summaryrefslogtreecommitdiff
path: root/lib/bigint.ml
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2012-08-20 18:27:01 +0200
commite0d682ec25282a348d35c5b169abafec48555690 (patch)
tree1a46f0142a85df553388c932110793881f3af52f /lib/bigint.ml
parent86535d84cc3cffeee1dcd8545343f234e7285530 (diff)
Imported Upstream version 8.4dfsgupstream/8.4dfsg
Diffstat (limited to 'lib/bigint.ml')
-rw-r--r--lib/bigint.ml355
1 files changed, 225 insertions, 130 deletions
diff --git a/lib/bigint.ml b/lib/bigint.ml
index ed854d7a..9185ba64 100644
--- a/lib/bigint.ml
+++ b/lib/bigint.ml
@@ -1,39 +1,38 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i*)
-open Pp
-(*i*)
-
(***************************************************)
(* Basic operations on (unbounded) integer numbers *)
(***************************************************)
-(* An integer is canonically represented as an array of k-digits blocs.
+(* An integer is canonically represented as an array of k-digits blocs,
+ i.e. in base 10^k.
0 is represented by the empty array and -1 by the singleton [|-1|].
- The first bloc is in the range ]0;10^k[ for positive numbers.
- The first bloc is in the range ]-10^k;-1[ for negative ones.
- All other blocs are numbers in the range [0;10^k[.
+ The first bloc is in the range ]0;base[ for positive numbers.
+ The first bloc is in the range [-base;-1[ for numbers < -1.
+ All other blocs are numbers in the range [0;base[.
- Negative numbers are represented using 2's complementation. For instance,
- with 4-digits blocs, [-9655;6789] denotes -96543211
-*)
+ Negative numbers are represented using 2's complementation :
+ one unit is "borrowed" from the top block for complementing
+ the other blocs. For instance, with 4-digits blocs,
+ [|-5;6789|] denotes -43211
+ since -5.10^4+6789=-((4.10^4)+(10000-6789)) = -43211
-(* The base is a power of 10 in order to facilitate the parsing and printing
+ The base is a power of 10 in order to facilitate the parsing and printing
of numbers in digital notation.
All functions, to the exception of to_string and of_string should work
with an arbitrary base, even if not a power of 10.
- In practice, we set k=4 so that no overflow in ocaml machine words
- (i.e. the interval [-2^30;2^30-1]) occur when multiplying two
- numbers less than (10^k)
+ In practice, we set k=4 on 32-bits machines, so that no overflow in ocaml
+ machine words (i.e. the interval [-2^30;2^30-1]) occur when multiplying two
+ numbers less than (10^k). On 64-bits machines, k=9.
*)
(* The main parameters *)
@@ -45,6 +44,7 @@ let size =
let format_size =
(* How to parametrize a printf format *)
if size = 4 then Printf.sprintf "%04d"
+ else if size = 9 then Printf.sprintf "%09d"
else fun n ->
let rec aux j l n =
if j=size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10)
@@ -54,44 +54,81 @@ let format_size =
let base =
let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size
+(******************************************************************)
+(* First, we represent all numbers by int arrays.
+ Later, we will optimize the particular case of small integers *)
+(******************************************************************)
+
+module ArrayInt = struct
+
(* Basic numbers *)
let zero = [||]
let neg_one = [|-1|]
-(* Sign of an integer *)
-let is_strictly_neg n = n<>[||] && n.(0) < 0
-let is_strictly_pos n = n<>[||] && n.(0) > 0
-let is_neg_or_zero n = n=[||] or n.(0) < 0
-let is_pos_or_zero n = n=[||] or n.(0) > 0
+(* An array is canonical when
+ - it is empty
+ - it is [|-1|]
+ - its first bloc is in [-base;-1[U]0;base[
+ and the other blocs are in [0;base[. *)
+
+let canonical n =
+ let ok x = (0 <= x && x < base) in
+ let rec ok_tail k = (k = 0) || (ok n.(k) && ok_tail (k-1)) in
+ let ok_init x = (-base <= x && x < base && x <> -1 && x <> 0)
+ in
+ (n = [||]) || (n = [|-1|]) ||
+ (ok_init n.(0) && ok_tail (Array.length n - 1))
+
+(* [normalize_pos] : removing initial blocks of 0 *)
let normalize_pos n =
let k = ref 0 in
while !k < Array.length n & n.(!k) = 0 do incr k done;
Array.sub n !k (Array.length n - !k)
+(* [normalize_neg] : avoid (-1) as first bloc.
