summaryrefslogtreecommitdiff
path: root/plugins/micromega/sos.ml
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /plugins/micromega/sos.ml
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'plugins/micromega/sos.ml')
-rw-r--r--plugins/micromega/sos.ml1859
1 files changed, 1859 insertions, 0 deletions
diff --git a/plugins/micromega/sos.ml b/plugins/micromega/sos.ml
new file mode 100644
index 00000000..3029496b
--- /dev/null
+++ b/plugins/micromega/sos.ml
@@ -0,0 +1,1859 @@
+(* ========================================================================= *)
+(* - This code originates from John Harrison's HOL LIGHT 2.30 *)
+(* (see file LICENSE.sos for license, copyright and disclaimer) *)
+(* - Laurent Théry (thery@sophia.inria.fr) has isolated the HOL *)
+(* independent bits *)
+(* - Frédéric Besson (fbesson@irisa.fr) is using it to feed micromega *)
+(* ========================================================================= *)
+
+(* ========================================================================= *)
+(* Nonlinear universal reals procedure using SOS decomposition. *)
+(* ========================================================================= *)
+open Num;;
+open List;;
+open Sos_types;;
+open Sos_lib;;
+
+(*
+prioritize_real();;
+*)
+
+let debugging = ref false;;
+
+exception Sanity;;
+
+exception Unsolvable;;
+
+(* ------------------------------------------------------------------------- *)
+(* Turn a rational into a decimal string with d sig digits. *)
+(* ------------------------------------------------------------------------- *)
+
+let decimalize =
+ let rec normalize y =
+ if abs_num y </ Int 1 // Int 10 then normalize (Int 10 */ y) - 1
+ else if abs_num y >=/ Int 1 then normalize (y // Int 10) + 1
+ else 0 in
+ fun d x ->
+ if x =/ Int 0 then "0.0" else
+ let y = abs_num x in
+ let e = normalize y in
+ let z = pow10(-e) */ y +/ Int 1 in
+ let k = round_num(pow10 d */ z) in
+ (if x </ Int 0 then "-0." else "0.") ^
+ implode(tl(explode(string_of_num k))) ^
+ (if e = 0 then "" else "e"^string_of_int e);;
+
+(* ------------------------------------------------------------------------- *)
+(* Iterations over numbers, and lists indexed by numbers. *)
+(* ------------------------------------------------------------------------- *)
+
+let rec itern k l f a =
+ match l with
+ [] -> a
+ | h::t -> itern (k + 1) t f (f h k a);;
+
+let rec iter (m,n) f a =
+ if n < m then a
+ else iter (m+1,n) f (f m a);;
+
+(* ------------------------------------------------------------------------- *)
+(* The main types. *)
+(* ------------------------------------------------------------------------- *)
+
+type vector = int*(int,num)func;;
+
+type matrix = (int*int)*(int*int,num)func;;
+
+type monomial = (vname,int)func;;
+
+type poly = (monomial,num)func;;
+
+(* ------------------------------------------------------------------------- *)
+(* Assignment avoiding zeros. *)
+(* ------------------------------------------------------------------------- *)
+
+let (|-->) x y a = if y =/ Int 0 then a else (x |-> y) a;;
+
+(* ------------------------------------------------------------------------- *)
+(* This can be generic. *)
+(* ------------------------------------------------------------------------- *)
+
+let element (d,v) i = tryapplyd v i (Int 0);;
+
+let mapa f (d,v) =
+ d,foldl (fun a i c -> (i |--> f(c)) a) undefined v;;
+
+let is_zero (d,v) =
+ match v with
+ Empty -> true
+ | _ -> false;;
+
+(* ------------------------------------------------------------------------- *)
+(* Vectors. Conventionally indexed 1..n. *)
+(* ------------------------------------------------------------------------- *)
+
+let vector_0 n = (n,undefined:vector);;
+
+let dim (v:vector) = fst v;;
+
+let vector_const c n =
+ if c =/ Int 0 then vector_0 n
+ else (n,itlist (fun k -> k |-> c) (1--n) undefined :vector);;
+
+let vector_1 = vector_const (Int 1);;
+
+let vector_cmul c (v:vector) =
+ let n = dim v in
+ if c =/ Int 0 then vector_0 n
+ else n,mapf (fun x -> c */ x) (snd v)
+
+let vector_neg (v:vector) = (fst v,mapf minus_num (snd v) :vector);;
+
+let vector_add (v1:vector) (v2:vector) =
+ let m = dim v1 and n = dim v2 in
+ if m <> n then failwith "vector_add: incompatible dimensions" else
+ (n,combine (+/) (fun x -> x =/ Int 0) (snd v1) (snd v2) :vector);;
+
+let vector_sub v1 v2 = vector_add v1 (vector_neg v2);;
+
+let vector_dot (v1:vector) (v2:vector) =
+ let m = dim v1 and n = dim v2 in
+ if m <> n then failwith "vector_add: incompatible dimensions" else
+ foldl (fun a i x -> x +/ a) (Int 0)
+ (combine ( */ ) (fun x -> x =/ Int 0) (snd v1) (snd v2));;
+
+let vector_of_list l =
+ let n = length l in
+ (n,itlist2 (|->) (1--n) l undefined :vector);;
+
+(* ------------------------------------------------------------------------- *)
+(* Matrices; again rows and columns indexed from 1. *)
+(* ------------------------------------------------------------------------- *)
+
+let matrix_0 (m,n) = ((m,n),undefined:matrix);;
+
+let dimensions (m:matrix) = fst m;;
+
+let matrix_const c (m,n as mn) =
+ if m <> n then failwith "matrix_const: needs to be square"
+ else if c =/ Int 0 then matrix_0 mn
+ else (mn,itlist (fun k -> (k,k) |-> c) (1--n) undefined :matrix);;
+
+let matrix_1 = matrix_const (Int 1);;
+
+let matrix_cmul c (m:matrix) =
+ let (i,j) = dimensions m in
+ if c =/ Int 0 then matrix_0 (i,j)
+ else (i,j),mapf (fun x -> c */ x) (snd m);;
+
+let matrix_neg (m:matrix) = (dimensions m,mapf minus_num (snd m) :matrix);;
+
+let matrix_add (m1:matrix) (m2:matrix) =
+ let d1 = dimensions m1 and d2 = dimensions m2 in
+ if d1 <> d2 then failwith "matrix_add: incompatible dimensions"
+ else (d1,combine (+/) (fun x -> x =/ Int 0) (snd m1) (snd m2) :matrix);;
+
+let matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);;
+
+let row k (m:matrix) =
+ let i,j = dimensions m in
+ (j,
+ foldl (fun a (i,j) c -> if i = k then (j |-> c) a else a) undefined (snd m)
+ : vector);;
+
+let column k (m:matrix) =
+ let i,j = dimensions m in
+ (i,
+ foldl (fun a (i,j) c -> if j = k then (i |-> c) a else a) undefined (snd m)
+ : vector);;
+
+let transp (m:matrix) =
+ let i,j = dimensions m in
+ ((j,i),foldl (fun a (i,j) c -> ((j,i) |-> c) a) undefined (snd m) :matrix);;
+
+let diagonal (v:vector) =
+ let n = dim v in
+ ((n,n),foldl (fun a i c -> ((i,i) |-> c) a) undefined (snd v) : matrix);;
+
+let matrix_of_list l =
+ let m = length l in
+ if m = 0 then matrix_0 (0,0) else
+ let n = length (hd l) in
+ (m,n),itern 1 l (fun v i -> itern 1 v (fun c j -> (i,j) |-> c)) undefined;;
+
+(* ------------------------------------------------------------------------- *)
+(* Monomials. *)
+(* ------------------------------------------------------------------------- *)
+
+let monomial_eval assig (m:monomial) =
+ foldl (fun a x k -> a */ power_num (apply assig x) (Int k))
+ (Int 1) m;;
+
+let monomial_1 = (undefined:monomial);;
+
+let monomial_var x = (x |=> 1 :monomial);;
+
+let (monomial_mul:monomial->monomial->monomial) =
+ combine (+) (fun x -> false);;
+
+let monomial_pow (m:monomial) k =
+ if k = 0 then monomial_1
+ else mapf (fun x -> k * x) m;;
+
+let monomial_divides (m1:monomial) (m2:monomial) =
+ foldl (fun a x k -> tryapplyd m2 x 0 >= k & a) true m1;;
+
+let monomial_div (m1:monomial) (m2:monomial) =
+ let m = combine (+) (fun x -> x = 0) m1 (mapf (fun x -> -x) m2) in
+ if foldl (fun a x k -> k >= 0 & a) true m then m
+ else failwith "monomial_div: non-divisible";;
+
+let monomial_degree x (m:monomial) = tryapplyd m x 0;;
+
+let monomial_lcm (m1:monomial) (m2:monomial) =
+ (itlist (fun x -> x |-> max (monomial_degree x m1) (monomial_degree x m2))
+ (union (dom m1) (dom m2)) undefined :monomial);;
+
+let monomial_multidegree (m:monomial) = foldl (fun a x k -> k + a) 0 m;;
+
+let monomial_variables m = dom m;;
+
+(* ------------------------------------------------------------------------- *)
+(* Polynomials. *)
+(* ------------------------------------------------------------------------- *)
+
+let eval assig (p:poly) =
+ foldl (fun a m c -> a +/ c */ monomial_eval assig m) (Int 0) p;;
+
+let poly_0 = (undefined:poly);;
+
+let poly_isconst (p:poly) = foldl (fun a m c -> m = monomial_1 & a) true p;;
+
+let poly_var x = ((monomial_var x) |=> Int 1 :poly);;
+
+let poly_const c =
+ if c =/ Int 0 then poly_0 else (monomial_1 |=> c);;
+
+let poly_cmul c (p:poly) =
+ if c =/ Int 0 then poly_0
+ else mapf (fun x -> c */ x) p;;
+
+let poly_neg (p:poly) = (mapf minus_num p :poly);;
+
+let poly_add (p1:poly) (p2:poly) =
+ (combine (+/) (fun x -> x =/ Int 0) p1 p2 :poly);;
+
+let poly_sub p1 p2 = poly_add p1 (poly_neg p2);;
+
