diff options
author | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
---|---|---|
committer | Stephane Glondu <steph@glondu.net> | 2010-07-21 09:46:51 +0200 |
commit | 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch) | |
tree | 631ad791a7685edafeb1fb2e8faeedc8379318ae /plugins/dp/Dp.v | |
parent | da178a880e3ace820b41d38b191d3785b82991f5 (diff) |
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'plugins/dp/Dp.v')
-rw-r--r-- | plugins/dp/Dp.v | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/plugins/dp/Dp.v b/plugins/dp/Dp.v new file mode 100644 index 00000000..bc7d73f6 --- /dev/null +++ b/plugins/dp/Dp.v @@ -0,0 +1,120 @@ +(* Calls to external decision procedures *) + +Require Export ZArith. +Require Export Classical. + +(* Zenon *) + +(* Copyright 2004 INRIA *) +(* $Id$ *) + +Lemma zenon_nottrue : + (~True -> False). +Proof. tauto. Qed. + +Lemma zenon_noteq : forall (T : Type) (t : T), + ((t <> t) -> False). +Proof. tauto. Qed. + +Lemma zenon_and : forall P Q : Prop, + (P -> Q -> False) -> (P /\ Q -> False). +Proof. tauto. Qed. + +Lemma zenon_or : forall P Q : Prop, + (P -> False) -> (Q -> False) -> (P \/ Q -> False). +Proof. tauto. Qed. + +Lemma zenon_imply : forall P Q : Prop, + (~P -> False) -> (Q -> False) -> ((P -> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_equiv : forall P Q : Prop, + (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notand : forall P Q : Prop, + (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notor : forall P Q : Prop, + (~P -> ~Q -> False) -> (~(P \/ Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notimply : forall P Q : Prop, + (P -> ~Q -> False) -> (~(P -> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notequiv : forall P Q : Prop, + (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_ex : forall (T : Type) (P : T -> Prop), + (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False). +Proof. firstorder. Qed. + +Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T), + ((P t) -> False) -> ((forall x : T, (P x)) -> False). +Proof. firstorder. Qed. + +Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T), + (~(P t) -> False) -> (~(exists x : T, (P x)) -> False). +Proof. firstorder. Qed. + +Lemma zenon_notall : forall (T : Type) (P : T -> Prop), + (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False). +Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed. + +Lemma zenon_equal_base : forall (T : Type) (f : T), f = f. +Proof. auto. Qed. + +Lemma zenon_equal_step : + forall (S T : Type) (fa fb : S -> T) (a b : S), + (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)). +Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed. + +Lemma zenon_pnotp : forall P Q : Prop, + (P = Q) -> (P -> ~Q -> False). +Proof. intros P Q Ha. rewrite Ha. auto. Qed. + +Lemma zenon_notequal : forall (T : Type) (a b : T), + (a = b) -> (a <> b -> False). +Proof. auto. Qed. + +Ltac zenon_intro id := + intro id || let nid := fresh in (intro nid; clear nid) +. + +Definition zenon_and_s := fun P Q a b => zenon_and P Q b a. +Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a. +Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a. +Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a. +Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a. +Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a. +Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a. +Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a. +Definition zenon_ex_s := fun T P a b => zenon_ex T P b a. +Definition zenon_notall_s := fun T P a b => zenon_notall T P b a. + +Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b. +Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x. + +(* Ergo *) + +Set Implicit Arguments. +Section congr. + Variable t:Type. +Lemma ergo_eq_concat_1 : + forall (P:t -> Prop) (x y:t), + P x -> x = y -> P y. +Proof. + intros; subst; auto. +Qed. + +Lemma ergo_eq_concat_2 : + forall (P:t -> t -> Prop) (x1 x2 y1 y2:t), + P x1 x2 -> x1 = y1 -> x2 = y2 -> P y1 y2. +Proof. + intros; subst; auto. +Qed. + +End congr. |