+ input: an array with -1 as first bloc and other blocs in [0;base[
+ output: a canonical array *)
+
let normalize_neg n =
let k = ref 1 in
while !k < Array.length n & n.(!k) = base - 1 do incr k done;
let n' = Array.sub n !k (Array.length n - !k) in
if Array.length n' = 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n')
+(* [normalize] : avoid 0 and (-1) as first bloc.
+ input: an array with first bloc in [-base;base[ and others in [0;base[
+ output: a canonical array *)
+
let rec normalize n =
- if Array.length n = 0 then n else
- if n.(0) = -1 then normalize_neg n else normalize_pos n
+ if Array.length n = 0 then n
+ else if n.(0) = -1 then normalize_neg n
+ else if n.(0) = 0 then normalize_pos n
+ else n
+
+(* Opposite (expects and returns canonical arrays) *)
let neg m =
if m = zero then zero else
let n = Array.copy m in
let i = ref (Array.length m - 1) in
while !i > 0 & n.(!i) = 0 do decr i done;
- if !i > 0 then begin
+ if !i = 0 then begin
+ n.(0) <- - n.(0);
+ (* n.(0) cannot be 0 since m is canonical *)
+ if n.(0) = -1 then normalize_neg n
+ else if n.(0) = base then (n.(0) <- 0; Array.append [| 1 |] n)
+ else n
+ end else begin
+ (* here n.(!i) <> 0, hence 0 < base - n.(!i) < base for n canonical *)
n.(!i) <- base - n.(!i); decr i;
while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done;
+ (* since -base <= n.(0) <= base-1, hence -base <= -n.(0)-1 <= base-1 *)
n.(0) <- - n.(0) - 1;
- if n.(0) < -1 then (n.(0) <- n.(0) + base; Array.append [| -1 |] n) else
- if n.(0) = - base then (n.(0) <- 0; Array.append [| -1 |] n)
- else normalize n
- end else (n.(0) <- - n.(0); n)
+ (* since m is canonical, m.(0)<>0 hence n.(0)<>-1,
+ and m=-1 is already handled above, so here m.(0)<>-1 hence n.(0)<>0 *)
+ n
+ end
let push_carry r j =
let j = ref j in
@@ -101,10 +138,10 @@ let push_carry r j =
while !j > 0 & r.(!j) >= base do
r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1
done;
+ (* here r.(0) could be in [-2*base;2*base-1] *)
if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r)
else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r)
- else if r.(0) = -base then (r.(0) <- 0; Array.append [| -1 |] r)
- else normalize r
+ else normalize r (* in case r.(0) is 0 or -1 *)
let add_to r a j =
if a = zero then r else begin
@@ -152,6 +189,13 @@ let rec mult m n =
done;
normalize r
+(* Comparisons *)
+
+let is_strictly_neg n = n<>[||] && n.(0) < 0
+let is_strictly_pos n = n<>[||] && n.(0) > 0
+let is_neg_or_zero n = n=[||] or n.(0) < 0
+let is_pos_or_zero n = n=[||] or n.(0) > 0
+
let rec less_than_same_size m n i j =
i < Array.length m &&
(m.(i) < n.(j) or (m.(i) = n.(j) && less_than_same_size m n (i+1) (j+1)))
@@ -164,6 +208,8 @@ let less_than m n =
is_strictly_pos n && (Array.length m < Array.length n or
(Array.length m = Array.length n && less_than_same_size m n 0 0))
+(* For this equality test it is critical that n and m are canonical *)
+
let equal m n = (m = n)
let less_than_shift_pos k m n =
@@ -175,16 +221,30 @@ let rec can_divide k m d i =
(m.(k+i) > d.(i)) or
(m.(k+i) = d.(i) && can_divide k m d (i+1))
-(* computes m - d * q * base^(|m|-k) in-place on positive numbers *)
+(* For two big nums m and d and a small number q,
+ computes m - d * q * base^(|m|-|d|-k) in-place (in m).
