a' ->
+ let q0,r = pos_div_eucl a' b in
+ let r' = succ_double r in
+ if leb b r' then (succ_double q0),(sub r' b) else (double q0),r'
+ | XO a' ->
+ let q0,r = pos_div_eucl a' b in
+ let r' = double r in
+ if leb b r' then (succ_double q0),(sub r' b) else (double q0),r'
+ | XH ->
+ (match b with
+ | N0 -> N0,(Npos XH)
+ | Npos p ->
+ (match p with
+ | XH -> (Npos XH),N0
+ | _ -> N0,(Npos XH)))
+
+ (** val div_eucl : n -> n -> n * n **)
+
+ let div_eucl a b =
+ match a with
+ | N0 -> N0,N0
+ | Npos na ->
+ (match b with
+ | N0 -> N0,a
+ | Npos p -> pos_div_eucl na b)
+
+ (** val div : n -> n -> n **)
+
+ let div a b =
+ fst (div_eucl a b)
+
+ (** val modulo : n -> n -> n **)
+
+ let modulo a b =
+ snd (div_eucl a b)
+
+ (** val gcd : n -> n -> n **)
+
+ let gcd a b =
+ match a with
+ | N0 -> b
+ | Npos p ->
+ (match b with
+ | N0 -> a
+ | Npos q0 -> Npos (Coq_Pos.gcd p q0))
+
+ (** val ggcd : n -> n -> n * (n * n) **)
+
+ let ggcd a b =
+ match a with
+ | N0 -> b,(N0,(Npos XH))
+ | Npos p ->
+ (match b with
+ | N0 -> a,((Npos XH),N0)
+ | Npos q0 ->
+ let g,p2 = Coq_Pos.ggcd p q0 in
+ let aa,bb = p2 in (Npos g),((Npos aa),(Npos bb)))
+
+ (** val sqrtrem : n -> n * n **)
+
+ let sqrtrem = function
+ | N0 -> N0,N0
+ | Npos p ->
+ let s,m = Coq_Pos.sqrtrem p in
+ (match m with
+ | Coq_Pos.IsPos r -> (Npos s),(Npos r)
+ | _ -> (Npos s),N0)
+
+ (** val sqrt : n -> n **)
+
+ let sqrt = function
+ | N0 -> N0
+ | Npos p -> Npos (Coq_Pos.sqrt p)
+
+ (** val coq_lor : n -> n -> n **)
+
+ let coq_lor n0 m =
+ match n0 with
+ | N0 -> m
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Npos (Coq_Pos.coq_lor p q0))
+
+ (** val coq_land : n -> n -> n **)
+
+ let coq_land n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos p ->
+ (match m with
+ | N0 -> N0
+ | Npos q0 -> Coq_Pos.coq_land p q0)
+
+ (** val ldiff : n -> n -> n **)
+
+ let rec ldiff n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Coq_Pos.ldiff p q0)
+
+ (** val coq_lxor : n -> n -> n **)
+
+ let coq_lxor n0 m =
+ match n0 with
+ | N0 -> m
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Coq_Pos.coq_lxor p q0)
+
+ (** val shiftl_nat : n -> nat -> n **)
+
+ let shiftl_nat a n0 =
+ nat_iter n0 double a
+
+ (** val shiftr_nat : n -> nat -> n **)
+
+ let shiftr_nat a n0 =
+ nat_iter n0 div2 a
+
+ (** val shiftl : n -> n -> n **)
+
+ let shiftl a n0 =
+ match a with
+ | N0 -> N0
+ | Npos a0 -> Npos (Coq_Pos.shiftl a0 n0)
+
+ (** val shiftr : n -> n -> n **)
+
+ let shiftr a = function
+ | N0 -> a
+ | Npos p -> Coq_Pos.iter p div2 a
+
+ (** val testbit_nat : n -> nat -> bool **)
+
+ let testbit_nat = function
+ | N0 -> (fun x -> false)
+ | Npos p -> Coq_Pos.testbit_nat p
+
+ (** val testbit : n -> n -> bool **)
+
+ let testbit a n0 =
+ match a with
+ | N0 -> false
+ | Npos p -> Coq_Pos.testbit p n0
+
+ (** val to_nat : n -> nat **)
+
+ let to_nat = function
+ | N0 -> O
+ | Npos p -> Coq_Pos.to_nat p
+
+ (** val of_nat : nat -> n **)
+
+ let of_nat = function
+ | O -> N0
+ | S n' -> Npos (Coq_Pos.of_succ_nat n')
+
+ (** val iter : n -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let iter n0 f x =
+ match n0 with
+ | N0 -> x
+ | Npos p -> Coq_Pos.iter p f x
+
+ (** val eq_dec : n -> n -> bool **)
+
+ let eq_dec n0 m =
+ match n0 with
+ | N0 ->
+ (match m with
+ | N0 -> true
+ | Npos p -> false)
+ | Npos x ->
+ (match m with
+ | N0 -> false
+ | Npos p2 -> Coq_Pos.eq_dec x p2)
+
+ (** val discr : n -> positive option **)
+
+ let discr = function
+ | N0 -> None
+ | Npos p -> Some p
+
+ (** val binary_rect :
+ 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let binary_rect f0 f2 fS2 n0 =
+ let f2' = fun p -> f2 (Npos p) in
+ let fS2' = fun p -> fS2 (Npos p) in
+ (match n0 with
+ | N0 -> f0
+ | Npos p ->
+ let rec f = function
+ | XI p3 -> fS2' p3 (f p3)
+ | XO p3 -> f2' p3 (f p3)
+ | XH -> fS2 N0 f0
+ in f p)
+
+ (** val binary_rec :
+ 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let binary_rec =
+ binary_rect
+
+ (** val peano_rect : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let peano_rect f0 f n0 =
+ let f' = fun p -> f (Npos p) in
+ (match n0 with
+ | N0 -> f0
+ | Npos p -> Coq_Pos.peano_rect (f N0 f0) f' p)
+
+ (** val peano_rec : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let peano_rec =
+ peano_rect
+
+ module BootStrap =
+ struct
+
+ end
+
+ (** val recursion : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let recursion x =
+ peano_rect x
+
+ module OrderElts =
+ struct
+ type t = n
+ end
+
+ module OrderTac = MakeOrderTac(OrderElts)
+
+ module NZPowP =
+ struct
+
+ end
+
+ module NZSqrtP =
+ struct
+
+ end
+
+ (** val sqrt_up : n -> n **)
+
+ let sqrt_up a =
+ match compare N0 a with
+ | Lt -> succ (sqrt (pred a))
+ | _ -> N0
+
+ (** val log2_up : n -> n **)
+
+ let log2_up a =
+ match compare (Npos XH) a with
+ | Lt -> succ (log2 (pred a))
+ | _ -> N0
+
+ module NZDivP =
+ struct
+
+ end
+
+ (** val lcm : n -> n -> n **)
+
+ let lcm a b =
+ mul a (div b (gcd a b))
+
+ (** val b2n : bool -> n **)
+
+ let b2n = function
+ | true -> Npos XH
+ | false -> N0
+
+ (** val setbit : n -> n -> n **)
+
+ let setbit a n0 =
+ coq_lor a (shiftl (Npos XH) n0)
+
+ (** val clearbit : n -> n -> n **)
+
+ let clearbit a n0 =
+ ldiff a (shiftl (Npos XH) n0)
+
+ (** val ones : n -> n **)
+
+ let ones n0 =
+ pred (shiftl (Npos XH) n0)
+
+ (** val lnot : n -> n -> n **)
+
+ let lnot a n0 =
+ coq_lxor a (ones n0)
+
+ module T =
+ struct
+
+ end
+
+ module ORev =
+ struct
+ type t = n
+ end
+
+ module MRev =
+ struct
+ (** val max : n -> n -> n **)
+
+ let max x y =
+ min y x
+ end
+
+ module MPRev = MaxLogicalProperties(ORev)(MRev)
+
+ module P =
+ struct
+ (** val max_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let max_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat n0 (max n0 m) __ (hl __)
+ | _ -> compat m (max n0 m) __ (hr __))
+
+ (** val max_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 x1 =
+ max_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val max_dec : n -> n -> bool **)
+
+ let max_dec n0 m =
+ max_case n0 m (fun x y _ h0 -> h0) true false
+
+ (** val min_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let min_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat m (min n0 m) __ (hr __)
+ | _ -> compat n0 (min n0 m) __ (hl __))
+
+ (** val min_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 x1 =
+ min_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val min_dec : n -> n -> bool **)
+
+ let min_dec n0 m =
+ min_case n0 m (fun x y _ h0 -> h0) true false
+ end
+
+ (** val max_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let max_case_strong n0 m x x0 =
+ P.max_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val max_case : n -> n -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 =
+ max_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val max_dec : n -> n -> bool **)
+
+ let max_dec =
+ P.max_dec
+
+ (** val min_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let min_case_strong n0 m x x0 =
+ P.min_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val min_case : n -> n -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 =
+ min_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val min_dec : n -> n -> bool **)
+
+ let min_dec =
+ P.min_dec
+ end
(** val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 **)
let rec pow_pos rmul x = function
- | XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
- | XO i0 -> let p = pow_pos rmul x i0 in rmul p p
- | XH -> x
+| XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
+| XO i0 -> let p = pow_pos rmul x i0 in rmul p p
+| XH -> x
-type z =
- | Z0
- | Zpos of positive
- | Zneg of positive
-
-(** val zdouble_plus_one : z -> z **)
-
-let zdouble_plus_one = function
- | Z0 -> Zpos XH
- | Zpos p -> Zpos (XI p)
- | Zneg p -> Zneg (pdouble_minus_one p)
-
-(** val zdouble_minus_one : z -> z **)
+(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)
-let zdouble_minus_one = function
- | Z0 -> Zneg XH
- | Zpos p -> Zpos (pdouble_minus_one p)
- | Zneg p -> Zneg (XI p)
+let rec nth n0 l default =
+ match n0 with
+ | O ->
+ (match l with
+ | [] -> default
+ | x::l' -> x)
+ | S m ->
+ (match l with
+ | [] -> default
+ | x::t1 -> nth m t1 default)
-(** val zdouble : z -> z **)
+(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)
-let zdouble = function
+let rec map f = function
+| [] -> []
+| a::t1 -> (f a)::(map f t1)
+
+(** val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 **)
+
+let rec fold_right f a0 = function
+| [] -> a0
+| b::t1 -> f b (fold_right f a0 t1)
+
+module Z =
+ struct
+ type t = z
+
+ (** val zero : z **)
+
+ let zero =
+ Z0
+
+ (** val one : z **)
+
+ let one =
+ Zpos XH
+
+ (** val two : z **)
+
+ let two =
+ Zpos (XO XH)
+
+ (** val double : z -> z **)
+
+ let double = function
| Z0 -> Z0
| Zpos p -> Zpos (XO p)
| Zneg p -> Zneg (XO p)
-
-(** val zPminus : positive -> positive -> z **)
-
-let rec zPminus x y =
- match x with
+
+ (** val succ_double : z -> z **)
+
+ let succ_double = function
+ | Z0 -> Zpos XH
+ | Zpos p -> Zpos (XI p)
+ | Zneg p -> Zneg (Coq_Pos.pred_double p)
+
+ (** val pred_double : z -> z **)
+
+ let pred_double = function
+ | Z0 -> Zneg XH
+ | Zpos p -> Zpos (Coq_Pos.pred_double p)
+ | Zneg p -> Zneg (XI p)
+
+ (** val pos_sub : positive -> positive -> z **)
+
+ let rec pos_sub x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> zdouble (zPminus p q0)
- | XO q0 -> zdouble_plus_one (zPminus p q0)
- | XH -> Zpos (XO p))
+ (match y with
+ | XI q0 -> double (pos_sub p q0)
+ | XO q0 -> succ_double (pos_sub p q0)
+ | XH -> Zpos (XO p))
| XO p ->
- (match y with
- | XI q0 -> zdouble_minus_one (zPminus p q0)
- | XO q0 -> zdouble (zPminus p q0)
- | XH -> Zpos (pdouble_minus_one p))
+ (match y with
+ | XI q0 -> pred_double (pos_sub p q0)
+ | XO q0 -> double (pos_sub p q0)
+ | XH -> Zpos (Coq_Pos.pred_double p))
| XH ->
- (match y with
- | XI q0 -> Zneg (XO q0)
- | XO q0 -> Zneg (pdouble_minus_one q0)
- | XH -> Z0)
-
-(** val zplus : z -> z -> z **)
-
-let zplus x y =
- match x with
+ (match y with
+ | XI q0 -> Zneg (XO q0)
+ | XO q0 -> Zneg (Coq_Pos.pred_double q0)
+ | XH -> Z0)
+
+ (** val add : z -> z -> z **)
+
+ let add x y =
+ match x with
| Z0 -> y
| Zpos x' ->
- (match y with
- | Z0 -> Zpos x'
- | Zpos y' -> Zpos (pplus x' y')
- | Zneg y' ->
- (match pcompare x' y' Eq with
- | Eq -> Z0
- | Lt -> Zneg (pminus y' x')
- | Gt -> Zpos (pminus x' y')))
+ (match y with
+ | Z0 -> x
+ | Zpos y' -> Zpos (Coq_Pos.add x' y')
+ | Zneg y' -> pos_sub x' y')
| Zneg x' ->
- (match y with
- | Z0 -> Zneg x'
- | Zpos y' ->
- (match pcompare x' y' Eq with
- | Eq -> Z0
- | Lt -> Zpos (pminus y' x')
- | Gt -> Zneg (pminus x' y'))
- | Zneg y' -> Zneg (pplus x' y'))
-
-(** val zopp : z -> z **)
-
-let zopp = function
+ (match y with
+ | Z0 -> x
+ | Zpos y' -> pos_sub y' x'
+ | Zneg y' -> Zneg (Coq_Pos.add x' y'))
+
+ (** val opp : z -> z **)
+
+ let opp = function
| Z0 -> Z0
| Zpos x0 -> Zneg x0
| Zneg x0 -> Zpos x0
-
-(** val zminus : z -> z -> z **)
-
-let zminus m n0 =
- zplus m (zopp n0)
-
-(** val zmult : z -> z -> z **)
-
-let zmult x y =
- match x with
+
+ (** val succ : z -> z **)
+
+ let succ x =
+ add x (Zpos XH)
+
+ (** val pred : z -> z **)
+
+ let pred x =
+ add x (Zneg XH)
+
+ (** val sub : z -> z -> z **)
+
+ let sub m n0 =
+ add m (opp n0)
+
+ (** val mul : z -> z -> z **)
+
+ let mul x y =
+ match x with
| Z0 -> Z0
| Zpos x' ->
- (match y with
- | Z0 -> Z0
- | Zpos y' -> Zpos (pmult x' y')
- | Zneg y' -> Zneg (pmult x' y'))
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zpos (Coq_Pos.mul x' y')
+ | Zneg y' -> Zneg (Coq_Pos.mul x' y'))
| Zneg x' ->
- (match y with
- | Z0 -> Z0
- | Zpos y' -> Zneg (pmult x' y')
- | Zneg y' -> Zpos (pmult x' y'))
-
-(** val zcompare : z -> z -> comparison **)
-
-let zcompare x y =
- match x with
- | Z0 -> (match y with
- | Z0 -> Eq
- | Zpos y' -> Lt
- | Zneg y' -> Gt)
- | Zpos x' -> (match y with
- | Zpos y' -> pcompare x' y' Eq
- | _ -> Gt)
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zneg (Coq_Pos.mul x' y')
+ | Zneg y' -> Zpos (Coq_Pos.mul x' y'))
+
+ (** val pow_pos : z -> positive -> z **)
+
+ let pow_pos z0 n0 =
+ Coq_Pos.iter n0 (mul z0) (Zpos XH)
+
+ (** val pow : z -> z -> z **)
+
+ let pow x = function
+ | Z0 -> Zpos XH
+ | Zpos p -> pow_pos x p
+ | Zneg p -> Z0
+
+ (** val compare : z -> z -> comparison **)
+
+ let compare x y =
+ match x with
+ | Z0 ->
+ (match y with
+ | Z0 -> Eq
+ | Zpos y' -> Lt
+ | Zneg y' -> Gt)
+ | Zpos x' ->
+ (match y with
+ | Zpos y' -> Coq_Pos.compare x' y'
+ | _ -> Gt)
| Zneg x' ->
- (match y with
- | Zneg y' -> compOpp (pcompare x' y' Eq)
- | _ -> Lt)
-
-(** val zabs : z -> z **)
-
-let zabs = function
+ (match y with
+ | Zneg y' -> compOpp (Coq_Pos.compare x' y')
+ | _ -> Lt)
+
+ (** val sgn : z -> z **)
+
+ let sgn = function
| Z0 -> Z0
- | Zpos p -> Zpos p
- | Zneg p -> Zpos p
-
-(** val zmax : z -> z -> z **)
-
-let zmax m n0 =
- match zcompare m n0 with
- | Lt -> n0
- | _ -> m
-
-(** val zle_bool : z -> z -> bool **)
-
-let zle_bool x y =
- match zcompare x y with
+ | Zpos p -> Zpos XH
+ | Zneg p -> Zneg XH
+
+ (** val leb : z -> z -> bool **)
+
+ let leb x y =
+ match compare x y with
| Gt -> false
| _ -> true
-
-(** val zge_bool : z -> z -> bool **)
-
-let zge_bool x y =
- match zcompare x y with
+
+ (** val geb : z -> z -> bool **)
+
+ let geb x y =
+ match compare x y with
| Lt -> false
| _ -> true
-
-(** val zgt_bool : z -> z -> bool **)
-
-let zgt_bool x y =
- match zcompare x y with
- | Gt -> true
+
+ (** val ltb : z -> z -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
| _ -> false
-
-(** val zeq_bool : z -> z -> bool **)
-
-let zeq_bool x y =
- match zcompare x y with
- | Eq -> true
+
+ (** val gtb : z -> z -> bool **)
+
+ let gtb x y =
+ match compare x y with
+ | Gt -> true
| _ -> false
-
-(** val n_of_nat : nat -> n **)
-
-let n_of_nat = function
- | O -> N0
- | S n' -> Npos (p_of_succ_nat n')
-
-(** val zdiv_eucl_POS : positive -> z -> z * z **)
-
-let rec zdiv_eucl_POS a b =
- match a with
+
+ (** val eqb : z -> z -> bool **)
+
+ let rec eqb x y =
+ match x with
+ | Z0 ->
+ (match y with
+ | Z0 -> true
+ | _ -> false)
+ | Zpos p ->
+ (match y with
+ | Zpos q0 -> Coq_Pos.eqb p q0
+ | _ -> false)
+ | Zneg p ->
+ (match y with
+ | Zneg q0 -> Coq_Pos.eqb p q0
+ | _ -> false)
+
+ (** val max : z -> z -> z **)
+
+ let max n0 m =
+ match compare n0 m with
+ | Lt -> m
+ | _ -> n0
+
+ (** val min : z -> z -> z **)
+
+ let min n0 m =
+ match compare n0 m with
+ | Gt -> m
+ | _ -> n0
+
+ (** val abs : z -> z **)
+
+ let abs = function
+ | Zneg p -> Zpos p
+ | x -> x
+
+ (** val abs_nat : z -> nat **)
+
+ let abs_nat = function
+ | Z0 -> O
+ | Zpos p -> Coq_Pos.to_nat p
+ | Zneg p -> Coq_Pos.to_nat p
+
+ (** val abs_N : z -> n **)
+
+ let abs_N = function
+ | Z0 -> N0
+ | Zpos p -> Npos p
+ | Zneg p -> Npos p
+
+ (** val to_nat : z -> nat **)
+
+ let to_nat = function
+ | Zpos p -> Coq_Pos.to_nat p
+ | _ -> O
+
+ (** val to_N : z -> n **)
+
+ let to_N = function
+ | Zpos p -> Npos p
+ | _ -> N0
+
+ (** val of_nat : nat -> z **)
+
+ let of_nat = function
+ | O -> Z0
+ | S n1 -> Zpos (Coq_Pos.of_succ_nat n1)
+
+ (** val of_N : n -> z **)
+
+ let of_N = function
+ | N0 -> Z0
+ | Npos p -> Zpos p
+
+ (** val iter : z -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let iter n0 f x =
+ match n0 with
+ | Zpos p -> Coq_Pos.iter p f x
+ | _ -> x
+
+ (** val pos_div_eucl : positive -> z -> z * z **)
+
+ let rec pos_div_eucl a b =
+ match a with
| XI a' ->
- let q0 , r = zdiv_eucl_POS a' b in
- let r' = zplus (zmult (Zpos (XO XH)) r) (Zpos XH) in
- if zgt_bool b r'
- then (zmult (Zpos (XO XH)) q0) , r'
- else (zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)) , (zminus r' b)
+ let q0,r = pos_div_eucl a' b in
+ let r' = add (mul (Zpos (XO XH)) r) (Zpos XH) in
+ if gtb b r'
+ then (mul (Zpos (XO XH)) q0),r'
+ else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
| XO a' ->
- let q0 , r = zdiv_eucl_POS a' b in
- let r' = zmult (Zpos (XO XH)) r in
- if zgt_bool b r'
- then (zmult (Zpos (XO XH)) q0) , r'
- else (zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)) , (zminus r' b)
- | XH ->
- if zge_bool b (Zpos (XO XH)) then Z0 , (Zpos XH) else (Zpos XH) , Z0
-
-(** val zdiv_eucl : z -> z -> z * z **)
-
-let zdiv_eucl a b =
- match a with
- | Z0 -> Z0 , Z0
+ let q0,r = pos_div_eucl a' b in
+ let r' = mul (Zpos (XO XH)) r in
+ if gtb b r'
+ then (mul (Zpos (XO XH)) q0),r'
+ else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
+ | XH -> if geb b (Zpos (XO XH)) then Z0,(Zpos XH) else (Zpos XH),Z0
+
+ (** val div_eucl : z -> z -> z * z **)
+
+ let div_eucl a b =
+ match a with
+ | Z0 -> Z0,Z0
| Zpos a' ->
- (match b with
- | Z0 -> Z0 , Z0
- | Zpos p -> zdiv_eucl_POS a' b
- | Zneg b' ->
- let q0 , r = zdiv_eucl_POS a' (Zpos b') in
- (match r with
- | Z0 -> (zopp q0) , Z0
- | _ -> (zopp (zplus q0 (Zpos XH))) , (zplus b r)))
+ (match b with
+ | Z0 -> Z0,Z0
+ | Zpos p -> pos_div_eucl a' b
+ | Zneg b' ->
+ let q0,r = pos_div_eucl a' (Zpos b') in
+ (match r with
+ | Z0 -> (opp q0),Z0
+ | _ -> (opp (add q0 (Zpos XH))),(add b r)))
| Zneg a' ->
- (match b with
- | Z0 -> Z0 , Z0
- | Zpos p ->
- let q0 , r = zdiv_eucl_POS a' b in
- (match r with
- | Z0 -> (zopp q0) , Z0
- | _ -> (zopp (zplus q0 (Zpos XH))) , (zminus b r))
- | Zneg b' ->
- let q0 , r = zdiv_eucl_POS a' (Zpos b') in q0 , (zopp r))
+ (match b with
+ | Z0 -> Z0,Z0
+ | Zpos p ->
+ let q0,r = pos_div_eucl a' b in
+ (match r with
+ | Z0 -> (opp q0),Z0
+ | _ -> (opp (add q0 (Zpos XH))),(sub b r))
+ | Zneg b' -> let q0,r = pos_div_eucl a' (Zpos b') in q0,(opp r))
+
+ (** val div : z -> z -> z **)
+
+ let div a b =
+ let q0,x = div_eucl a b in q0
+
+ (** val modulo : z -> z -> z **)
+
+ let modulo a b =
+ let x,r = div_eucl a b in r
+
+ (** val quotrem : z -> z -> z * z **)
+
+ let quotrem a b =
+ match a with
+ | Z0 -> Z0,Z0
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> Z0,a
+ | Zpos b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in (of_N q0),(of_N r)
