diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /plugins/extraction/extraction.ml | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'plugins/extraction/extraction.ml')
-rw-r--r-- | plugins/extraction/extraction.ml | 982 |
1 files changed, 982 insertions, 0 deletions
diff --git a/plugins/extraction/extraction.ml b/plugins/extraction/extraction.ml new file mode 100644 index 00000000..99682ae6 --- /dev/null +++ b/plugins/extraction/extraction.ml @@ -0,0 +1,982 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id$ i*) + +(*i*) +open Util +open Names +open Term +open Declarations +open Environ +open Reduction +open Reductionops +open Inductive +open Termops +open Inductiveops +open Recordops +open Namegen +open Summary +open Libnames +open Nametab +open Miniml +open Table +open Mlutil +(*i*) + +exception I of inductive_info + +(* A set of all fixpoint functions currently being extracted *) +let current_fixpoints = ref ([] : constant list) + +let none = Evd.empty + +let type_of env c = Retyping.get_type_of env none (strip_outer_cast c) + +let sort_of env c = Retyping.get_sort_family_of env none (strip_outer_cast c) + +let is_axiom env kn = (Environ.lookup_constant kn env).const_body = None + +(*S Generation of flags and signatures. *) + +(* The type [flag] gives us information about any Coq term: + \begin{itemize} + \item [TypeScheme] denotes a type scheme, that is + something that will become a type after enough applications. + More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with + [s = Set], [Prop] or [Type] + \item [Default] denotes the other cases. It may be inexact after + instanciation. For example [(X:Type)X] is [Default] and may give [Set] + after instanciation, which is rather [TypeScheme] + \item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop] + \item [Info] is the opposite. The same example [(X:Type)X] shows + that an [Info] term might in fact be [Logic] later on. + \end{itemize} *) + +type info = Logic | Info + +type scheme = TypeScheme | Default + +type flag = info * scheme + +(*s [flag_of_type] transforms a type [t] into a [flag]. + Really important function. *) + +let rec flag_of_type env t = + let t = whd_betadeltaiota env none t in + match kind_of_term t with + | Prod (x,t,c) -> flag_of_type (push_rel (x,None,t) env) c + | Sort (Prop Null) -> (Logic,TypeScheme) + | Sort _ -> (Info,TypeScheme) + | _ -> if (sort_of env t) = InProp then (Logic,Default) else (Info,Default) + +(*s Two particular cases of [flag_of_type]. *) + +let is_default env t = (flag_of_type env t = (Info, Default)) + +exception NotDefault of kill_reason + +let check_default env t = + match flag_of_type env t with + | _,TypeScheme -> raise (NotDefault Ktype) + | Logic,_ -> raise (NotDefault Kother) + | _ -> () + +let is_info_scheme env t = (flag_of_type env t = (Info, TypeScheme)) + +(*s [type_sign] gernerates a signature aimed at treating a type application. *) + +let rec type_sign env c = + match kind_of_term (whd_betadeltaiota env none c) with + | Prod (n,t,d) -> + (if is_info_scheme env t then Keep else Kill Kother) + :: (type_sign (push_rel_assum (n,t) env) d) + | _ -> [] + +let rec type_scheme_nb_args env c = + match kind_of_term (whd_betadeltaiota env none c) with + | Prod (n,t,d) -> + let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in + if is_info_scheme env t then n+1 else n + | _ -> 0 + +let _ = register_type_scheme_nb_args type_scheme_nb_args + +(*s [type_sign_vl] does the same, plus a type var list. *) + +let rec type_sign_vl env c = + match kind_of_term (whd_betadeltaiota env none c) with + | Prod (n,t,d) -> + let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in + if not (is_info_scheme env t) then Kill Kother::s, vl + else Keep::s, (next_ident_away (id_of_name n) vl) :: vl + | _ -> [],[] + +let rec nb_default_params env c = + match kind_of_term (whd_betadeltaiota env none c) with + | Prod (n,t,d) -> + let n = nb_default_params (push_rel_assum (n,t) env) d in + if is_default env t then n+1 else n + | _ -> 0 + +(* Enriching a signature with implicit information *) + +let sign_with_implicits r s = + let implicits = implicits_of_global r in + let rec add_impl i = function + | [] -> [] + | sign::s -> + let sign' = + if sign = Keep && List.mem i implicits then Kill Kother else sign + in sign' :: add_impl (succ i) s + in + add_impl 1 s + +(* Enriching a exception message *) + +let rec handle_exn r n fn_name = function + | MLexn s -> + (try Scanf.sscanf s "UNBOUND %d" + (fun i -> + assert ((0 < i) && (i <= n)); + MLexn ("IMPLICIT "^ msg_non_implicit r (n+1-i) (fn_name i))) + with _ -> MLexn s) + | a -> ast_map (handle_exn r n fn_name) a + +(*S Management of type variable contexts. *) + +(* A De Bruijn variable context (db) is a context for translating Coq [Rel] + into ML type [Tvar]. *) + +(*s From a type signature toward a type variable context (db). *) + +let db_from_sign s = + let rec make i acc = function + | [] -> acc + | Keep :: l -> make (i+1) (i::acc) l + | Kill _ :: l -> make i (0::acc) l + in make 1 [] s + +(*s Create a type variable context from indications taken from + an inductive type (see just below). *) + +let rec db_from_ind dbmap i = + if i = 0 then [] + else (try Intmap.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1)) + +(*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument + of a constructor corresponds to the j-th type var of the ML inductive. *) + +(* \begin{itemize} + \item [si] : signature of the inductive + \item [i] : counter of Coq args for [(I args)] + \item [j] : counter of ML type vars + \item [relmax] : total args number of the constructor + \end{itemize} *) + +let parse_ind_args si args relmax = + let rec parse i j = function + | [] -> Intmap.empty + | Kill _ :: s -> parse (i+1) j s + | Keep :: s -> + (match kind_of_term args.(i-1) with + | Rel k -> Intmap.add (relmax+1-k) j (parse (i+1) (j+1) s) + | _ -> parse (i+1) (j+1) s) + in parse 1 1 si + +(*S Extraction of a type. *) + +(* [extract_type env db c args] is used to produce an ML type from the + coq term [(c args)], which is supposed to be a Coq type. *) + +(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *) + +(* [j] stands for the next ML type var. [j=0] means we do not + generate ML type var anymore (in subterms for example). *) + + +let rec extract_type env db j c args = + match kind_of_term (whd_betaiotazeta Evd.empty c) with + | App (d, args') -> + (* We just accumulate the arguments. *) + extract_type env db j d (Array.to_list args' @ args) + | Lambda (_,_,d) -> + (match args with + | [] -> assert false (* otherwise the lambda would be reductible. *) + | a :: args -> extract_type env db j (subst1 a d) args) + | Prod (n,t,d) -> + assert (args = []); + let env' = push_rel_assum (n,t) env in + (match flag_of_type env t with + | (Info, Default) -> + (* Standard case: two [extract_type] ... *) + let mld = extract_type env' (0::db) j d [] in + (match expand env mld with + | Tdummy d -> Tdummy d + | _ -> Tarr (extract_type env db 0 t [], mld)) + | (Info, TypeScheme) when j > 0 -> + (* A new type var. *) + let mld = extract_type env' (j::db) (j+1) d [] in + (match expand env mld with + | Tdummy d -> Tdummy d + | _ -> Tarr (Tdummy Ktype, mld)) + | _,lvl -> + let mld = extract_type env' (0::db) j d [] in + (match expand env mld with + | Tdummy d -> Tdummy d + | _ -> + let reason = if lvl=TypeScheme then Ktype else Kother in + Tarr (Tdummy reason, mld))) + | Sort _ -> Tdummy Ktype (* The two logical cases. *) + | _ when sort_of env (applist (c, args)) = InProp -> Tdummy Kother + | Rel n -> + (match lookup_rel n env with + | (_,Some t,_) -> extract_type env db j (lift n t) args + | _ -> + (* Asks [db] a translation for [n]. *) + if n > List.length db then Tunknown + else let n' = List.nth db (n-1) in + if n' = 0 then Tunknown else Tvar n') + | Const kn -> + let r = ConstRef kn in + let cb = lookup_constant kn env in + let typ = Typeops.type_of_constant_type env cb.const_type in + (match flag_of_type env typ with + | (Info, TypeScheme) -> + let mlt = extract_type_app env db (r, type_sign env typ) args in + (match cb.const_body with + | None -> mlt + | Some _ when is_custom r -> mlt + | Some lbody -> + let newc = applist (Declarations.force lbody, args) in + let mlt' = extract_type env db j newc [] in + (* ML type abbreviations interact badly with Coq *) + (* reduction, so [mlt] and [mlt'] might be different: *) + (* The more precise is [mlt'], extracted after reduction *) + (* The shortest is [mlt], which use abbreviations *) + (* If possible, we take [mlt], otherwise [mlt']. *) + if expand env mlt = expand env mlt' then mlt else mlt') + | _ -> (* only other case here: Info, Default, i.e. not an ML type *) + (match cb.const_body with + | None -> Tunknown (* Brutal approximation ... *) + | Some lbody -> + (* We try to reduce. *) + let newc = applist (Declarations.force lbody, args) in + extract_type env db j newc [])) + | Ind (kn,i) -> + let s = (extract_ind env kn).ind_packets.