summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-10 15:57:24 +0100
committerGravatar Stephane Glondu <steph@glondu.net>2010-10-14 17:56:48 +0200
commit8f4d4c66134804bbf2d2fe65c893b68387272d31 (patch)
treeb5108449f05d5034a281c786eea2b603d32171d8 /doc
parent3e96002677226c0cdaa8f355938a76cfb37a722a (diff)
Remove non-DFSG contentsupstream/8.3+dfsg
Diffstat (limited to 'doc')
-rw-r--r--doc/RecTutorial/RecTutorial.tex3690
-rw-r--r--doc/RecTutorial/RecTutorial.v1232
-rw-r--r--doc/RecTutorial/coqartmacros.tex180
-rw-r--r--doc/RecTutorial/manbiblio.bib875
-rw-r--r--doc/RecTutorial/morebib.bib55
-rw-r--r--doc/RecTutorial/recmacros.tex75
-rwxr-xr-xdoc/common/macros.tex529
-rw-r--r--doc/common/styles/html/coqremote/cover.html131
-rw-r--r--doc/common/styles/html/coqremote/hevea.css36
-rw-r--r--doc/common/styles/html/coqremote/styles.hva95
-rw-r--r--doc/common/styles/html/simple/cover.html77
-rw-r--r--doc/common/styles/html/simple/hevea.css36
-rw-r--r--doc/common/styles/html/simple/styles.hva46
-rwxr-xr-xdoc/common/title.tex73
-rw-r--r--doc/faq/FAQ.tex2546
-rw-r--r--doc/faq/axioms.eps378
-rw-r--r--doc/faq/axioms.fig137
-rw-r--r--doc/faq/axioms.pngbin10075 -> 0 bytes
-rw-r--r--doc/faq/fk.bib2220
-rw-r--r--doc/faq/hevea.sty78
-rw-r--r--doc/faq/interval_discr.v419
-rw-r--r--doc/refman/AddRefMan-pre.tex62
-rw-r--r--doc/refman/Cases.tex750
-rw-r--r--doc/refman/Classes.tex412
-rw-r--r--doc/refman/Coercion.tex564
-rw-r--r--doc/refman/Extraction.tex551
-rw-r--r--doc/refman/Helm.tex313
-rw-r--r--doc/refman/Micromega.tex198
-rw-r--r--doc/refman/Natural.tex425
-rw-r--r--doc/refman/Nsatz.tex110
-rw-r--r--doc/refman/Omega.tex226
-rw-r--r--doc/refman/Polynom.tex1000
-rw-r--r--doc/refman/Program.tex295
-rw-r--r--doc/refman/RefMan-add.tex60
-rw-r--r--doc/refman/RefMan-cic.tex1716
-rw-r--r--doc/refman/RefMan-coi.tex406
-rw-r--r--doc/refman/RefMan-com.tex384
-rw-r--r--doc/refman/RefMan-decl.tex808
-rw-r--r--doc/refman/RefMan-ext.tex1756
-rw-r--r--doc/refman/RefMan-gal.tex1696
-rw-r--r--doc/refman/RefMan-ide.tex322
-rw-r--r--doc/refman/RefMan-ind.tex511
-rw-r--r--doc/refman/RefMan-int.tex148
-rw-r--r--doc/refman/RefMan-lib.tex1102
-rw-r--r--doc/refman/RefMan-ltac.tex1288
-rw-r--r--doc/refman/RefMan-mod.tex411
-rw-r--r--doc/refman/RefMan-modr.tex565
-rw-r--r--doc/refman/RefMan-oth.tex1181
-rw-r--r--doc/refman/RefMan-pre.tex783
-rw-r--r--doc/refman/RefMan-pro.tex385
-rw-r--r--doc/refman/RefMan-syn.tex1148
-rw-r--r--doc/refman/RefMan-tac.tex4303
-rw-r--r--doc/refman/RefMan-tacex.tex1505
-rw-r--r--doc/refman/RefMan-tus.tex2001
-rw-r--r--doc/refman/RefMan-uti.tex272
-rw-r--r--doc/refman/Reference-Manual.tex142
-rw-r--r--doc/refman/Setoid.tex714
-rw-r--r--doc/refman/biblio.bib1273
-rw-r--r--doc/refman/coqdoc.tex561
-rw-r--r--doc/refman/coqide-queries.pngbin27316 -> 0 bytes
-rw-r--r--doc/refman/coqide.pngbin20953 -> 0 bytes
-rw-r--r--doc/refman/headers.hva42
-rw-r--r--doc/refman/headers.sty87
-rw-r--r--doc/refman/hevea.sty78
-rw-r--r--doc/refman/index.html14
-rw-r--r--doc/refman/menu.html29