+ | Zneg b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in (opp (of_N q0)),(of_N r))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> Z0,a
+ | Zpos b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in
+ (opp (of_N q0)),(opp (of_N r))
+ | Zneg b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in (of_N q0),(opp (of_N r)))
+
+ (** val quot : z -> z -> z **)
+
+ let quot a b =
+ fst (quotrem a b)
+
+ (** val rem : z -> z -> z **)
+
+ let rem a b =
+ snd (quotrem a b)
+
+ (** val even : z -> bool **)
+
+ let even = function
+ | Z0 -> true
+ | Zpos p ->
+ (match p with
+ | XO p2 -> true
+ | _ -> false)
+ | Zneg p ->
+ (match p with
+ | XO p2 -> true
+ | _ -> false)
+
+ (** val odd : z -> bool **)
+
+ let odd = function
+ | Z0 -> false
+ | Zpos p ->
+ (match p with
+ | XO p2 -> false
+ | _ -> true)
+ | Zneg p ->
+ (match p with
+ | XO p2 -> false
+ | _ -> true)
+
+ (** val div2 : z -> z **)
+
+ let div2 = function
+ | Z0 -> Z0
+ | Zpos p ->
+ (match p with
+ | XH -> Z0
+ | _ -> Zpos (Coq_Pos.div2 p))
+ | Zneg p -> Zneg (Coq_Pos.div2_up p)
+
+ (** val quot2 : z -> z **)
+
+ let quot2 = function
+ | Z0 -> Z0
+ | Zpos p ->
+ (match p with
+ | XH -> Z0
+ | _ -> Zpos (Coq_Pos.div2 p))
+ | Zneg p ->
+ (match p with
+ | XH -> Z0
+ | _ -> Zneg (Coq_Pos.div2 p))
+
+ (** val log2 : z -> z **)
+
+ let log2 = function
+ | Zpos p2 ->
+ (match p2 with
+ | XI p -> Zpos (Coq_Pos.size p)
+ | XO p -> Zpos (Coq_Pos.size p)
+ | XH -> Z0)
+ | _ -> Z0
+
+ (** val sqrtrem : z -> z * z **)
+
+ let sqrtrem = function
+ | Zpos p ->
+ let s,m = Coq_Pos.sqrtrem p in
+ (match m with
+ | Coq_Pos.IsPos r -> (Zpos s),(Zpos r)
+ | _ -> (Zpos s),Z0)
+ | _ -> Z0,Z0
+
+ (** val sqrt : z -> z **)
+
+ let sqrt = function
+ | Zpos p -> Zpos (Coq_Pos.sqrt p)
+ | _ -> Z0
+
+ (** val gcd : z -> z -> z **)
+
+ let gcd a b =
+ match a with
+ | Z0 -> abs b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> abs a
+ | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
+ | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> abs a
+ | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
+ | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
+
+ (** val ggcd : z -> z -> z * (z * z) **)
+
+ let ggcd a b =
+ match a with
+ | Z0 -> (abs b),(Z0,(sgn b))
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> (abs a),((sgn a),Z0)
+ | Zpos b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zpos aa),(Zpos bb))
+ | Zneg b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zpos aa),(Zneg bb)))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> (abs a),((sgn a),Z0)
+ | Zpos b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zneg aa),(Zpos bb))
+ | Zneg b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zneg aa),(Zneg bb)))
+
+ (** val testbit : z -> z -> bool **)
+
+ let testbit a = function
+ | Z0 -> odd a
+ | Zpos p ->
+ (match a with
+ | Z0 -> false
+ | Zpos a0 -> Coq_Pos.testbit a0 (Npos p)
+ | Zneg a0 -> negb (N.testbit (Coq_Pos.pred_N a0) (Npos p)))
+ | Zneg p -> false
+
+ (** val shiftl : z -> z -> z **)
+
+ let shiftl a = function
+ | Z0 -> a
+ | Zpos p -> Coq_Pos.iter p (mul (Zpos (XO XH))) a
+ | Zneg p -> Coq_Pos.iter p div2 a
+
+ (** val shiftr : z -> z -> z **)
+
+ let shiftr a n0 =
+ shiftl a (opp n0)
+
+ (** val coq_lor : z -> z -> z **)
+
+ let coq_lor a b =
+ match a with
+ | Z0 -> b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> Zpos (Coq_Pos.coq_lor a0 b0)
+ | Zneg b0 -> Zneg (N.succ_pos (N.ldiff (Coq_Pos.pred_N b0) (Npos a0))))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> Zneg (N.succ_pos (N.ldiff (Coq_Pos.pred_N a0) (Npos b0)))
+ | Zneg b0 ->
+ Zneg
+ (N.succ_pos (N.coq_land (Coq_Pos.pred_N a0) (Coq_Pos.pred_N b0))))
+
+ (** val coq_land : z -> z -> z **)
+
+ let coq_land a b =
+ match a with
+ | Z0 -> Z0
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> Z0
+ | Zpos b0 -> of_N (Coq_Pos.coq_land a0 b0)
+ | Zneg b0 -> of_N (N.ldiff (Npos a0) (Coq_Pos.pred_N b0)))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> Z0
+ | Zpos b0 -> of_N (N.ldiff (Npos b0) (Coq_Pos.pred_N a0))
+ | Zneg b0 ->
+ Zneg
+ (N.succ_pos (N.coq_lor (Coq_Pos.pred_N a0) (Coq_Pos.pred_N b0))))
+
+ (** val ldiff : z -> z -> z **)
+
+ let ldiff a b =
+ match a with
+ | Z0 -> Z0
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> of_N (Coq_Pos.ldiff a0 b0)
+ | Zneg b0 -> of_N (N.coq_land (Npos a0) (Coq_Pos.pred_N b0)))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 ->
+ Zneg (N.succ_pos (N.coq_lor (Coq_Pos.pred_N a0) (Npos b0)))
+ | Zneg b0 -> of_N (N.ldiff (Coq_Pos.pred_N b0) (Coq_Pos.pred_N a0)))
+
+ (** val coq_lxor : z -> z -> z **)
+
+ let coq_lxor a b =
+ match a with
+ | Z0 -> b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> of_N (Coq_Pos.coq_lxor a0 b0)
+ | Zneg b0 ->
+ Zneg (N.succ_pos (N.coq_lxor (Npos a0) (Coq_Pos.pred_N b0))))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 ->
+ Zneg (N.succ_pos (N.coq_lxor (Coq_Pos.pred_N a0) (Npos b0)))
+ | Zneg b0 -> of_N (N.coq_lxor (Coq_Pos.pred_N a0) (Coq_Pos.pred_N b0)))
+
+ (** val eq_dec : z -> z -> bool **)
+
+ let eq_dec x y =
+ match x with
+ | Z0 ->
+ (match y with
+ | Z0 -> true
+ | _ -> false)
+ | Zpos x0 ->
+ (match y with
+ | Zpos p2 -> Coq_Pos.eq_dec x0 p2
+ | _ -> false)
+ | Zneg x0 ->
+ (match y with
+ | Zneg p2 -> Coq_Pos.eq_dec x0 p2
+ | _ -> false)
+
+ module BootStrap =
+ struct
+
+ end
+
+ module OrderElts =
+ struct
+ type t = z
+ end
+
+ module OrderTac = MakeOrderTac(OrderElts)
+
+ (** val sqrt_up : z -> z **)
+
+ let sqrt_up a =
+ match compare Z0 a with
+ | Lt -> succ (sqrt (pred a))
+ | _ -> Z0
+
+ (** val log2_up : z -> z **)
+
+ let log2_up a =
+ match compare (Zpos XH) a with
+ | Lt -> succ (log2 (pred a))
+ | _ -> Z0
+
+ module NZDivP =
+ struct
+
+ end
+
+ module Quot2Div =
+ struct
+ (** val div : z -> z -> z **)
+
+ let div =
+ quot
+
+ (** val modulo : z -> z -> z **)
+
+ let modulo =
+ rem
+ end
+
+ module NZQuot =
+ struct
+
+ end
+
+ (** val lcm : z -> z -> z **)
+
+ let lcm a b =
+ abs (mul a (div b (gcd a b)))
+
+ (** val b2z : bool -> z **)
+
+ let b2z = function
+ | true -> Zpos XH
+ | false -> Z0
+
+ (** val setbit : z -> z -> z **)
+
+ let setbit a n0 =
+ coq_lor a (shiftl (Zpos XH) n0)
+
+ (** val clearbit : z -> z -> z **)
+
+ let clearbit a n0 =
+ ldiff a (shiftl (Zpos XH) n0)
+
+ (** val lnot : z -> z **)
+
+ let lnot a =
+ pred (opp a)
+
+ (** val ones : z -> z **)
+
+ let ones n0 =
+ pred (shiftl (Zpos XH) n0)
+
+ module T =
+ struct
+
+ end
+
+ module ORev =
+ struct
+ type t = z
+ end
+
+ module MRev =
+ struct
+ (** val max : z -> z -> z **)
+
+ let max x y =
+ min y x
+ end
+
+ module MPRev = MaxLogicalProperties(ORev)(MRev)
+
+ module P =
+ struct
+ (** val max_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let max_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat n0 (max n0 m) __ (hl __)
+ | _ -> compat m (max n0 m) __ (hr __))
+
+ (** val max_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 x1 =
+ max_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val max_dec : z -> z -> bool **)
+
+ let max_dec n0 m =
+ max_case n0 m (fun x y _ h0 -> h0) true false
+
+ (** val min_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let min_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat m (min n0 m) __ (hr __)
+ | _ -> compat n0 (min n0 m) __ (hl __))
+
+ (** val min_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 x1 =
+ min_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val min_dec : z -> z -> bool **)
+
+ let min_dec n0 m =
+ min_case n0 m (fun x y _ h0 -> h0) true false
+ end
+
+ (** val max_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let max_case_strong n0 m x x0 =
+ P.max_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val max_case : z -> z -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 =
+ max_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val max_dec : z -> z -> bool **)
+
+ let max_dec =
+ P.max_dec
+
+ (** val min_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let min_case_strong n0 m x x0 =
+ P.min_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val min_case : z -> z -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 =
+ min_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val min_dec : z -> z -> bool **)
+
+ let min_dec =
+ P.min_dec
+ end
-(** val zdiv : z -> z -> z **)
+(** val zeq_bool : z -> z -> bool **)
-let zdiv a b =
- let q0 , x = zdiv_eucl a b in q0
+let zeq_bool x y =
+ match Z.compare x y with
+ | Eq -> true
+ | _ -> false
type 'c pol =
- | Pc of 'c
- | Pinj of positive * 'c pol
- | PX of 'c pol * positive * 'c pol
+| Pc of 'c
+| Pinj of positive * 'c pol
+| PX of 'c pol * positive * 'c pol
(** val p0 : 'a1 -> 'a1 pol **)
@@ -457,49 +2796,51 @@ let p1 cI =
let rec peq ceqb p p' =
match p with
- | Pc c -> (match p' with
- | Pc c' -> ceqb c c'
- | _ -> false)
- | Pinj (j, q0) ->
- (match p' with
- | Pinj (j', q') ->
- (match pcompare j j' Eq with
- | Eq -> peq ceqb q0 q'
- | _ -> false)
- | _ -> false)
- | PX (p2, i, q0) ->
- (match p' with
- | PX (p'0, i', q') ->
- (match pcompare i i' Eq with
- | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
- | _ -> false)
- | _ -> false)
+ | Pc c ->
+ (match p' with
+ | Pc c' -> ceqb c c'
+ | _ -> false)
+ | Pinj (j, q0) ->
+ (match p' with
+ | Pinj (j', q') ->
+ (match Coq_Pos.compare j j' with
+ | Eq -> peq ceqb q0 q'
+ | _ -> false)
+ | _ -> false)
+ | PX (p2, i, q0) ->
+ (match p' with
+ | PX (p'0, i', q') ->
+ (match Coq_Pos.compare i i' with
+ | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
+ | _ -> false)
+ | _ -> false)
+
+(** val mkPinj : positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPinj j p = match p with
+| Pc c -> p
+| Pinj (j', q0) -> Pinj ((Coq_Pos.add j j'), q0)
+| PX (p2, p3, p4) -> Pinj (j, p)
(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **)
let mkPinj_pred j p =
match j with
- | XI j0 -> Pinj ((XO j0), p)
- | XO j0 -> Pinj ((pdouble_minus_one j0), p)
- | XH -> p
+ | XI j0 -> Pinj ((XO j0), p)
+ | XO j0 -> Pinj ((Coq_Pos.pred_double j0), p)
+ | XH -> p
(** val mkPX :
'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let mkPX cO ceqb p i q0 =
match p with
- | Pc c ->
- if ceqb c cO
- then (match q0 with
- | Pc c0 -> q0
- | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
- | PX (p2, p3, p4) -> Pinj (XH, q0))
- else PX (p, i, q0)
- | Pinj (p2, p3) -> PX (p, i, q0)
- | PX (p', i', q') ->
- if peq ceqb q' (p0 cO)
- then PX (p', (pplus i' i), q0)
- else PX (p, i, q0)
+ | Pc c -> if ceqb c cO then mkPinj XH q0 else PX (p, i, q0)
+ | Pinj (p2, p3) -> PX (p, i, q0)
+ | PX (p', i', q') ->
+ if peq ceqb q' (p0 cO)
+ then PX (p', (Coq_Pos.add i' i), q0)
+ else PX (p, i, q0)
(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **)
@@ -514,202 +2855,155 @@ let mkX cO cI =
(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **)
let rec popp copp = function
- | Pc c -> Pc (copp c)
- | Pinj (j, q0) -> Pinj (j, (popp copp q0))
- | PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))
+| Pc c -> Pc (copp c)
+| Pinj (j, q0) -> Pinj (j, (popp copp q0))
+| PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))
(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
let rec paddC cadd p c =
match p with
- | Pc c1 -> Pc (cadd c1 c)
- | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
- | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))
+ | Pc c1 -> Pc (cadd c1 c)
+ | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))
(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
let rec psubC csub p c =
match p with
- | Pc c1 -> Pc (csub c1 c)
- | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
- | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))
+ | Pc c1 -> Pc (csub c1 c)
+ | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))
(** val paddI :
('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
positive -> 'a1 pol -> 'a1 pol **)
let rec paddI cadd pop q0 j = function
- | Pc c ->
- let p2 = paddC cadd q0 c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Pinj (j', q') ->
- (match zPminus j' j with
- | Z0 ->
- let p2 = pop q' q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zpos k ->
- let p2 = pop (Pinj (k, q')) q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zneg k ->
- let p2 = paddI cadd pop q0 k q' in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j', p2)))
- | PX (p2, i, q') ->
- (match j with
- | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
- | XO j0 -> PX (p2, i, (paddI cadd pop q0 (pdouble_minus_one j0) q'))
- | XH -> PX (p2, i, (pop q' q0)))
+| Pc c -> mkPinj j (paddC cadd q0 c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pop q' q0)
+ | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (paddI cadd pop q0 k q'))
+| PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
+ | XO j0 -> PX (p2, i, (paddI cadd pop q0 (Coq_Pos.pred_double j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
(** val psubI :
('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let rec psubI cadd copp pop q0 j = function
- | Pc c ->
- let p2 = paddC cadd (popp copp q0) c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Pinj (j', q') ->
- (match zPminus j' j with
- | Z0 ->
- let p2 = pop q' q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zpos k ->
- let p2 = pop (Pinj (k, q')) q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zneg k ->
- let p2 = psubI cadd copp pop q0 k q' in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j', p2)))
- | PX (p2, i, q') ->
- (match j with
- | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
- | XO j0 -> PX (p2, i,
- (psubI cadd copp pop q0 (pdouble_minus_one j0) q'))
- | XH -> PX (p2, i, (pop q' q0)))
+| Pc c -> mkPinj j (paddC cadd (popp copp q0) c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pop q' q0)
+ | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (psubI cadd copp pop q0 k q'))
+| PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
+ | XO j0 ->
+ PX (p2, i, (psubI cadd copp pop q0 (Coq_Pos.pred_double j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
(** val paddX :
'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
-> positive -> 'a1 pol -> 'a1 pol **)
let rec paddX cO ceqb pop p' i' p = match p with
- | Pc c -> PX (p', i', p)
- | Pinj (j, q') ->
- (match j with
- | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
- | XO j0 -> PX (p', i', (Pinj ((pdouble_minus_one j0), q')))
- | XH -> PX (p', i', q'))
- | PX (p2, i, q') ->
- (match zPminus i i' with
- | Z0 -> mkPX cO ceqb (pop p2 p') i q'
- | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
- | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')
+| Pc c -> PX (p', i', p)
+| Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX (p', i', (Pinj ((Coq_Pos.pred_double j0), q')))
+ | XH -> PX (p', i', q'))
+| PX (p2, i, q') ->
+ (match Z.pos_sub i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')
(** val psubX :
'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let rec psubX cO copp ceqb pop p' i' p = match p with
- | Pc c -> PX ((popp copp p'), i', p)
- | Pinj (j, q') ->
- (match j with
- | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
- | XO j0 -> PX ((popp copp p'), i', (Pinj (
- (pdouble_minus_one j0), q')))
- | XH -> PX ((popp copp p'), i', q'))
- | PX (p2, i, q') ->
- (match zPminus i i' with
- | Z0 -> mkPX cO ceqb (pop p2 p') i q'
- | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
- | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')
+| Pc c -> PX ((popp copp p'), i', p)
+| Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX ((popp copp p'), i', (Pinj ((Coq_Pos.pred_double j0), q')))
+ | XH -> PX ((popp copp p'), i', q'))
+| PX (p2, i, q') ->
+ (match Z.pos_sub i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')
(** val padd :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
-> 'a1 pol **)
let rec padd cO cadd ceqb p = function
- | Pc c' -> paddC cadd p c'
- | Pinj (j', q') -> paddI cadd (fun x x0 -> padd cO cadd ceqb x x0) q' j' p
- | PX (p'0, i', q') ->
- (match p with
- | Pc c -> PX (p'0, i', (paddC cadd q' c))
- | Pinj (j, q0) ->
- (match j with
- | XI j0 -> PX (p'0, i',
- (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
- | XO j0 -> PX (p'0, i',
- (padd cO cadd ceqb (Pinj ((pdouble_minus_one j0), q0))
- q'))
- | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
- | PX (p2, i, q0) ->
- (match zPminus i i' with
- | Z0 ->
- mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i
- (padd cO cadd ceqb q0 q')
- | Zpos k ->
- mkPX cO ceqb
- (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
- (padd cO cadd ceqb q0 q')
- | Zneg k ->
- mkPX cO ceqb
- (paddX cO ceqb (fun x x0 -> padd cO cadd ceqb x x0) p'0
- k p2) i (padd cO cadd ceqb q0 q')))
+| Pc c' -> paddC cadd p c'
+| Pinj (j', q') -> paddI cadd (padd cO cadd ceqb) q' j' p
+| PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX (p'0, i', (paddC cadd q' c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 -> PX (p'0, i', (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 ->
+ PX (p'0, i',
+ (padd cO cadd ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'))
+ | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match Z.pos_sub i i' with
+ | Z0 ->
+ mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i (padd cO cadd ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
+ (padd cO cadd ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb (paddX cO ceqb (padd cO cadd ceqb) p'0 k p2) i
+ (padd cO cadd ceqb q0 q')))
(** val psub :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
-> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
let rec psub cO cadd csub copp ceqb p = function
- | Pc c' -> psubC csub p c'
- | Pinj (j', q') ->
- psubI cadd copp (fun x x0 -> psub cO cadd csub copp ceqb x x0) q' j' p
- | PX (p'0, i', q') ->
- (match p with
- | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
- | Pinj (j, q0) ->
- (match j with
- | XI j0 -> PX ((popp copp p'0), i',
- (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
- | XO j0 -> PX ((popp copp p'0), i',
- (psub cO cadd csub copp ceqb (Pinj
- ((pdouble_minus_one j0), q0)) q'))