+let poly_cmmul (c,m) (p:poly) =
+ if c =/ Int 0 then poly_0
+ else if m = monomial_1 then mapf (fun d -> c */ d) p
+ else foldl (fun a m' d -> (monomial_mul m m' |-> c */ d) a) poly_0 p;;
+
+let poly_mul (p1:poly) (p2:poly) =
+ foldl (fun a m c -> poly_add (poly_cmmul (c,m) p2) a) poly_0 p1;;
+
+let poly_div (p1:poly) (p2:poly) =
+ if not(poly_isconst p2) then failwith "poly_div: non-constant" else
+ let c = eval undefined p2 in
+ if c =/ Int 0 then failwith "poly_div: division by zero"
+ else poly_cmul (Int 1 // c) p1;;
+
+let poly_square p = poly_mul p p;;
+
+let rec poly_pow p k =
+ if k = 0 then poly_const (Int 1)
+ else if k = 1 then p
+ else let q = poly_square(poly_pow p (k / 2)) in
+ if k mod 2 = 1 then poly_mul p q else q;;
+
+let poly_exp p1 p2 =
+ if not(poly_isconst p2) then failwith "poly_exp: not a constant" else
+ poly_pow p1 (Num.int_of_num (eval undefined p2));;
+
+let degree x (p:poly) = foldl (fun a m c -> max (monomial_degree x m) a) 0 p;;
+
+let multidegree (p:poly) =
+ foldl (fun a m c -> max (monomial_multidegree m) a) 0 p;;
+
+let poly_variables (p:poly) =
+ foldr (fun m c -> union (monomial_variables m)) p [];;
+
+(* ------------------------------------------------------------------------- *)
+(* Order monomials for human presentation. *)
+(* ------------------------------------------------------------------------- *)
+
+let humanorder_varpow (x1,k1) (x2,k2) = x1 < x2 or x1 = x2 & k1 > k2;;
+
+let humanorder_monomial =
+ let rec ord l1 l2 = match (l1,l2) with
+ _,[] -> true
+ | [],_ -> false
+ | h1::t1,h2::t2 -> humanorder_varpow h1 h2 or h1 = h2 & ord t1 t2 in
+ fun m1 m2 -> m1 = m2 or
+ ord (sort humanorder_varpow (graph m1))
+ (sort humanorder_varpow (graph m2));;
+
+(* ------------------------------------------------------------------------- *)
+(* Conversions to strings. *)
+(* ------------------------------------------------------------------------- *)
+
+let string_of_vector min_size max_size (v:vector) =
+ let n_raw = dim v in
+ if n_raw = 0 then "[]" else
+ let n = max min_size (min n_raw max_size) in
+ let xs = map ((o) string_of_num (element v)) (1--n) in
+ "[" ^ end_itlist (fun s t -> s ^ ", " ^ t) xs ^
+ (if n_raw > max_size then ", ...]" else "]");;
+
+let string_of_matrix max_size (m:matrix) =
+ let i_raw,j_raw = dimensions m in
+ let i = min max_size i_raw and j = min max_size j_raw in
+ let rstr = map (fun k -> string_of_vector j j (row k m)) (1--i) in
+ "["^end_itlist(fun s t -> s^";\n "^t) rstr ^
+ (if j > max_size then "\n ...]" else "]");;
+
+let string_of_vname (v:vname): string = (v: string);;
+
+let rec string_of_term t =
+ match t with
+ Opp t1 -> "(- " ^ string_of_term t1 ^ ")"
+| Add (t1, t2) ->
+ "(" ^ (string_of_term t1) ^ " + " ^ (string_of_term t2) ^ ")"
+| Sub (t1, t2) ->
+ "(" ^ (string_of_term t1) ^ " - " ^ (string_of_term t2) ^ ")"
+| Mul (t1, t2) ->
+ "(" ^ (string_of_term t1) ^ " * " ^ (string_of_term t2) ^ ")"
+| Inv t1 -> "(/ " ^ string_of_term t1 ^ ")"
+| Div (t1, t2) ->
+ "(" ^ (string_of_term t1) ^ " / " ^ (string_of_term t2) ^ ")"
+| Pow (t1, n1) ->
+ "(" ^ (string_of_term t1) ^ " ^ " ^ (string_of_int n1) ^ ")"
+| Zero -> "0"
+| Var v -> "x" ^ (string_of_vname v)
+| Const x -> string_of_num x;;
+
+
+let string_of_varpow x k =
+ if k = 1 then string_of_vname x else string_of_vname x^"^"^string_of_int k;;
+
+let string_of_monomial m =
+ if m = monomial_1 then "1" else
+ let vps = List.fold_right (fun (x,k) a -> string_of_varpow x k :: a)
+ (sort humanorder_varpow (graph m)) [] in
+ end_itlist (fun s t -> s^"*"^t) vps;;
+
+let string_of_cmonomial (c,m) =
+ if m = monomial_1 then string_of_num c
+ else if c =/ Int 1 then string_of_monomial m
+ else string_of_num c ^ "*" ^ string_of_monomial m;;
+
+let string_of_poly (p:poly) =
+ if p = poly_0 then "<<0>>" else
+ let cms = sort (fun (m1,_) (m2,_) -> humanorder_monomial m1 m2) (graph p) in
+ let s =
+ List.fold_left (fun a (m,c) ->
+ if c </ Int 0 then a ^ " - " ^ string_of_cmonomial(minus_num c,m)
+ else a ^ " + " ^ string_of_cmonomial(c,m))
+ "" cms in
+ let s1 = String.sub s 0 3
+ and s2 = String.sub s 3 (String.length s - 3) in
+ "<<" ^(if s1 = " + " then s2 else "-"^s2)^">>";;
+
+(* ------------------------------------------------------------------------- *)
+(* Printers. *)
+(* ------------------------------------------------------------------------- *)
+
+let print_vector v = Format.print_string(string_of_vector 0 20 v);;
+
+let print_matrix m = Format.print_string(string_of_matrix 20 m);;
+
+let print_monomial m = Format.print_string(string_of_monomial m);;
+
+let print_poly m = Format.print_string(string_of_poly m);;
+
+(*
+#install_printer print_vector;;
+#install_printer print_matrix;;
+#install_printer print_monomial;;
+#install_printer print_poly;;
+*)
+
+(* ------------------------------------------------------------------------- *)
+(* Conversion from term. *)
+(* ------------------------------------------------------------------------- *)
+
+let rec poly_of_term t = match t with
+ Zero -> poly_0
+| Const n -> poly_const n
+| Var x -> poly_var x
+| Opp t1 -> poly_neg (poly_of_term t1)
+| Inv t1 ->
+ let p = poly_of_term t1 in
+ if poly_isconst p then poly_const(Int 1 // eval undefined p)
+ else failwith "poly_of_term: inverse of non-constant polyomial"
+| Add (l, r) -> poly_add (poly_of_term l) (poly_of_term r)
+| Sub (l, r) -> poly_sub (poly_of_term l) (poly_of_term r)
+| Mul (l, r) -> poly_mul (poly_of_term l) (poly_of_term r)
+| Div (l, r) ->
+ let p = poly_of_term l and q = poly_of_term r in
+ if poly_isconst q then poly_cmul (Int 1 // eval undefined q) p
+ else failwith "poly_of_term: division by non-constant polynomial"
+| Pow (t, n) ->
+ poly_pow (poly_of_term t) n;;
+
+(* ------------------------------------------------------------------------- *)
+(* String of vector (just a list of space-separated numbers). *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_vector (v:vector) =
+ let n = dim v in
+ let strs = map (o (decimalize 20) (element v)) (1--n) in
+ end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
+
+(* ------------------------------------------------------------------------- *)
+(* String for block diagonal matrix numbered k. *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_blockdiagonal k m =
+ let pfx = string_of_int k ^" " in
+ let ents =
+ foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
+ let entss = sort (increasing fst) ents in
+ itlist (fun ((b,i,j),c) a ->
+ pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
+ " " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
+
+(* ------------------------------------------------------------------------- *)
+(* String for a matrix numbered k, in SDPA sparse format. *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_matrix k (m:matrix) =
+ let pfx = string_of_int k ^ " 1 " in
+ let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
+ (snd m) [] in
+ let mss = sort (increasing fst) ms in
+ itlist (fun ((i,j),c) a ->
+ pfx ^ string_of_int i ^ " " ^ string_of_int j ^
+ " " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
+
+(* ------------------------------------------------------------------------- *)
+(* String in SDPA sparse format for standard SDP problem: *)
+(* *)
+(* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *)
+(* Minimize obj_1 * v_1 + ... obj_m * v_m *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_problem comment obj mats =
+ let m = length mats - 1
+ and n,_ = dimensions (hd mats) in
+ "\"" ^ comment ^ "\"\n" ^
+ string_of_int m ^ "\n" ^
+ "1\n" ^
+ string_of_int n ^ "\n" ^
+ sdpa_of_vector obj ^
+ itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
+ (1--length mats) mats "";;
+
+(* ------------------------------------------------------------------------- *)
+(* More parser basics. *)
+(* ------------------------------------------------------------------------- *)
+
+let word s =
+ end_itlist (fun p1 p2 -> (p1 ++ p2) >> (fun (s,t) -> s^t))
+ (map a (explode s));;
+let token s =
+ many (some isspace) ++ word s ++ many (some isspace)
+ >> (fun ((_,t),_) -> t);;
+
+let decimal =
+ let numeral = some isnum in
+ let decimalint = atleast 1 numeral >> ((o) Num.num_of_string implode) in
+ let decimalfrac = atleast 1 numeral
+ >> (fun s -> Num.num_of_string(implode s) // pow10 (length s)) in
+ let decimalsig =
+ decimalint ++ possibly (a "." ++ decimalfrac >> snd)
+ >> (function (h,[x]) -> h +/ x | (h,_) -> h) in
+ let signed prs =
+ a "-" ++ prs >> ((o) minus_num snd)
+ || a "+" ++ prs >> snd
+ || prs in
+ let exponent = (a "e" || a "E") ++ signed decimalint >> snd in
+ signed decimalsig ++ possibly exponent