+ Both m d and q are positive. *)
+
let sub_mult m d q k =
if q <> 0 then
for i = Array.length d - 1 downto 0 do
let v = d.(i) * q in
m.(k+i) <- m.(k+i) - v mod base;
if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1);
- if v >= base then m.(k+i-1) <- m.(k+i-1) - v / base;
+ if v >= base then begin
+ m.(k+i-1) <- m.(k+i-1) - v / base;
+ let j = ref (i-1) in
+ while m.(k + !j) < 0 do (* result is positive, hence !j remains >= 0 *)
+ m.(k + !j) <- m.(k + !j) + base; decr j; m.(k + !j) <- m.(k + !j) -1
+ done
+ end
done
+(** Euclid division m/d = (q,r)
+ This is the "Floor" variant, as with ocaml's /
+ (but not as ocaml's Big_int.quomod_big_int).
+ We have sign r = sign m *)
+
let euclid m d =
let isnegm, m =
if is_strictly_neg m then (-1),neg m else 1,Array.copy m in
@@ -222,33 +282,21 @@ let euclid m d =
(* Parsing/printing ordinary 10-based numbers *)
let of_string s =
- let isneg = String.length s > 1 & s.[0] = '-' in
- let n = if isneg then 1 else 0 in
- let d = ref n in
- while !d < String.length s && s.[!d] = '0' do incr d done;
- if !d = String.length s then zero else
- let r = (String.length s - !d) mod size in
+ let len = String.length s in
+ let isneg = len > 1 & s.[0] = '-' in
+ let d = ref (if isneg then 1 else 0) in
+ while !d < len && s.[!d] = '0' do incr d done;
+ if !d = len then zero else
+ let r = (len - !d) mod size in
let h = String.sub s (!d) r in
- if !d = String.length s - 1 && isneg && h="1" then neg_one else
let e = if h<>"" then 1 else 0 in
- let l = (String.length s - !d) / size in
- let a = Array.create (l + e + n) 0 in
- if isneg then begin
- a.(0) <- (-1);
- let carry = ref 0 in
- for i=l downto 1 do
- let v = int_of_string (String.sub s ((i-1)*size + !d +r) size)+ !carry in
- if v <> 0 then (a.(i+e)<- base - v; carry := 1) else carry := 0
- done;
- if e=1 then a.(1) <- base - !carry - int_of_string h;
- end
- else begin
- if e=1 then a.(0) <- int_of_string h;
- for i=1 to l do
- a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size)
- done
- end;
- a
+ let l = (len - !d) / size in
+ let a = Array.create (l + e) 0 in
+ if e=1 then a.(0) <- int_of_string h;
+ for i=1 to l do
+ a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size)
+ done;
+ if isneg then neg a else a
let to_string_pos sgn n =
if Array.length n = 0 then "0" else
@@ -260,25 +308,44 @@ let to_string n =
if is_strictly_neg n then to_string_pos "-" (neg n)
else to_string_pos "" n
+end
+
(******************************************************************)
(* Optimized operations on (unbounded) integer numbers *)
(* integers smaller than base are represented as machine integers *)
(******************************************************************)
+open ArrayInt
+
type bigint = Obj.t
+(* Since base is the largest power of 10 such that base*base <= max_int,
+ we have max_int < 100*base*base : any int can be represented
+ by at most three blocs *)
+
+let small n = (-base <= n) && (n < base)
+
+let mkarray n =
+ (* n isn't small, this case is handled separately below *)
+ let lo = n mod base
+ and hi = n / base in
+ let t = if small hi then [|hi;lo|] else [|hi/base;hi mod base;lo|]
+ in
+ for i = Array.length t -1 downto 1 do
+ if t.(i) < 0 then (t.(i) <- t.(i) + base; t.(i-1) <- t.(i-1) -1)
+ done;
+ t
+
let ints_of_int n =
- if n >= base then [| n / base; n mod base |]
- else if n <= - base then [| n / base - 1; n mod base + base |]
- else if n = 0 then [| |] else [| n |]
+ if n = 0 then [| |]
+ else if small n then [| n |]
+ else mkarray n
-let big_of_int n =