- | XH -> PX ((popp copp p'0), i',
- (psub cO cadd csub copp ceqb q0 q')))
- | PX (p2, i, q0) ->
- (match zPminus i i' with
- | Z0 ->
- mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
- (psub cO cadd csub copp ceqb q0 q')
- | Zpos k ->
- mkPX cO ceqb
- (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
- i' (psub cO cadd csub copp ceqb q0 q')
- | Zneg k ->
- mkPX cO ceqb
- (psubX cO copp ceqb (fun x x0 ->
- psub cO cadd csub copp ceqb x x0) p'0 k p2) i
- (psub cO cadd csub copp ceqb q0 q')))
+| Pc c' -> psubC csub p c'
+| Pinj (j', q') -> psubI cadd copp (psub cO cadd csub copp ceqb) q' j' p
+| PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 ->
+ PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 ->
+ PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((Coq_Pos.pred_double j0), q0))
+ q'))
+ | XH -> PX ((popp copp p'0), i', (psub cO cadd csub copp ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match Z.pos_sub i i' with
+ | Z0 ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
+ (psub cO cadd csub copp ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
+ i' (psub cO cadd csub copp ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb
+ (psubX cO copp ceqb (psub cO cadd csub copp ceqb) p'0 k p2) i
+ (psub cO cadd csub copp ceqb q0 q')))
(** val pmulC_aux :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 ->
@@ -717,16 +3011,11 @@ let rec psub cO cadd csub copp ceqb p = function
let rec pmulC_aux cO cmul ceqb p c =
match p with
- | Pc c' -> Pc (cmul c' c)
- | Pinj (j, q0) ->
- let p2 = pmulC_aux cO cmul ceqb q0 c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | PX (p2, i, q0) ->
- mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i
- (pmulC_aux cO cmul ceqb q0 c)
+ | Pc c' -> Pc (cmul c' c)
+ | Pinj (j, q0) -> mkPinj j (pmulC_aux cO cmul ceqb q0 c)
+ | PX (p2, i, q0) ->
+ mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i
+ (pmulC_aux cO cmul ceqb q0 c)
(** val pmulC :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol ->
@@ -742,108 +3031,75 @@ let pmulC cO cI cmul ceqb p c =
'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let rec pmulI cO cI cmul ceqb pmul0 q0 j = function
- | Pc c ->
- let p2 = pmulC cO cI cmul ceqb q0 c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Pinj (j', q') ->
- (match zPminus j' j with
- | Z0 ->
- let p2 = pmul0 q' q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zpos k ->
- let p2 = pmul0 (Pinj (k, q')) q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zneg k ->
- let p2 = pmulI cO cI cmul ceqb pmul0 q0 k q' in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j', p2)))
- | PX (p', i', q') ->
- (match j with
- | XI j' ->
- mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
- (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
- | XO j' ->
- mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
- (pmulI cO cI cmul ceqb pmul0 q0 (pdouble_minus_one j') q')
- | XH ->
- mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i'
- (pmul0 q' q0))
+| Pc c -> mkPinj j (pmulC cO cI cmul ceqb q0 c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pmul0 q' q0)
+ | Zpos k -> mkPinj j (pmul0 (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (pmulI cO cI cmul ceqb pmul0 q0 k q'))
+| PX (p', i', q') ->
+ (match j with
+ | XI j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
+ | XO j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (Coq_Pos.pred_double j') q')
+ | XH ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i' (pmul0 q' q0))
(** val pmul :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with
- | Pc c -> pmulC cO cI cmul ceqb p c
- | Pinj (j', q') ->
- pmulI cO cI cmul ceqb (fun x x0 -> pmul cO cI cadd cmul ceqb x x0) q'
- j' p
- | PX (p', i', q') ->
- (match p with
- | Pc c -> pmulC cO cI cmul ceqb p'' c
- | Pinj (j, q0) ->
- mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i'
- (match j with
- | XI j0 ->
- pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
- | XO j0 ->
- pmul cO cI cadd cmul ceqb (Pinj
- ((pdouble_minus_one j0), q0)) q'
- | XH -> pmul cO cI cadd cmul ceqb q0 q')
- | PX (p2, i, q0) ->
- padd cO cadd ceqb
- (mkPX cO ceqb
- (padd cO cadd ceqb
- (mkPX cO ceqb (pmul cO cI cadd cmul ceqb p2 p') i (p0 cO))
- (pmul cO cI cadd cmul ceqb
- (match q0 with
- | Pc c -> q0
- | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
- | PX (p3, p4, p5) -> Pinj (XH, q0)) p')) i'
- (p0 cO))
- (mkPX cO ceqb
- (pmulI cO cI cmul ceqb (fun x x0 ->
- pmul cO cI cadd cmul ceqb x x0) q' XH p2) i
- (pmul cO cI cadd cmul ceqb q0 q')))
+| Pc c -> pmulC cO cI cmul ceqb p c
+| Pinj (j', q') -> pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' j' p
+| PX (p', i', q') ->
+ (match p with
+ | Pc c -> pmulC cO cI cmul ceqb p'' c
+ | Pinj (j, q0) ->
+ let qQ' =
+ match j with
+ | XI j0 -> pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
+ | XO j0 ->
+ pmul cO cI cadd cmul ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'
+ | XH -> pmul cO cI cadd cmul ceqb q0 q'
+ in
+ mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' qQ'
+ | PX (p2, i, q0) ->
+ let qQ' = pmul cO cI cadd cmul ceqb q0 q' in
+ let pQ' = pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' XH p2 in
+ let qP' = pmul cO cI cadd cmul ceqb (mkPinj XH q0) p' in
+ let pP' = pmul cO cI cadd cmul ceqb p2 p' in
+ padd cO cadd ceqb
+ (mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb pP' i (p0 cO)) qP') i'
+ (p0 cO)) (mkPX cO ceqb pQ' i qQ'))
(** val psquare :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 pol -> 'a1 pol **)
let rec psquare cO cI cadd cmul ceqb = function
- | Pc c -> Pc (cmul c c)
- | Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
- | PX (p2, i, q0) ->
- mkPX cO ceqb
- (padd cO cadd ceqb
- (mkPX cO ceqb (psquare cO cI cadd cmul ceqb p2) i (p0 cO))
- (pmul cO cI cadd cmul ceqb p2
- (let p3 = pmulC cO cI cmul ceqb q0 (cadd cI cI) in
- match p3 with
- | Pc c -> p3
- | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
- | PX (p4, p5, p6) -> Pinj (XH, p3)))) i
- (psquare cO cI cadd cmul ceqb q0)
+| Pc c -> Pc (cmul c c)
+| Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
+| PX (p2, i, q0) ->
+ let twoPQ =
+ pmul cO cI cadd cmul ceqb p2
+ (mkPinj XH (pmulC cO cI cmul ceqb q0 (cadd cI cI)))
+ in
+ let q2 = psquare cO cI cadd cmul ceqb q0 in
+ let p3 = psquare cO cI cadd cmul ceqb p2 in
+ mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb p3 i (p0 cO)) twoPQ) i q2
type 'c pExpr =
- | PEc of 'c
- | PEX of positive
- | PEadd of 'c pExpr * 'c pExpr
- | PEsub of 'c pExpr * 'c pExpr
- | PEmul of 'c pExpr * 'c pExpr
- | PEopp of 'c pExpr
- | PEpow of 'c pExpr * n
+| PEc of 'c
+| PEX of positive
+| PEadd of 'c pExpr * 'c pExpr
+| PEsub of 'c pExpr * 'c pExpr
+| PEmul of 'c pExpr * 'c pExpr
+| PEopp of 'c pExpr
+| PEpow of 'c pExpr * n
(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **)
@@ -856,68 +3112,78 @@ let mk_X cO cI j =
pol **)
let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function
- | XI p3 ->
- subst_l
- (pmul cO cI cadd cmul ceqb
- (ppow_pos cO cI cadd cmul ceqb subst_l
- (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
- | XO p3 ->
- ppow_pos cO cI cadd cmul ceqb subst_l
- (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
- | XH -> subst_l (pmul cO cI cadd cmul ceqb res p)
+| XI p3 ->
+ subst_l
+ (pmul cO cI cadd cmul ceqb
+ (ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
+| XO p3 ->
+ ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
+| XH -> subst_l (pmul cO cI cadd cmul ceqb res p)
(** val ppow_N :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **)
let ppow_N cO cI cadd cmul ceqb subst_l p = function
- | N0 -> p1 cI
- | Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2
+| N0 -> p1 cI
+| Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2
(** val norm_aux :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
let rec norm_aux cO cI cadd cmul csub copp ceqb = function
- | PEc c -> Pc c
- | PEX j -> mk_X cO cI j
- | PEadd (pe1, pe2) ->
- (match pe1 with
- | PEopp pe3 ->
- psub cO cadd csub copp ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)
- (norm_aux cO cI cadd cmul csub copp ceqb pe3)
- | _ ->
- (match pe2 with
- | PEopp pe3 ->
- psub cO cadd csub copp ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe3)
- | _ ->
- padd cO cadd ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
- | PEsub (pe1, pe2) ->
- psub cO cadd csub copp ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)
- | PEmul (pe1, pe2) ->
- pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)
- | PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- | PEpow (pe1, n0) ->
- ppow_N cO cI cadd cmul ceqb (fun p -> p)
- (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0
+| PEc c -> Pc c
+| PEX j -> mk_X cO cI j
+| PEadd (pe1, pe2) ->
+ (match pe1 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ (match pe2 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ padd cO cadd ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
+| PEsub (pe1, pe2) ->
+ psub cO cadd csub copp ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+| PEmul (pe1, pe2) ->
+ pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+| PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+| PEpow (pe1, n0) ->
+ ppow_N cO cI cadd cmul ceqb (fun p -> p)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0
type 'a bFormula =
- | TT
- | FF
- | X
- | A of 'a
- | Cj of 'a bFormula * 'a bFormula
- | D of 'a bFormula * 'a bFormula
- | N of 'a bFormula
- | I of 'a bFormula * 'a bFormula
+| TT
+| FF
+| X
+| A of 'a
+| Cj of 'a bFormula * 'a bFormula
+| D of 'a bFormula * 'a bFormula
+| N of 'a bFormula
+| I of 'a bFormula * 'a bFormula
+
+(** val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula **)
+
+let rec map_bformula fct = function
+| TT -> TT
+| FF -> FF
+| X -> X
+| A a -> A (fct a)
+| Cj (f1, f2) -> Cj ((map_bformula fct f1), (map_bformula fct f2))
+| D (f1, f2) -> D ((map_bformula fct f1), (map_bformula fct f2))
+| N f0 -> N (map_bformula fct f0)
+| I (f1, f2) -> I ((map_bformula fct f1), (map_bformula fct f2))
type 'term' clause = 'term' list
@@ -931,19 +3197,61 @@ let tt =
(** val ff : 'a1 cnf **)
let ff =
- [] :: []
+ []::[]
+
+(** val add_term :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
+ clause option **)
+
+let rec add_term unsat deduce t1 = function
+| [] ->
+ (match deduce t1 t1 with
+ | Some u -> if unsat u then None else Some (t1::[])
+ | None -> Some (t1::[]))
+| t'::cl0 ->
+ (match deduce t1 t' with
+ | Some u ->
+ if unsat u
+ then None
+ else (match add_term unsat deduce t1 cl0 with
+ | Some cl' -> Some (t'::cl')
+ | None -> None)
+ | None ->
+ (match add_term unsat deduce t1 cl0 with
+ | Some cl' -> Some (t'::cl')
+ | None -> None))
+
+(** val or_clause :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause
+ -> 'a1 clause option **)
+
+let rec or_clause unsat deduce cl1 cl2 =
+ match cl1 with
+ | [] -> Some cl2
+ | t1::cl ->
+ (match add_term unsat deduce t1 cl2 with
+ | Some cl' -> or_clause unsat deduce cl cl'
+ | None -> None)
-(** val or_clause_cnf : 'a1 clause -> 'a1 cnf -> 'a1 cnf **)
+(** val or_clause_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf ->
+ 'a1 cnf **)
-let or_clause_cnf t0 f =
- map (fun x -> app t0 x) f
+let or_clause_cnf unsat deduce t1 f =
+ fold_right (fun e acc ->
+ match or_clause unsat deduce t1 e with
+ | Some cl -> cl::acc
+ | None -> acc) [] f
-(** val or_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
+(** val or_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1
+ cnf **)
-let rec or_cnf f f' =
+let rec or_cnf unsat deduce f f' =
match f with
- | [] -> tt
- | e :: rst -> app (or_cnf rst f') (or_clause_cnf e f')
+ | [] -> tt
+ | e::rst ->
+ app (or_cnf unsat deduce rst f') (or_clause_cnf unsat deduce e f')
(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
@@ -951,133 +3259,168 @@ let and_cnf f1 f2 =
app f1 f2
(** val xcnf :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)
-
-let rec xcnf normalise0 negate0 pol0 = function
- | TT -> if pol0 then tt else ff
- | FF -> if pol0 then ff else tt
- | X -> ff
- | A x -> if pol0 then normalise0 x else negate0 x
- | Cj (e1, e2) ->
- if pol0
- then and_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- else or_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- | D (e1, e2) ->
- if pol0
- then or_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- else and_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- | N e -> xcnf normalise0 negate0 (negb pol0) e
- | I (e1, e2) ->
- if pol0
- then or_cnf (xcnf normalise0 negate0 (negb pol0) e1)
- (xcnf normalise0 negate0 pol0 e2)
- else and_cnf (xcnf normalise0 negate0 (negb pol0) e1)
- (xcnf normalise0 negate0 pol0 e2)
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
+ -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)
+
+let rec xcnf unsat deduce normalise0 negate0 pol0 = function
+| TT -> if pol0 then tt else ff
+| FF -> if pol0 then ff else tt
+| X -> ff
+| A x -> if pol0 then normalise0 x else negate0 x
+| Cj (e1, e2) ->
+ if pol0
+ then and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+| D (e1, e2) ->
+ if pol0
+ then or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+| N e -> xcnf unsat deduce normalise0 negate0 (negb pol0) e
+| I (e1, e2) ->
+ if pol0
+ then or_cnf unsat deduce
+ (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
(** val cnf_checker :
('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **)
let rec cnf_checker checker f l =
match f with
- | [] -> true
- | e :: f0 ->
- (match l with
- | [] -> false
- | c :: l0 ->
- if checker e c then cnf_checker checker f0 l0 else false)
+ | [] -> true
+ | e::f0 ->
+ (match l with
+ | [] -> false
+ | c::l0 -> if checker e c then cnf_checker checker f0 l0 else false)
(** val tauto_checker :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1
- bFormula -> 'a3 list -> bool **)
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
+ -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list ->
+ bool **)
+
+let tauto_checker unsat deduce normalise0 negate0 checker f w =
+ cnf_checker checker (xcnf unsat deduce normalise0 negate0 true f) w
+
+(** val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)
+
+let cneqb ceqb x y =
+ negb (ceqb x y)
-let tauto_checker normalise0 negate0 checker f w =
- cnf_checker checker (xcnf normalise0 negate0 true f) w
+(** val cltb :
+ ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)
+
+let cltb ceqb cleb x y =
+ (&&) (cleb x y) (cneqb ceqb x y)
type 'c polC = 'c pol
type op1 =
- | Equal
- | NonEqual
- | Strict
- | NonStrict
+| Equal
+| NonEqual
+| Strict
+| NonStrict
+
+type 'c nFormula = 'c polC * op1
-type 'c nFormula = 'c polC * op1
+(** val opMult : op1 -> op1 -> op1 option **)
+
+let opMult o o' =
+ match o with
+ | Equal -> Some Equal
+ | NonEqual ->
+ (match o' with
+ | Strict -> None
+ | NonStrict -> None
+ | x -> Some x)
+ | Strict ->
+ (match o' with
+ | NonEqual -> None
+ | _ -> Some o')
+ | NonStrict ->
+ (match o' with
+ | NonEqual -> None
+ | Strict -> Some NonStrict
+ | x -> Some x)
(** val opAdd : op1 -> op1 -> op1 option **)
let opAdd o o' =
match o with
- | Equal -> Some o'
- | NonEqual -> (match o' with
- | Equal -> Some NonEqual
- | _ -> None)
- | Strict -> (match o' with
- | NonEqual -> None
- | _ -> Some Strict)
- | NonStrict ->
- (match o' with
- | NonEqual -> None
- | Strict -> Some Strict
- | _ -> Some NonStrict)
+ | Equal -> Some o'
+ | NonEqual ->
+ (match o' with
+ | Equal -> Some NonEqual
+ | _ -> None)
+ | Strict ->
+ (match o' with
+ | NonEqual -> None
+ | _ -> Some Strict)
+ | NonStrict ->
+ (match o' with
+ | Equal -> Some NonStrict
+ | NonEqual -> None
+ | x -> Some x)
type 'c psatz =
- | PsatzIn of nat
- | PsatzSquare of 'c polC
- | PsatzMulC of 'c polC * 'c psatz
- | PsatzMulE of 'c psatz * 'c psatz
- | PsatzAdd of 'c psatz * 'c psatz
- | PsatzC of 'c
- | PsatzZ
+| PsatzIn of nat
+| PsatzSquare of 'c polC
+| PsatzMulC of 'c polC * 'c psatz
+| PsatzMulE of 'c psatz * 'c psatz
+| PsatzAdd of 'c psatz * 'c psatz
+| PsatzC of 'c
+| PsatzZ
+
+(** val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option **)
+
+let map_option f = function
+| Some x -> f x
+| None -> None
+
+(** val map_option2 :
+ ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option **)
+
+let map_option2 f o o' =
+ match o with
+ | Some x ->
+ (match o' with
+ | Some x' -> f x x'
+ | None -> None)
+ | None -> None
(** val pexpr_times_nformula :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **)
let pexpr_times_nformula cO cI cplus ctimes ceqb e = function
- | ef , o ->
- (match o with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef) , Equal)
- | _ -> None)
+| ef,o ->
+ (match o with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef),Equal)
+ | _ -> None)
(** val nformula_times_nformula :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **)
let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 =
- let e1 , o1 = f1 in
- let e2 , o2 = f2 in
- (match o1 with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
- | NonEqual ->
- (match o2 with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
- | NonEqual -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) ,
- NonEqual)
- | _ -> None)
- | Strict ->
- (match o2 with
- | NonEqual -> None
- | _ -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , o2))
- | NonStrict ->
- (match o2 with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
- | NonEqual -> None
- | _ -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , NonStrict)))
+ let e1,o1 = f1 in
+ let e2,o2 = f2 in
+ map_option (fun x -> Some ((pmul cO cI cplus ctimes ceqb e1 e2),x))
+ (opMult o1 o2)
(** val nformula_plus_nformula :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
nFormula -> 'a1 nFormula option **)
let nformula_plus_nformula cO cplus ceqb f1 f2 =
- let e1 , o1 = f1 in
- let e2 , o2 = f2 in
- (match opAdd o1 o2 with
- | Some x -> Some ((padd cO cplus ceqb e1 e2) , x)
- | None -> None)
+ let e1,o1 = f1 in
+ let e2,o2 = f2 in
+ map_option (fun x -> Some ((padd cO cplus ceqb e1 e2),x)) (opAdd o1 o2)