(i).ip_sign in + extract_type_app env db (IndRef (kn,i),s) args + | Case _ | Fix _ | CoFix _ -> Tunknown + | _ -> assert false + +(* [extract_maybe_type] calls [extract_type] when used on a Coq type, + and otherwise returns [Tdummy] or [Tunknown] *) + +and extract_maybe_type env db c = + let t = whd_betadeltaiota env none (type_of env c) in + if isSort t then extract_type env db 0 c [] + else if sort_of env t = InProp then Tdummy Kother else Tunknown + +(*s Auxiliary function dealing with type application. + Precondition: [r] is a type scheme represented by the signature [s], + and is completely applied: [List.length args = List.length s]. *) + +and extract_type_app env db (r,s) args = + let ml_args = + List.fold_right + (fun (b,c) a -> if b=Keep then + let p = List.length (fst (splay_prod env none (type_of env c))) in + let db = iterate (fun l -> 0 :: l) p db in + (extract_type_scheme env db c p) :: a + else a) + (List.combine s args) [] + in Tglob (r, ml_args) + +(*S Extraction of a type scheme. *) + +(* [extract_type_scheme env db c p] works on a Coq term [c] which is + an informative type scheme. It means that [c] is not a Coq type, but will + be when applied to sufficiently many arguments ([p] in fact). + This function decomposes p lambdas, with eta-expansion if needed. *) + +(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *) + +and extract_type_scheme env db c p = + if p=0 then extract_type env db 0 c [] + else + let c = whd_betaiotazeta Evd.empty c in + match kind_of_term c with + | Lambda (n,t,d) -> + extract_type_scheme (push_rel_assum (n,t) env) db d (p-1) + | _ -> + let rels = fst (splay_prod env none (type_of env c)) in + let env = push_rels_assum rels env in + let eta_args = List.rev_map mkRel (interval 1 p) in + extract_type env db 0 (lift p c) eta_args + + +(*S Extraction of an inductive type. *) + +and extract_ind env kn = (* kn is supposed to be in long form *) + let mib = Environ.lookup_mind kn env in + try + (* For a same kn, we can get various bodies due to module substitutions. + We hence check that the mib has not changed from recording + time to retrieving time. Ideally we should also check the env. *) + let (mib0,ml_ind) = lookup_ind kn in + if not (mib = mib0) then raise Not_found; + ml_ind + with Not_found -> + (* First, if this inductive is aliased via a Module, *) + (* we process the original inductive. *) + let equiv = + if (canonical_mind kn) = (user_mind kn) then + NoEquiv + else + begin + ignore (extract_ind env (mind_of_kn (canonical_mind kn))); + Equiv (canonical_mind kn) + end + in + (* Everything concerning parameters. *) + (* We do that first, since they are common to all the [mib]. *) + let mip0 = mib.mind_packets.(0) in + let npar = mib.mind_nparams in + let epar = push_rel_context mib.mind_params_ctxt env in + (* First pass: we store inductive signatures together with *) + (* their type var list. *) + let packets = + Array.map + (fun mip -> + let b = snd (mind_arity mip) <> InProp in + let ar = Inductive.type_of_inductive env (mib,mip) in + let s,v = if b then type_sign_vl env ar else [],[] in + let t = Array.make (Array.length mip.mind_nf_lc) [] in + { ip_typename = mip.mind_typename; + ip_consnames = mip.mind_consnames; + ip_logical = (not b); + ip_sign = s; + ip_vars = v; + ip_types = t; + ip_optim_id_ok = None }) + mib.mind_packets + in + + add_ind kn mib + {ind_info = Standard; + ind_nparams = npar; + ind_packets = packets; + ind_equiv = equiv + }; + (* Second pass: we extract constructors *) + for i = 0 to mib.mind_ntypes - 1 do + let p = packets.(i) in + if not p.ip_logical then + let types = arities_of_constructors env (kn,i) in + for j = 0 to Array.length types - 1 do + let t = snd (decompose_prod_n npar types.(j)) in + let prods,head = dest_prod epar t in + let nprods = List.length prods in + let args = match kind_of_term head with + | App (f,args) -> args (* [kind_of_term f = Ind ip] *) + | _ -> [||] + in + let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in + let db = db_from_ind dbmap npar in + p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1) + done + done; + (* Third pass: we determine special cases. *) + let ind_info = + try + if not mib.mind_finite then raise (I Coinductive); + if mib.mind_ntypes <> 1 then raise (I Standard); + let p = packets.