- if n >= base then Obj.repr [| n / base; n mod base |]
- else if n <= - base then Obj.repr [| n / base - 1; n mod base + base |]
- else Obj.repr n
+let of_int n =
+ if small n then Obj.repr n else Obj.repr (mkarray n)
-let big_of_ints n =
- let n = normalize n in
+let of_ints n =
+ let n = normalize n in (* TODO: using normalize here seems redundant now *)
if n = zero then Obj.repr 0 else
if Array.length n = 1 then Obj.repr n.(0) else
Obj.repr n
@@ -286,63 +353,81 @@ let big_of_ints n =
let coerce_to_int = (Obj.magic : Obj.t -> int)
let coerce_to_ints = (Obj.magic : Obj.t -> int array)
-let ints_of_z n =
+let to_ints n =
if Obj.is_int n then ints_of_int (coerce_to_int n)
else coerce_to_ints n
+let int_of_ints =
+ let maxi = mkarray max_int and mini = mkarray min_int in
+ fun t ->
+ let l = Array.length t in
+ if (l > 3) || (l = 3 && (less_than maxi t || less_than t mini))
+ then failwith "Bigint.to_int: too large";
+ let sum = ref 0 in
+ let pow = ref 1 in
+ for i = l-1 downto 0 do
+ sum := !sum + t.(i) * !pow;
+ pow := !pow*base;
+ done;
+ !sum
+
+let to_int n =
+ if Obj.is_int n then coerce_to_int n
+ else int_of_ints (coerce_to_ints n)
+
let app_pair f (m, n) =
(f m, f n)
let add m n =
if Obj.is_int m & Obj.is_int n
- then big_of_int (coerce_to_int m + coerce_to_int n)
- else big_of_ints (add (ints_of_z m) (ints_of_z n))
+ then of_int (coerce_to_int m + coerce_to_int n)
+ else of_ints (add (to_ints m) (to_ints n))
let sub m n =
if Obj.is_int m & Obj.is_int n
- then big_of_int (coerce_to_int m - coerce_to_int n)
- else big_of_ints (sub (ints_of_z m) (ints_of_z n))
+ then of_int (coerce_to_int m - coerce_to_int n)
+ else of_ints (sub (to_ints m) (to_ints n))
let mult m n =
if Obj.is_int m & Obj.is_int n
- then big_of_int (coerce_to_int m * coerce_to_int n)
- else big_of_ints (mult (ints_of_z m) (ints_of_z n))
+ then of_int (coerce_to_int m * coerce_to_int n)
+ else of_ints (mult (to_ints m) (to_ints n))
let euclid m n =
if Obj.is_int m & Obj.is_int n
- then app_pair big_of_int
+ then app_pair of_int
(coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n)
- else app_pair big_of_ints (euclid (ints_of_z m) (ints_of_z n))
+ else app_pair of_ints (euclid (to_ints m) (to_ints n))
let less_than m n =
if Obj.is_int m & Obj.is_int n
then coerce_to_int m < coerce_to_int n
- else less_than (ints_of_z m) (ints_of_z n)
+ else less_than (to_ints m) (to_ints n)
let neg n =
- if Obj.is_int n then big_of_int (- (coerce_to_int n))
- else big_of_ints (neg (ints_of_z n))
+ if Obj.is_int n then of_int (- (coerce_to_int n))
+ else of_ints (neg (to_ints n))
-let of_string m = big_of_ints (of_string m)
-let to_string m = to_string (ints_of_z m)
+let of_string m = of_ints (of_string m)
+let to_string m = to_string (to_ints m)
-let zero = big_of_int 0
-let one = big_of_int 1
+let zero = of_int 0
+let one = of_int 1
+let two = of_int 2
let sub_1 n = sub n one
let add_1 n = add n one
-let two = big_of_int 2
let mult_2 n = add n n
let div2_with_rest n =
let (q,b) = euclid n two in
(q, b = one)
-let is_strictly_neg n = is_strictly_neg (ints_of_z n)
-let is_strictly_pos n = is_strictly_pos (ints_of_z n)
-let is_neg_or_zero n = is_neg_or_zero (ints_of_z n)
-let is_pos_or_zero n = is_pos_or_zero (ints_of_z n)
+let is_strictly_neg n = is_strictly_neg (to_ints n)
+let is_strictly_pos n = is_strictly_pos (to_ints n)
+let is_neg_or_zero n = is_neg_or_zero (to_ints n)
+let is_pos_or_zero n = is_pos_or_zero (to_ints n)
-let pr_bigint n = str (to_string n)
+let equal m n = (m = n)
(* spiwack: computes n^m *)