(** val eval_Psatz :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
@@ -1085,47 +3428,36 @@ let nformula_plus_nformula cO cplus ceqb f1 f2 =
nFormula option **)
let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function
- | PsatzIn n0 -> Some (nth n0 l ((Pc cO) , Equal))
- | PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0) , NonStrict)
- | PsatzMulC (re, e0) ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l e0 with
- | Some x -> pexpr_times_nformula cO cI cplus ctimes ceqb re x
- | None -> None)
- | PsatzMulE (f1, f2) ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f1 with
- | Some x ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f2 with
- | Some x' ->
- nformula_times_nformula cO cI cplus ctimes ceqb x x'
- | None -> None)
- | None -> None)
- | PsatzAdd (f1, f2) ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f1 with
- | Some x ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f2 with
- | Some x' -> nformula_plus_nformula cO cplus ceqb x x'
- | None -> None)
- | None -> None)
- | PsatzC c ->
- if (&&) (cleb cO c) (negb (ceqb cO c))
- then Some ((Pc c) , Strict)
- else None
- | PsatzZ -> Some ((Pc cO) , Equal)
+| PsatzIn n0 -> Some (nth n0 l ((Pc cO),Equal))
+| PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0),NonStrict)
+| PsatzMulC (re, e0) ->
+ map_option (pexpr_times_nformula cO cI cplus ctimes ceqb re)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l e0)
+| PsatzMulE (f1, f2) ->
+ map_option2 (nformula_times_nformula cO cI cplus ctimes ceqb)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
+| PsatzAdd (f1, f2) ->
+ map_option2 (nformula_plus_nformula cO cplus ceqb)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
+| PsatzC c -> if cltb ceqb cleb cO c then Some ((Pc c),Strict) else None
+| PsatzZ -> Some ((Pc cO),Equal)
(** val check_inconsistent :
'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula ->
bool **)
let check_inconsistent cO ceqb cleb = function
- | e , op ->
- (match e with
- | Pc c ->
- (match op with
- | Equal -> negb (ceqb c cO)
- | NonEqual -> ceqb c cO
- | Strict -> cleb c cO
- | NonStrict -> (&&) (cleb c cO) (negb (ceqb c cO)))
- | _ -> false)
+| e,op ->
+ (match e with
+ | Pc c ->
+ (match op with
+ | Equal -> cneqb ceqb c cO
+ | NonEqual -> ceqb c cO
+ | Strict -> cleb c cO
+ | NonStrict -> cltb ceqb cleb c cO)
+ | _ -> false)
(** val check_normalised_formulas :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
@@ -1134,18 +3466,18 @@ let check_inconsistent cO ceqb cleb = function
let check_normalised_formulas cO cI cplus ctimes ceqb cleb l cm =
match eval_Psatz cO cI cplus ctimes ceqb cleb l cm with
- | Some f -> check_inconsistent cO ceqb cleb f
- | None -> false
+ | Some f -> check_inconsistent cO ceqb cleb f
+ | None -> false
type op2 =
- | OpEq
- | OpNEq
- | OpLe
- | OpGe
- | OpLt
- | OpGt
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt
-type 'c formula = { flhs : 'c pExpr; fop : op2; frhs : 'c pExpr }
+type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }
(** val flhs : 'a1 formula -> 'a1 pExpr **)
@@ -1163,157 +3495,170 @@ let frhs x = x.frhs
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
-let norm cO cI cplus ctimes cminus copp ceqb pe =
- norm_aux cO cI cplus ctimes cminus copp ceqb pe
+let norm cO cI cplus ctimes cminus copp ceqb =
+ norm_aux cO cI cplus ctimes cminus copp ceqb
(** val psub0 :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
-> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
-let psub0 cO cplus cminus copp ceqb p p' =
- psub cO cplus cminus copp ceqb p p'
+let psub0 cO cplus cminus copp ceqb =
+ psub cO cplus cminus copp ceqb
(** val padd0 :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
-> 'a1 pol **)
-let padd0 cO cplus ceqb p p' =
- padd cO cplus ceqb p p'
+let padd0 cO cplus ceqb =
+ padd cO cplus ceqb
(** val xnormalise :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula list **)
-let xnormalise cO cI cplus ctimes cminus copp ceqb t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnormalise cO cI cplus ctimes cminus copp ceqb t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
(match o with
- | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) ::
- (((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: [])
- | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Equal) :: []
- | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) :: []
- | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: []
- | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , NonStrict) ::
- []
- | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , NonStrict) ::
- [])
+ | OpEq ->
+ ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
+ cminus copp
+ ceqb rhs0
+ lhs0),Strict)::[])
+ | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[]
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[])
(** val cnf_normalise :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula cnf **)
-let cnf_normalise cO cI cplus ctimes cminus copp ceqb t0 =
- map (fun x -> x :: []) (xnormalise cO cI cplus ctimes cminus copp ceqb t0)
+let cnf_normalise cO cI cplus ctimes cminus copp ceqb t1 =
+ map (fun x -> x::[]) (xnormalise cO cI cplus ctimes cminus copp ceqb t1)
(** val xnegate :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula list **)
-let xnegate cO cI cplus ctimes cminus copp ceqb t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnegate cO cI cplus ctimes cminus copp ceqb t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
(match o with
- | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Equal) :: []
- | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) ::
- (((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: [])
- | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , NonStrict) ::
- []
- | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , NonStrict) ::
- []
- | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: []
- | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) :: [])
+ | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
+ | OpNEq ->
+ ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
+ cminus copp
+ ceqb rhs0
+ lhs0),Strict)::[])
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[]
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[])
(** val cnf_negate :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula cnf **)
-let cnf_negate cO cI cplus ctimes cminus copp ceqb t0 =
- map (fun x -> x :: []) (xnegate cO cI cplus ctimes cminus copp ceqb t0)
+let cnf_negate cO cI cplus ctimes cminus copp ceqb t1 =
+ map (fun x -> x::[]) (xnegate cO cI cplus ctimes cminus copp ceqb t1)
(** val xdenorm : positive -> 'a1 pol -> 'a1 pExpr **)
let rec xdenorm jmp = function
- | Pc c -> PEc c
- | Pinj (j, p2) -> xdenorm (pplus j jmp) p2
- | PX (p2, j, q0) -> PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp),
- (Npos j))))), (xdenorm (psucc jmp) q0))
+| Pc c -> PEc c
+| Pinj (j, p2) -> xdenorm (Coq_Pos.add j jmp) p2
+| PX (p2, j, q0) ->
+ PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp), (Npos j))))),
+ (xdenorm (Coq_Pos.succ jmp) q0))
(** val denorm : 'a1 pol -> 'a1 pExpr **)
let denorm p =
xdenorm XH p
+(** val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr **)
+
+let rec map_PExpr c_of_S = function
+| PEc c -> PEc (c_of_S c)
+| PEX p -> PEX p
+| PEadd (e1, e2) -> PEadd ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEsub (e1, e2) -> PEsub ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEmul (e1, e2) -> PEmul ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEopp e0 -> PEopp (map_PExpr c_of_S e0)
+| PEpow (e0, n0) -> PEpow ((map_PExpr c_of_S e0), n0)
+
+(** val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula **)
+
+let map_Formula c_of_S f =
+ let { flhs = l; fop = o; frhs = r } = f in
+ { flhs = (map_PExpr c_of_S l); fop = o; frhs = (map_PExpr c_of_S r) }
+
(** val simpl_cone :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
'a1 psatz **)
let simpl_cone cO cI ctimes ceqb e = match e with
- | PsatzSquare t0 ->
- (match t0 with
- | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
- | _ -> PsatzSquare t0)
- | PsatzMulE (t1, t2) ->
- (match t1 with
- | PsatzMulE (x, x0) ->
- (match x with
- | PsatzC p2 ->
- (match t2 with
- | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
- | PsatzZ -> PsatzZ
- | _ -> e)
- | _ ->
- (match x0 with
- | PsatzC p2 ->
- (match t2 with
- | PsatzC c -> PsatzMulE ((PsatzC
- (ctimes c p2)), x)
- | PsatzZ -> PsatzZ
- | _ -> e)
- | _ ->
- (match t2 with
- | PsatzC c ->
- if ceqb cI c
- then t1
- else PsatzMulE (t1, t2)
- | PsatzZ -> PsatzZ
- | _ -> e)))
- | PsatzC c ->
- (match t2 with
- | PsatzMulE (x, x0) ->
- (match x with
- | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
- | _ ->
- (match x0 with
- | PsatzC p2 -> PsatzMulE ((PsatzC
- (ctimes c p2)), x)
- | _ ->
- if ceqb cI c
- then t2
- else PsatzMulE (t1, t2)))
- | PsatzAdd (y, z0) -> PsatzAdd ((PsatzMulE ((PsatzC c), y)),
- (PsatzMulE ((PsatzC c), z0)))
- | PsatzC c0 -> PsatzC (ctimes c c0)
- | PsatzZ -> PsatzZ
- | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
+| PsatzSquare t1 ->
+ (match t1 with
+ | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
+ | _ -> PsatzSquare t1)
+| PsatzMulE (t1, t2) ->
+ (match t1 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
| PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match x0 with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x)
+ | PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e)))
+ | PsatzC c ->
+ (match t2 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
| _ ->
- (match t2 with
- | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
- | PsatzZ -> PsatzZ
- | _ -> e))
- | PsatzAdd (t1, t2) ->
- (match t1 with
- | PsatzZ -> t2
- | _ -> (match t2 with
- | PsatzZ -> t1
- | _ -> PsatzAdd (t1, t2)))
- | _ -> e
+ (match x0 with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x)
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2)))
+ | PsatzAdd (y, z0) ->
+ PsatzAdd ((PsatzMulE ((PsatzC c), y)), (PsatzMulE ((PsatzC c), z0)))
+ | PsatzC c0 -> PsatzC (ctimes c c0)
+ | PsatzZ -> PsatzZ
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
+ | PsatzZ -> PsatzZ
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e))
+| PsatzAdd (t1, t2) ->
+ (match t1 with
+ | PsatzZ -> t2
+ | _ ->
+ (match t2 with
+ | PsatzZ -> t1
+ | _ -> PsatzAdd (t1, t2)))
+| _ -> e
type q = { qnum : z; qden : positive }
@@ -1328,28 +3673,28 @@ let qden x = x.qden
(** val qeq_bool : q -> q -> bool **)
let qeq_bool x y =
- zeq_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))
+ zeq_bool (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))
(** val qle_bool : q -> q -> bool **)
let qle_bool x y =
- zle_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))
+ Z.leb (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))
(** val qplus : q -> q -> q **)
let qplus x y =
- { qnum = (zplus (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden)));
- qden = (pmult x.qden y.qden) }
+ { qnum = (Z.add (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden)));
+ qden = (Coq_Pos.mul x.qden y.qden) }
(** val qmult : q -> q -> q **)
let qmult x y =
- { qnum = (zmult x.qnum y.qnum); qden = (pmult x.qden y.qden) }
+ { qnum = (Z.mul x.qnum y.qnum); qden = (Coq_Pos.mul x.qden y.qden) }
(** val qopp : q -> q **)
let qopp x =
- { qnum = (zopp x.qnum); qden = x.qden }
+ { qnum = (Z.opp x.qnum); qden = x.qden }
(** val qminus : q -> q -> q **)
@@ -1360,9 +3705,9 @@ let qminus x y =
let qinv x =
match x.qnum with
- | Z0 -> { qnum = Z0; qden = XH }
- | Zpos p -> { qnum = (Zpos x.qden); qden = p }
- | Zneg p -> { qnum = (Zneg x.qden); qden = p }
+ | Z0 -> { qnum = Z0; qden = XH }
+ | Zpos p -> { qnum = (Zpos x.qden); qden = p }
+ | Zneg p -> { qnum = (Zneg x.qden); qden = p }
(** val qpower_positive : q -> positive -> q **)
@@ -1372,332 +3717,330 @@ let qpower_positive q0 p =
(** val qpower : q -> z -> q **)
let qpower q0 = function
- | Z0 -> { qnum = (Zpos XH); qden = XH }
- | Zpos p -> qpower_positive q0 p
- | Zneg p -> qinv (qpower_positive q0 p)
+| Z0 -> { qnum = (Zpos XH); qden = XH }
+| Zpos p -> qpower_positive q0 p
+| Zneg p -> qinv (qpower_positive q0 p)
-(** val pgcdn : nat -> positive -> positive -> positive **)
+type 'a t0 =
+| Empty
+| Leaf of 'a
+| Node of 'a t0 * 'a * 'a t0
-let rec pgcdn n0 a b =
- match n0 with
- | O -> XH
- | S n1 ->
- (match a with
- | XI a' ->
- (match b with
- | XI b' ->
- (match pcompare a' b' Eq with
- | Eq -> a
- | Lt -> pgcdn n1 (pminus b' a') a
- | Gt -> pgcdn n1 (pminus a' b') b)
- | XO b0 -> pgcdn n1 a b0
- | XH -> XH)
- | XO a0 ->
- (match b with
- | XI p -> pgcdn n1 a0 b
- | XO b0 -> XO (pgcdn n1 a0 b0)
- | XH -> XH)
- | XH -> XH)
-
-(** val pgcd : positive -> positive -> positive **)
-
-let pgcd a b =
- pgcdn (plus (psize a) (psize b)) a b
-
-(** val zgcd : z -> z -> z **)
-
-let zgcd a b =
- match a with
- | Z0 -> zabs b
- | Zpos a0 ->
- (match b with
- | Z0 -> zabs a
- | Zpos b0 -> Zpos (pgcd a0 b0)
- | Zneg b0 -> Zpos (pgcd a0 b0))
- | Zneg a0 ->
- (match b with
- | Z0 -> zabs a
- | Zpos b0 -> Zpos (pgcd a0 b0)
- | Zneg b0 -> Zpos (pgcd a0 b0))
-
-type 'a t =
- | Empty
- | Leaf of 'a
- | Node of 'a t * 'a * 'a t
-
-(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **)
+(** val find : 'a1 -> 'a1 t0 -> positive -> 'a1 **)
let rec find default vm p =
match vm with
- | Empty -> default
- | Leaf i -> i
- | Node (l, e, r) ->
- (match p with
- | XI p2 -> find default r p2
- | XO p2 -> find default l p2
- | XH -> e)
+ | Empty -> default
+ | Leaf i -> i
+ | Node (l, e, r) ->
+ (match p with
+ | XI p2 -> find default r p2
+ | XO p2 -> find default l p2
+ | XH -> e)
type zWitness = z psatz
(** val zWeakChecker : z nFormula list -> z psatz -> bool **)
-let zWeakChecker x x0 =
- check_normalised_formulas Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+let zWeakChecker =
+ check_normalised_formulas Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb
(** val psub1 : z pol -> z pol -> z pol **)
-let psub1 p p' =
- psub0 Z0 zplus zminus zopp zeq_bool p p'
+let psub1 =
+ psub0 Z0 Z.add Z.sub Z.opp zeq_bool
(** val padd1 : z pol -> z pol -> z pol **)
-let padd1 p p' =
- padd0 Z0 zplus zeq_bool p p'
+let padd1 =
+ padd0 Z0 Z.add zeq_bool
(** val norm0 : z pExpr -> z pol **)
-let norm0 pe =
- norm Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool pe
+let norm0 =
+ norm Z0 (Zpos XH) Z.add Z.mul Z.sub Z.opp zeq_bool
(** val xnormalise0 : z formula -> z nFormula list **)
-let xnormalise0 t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnormalise0 t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm0 lhs in
let rhs0 = norm0 rhs in
(match o with
- | OpEq -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) ::
- (((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
- | OpNEq -> ((psub1 lhs0 rhs0) , Equal) :: []
- | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) :: []
- | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: []
- | OpLt -> ((psub1 lhs0 rhs0) , NonStrict) :: []
- | OpGt -> ((psub1 rhs0 lhs0) , NonStrict) :: [])
+ | OpEq ->
+ ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
+ (padd1 lhs0
+ (Pc (Zpos
+ XH)))),NonStrict)::[])
+ | OpNEq -> ((psub1 lhs0 rhs0),Equal)::[]
+ | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpLt -> ((psub1 lhs0 rhs0),NonStrict)::[]
+ | OpGt -> ((psub1 rhs0 lhs0),NonStrict)::[])
(** val normalise : z formula -> z nFormula cnf **)
-let normalise t0 =
- map (fun x -> x :: []) (xnormalise0 t0)
+let normalise t1 =
+ map (fun x -> x::[]) (xnormalise0 t1)
(** val xnegate0 : z formula -> z nFormula list **)
-let xnegate0 t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnegate0 t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm0 lhs in
let rhs0 = norm0 rhs in
(match o with
- | OpEq -> ((psub1 lhs0 rhs0) , Equal) :: []
- | OpNEq -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) ::
- (((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
- | OpLe -> ((psub1 rhs0 lhs0) , NonStrict) :: []
- | OpGe -> ((psub1 lhs0 rhs0) , NonStrict) :: []
- | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: []
- | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
+ | OpEq -> ((psub1 lhs0 rhs0),Equal)::[]
+ | OpNEq ->
+ ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
+ (padd1 lhs0
+ (Pc (Zpos
+ XH)))),NonStrict)::[])
+ | OpLe -> ((psub1 rhs0 lhs0),NonStrict)::[]
+ | OpGe -> ((psub1 lhs0 rhs0),NonStrict)::[]
+ | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[])
(** val negate : z formula -> z nFormula cnf **)
-let negate t0 =
- map (fun x -> x :: []) (xnegate0 t0)
+let negate t1 =
+ map (fun x -> x::[]) (xnegate0 t1)
+
+(** val zunsat : z nFormula -> bool **)
+
+let zunsat =
+ check_inconsistent Z0 zeq_bool Z.leb
+
+(** val zdeduce : z nFormula -> z nFormula -> z nFormula option **)
+
+let zdeduce =
+ nformula_plus_nformula Z0 Z.add zeq_bool
(** val ceiling : z -> z -> z **)
let ceiling a b =
- let q0 , r = zdiv_eucl a b in
+ let q0,r = Z.div_eucl a b in
(match r with
- | Z0 -> q0
- | _ -> zplus q0 (Zpos XH))
+ | Z0 -> q0
+ | _ -> Z.add q0 (Zpos XH))
type zArithProof =
- | DoneProof
- | RatProof of zWitness * zArithProof
- | CutProof of zWitness * zArithProof
- | EnumProof of zWitness * zWitness * zArithProof list
+| DoneProof
+| RatProof of zWitness * zArithProof
+| CutProof of zWitness * zArithProof
+| EnumProof of zWitness * zWitness * zArithProof list
(** val zgcdM : z -> z -> z **)
let zgcdM x y =
- zmax (zgcd x y) (Zpos XH)
+ Z.max (Z.gcd x y) (Zpos XH)
-(** val zgcd_pol : z polC -> z * z **)
+(** val zgcd_pol : z polC -> z * z **)
let rec zgcd_pol = function
- | Pc c -> Z0 , c
- | Pinj (p2, p3) -> zgcd_pol p3
- | PX (p2, p3, q0) ->
- let g1 , c1 = zgcd_pol p2 in
- let g2 , c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2) , c2
+| Pc c -> Z0,c
+| Pinj (p2, p3) -> zgcd_pol p3
+| PX (p2, p3, q0) ->
+ let g1,c1 = zgcd_pol p2 in
+ let g2,c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2),c2
(** val zdiv_pol : z polC -> z -> z polC **)
let rec zdiv_pol p x =