(0) in + if p.ip_logical then raise (I Standard); + if Array.length p.ip_types <> 1 then raise (I Standard); + let typ = p.ip_types.(0) in + let l = List.filter (fun t -> not (isDummy (expand env t))) typ in + if List.length l = 1 && not (type_mem_kn kn (List.hd l)) + then raise (I Singleton); + if l = [] then raise (I Standard); + if not mib.mind_record then raise (I Standard); + let ip = (kn, 0) in + let r = IndRef ip in + if is_custom r then raise (I Standard); + (* Now we're sure it's a record. *) + (* First, we find its field names. *) + let rec names_prod t = match kind_of_term t with + | Prod(n,_,t) -> n::(names_prod t) + | LetIn(_,_,_,t) -> names_prod t + | Cast(t,_,_) -> names_prod t + | _ -> [] + in + let field_names = + list_skipn mib.mind_nparams (names_prod mip0.mind_user_lc.(0)) in + assert (List.length field_names = List.length typ); + let projs = ref Cset.empty in + let mp,d,_ = repr_mind kn in + let rec select_fields l typs = match l,typs with + | [],[] -> [] + | (Name id)::l, typ::typs -> + if isDummy (expand env typ) then select_fields l typs + else + let knp = make_con mp d (label_of_id id) in + if List.for_all ((=) Keep) (type2signature env typ) + then + projs := Cset.add knp !projs; + (ConstRef knp) :: (select_fields l typs) + | Anonymous::l, typ::typs -> + if isDummy (expand env typ) then select_fields l typs + else error_record r + | _ -> assert false + in + let field_glob = select_fields field_names typ + in + (* Is this record officially declared with its projections ? *) + (* If so, we use this information. *) + begin try + let n = nb_default_params env + (Inductive.type_of_inductive env (mib,mip0)) + in + List.iter + (Option.iter + (fun kn -> if Cset.mem kn !projs then add_projection n kn)) + (lookup_projections ip) + with Not_found -> () + end; + Record field_glob + with (I info) -> info + in + let i = {ind_info = ind_info; + ind_nparams = npar; + ind_packets = packets; + ind_equiv = equiv } + in + add_ind kn mib i; + i + +(*s [extract_type_cons] extracts the type of an inductive + constructor toward the corresponding list of ML types. + + - [db] is a context for translating Coq [Rel] into ML type [Tvar] + - [dbmap] is a translation map (produced by a call to [parse_in_args]) + - [i] is the rank of the current product (initially [params_nb+1]) +*) + +and extract_type_cons env db dbmap c i = + match kind_of_term (whd_betadeltaiota env none c) with + | Prod (n,t,d) -> + let env' = push_rel_assum (n,t) env in + let db' = (try Intmap.find i dbmap with Not_found -> 0) :: db in + let l = extract_type_cons env' db' dbmap d (i+1) in + (extract_type env db 0 t []) :: l + | _ -> [] + +(*s Recording the ML type abbreviation of a Coq type scheme constant. *) + +and mlt_env env r = match r with + | ConstRef kn -> + (try + if not (visible_con kn) then raise Not_found; + match lookup_term kn with + | Dtype (_,vl,mlt) -> Some mlt + | _ -> None + with Not_found -> + let cb = Environ.lookup_constant kn env in + let typ = Typeops.type_of_constant_type env cb.const_type in + match cb.const_body with + | None -> None + | Some l_body -> + (match flag_of_type env typ with + | Info,TypeScheme -> + let body = Declarations.force l_body in + let s,vl = type_sign_vl env typ in + let db = db_from_sign s in + let t = extract_type_scheme env db body (List.length s) + in add_term kn (Dtype (r, vl, t)); Some t + | _ -> None)) + | _ -> None + +and expand env = type_expand (mlt_env env) +and type2signature env = type_to_signature (mlt_env env) +let type2sign env = type_to_sign (mlt_env env) +let type_expunge env = type_expunge (mlt_env env) +let type_expunge_from_sign env = type_expunge_from_sign (mlt_env env) + +(*s Extraction of the type of a constant. *) + +let record_constant_type env kn opt_typ = + try + if not (visible_con kn) then raise Not_found; + lookup_type kn + with Not_found -> + let typ = match opt_typ with + | None -> Typeops.type_of_constant env kn + | Some typ -> typ + in let mlt = extract_type env [] 1 typ [] + in let schema = (type_maxvar mlt, mlt) + in add_type kn schema; schema + +(*S Extraction of a term. *) + +(* Precondition: [(c args)] is not a type scheme, and is informative. *) + +(* [mle] is a ML environment [Mlenv.t]. *) +(* [mlt] is the ML type we want our extraction of [(c args)] to have. *) + +let rec extract_term env mle mlt c args = + match kind_of_term c with + | App (f,a) -> + extract_term env mle mlt f (Array.to_list a @ args) + | Lambda (n, t, d) -> + let id = id_of_name n in + (match args with + | a :: l -> + (* We make as many [LetIn] as possible. *) + let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l)) + in extract_term env mle mlt d' [] + | [] -> + let env' = push_rel_assum (Name id, t) env in + let id, a = + try check_default env t; Id id, new_meta() + with NotDefault d -> Dummy, Tdummy d + in + let b = new_meta () in + (* If [mlt] cannot be unified with an arrow type, then magic! *) + let magic = needs_magic (mlt, Tarr (a, b)) in + let d' = extract_term env' (Mlenv.push_type mle a) b d [] in + put_magic_if magic (MLlam (id, d'))) + | LetIn (n, c1, t1, c2) -> + let id = id_of_name n in + let env' = push_rel (Name id, Some c1, t1) env in + let args' = List.map (lift 1) args in + (try + check_default env t1; + let a = new_meta () in + let c1' = extract_term env mle a c1 [] in + (* The type of [c1'] is generalized and stored in [mle]. *) + let mle' = Mlenv.push_gen mle a in + MLletin (Id id, c1', extract_term env' mle' mlt c2 args') + with NotDefault d -> + let mle' = Mlenv.push_std_type mle (Tdummy d) in + ast_pop (extract_term env' mle' mlt c2 args')) + | Const kn -> + extract_cst_app env mle mlt kn args + | Construct cp -> + extract_cons_app env mle mlt cp args + | Rel n -> + (* As soon as the expected [mlt] for the head is known, *) + (* we unify it with an fresh copy of the stored type of [Rel n]. *) + let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n) + in extract_app env mle mlt extract_rel args + | Case ({ci_ind=ip},_,c0,br) -> + extract_app env mle mlt (extract_case env mle (ip,c0,br)) args + | Fix ((_,i),recd) -> + extract_app env mle mlt (extract_fix env mle i recd) args + | CoFix (i,recd) -> + extract_app env mle mlt (extract_fix env mle i recd) args + | Cast (c,_,_) -> extract_term env mle mlt c args + | Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false + +(*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *) + +and extract_maybe_term env mle mlt c = + try check_default env (type_of env c); + extract_term env mle mlt c [] + with NotDefault d -> + put_magic (mlt, Tdummy d) MLdummy + +(*s Generic way to deal with an application. *) + +(* We first type all arguments starting with unknown meta types. + This gives us the expected type of the head. Then we use the + [mk_head] to produce the ML head from this type. *) + +and extract_app env mle mlt mk_head args = + let metas = List.map new_meta args in + let type_head = type_recomp (metas, mlt) in + let mlargs = List.map2 (extract_maybe_term env mle) metas args in + mlapp (mk_head type_head) mlargs + +(*s Auxiliary function used to extract arguments of constant or constructor. *) + +and make_mlargs env e s args typs = + let rec f = function + | [], [], _ -> [] + | a::la, t::lt, [] -> extract_maybe_term env e t a :: (f (la,lt,[])) + | a::la, t::lt, Keep::s -> extract_maybe_term env e t a :: (f (la,lt,s)) + | _::la, _::lt, _::s -> f (la,lt,s) + | _ -> assert false + in f (args,typs,s) + +(*s Extraction of a constant applied to arguments. *) + +and extract_cst_app env mle mlt kn args = + (* First, the [ml_schema] of the constant, in expanded version. *) + let nb,t = record_constant_type env kn None in + let schema = nb, expand env t in + (* Can we instantiate types variables for this constant ? *) + (* In Ocaml, inside the definition of this constant, the answer is no. *) + let instantiated = + if lang () = Ocaml && List.mem kn !current_fixpoints then var2var' (snd schema) + else instantiation schema + in + (* Then the expected type of this constant. *) + let a = new_meta () in + (* We compare stored and expected types in two steps. *) + (* First, can [kn] be applied to all args ? *) + let metas = List.map new_meta args in + let magic1 = needs_magic (type_recomp (metas, a), instantiated) in + (* Second, is the resulting type compatible with the expected type [mlt] ? *) + let magic2 = needs_magic (a, mlt) in + (* The internal