(* The basic idea of the algorithm is that n^(2m) = (n^2)^m *)
@@ -352,58 +437,68 @@ let pr_bigint n = str (to_string n)
k*n^(2m+1) = (n*k)*(n*n)^m *)
let pow =
let rec pow_aux odd_rest n m = (* odd_rest is the k from above *)
- if is_neg_or_zero m then
+ if m<=0 then
odd_rest
else
- let (quo,rem) = div2_with_rest m in
+ let quo = m lsr 1 (* i.e. m/2 *)
+ and odd = (m land 1) <> 0 in
pow_aux
- ((* [if m mod 2 = 1]*)
- if rem then
- mult n odd_rest
- else
- odd_rest )
- (* quo = [m/2] *)
- (mult n n) quo
+ (if odd then mult n odd_rest else odd_rest)
+ (mult n n)
+ quo
in
pow_aux one
-(* Testing suite *)
+(** Testing suite w.r.t. OCaml's Big_int *)
+
+(*
+module B = struct
+ open Big_int
+ let zero = zero_big_int
+ let to_string = string_of_big_int
+ let of_string = big_int_of_string
+ let add = add_big_int
+ let opp = minus_big_int
+ let sub = sub_big_int
+ let mul = mult_big_int
+ let abs = abs_big_int
+ let sign = sign_big_int
+ let euclid n m =
+ let n' = abs n and m' = abs m in
+ let q',r' = quomod_big_int n' m' in
+ (if sign (mul n m) < 0 && sign q' <> 0 then opp q' else q'),
+ (if sign n < 0 then opp r' else r')
+end
let check () =
- let numbers = [
- "1";"2";"99";"100";"101";"9999";"10000";"10001";
- "999999";"1000000";"1000001";"99999999";"100000000";"100000001";
- "1234";"5678";"12345678";"987654321";
- "-1";"-2";"-99";"-100";"-101";"-9999";"-10000";"-10001";
- "-999999";"-1000000";"-1000001";"-99999999";"-100000000";"-100000001";
- "-1234";"-5678";"-12345678";"-987654321";"0"
- ]
+ let roots = [ 1; 100; base; 100*base; base*base ] in
+ let rands = [ 1234; 5678; 12345678; 987654321 ] in
+ let nums = (List.flatten (List.map (fun x -> [x-1;x;x+1]) roots)) @ rands in
+ let numbers =
+ List.map string_of_int nums @
+ List.map (fun n -> string_of_int (-n)) nums
in
- let eucl n m =
- let n' = abs_float n and m' = abs_float m in
- let q' = floor (n' /. m') in let r' = n' -. m' *. q' in
- (if n *. m < 0. & q' <> 0. then -. q' else q'),
- (if n < 0. then -. r' else r') in
- let round f = floor (abs_float f +. 0.5) *. (if f < 0. then -1. else 1.) in
let i = ref 0 in
- let compare op n n' =
+ let compare op x y n n' =
incr i;
let s = Printf.sprintf "%30s" (to_string n) in
- let s' = Printf.sprintf "% 30.0f" (round n') in
- if s <> s' then Printf.printf "%s: %s <> %s\n" op s s' in
-List.iter (fun a -> List.iter (fun b ->
- let n = of_string a and m = of_string b in
- let n' = float_of_string a and m' = float_of_string b in
- let a = add n m and a' = n' +. m' in
- let s = sub n m and s' = n' -. m' in
- let p = mult n m and p' = n' *. m' in
- let q,r = try euclid n m with Division_by_zero -> zero,zero
- and q',r' = eucl n' m' in
- compare "+" a a';
- compare "-" s s';
- compare "*" p p';
- compare "/" q q';
- compare "%" r r') numbers) numbers;
+ let s' = Printf.sprintf "%30s" (B.to_string n') in
+ if s <> s' then Printf.printf "%s%s%s: %s <> %s\n" x op y s s' in
+ let test x y =
+ let n = of_string x and m = of_string y in
+ let n' = B.of_string x and m' = B.of_string y in
+ let a = add n m and a' = B.add n' m' in
+ let s = sub n m and s' = B.sub n' m' in
+ let p = mult n m and p' = B.mul n' m' in
+ let q,r = try euclid n m with Division_by_zero -> zero,zero
+ and q',r' = try B.euclid n' m' with Division_by_zero -> B.zero, B.zero
+ in
+ compare "+" x y a a';
+ compare "-" x y s s';
+ compare "*" x y p p';
+ compare "/" x y q q';
+ compare "%" x y r r'
+ in
+ List.iter (fun a -> List.iter (test a) numbers) numbers;
Printf.printf "%i tests done\n" !i
-
-
+*)