match p with
- | Pc c -> Pc (zdiv c x)
- | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
- | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))
+ | Pc c -> Pc (Z.div c x)
+ | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
+ | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))
-(** val makeCuttingPlane : z polC -> z polC * z **)
+(** val makeCuttingPlane : z polC -> z polC * z **)
let makeCuttingPlane p =
- let g , c = zgcd_pol p in
- if zgt_bool g Z0
- then (zdiv_pol (psubC zminus p c) g) , (zopp (ceiling (zopp c) g))
- else p , Z0
+ let g,c = zgcd_pol p in
+ if Z.gtb g Z0
+ then (zdiv_pol (psubC Z.sub p c) g),(Z.opp (ceiling (Z.opp c) g))
+ else p,Z0
-(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)
+(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)
let genCuttingPlane = function
- | e , op ->
- (match op with
- | Equal ->
- let g , c = zgcd_pol e in
- if (&&) (zgt_bool g Z0)
- ((&&) (zgt_bool c Z0) (negb (zeq_bool (zgcd g c) g)))
- then None
- else Some ((e , Z0) , op)
- | NonEqual -> Some ((e , Z0) , op)
- | Strict ->
- let p , c = makeCuttingPlane (psubC zminus e (Zpos XH)) in
- Some ((p , c) , NonStrict)
- | NonStrict ->
- let p , c = makeCuttingPlane e in Some ((p , c) , NonStrict))
-
-(** val nformula_of_cutting_plane :
- ((z polC * z) * op1) -> z nFormula **)
+| e,op ->
+ (match op with
+ | Equal ->
+ let g,c = zgcd_pol e in
+ if (&&) (Z.gtb g Z0)
+ ((&&) (negb (zeq_bool c Z0)) (negb (zeq_bool (Z.gcd g c) g)))
+ then None
+ else Some ((makeCuttingPlane e),Equal)
+ | NonEqual -> Some ((e,Z0),op)
+ | Strict -> Some ((makeCuttingPlane (psubC Z.sub e (Zpos XH))),NonStrict)
+ | NonStrict -> Some ((makeCuttingPlane e),NonStrict))
+
+(** val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula **)
let nformula_of_cutting_plane = function
- | e_z , o -> let e , z0 = e_z in (padd1 e (Pc z0)) , o
+| e_z,o -> let e,z0 = e_z in (padd1 e (Pc z0)),o
(** val is_pol_Z0 : z polC -> bool **)
let is_pol_Z0 = function
- | Pc z0 -> (match z0 with
- | Z0 -> true
- | _ -> false)
- | _ -> false
+| Pc z0 ->
+ (match z0 with
+ | Z0 -> true
+ | _ -> false)
+| _ -> false
(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **)
-let eval_Psatz0 x x0 =
- eval_Psatz Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+let eval_Psatz0 =
+ eval_Psatz Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb
-(** val check_inconsistent0 : z nFormula -> bool **)
+(** val valid_cut_sign : op1 -> bool **)
-let check_inconsistent0 f =
- check_inconsistent Z0 zeq_bool zle_bool f
+let valid_cut_sign = function
+| Equal -> true
+| NonStrict -> true
+| _ -> false
(** val zChecker : z nFormula list -> zArithProof -> bool **)
let rec zChecker l = function
- | DoneProof -> false
- | RatProof (w, pf0) ->
- (match eval_Psatz0 l w with
- | Some f ->
- if check_inconsistent0 f then true else zChecker (f :: l) pf0
- | None -> false)
- | CutProof (w, pf0) ->
- (match eval_Psatz0 l w with
- | Some f ->
- (match genCuttingPlane f with
- | Some cp ->
- zChecker ((nformula_of_cutting_plane cp) :: l) pf0
- | None -> true)
- | None -> false)
- | EnumProof (w1, w2, pf0) ->
- (match eval_Psatz0 l w1 with
- | Some f1 ->
- (match eval_Psatz0 l w2 with
- | Some f2 ->
- (match genCuttingPlane f1 with
- | Some p ->
- let p2 , op3 = p in
- let e1 , z1 = p2 in
- (match genCuttingPlane f2 with
- | Some p3 ->
- let p4 , op4 = p3 in
- let e2 , z2 = p4 in
- (match op3 with
- | NonStrict ->
- (match op4 with
- | NonStrict ->
- if is_pol_Z0 (padd1 e1 e2)
- then
- let rec label pfs lb ub =
-
- match pfs with
- |
- [] -> zgt_bool lb ub
- |
- pf1 :: rsr ->
- (&&)
- (zChecker
- (((psub1 e1 (Pc lb)) ,
- Equal) :: l) pf1)
- (label rsr
- (zplus lb (Zpos XH)) ub)
- in label pf0 (zopp z1) z2
- else false
- | _ -> false)
- | _ -> false)
- | None -> false)
- | None -> false)
- | None -> false)
- | None -> false)
+| DoneProof -> false
+| RatProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f -> if zunsat f then true else zChecker (f::l) pf0
+ | None -> false)
+| CutProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f ->
+ (match genCuttingPlane f with
+ | Some cp -> zChecker ((nformula_of_cutting_plane cp)::l) pf0
+ | None -> true)
+ | None -> false)
+| EnumProof (w1, w2, pf0) ->
+ (match eval_Psatz0 l w1 with
+ | Some f1 ->
+ (match eval_Psatz0 l w2 with
+ | Some f2 ->
+ (match genCuttingPlane f1 with
+ | Some p ->
+ let p2,op3 = p in
+ let e1,z1 = p2 in
+ (match genCuttingPlane f2 with
+ | Some p3 ->
+ let p4,op4 = p3 in
+ let e2,z2 = p4 in
+ if (&&) ((&&) (valid_cut_sign op3) (valid_cut_sign op4))
+ (is_pol_Z0 (padd1 e1 e2))
+ then let rec label pfs lb ub =
+ match pfs with
+ | [] -> Z.gtb lb ub
+ | pf1::rsr ->
+ (&&) (zChecker (((psub1 e1 (Pc lb)),Equal)::l) pf1)
+ (label rsr (Z.add lb (Zpos XH)) ub)
+ in label pf0 (Z.opp z1) z2
+ else false
+ | None -> true)
+ | None -> true)
+ | None -> false)
+ | None -> false)
(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **)
let zTautoChecker f w =
- tauto_checker normalise negate zChecker f w
-
-(** val n_of_Z : z -> n **)
-
-let n_of_Z = function
- | Zpos p -> Npos p
- | _ -> N0
+ tauto_checker zunsat zdeduce normalise negate zChecker f w
type qWitness = q psatz
(** val qWeakChecker : q nFormula list -> q psatz -> bool **)
-let qWeakChecker x x0 =
+let qWeakChecker =
check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
- qden = XH } qplus qmult qeq_bool qle_bool x x0
+ qden = XH } qplus qmult qeq_bool qle_bool
(** val qnormalise : q formula -> q nFormula cnf **)
-let qnormalise t0 =
+let qnormalise =
cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
- qplus qmult qminus qopp qeq_bool t0
+ qplus qmult qminus qopp qeq_bool
(** val qnegate : q formula -> q nFormula cnf **)
-let qnegate t0 =
+let qnegate =
cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
- qmult qminus qopp qeq_bool t0
+ qmult qminus qopp qeq_bool
+
+(** val qunsat : q nFormula -> bool **)
+
+let qunsat =
+ check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool
+
+(** val qdeduce : q nFormula -> q nFormula -> q nFormula option **)
+
+let qdeduce =
+ nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool
(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **)
let qTautoChecker f w =
- tauto_checker qnormalise qnegate qWeakChecker f w
+ tauto_checker qunsat qdeduce qnormalise qnegate qWeakChecker f w
+
+type rcst =
+| C0
+| C1
+| CQ of q
+| CZ of z
+| CPlus of rcst * rcst
+| CMinus of rcst * rcst
+| CMult of rcst * rcst
+| CInv of rcst
+| COpp of rcst
+
+(** val q_of_Rcst : rcst -> q **)
+
+let rec q_of_Rcst = function
+| C0 -> { qnum = Z0; qden = XH }
+| C1 -> { qnum = (Zpos XH); qden = XH }
+| CQ q0 -> q0
+| CZ z0 -> { qnum = z0; qden = XH }
+| CPlus (r1, r2) -> qplus (q_of_Rcst r1) (q_of_Rcst r2)
+| CMinus (r1, r2) -> qminus (q_of_Rcst r1) (q_of_Rcst r2)
+| CMult (r1, r2) -> qmult (q_of_Rcst r1) (q_of_Rcst r2)
+| CInv r0 -> qinv (q_of_Rcst r0)
+| COpp r0 -> qopp (q_of_Rcst r0)
+
+type rWitness = q psatz
+
+(** val rWeakChecker : q nFormula list -> q psatz -> bool **)
+
+let rWeakChecker =
+ check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
+ qden = XH } qplus qmult qeq_bool qle_bool
+
+(** val rnormalise : q formula -> q nFormula cnf **)
-type rWitness = z psatz
+let rnormalise =
+ cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
+ qplus qmult qminus qopp qeq_bool
-(** val rWeakChecker : z nFormula list -> z psatz -> bool **)
+(** val rnegate : q formula -> q nFormula cnf **)
-let rWeakChecker x x0 =
- check_normalised_formulas Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+let rnegate =
+ cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
+ qmult qminus qopp qeq_bool
-(** val rnormalise : z formula -> z nFormula cnf **)
+(** val runsat : q nFormula -> bool **)
-let rnormalise t0 =
- cnf_normalise Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool t0
+let runsat =
+ check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool
-(** val rnegate : z formula -> z nFormula cnf **)
+(** val rdeduce : q nFormula -> q nFormula -> q nFormula option **)
-let rnegate t0 =
- cnf_negate Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool t0
+let rdeduce =
+ nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool
-(** val rTautoChecker : z formula bFormula -> rWitness list -> bool **)
+(** val rTautoChecker : rcst formula bFormula -> rWitness list -> bool **)
let rTautoChecker f w =
- tauto_checker rnormalise rnegate rWeakChecker f w
+ tauto_checker runsat rdeduce rnormalise rnegate rWeakChecker
+ (map_bformula (map_Formula q_of_Rcst) f) w
diff --git a/plugins/micromega/micromega.mli b/plugins/micromega/micromega.mli
index 3e3ae2c3..bcd61f39 100644
--- a/plugins/micromega/micromega.mli
+++ b/plugins/micromega/micromega.mli
@@ -1,115 +1,848 @@
+type __ = Obj.t
+
val negb : bool -> bool
type nat =
- | O
- | S of nat
+| O
+| S of nat
-type comparison =
- | Eq
- | Lt
- | Gt
+val fst : ('a1 * 'a2) -> 'a1
-val compOpp : comparison -> comparison
-
-val plus : nat -> nat -> nat
+val snd : ('a1 * 'a2) -> 'a2
val app : 'a1 list -> 'a1 list -> 'a1 list
-val nth : nat -> 'a1 list -> 'a1 -> 'a1
-
-val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list
-
-type positive =
- | XI of positive
- | XO of positive
- | XH
-
-val psucc : positive -> positive
-
-val pplus : positive -> positive -> positive
-
-val pplus_carry : positive -> positive -> positive
-
-val p_of_succ_nat : nat -> positive
-
-val pdouble_minus_one : positive -> positive
-
-type positive_mask =
- | IsNul
- | IsPos of positive
- | IsNeg
+type comparison =
+| Eq
+| Lt
+| Gt
-val pdouble_plus_one_mask : positive_mask -> positive_mask
+val compOpp : comparison -> comparison
-val pdouble_mask : positive_mask -> positive_mask
+type compareSpecT =
+| CompEqT
+| CompLtT
+| CompGtT
-val pdouble_minus_two : positive -> positive_mask
+val compareSpec2Type : comparison -> compareSpecT
-val pminus_mask : positive -> positive -> positive_mask
+type 'a compSpecT = compareSpecT
-val pminus_mask_carry : positive -> positive -> positive_mask
+val compSpec2Type : 'a1 -> 'a1 -> comparison -> 'a1 compSpecT
-val pminus : positive -> positive -> positive
+type 'a sig0 =
+ 'a
+ (* singleton inductive, whose constructor was exist *)
-val pmult : positive -> positive -> positive
+val plus : nat -> nat -> nat
-val pcompare : positive -> positive -> comparison -> comparison
+val nat_iter : nat -> ('a1 -> 'a1) -> 'a1 -> 'a1
-val psize : positive -> nat
+type positive =
+| XI of positive
+| XO of positive
+| XH
type n =
- | N0
- | Npos of positive
-
-val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1
+| N0
+| Npos of positive
type z =
- | Z0
- | Zpos of positive
- | Zneg of positive
-
-val zdouble_plus_one : z -> z
-
-val zdouble_minus_one : z -> z
-
-val zdouble : z -> z
-
-val zPminus : positive -> positive -> z
-
-val zplus : z -> z -> z
-
-val zopp : z -> z
-
-val zminus : z -> z -> z
-
-val zmult : z -> z -> z
-
-val zcompare : z -> z -> comparison
-
-val zabs : z -> z
+| Z0
+| Zpos of positive
+| Zneg of positive
+
+module type TotalOrder' =
+ sig
+ type t
+ end
+
+module MakeOrderTac :
+ functor (O:TotalOrder') ->
+ sig
+
+ end
+
+module MaxLogicalProperties :
+ functor (O:TotalOrder') ->
+ functor (M:sig
+ val max : O.t -> O.t -> O.t
+ end) ->
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+module Pos :
+ sig
+ type t = positive
+
+ val succ : positive -> positive
+
+ val add : positive -> positive -> positive
+
+ val add_carry : positive -> positive -> positive
+
+ val pred_double : positive -> positive
+
+ val pred : positive -> positive
+
+ val pred_N : positive -> n
+
+ type mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val succ_double_mask : mask -> mask
+
+ val double_mask : mask -> mask
+
+ val double_pred_mask : positive -> mask
+
+ val pred_mask : mask -> mask
+
+ val sub_mask : positive -> positive -> mask
+
+ val sub_mask_carry : positive -> positive -> mask
+
+ val sub : positive -> positive -> positive
+
+ val mul : positive -> positive -> positive
+
+ val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val pow : positive -> positive -> positive
+
+ val div2 : positive -> positive
+
+ val div2_up : positive -> positive
+
+ val size_nat : positive -> nat
+
+ val size : positive -> positive
+
+ val compare_cont : positive -> positive -> comparison -> comparison
+
+ val compare : positive -> positive -> comparison
+
+ val min : positive -> positive -> positive
+
+ val max : positive -> positive -> positive
+
+ val eqb : positive -> positive -> bool
+
+ val leb : positive -> positive -> bool
+
+ val ltb : positive -> positive -> bool
+
+ val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask) ->
+ positive * mask
+
+ val sqrtrem : positive -> positive * mask
+
+ val sqrt : positive -> positive
+
+ val gcdn : nat -> positive -> positive -> positive
+
+ val gcd : positive -> positive -> positive
+
+ val ggcdn : nat -> positive -> positive -> positive * (positive * positive)
+
+ val ggcd : positive -> positive -> positive * (positive * positive)
+
+ val coq_Nsucc_double : n -> n
+
+ val coq_Ndouble : n -> n
+
+ val coq_lor : positive -> positive -> positive
+
+ val coq_land : positive -> positive -> n
+
+ val ldiff : positive -> positive -> n
+
+ val coq_lxor : positive -> positive -> n
+
+ val shiftl_nat : positive -> nat -> positive
+
+ val shiftr_nat : positive -> nat -> positive
+
+ val shiftl : positive -> n -> positive
+
+ val shiftr : positive -> n -> positive
+
+ val testbit_nat : positive -> nat -> bool
+
+ val testbit : positive -> n -> bool
+
+ val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1
+
+ val to_nat : positive -> nat
+
+ val of_nat : nat -> positive
+
+ val of_succ_nat : nat -> positive
+ end
+
+module Coq_Pos :
+ sig
+ module Coq__1 : sig
+ type t = positive
+ end
+ type t = Coq__1.t
+
+ val succ : positive -> positive
+
+ val add : positive -> positive -> positive
+
+ val add_carry : positive -> positive -> positive
+
+ val pred_double : positive -> positive
+
+ val pred : positive -> positive
+
+ val pred_N : positive -> n
+
+ type mask = Pos.mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val succ_double_mask : mask -> mask
+
+ val double_mask : mask -> mask
+
+ val double_pred_mask : positive -> mask
+
+ val pred_mask : mask -> mask
+
+ val sub_mask : positive -> positive -> mask
+
+ val sub_mask_carry : positive -> positive -> mask
+
+ val sub : positive -> positive -> positive
+
+ val mul : positive -> positive -> positive
+
+ val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val pow : positive -> positive -> positive
+
+ val div2 : positive -> positive
+
+ val div2_up : positive -> positive
+
+ val size_nat : positive -> nat
+
+ val size : positive -> positive
+
+ val compare_cont : positive -> positive -> comparison -> comparison
+
+ val compare : positive -> positive -> comparison
+
+ val min : positive -> positive -> positive
+
+ val max : positive -> positive -> positive
+
+ val eqb : positive -> positive -> bool
+
+ val leb : positive -> positive -> bool
+
+ val ltb : positive -> positive -> bool
+
+ val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask) ->
+ positive * mask
+
+ val sqrtrem : positive -> positive * mask
+
+ val sqrt : positive -> positive
+
+ val gcdn : nat -> positive -> positive -> positive
+
+ val gcd : positive -> positive -> positive
+
+ val ggcdn : nat -> positive -> positive -> positive * (positive * positive)
+
+ val ggcd : positive -> positive -> positive * (positive * positive)
+
+ val coq_Nsucc_double : n -> n
+
+ val coq_Ndouble : n -> n
+
+ val coq_lor : positive -> positive -> positive
+
+ val coq_land : positive -> positive -> n
+
+ val ldiff : positive -> positive -> n
+
+ val coq_lxor : positive -> positive -> n
+
+ val shiftl_nat : positive -> nat -> positive
+
+ val shiftr_nat : positive -> nat -> positive
+
+ val shiftl : positive -> n -> positive
+
+ val shiftr : positive -> n -> positive
+
+ val testbit_nat : positive -> nat -> bool
+
+ val testbit : positive -> n -> bool
+
+ val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1
+
+ val to_nat : positive -> nat
+
+ val of_nat : nat -> positive
+
+ val of_succ_nat : nat -> positive
+
+ val eq_dec : positive -> positive -> bool
+
+ val peano_rect : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1
+
+ val peano_rec : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1
+
+ type coq_PeanoView =
+ | PeanoOne
+ | PeanoSucc of positive * coq_PeanoView
+
+ val coq_PeanoView_rect :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1
+
+ val coq_PeanoView_rec :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1
+
+ val peanoView_xO : positive -> coq_PeanoView -> coq_PeanoView
+
+ val peanoView_xI : positive -> coq_PeanoView -> coq_PeanoView
+
+ val peanoView : positive -> coq_PeanoView
+
+ val coq_PeanoView_iter :
+ 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> coq_PeanoView -> 'a1
+
+ val switch_Eq : comparison -> comparison -> comparison
+
+ val mask2cmp : mask -> comparison
+
+ module T :
+ sig
+
+ end
+
+ module ORev :
+ sig
+ type t = Coq__1.t
+ end
+
+ module MRev :
+ sig
+ val max : t -> t -> t
+ end
+
+ module MPRev :
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+ module P :
+ sig
+ val max_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val max_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : t -> t -> bool
+
+ val min_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val min_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : t -> t -> bool
+ end
+
+ val max_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val max_case : t -> t -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : t -> t -> bool
+
+ val min_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val min_case : t -> t -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : t -> t -> bool
+ end
+
+module N :
+ sig
+ type t = n
+
+ val zero : n
+
+ val one : n
+
+ val two : n
+
+ val succ_double : n -> n
+
+ val double : n -> n
+
+ val succ : n -> n
+
+ val pred : n -> n
+
+ val succ_pos : n -> positive
+
+ val add : n -> n -> n
