summaryrefslogtreecommitdiff
path: root/kernel/term.mli
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /kernel/term.mli
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'kernel/term.mli')
-rw-r--r--kernel/term.mli525
1 files changed, 525 insertions, 0 deletions
diff --git a/kernel/term.mli b/kernel/term.mli
new file mode 100644
index 00000000..a5e5c081
--- /dev/null
+++ b/kernel/term.mli
@@ -0,0 +1,525 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: term.mli,v 1.101.2.1 2004/07/16 19:30:26 herbelin Exp $ i*)
+
+(*i*)
+open Names
+(*i*)
+
+(*s The sorts of CCI. *)
+
+type contents = Pos | Null
+
+type sorts =
+ | Prop of contents (* Prop and Set *)
+ | Type of Univ.universe (* Type *)
+
+val mk_Set : sorts
+val mk_Prop : sorts
+val type_0 : sorts
+
+(*s The sorts family of CCI. *)
+
+type sorts_family = InProp | InSet | InType
+
+val family_of_sort : sorts -> sorts_family
+
+(*s Useful types *)
+
+(*s Existential variables *)
+type existential_key = int
+
+(*s Existential variables *)
+type metavariable = int
+
+(*s Case annotation *)
+type pattern_source = DefaultPat of int | RegularPat
+type case_style = LetStyle | IfStyle | MatchStyle | RegularStyle
+type case_printing =
+ { ind_nargs : int; (* number of real args of the inductive type *)
+ style : case_style;
+ source : pattern_source array }
+(* the integer is the number of real args, needed for reduction *)
+type case_info =
+ { ci_ind : inductive;
+ ci_npar : int;
+ ci_pp_info : case_printing (* not interpreted by the kernel *)
+ }
+
+(*s*******************************************************************)
+(* The type of constructions *)
+
+type constr
+
+(* [eq_constr a b] is true if [a] equals [b] modulo alpha, casts,
+ and application grouping *)
+val eq_constr : constr -> constr -> bool
+
+(* [types] is the same as [constr] but is intended to be used where a
+ {\em type} in CCI sense is expected (Rem:plurial form since [type] is a
+ reserved ML keyword) *)
+
+type types = constr
+
+(*s Functions about [types] *)
+
+val type_app : (constr -> constr) -> types -> types
+
+val body_of_type : types -> constr
+
+(*s Functions for dealing with constr terms.
+ The following functions are intended to simplify and to uniform the
+ manipulation of terms. Some of these functions may be overlapped with
+ previous ones. *)
+
+(*s Term constructors. *)
+
+(* Constructs a DeBrujin index (DB indices begin at 1) *)
+val mkRel : int -> constr
+
+(* Constructs a Variable *)
+val mkVar : identifier -> constr
+
+(* Constructs an patvar named "?n" *)
+val mkMeta : metavariable -> constr
+
+(* Constructs an existential variable *)
+type existential = existential_key * constr array
+val mkEvar : existential -> constr
+
+(* Construct a sort *)
+val mkSort : sorts -> types
+val mkProp : types
+val mkSet : types
+val mkType : Univ.universe -> types
+
+(* Constructs the term [t1::t2], i.e. the term $t_1$ casted with the
+ type $t_2$ (that means t2 is declared as the type of t1). *)
+val mkCast : constr * types -> constr
+
+(* Constructs the product [(x:t1)t2] *)
+val mkProd : name * types * types -> types
+val mkNamedProd : identifier -> types -> types -> types
+(* non-dependant product $t_1 \rightarrow t_2$, an alias for
+ [(_:t1)t2]. Beware $t_2$ is NOT lifted.
+ Eg: A |- A->A is built by [(mkArrow (mkRel 0) (mkRel 1))] *)
+val mkArrow : types -> types -> constr
+
+(* Constructs the abstraction $[x:t_1]t_2$ *)
+val mkLambda : name * types * constr -> constr
+val mkNamedLambda : identifier -> types -> constr -> constr
+
+(* Constructs the product [let x = t1 : t2 in t3] *)
+val mkLetIn : name * constr * types * constr -> constr
+val mkNamedLetIn : identifier -> constr -> types -> constr -> constr
+
+(* [mkApp (f,[| t_1; ...; t_n |]] constructs the application
+ $(f~t_1~\dots~t_n)$. *)
+val mkApp : constr * constr array -> constr
+
+(* Constructs a constant *)
+(* The array of terms correspond to the variables introduced in the section *)
+val mkConst : constant -> constr
+
+(* Inductive types *)
+
+(* Constructs the ith (co)inductive type of the block named kn *)
+(* The array of terms correspond to the variables introduced in the section *)
+val mkInd : inductive -> constr
+
+(* Constructs the jth constructor of the ith (co)inductive type of the
+ block named kn. The array of terms correspond to the variables
+ introduced in the section *)
+val mkConstruct : constructor -> constr
+
+(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
+val mkCase : case_info * constr * constr * constr array -> constr
+
+(* If [recindxs = [|i1,...in|]]
+ [funnames = [|f1,.....fn|]]
+ [typarray = [|t1,...tn|]]
+ [bodies = [|b1,.....bn|]]
+ then [ mkFix ((recindxs,i), funnames, typarray, bodies) ]
+ constructs the $i$th function of the block (counting from 0)
+
+ [Fixpoint f1 [ctx1] = b1
+ with f2 [ctx2] = b2
+ ...