+ >> (function (h,[x]) -> h */ power_num (Int 10) x | (h,_) -> h);;
+
+let mkparser p s =
+ let x,rst = p(explode s) in
+ if rst = [] then x else failwith "mkparser: unparsed input";;
+
+let parse_decimal = mkparser decimal;;
+
+(* ------------------------------------------------------------------------- *)
+(* Parse back a vector. *)
+(* ------------------------------------------------------------------------- *)
+
+let parse_sdpaoutput,parse_csdpoutput =
+ let vector =
+ token "{" ++ listof decimal (token ",") "decimal" ++ token "}"
+ >> (fun ((_,v),_) -> vector_of_list v) in
+ let rec skipupto dscr prs inp =
+ (dscr ++ prs >> snd
+ || some (fun c -> true) ++ skipupto dscr prs >> snd) inp in
+ let ignore inp = (),[] in
+ let sdpaoutput =
+ skipupto (word "xVec" ++ token "=")
+ (vector ++ ignore >> fst) in
+ let csdpoutput =
+ (decimal ++ many(a " " ++ decimal >> snd) >> (fun (h,t) -> h::t)) ++
+ (a " " ++ a "\n" ++ ignore) >> ((o) vector_of_list fst) in
+ mkparser sdpaoutput,mkparser csdpoutput;;
+
+(* ------------------------------------------------------------------------- *)
+(* Also parse the SDPA output to test success (CSDP yields a return code). *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_run_succeeded =
+ let rec skipupto dscr prs inp =
+ (dscr ++ prs >> snd
+ || some (fun c -> true) ++ skipupto dscr prs >> snd) inp in
+ let prs = skipupto (word "phase.value" ++ token "=")
+ (possibly (a "p") ++ possibly (a "d") ++
+ (word "OPT" || word "FEAS")) in
+ fun s -> try ignore (prs (explode s)); true with Noparse -> false;;
+
+(* ------------------------------------------------------------------------- *)
+(* The default parameters. Unfortunately this goes to a fixed file. *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_default_parameters =
+"100 unsigned int maxIteration;
+1.0E-7 double 0.0 < epsilonStar;
+1.0E2 double 0.0 < lambdaStar;
+2.0 double 1.0 < omegaStar;
+-1.0E5 double lowerBound;
+1.0E5 double upperBound;
+0.1 double 0.0 <= betaStar < 1.0;
+0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
+0.9 double 0.0 < gammaStar < 1.0;
+1.0E-7 double 0.0 < epsilonDash;
+";;
+
+(* ------------------------------------------------------------------------- *)
+(* These were suggested by Makoto Yamashita for problems where we are *)
+(* right at the edge of the semidefinite cone, as sometimes happens. *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_alt_parameters =
+"1000 unsigned int maxIteration;
+1.0E-7 double 0.0 < epsilonStar;
+1.0E4 double 0.0 < lambdaStar;
+2.0 double 1.0 < omegaStar;
+-1.0E5 double lowerBound;
+1.0E5 double upperBound;
+0.1 double 0.0 <= betaStar < 1.0;
+0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
+0.9 double 0.0 < gammaStar < 1.0;
+1.0E-7 double 0.0 < epsilonDash;
+";;
+
+let sdpa_params = sdpa_alt_parameters;;
+
+(* ------------------------------------------------------------------------- *)
+(* CSDP parameters; so far I'm sticking with the defaults. *)
+(* ------------------------------------------------------------------------- *)
+
+let csdp_default_parameters =
+"axtol=1.0e-8
+atytol=1.0e-8
+objtol=1.0e-8
+pinftol=1.0e8
+dinftol=1.0e8
+maxiter=100
+minstepfrac=0.9
+maxstepfrac=0.97
+minstepp=1.0e-8
+minstepd=1.0e-8
+usexzgap=1
+tweakgap=0
+affine=0
+printlevel=1
+";;
+
+let csdp_params = csdp_default_parameters;;
+
+(* ------------------------------------------------------------------------- *)
+(* Now call CSDP on a problem and parse back the output. *)
+(* ------------------------------------------------------------------------- *)
+
+let run_csdp dbg obj mats =
+ let input_file = Filename.temp_file "sos" ".dat-s" in
+ let output_file =
+ String.sub input_file 0 (String.length input_file - 6) ^ ".out"
+ and params_file = Filename.concat (!temp_path) "param.csdp" in
+ file_of_string input_file (sdpa_of_problem "" obj mats);
+ file_of_string params_file csdp_params;
+ let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
+ " " ^ output_file ^
+ (if dbg then "" else "> /dev/null")) in
+ let op = string_of_file output_file in
+ let res = parse_csdpoutput op in
+ ((if dbg then ()
+ else (Sys.remove input_file; Sys.remove output_file));
+ rv,res);;
+
+let csdp obj mats =
+ let rv,res = run_csdp (!debugging) obj mats in
+ (if rv = 1 or rv = 2 then failwith "csdp: Problem is infeasible"
+ else if rv = 3 then ()
+ (* Format.print_string "csdp warning: Reduced accuracy";
+ Format.print_newline() *)
+ else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
+ else ());
+ res;;
+
+(* ------------------------------------------------------------------------- *)
+(* Try some apparently sensible scaling first. Note that this is purely to *)
+(* get a cleaner translation to floating-point, and doesn't affect any of *)
+(* the results, in principle. In practice it seems a lot better when there *)
+(* are extreme numbers in the original problem. *)
+(* ------------------------------------------------------------------------- *)
+
+let scale_then =
+ let common_denominator amat acc =
+ foldl (fun a m c -> lcm_num (denominator c) a) acc amat
+ and maximal_element amat acc =
+ foldl (fun maxa m c -> max_num maxa (abs_num c)) acc amat in
+ fun solver obj mats ->
+ let cd1 = itlist common_denominator mats (Int 1)
+ and cd2 = common_denominator (snd obj) (Int 1) in
+ let mats' = map (mapf (fun x -> cd1 */ x)) mats
+ and obj' = vector_cmul cd2 obj in
+ let max1 = itlist maximal_element mats' (Int 0)
+ and max2 = maximal_element (snd obj') (Int 0) in
+ let scal1 = pow2 (20-int_of_float(log(float_of_num max1) /. log 2.0))
+ and scal2 = pow2 (20-int_of_float(log(float_of_num max2) /. log 2.0)) in
+ let mats'' = map (mapf (fun x -> x */ scal1)) mats'
+ and obj'' = vector_cmul scal2 obj' in
+ solver obj'' mats'';;
+
+(* ------------------------------------------------------------------------- *)
+(* Round a vector to "nice" rationals. *)
+(* ------------------------------------------------------------------------- *)
+
+let nice_rational n x = round_num (n */ x) // n;;
+
+let nice_vector n = mapa (nice_rational n);;
+
+(* ------------------------------------------------------------------------- *)
+(* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *)
+(* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *)
+(* ------------------------------------------------------------------------- *)
+
+let linear_program_basic a =
+ let m,n = dimensions a in
+ let mats = map (fun j -> diagonal (column j a)) (1--n)
+ and obj = vector_const (Int 1) m in
+ let rv,res = run_csdp false obj mats in
+ if rv = 1 or rv = 2 then false
+ else if rv = 0 then true
+ else failwith "linear_program: An error occurred in the SDP solver";;
+
+(* ------------------------------------------------------------------------- *)
+(* Alternative interface testing A x >= b for matrix A, vector b. *)
+(* ------------------------------------------------------------------------- *)
+
+let linear_program a b =
+ let m,n = dimensions a in
+ if dim b <> m then failwith "linear_program: incompatible dimensions" else
+ let mats = diagonal b :: map (fun j -> diagonal (column j a)) (1--n)
+ and obj = vector_const (Int 1) m in
+ let rv,res = run_csdp false obj mats in
+ if rv = 1 or rv = 2 then false
+ else if rv = 0 then true
+ else failwith "linear_program: An error occurred in the SDP solver";;
+
+(* ------------------------------------------------------------------------- *)
+(* Test whether a point is in the convex hull of others. Rather than use *)
+(* computational geometry, express as linear inequalities and call CSDP. *)
+(* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *)
+(* ------------------------------------------------------------------------- *)
+
+let in_convex_hull pts pt =
+ let pts1 = (1::pt) :: map (fun x -> 1::x) pts in
+ let pts2 = map (fun p -> map (fun x -> -x) p @ p) pts1 in
+ let n = length pts + 1
+ and v = 2 * (length pt + 1) in
+ let m = v + n - 1 in
+ let mat =
+ (m,n),
+ itern 1 pts2 (fun pts j -> itern 1 pts (fun x i -> (i,j) |-> Int x))
+ (iter (1,n) (fun i -> (v + i,i+1) |-> Int 1) undefined) in
+ linear_program_basic mat;;
+
+(* ------------------------------------------------------------------------- *)
+(* Filter down a set of points to a minimal set with the same convex hull. *)
+(* ------------------------------------------------------------------------- *)
+
+let minimal_convex_hull =
+ let augment1 = function
+ | [] -> assert false
+ | (m::ms) -> if in_convex_hull ms m then ms else ms@[m] in
+ let augment m ms = funpow 3 augment1 (m::ms) in
+ fun mons ->
+ let mons' = itlist augment (tl mons) [hd mons] in