-rw-r--r--doc/rt/RefMan-cover.tex46
-rw-r--r--doc/rt/Tutorial-cover.tex48
-rw-r--r--doc/tools/Translator.tex898
-rwxr-xr-xdoc/tools/latex_filter43
-rwxr-xr-xdoc/tools/show_latex_messages8
-rwxr-xr-xdoc/tutorial/Tutorial.tex1577
72 files changed, 0 insertions, 46125 deletions
diff --git a/doc/RecTutorial/RecTutorial.tex b/doc/RecTutorial/RecTutorial.tex
deleted file mode 100644
index f2cb383e..00000000
--- a/doc/RecTutorial/RecTutorial.tex
+++ /dev/null
@@ -1,3690 +0,0 @@
-\documentclass[11pt]{article}
-\title{A Tutorial on [Co-]Inductive Types in Coq}
-\author{Eduardo Gim\'enez\thanks{Eduardo.Gimenez@inria.fr},
-Pierre Cast\'eran\thanks{Pierre.Casteran@labri.fr}}
-\date{May 1998 --- \today}
-
-\usepackage{multirow}
-% \usepackage{aeguill}
-% \externaldocument{RefMan-gal.v}
-% \externaldocument{RefMan-ext.v}
-% \externaldocument{RefMan-tac.v}
-% \externaldocument{RefMan-oth}
-% \externaldocument{RefMan-tus.v}
-% \externaldocument{RefMan-syn.v}
-% \externaldocument{Extraction.v}
-\input{recmacros}
-\input{coqartmacros}
-\newcommand{\refmancite}[1]{{}}
-% \newcommand{\refmancite}[1]{\cite{coqrefman}}
-% \newcommand{\refmancite}[1]{\cite[#1] {]{coqrefman}}
-
-\usepackage[latin1]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{makeidx}
-% \usepackage{multind}
-\usepackage{alltt}
-\usepackage{verbatim}
-\usepackage{amssymb}
-\usepackage{amsmath}
-\usepackage{theorem}
-\usepackage[dvips]{epsfig}
-\usepackage{epic}
-\usepackage{eepic}
-% \usepackage{ecltree}
-\usepackage{moreverb}
-\usepackage{color}
-\usepackage{pifont}
-\usepackage{xr}
-\usepackage{url}
-
-\usepackage{alltt}
-\renewcommand{\familydefault}{ptm}
-\renewcommand{\seriesdefault}{m}
-\renewcommand{\shapedefault}{n}
-\newtheorem{exercise}{Exercise}[section]
-\makeindex
-\begin{document}
-\maketitle
-
-\begin{abstract}
-This document\footnote{The first versions of this document were entirely written by Eduardo Gimenez.
-Pierre Cast\'eran wrote the 2004 and 2006 revisions.} is an introduction to the definition and
-use of inductive and co-inductive types in the {\coq} proof environment. It explains how types like natural numbers and infinite streams are defined
-in {\coq}, and the kind of proof techniques that can be used to reason
-about them (case analysis, induction, inversion of predicates,
-co-induction, etc). Each technique is illustrated through an
-executable and self-contained {\coq} script.
-\end{abstract}
-%\RRkeyword{Proof environments, recursive types.}
-%\makeRT
-
-\addtocontents{toc}{\protect \thispagestyle{empty}}
-\pagenumbering{arabic}
-
-\cleardoublepage
-\tableofcontents
-\clearpage
-
-\section{About this document}
-
-This document is an introduction to the definition and use of
-inductive and co-inductive types in the {\coq} proof environment. It was born from the
-notes written for the course about the version V5.10 of {\coq}, given
-by Eduardo Gimenez at
-the Ecole Normale Sup\'erieure de Lyon in March 1996. This article is
-a revised and improved version of these notes for the version V8.0 of
-the system.