+ with fn [ctxn] = bn.]
+
+ \noindent where the length of the $j$th context is $ij$.
+*)
+type rec_declaration = name array * types array * constr array
+type fixpoint = (int array * int) * rec_declaration
+val mkFix : fixpoint -> constr
+
+(* If [funnames = [|f1,.....fn|]]
+ [typarray = [|t1,...tn|]]
+ [bodies = [b1,.....bn]] \par\noindent
+ then [mkCoFix (i, (typsarray, funnames, bodies))]
+ constructs the ith function of the block
+
+ [CoFixpoint f1 = b1
+ with f2 = b2
+ ...
+ with fn = bn.]
+ *)
+type cofixpoint = int * rec_declaration
+val mkCoFix : cofixpoint -> constr
+
+
+(*s Concrete type for making pattern-matching. *)
+
+(* [constr array] is an instance matching definitional [named_context] in
+ the same order (i.e. last argument first) *)
+type 'constr pexistential = existential_key * 'constr array
+type ('constr, 'types) prec_declaration =
+ name array * 'types array * 'constr array
+type ('constr, 'types) pfixpoint =
+ (int array * int) * ('constr, 'types) prec_declaration
+type ('constr, 'types) pcofixpoint =
+ int * ('constr, 'types) prec_declaration
+
+type ('constr, 'types) kind_of_term =
+ | Rel of int
+ | Var of identifier
+ | Meta of metavariable
+ | Evar of 'constr pexistential
+ | Sort of sorts
+ | Cast of 'constr * 'types
+ | Prod of name * 'types * 'types
+ | Lambda of name * 'types * 'constr
+ | LetIn of name * 'constr * 'types * 'constr
+ | App of 'constr * 'constr array
+ | Const of constant
+ | Ind of inductive
+ | Construct of constructor
+ | Case of case_info * 'constr * 'constr * 'constr array
+ | Fix of ('constr, 'types) pfixpoint
+ | CoFix of ('constr, 'types) pcofixpoint
+
+(* User view of [constr]. For [App], it is ensured there is at
+ least one argument and the function is not itself an applicative
+ term *)
+
+val kind_of_term : constr -> (constr, types) kind_of_term
+
+(* Experimental *)
+type ('constr, 'types) kind_of_type =
+ | SortType of sorts
+ | CastType of 'types * 'types
+ | ProdType of name * 'types * 'types
+ | LetInType of name * 'constr * 'types * 'types
+ | AtomicType of 'constr * 'constr array
+
+val kind_of_type : types -> (constr, types) kind_of_type
+
+(*s Simple term case analysis. *)
+
+val isRel : constr -> bool
+val isVar : constr -> bool
+val isInd : constr -> bool
+val isEvar : constr -> bool
+val isMeta : constr -> bool
+val isSort : constr -> bool
+val isCast : constr -> bool
+val isApp : constr -> bool
+val isConst : constr -> bool
+val isConstruct : constr -> bool
+
+val is_Prop : constr -> bool
+val is_Set : constr -> bool
+val isprop : constr -> bool
+val is_Type : constr -> bool
+val iskind : constr -> bool
+val is_small : sorts -> bool
+
+(*s Term destructors.
+ Destructor operations are partial functions and
+ raise [invalid_arg "dest*"] if the term has not the expected form. *)
+
+(* Destructs a DeBrujin index *)
+val destRel : constr -> int
+
+(* Destructs an existential variable *)
+val destMeta : constr -> metavariable
+
+(* Destructs a variable *)
+val destVar : constr -> identifier
+
+(* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether
+ [isprop] recognizes both \textsf{Prop} and \textsf{Set}. *)
+val destSort : constr -> sorts
+
+(* Destructs a casted term *)
+val destCast : constr -> constr * types
+
+(* Destructs the product $(x:t_1)t_2$ *)
+val destProd : types -> name * types * types
+
+(* Destructs the abstraction $[x:t_1]t_2$ *)
+val destLambda : constr -> name * types * constr
+
+(* Destructs the let $[x:=b:t_1]t_2$ *)
+val destLetIn : constr -> name * constr * types * constr
+
+(* Destructs an application *)
+val destApplication : constr -> constr * constr array
+(* ... removing casts *)
+val decompose_app : constr -> constr * constr list
+
+(* Destructs a constant *)
+val destConst : constr -> constant
+
+(* Destructs an existential variable *)
+val destEvar : constr -> existential
+
+(* Destructs a (co)inductive type *)
+val destInd : constr -> inductive
+
+(* Destructs a constructor *)
+val destConstruct : constr -> constructor
+
+(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
+val destCase : constr -> case_info * constr * constr * constr array
+
+(* Destructs the $i$th function of the block
+ $\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1
+ \mathit{with} ~ f_2 ~ [ctx_2] = b_2
+ \dots
+ \mathit{with} ~ f_n ~ [ctx_n] = b_n$,
+ where the lenght of the $j$th context is $ij$.