+ funpow (length mons') augment1 mons';;
+
+(* ------------------------------------------------------------------------- *)
+(* Stuff for "equations" (generic A->num functions). *)
+(* ------------------------------------------------------------------------- *)
+
+let equation_cmul c eq =
+ if c =/ Int 0 then Empty else mapf (fun d -> c */ d) eq;;
+
+let equation_add eq1 eq2 = combine (+/) (fun x -> x =/ Int 0) eq1 eq2;;
+
+let equation_eval assig eq =
+ let value v = apply assig v in
+ foldl (fun a v c -> a +/ value(v) */ c) (Int 0) eq;;
+
+(* ------------------------------------------------------------------------- *)
+(* Eliminate among linear equations: return unconstrained variables and *)
+(* assignments for the others in terms of them. We give one pseudo-variable *)
+(* "one" that's used for a constant term. *)
+(* ------------------------------------------------------------------------- *)
+
+let failstore = ref [];;
+
+let eliminate_equations =
+ let rec extract_first p l =
+ match l with
+ [] -> failwith "extract_first"
+ | h::t -> if p(h) then h,t else
+ let k,s = extract_first p t in
+ k,h::s in
+ let rec eliminate vars dun eqs =
+ match vars with
+ [] -> if forall is_undefined eqs then dun
+ else (failstore := [vars,dun,eqs]; raise Unsolvable)
+ | v::vs ->
+ try let eq,oeqs = extract_first (fun e -> defined e v) eqs in
+ let a = apply eq v in
+ let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in
+ let elim e =
+ let b = tryapplyd e v (Int 0) in
+ if b =/ Int 0 then e else
+ equation_add e (equation_cmul (minus_num b // a) eq) in
+ eliminate vs ((v |-> eq') (mapf elim dun)) (map elim oeqs)
+ with Failure _ -> eliminate vs dun eqs in
+ fun one vars eqs ->
+ let assig = eliminate vars undefined eqs in
+ let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in
+ setify vs,assig;;
+
+(* ------------------------------------------------------------------------- *)
+(* Eliminate all variables, in an essentially arbitrary order. *)
+(* ------------------------------------------------------------------------- *)
+
+let eliminate_all_equations one =
+ let choose_variable eq =
+ let (v,_) = choose eq in
+ if v = one then
+ let eq' = undefine v eq in
+ if is_undefined eq' then failwith "choose_variable" else
+ let (w,_) = choose eq' in w
+ else v in
+ let rec eliminate dun eqs =
+ match eqs with
+ [] -> dun
+ | eq::oeqs ->
+ if is_undefined eq then eliminate dun oeqs else
+ let v = choose_variable eq in
+ let a = apply eq v in
+ let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in
+ let elim e =
+ let b = tryapplyd e v (Int 0) in
+ if b =/ Int 0 then e else
+ equation_add e (equation_cmul (minus_num b // a) eq) in
+ eliminate ((v |-> eq') (mapf elim dun)) (map elim oeqs) in
+ fun eqs ->
+ let assig = eliminate undefined eqs in
+ let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in
+ setify vs,assig;;
+
+(* ------------------------------------------------------------------------- *)
+(* Solve equations by assigning arbitrary numbers. *)
+(* ------------------------------------------------------------------------- *)
+
+let solve_equations one eqs =
+ let vars,assigs = eliminate_all_equations one eqs in
+ let vfn = itlist (fun v -> (v |-> Int 0)) vars (one |=> Int(-1)) in
+ let ass =
+ combine (+/) (fun c -> false) (mapf (equation_eval vfn) assigs) vfn in
+ if forall (fun e -> equation_eval ass e =/ Int 0) eqs
+ then undefine one ass else raise Sanity;;
+
+(* ------------------------------------------------------------------------- *)
+(* Hence produce the "relevant" monomials: those whose squares lie in the *)
+(* Newton polytope of the monomials in the input. (This is enough according *)
+(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *)
+(* vol 45, pp. 363--374, 1978. *)
+(* *)
+(* These are ordered in sort of decreasing degree. In particular the *)
+(* constant monomial is last; this gives an order in diagonalization of the *)
+(* quadratic form that will tend to display constants. *)
+(* ------------------------------------------------------------------------- *)
+
+let newton_polytope pol =
+ let vars = poly_variables pol in
+ let mons = map (fun m -> map (fun x -> monomial_degree x m) vars) (dom pol)
+ and ds = map (fun x -> (degree x pol + 1) / 2) vars in
+ let all = itlist (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]]
+ and mons' = minimal_convex_hull mons in
+ let all' =
+ filter (fun m -> in_convex_hull mons' (map (fun x -> 2 * x) m)) all in
+ map (fun m -> itlist2 (fun v i a -> if i = 0 then a else (v |-> i) a)
+ vars m monomial_1) (rev all');;
+
+(* ------------------------------------------------------------------------- *)
+(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *)
+(* ------------------------------------------------------------------------- *)
+
+let diag m =
+ let nn = dimensions m in
+ let n = fst nn in
+ if snd nn <> n then failwith "diagonalize: non-square matrix" else
+ let rec diagonalize i m =
+ if is_zero m then [] else
+ let a11 = element m (i,i) in
+ if a11 </ Int 0 then failwith "diagonalize: not PSD"
+ else if a11 =/ Int 0 then
+ if is_zero(row i m) then diagonalize (i + 1) m
+ else failwith "diagonalize: not PSD"
+ else
+ let v = row i m in
+ let v' = mapa (fun a1k -> a1k // a11) v in
+ let m' =
+ (n,n),
+ iter (i+1,n) (fun j ->
+ iter (i+1,n) (fun k ->
+ ((j,k) |--> (element m (j,k) -/ element v j */ element v' k))))
+ undefined in
+ (a11,v')::diagonalize (i + 1) m' in
+ diagonalize 1 m;;
+
+(* ------------------------------------------------------------------------- *)
+(* Adjust a diagonalization to collect rationals at the start. *)
+(* ------------------------------------------------------------------------- *)
+
+let deration d =
+ if d = [] then Int 0,d else
+ let adj(c,l) =
+ let a = foldl (fun a i c -> lcm_num a (denominator c)) (Int 1) (snd l) //
+ foldl (fun a i c -> gcd_num a (numerator c)) (Int 0) (snd l) in
+ (c // (a */ a)),mapa (fun x -> a */ x) l in
+ let d' = map adj d in
+ let a = itlist ((o) lcm_num ( (o) denominator fst)) d' (Int 1) //
+ itlist ((o) gcd_num ( (o) numerator fst)) d' (Int 0) in
+ (Int 1 // a),map (fun (c,l) -> (a */ c,l)) d';;
+
+(* ------------------------------------------------------------------------- *)
+(* Enumeration of monomials with given multidegree bound. *)
+(* ------------------------------------------------------------------------- *)
+
+let rec enumerate_monomials d vars =
+ if d < 0 then []
+ else if d = 0 then [undefined]
+ else if vars = [] then [monomial_1] else
+ let alts =
+ map (fun k -> let oths = enumerate_monomials (d - k) (tl vars) in
+ map (fun ks -> if k = 0 then ks else (hd vars |-> k) ks) oths)
+ (0--d) in
+ end_itlist (@) alts;;
+
+(* ------------------------------------------------------------------------- *)
+(* Enumerate products of distinct input polys with degree <= d. *)
+(* We ignore any constant input polynomials. *)
+(* Give the output polynomial and a record of how it was derived. *)
+(* ------------------------------------------------------------------------- *)
+
+let rec enumerate_products d pols =
+ if d = 0 then [poly_const num_1,Rational_lt num_1] else if d < 0 then [] else
+ match pols with
+ [] -> [poly_const num_1,Rational_lt num_1]
+ | (p,b)::ps -> let e = multidegree p in
+ if e = 0 then enumerate_products d ps else
+ enumerate_products d ps @
+ map (fun (q,c) -> poly_mul p q,Product(b,c))
+ (enumerate_products (d - e) ps);;
+
+(* ------------------------------------------------------------------------- *)
+(* Multiply equation-parametrized poly by regular poly and add accumulator. *)
+(* ------------------------------------------------------------------------- *)
+
+let epoly_pmul p q acc =
+ foldl (fun a m1 c ->
+ foldl (fun b m2 e ->
+ let m = monomial_mul m1 m2 in
+ let es = tryapplyd b m undefined in
+ (m |-> equation_add (equation_cmul c e) es) b)
+ a q) acc p;;
+
+(* ------------------------------------------------------------------------- *)
+(* Usual operations on equation-parametrized poly. *)
+(* ------------------------------------------------------------------------- *)
+
+let epoly_cmul c l =
+ if c =/ Int 0 then undefined else mapf (equation_cmul c) l;;
+
+let epoly_neg = epoly_cmul (Int(-1));;
+
+let epoly_add = combine equation_add is_undefined;;
+
+let epoly_sub p q = epoly_add p (epoly_neg q);;
+
+(* ------------------------------------------------------------------------- *)
+(* Convert regular polynomial. Note that we treat (0,0,0) as -1. *)
+(* ------------------------------------------------------------------------- *)
+
+let epoly_of_poly p =
+ foldl (fun a m c -> (m |-> ((0,0,0) |=> minus_num c)) a) undefined p;;