+
+ val sub : n -> n -> n
+
+ val mul : n -> n -> n
+
+ val compare : n -> n -> comparison
+
+ val eqb : n -> n -> bool
+
+ val leb : n -> n -> bool
+
+ val ltb : n -> n -> bool
+
+ val min : n -> n -> n
+
+ val max : n -> n -> n
+
+ val div2 : n -> n
+
+ val even : n -> bool
+
+ val odd : n -> bool
+
+ val pow : n -> n -> n
+
+ val log2 : n -> n
+
+ val size : n -> n
+
+ val size_nat : n -> nat
+
+ val pos_div_eucl : positive -> n -> n * n
+
+ val div_eucl : n -> n -> n * n
+
+ val div : n -> n -> n
+
+ val modulo : n -> n -> n
+
+ val gcd : n -> n -> n
+
+ val ggcd : n -> n -> n * (n * n)
+
+ val sqrtrem : n -> n * n
+
+ val sqrt : n -> n
+
+ val coq_lor : n -> n -> n
+
+ val coq_land : n -> n -> n
+
+ val ldiff : n -> n -> n
+
+ val coq_lxor : n -> n -> n
+
+ val shiftl_nat : n -> nat -> n
+
+ val shiftr_nat : n -> nat -> n
+
+ val shiftl : n -> n -> n
+
+ val shiftr : n -> n -> n
+
+ val testbit_nat : n -> nat -> bool
+
+ val testbit : n -> n -> bool
+
+ val to_nat : n -> nat
+
+ val of_nat : nat -> n
+
+ val iter : n -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val eq_dec : n -> n -> bool
+
+ val discr : n -> positive option
+
+ val binary_rect : 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ val binary_rec : 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ val peano_rect : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ val peano_rec : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ module BootStrap :
+ sig
+
+ end
+
+ val recursion : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ module OrderElts :
+ sig
+ type t = n
+ end
+
+ module OrderTac :
+ sig
+
+ end
+
+ module NZPowP :
+ sig
+
+ end
+
+ module NZSqrtP :
+ sig
+
+ end
+
+ val sqrt_up : n -> n
+
+ val log2_up : n -> n
+
+ module NZDivP :
+ sig
+
+ end
+
+ val lcm : n -> n -> n
+
+ val b2n : bool -> n
+
+ val setbit : n -> n -> n
+
+ val clearbit : n -> n -> n
+
+ val ones : n -> n
+
+ val lnot : n -> n -> n
+
+ module T :
+ sig
+
+ end
+
+ module ORev :
+ sig
+ type t = n
+ end
+
+ module MRev :
+ sig
+ val max : n -> n -> n
+ end
+
+ module MPRev :
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+ module P :
+ sig
+ val max_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val max_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : n -> n -> bool
+
+ val min_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val min_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : n -> n -> bool
+ end
+
+ val max_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val max_case : n -> n -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : n -> n -> bool
+
+ val min_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val min_case : n -> n -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : n -> n -> bool
+ end
-val zmax : z -> z -> z
+val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1
-val zle_bool : z -> z -> bool
+val nth : nat -> 'a1 list -> 'a1 -> 'a1
-val zge_bool : z -> z -> bool
+val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list
-val zgt_bool : z -> z -> bool
+val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1
+
+module Z :
+ sig
+ type t = z
+
+ val zero : z
+
+ val one : z
+
+ val two : z
+
+ val double : z -> z
+
+ val succ_double : z -> z
+
+ val pred_double : z -> z
+
+ val pos_sub : positive -> positive -> z
+
+ val add : z -> z -> z
+
+ val opp : z -> z
+
+ val succ : z -> z
+
+ val pred : z -> z
+
+ val sub : z -> z -> z
+
+ val mul : z -> z -> z
+
+ val pow_pos : z -> positive -> z
+
+ val pow : z -> z -> z
+
+ val compare : z -> z -> comparison
+
+ val sgn : z -> z
+
+ val leb : z -> z -> bool
+
+ val geb : z -> z -> bool
+
+ val ltb : z -> z -> bool
+
+ val gtb : z -> z -> bool
+
+ val eqb : z -> z -> bool
+
+ val max : z -> z -> z
+
+ val min : z -> z -> z
+
+ val abs : z -> z
+
+ val abs_nat : z -> nat
+
+ val abs_N : z -> n
+
+ val to_nat : z -> nat
+
+ val to_N : z -> n
+
+ val of_nat : nat -> z
+
+ val of_N : n -> z
+
+ val iter : z -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val pos_div_eucl : positive -> z -> z * z
+
+ val div_eucl : z -> z -> z * z
+
+ val div : z -> z -> z
+
+ val modulo : z -> z -> z
+
+ val quotrem : z -> z -> z * z
+
+ val quot : z -> z -> z
+
+ val rem : z -> z -> z
+
+ val even : z -> bool
+
+ val odd : z -> bool
+
+ val div2 : z -> z
+
+ val quot2 : z -> z
+
+ val log2 : z -> z
+
+ val sqrtrem : z -> z * z
+
+ val sqrt : z -> z
+
+ val gcd : z -> z -> z
+
+ val ggcd : z -> z -> z * (z * z)
+
+ val testbit : z -> z -> bool
+
+ val shiftl : z -> z -> z
+
+ val shiftr : z -> z -> z
+
+ val coq_lor : z -> z -> z
+
+ val coq_land : z -> z -> z
+
+ val ldiff : z -> z -> z
+
+ val coq_lxor : z -> z -> z
+
+ val eq_dec : z -> z -> bool
+
+ module BootStrap :
+ sig
+
+ end
+
+ module OrderElts :
+ sig
+ type t = z
+ end
+
+ module OrderTac :
+ sig
+
+ end
+
+ val sqrt_up : z -> z
+
+ val log2_up : z -> z
+
+ module NZDivP :
+ sig
+
+ end
+
+ module Quot2Div :
+ sig
+ val div : z -> z -> z
+
+ val modulo : z -> z -> z
+ end
+
+ module NZQuot :
+ sig
+
+ end
+
+ val lcm : z -> z -> z
+
+ val b2z : bool -> z
+
+ val setbit : z -> z -> z
+
+ val clearbit : z -> z -> z
+
+ val lnot : z -> z
+
+ val ones : z -> z
+
+ module T :
+ sig
+
+ end
+
+ module ORev :
+ sig
+ type t = z
+ end
+
+ module MRev :
+ sig
+ val max : z -> z -> z
+ end
+
+ module MPRev :
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+ module P :
+ sig
+ val max_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val max_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : z -> z -> bool
+
+ val min_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val min_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : z -> z -> bool
+ end
+
+ val max_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val max_case : z -> z -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : z -> z -> bool
+
+ val min_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val min_case : z -> z -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : z -> z -> bool
+ end
val zeq_bool : z -> z -> bool
-val n_of_nat : nat -> n
-
-val zdiv_eucl_POS : positive -> z -> z * z
-
-val zdiv_eucl : z -> z -> z * z
-
-val zdiv : z -> z -> z
-
type 'c pol =
- | Pc of 'c
- | Pinj of positive * 'c pol
- | PX of 'c pol * positive * 'c pol
+| Pc of 'c
+| Pinj of positive * 'c pol
+| PX of 'c pol * positive * 'c pol
val p0 : 'a1 -> 'a1 pol
@@ -117,6 +850,8 @@ val p1 : 'a1 -> 'a1 pol
val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool
+val mkPinj : positive -> 'a1 pol -> 'a1 pol
+
val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol
val mkPX :
@@ -177,13 +912,13 @@ val psquare :
bool) -> 'a1 pol -> 'a1 pol
type 'c pExpr =
- | PEc of 'c
- | PEX of positive
- | PEadd of 'c pExpr * 'c pExpr
- | PEsub of 'c pExpr * 'c pExpr
- | PEmul of 'c pExpr * 'c pExpr
- | PEopp of 'c pExpr
- | PEpow of 'c pExpr * n
+| PEc of 'c
+| PEX of positive
+| PEadd of 'c pExpr * 'c pExpr
+| PEsub of 'c pExpr * 'c pExpr
+| PEmul of 'c pExpr * 'c pExpr
+| PEopp of 'c pExpr
+| PEpow of 'c pExpr * n
val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol
@@ -200,14 +935,16 @@ val norm_aux :
'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol
type 'a bFormula =
- | TT
- | FF
- | X
- | A of 'a
- | Cj of 'a bFormula * 'a bFormula
- | D of 'a bFormula * 'a bFormula
- | N of 'a bFormula
- | I of 'a bFormula * 'a bFormula
+| TT
+| FF
+| X
+| A of 'a
+| Cj of 'a bFormula * 'a bFormula
+| D of 'a bFormula * 'a bFormula
+| N of 'a bFormula
+| I of 'a bFormula * 'a bFormula
+
+val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula
type 'term' clause = 'term' list
@@ -217,41 +954,65 @@ val tt : 'a1 cnf
val ff : 'a1 cnf
-val or_clause_cnf : 'a1 clause -> 'a1 cnf -> 'a1 cnf
+val add_term :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
+ clause option
-val or_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf
+val or_clause :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause ->
+ 'a1 clause option
+
+val or_clause_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf -> 'a1
+ cnf
+
+val or_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1
+ cnf
val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf
val xcnf :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
+ 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf
val cnf_checker : ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool
val tauto_checker :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1
- bFormula -> 'a3 list -> bool
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
+ 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list -> bool
+
+val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool
+
+val cltb : ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool
type 'c polC = 'c pol
type op1 =
- | Equal
- | NonEqual
- | Strict
- | NonStrict
+| Equal
+| NonEqual
+| Strict
+| NonStrict
+
+type 'c nFormula = 'c polC * op1
-type 'c nFormula = 'c polC * op1
+val opMult : op1 -> op1 -> op1 option
val opAdd : op1 -> op1 -> op1 option
type 'c psatz =
- | PsatzIn of nat
- | PsatzSquare of 'c polC
- | PsatzMulC of 'c polC * 'c psatz
- | PsatzMulE of 'c psatz * 'c psatz
- | PsatzAdd of 'c psatz * 'c psatz
- | PsatzC of 'c
- | PsatzZ
+| PsatzIn of nat
+| PsatzSquare of 'c polC
+| PsatzMulC of 'c polC * 'c psatz
+| PsatzMulE of 'c psatz * 'c psatz
+| PsatzAdd of 'c psatz * 'c psatz
+| PsatzC of 'c
+| PsatzZ
+
+val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option
+
+val map_option2 :
+ ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option
val pexpr_times_nformula :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
@@ -278,14 +1039,14 @@ val check_normalised_formulas :
bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool
type op2 =
- | OpEq
- | OpNEq
- | OpLe
- | OpGe
- | OpLt
- | OpGt
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt
-type 'c formula = { flhs : 'c pExpr; fop : op2; frhs : 'c pExpr }
+type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }
val flhs : 'a1 formula -> 'a1 pExpr
@@ -329,6 +1090,10 @@ val xdenorm : positive -> 'a1 pol -> 'a1 pExpr
val denorm : 'a1 pol -> 'a1 pExpr
+val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr
+
+val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula
+
val simpl_cone :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
'a1 psatz
@@ -357,18 +1122,12 @@ val qpower_positive : q -> positive -> q
val qpower : q -> z -> q
-val pgcdn : nat -> positive -> positive -> positive
-
-val pgcd : positive -> positive -> positive
-
-val zgcd : z -> z -> z
-
-type 'a t =
- | Empty
- | Leaf of 'a
- | Node of 'a t * 'a * 'a t
+type 'a t0 =
+| Empty
+| Leaf of 'a
+| Node of 'a t0 * 'a * 'a t0
-val find : 'a1 -> 'a1 t -> positive -> 'a1
+val find : 'a1 -> 'a1 t0 -> positive -> 'a1
type zWitness = z psatz
@@ -388,38 +1147,40 @@ val xnegate0 : z formula -> z nFormula list
val negate : z formula -> z nFormula cnf
+val zunsat : z nFormula -> bool
+
+val zdeduce : z nFormula -> z nFormula -> z nFormula option
+
val ceiling : z -> z -> z
type zArithProof =
- | DoneProof
- | RatProof of zWitness * zArithProof
- | CutProof of zWitness * zArithProof
- | EnumProof of zWitness * zWitness * zArithProof list
+| DoneProof
+| RatProof of zWitness * zArithProof
+| CutProof of zWitness * zArithProof
+| EnumProof of zWitness * zWitness * zArithProof list
val zgcdM : z -> z -> z
-val zgcd_pol : z polC -> z * z
+val zgcd_pol : z polC -> z * z
val zdiv_pol : z polC -> z -> z polC
-val makeCuttingPlane : z polC -> z polC * z
+val makeCuttingPlane : z polC -> z polC * z
-val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option
+val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option
-val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula
+val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula
val is_pol_Z0 : z polC -> bool
val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option
-val check_inconsistent0 : z nFormula -> bool
+val valid_cut_sign : op1 -> bool
val zChecker : z nFormula list -> zArithProof -> bool
val zTautoChecker : z formula bFormula -> zArithProof list -> bool
-val n_of_Z : z -> n
-
type qWitness = q psatz
val qWeakChecker : q nFormula list -> q psatz -> bool
@@ -428,15 +1189,36 @@ val qnormalise : q formula -> q nFormula cnf
val qnegate : q formula -> q nFormula cnf
+val qunsat : q nFormula -> bool
+
+val qdeduce : q nFormula -> q nFormula -> q nFormula option
+
val qTautoChecker : q formula bFormula -> qWitness list -> bool
-type rWitness = z psatz
+type rcst =
+| C0
+| C1
+| CQ of q
+| CZ of z
+| CPlus of rcst * rcst
+| CMinus of rcst * rcst
+| CMult of rcst * rcst
+| CInv of rcst
+| COpp of rcst
+
+val q_of_Rcst : rcst -> q
+
+type rWitness = q psatz
+
+val rWeakChecker : q nFormula list -> q psatz -> bool
+
+val rnormalise : q formula -> q nFormula cnf
-val rWeakChecker : z nFormula list -> z psatz -> bool
+val rnegate : q formula -> q nFormula cnf
-val rnormalise : z formula -> z nFormula cnf
+val runsat : q nFormula -> bool
-val rnegate : z formula -> z nFormula cnf
+val rdeduce : q nFormula -> q nFormula -> q nFormula option
-val rTautoChecker : z formula bFormula -> rWitness list -> bool
+val rTautoChecker : rcst formula bFormula -> rWitness list -> bool
diff --git a/plugins/micromega/micromega_plugin.mllib b/plugins/micromega/micromega_plugin.mllib
index debc296e..f53a9e37 100644
--- a/plugins/micromega/micromega_plugin.mllib
+++ b/plugins/micromega/micromega_plugin.mllib
@@ -1,6 +1,7 @@
Sos_types
Mutils
Micromega
+Polynomial
Mfourier
Certificate
Persistent_cache
diff --git a/plugins/micromega/mutils.ml b/plugins/micromega/mutils.ml
index ef23b912..c4dbf6af 100644
--- a/plugins/micromega/mutils.ml
+++ b/plugins/micromega/mutils.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,12 +8,23 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
+(* ** Utility functions ** *)
+(* *)
+(* - Modules CoqToCaml, CamlToCoq *)
+(* - Modules Cmp, Tag, TagSet *)
+(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
let debug = false
+let rec pp_list f o l =
+ match l with
+ | [] -> ()
+ | e::l -> f o e ; output_string o ";" ; pp_list f o l
+
+
let finally f rst =
try
let res = f () in
@@ -46,12 +57,16 @@ let iteri f l =
| e::l -> f i e ; xiter (i+1) l in
xiter 0 l
-let mapi f l =
- let rec xmap i l =
- match l with
- | [] -> []
- | e::l -> (f i e)::xmap (i+1) l in
- xmap 0 l
+let all_sym_pairs f l =
+ let pair_with acc e l = List.fold_left (fun acc x -> (f e x) ::acc) acc l in
+
+ let rec xpairs acc l =
+ match l with
+ | [] -> acc
+ | e::l -> xpairs (pair_with acc e l) l in
+ xpairs [] l
+
+
let rec map3 f l1 l2 l3 =
match l1 , l2 ,l3 with
@@ -59,8 +74,6 @@ let rec map3 f l1 l2 l3 =
| e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3)
| _ -> raise (Invalid_argument "map3")
-
-
let rec is_sublist l1 l2 =
match l1 ,l2 with
| [] ,_ -> true
@@ -69,8 +82,6 @@ let rec is_sublist l1 l2 =
if e = e' then is_sublist l1' l2'
else is_sublist l1 l2'
-
-
let list_try_find f =
let rec try_find_f = function
| [] -> failwith "try_find"
@@ -91,6 +102,18 @@ let interval n m =
in
interval_n ([],m)
+let extract pred l =
+ List.fold_left (fun (fd,sys) e ->
+ match fd with
+ | None ->
+ begin
+ match pred e with
+ | None -> fd, e::sys
+ | Some v -> Some(v,e) , sys
+ end
+ | _ -> (fd, e::sys)
+ ) (None,[]) l
+
open Num
open Big_int
@@ -100,7 +123,6 @@ let ppcm x y =
let y' = div_big_int y g in
mult_big_int g (mult_big_int x' y')
-
let denominator = function
| Int _ | Big_int _ -> unit_big_int
| Ratio r -> Ratio.denominator_ratio r
@@ -125,8 +147,6 @@ let rec gcd_list l =
if compare_big_int res zero_big_int = 0
then unit_big_int else res
-
-
let rats_to_ints l =
let c = ppcm_list unit_big_int l in
List.map (fun x -> (div_big_int (mult_big_int (numerator x) c)
@@ -140,7 +160,6 @@ let mapi f l =
| e::l -> (f e i)::(xmapi (i+1) l) in
xmapi 0 l
-
let concatMapi f l = List.rev (mapi (fun e i -> (i,f e)) l)
(* assoc_pos j [a0...an] = [j,a0....an,j+n],j+n+1 *)
@@ -178,6 +197,9 @@ let select_pos lpos l =
else xselect (i+1) lpos l in
xselect 0 lpos l
+(**
+ * MODULE: Coq to Caml data-structure mappings
+ *)
module CoqToCaml =
struct
@@ -194,20 +216,17 @@ struct
| XI p -> 1+ 2*(positive p)
| XO p -> 2*(positive p)
-
let n nt =
match nt with
| N0 -> 0
| Npos p -> positive p
-
let rec index i = (* Swap left-right ? *)
match i with
| XH -> 1
| XI i -> 1+(2*(index i))
| XO i -> 2*(index i)
-
let z x =
match x with
| Z0 -> 0
@@ -222,14 +241,12 @@ struct
| XI p -> add_int_big_int 1 (mult_int_big_int 2 (positive_big_int p))
| XO p -> (mult_int_big_int 2 (positive_big_int p))
-
let z_big_int x =
match x with
| Z0 -> zero_big_int
| Zpos p -> (positive_big_int p)
| Zneg p -> minus_big_int (positive_big_int p)
-
let num x = Num.Big_int (z_big_int x)
let q_to_num {qnum = x ; qden = y} =
@@ -238,6 +255,10 @@ struct
end
+(**
+ * MODULE: Caml to Coq data-structure mappings
+ *)
+
module CamlToCoq =
struct
open Micromega
@@ -252,7 +273,7 @@ struct
else if n land 1 = 1 then XI (positive (n lsr 1))
else XO (positive (n lsr 1))
- let n nt =
+ let n nt =
if nt < 0
then assert false
else if nt = 0 then N0
@@ -266,8 +287,7 @@ struct
let idx n =
(*a.k.a path_of_int *)
- (* returns the list of digits of n in reverse order with
- initial 1 removed *)
+ (* returns the list of digits of n in reverse order with initial 1 removed *)
let rec digits_of_int n =
if n=1 then []
else (n mod 2 = 1)::(digits_of_int (n lsr 1))
@@ -309,6 +329,11 @@ struct
end
+(**
+ * MODULE: Comparisons on lists: by evaluating the elements in a single list,
+ * between two lists given an ordering, and using a hash computation
+ *)
+
module Cmp =
struct
@@ -317,7 +342,7 @@ struct
| [] -> 0 (* Equal *)
| f::l ->
let cmp = f () in
- if cmp = 0 then compare_lexical l else cmp
+ if cmp = 0 then compare_lexical l else cmp
let rec compare_list cmp l1 l2 =
match l1 , l2 with
@@ -328,36 +353,59 @@ struct
let c = cmp e1 e2 in
if c = 0 then compare_list cmp l1 l2 else c
+(**
+ * hash_list takes a hash function and a list, and computes an integer which
+ * is the hash value of the list.