+*)
+val destFix : constr -> fixpoint
+
+val destCoFix : constr -> cofixpoint
+
+
+(*s A {\em declaration} has the form (name,body,type). It is either an
+ {\em assumption} if [body=None] or a {\em definition} if
+ [body=Some actualbody]. It is referred by {\em name} if [na] is an
+ identifier or by {\em relative index} if [na] is not an identifier
+ (in the latter case, [na] is of type [name] but just for printing
+ purpose *)
+
+type named_declaration = identifier * constr option * types
+type rel_declaration = name * constr option * types
+
+val map_named_declaration :
+ (constr -> constr) -> named_declaration -> named_declaration
+val map_rel_declaration :
+ (constr -> constr) -> rel_declaration -> rel_declaration
+
+(* Constructs either [(x:t)c] or [[x=b:t]c] *)
+val mkProd_or_LetIn : rel_declaration -> types -> types
+val mkNamedProd_or_LetIn : named_declaration -> types -> types
+val mkNamedProd_wo_LetIn : named_declaration -> types -> types
+
+(* Constructs either [[x:t]c] or [[x=b:t]c] *)
+val mkLambda_or_LetIn : rel_declaration -> constr -> constr
+val mkNamedLambda_or_LetIn : named_declaration -> constr -> constr
+
+(*s Other term constructors. *)
+
+val abs_implicit : constr -> constr
+val lambda_implicit : constr -> constr
+val lambda_implicit_lift : int -> constr -> constr
+
+(* [applist (f,args)] and co work as [mkApp] *)
+
+val applist : constr * constr list -> constr
+val applistc : constr -> constr list -> constr
+val appvect : constr * constr array -> constr
+val appvectc : constr -> constr array -> constr
+
+(* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$
+ where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
+val prodn : int -> (name * constr) list -> constr -> constr
+
+(* [compose_prod l b] = $(x_1:T_1)..(x_n:T_n)b$
+ where $l = [(x_n,T_n);\dots;(x_1,T_1)]$.
+ Inverse of [decompose_prod]. *)
+val compose_prod : (name * constr) list -> constr -> constr
+
+(* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$
+ where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
+val lamn : int -> (name * constr) list -> constr -> constr
+
+(* [compose_lam l b] = $[x_1:T_1]..[x_n:T_n]b$
+ where $l = [(x_n,T_n);\dots;(x_1,T_1)]$.
+ Inverse of [decompose_lam] *)
+val compose_lam : (name * constr) list -> constr -> constr
+
+(* [to_lambda n l]
+ = $[x_1:T_1]...[x_n:T_n]T$
+ where $l = (x_1:T_1)...(x_n:T_n)T$ *)
+val to_lambda : int -> constr -> constr
+
+(* [to_prod n l]
+ = $(x_1:T_1)...(x_n:T_n)T$
+ where $l = [x_1:T_1]...[x_n:T_n]T$ *)
+val to_prod : int -> constr -> constr
+
+(* pseudo-reduction rule *)
+
+(* [prod_appvect] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *)
+val prod_appvect : constr -> constr array -> constr
+val prod_applist : constr -> constr list -> constr
+
+(*s Other term destructors. *)
+
+(* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair
+ $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product.
+ It includes also local definitions *)
+val decompose_prod : constr -> (name*constr) list * constr
+
+(* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair
+ $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *)
+val decompose_lam : constr -> (name*constr) list * constr
+
+(* Given a positive integer n, transforms a product term
+ $(x_1:T_1)..(x_n:T_n)T$
+ into the pair $([(xn,Tn);...;(x1,T1)],T)$. *)
+val decompose_prod_n : int -> constr -> (name * constr) list * constr
+
+(* Given a positive integer $n$, transforms a lambda term
+ $[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *)
+val decompose_lam_n : int -> constr -> (name * constr) list * constr
+
+(* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction
+ gives $n$ (casts are ignored) *)
+val nb_lam : constr -> int
+
+(* similar to [nb_lam], but gives the number of products instead *)
+val nb_prod : constr -> int
+
+(* flattens application lists *)
+val collapse_appl : constr -> constr
+
+
+(* Removes recursively the casts around a term i.e.