head receives a magic if [magic1] *) + let head = put_magic_if magic1 (MLglob (ConstRef kn)) in + (* Now, the extraction of the arguments. *) + let s_full = type2signature env (snd schema) in + let s_full = sign_with_implicits (ConstRef kn) s_full in + let s = sign_no_final_keeps s_full in + let ls = List.length s in + let la = List.length args in + (* The ml arguments, already expunged from known logical ones *) + let mla = make_mlargs env mle s args metas in + let mla = + if not magic1 then + try + let l,l' = list_chop (projection_arity (ConstRef kn)) mla in + if l' <> [] then (List.map (fun _ -> MLexn "Proj Args") l) @ l' + else mla + with _ -> mla + else mla + in + (* For strict languages, purely logical signatures with at least + one [Kill Kother] lead to a dummy lam. So a [MLdummy] is left + accordingly. *) + let optdummy = match sign_kind s_full with + | UnsafeLogicalSig when lang () <> Haskell -> [MLdummy] + | _ -> [] + in + (* Different situations depending of the number of arguments: *) + if la >= ls + then + (* Enough args, cleanup already done in [mla], we only add the + additionnal dummy if needed. *) + put_magic_if (magic2 && not magic1) (mlapp head (optdummy @ mla)) + else + (* Partially applied function with some logical arg missing. + We complete via eta and expunge logical args. *) + let ls' = ls-la in + let s' = list_skipn la s in + let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in + let e = anonym_or_dummy_lams (mlapp head mla) s' in + put_magic_if magic2 (remove_n_lams (List.length optdummy) e) + +(*s Extraction of an inductive constructor applied to arguments. *) + +(* \begin{itemize} + \item In ML, contructor arguments are uncurryfied. + \item We managed to suppress logical parts inside inductive definitions, + but they must appears outside (for partial applications for instance) + \item We also suppressed all Coq parameters to the inductives, since + they are fixed, and thus are not used for the computation. + \end{itemize} *) + +and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args = + (* First, we build the type of the constructor, stored in small pieces. *) + let mi = extract_ind env kn in + let params_nb = mi.ind_nparams in + let oi = mi.ind_packets.(i) in + let nb_tvars = List.length oi.ip_vars + and types = List.map (expand env) oi.ip_types.(j-1) in + let list_tvar = List.map (fun i -> Tvar i) (interval 1 nb_tvars) in + let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in + let type_cons = instantiation (nb_tvars, type_cons) in + (* Then, the usual variables [s], [ls], [la], ... *) + let s = List.map (type2sign env) types in + let s = sign_with_implicits (ConstructRef cp) s in + let ls = List.length s in + let la = List.length args in + assert (la <= ls + params_nb); + let la' = max 0 (la - params_nb) in + let args' = list_lastn la' args in + (* Now, we build the expected type of the constructor *) + let metas = List.map new_meta args' in + (* If stored and expected types differ, then magic! *) + let a = new_meta () in + let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in + let magic2 = needs_magic (a, mlt) in + let head mla = + if mi.ind_info = Singleton then + put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *) + else put_magic_if magic1 (MLcons (mi.ind_info, ConstructRef cp, mla)) + in + (* Different situations depending of the number of arguments: *) + if la < params_nb then + let head' = head (eta_args_sign ls s) in + put_magic_if magic2 + (dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la)) + else + let mla = make_mlargs env mle s args' metas in + if la = ls + params_nb + then put_magic_if (magic2 && not magic1) (head mla) + else (* [ params_nb <= la <= ls + params_nb ] *) + let ls' = params_nb + ls - la in + let s' = list_lastn ls' s in + let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in + put_magic_if magic2 (anonym_or_dummy_lams (head mla) s') + +(*S Extraction of a case. *) + +and extract_case env mle ((kn,i) as ip,c,br) mlt = + (* [br]: bodies of each branch (in functional form) *) + (* [ni]: number of arguments without parameters in each branch *) + let ni = mis_constr_nargs_env env ip in + let br_size = Array.length br in + assert (Array.length ni = br_size); + if br_size = 0 then begin + add_recursors env kn; (* May have passed unseen if logical ... *) + MLexn "absurd case" + end else + (* [c] has an inductive type, and is not a type scheme type. *) + let t = type_of env c in + (* The only non-informative case: [c] is of sort [Prop] *) + if (sort_of env t) = InProp then + begin + add_recursors env kn; (* May have passed unseen if logical ... *) + (* Logical singleton case: *) + (* [match c with C i j k -> t] becomes [t'] *) + assert (br_size = 1); + let s = iterate (fun l -> Kill Kother :: l) ni.