+ *)
let hash_list hash l =
let rec _hash_list l h =
match l with
| [] -> h lxor (Hashtbl.hash [])
- | e::l -> _hash_list l ((hash e) lxor h) in
+ | e::l -> _hash_list l ((hash e) lxor h)
+ in _hash_list l 0
- _hash_list l 0
end
+(**
+ * MODULE: Labels for atoms in propositional formulas.
+ * Tags are used to identify unused atoms in CNFs, and propagate them back to
+ * the original formula. The translation back to Coq then ignores these
+ * superfluous items, which speeds the translation up a bit.
+ *)
+
module type Tag =
sig
+
type t
val from : int -> t
val next : t -> t
val pp : out_channel -> t -> unit
val compare : t -> t -> int
+
end
module Tag : Tag =
struct
+
type t = int
+
let from i = i
let next i = i + 1
let pp o i = output_string o (string_of_int i)
let compare : int -> int -> int = Pervasives.compare
+
end
+(**
+ * MODULE: Ordered sets of tags.
+ *)
+
module TagSet = Set.Make(Tag)
+(**
+ * Forking routine, plumbing the appropriate pipes where needed.
+ *)
let command exe_path args vl =
(* creating pipes for stdin, stdout, stderr *)
@@ -365,7 +413,6 @@ let command exe_path args vl =
and (stdout_read,stdout_write) = Unix.pipe ()
and (stderr_read,stderr_write) = Unix.pipe () in
-
(* Create the process *)
let pid = Unix.create_process exe_path args stdin_read stdout_write stderr_write in
@@ -378,24 +425,20 @@ let command exe_path args vl =
let _pid,status = Unix.waitpid [] pid in
finally
+ (* Recover the result *)
(fun () ->
- (* Recover the result *)
match status with
| Unix.WEXITED 0 ->
- let inch = Unix.in_channel_of_descr stdout_read in
- begin try Marshal.from_channel inch with x -> failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string x)) end
- | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i)
+ let inch = Unix.in_channel_of_descr stdout_read in
+ begin try Marshal.from_channel inch
+ with x -> failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string x))
+ end
+ | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i)
| Unix.WSIGNALED i -> failwith (Printf.sprintf "command \"%s\" killed %i" exe_path i)
- | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i))
+ | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i))
+ (* Cleanup *)
(fun () ->
- (* Cleanup *)
- List.iter (fun x -> try Unix.close x with _ -> ()) [stdin_read; stdin_write; stdout_read ; stdout_write ; stderr_read; stderr_write]
- )
-
-
-
-
-
+ List.iter (fun x -> try Unix.close x with _ -> ()) [stdin_read; stdin_write; stdout_read; stdout_write; stderr_read; stderr_write])
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/persistent_cache.ml b/plugins/micromega/persistent_cache.ml
index b48fa36b..ed9fdcea 100644
--- a/plugins/micromega/persistent_cache.ml
+++ b/plugins/micromega/persistent_cache.ml
@@ -1,14 +1,14 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
-(* A persistent hashtable *)
+(* A persistent hashtable *)
(* *)
-(* Frédéric Besson (Inria Rennes) 2009 *)
+(* Frédéric Besson (Inria Rennes) 2009-2011 *)
(* *)
(************************************************************************)
@@ -20,8 +20,7 @@ module type PHashtable =
val create : int -> string -> 'a t
(** [create i f] creates an empty persistent table
- with initial size i
- associated with file [f] *)
+ with initial size i associated with file [f] *)
val open_in : string -> 'a t
@@ -40,7 +39,7 @@ module type PHashtable =
val close : 'a t -> unit
(** [close tbl] is closing the table.
Once closed, a table cannot be used.
- i.e, copy, find,add will raise UnboundTable *)
+ i.e, find,add will raise UnboundTable *)
val memo : string -> (key -> 'a) -> (key -> 'a)
(** [memo cache f] returns a memo function for [f] using file [cache] as persistent table.
@@ -52,20 +51,17 @@ open Hashtbl
module PHashtable(Key:HashedType) : PHashtable with type key = Key.t =
struct
+ open Unix
type key = Key.t
module Table = Hashtbl.Make(Key)
-
-
exception InvalidTableFormat
exception UnboundTable
-
type mode = Closed | Open
-
type 'a t =
{
outch : out_channel ;
@@ -75,8 +71,9 @@ struct
let create i f =
+ let flags = [O_WRONLY; O_TRUNC;O_CREAT] in
{
- outch = open_out_bin f ;
+ outch = out_channel_of_descr (openfile f flags 0o666);
status = Open ;
htbl = Table.create i
}
@@ -98,10 +95,20 @@ let read_key_elem inch =
| End_of_file -> None
| _ -> raise InvalidTableFormat
+
+let unlock fd =
+ try
+ let pos = lseek fd 0 SEEK_CUR in
+ ignore (lseek fd 0 SEEK_SET) ;
+ lockf fd F_ULOCK 0 ;
+ ignore (lseek fd pos SEEK_SET)
+ with exc -> failwith (Printexc.to_string exc)
+
let open_in f =
- let flags = [Open_rdonly;Open_binary;Open_creat] in
- let inch = open_in_gen flags 0o666 f in
- let htbl = Table.create 10 in
+ let flags = [O_RDONLY ; O_CREAT] in
+ let finch = openfile f flags 0o666 in
+ let inch = in_channel_of_descr finch in
+ let htbl = Table.create 100 in
let rec xload () =
match read_key_elem inch with
@@ -109,27 +116,38 @@ let open_in f =
| Some (key,elem) ->
Table.add htbl key elem ;
xload () in
-
try
- finally (fun () -> xload () ) (fun () -> close_in inch) ;
+ (* Locking of the (whole) file while reading *)
+ lockf finch F_RLOCK 0 ;
+ finally
+ (fun () -> xload () )
+ (fun () ->
+ unlock finch ;
+ close_in_noerr inch ;
+ ) ;
{
- outch = begin
- let flags = [Open_append;Open_binary;Open_creat] in
- open_out_gen flags 0o666 f
- end ;
+ outch = out_channel_of_descr (openfile f [O_WRONLY;O_APPEND;O_CREAT] 0o666) ;
status = Open ;
htbl = htbl
}
with InvalidTableFormat ->
(* Try to keep as many entries as possible *)
begin
- let flags = [Open_wronly; Open_trunc;Open_binary;Open_creat] in
- let outch = open_out_gen flags 0o666 f in
- Table.iter (fun k e -> Marshal.to_channel outch (k,e) [Marshal.No_sharing]) htbl;
- { outch = outch ;
- status = Open ;
- htbl = htbl
- }
+ let flags = [O_WRONLY; O_TRUNC;O_CREAT] in
+ let out = (openfile f flags 0o666) in
+ let outch = out_channel_of_descr out in
+ lockf out F_LOCK 0 ;
+ (try
+ Table.iter
+ (fun k e -> Marshal.to_channel outch (k,e) [Marshal.No_sharing]) htbl;
+ flush outch ;
+ with _ -> () )
+ ;
+ unlock out ;
+ { outch = outch ;
+ status = Open ;
+ htbl = htbl
+ }
end
@@ -147,9 +165,14 @@ let add t k e =
if status = Closed
then raise UnboundTable
else
+ let fd = descr_of_out_channel outch in
begin
Table.add tbl k e ;
- Marshal.to_channel outch (k,e) [Marshal.No_sharing]
+ lockf fd F_LOCK 0 ;
+ ignore (lseek fd 0 SEEK_END) ;
+ Marshal.to_channel outch (k,e) [Marshal.No_sharing] ;
+ flush outch ;
+ unlock fd
end
let find t k =
diff --git a/plugins/micromega/polynomial.ml b/plugins/micromega/polynomial.ml
new file mode 100644
index 00000000..14d312a5
--- /dev/null
+++ b/plugins/micromega/polynomial.ml
@@ -0,0 +1,739 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
+(* *)
+(************************************************************************)
+
+open Num
+module Utils = Mutils
+open Utils
+
+type var = int
+
+
+let (<+>) = add_num
+let (<->) = minus_num
+let (<*>) = mult_num
+
+
+module Monomial :
+sig
+ type t
+ val const : t
+ val is_const : t -> bool
+ val var : var -> t
+ val is_var : t -> bool
+ val find : var -> t -> int
+ val mult : var -> t -> t
+ val prod : t -> t -> t
+ val exp : t -> int -> t
+ val div : t -> t -> t * int
+ val compare : t -> t -> int
+ val pp : out_channel -> t -> unit
+ val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
+ val sqrt : t -> t option
+end
+ =
+struct
+ (* A monomial is represented by a multiset of variables *)
+ module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
+ open Map
+
+ type t = int Map.t
+
+ let pp o m = Map.iter
+ (fun k v ->
+ if v = 1 then Printf.fprintf o "x%i." k
+ else Printf.fprintf o "x%i^%i." k v) m
+
+
+ (* The monomial that corresponds to a constant *)
+ let const = Map.empty
+
+ let sum_degree m = Map.fold (fun _ n s -> s + n) m 0
+
+ (* Total ordering of monomials *)
+ let compare: t -> t -> int =
+ fun m1 m2 ->
+ let s1 = sum_degree m1
+ and s2 = sum_degree m2 in
+ if s1 = s2 then Map.compare Pervasives.compare m1 m2
+ else Pervasives.compare s1 s2
+
+ let is_const m = (m = Map.empty)
+
+ (* The monomial 'x' *)
+ let var x = Map.add x 1 Map.empty
+
+ let is_var m =
+ try
+ not (Map.fold (fun _ i fk ->
+ if fk = true (* first key *)
+ then
+ if i = 1 then false
+ else raise Not_found
+ else raise Not_found) m true)
+ with Not_found -> false
+
+ let sqrt m =
+ if is_const m then None
+ else
+ try
+ Some (Map.fold (fun v i acc ->
+ let i' = i / 2 in
+ if i mod 2 = 0
+ then add v i' m
+ else raise Not_found) m const)
+ with Not_found -> None
+
+ (* Get the degre of a variable in a monomial *)
+ let find x m = try find x m with Not_found -> 0
+
+ (* Multiply a monomial by a variable *)
+ let mult x m = add x ( (find x m) + 1) m
+
+ (* Product of monomials *)
+ let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
+
+
+ let exp m n =
+ let rec exp acc n =
+ if n = 0 then acc
+ else exp (prod acc m) (n - 1) in
+
+ exp const n
+
+
+ (* [div m1 m2 = mr,n] such that mr * (m2)^n = m1 *)
+ let div m1 m2 =
+ let n = fold (fun x i n -> let i' = find x m1 in
+ let nx = i' / i in
+ min n nx) m2 max_int in
+
+ let mr = fold (fun x i' m ->
+ let i = find x m2 in
+ let ir = i' - i * n in
+ if ir = 0 then m
+ else add x ir m) m1 empty in
+ (mr,n)
+
+
+ let fold = fold
+
+end
+
+module Poly :
+ (* A polynomial is a map of monomials *)
+ (*
+ This is probably a naive implementation
+ (expected to be fast enough - Coq is probably the bottleneck)
+ *The new ring contribution is using a sparse Horner representation.
+ *)
+sig
+ type t
+ val get : Monomial.t -> t -> num
+ val variable : var -> t
+ val add : Monomial.t -> num -> t -> t
+ val constant : num -> t
+ val mult : Monomial.t -> num -> t -> t
+ val product : t -> t -> t
+ val addition : t -> t -> t
+ val uminus : t -> t
+ val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
+ val pp : out_channel -> t -> unit
+ val compare : t -> t -> int
+ val is_null : t -> bool
+ val is_linear : t -> bool
+end =
+struct
+ (*normalisation bug : 0*x ... *)
+ module P = Map.Make(Monomial)
+ open P
+
+ type t = num P.t
+
+ let pp o p = P.iter
+ (fun k v ->
+ if Monomial.compare Monomial.const k = 0
+ then Printf.fprintf o "%s " (string_of_num v)
+ else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
+
+ (* Get the coefficient of monomial mn *)
+ let get : Monomial.t -> t -> num =
+ fun mn p -> try find mn p with Not_found -> (Int 0)
+
+
+ (* The polynomial 1.x *)
+ let variable : var -> t =
+ fun x -> add (Monomial.var x) (Int 1) empty
+
+ (*The constant polynomial *)
+ let constant : num -> t =
+ fun c -> add (Monomial.const) c empty
+
+ (* The addition of a monomial *)
+
+ let add : Monomial.t -> num -> t -> t =
+ fun mn v p ->
+ if sign_num v = 0 then p
+ else
+ let vl = (get mn p) <+> v in
+ if sign_num vl = 0 then
+ remove mn p
+ else add mn vl p
+
+
+ (** Design choice: empty is not a polynomial
+ I do not remember why ....
+ **)
+
+ (* The product by a monomial *)
+ let mult : Monomial.t -> num -> t -> t =
+ fun mn v p ->
+ if sign_num v = 0
+ then constant (Int 0)
+ else
+ fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
+
+
+ let addition : t -> t -> t =
+ fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
+
+
+ let product : t -> t -> t =
+ fun p1 p2 ->
+ fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
+
+
+ let uminus : t -> t =
+ fun p -> map (fun v -> minus_num v) p
+
+ let fold = P.fold
+
+ let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
+
+ let compare = compare compare_num
+
+ let is_linear p = P.fold (fun m _ acc -> acc && (Monomial.is_const m || Monomial.is_var m)) p true
+
+(* let is_linear p =
+ let res = is_linear p in
+ Printf.printf "is_linear %a = %b\n" pp p res ; res
+*)
+end
+
+
+module Vect =
+ struct
+ (** [t] is the type of vectors.
+ A vector [(x1,v1) ; ... ; (xn,vn)] is such that:
+ - variables indexes are ordered (x1 <c ... < xn
+ - values are all non-zero
+ *)
+ type var = int
+ type t = (var * num) list
+
+(** [equal v1 v2 = true] if the vectors are syntactically equal.