+
+(* ------------------------------------------------------------------------- *)
+(* String for block diagonal matrix numbered k. *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_blockdiagonal k m =
+ let pfx = string_of_int k ^" " in
+ let ents =
+ foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
+ let entss = sort (increasing fst) ents in
+ itlist (fun ((b,i,j),c) a ->
+ pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
+ " " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
+
+(* ------------------------------------------------------------------------- *)
+(* SDPA for problem using block diagonal (i.e. multiple SDPs) *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_blockproblem comment nblocks blocksizes obj mats =
+ let m = length mats - 1 in
+ "\"" ^ comment ^ "\"\n" ^
+ string_of_int m ^ "\n" ^
+ string_of_int nblocks ^ "\n" ^
+ (end_itlist (fun s t -> s^" "^t) (map string_of_int blocksizes)) ^
+ "\n" ^
+ sdpa_of_vector obj ^
+ itlist2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a)
+ (1--length mats) mats "";;
+
+(* ------------------------------------------------------------------------- *)
+(* Hence run CSDP on a problem in block diagonal form. *)
+(* ------------------------------------------------------------------------- *)
+
+let run_csdp dbg nblocks blocksizes obj mats =
+ let input_file = Filename.temp_file "sos" ".dat-s" in
+ let output_file =
+ String.sub input_file 0 (String.length input_file - 6) ^ ".out"
+ and params_file = Filename.concat (!temp_path) "param.csdp" in
+ file_of_string input_file
+ (sdpa_of_blockproblem "" nblocks blocksizes obj mats);
+ file_of_string params_file csdp_params;
+ let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
+ " " ^ output_file ^
+ (if dbg then "" else "> /dev/null")) in
+ let op = string_of_file output_file in
+ let res = parse_csdpoutput op in
+ ((if dbg then ()
+ else (Sys.remove input_file; Sys.remove output_file));
+ rv,res);;
+
+let csdp nblocks blocksizes obj mats =
+ let rv,res = run_csdp (!debugging) nblocks blocksizes obj mats in
+ (if rv = 1 or rv = 2 then failwith "csdp: Problem is infeasible"
+ else if rv = 3 then ()
+ (*Format.print_string "csdp warning: Reduced accuracy";
+ Format.print_newline() *)
+ else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
+ else ());
+ res;;
+
+(* ------------------------------------------------------------------------- *)
+(* 3D versions of matrix operations to consider blocks separately. *)
+(* ------------------------------------------------------------------------- *)
+
+let bmatrix_add = combine (+/) (fun x -> x =/ Int 0);;
+
+let bmatrix_cmul c bm =
+ if c =/ Int 0 then undefined
+ else mapf (fun x -> c */ x) bm;;
+
+let bmatrix_neg = bmatrix_cmul (Int(-1));;
+
+let bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);;
+
+(* ------------------------------------------------------------------------- *)
+(* Smash a block matrix into components. *)
+(* ------------------------------------------------------------------------- *)
+
+let blocks blocksizes bm =
+ map (fun (bs,b0) ->
+ let m = foldl
+ (fun a (b,i,j) c -> if b = b0 then ((i,j) |-> c) a else a)
+ undefined bm in
+ (((bs,bs),m):matrix))
+ (zip blocksizes (1--length blocksizes));;
+
+(* ------------------------------------------------------------------------- *)
+(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
+(* ------------------------------------------------------------------------- *)
+
+let real_positivnullstellensatz_general linf d eqs leqs pol =
+ let vars = itlist ((o) union poly_variables) (pol::eqs @ map fst leqs) [] in
+ let monoid =
+ if linf then
+ (poly_const num_1,Rational_lt num_1)::
+ (filter (fun (p,c) -> multidegree p <= d) leqs)
+ else enumerate_products d leqs in
+ let nblocks = length monoid in
+ let mk_idmultiplier k p =
+ let e = d - multidegree p in
+ let mons = enumerate_monomials e vars in
+ let nons = zip mons (1--length mons) in
+ mons,
+ itlist (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in
+ let mk_sqmultiplier k (p,c) =
+ let e = (d - multidegree p) / 2 in
+ let mons = enumerate_monomials e vars in
+ let nons = zip mons (1--length mons) in
+ mons,
+ itlist (fun (m1,n1) ->
+ itlist (fun (m2,n2) a ->
+ let m = monomial_mul m1 m2 in
+ if n1 > n2 then a else
+ let c = if n1 = n2 then Int 1 else Int 2 in
+ let e = tryapplyd a m undefined in
+ (m |-> equation_add ((k,n1,n2) |=> c) e) a)
+ nons)
+ nons undefined in
+ let sqmonlist,sqs = unzip(map2 mk_sqmultiplier (1--length monoid) monoid)
+ and idmonlist,ids = unzip(map2 mk_idmultiplier (1--length eqs) eqs) in
+ let blocksizes = map length sqmonlist in
+ let bigsum =
+ itlist2 (fun p q a -> epoly_pmul p q a) eqs ids
+ (itlist2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs
+ (epoly_of_poly(poly_neg pol))) in
+ let eqns = foldl (fun a m e -> e::a) [] bigsum in
+ let pvs,assig = eliminate_all_equations (0,0,0) eqns in
+ let qvars = (0,0,0)::pvs in
+ let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
+ let mk_matrix v =
+ foldl (fun m (b,i,j) ass -> if b < 0 then m else
+ let c = tryapplyd ass v (Int 0) in
+ if c =/ Int 0 then m else
+ ((b,j,i) |-> c) (((b,i,j) |-> c) m))
+ undefined allassig in
+ let diagents = foldl
+ (fun a (b,i,j) e -> if b > 0 & i = j then equation_add e a else a)
+ undefined allassig in
+ let mats = map mk_matrix qvars
+ and obj = length pvs,
+ itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0)))
+ undefined in
+ let raw_vec = if pvs = [] then vector_0 0
+ else scale_then (csdp nblocks blocksizes) obj mats in
+ let find_rounding d =
+ (if !debugging then
+ (Format.print_string("Trying rounding with limit "^string_of_num d);
+ Format.print_newline())
+ else ());
+ let vec = nice_vector d raw_vec in
+ let blockmat = iter (1,dim vec)
+ (fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (el i mats)) a)
+ (bmatrix_neg (el 0 mats)) in
+ let allmats = blocks blocksizes blockmat in
+ vec,map diag allmats in
+ let vec,ratdias =
+ if pvs = [] then find_rounding num_1
+ else tryfind find_rounding (map Num.num_of_int (1--31) @
+ map pow2 (5--66)) in
+ let newassigs =
+ itlist (fun k -> el (k - 1) pvs |-> element vec k)
+ (1--dim vec) ((0,0,0) |=> Int(-1)) in
+ let finalassigs =
+ foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs
+ allassig in
+ let poly_of_epoly p =
+ foldl (fun a v e -> (v |--> equation_eval finalassigs e) a)
+ undefined p in
+ let mk_sos mons =
+ let mk_sq (c,m) =
+ c,itlist (fun k a -> (el (k - 1) mons |--> element m k) a)
+ (1--length mons) undefined in
+ map mk_sq in
+ let sqs = map2 mk_sos sqmonlist ratdias
+ and cfs = map poly_of_epoly ids in
+ let msq = filter (fun (a,b) -> b <> []) (map2 (fun a b -> a,b) monoid sqs) in
+ let eval_sq sqs = itlist
+ (fun (c,q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in
+ let sanity =
+ itlist (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq
+ (itlist2 (fun p q -> poly_add (poly_mul p q)) cfs eqs
+ (poly_neg pol)) in
+ if not(is_undefined sanity) then raise Sanity else
+ cfs,map (fun (a,b) -> snd a,b) msq;;
+
+(* ------------------------------------------------------------------------- *)
+(* Iterative deepening. *)
+(* ------------------------------------------------------------------------- *)
+
+let rec deepen f n =
+ try print_string "Searching with depth limit ";
+ print_int n; print_newline(); f n
+ with Failure _ -> deepen f (n + 1);;
+
+(* ------------------------------------------------------------------------- *)
+(* The ordering so we can create canonical HOL polynomials. *)
+(* ------------------------------------------------------------------------- *)
+
+let dest_monomial mon = sort (increasing fst) (graph mon);;
+
+let monomial_order =
+ let rec lexorder l1 l2 =
+ match (l1,l2) with
+ [],[] -> true
+ | vps,[] -> false
+ | [],vps -> true
+ | ((x1,n1)::vs1),((x2,n2)::vs2) ->
+ if x1 < x2 then true
+ else if x2 < x1 then false
+ else if n1 < n2 then false
+ else if n2 < n1 then true
+ else lexorder vs1 vs2 in
+ fun m1 m2 ->
+ if m2 = monomial_1 then true else if m1 = monomial_1 then false else
+ let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in
+ let deg1 = itlist ((o) (+) snd) mon1 0
+ and deg2 = itlist ((o) (+) snd) mon2 0 in
+ if deg1 < deg2 then false else if deg1 > deg2 then true
+ else lexorder mon1 mon2;;
+
+let dest_poly p =
+ map (fun (m,c) -> c,dest_monomial m)
+ (sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p));;
+
+(* ------------------------------------------------------------------------- *)
+(* Map back polynomials and their composites to HOL. *)