(0) [] in + let mlt = iterate (fun t -> Tarr (Tdummy Kother, t)) ni.(0) mlt in + let e = extract_maybe_term env mle mlt br.(0) in + snd (case_expunge s e) + end + else + let mi = extract_ind env kn in + let oi = mi.ind_packets.(i) in + let metas = Array.init (List.length oi.ip_vars) new_meta in + (* The extraction of the head. *) + let type_head = Tglob (IndRef ip, Array.to_list metas) in + let a = extract_term env mle type_head c [] in + (* The extraction of each branch. *) + let extract_branch i = + let r = ConstructRef (ip,i+1) in + (* The types of the arguments of the corresponding constructor. *) + let f t = type_subst_vect metas (expand env t) in + let l = List.map f oi.ip_types.(i) in + (* the corresponding signature *) + let s = List.map (type2sign env) oi.ip_types.(i) in + let s = sign_with_implicits r s in + (* Extraction of the branch (in functional form). *) + let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in + (* We suppress dummy arguments according to signature. *) + let ids,e = case_expunge s e in + let e' = handle_exn r (List.length s) (fun _ -> Anonymous) e in + (r, List.rev ids, e') + in + if mi.ind_info = Singleton then + begin + (* Informative singleton case: *) + (* [match c with C i -> t] becomes [let i = c' in t'] *) + assert (br_size = 1); + let (_,ids,e') = extract_branch 0 in + assert (List.length ids = 1); + MLletin (tmp_id (List.hd ids),a,e') + end + else + (* Standard case: we apply [extract_branch]. *) + MLcase ((mi.ind_info,BranchNone), a, Array.init br_size extract_branch) + +(*s Extraction of a (co)-fixpoint. *) + +and extract_fix env mle i (fi,ti,ci as recd) mlt = + let env = push_rec_types recd env in + let metas = Array.map new_meta fi in + metas.(i) <- mlt; + let mle = Array.fold_left Mlenv.push_type mle metas in + let ei = array_map2 (extract_maybe_term env mle) metas ci in + MLfix (i, Array.map id_of_name fi, ei) + +(*S ML declarations. *) + +(* [decomp_lams_eta env c t] finds the number [n] of products in the type [t], + and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *) + +let rec decomp_lams_eta_n n m env c t = + let rels = fst (splay_prod_n env none n t) in + let rels = List.map (fun (id,_,c) -> (id,c)) rels in + let rels',c = decompose_lam c in + let d = n - m in + (* we'd better keep rels' as long as possible. *) + let rels = (list_firstn d rels) @ rels' in + let eta_args = List.rev_map mkRel (interval 1 d) in + rels, applist (lift d c,eta_args) + +(*s From a constant to a ML declaration. *) + +let extract_std_constant env kn body typ = + reset_meta_count (); + (* The short type [t] (i.e. possibly with abbreviations). *) + let t = snd (record_constant_type env kn (Some typ)) in + (* The real type [t']: without head products, expanded, *) + (* and with [Tvar] translated to [Tvar'] (not instantiable). *) + let l,t' = type_decomp (expand env (var2var' t)) in + let s = List.map (type2sign env) l in + (* Check for user-declared implicit information *) + let s = sign_with_implicits (ConstRef kn) s in + (* Decomposing the top level lambdas of [body]. + If there isn't enough, it's ok, as long as remaining args + aren't to be pruned (and initial lambdas aren't to be all + removed if the target language is strict). In other situations, + eta-expansions create artificially enough lams (but that may + break user's clever let-ins and partial applications). *) + let rels, c = + let n = List.length s + and m = nb_lam body in + if n <= m then decompose_lam_n n body + else + let s,s' = list_split_at m s in + if List.for_all ((=) Keep) s' && + (lang () = Haskell || sign_kind s <> UnsafeLogicalSig) + then decompose_lam_n m body + else decomp_lams_eta_n n m env body typ + in + let n = List.length rels in + let s = list_firstn n s in + let l,l' = list_split_at n l in + let t' = type_recomp (l',t') in + (* The initial ML environment. *) + let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in + (* The lambdas names. *) + let ids = List.map (fun (n,_) -> Id (id_of_name n)) rels in + (* The according Coq environment. *) + let env = push_rels_assum rels env in + (* The real extraction: *) + let e = extract_term env mle t' c [] in + (* Expunging term and type from dummy lambdas. *) + let trm = term_expunge s (ids,e) in + let trm = handle_exn (ConstRef kn) n (fun i -> fst (List.nth rels (i-1))) trm + in + trm, type_expunge_from_sign env s t + +let extract_fixpoint env vkn (fi,ti,ci) = + let n = Array.length vkn in + let types = Array.make n (Tdummy Kother) + and terms = Array.make n MLdummy in + let kns = Array.to_list vkn in + current_fixpoints := kns; + (* for replacing recursive calls [Rel ..] by the corresponding [Const]: *) + let sub = List.rev_map mkConst kns in + for i = 0 to n-1 do + if sort_of env ti.(i) <> InProp then begin + let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in + terms.(i) <- e; + types.(i) <- t; + end + done; + current_fixpoints := []; + Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types) + +let extract_constant env kn cb = + let r = ConstRef kn in + let typ = Typeops.type_of_constant_type env cb.const_type in + match cb.const_body with + | None -> (* A logical axiom is risky, an informative one is fatal. *) + (match flag_of_type env typ with + | (Info,TypeScheme) -> + if not (is_custom r) then add_info_axiom r; + let n = type_scheme_nb_args env typ in + let ids = iterate (fun l -> anonymous_name::l) n [] in + Dtype (r, ids, Taxiom) + | (Info,Default) -> + if not (is_custom r) then add_info_axiom r; + let t = snd (record_constant_type env kn (Some typ)) in + Dterm (r, MLaxiom, type_expunge env t) + | (Logic,TypeScheme) -> + add_log_axiom r; Dtype (r, [], Tdummy Ktype) + | (Logic,Default) -> + add_log_axiom r; Dterm (r, MLdummy, Tdummy Kother)) + | Some body -> + (match flag_of_type env typ with + | (Logic, Default) -> Dterm (r, MLdummy, Tdummy Kother) + | (Logic, TypeScheme) -> Dtype (r, [], Tdummy Ktype) + | (Info, Default) -> + let e,t = extract_std_constant env kn (force body) typ in + Dterm (r,e,t) + | (Info, TypeScheme) -> + let s,vl = type_sign_vl env typ in + let db = db_from_sign s in + let t = extract_type_scheme env db (force body) (List.length s) + in Dtype (r, vl, t)) + +let extract_constant_spec env kn cb = + let r = ConstRef kn in + let typ = Typeops.type_of_constant_type env cb.const_type in + match flag_of_type env typ with + | (Logic, TypeScheme) -> Stype (r, [], Some (Tdummy Ktype)) + | (Logic, Default) -> Sval (r, Tdummy Kother) + | (Info, TypeScheme) -> + let s,vl = type_sign_vl env typ in + (match cb.const_body with + | None -> Stype (r, vl, None) + | Some body -> + let db = db_from_sign s in + let t = extract_type_scheme env db (force body) (List.length s) + in Stype (r, vl, Some t)) + | (Info, Default) -> + let t = snd (record_constant_type env kn (Some typ)) in + Sval (r, type_expunge env t) + +let extract_with_type env cb = + let typ = Typeops.type_of_constant_type env cb.const_type in + match flag_of_type env typ with + | (Info, TypeScheme) -> + let s,vl = type_sign_vl env typ in + let body = Option.get cb.const_body in + let db = db_from_sign s in + let t = extract_type_scheme env db (force body) (List.length s) in + Some (vl, t) + | _ -> None + + +let extract_inductive env kn = + let ind = extract_ind env kn in + add_recursors env kn; + let f i j l = + let implicits = implicits_of_global (ConstructRef ((kn,i),j+1)) in + let rec filter i = function + | [] -> [] + | t::l -> + let l' = filter (succ i) l in + if isDummy (expand env t) || List.mem i implicits then l' + else t::l' + in filter 1 l + in + let packets = + Array.mapi (fun i p -> { p with ip_types = Array.mapi (f i) p.ip_types }) + ind.ind_packets + in { ind with ind_packets = packets } + +(*s Is a [ml_decl] logical ? *) + +let logical_decl = function + | Dterm (_,MLdummy,Tdummy _) -> true + | Dtype (_,[],Tdummy _) -> true + | Dfix (_,av,tv) -> + (array_for_all ((=) MLdummy) av) && + (array_for_all isDummy tv) + | Dind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets + | _ -> false + +(*s Is a [ml_spec] logical ? *) + +let logical_spec = function + | Stype (_, [], Some (Tdummy _)) -> true + | Sval (_,Tdummy _) -> true + | Sind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets + | _ -> false |