+ ([num] is not handled by [Pervasives.equal] *)
+
+ let rec equal v1 v2 =
+ match v1 , v2 with
+ | [] , [] -> true
+ | [] , _ -> false
+ | _::_ , [] -> false
+ | (i1,n1)::v1 , (i2,n2)::v2 ->
+ (i1 = i2) && n1 =/ n2 && equal v1 v2
+
+ let hash v =
+ let rec hash i = function
+ | [] -> i
+ | (vr,vl)::l -> hash (i + (Hashtbl.hash (vr, float_of_num vl))) l in
+ Hashtbl.hash (hash 0 v )
+
+
+ let null = []
+
+ let pp_vect o vect =
+ List.iter (fun (v,n) -> Printf.printf "%sx%i + " (string_of_num n) v) vect
+
+ let from_list (l: num list) =
+ let rec xfrom_list i l =
+ match l with
+ | [] -> []
+ | e::l ->
+ if e <>/ Int 0
+ then (i,e)::(xfrom_list (i+1) l)
+ else xfrom_list (i+1) l in
+
+ xfrom_list 0 l
+
+ let zero_num = Int 0
+ let unit_num = Int 1
+
+
+ let to_list m =
+ let rec xto_list i l =
+ match l with
+ | [] -> []
+ | (x,v)::l' ->
+ if i = x then v::(xto_list (i+1) l') else zero_num ::(xto_list (i+1) l) in
+ xto_list 0 m
+
+
+ let cons i v rst = if v =/ Int 0 then rst else (i,v)::rst
+
+ let rec update i f t =
+ match t with
+ | [] -> cons i (f zero_num) []
+ | (k,v)::l ->
+ match Pervasives.compare i k with
+ | 0 -> cons k (f v) l
+ | -1 -> cons i (f zero_num) t
+ | 1 -> (k,v) ::(update i f l)
+ | _ -> failwith "compare_num"
+
+ let rec set i n t =
+ match t with
+ | [] -> cons i n []
+ | (k,v)::l ->
+ match Pervasives.compare i k with
+ | 0 -> cons k n l
+ | -1 -> cons i n t
+ | 1 -> (k,v) :: (set i n l)
+ | _ -> failwith "compare_num"
+
+ let gcd m =
+ let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int x (Utils.numerator e)) Big_int.zero_big_int m in
+ if Big_int.compare_big_int res Big_int.zero_big_int = 0
+ then Big_int.unit_big_int else res
+
+ let rec mul z t =
+ match z with
+ | Int 0 -> []
+ | Int 1 -> t
+ | _ -> List.map (fun (i,n) -> (i, mult_num z n)) t
+
+
+ let rec add v1 v2 =
+ match v1 , v2 with
+ | (x1,n1)::v1' , (x2,n2)::v2' ->
+ if x1 = x2
+ then
+ let n' = n1 +/ n2 in
+ if n' =/ Int 0 then add v1' v2'
+ else
+ let res = add v1' v2' in
+ (x1,n') ::res
+ else if x1 < x2
+ then let res = add v1' v2 in
+ (x1, n1)::res
+ else let res = add v1 v2' in
+ (x2, n2)::res
+ | [] , [] -> []
+ | [] , _ -> v2
+ | _ , [] -> v1
+
+
+
+
+ let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical
+ [
+ (fun () -> Pervasives.compare (fst x) (fst y));
+ (fun () -> compare_num (snd x) (snd y))])
+
+ (** [tail v vect] returns
+ - [None] if [v] is not a variable of the vector [vect]
+ - [Some(vl,rst)] where [vl] is the value of [v] in vector [vect]
+ and [rst] is the remaining of the vector
+ We exploit that vectors are ordered lists
+ *)
+ let rec tail (v:var) (vect:t) =
+ match vect with
+ | [] -> None
+ | (v',vl)::vect' ->
+ match Pervasives.compare v' v with
+ | 0 -> Some (vl,vect) (* Ok, found *)
+ | -1 -> tail v vect' (* Might be in the tail *)
+ | _ -> None (* Hopeless *)
+
+ let get v vect =
+ match tail v vect with
+ | None -> None
+ | Some(vl,_) -> Some vl
+
+
+ let rec fresh v =
+ match v with
+ | [] -> 1
+ | [v,_] -> v + 1
+ | _::v -> fresh v
+
+ end
+
+type vector = Vect.t
+
+type cstr_compat = {coeffs : vector ; op : op ; cst : num}
+and op = |Eq | Ge
+
+let string_of_op = function Eq -> "=" | Ge -> ">="
+
+let output_cstr o {coeffs = coeffs ; op = op ; cst = cst} =
+ Printf.fprintf o "%a %s %s" Vect.pp_vect coeffs (string_of_op op) (string_of_num cst)
+
+let opMult o1 o2 =
+ match o1, o2 with
+ | Eq , Eq -> Eq
+ | Eq , Ge | Ge , Eq -> Ge
+ | Ge , Ge -> Ge
+
+let opAdd o1 o2 =
+ match o1 , o2 with
+ | Eq , _ | _ , Eq -> Eq
+ | Ge , Ge -> Ge
+
+
+
+
+open Big_int
+
+type index = int
+
+type prf_rule =
+ | Hyp of int
+ | Def of int
+ | Cst of big_int
+ | Zero
+ | Square of (Vect.t * num)
+ | MulC of (Vect.t * num) * prf_rule
+ | Gcd of big_int * prf_rule
+ | MulPrf of prf_rule * prf_rule
+ | AddPrf of prf_rule * prf_rule
+ | CutPrf of prf_rule
+
+type proof =
+ | Done
+ | Step of int * prf_rule * proof
+ | Enum of int * prf_rule * Vect.t * prf_rule * proof list
+
+
+let rec output_prf_rule o = function
+ | Hyp i -> Printf.fprintf o "Hyp %i" i
+ | Def i -> Printf.fprintf o "Def %i" i
+ | Cst c -> Printf.fprintf o "Cst %s" (string_of_big_int c)
+ | Zero -> Printf.fprintf o "Zero"
+ | Square _ -> Printf.fprintf o "( )^2"
+ | MulC(p,pr) -> Printf.fprintf o "P * %a" output_prf_rule pr
+ | MulPrf(p1,p2) -> Printf.fprintf o "%a * %a" output_prf_rule p1 output_prf_rule p2
+ | AddPrf(p1,p2) -> Printf.fprintf o "%a + %a" output_prf_rule p1 output_prf_rule p2
+ | CutPrf(p) -> Printf.fprintf o "[%a]" output_prf_rule p
+ | Gcd(c,p) -> Printf.fprintf o "(%a)/%s" output_prf_rule p (string_of_big_int c)
+
+let rec output_proof o = function
+ | Done -> Printf.fprintf o "."
+ | Step(i,p,pf) -> Printf.fprintf o "%i:= %a ; %a" i output_prf_rule p output_proof pf
+ | Enum(i,p1,v,p2,pl) -> Printf.fprintf o "%i{%a<=%a<=%a}%a" i
+ output_prf_rule p1 Vect.pp_vect v output_prf_rule p2
+ (pp_list output_proof) pl
+
+let rec pr_rule_max_id = function
+ | Hyp i | Def i -> i
+ | Cst _ | Zero | Square _ -> -1
+ | MulC(_,p) | CutPrf p | Gcd(_,p) -> pr_rule_max_id p
+ | MulPrf(p1,p2)| AddPrf(p1,p2) -> max (pr_rule_max_id p1) (pr_rule_max_id p2)
+
+let rec proof_max_id = function
+ | Done -> -1
+ | Step(i,pr,prf) -> max i (max (pr_rule_max_id pr) (proof_max_id prf))
+ | Enum(i,p1,_,p2,l) ->
+ let m = max (pr_rule_max_id p1) (pr_rule_max_id p2) in
+ List.fold_left (fun i prf -> max i (proof_max_id prf)) (max i m) l
+
+let rec pr_rule_def_cut id = function
+ | MulC(p,prf) ->
+ let (bds,id',prf') = pr_rule_def_cut id prf in
+ (bds, id', MulC(p,prf'))
+ | MulPrf(p1,p2) ->
+ let (bds1,id,p1) = pr_rule_def_cut id p1 in
+ let (bds2,id,p2) = pr_rule_def_cut id p2 in
+ (bds2@bds1,id,MulPrf(p1,p2))
+ | AddPrf(p1,p2) ->
+ let (bds1,id,p1) = pr_rule_def_cut id p1 in
+ let (bds2,id,p2) = pr_rule_def_cut id p2 in
+ (bds2@bds1,id,AddPrf(p1,p2))
+ | CutPrf p ->
+ let (bds,id,p) = pr_rule_def_cut id p in
+ ((id,p)::bds,id+1,Def id)
+ | Gcd(c,p) ->
+ let (bds,id,p) = pr_rule_def_cut id p in
+ ((id,p)::bds,id+1,Def id)
+ | Square _|Cst _|Def _|Hyp _|Zero as x -> ([],id,x)
+
+
+(* Do not define top-level cuts *)
+let pr_rule_def_cut id = function
+ | CutPrf p ->
+ let (bds,ids,p') = pr_rule_def_cut id p in
+ bds,ids, CutPrf p'
+ | p -> pr_rule_def_cut id p
+
+
+let rec implicit_cut p =
+ match p with
+ | CutPrf p -> implicit_cut p
+ | _ -> p
+
+
+let rec normalise_proof id prf =
+ match prf with
+ | Done -> (id,Done)
+ | Step(i,Gcd(c,p),Done) -> normalise_proof id (Step(i,p,Done))
+ | Step(i,p,prf) ->
+ let bds,id,p' = pr_rule_def_cut id p in
+ let (id,prf) = normalise_proof id prf in
+ let prf = List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc))
+ (Step(i,p',prf)) bds in
+
+ (id,prf)
+ | Enum(i,p1,v,p2,pl) ->
+ (* Why do I have top-level cuts ? *)
+(* let p1 = implicit_cut p1 in
+ let p2 = implicit_cut p2 in
+ let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
+ (List.fold_left max 0 ids ,
+ Enum(i,p1,v,p2,prfs))
+*)
+
+ let bds1,id,p1' = pr_rule_def_cut id (implicit_cut p1) in
+ let bds2,id,p2' = pr_rule_def_cut id (implicit_cut p2) in
+ let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
+ (List.fold_left max 0 ids ,
+ List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc))
+ (Enum(i,p1',v,p2',prfs)) (bds2@bds1))
+
+
+let normalise_proof id prf =
+ let res = normalise_proof id prf in
+ if debug then Printf.printf "normalise_proof %a -> %a" output_proof prf output_proof (snd res) ;
+ res
+
+
+
+let add_proof x y =
+ match x, y with
+ | Zero , p | p , Zero -> p
+ | _ -> AddPrf(x,y)
+
+
+let mul_proof c p =
+ match sign_big_int c with
+ | 0 -> Zero (* This is likely to be a bug *)
+ | -1 -> MulC(([],Big_int c),p) (* [p] should represent an equality *)
+ | 1 ->
+ if eq_big_int c unit_big_int
+ then p
+ else MulPrf(Cst c,p)
+ | _ -> assert false
+
+
+let mul_proof_ext (p,c) prf =
+ match p with
+ | [] -> mul_proof (numerator c) prf
+ | _ -> MulC((p,c),prf)
+
+
+
+(*
+ let rec scale_prf_rule = function
+ | Hyp i -> (unit_big_int, Hyp i)
+ | Def i -> (unit_big_int, Def i)
+ | Cst c -> (unit_big_int, Cst i)
+ | Zero -> (unit_big_int, Zero)
+ | Square p -> (unit_big_int,Square p)
+ | Div(c,pr) ->
+ let (bi,pr') = scale_prf_rule pr in
+ (mult_big_int c bi , pr')
+ | MulC(p,pr) ->
+ let bi,pr' = scale_prf_rule pr in
+ (bi,MulC p,pr')
+ | MulPrf(p1,p2) ->
+ let b1,p1 = scale_prf_rule p1 in
+ let b2,p2 = scale_prf_rule p2 in
+
+
+ | AddPrf(p1,p2) ->
+ let b1,p1 = scale_prf_rule p1 in
+ let b2,p2 = scale_prf_rule p2 in
+ let g = gcd_big_int
+*)
+
+
+
+
+
+module LinPoly =
+struct
+ type t = Vect.t * num
+
+ module MonT =
+ struct
+ module MonoMap = Map.Make(Monomial)
+ module IntMap = Map.Make(struct type t = int let compare = Pervasives.compare end)
+
+ (** A hash table might be preferable but requires a hash function. *)
+ let (index_of_monomial : int MonoMap.t ref) = ref (MonoMap.empty)
+ let (monomial_of_index : Monomial.t IntMap.t ref) = ref (IntMap.empty)
+ let fresh = ref 0
+
+ let clear () =
+ index_of_monomial := MonoMap.empty;
+ monomial_of_index := IntMap.empty ;
+ fresh := 0
+
+
+ let register m =
+ try
+ MonoMap.find m !index_of_monomial
+ with Not_found ->
+ begin
+ let res = !fresh in
+ index_of_monomial := MonoMap.add m res !index_of_monomial ;
+ monomial_of_index := IntMap.add res m !monomial_of_index ;
+ incr fresh ; res
+ end
+
+ let retrieve i = IntMap.find i !monomial_of_index
+
+
+ end
+
+ let normalise (v,c) =
+ (List.sort (fun x y -> Pervasives.compare (fst x) (fst y)) v , c)
+
+
+ let output_mon o (x,v) =
+ Printf.fprintf o "%s.%a +" (string_of_num v) Monomial.pp (MonT.retrieve x)
+
+
+
+ let output_cstr o {coeffs = coeffs ; op = op ; cst = cst} =
+ Printf.fprintf o "%a %s %s" (pp_list output_mon) coeffs (string_of_op op) (string_of_num cst)
+
+
+
+ let linpol_of_pol p =
+ let (v,c) =
+ Poly.fold
+ (fun mon num (vct,cst) ->
+ if Monomial.is_const mon then (vct,num)
+ else
+ let vr = MonT.register mon in
+ ((vr,num)::vct,cst)) p ([], Int 0) in
+ normalise (v,c)
+
+ let mult v m (vect,c) =
+ if Monomial.is_const m
+ then
+ (Vect.mul v vect, v <*> c)
+ else
+ if sign_num v <> 0
+ then
+ let hd =
+ if sign_num c <> 0
+ then [MonT.register m,v <*> c]
+ else [] in
+
+ let vect = hd @ (List.map (fun (x,n) ->
+ let x = MonT.retrieve x in
+ let x_m = MonT.register (Monomial.prod m x) in
+ (x_m, v <*> n)) vect ) in
+ normalise (vect , Int 0)
+ else ([],Int 0)
+
+ let mult v m (vect,c) =
+ let (vect',c') = mult v m (vect,c) in
+ if debug then
+ Printf.printf "mult %s %a (%a,%s) -> (%a,%s)\n" (string_of_num v) Monomial.pp m
+ (pp_list output_mon) vect (string_of_num c)
+ (pp_list output_mon) vect' (string_of_num c') ;
+ (vect',c')
+
+
+
+ let make_lin_pol v mon =
+ if Monomial.is_const mon
+ then [] , v
+ else [MonT.register mon, v],Int 0
+
+
+
+
+
+
+ let xpivot_eq (c,prf) x v (c',prf') =
+ if debug then Printf.printf "xpivot_eq {%a} %a %s {%a}\n"
+ output_cstr c
+ Monomial.pp (MonT.retrieve x)
+ (string_of_num v) output_cstr c' ;
+
+
+ let {coeffs = coeffs ; op = op ; cst = cst} = c' in
+ let m = MonT.retrieve x in
+
+ let apply_pivot (vqn,q,n) (c',prf') =
+ (* Morally, we have (Vect.get (q*x^n) c'.coeffs) = vmn with n >=0 *)
+
+ let cc' = abs_num v in
+ let cc_num = Int (- (sign_num v)) <*> vqn in
+ let cc_mon = Monomial.prod q (Monomial.exp m (n-1)) in
+
+ let (c_coeff,c_cst) = mult cc_num cc_mon (c.coeffs, minus_num c.cst) in
+
+ let c' = {coeffs = Vect.add (Vect.mul cc' c'.coeffs) c_coeff ; op = op ; cst = (minus_num c_cst) <+> (cc' <*> c'.cst)} in
+ let prf' = add_proof
+ (mul_proof_ext (make_lin_pol cc_num cc_mon) prf)
+ (mul_proof (numerator cc') prf') in
+
+ if debug then Printf.printf "apply_pivot -> {%a}\n" output_cstr c' ;
+ (c',prf') in
+
+
+ let cmp (q,n) (q',n') =
+ if n < n' then -1
+ else if n = n' then Monomial.compare q q'
+ else 1 in
+
+
+ let find_pivot (c',prf') =
+ let (v,q,n) = List.fold_left
+ (fun (v,q,n) (x,v') ->
+ let x = MonT.retrieve x in
+ let (q',n') = Monomial.div x m in
+ if cmp (q,n) (q',n') = -1 then (v',q',n') else (v,q,n)) (Int 0, Monomial.const,0) c'.coeffs in
+ if n > 0 then Some (v,q,n) else None in
+
+ let rec pivot (q,n) (c',prf') =
+ match find_pivot (c',prf') with
+ | None -> (c',prf')
+ | Some(v,q',n') ->
+ if cmp (q',n') (q,n) = -1
+ then pivot (q',n') (apply_pivot (v,q',n') (c',prf'))
+ else (c',prf') in
+
+ pivot (Monomial.const,max_int) (c',prf')
+
+
+ let pivot_eq x (c,prf) =
+ match Vect.get x c.coeffs with
+ | None -> (fun x -> None)
+ | Some v -> fun cp' -> Some (xpivot_eq (c,prf) x v cp')
+
+
+end
diff --git a/plugins/micromega/sos.ml b/plugins/micromega/sos.ml
index 3029496b..6ddc48e7 100644
--- a/plugins/micromega/sos.ml
+++ b/plugins/micromega/sos.ml
@@ -526,17 +526,17 @@ let sdpa_run_succeeded =
(* ------------------------------------------------------------------------- *)
let sdpa_default_parameters =
-"100 unsigned int maxIteration;
-1.0E-7 double 0.0 < epsilonStar;
-1.0E2 double 0.0 < lambdaStar;
-2.0 double 1.0 < omegaStar;
--1.0E5 double lowerBound;
-1.0E5 double upperBound;
-0.1 double 0.0 <= betaStar < 1.0;
-0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
-0.9 double 0.0 < gammaStar < 1.0;
-1.0E-7 double 0.0 < epsilonDash;
-";;
+"100 unsigned int maxIteration;\
+\n1.0E-7 double 0.0 < epsilonStar;\
+\n1.0E2 double 0.0 < lambdaStar;\
+\n2.0 double 1.0 < omegaStar;\
+\n-1.0E5 double lowerBound;\
+\n1.0E5 double upperBound;\
+\n0.1 double 0.0 <= betaStar < 1.0;\
+\n0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\
+\n0.9 double 0.0 < gammaStar < 1.0;\
+\n1.0E-7 double 0.0 < epsilonDash;\
+\n";;
(* ------------------------------------------------------------------------- *)
(* These were suggested by Makoto Yamashita for problems where we are *)
@@ -544,17 +544,17 @@ let sdpa_default_parameters =
(* ------------------------------------------------------------------------- *)
let sdpa_alt_parameters =
-"1000 unsigned int maxIteration;
-1.0E-7 double 0.0 < epsilonStar;
-1.0E4 double 0.0 < lambdaStar;
-2.0 double 1.0 < omegaStar;
--1.0E5 double lowerBound;
-1.0E5 double upperBound;
-0.1 double 0.0 <= betaStar < 1.0;
-0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
-0.9 double 0.0 < gammaStar < 1.0;
-1.0E-7 double 0.0 < epsilonDash;
-";;
+"1000 unsigned int maxIteration;\
+\n1.0E-7 double 0.0 < epsilonStar;\
+\n1.0E4 double 0.0 < lambdaStar;\
+\n2.0 double 1.0 < omegaStar;\
+\n-1.0E5 double lowerBound;\
+\n1.0E5 double upperBound;\
+\n0.1 double 0.0 <= betaStar < 1.0;\
+\n0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\
+\n0.9 double 0.0 < gammaStar < 1.0;\
+\n1.0E-7 double 0.0 < epsilonDash;\
+\n";;
let sdpa_params = sdpa_alt_parameters;;
@@ -563,21 +563,21 @@ let sdpa_params = sdpa_alt_parameters;;
(* ------------------------------------------------------------------------- *)
let csdp_default_parameters =
-"axtol=1.0e-8
-atytol=1.0e-8
-objtol=1.0e-8
-pinftol=1.0e8
-dinftol=1.0e8
-maxiter=100
-minstepfrac=0.9
-maxstepfrac=0.97
-minstepp=1.0e-8
-minstepd=1.0e-8
-usexzgap=1
-tweakgap=0
-affine=0
-printlevel=1
-";;
+"axtol=1.0e-8\
+\natytol=1.0e-8\
+\nobjtol=1.0e-8\
+\npinftol=1.0e8\
+\ndinftol=1.0e8\
+\nmaxiter=100\
+\nminstepfrac=0.9\
+\nmaxstepfrac=0.97\
+\nminstepp=1.0e-8\
+\nminstepd=1.0e-8\
+\nusexzgap=1\
+\ntweakgap=0\
+\naffine=0\
+\nprintlevel=1\
+\n";;
let csdp_params = csdp_default_parameters;;
diff --git a/plugins/micromega/sos.mli b/plugins/micromega/sos.mli
index 23219be2..3d907e19 100644
--- a/plugins/micromega/sos.mli
+++ b/plugins/micromega/sos.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/micromega/sos_types.ml b/plugins/micromega/sos_types.ml
index 6bd463ef..91aa5855 100644
--- a/plugins/micromega/sos_types.ml
+++ b/plugins/micromega/sos_types.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)