+(* ------------------------------------------------------------------------- *)
+
+let term_of_varpow =
+ fun x k ->
+ if k = 1 then Var x else Pow (Var x, k);;
+
+let term_of_monomial =
+ fun m -> if m = monomial_1 then Const num_1 else
+ let m' = dest_monomial m in
+ let vps = itlist (fun (x,k) a -> term_of_varpow x k :: a) m' [] in
+ end_itlist (fun s t -> Mul (s,t)) vps;;
+
+let term_of_cmonomial =
+ fun (m,c) ->
+ if m = monomial_1 then Const c
+ else if c =/ num_1 then term_of_monomial m
+ else Mul (Const c,term_of_monomial m);;
+
+let term_of_poly =
+ fun p ->
+ if p = poly_0 then Zero else
+ let cms = map term_of_cmonomial
+ (sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p)) in
+ end_itlist (fun t1 t2 -> Add (t1,t2)) cms;;
+
+let term_of_sqterm (c,p) =
+ Product(Rational_lt c,Square(term_of_poly p));;
+
+let term_of_sos (pr,sqs) =
+ if sqs = [] then pr
+ else Product(pr,end_itlist (fun a b -> Sum(a,b)) (map term_of_sqterm sqs));;
+
+(* ------------------------------------------------------------------------- *)
+(* Interface to HOL. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let REAL_NONLINEAR_PROVER translator (eqs,les,lts) =
+ let eq0 = map (poly_of_term o lhand o concl) eqs
+ and le0 = map (poly_of_term o lhand o concl) les
+ and lt0 = map (poly_of_term o lhand o concl) lts in
+ let eqp0 = map (fun (t,i) -> t,Axiom_eq i) (zip eq0 (0--(length eq0 - 1)))
+ and lep0 = map (fun (t,i) -> t,Axiom_le i) (zip le0 (0--(length le0 - 1)))
+ and ltp0 = map (fun (t,i) -> t,Axiom_lt i) (zip lt0 (0--(length lt0 - 1))) in
+ let keq,eq = partition (fun (p,_) -> multidegree p = 0) eqp0
+ and klep,lep = partition (fun (p,_) -> multidegree p = 0) lep0
+ and kltp,ltp = partition (fun (p,_) -> multidegree p = 0) ltp0 in
+ let trivial_axiom (p,ax) =
+ match ax with
+ Axiom_eq n when eval undefined p <>/ num_0 -> el n eqs
+ | Axiom_le n when eval undefined p </ num_0 -> el n les
+ | Axiom_lt n when eval undefined p <=/ num_0 -> el n lts
+ | _ -> failwith "not a trivial axiom" in
+ try let th = tryfind trivial_axiom (keq @ klep @ kltp) in
+ CONV_RULE (LAND_CONV REAL_POLY_CONV THENC REAL_RAT_RED_CONV) th
+ with Failure _ ->
+ let pol = itlist poly_mul (map fst ltp) (poly_const num_1) in
+ let leq = lep @ ltp in
+ let tryall d =
+ let e = multidegree pol in
+ let k = if e = 0 then 0 else d / e in
+ let eq' = map fst eq in
+ tryfind (fun i -> d,i,real_positivnullstellensatz_general false d eq' leq
+ (poly_neg(poly_pow pol i)))
+ (0--k) in
+ let d,i,(cert_ideal,cert_cone) = deepen tryall 0 in
+ let proofs_ideal =
+ map2 (fun q (p,ax) -> Eqmul(term_of_poly q,ax)) cert_ideal eq
+ and proofs_cone = map term_of_sos cert_cone
+ and proof_ne =
+ if ltp = [] then Rational_lt num_1 else
+ let p = end_itlist (fun s t -> Product(s,t)) (map snd ltp) in
+ funpow i (fun q -> Product(p,q)) (Rational_lt num_1) in
+ let proof = end_itlist (fun s t -> Sum(s,t))
+ (proof_ne :: proofs_ideal @ proofs_cone) in
+ print_string("Translating proof certificate to HOL");
+ print_newline();
+ translator (eqs,les,lts) proof;;
+*)
+(* ------------------------------------------------------------------------- *)
+(* A wrapper that tries to substitute away variables first. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let REAL_NONLINEAR_SUBST_PROVER =
+ let zero = `&0:real`
+ and mul_tm = `( * ):real->real->real`
+ and shuffle1 =
+ CONV_RULE(REWR_CONV(REAL_ARITH `a + x = (y:real) <=> x = y - a`))
+ and shuffle2 =
+ CONV_RULE(REWR_CONV(REAL_ARITH `x + a = (y:real) <=> x = y - a`)) in
+ let rec substitutable_monomial fvs tm =
+ match tm with
+ Var(_,Tyapp("real",[])) when not (mem tm fvs) -> Int 1,tm
+ | Comb(Comb(Const("real_mul",_),c),(Var(_,_) as t))
+ when is_ratconst c & not (mem t fvs)
+ -> rat_of_term c,t
+ | Comb(Comb(Const("real_add",_),s),t) ->
+ (try substitutable_monomial (union (frees t) fvs) s
+ with Failure _ -> substitutable_monomial (union (frees s) fvs) t)
+ | _ -> failwith "substitutable_monomial"
+ and isolate_variable v th =
+ match lhs(concl th) with
+ x when x = v -> th
+ | Comb(Comb(Const("real_add",_),(Var(_,Tyapp("real",[])) as x)),t)
+ when x = v -> shuffle2 th
+ | Comb(Comb(Const("real_add",_),s),t) ->
+ isolate_variable v(shuffle1 th) in
+ let make_substitution th =
+ let (c,v) = substitutable_monomial [] (lhs(concl th)) in
+ let th1 = AP_TERM (mk_comb(mul_tm,term_of_rat(Int 1 // c))) th in
+ let th2 = CONV_RULE(BINOP_CONV REAL_POLY_MUL_CONV) th1 in
+ CONV_RULE (RAND_CONV REAL_POLY_CONV) (isolate_variable v th2) in
+ fun translator ->
+ let rec substfirst(eqs,les,lts) =
+ try let eth = tryfind make_substitution eqs in
+ let modify =
+ CONV_RULE(LAND_CONV(SUBS_CONV[eth] THENC REAL_POLY_CONV)) in
+ substfirst(filter (fun t -> lhand(concl t) <> zero) (map modify eqs),
+ map modify les,map modify lts)
+ with Failure _ -> REAL_NONLINEAR_PROVER translator (eqs,les,lts) in
+ substfirst;;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Overall function. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let REAL_SOS =
+ let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
+ and pure = GEN_REAL_ARITH REAL_NONLINEAR_SUBST_PROVER in
+ fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Add hacks for division. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let REAL_SOSFIELD =
+ let inv_tm = `inv:real->real` in
+ let prenex_conv =
+ TOP_DEPTH_CONV BETA_CONV THENC
+ PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div;
+ REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC
+ NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
+ PRENEX_CONV
+ and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
+ and core_rule t =
+ try REAL_ARITH t
+ with Failure _ -> try REAL_RING t
+ with Failure _ -> REAL_SOS t
+ and is_inv =
+ let is_div = is_binop `(/):real->real->real` in
+ fun tm -> (is_div tm or (is_comb tm & rator tm = inv_tm)) &
+ not(is_ratconst(rand tm)) in
+ let BASIC_REAL_FIELD tm =
+ let is_freeinv t = is_inv t & free_in t tm in
+ let itms = setify(map rand (find_terms is_freeinv tm)) in
+ let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in
+ let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
+ let itms' = map (curry mk_comb inv_tm) itms in
+ let gvs = map (genvar o type_of) itms' in
+ let tm'' = subst (zip gvs itms') tm' in
+ let th1 = setup_conv tm'' in
+ let cjs = conjuncts(rand(concl th1)) in
+ let ths = map core_rule cjs in
+ let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
+ rev_itlist (C MP) hyps (INST (zip itms' gvs) th2) in
+ fun tm ->
+ let th0 = prenex_conv tm in
+ let tm0 = rand(concl th0) in
+ let avs,bod = strip_forall tm0 in
+ let th1 = setup_conv bod in
+ let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in
+ EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Integer version. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let INT_SOS =
+ let atom_CONV =
+ let pth = prove
+ (`(~(x <= y) <=> y + &1 <= x:int) /\
+ (~(x < y) <=> y <= x) /\
+ (~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\
+ (x < y <=> x + &1 <= y)`,
+ REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in
+ GEN_REWRITE_CONV I [pth]
+ and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV
+ [int_eq; int_le; int_lt; int_ge; int_gt;
+ int_of_num_th; int_neg_th; int_add_th; int_mul_th;
+ int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in
+ let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in
+ let NNF_NORM_CONV = GEN_NNF_CONV false
+ (base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in
+ let init_CONV =
+ GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; EXISTS_SIMP] THENC
+ GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC
+ CONDS_ELIM_CONV THENC NNF_NORM_CONV in
+ let p_tm = `p:bool`
+ and not_tm = `(~)` in
+ let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in
+ fun tm ->
+ let th0 = INST [tm,p_tm] pth
+ and th1 = NNF_NORM_CONV(mk_neg tm) in
+ let th2 = REAL_SOS(mk_neg(rand(concl th1))) in
+ EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Natural number version. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let SOS_RULE tm =
+ let avs = frees tm in
+ let tm' = list_mk_forall(avs,tm) in
+ let th1 = NUM_TO_INT_CONV tm' in
+ let th2 = INT_SOS (rand(concl th1)) in
+ SPECL avs (EQ_MP (SYM th1) th2);;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Now pure SOS stuff. *)
+(* ------------------------------------------------------------------------- *)
+
+(*prioritize_real();;*)
+
+(* ------------------------------------------------------------------------- *)
+(* Some combinatorial helper functions. *)
+(* ------------------------------------------------------------------------- *)
+
+let rec allpermutations l =