-
-
-We assume that the reader has some familiarity with the
-proofs-as-programs paradigm of Logic \cite{Coquand:metamathematical} and the generalities
-of the {\coq} system \cite{coqrefman}. You would take a greater advantage of
-this document if you first read the general tutorial about {\coq} and
-{\coq}'s FAQ, both available on \cite{coqsite}.
-A text book \cite{coqart}, accompanied with a lot of
-examples and exercises \cite{Booksite}, presents a detailed description
-of the {\coq} system and its underlying
-formalism: the Calculus of Inductive Construction.
-Finally, the complete description of {\coq} is given in the reference manual
-\cite{coqrefman}. Most of the tactics and commands we describe have
-several options, which we do not present exhaustively.
-If some script herein uses a non described feature, please refer to
-the Reference Manual.
-
-
-If you are familiar with other proof environments
-based on type theory and the LCF style ---like PVS, LEGO, Isabelle,
-etc--- then you will find not difficulty to guess the unexplained
-details.
-
-The better way to read this document is to start up the {\coq} system,
-type by yourself the examples and exercises, and observe the
-behavior of the system. All the examples proposed in this tutorial
-can be downloaded from the same site as the present document.
-
-
-The tutorial is organised as follows. The next section describes how
-inductive types are defined in {\coq}, and introduces some useful ones,
-like natural numbers, the empty type, the propositional equality type,
-and the logical connectives. Section \ref{CaseAnalysis} explains
-definitions by pattern-matching and their connection with the
-principle of case analysis. This principle is the most basic
-elimination rule associated with inductive or co-inductive types
- and follows a
-general scheme that we illustrate for some of the types introduced in
-Section \ref{Introduction}. Section \ref{CaseTechniques} illustrates
-the pragmatics of this principle, showing different proof techniques
-based on it. Section \ref{StructuralInduction} introduces definitions
-by structural recursion and proofs by induction.
-Section~\ref{CaseStudy} presents some elaborate techniques
-about dependent case analysis. Finally, Section
-\ref{CoInduction} is a brief introduction to co-inductive types
---i.e., types containing infinite objects-- and the principle of
-co-induction.
-
-
-Thanks to Bruno Barras, Yves Bertot, Hugo Herbelin, Jean-Fran\c{c}ois Monin
-and Michel L\'evy for their help.
-
-\subsection*{Lexical conventions}
-The \texttt{typewriter} font is used to represent text
-input by the user, while the \textit{italic} font is used to represent
-the text output by the system as answers.
-
-
-Moreover, the mathematical symbols \coqle{}, \coqdiff, \(\exists\),
-\(\forall\), \arrow{}, $\rightarrow{}$ \coqor{}, \coqand{}, and \funarrow{}
-stand for the character strings \citecoq{<=}, \citecoq{<>},
-\citecoq{exists}, \citecoq{forall}, \citecoq{->}, \citecoq{<-},
-\texttt{\char'134/}, \texttt{/\char'134}, and \citecoq{=>},
-respectively. For instance, the \coq{} statement
-%V8 A prendre
-% inclusion numero 1
-% traduction numero 1
-\begin{alltt}
-\hide{Open Scope nat_scope. Check (}forall A:Type,(exists x : A, forall (y:A), x <> y) -> 2 = 3\hide{).}
-\end{alltt}
-is written as follows in this tutorial:
-%V8 A prendre
-% inclusion numero 2
-% traduction numero 2
-\begin{alltt}
-\hide{Check (}{\prodsym}A:Type,(\exsym{}x:A, {\prodsym}y:A, x {\coqdiff} y) \arrow{} 2 = 3\hide{).}
-\end{alltt}
-
-When a fragment of \coq{} input text appears in the middle of
-regular text, we often place this fragment between double quotes
-``\dots.'' These double quotes do not belong to the \coq{} syntax.
-
-Finally, any
-string enclosed between \texttt{(*} and \texttt{*)} is a comment and
-is ignored by the \coq{} system.
