diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /kernel/term.mli |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'kernel/term.mli')
-rw-r--r-- | kernel/term.mli | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/kernel/term.mli b/kernel/term.mli new file mode 100644 index 00000000..a5e5c081 --- /dev/null +++ b/kernel/term.mli @@ -0,0 +1,525 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: term.mli,v 1.101.2.1 2004/07/16 19:30:26 herbelin Exp $ i*) + +(*i*) +open Names +(*i*) + +(*s The sorts of CCI. *) + +type contents = Pos | Null + +type sorts = + | Prop of contents (* Prop and Set *) + | Type of Univ.universe (* Type *) + +val mk_Set : sorts +val mk_Prop : sorts +val type_0 : sorts + +(*s The sorts family of CCI. *) + +type sorts_family = InProp | InSet | InType + +val family_of_sort : sorts -> sorts_family + +(*s Useful types *) + +(*s Existential variables *) +type existential_key = int + +(*s Existential variables *) +type metavariable = int + +(*s Case annotation *) +type pattern_source = DefaultPat of int | RegularPat +type case_style = LetStyle | IfStyle | MatchStyle | RegularStyle +type case_printing = + { ind_nargs : int; (* number of real args of the inductive type *) + style : case_style; + source : pattern_source array } +(* the integer is the number of real args, needed for reduction *) +type case_info = + { ci_ind : inductive; + ci_npar : int; + ci_pp_info : case_printing (* not interpreted by the kernel *) + } + +(*s*******************************************************************) +(* The type of constructions *) + +type constr + +(* [eq_constr a b] is true if [a] equals [b] modulo alpha, casts, + and application grouping *) +val eq_constr : constr -> constr -> bool + +(* [types] is the same as [constr] but is intended to be used where a + {\em type} in CCI sense is expected (Rem:plurial form since [type] is a + reserved ML keyword) *) + +type types = constr + +(*s Functions about [types] *) + +val type_app : (constr -> constr) -> types -> types + +val body_of_type : types -> constr + +(*s Functions for dealing with constr terms. + The following functions are intended to simplify and to uniform the + manipulation of terms. Some of these functions may be overlapped with + previous ones. *) + +(*s Term constructors. *) + +(* Constructs a DeBrujin index (DB indices begin at 1) *) +val mkRel : int -> constr + +(* Constructs a Variable *) +val mkVar : identifier -> constr + +(* Constructs an patvar named "?n" *) +val mkMeta : metavariable -> constr + +(* Constructs an existential variable *) +type existential = existential_key * constr array +val mkEvar : existential -> constr + +(* Construct a sort *) +val mkSort : sorts -> types +val mkProp : types +val mkSet : types +val mkType : Univ.universe -> types + +(* Constructs the term [t1::t2], i.e. the term $t_1$ casted with the + type $t_2$ (that means t2 is declared as the type of t1). *) +val mkCast : constr * types -> constr + +(* Constructs the product [(x:t1)t2] *) +val mkProd : name * types * types -> types +val mkNamedProd : identifier -> types -> types -> types +(* non-dependant product $t_1 \rightarrow t_2$, an alias for + [(_:t1)t2]. Beware $t_2$ is NOT lifted. + Eg: A |- A->A is built by [(mkArrow (mkRel 0) (mkRel 1))] *) +val mkArrow : types -> types -> constr + +(* Constructs the abstraction $[x:t_1]t_2$ *) +val mkLambda : name * types * constr -> constr +val mkNamedLambda : identifier -> types -> constr -> constr + +(* Constructs the product [let x = t1 : t2 in t3] *) +val mkLetIn : name * constr * types * constr -> constr +val mkNamedLetIn : identifier -> constr -> types -> constr -> constr + +(* [mkApp (f,[| t_1; ...; t_n |]] constructs the application + $(f~t_1~\dots~t_n)$. *) +val mkApp : constr * constr array -> constr + +(* Constructs a constant *) +(* The array of terms correspond to the variables introduced in the section *) +val mkConst : constant -> constr + +(* Inductive types *) + +(* Constructs the ith (co)inductive type of the block named kn *) +(* The array of terms correspond to the variables introduced in the section *) +val mkInd : inductive -> constr + +(* Constructs the jth constructor of the ith (co)inductive type of the + block named kn. The array of terms correspond to the variables + introduced in the section *) +val mkConstruct : constructor -> constr + +(* Constructs the term <p>Case c of c1 | c2 .. | cn end *) +val mkCase : case_info * constr * constr * constr array -> constr + +(* If [recindxs = [|i1,...in|]] + [funnames = [|f1,.....fn|]] + [typarray = [|t1,...tn|]] + [bodies = [|b1,.....bn|]] + then [ mkFix ((recindxs,i), funnames, typarray, bodies) ] + constructs the $i$th function of the block (counting from 0) + + [Fixpoint f1 [ctx1] = b1 + with f2 [ctx2] = b2 + ... + with fn [ctxn] = bn.] + + \noindent where the length of the $j$th context is $ij$. +*) +type rec_declaration = name array * types array * constr array +type fixpoint = (int array * int) * rec_declaration +val mkFix : fixpoint -> constr + +(* If [funnames = [|f1,.....fn|]] + [typarray = [|t1,...tn|]] + [bodies = [b1,.....bn]] \par\noindent + then [mkCoFix (i, (typsarray, funnames, bodies))] + constructs the ith function of the block + + [CoFixpoint f1 = b1 + with f2 = b2 + ... + with fn = bn.] + *) +type cofixpoint = int * rec_declaration +val mkCoFix : cofixpoint -> constr + + +(*s Concrete type for making pattern-matching. *) + +(* [constr array] is an instance matching definitional [named_context] in + the same order (i.e. last argument first) *) +type 'constr pexistential = existential_key * 'constr array +type ('constr, 'types) prec_declaration = + name array * 'types array * 'constr array +type ('constr, 'types) pfixpoint = + (int array * int) * ('constr, 'types) prec_declaration +type ('constr, 'types) pcofixpoint = + int * ('constr, 'types) prec_declaration + +type ('constr, 'types) kind_of_term = + | Rel of int + | Var of identifier + | Meta of metavariable + | Evar of 'constr pexistential + | Sort of sorts + | Cast of 'constr * 'types + | Prod of name * 'types * 'types + | Lambda of name * 'types * 'constr + | LetIn of name * 'constr * 'types * 'constr + | App of 'constr * 'constr array + | Const of constant + | Ind of inductive + | Construct of constructor + | Case of case_info * 'constr * 'constr * 'constr array + | Fix of ('constr, 'types) pfixpoint + | CoFix of ('constr, 'types) pcofixpoint + +(* User view of [constr]. For [App], it is ensured there is at + least one argument and the function is not itself an applicative + term *) + +val kind_of_term : constr -> (constr, types) kind_of_term + +(* Experimental *) +type ('constr, 'types) kind_of_type = + | SortType of sorts + | CastType of 'types * 'types + | ProdType of name * 'types * 'types + | LetInType of name * 'constr * 'types * 'types + | AtomicType of 'constr * 'constr array + +val kind_of_type : types -> (constr, types) kind_of_type + +(*s Simple term case analysis. *) + +val isRel : constr -> bool +val isVar : constr -> bool +val isInd : constr -> bool +val isEvar : constr -> bool +val isMeta : constr -> bool +val isSort : constr -> bool +val isCast : constr -> bool +val isApp : constr -> bool +val isConst : constr -> bool +val isConstruct : constr -> bool + +val is_Prop : constr -> bool +val is_Set : constr -> bool +val isprop : constr -> bool +val is_Type : constr -> bool +val iskind : constr -> bool +val is_small : sorts -> bool + +(*s Term destructors. + Destructor operations are partial functions and + raise [invalid_arg "dest*"] if the term has not the expected form. *) + +(* Destructs a DeBrujin index *) +val destRel : constr -> int + +(* Destructs an existential variable *) +val destMeta : constr -> metavariable + +(* Destructs a variable *) +val destVar : constr -> identifier + +(* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether + [isprop] recognizes both \textsf{Prop} and \textsf{Set}. *) +val destSort : constr -> sorts + +(* Destructs a casted term *) +val destCast : constr -> constr * types + +(* Destructs the product $(x:t_1)t_2$ *) +val destProd : types -> name * types * types + +(* Destructs the abstraction $[x:t_1]t_2$ *) +val destLambda : constr -> name * types * constr + +(* Destructs the let $[x:=b:t_1]t_2$ *) +val destLetIn : constr -> name * constr * types * constr + +(* Destructs an application *) +val destApplication : constr -> constr * constr array +(* ... removing casts *) +val decompose_app : constr -> constr * constr list + +(* Destructs a constant *) +val destConst : constr -> constant + +(* Destructs an existential variable *) +val destEvar : constr -> existential + +(* Destructs a (co)inductive type *) +val destInd : constr -> inductive + +(* Destructs a constructor *) +val destConstruct : constr -> constructor + +(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *) +val destCase : constr -> case_info * constr * constr * constr array + +(* Destructs the $i$th function of the block + $\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1 + \mathit{with} ~ f_2 ~ [ctx_2] = b_2 + \dots + \mathit{with} ~ f_n ~ [ctx_n] = b_n$, + where the lenght of the $j$th context is $ij$. +*) +val destFix : constr -> fixpoint + +val destCoFix : constr -> cofixpoint + + +(*s A {\em declaration} has the form (name,body,type). It is either an + {\em assumption} if [body=None] or a {\em definition} if + [body=Some actualbody]. It is referred by {\em name} if [na] is an + identifier or by {\em relative index} if [na] is not an identifier + (in the latter case, [na] is of type [name] but just for printing + purpose *) + +type named_declaration = identifier * constr option * types +type rel_declaration = name * constr option * types + +val map_named_declaration : + (constr -> constr) -> named_declaration -> named_declaration +val map_rel_declaration : + (constr -> constr) -> rel_declaration -> rel_declaration + +(* Constructs either [(x:t)c] or [[x=b:t]c] *) +val mkProd_or_LetIn : rel_declaration -> types -> types +val mkNamedProd_or_LetIn : named_declaration -> types -> types +val mkNamedProd_wo_LetIn : named_declaration -> types -> types + +(* Constructs either [[x:t]c] or [[x=b:t]c] *) +val mkLambda_or_LetIn : rel_declaration -> constr -> constr +val mkNamedLambda_or_LetIn : named_declaration -> constr -> constr + +(*s Other term constructors. *) + +val abs_implicit : constr -> constr +val lambda_implicit : constr -> constr +val lambda_implicit_lift : int -> constr -> constr + +(* [applist (f,args)] and co work as [mkApp] *) + +val applist : constr * constr list -> constr +val applistc : constr -> constr list -> constr +val appvect : constr * constr array -> constr +val appvectc : constr -> constr array -> constr + +(* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$ + where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *) +val prodn : int -> (name * constr) list -> constr -> constr + +(* [compose_prod l b] = $(x_1:T_1)..(x_n:T_n)b$ + where $l = [(x_n,T_n);\dots;(x_1,T_1)]$. + Inverse of [decompose_prod]. *) +val compose_prod : (name * constr) list -> constr -> constr + +(* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$ + where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *) +val lamn : int -> (name * constr) list -> constr -> constr + +(* [compose_lam l b] = $[x_1:T_1]..[x_n:T_n]b$ + where $l = [(x_n,T_n);\dots;(x_1,T_1)]$. + Inverse of [decompose_lam] *) +val compose_lam : (name * constr) list -> constr -> constr + +(* [to_lambda n l] + = $[x_1:T_1]...[x_n:T_n]T$ + where $l = (x_1:T_1)...(x_n:T_n)T$ *) +val to_lambda : int -> constr -> constr + +(* [to_prod n l] + = $(x_1:T_1)...(x_n:T_n)T$ + where $l = [x_1:T_1]...[x_n:T_n]T$ *) +val to_prod : int -> constr -> constr + +(* pseudo-reduction rule *) + +(* [prod_appvect] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *) +val prod_appvect : constr -> constr array -> constr +val prod_applist : constr -> constr list -> constr + +(*s Other term destructors. *) + +(* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair + $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product. + It includes also local definitions *) +val decompose_prod : constr -> (name*constr) list * constr + +(* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair + $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *) +val decompose_lam : constr -> (name*constr) list * constr + +(* Given a positive integer n, transforms a product term + $(x_1:T_1)..(x_n:T_n)T$ + into the pair $([(xn,Tn);...;(x1,T1)],T)$. *) +val decompose_prod_n : int -> constr -> (name * constr) list * constr + +(* Given a positive integer $n$, transforms a lambda term + $[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *) +val decompose_lam_n : int -> constr -> (name * constr) list * constr + +(* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction + gives $n$ (casts are ignored) *) +val nb_lam : constr -> int + +(* similar to [nb_lam], but gives the number of products instead *) +val nb_prod : constr -> int + +(* flattens application lists *) +val collapse_appl : constr -> constr + + +(* Removes recursively the casts around a term i.e. + [strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *) +val strip_outer_cast : constr -> constr + +(* Apply a function letting Casted types in place *) +val under_casts : (constr -> constr) -> constr -> constr + +(*s Occur checks *) + +(* [closed0 M] is true iff [M] is a (deBruijn) closed term *) +val closed0 : constr -> bool + +(* [noccurn n M] returns true iff [Rel n] does NOT occur in term [M] *) +val noccurn : int -> constr -> bool + +(* [noccur_between n m M] returns true iff [Rel p] does NOT occur in term [M] + for n <= p < n+m *) +val noccur_between : int -> int -> constr -> bool + +(* Checking function for terms containing existential- or + meta-variables. The function [noccur_with_meta] considers only + meta-variable applied to some terms (intented to be its local + context) (for existential variables, it is necessarily the case) *) +val noccur_with_meta : int -> int -> constr -> bool + +(*s Relocation and substitution *) + +(* [exliftn el c] lifts [c] with lifting [el] *) +val exliftn : Esubst.lift -> constr -> constr + +(* [liftn n k c] lifts by [n] indexes above [k] in [c] *) +val liftn : int -> int -> constr -> constr + +(* [lift n c] lifts by [n] the positive indexes in [c] *) +val lift : int -> constr -> constr + +(* [substnl [a1;...;an] k c] substitutes in parallel [a1],...,[an] + for respectively [Rel(k+1)],...,[Rel(k+n)] in [c]; it relocates + accordingly indexes in [a1],...,[an] *) +val substnl : constr list -> int -> constr -> constr +val substl : constr list -> constr -> constr +val subst1 : constr -> constr -> constr + +val substl_decl : constr list -> named_declaration -> named_declaration +val subst1_decl : constr -> named_declaration -> named_declaration + +val replace_vars : (identifier * constr) list -> constr -> constr +val subst_var : identifier -> constr -> constr + +(* [subst_vars [id1;...;idn] t] substitute [VAR idj] by [Rel j] in [t] + if two names are identical, the one of least indice is keeped *) +val subst_vars : identifier list -> constr -> constr +(* [substn_vars n [id1;...;idn] t] substitute [VAR idj] by [Rel j+n-1] in [t] + if two names are identical, the one of least indice is keeped *) +val substn_vars : int -> identifier list -> constr -> constr + + +(* [subst_mps sub c] performs the substitution [sub] on all kernel + names appearing in [c] *) +val subst_mps : substitution -> constr -> constr + + +(*s Functionals working on the immediate subterm of a construction *) + +(* [fold_constr f acc c] folds [f] on the immediate subterms of [c] + starting from [acc] and proceeding from left to right according to + the usual representation of the constructions; it is not recursive *) + +val fold_constr : ('a -> constr -> 'a) -> 'a -> constr -> 'a + +(* [map_constr f c] maps [f] on the immediate subterms of [c]; it is + not recursive and the order with which subterms are processed is + not specified *) + +val map_constr : (constr -> constr) -> constr -> constr + +(* [map_constr_with_binders g f n c] maps [f n] on the immediate + subterms of [c]; it carries an extra data [n] (typically a lift + index) which is processed by [g] (which typically add 1 to [n]) at + each binder traversal; it is not recursive and the order with which + subterms are processed is not specified *) + +val map_constr_with_binders : + ('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr + +(* [iter_constr f c] iters [f] on the immediate subterms of [c]; it is + not recursive and the order with which subterms are processed is + not specified *) + +val iter_constr : (constr -> unit) -> constr -> unit + +(* [iter_constr_with_binders g f n c] iters [f n] on the immediate + subterms of [c]; it carries an extra data [n] (typically a lift + index) which is processed by [g] (which typically add 1 to [n]) at + each binder traversal; it is not recursive and the order with which + subterms are processed is not specified *) + +val iter_constr_with_binders : + ('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit + +(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare + the immediate subterms of [c1] of [c2] if needed; Cast's, binders + name and Cases annotations are not taken into account *) + +val compare_constr : (constr -> constr -> bool) -> constr -> constr -> bool + +(*********************************************************************) + +val hcons_constr: + (kernel_name -> kernel_name) * + (dir_path -> dir_path) * + (name -> name) * + (identifier -> identifier) * + (string -> string) + -> + (constr -> constr) * + (types -> types) + +val hcons1_constr : constr -> constr +val hcons1_types : types -> types |