+ if l = [] then [[]] else
+ itlist (fun h acc -> map (fun t -> h::t)
+ (allpermutations (subtract l [h])) @ acc) l [];;
+
+let allvarorders l =
+ map (fun vlis x -> index x vlis) (allpermutations l);;
+
+let changevariables_monomial zoln (m:monomial) =
+ foldl (fun a x k -> (assoc x zoln |-> k) a) monomial_1 m;;
+
+let changevariables zoln pol =
+ foldl (fun a m c -> (changevariables_monomial zoln m |-> c) a)
+ poly_0 pol;;
+
+(* ------------------------------------------------------------------------- *)
+(* Return to original non-block matrices. *)
+(* ------------------------------------------------------------------------- *)
+
+let sdpa_of_vector (v:vector) =
+ let n = dim v in
+ let strs = map (o (decimalize 20) (element v)) (1--n) in
+ end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
+
+let sdpa_of_blockdiagonal k m =
+ let pfx = string_of_int k ^" " in
+ let ents =
+ foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
+ let entss = sort (increasing fst) ents in
+ itlist (fun ((b,i,j),c) a ->
+ pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
+ " " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
+
+let sdpa_of_matrix k (m:matrix) =
+ let pfx = string_of_int k ^ " 1 " in
+ let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
+ (snd m) [] in
+ let mss = sort (increasing fst) ms in
+ itlist (fun ((i,j),c) a ->
+ pfx ^ string_of_int i ^ " " ^ string_of_int j ^
+ " " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
+
+let sdpa_of_problem comment obj mats =
+ let m = length mats - 1
+ and n,_ = dimensions (hd mats) in
+ "\"" ^ comment ^ "\"\n" ^
+ string_of_int m ^ "\n" ^
+ "1\n" ^
+ string_of_int n ^ "\n" ^
+ sdpa_of_vector obj ^
+ itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
+ (1--length mats) mats "";;
+
+let run_csdp dbg obj mats =
+ let input_file = Filename.temp_file "sos" ".dat-s" in
+ let output_file =
+ String.sub input_file 0 (String.length input_file - 6) ^ ".out"
+ and params_file = Filename.concat (!temp_path) "param.csdp" in
+ file_of_string input_file (sdpa_of_problem "" obj mats);
+ file_of_string params_file csdp_params;
+ let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
+ " " ^ output_file ^
+ (if dbg then "" else "> /dev/null")) in
+ let op = string_of_file output_file in
+ let res = parse_csdpoutput op in
+ ((if dbg then ()
+ else (Sys.remove input_file; Sys.remove output_file));
+ rv,res);;
+
+let csdp obj mats =
+ let rv,res = run_csdp (!debugging) obj mats in
+ (if rv = 1 or rv = 2 then failwith "csdp: Problem is infeasible"
+ else if rv = 3 then ()
+(* (Format.print_string "csdp warning: Reduced accuracy";
+ Format.print_newline()) *)
+ else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
+ else ());
+ res;;
+
+(* ------------------------------------------------------------------------- *)
+(* Sum-of-squares function with some lowbrow symmetry reductions. *)
+(* ------------------------------------------------------------------------- *)
+
+let sumofsquares_general_symmetry tool pol =
+ let vars = poly_variables pol
+ and lpps = newton_polytope pol in
+ let n = length lpps in
+ let sym_eqs =
+ let invariants = filter
+ (fun vars' ->
+ is_undefined(poly_sub pol (changevariables (zip vars vars') pol)))
+ (allpermutations vars) in
+ let lpns = zip lpps (1--length lpps) in
+ let lppcs =
+ filter (fun (m,(n1,n2)) -> n1 <= n2)
+ (allpairs
+ (fun (m1,n1) (m2,n2) -> (m1,m2),(n1,n2)) lpns lpns) in
+ let clppcs = end_itlist (@)
+ (map (fun ((m1,m2),(n1,n2)) ->
+ map (fun vars' ->
+ (changevariables_monomial (zip vars vars') m1,
+ changevariables_monomial (zip vars vars') m2),(n1,n2))
+ invariants)
+ lppcs) in
+ let clppcs_dom = setify(map fst clppcs) in
+ let clppcs_cls = map (fun d -> filter (fun (e,_) -> e = d) clppcs)
+ clppcs_dom in
+ let eqvcls = map (o setify (map snd)) clppcs_cls in
+ let mk_eq cls acc =
+ match cls with
+ [] -> raise Sanity
+ | [h] -> acc
+ | h::t -> map (fun k -> (k |-> Int(-1)) (h |=> Int 1)) t @ acc in
+ itlist mk_eq eqvcls [] in
+ let eqs = foldl (fun a x y -> y::a) []
+ (itern 1 lpps (fun m1 n1 ->
+ itern 1 lpps (fun m2 n2 f ->
+ let m = monomial_mul m1 m2 in
+ if n1 > n2 then f else
+ let c = if n1 = n2 then Int 1 else Int 2 in
+ (m |-> ((n1,n2) |-> c) (tryapplyd f m undefined)) f))
+ (foldl (fun a m c -> (m |-> ((0,0)|=>c)) a)
+ undefined pol)) @
+ sym_eqs in
+ let pvs,assig = eliminate_all_equations (0,0) eqs in
+ let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
+ let qvars = (0,0)::pvs in
+ let diagents =
+ end_itlist equation_add (map (fun i -> apply allassig (i,i)) (1--n)) in
+ let mk_matrix v =
+ ((n,n),
+ foldl (fun m (i,j) ass -> let c = tryapplyd ass v (Int 0) in
+ if c =/ Int 0 then m else
+ ((j,i) |-> c) (((i,j) |-> c) m))
+ undefined allassig :matrix) in
+ let mats = map mk_matrix qvars
+ and obj = length pvs,
+ itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0)))
+ undefined in
+ let raw_vec = if pvs = [] then vector_0 0 else tool obj mats in
+ let find_rounding d =
+ (if !debugging then
+ (Format.print_string("Trying rounding with limit "^string_of_num d);
+ Format.print_newline())
+ else ());
+ let vec = nice_vector d raw_vec in
+ let mat = iter (1,dim vec)
+ (fun i a -> matrix_add (matrix_cmul (element vec i) (el i mats)) a)
+ (matrix_neg (el 0 mats)) in
+ deration(diag mat) in
+ let rat,dia =
+ if pvs = [] then
+ let mat = matrix_neg (el 0 mats) in
+ deration(diag mat)
+ else
+ tryfind find_rounding (map Num.num_of_int (1--31) @
+ map pow2 (5--66)) in
+ let poly_of_lin(d,v) =
+ d,foldl(fun a i c -> (el (i - 1) lpps |-> c) a) undefined (snd v) in
+ let lins = map poly_of_lin dia in
+ let sqs = map (fun (d,l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in
+ let sos = poly_cmul rat (end_itlist poly_add sqs) in
+ if is_undefined(poly_sub sos pol) then rat,lins else raise Sanity;;
+
+let sumofsquares = sumofsquares_general_symmetry csdp;;
+
+(* ------------------------------------------------------------------------- *)
+(* Pure HOL SOS conversion. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let SOS_CONV =
+ let mk_square =
+ let pow_tm = `(pow)` and two_tm = `2` in
+ fun tm -> mk_comb(mk_comb(pow_tm,tm),two_tm)
+ and mk_prod = mk_binop `( * )`
+ and mk_sum = mk_binop `(+)` in
+ fun tm ->
+ let k,sos = sumofsquares(poly_of_term tm) in
+ let mk_sqtm(c,p) =
+ mk_prod (term_of_rat(k */ c)) (mk_square(term_of_poly p)) in
+ let tm' = end_itlist mk_sum (map mk_sqtm sos) in
+ let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in
+ TRANS th (SYM th');;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Attempt to prove &0 <= x by direct SOS decomposition. *)
+(* ------------------------------------------------------------------------- *)
+(*
+let PURE_SOS_TAC =
+ let tac =
+ MATCH_ACCEPT_TAC(REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE) ORELSE
+ MATCH_ACCEPT_TAC REAL_LE_SQUARE ORELSE
+ (MATCH_MP_TAC REAL_LE_ADD THEN CONJ_TAC) ORELSE
+ (MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) ORELSE
+ CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV THENC REAL_RAT_LE_CONV) in
+ REPEAT GEN_TAC THEN REWRITE_TAC[real_ge] THEN
+ GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN
+ CONV_TAC(RAND_CONV SOS_CONV) THEN
+ REPEAT tac THEN NO_TAC;;
+
+let PURE_SOS tm = prove(tm,PURE_SOS_TAC);;
+*)
+(* ------------------------------------------------------------------------- *)
+(* Examples. *)
+(* ------------------------------------------------------------------------- *)
+
+(*****
+
+time REAL_SOS
+ `a1 >= &0 /\ a2 >= &0 /\
+ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\
+ (a1 * b1 + a2 * b2 = &0)
+ ==> a1 * a2 - b1 * b2 >= &0`;;
+
+time REAL_SOS `&3 * x + &7 * a < &4 /\ &3 < &2 * x ==> a < &0`;;
+
+time REAL_SOS
+ `b pow 2 < &4 * a * c ==> ~(a * x pow 2 + b * x + c = &0)`;;
+
+time REAL_SOS
+ `(a * x pow 2 + b * x + c = &0) ==> b pow 2 >= &4 * a * c`;;
+
+time REAL_SOS
+ `&0 <= x /\ x <= &1 /\ &0 <= y /\ y <= &1
+ ==> x pow 2 + y pow 2 < &1 \/
+ (x - &1) pow 2 + y pow 2 < &1 \/
+ x pow 2 + (y - &1) pow 2 < &1 \/
+ (x - &1) pow 2 + (y - &1) pow 2 < &1`;;
+
+time REAL_SOS
+ `&0 <= b /\ &0 <= c /\ &0 <= x /\ &0 <= y /\
+ (x pow 2 = c) /\ (y pow 2 = a pow 2 * c + b)
+ ==> a * c <= y * x`;;
+
+time REAL_SOS
+ `&0 <= x /\ &0 <= y /\ &0 <= z /\ x + y + z <= &3
+ ==> x * y + x * z + y * z >= &3 * x * y * z`;;
+
+time REAL_SOS
+ `(x pow 2 + y pow 2 + z pow 2 = &1) ==> (x + y + z) pow 2 <= &3`;;
+
+time REAL_SOS
+ `(w pow 2 + x pow 2 + y pow 2 + z pow 2 = &1)
+ ==> (w + x + y + z) pow 2 <= &4`;;
+
+time REAL_SOS
+ `x >= &1 /\ y >= &1 ==> x * y >= x + y - &1`;;
+
+time REAL_SOS
+ `x > &1 /\ y > &1 ==> x * y > x + y - &1`;;