+ [strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *)
+val strip_outer_cast : constr -> constr
+
+(* Apply a function letting Casted types in place *)
+val under_casts : (constr -> constr) -> constr -> constr
+
+(*s Occur checks *)
+
+(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
+val closed0 : constr -> bool
+
+(* [noccurn n M] returns true iff [Rel n] does NOT occur in term [M] *)
+val noccurn : int -> constr -> bool
+
+(* [noccur_between n m M] returns true iff [Rel p] does NOT occur in term [M]
+ for n <= p < n+m *)
+val noccur_between : int -> int -> constr -> bool
+
+(* Checking function for terms containing existential- or
+ meta-variables. The function [noccur_with_meta] considers only
+ meta-variable applied to some terms (intented to be its local
+ context) (for existential variables, it is necessarily the case) *)
+val noccur_with_meta : int -> int -> constr -> bool
+
+(*s Relocation and substitution *)
+
+(* [exliftn el c] lifts [c] with lifting [el] *)
+val exliftn : Esubst.lift -> constr -> constr
+
+(* [liftn n k c] lifts by [n] indexes above [k] in [c] *)
+val liftn : int -> int -> constr -> constr
+
+(* [lift n c] lifts by [n] the positive indexes in [c] *)
+val lift : int -> constr -> constr
+
+(* [substnl [a1;...;an] k c] substitutes in parallel [a1],...,[an]
+ for respectively [Rel(k+1)],...,[Rel(k+n)] in [c]; it relocates
+ accordingly indexes in [a1],...,[an] *)
+val substnl : constr list -> int -> constr -> constr
+val substl : constr list -> constr -> constr
+val subst1 : constr -> constr -> constr
+
+val substl_decl : constr list -> named_declaration -> named_declaration
+val subst1_decl : constr -> named_declaration -> named_declaration
+
+val replace_vars : (identifier * constr) list -> constr -> constr
+val subst_var : identifier -> constr -> constr
+
+(* [subst_vars [id1;...;idn] t] substitute [VAR idj] by [Rel j] in [t]
+ if two names are identical, the one of least indice is keeped *)
+val subst_vars : identifier list -> constr -> constr
+(* [substn_vars n [id1;...;idn] t] substitute [VAR idj] by [Rel j+n-1] in [t]
+ if two names are identical, the one of least indice is keeped *)
+val substn_vars : int -> identifier list -> constr -> constr
+
+
+(* [subst_mps sub c] performs the substitution [sub] on all kernel
+ names appearing in [c] *)
+val subst_mps : substitution -> constr -> constr
+
+
+(*s Functionals working on the immediate subterm of a construction *)
+
+(* [fold_constr f acc c] folds [f] on the immediate subterms of [c]
+ starting from [acc] and proceeding from left to right according to
+ the usual representation of the constructions; it is not recursive *)
+
+val fold_constr : ('a -> constr -> 'a) -> 'a -> constr -> 'a
+
+(* [map_constr f c] maps [f] on the immediate subterms of [c]; it is
+ not recursive and the order with which subterms are processed is
+ not specified *)
+
+val map_constr : (constr -> constr) -> constr -> constr
+
+(* [map_constr_with_binders g f n c] maps [f n] on the immediate
+ subterms of [c]; it carries an extra data [n] (typically a lift
+ index) which is processed by [g] (which typically add 1 to [n]) at
+ each binder traversal; it is not recursive and the order with which
+ subterms are processed is not specified *)
+
+val map_constr_with_binders :
+ ('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr
+
+(* [iter_constr f c] iters [f] on the immediate subterms of [c]; it is
+ not recursive and the order with which subterms are processed is
+ not specified *)
+
+val iter_constr : (constr -> unit) -> constr -> unit
+
+(* [iter_constr_with_binders g f n c] iters [f n] on the immediate
+ subterms of [c]; it carries an extra data [n] (typically a lift
+ index) which is processed by [g] (which typically add 1 to [n]) at
+ each binder traversal; it is not recursive and the order with which
+ subterms are processed is not specified *)
+
+val iter_constr_with_binders :
+ ('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
+
+(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
+ the immediate subterms of [c1] of [c2] if needed; Cast's, binders
+ name and Cases annotations are not taken into account *)
+
+val compare_constr : (constr -> constr -> bool) -> constr -> constr -> bool
+
+(*********************************************************************)
+
+val hcons_constr:
+ (kernel_name -> kernel_name) *
+ (dir_path -> dir_path) *
+ (name -> name) *
+ (identifier -> identifier) *
+ (string -> string)
+ ->
+ (constr -> constr) *
+ (types -> types)
+
+val hcons1_constr : constr -> constr
+val hcons1_types : types -> types