diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /plugins/micromega/CheckerMaker.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'plugins/micromega/CheckerMaker.v')
-rw-r--r-- | plugins/micromega/CheckerMaker.v | 129 |
1 files changed, 129 insertions, 0 deletions
diff --git a/plugins/micromega/CheckerMaker.v b/plugins/micromega/CheckerMaker.v new file mode 100644 index 00000000..93b4d213 --- /dev/null +++ b/plugins/micromega/CheckerMaker.v @@ -0,0 +1,129 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* *) +(* Micromega: A reflexive tactic using the Positivstellensatz *) +(* *) +(* Frédéric Besson (Irisa/Inria) 2006-2008 *) +(* *) +(************************************************************************) + +Require Import Setoid. +Require Import Decidable. +Require Import List. +Require Import Refl. + +Set Implicit Arguments. + +Section CheckerMaker. + +(* 'Formula' is a syntactic representation of a certain kind of propositions. *) +Variable Formula : Type. + +Variable Env : Type. + +Variable eval : Env -> Formula -> Prop. + +Variable Formula' : Type. + +Variable eval' : Env -> Formula' -> Prop. + +Variable normalise : Formula -> Formula'. + +Variable negate : Formula -> Formula'. + +Hypothesis normalise_sound : + forall (env : Env) (t : Formula), eval env t -> eval' env (normalise t). + +Hypothesis negate_correct : + forall (env : Env) (t : Formula), eval env t <-> ~ (eval' env (negate t)). + +Variable Witness : Type. + +Variable check_formulas' : list Formula' -> Witness -> bool. + +Hypothesis check_formulas'_sound : + forall (l : list Formula') (w : Witness), + check_formulas' l w = true -> + forall env : Env, make_impl (eval' env) l False. + +Definition normalise_list : list Formula -> list Formula' := map normalise. +Definition negate_list : list Formula -> list Formula' := map negate. + +Definition check_formulas (l : list Formula) (w : Witness) : bool := + check_formulas' (map normalise l) w. + +(* Contraposition of normalise_sound for lists *) +Lemma normalise_sound_contr : forall (env : Env) (l : list Formula), + make_impl (eval' env) (map normalise l) False -> make_impl (eval env) l False. +Proof. +intros env l; induction l as [| t l IH]; simpl in *. +trivial. +intros H1 H2. apply IH. apply H1. now apply normalise_sound. +Qed. + +Theorem check_formulas_sound : + forall (l : list Formula) (w : Witness), + check_formulas l w = true -> forall env : Env, make_impl (eval env) l False. +Proof. +unfold check_formulas; intros l w H env. destruct l as [| t l]; simpl in *. +pose proof (check_formulas'_sound H env) as H1; now simpl in H1. +intro H1. apply normalise_sound in H1. +pose proof (check_formulas'_sound H env) as H2; simpl in H2. +apply H2 in H1. now apply normalise_sound_contr. +Qed. + +(* In check_conj_formulas', t2 is supposed to be a list of negations of +formulas. If, for example, t1 = [A1, A2] and t2 = [~ B1, ~ B2], then +check_conj_formulas' checks that each of [~ B1, A1, A2] and [~ B2, A1, A2] is +inconsistent. This means that A1 /\ A2 -> B1 and A1 /\ A2 -> B1, i.e., that +A1 /\ A2 -> B1 /\ B2. *) + +Fixpoint check_conj_formulas' + (t1 : list Formula') (wits : list Witness) (t2 : list Formula') {struct wits} : bool := +match t2 with +| nil => true +| t':: rt2 => + match wits with + | nil => false + | w :: rwits => + match check_formulas' (t':: t1) w with + | true => check_conj_formulas' t1 rwits rt2 + | false => false + end + end +end. + +(* checks whether the conjunction of t1 implies the conjunction of t2 *) + +Definition check_conj_formulas + (t1 : list Formula) (wits : list Witness) (t2 : list Formula) : bool := + check_conj_formulas' (normalise_list t1) wits (negate_list t2). + +Theorem check_conj_formulas_sound : + forall (t1 : list Formula) (t2 : list Formula) (wits : list Witness), + check_conj_formulas t1 wits t2 = true -> + forall env : Env, make_impl (eval env) t1 (make_conj (eval env) t2). +Proof. +intro t1; induction t2 as [| a2 t2' IH]. +intros; apply make_impl_true. +intros wits H env. +unfold check_conj_formulas in H; simpl in H. +destruct wits as [| w ws]; simpl in H. discriminate. +case_eq (check_formulas' (negate a2 :: normalise_list t1) w); +intro H1; rewrite H1 in H; [| discriminate]. +assert (H2 : make_impl (eval' env) (negate a2 :: normalise_list t1) False) by +now apply check_formulas'_sound with (w := w). clear H1. +pose proof (IH ws H env) as H1. simpl in H2. +assert (H3 : eval' env (negate a2) -> make_impl (eval env) t1 False) +by auto using normalise_sound_contr. clear H2. +rewrite <- make_conj_impl in *. +rewrite make_conj_cons. intro H2. split. +apply <- negate_correct. intro; now elim H3. exact (H1 H2). +Qed. + +End CheckerMaker. |