+
+time REAL_SOS
+ `abs(x) <= &1
+ ==> abs(&64 * x pow 7 - &112 * x pow 5 + &56 * x pow 3 - &7 * x) <= &1`;;
+
+time REAL_SOS
+ `abs(x - z) <= e /\ abs(y - z) <= e /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
+ ==> abs((u * x + v * y) - z) <= e`;;
+
+(* ------------------------------------------------------------------------- *)
+(* One component of denominator in dodecahedral example. *)
+(* ------------------------------------------------------------------------- *)
+
+time REAL_SOS
+ `&2 <= x /\ x <= &125841 / &50000 /\
+ &2 <= y /\ y <= &125841 / &50000 /\
+ &2 <= z /\ z <= &125841 / &50000
+ ==> &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= &0`;;
+
+(* ------------------------------------------------------------------------- *)
+(* Over a larger but simpler interval. *)
+(* ------------------------------------------------------------------------- *)
+
+time REAL_SOS
+ `&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
+ ==> &0 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
+
+(* ------------------------------------------------------------------------- *)
+(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *)
+(* ------------------------------------------------------------------------- *)
+
+time REAL_SOS
+ `&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
+ ==> &12 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
+
+(* ------------------------------------------------------------------------- *)
+(* Gloptipoly example. *)
+(* ------------------------------------------------------------------------- *)
+
+(*** This works but normalization takes minutes
+
+time REAL_SOS
+ `(x - y - &2 * x pow 4 = &0) /\ &0 <= x /\ x <= &2 /\ &0 <= y /\ y <= &3
+ ==> y pow 2 - &7 * y - &12 * x + &17 >= &0`;;
+
+ ***)
+
+(* ------------------------------------------------------------------------- *)
+(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *)
+(* ------------------------------------------------------------------------- *)
+
+time REAL_SOS
+ `&0 <= x /\ &0 <= y /\ (x * y = &1)
+ ==> x + y <= x pow 2 + y pow 2`;;
+
+time REAL_SOS
+ `&0 <= x /\ &0 <= y /\ (x * y = &1)
+ ==> x * y * (x + y) <= x pow 2 + y pow 2`;;
+
+time REAL_SOS
+ `&0 <= x /\ &0 <= y ==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2`;;
+
+(* ------------------------------------------------------------------------- *)
+(* Some examples over integers and natural numbers. *)
+(* ------------------------------------------------------------------------- *)
+
+time SOS_RULE `!m n. 2 * m + n = (n + m) + m`;;
+time SOS_RULE `!n. ~(n = 0) ==> (0 MOD n = 0)`;;
+time SOS_RULE `!m n. m < n ==> (m DIV n = 0)`;;
+time SOS_RULE `!n:num. n <= n * n`;;
+time SOS_RULE `!m n. n * (m DIV n) <= m`;;
+time SOS_RULE `!n. ~(n = 0) ==> (0 DIV n = 0)`;;
+time SOS_RULE `!m n p. ~(p = 0) /\ m <= n ==> m DIV p <= n DIV p`;;
+time SOS_RULE `!a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)`;;
+
+(* ------------------------------------------------------------------------- *)
+(* This is particularly gratifying --- cf hideous manual proof in arith.ml *)
+(* ------------------------------------------------------------------------- *)
+
+(*** This doesn't now seem to work as well as it did; what changed?
+
+time SOS_RULE
+ `!a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b`;;
+
+ ***)
+
+(* ------------------------------------------------------------------------- *)
+(* Key lemma for injectivity of Cantor-type pairing functions. *)
+(* ------------------------------------------------------------------------- *)
+
+time SOS_RULE
+ `!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1)
+ ==> (x1 + y1 = x2 + y2)`;;
+
+time SOS_RULE
+ `!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1) /\
+ (x1 + y1 = x2 + y2)
+ ==> (x1 = x2) /\ (y1 = y2)`;;
+
+time SOS_RULE
+ `!x1 y1 x2 y2.
+ (((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
+ ((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2)
+ ==> (x1 + y1 = x2 + y2)`;;
+
+time SOS_RULE
+ `!x1 y1 x2 y2.
+ (((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
+ ((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2) /\
+ (x1 + y1 = x2 + y2)
+ ==> (x1 = x2) /\ (y1 = y2)`;;
+
+(* ------------------------------------------------------------------------- *)
+(* Reciprocal multiplication (actually just ARITH_RULE does these). *)
+(* ------------------------------------------------------------------------- *)
+
+time SOS_RULE `x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)`;;
+
+time SOS_RULE `x < 2 EXP 16 ==> ((104858 * x) DIV (2 EXP 20) = x DIV 10)`;;
+
+(* ------------------------------------------------------------------------- *)
+(* This is more impressive since it's really nonlinear. See REMAINDER_DECODE *)
+(* ------------------------------------------------------------------------- *)
+
+time SOS_RULE `0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)`;;
+
+(* ------------------------------------------------------------------------- *)
+(* Some conversion examples. *)
+(* ------------------------------------------------------------------------- *)
+
+time SOS_CONV
+ `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;
+
+time SOS_CONV
+ `x pow 4 - (&2 * y * z + &1) * x pow 2 +
+ (y pow 2 * z pow 2 + &2 * y * z + &2)`;;
+
+time SOS_CONV `&4 * x pow 4 +
+ &4 * x pow 3 * y - &7 * x pow 2 * y pow 2 - &2 * x * y pow 3 +
+ &10 * y pow 4`;;
+
+time SOS_CONV `&4 * x pow 4 * y pow 6 + x pow 2 - x * y pow 2 + y pow 2`;;
+
+time SOS_CONV
+ `&4096 * (x pow 4 + x pow 2 + z pow 6 - &3 * x pow 2 * z pow 2) + &729`;;
+
+time SOS_CONV
+ `&120 * x pow 2 - &63 * x pow 4 + &10 * x pow 6 +
+ &30 * x * y - &120 * y pow 2 + &120 * y pow 4 + &31`;;
+
+time SOS_CONV
+ `&9 * x pow 2 * y pow 4 + &9 * x pow 2 * z pow 4 + &36 * x pow 2 * y pow 3 +
+ &36 * x pow 2 * y pow 2 - &48 * x * y * z pow 2 + &4 * y pow 4 +
+ &4 * z pow 4 - &16 * y pow 3 + &16 * y pow 2`;;
+
+time SOS_CONV
+ `(x pow 2 + y pow 2 + z pow 2) *
+ (x pow 4 * y pow 2 + x pow 2 * y pow 4 +
+ z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2)`;;
+
+time SOS_CONV
+ `x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3`;;
+
+(*** I think this will work, but normalization is slow
+
+time SOS_CONV
+ `&100 * (x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z) + &212`;;
+
+ ***)
+
+time SOS_CONV
+ `&100 * ((&2 * x - &2) pow 2 + (x pow 3 - &8 * x - &2) pow 2) - &588`;;
+
+time SOS_CONV
+ `x pow 2 * (&120 - &63 * x pow 2 + &10 * x pow 4) + &30 * x * y +
+ &30 * y pow 2 * (&4 * y pow 2 - &4) + &31`;;
+
+(* ------------------------------------------------------------------------- *)
+(* Example of basic rule. *)
+(* ------------------------------------------------------------------------- *)
+
+time PURE_SOS
+ `!x. x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3
+ >= &1 / &7`;;
+
+time PURE_SOS
+ `&0 <= &98 * x pow 12 +
+ -- &980 * x pow 10 +
+ &3038 * x pow 8 +
+ -- &2968 * x pow 6 +
+ &1022 * x pow 4 +
+ -- &84 * x pow 2 +
+ &2`;;
+
+time PURE_SOS
+ `!x. &0 <= &2 * x pow 14 +
+ -- &84 * x pow 12 +
+ &1022 * x pow 10 +
+ -- &2968 * x pow 8 +
+ &3038 * x pow 6 +
+ -- &980 * x pow 4 +
+ &98 * x pow 2`;;
+
+(* ------------------------------------------------------------------------- *)
+(* From Zeng et al, JSC vol 37 (2004), p83-99. *)
+(* All of them work nicely with pure SOS_CONV, except (maybe) the one noted. *)
+(* ------------------------------------------------------------------------- *)
+
+PURE_SOS
+ `x pow 6 + y pow 6 + z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2 >= &0`;;
+
+PURE_SOS `x pow 4 + y pow 4 + z pow 4 + &1 - &4*x*y*z >= &0`;;
+
+PURE_SOS `x pow 4 + &2*x pow 2*z + x pow 2 - &2*x*y*z + &2*y pow 2*z pow 2 +
+&2*y*z pow 2 + &2*z pow 2 - &2*x + &2* y*z + &1 >= &0`;;
+
+(**** This is harder. Interestingly, this fails the pure SOS test, it seems.
+ Yet only on rounding(!?) Poor Newton polytope optimization or something?
+ But REAL_SOS does finally converge on the second run at level 12!
+
+REAL_SOS
+`x pow 4*y pow 4 - &2*x pow 5*y pow 3*z pow 2 + x pow 6*y pow 2*z pow 4 + &2*x
+pow 2*y pow 3*z - &4* x pow 3*y pow 2*z pow 3 + &2*x pow 4*y*z pow 5 + z pow
+2*y pow 2 - &2*z pow 4*y*x + z pow 6*x pow 2 >= &0`;;
+
+ ****)
+
+PURE_SOS
+`x pow 4 + &4*x pow 2*y pow 2 + &2*x*y*z pow 2 + &2*x*y*w pow 2 + y pow 4 + z
+pow 4 + w pow 4 + &2*z pow 2*w pow 2 + &2*x pow 2*w + &2*y pow 2*w + &2*x*y +
+&3*w pow 2 + &2*z pow 2 + &1 >= &0`;;
+
+PURE_SOS
+`w pow 6 + &2*z pow 2*w pow 3 + x pow 4 + y pow 4 + z pow 4 + &2*x pow 2*w +
+&2*x pow 2*z + &3*x pow 2 + w pow 2 + &2*z*w + z pow 2 + &2*z + &2*w + &1 >=
+&0`;;
+
+*****)