-
-\section{Introducing Inductive Types}
-\label{Introduction}
-
-Inductive types are types closed with respect to their introduction
-rules. These rules explain the most basic or \textsl{canonical} ways
-of constructing an element of the type. In this sense, they
-characterize the recursive type. Different rules must be considered as
-introducing different objects. In order to fix ideas, let us introduce
-in {\coq} the most well-known example of a recursive type: the type of
-natural numbers.
-
-%V8 A prendre
-\begin{alltt}
-Inductive nat : Set :=
- | O : nat
- | S : nat\arrow{}nat.
-\end{alltt}
-
-The definition of a recursive type has two main parts. First, we
-establish what kind of recursive type we will characterize (a set, in
-this case). Second, we present the introduction rules that define the
-type ({\Z} and {\SUCC}), also called its {\sl constructors}. The constructors
-{\Z} and {\SUCC} determine all the elements of this type. In other
-words, if $n\mbox{:}\nat$, then $n$ must have been introduced either
-by the rule {\Z} or by an application of the rule {\SUCC} to a
-previously constructed natural number. In this sense, we can say
-that {\nat} is \emph{closed}. On the contrary, the type
-$\Set$ is an {\it open} type, since we do not know {\it a priori} all
-the possible ways of introducing an object of type \texttt{Set}.
-
-After entering this command, the constants {\nat}, {\Z} and {\SUCC} are
-available in the current context. We can see their types using the
-\texttt{Check} command \refmancite{Section \ref{Check}}:
-
-%V8 A prendre
-\begin{alltt}
-Check nat.
-\it{}nat : Set
-\tt{}Check O.
-\it{}O : nat
-\tt{}Check S.
-\it{}S : nat {\arrow} nat
-\end{alltt}
-
-Moreover, {\coq} adds to the context three constants named
- $\natind$, $\natrec$ and $\natrect$, which
- correspond to different principles of structural induction on
-natural numbers that {\coq} infers automatically from the definition. We
-will come back to them in Section \ref{StructuralInduction}.
-
-
-In fact, the type of natural numbers as well as several useful
-theorems about them are already defined in the basic library of {\coq},
-so there is no need to introduce them. Therefore, let us throw away
-our (re)definition of {\nat}, using the command \texttt{Reset}.
-
-%V8 A prendre
-\begin{alltt}
-Reset nat.
-Print nat.
-\it{}Inductive nat : Set := O : nat | S : nat \arrow{} nat
-For S: Argument scope is [nat_scope]
-\end{alltt}
-
-Notice that \coq{}'s \emph{interpretation scope} for natural numbers
-(called \texttt{nat\_scope})
-allows us to read and write natural numbers in decimal form (see \cite{coqrefman}). For instance, the constructor \texttt{O} can be read or written
-as the digit $0$, and the term ``~\texttt{S (S (S O))}~'' as $3$.
-
-%V8 A prendre
-\begin{alltt}
-Check O.
-\it 0 : nat.
-\tt
-Check (S (S (S O))).
-\it 3 : nat
-\end{alltt}
-
-Let us now take a look to some other
-recursive types contained in the standard library of {\coq}.
-
-\subsection{Lists}
-Lists are defined in library \citecoq{List}\footnote{Notice that in versions of
-{\coq}
-prior to 8.1, the parameter $A$ had sort \citecoq{Set} instead of \citecoq{Type};
-the constant \citecoq{list} was thus of type \citecoq{Set\arrow{} Set}.}
-
-
-\begin{alltt}
-Require Import List.
-Print list.
-\it
-Inductive list (A : Type) : Type:=
- nil : list A | cons : A {\arrow} list A {\arrow} list A
-For nil: Argument A is implicit
-For cons: Argument A is implicit
-For list: Argument scope is [type_scope]
-For nil: Argument scope is [type_scope]
-For cons: Argument scopes are [type_scope _ _]
-\end{alltt}
-
-In this definition, \citecoq{A} is a \emph{general parameter}, global
-to both constructors.
-This kind of definition allows us to build a whole family of
-inductive types, indexed over the sort \citecoq{Type}.
-This can be observed if we consider the type of identifiers
-\citecoq{list}, \citecoq{cons} and \citecoq{nil}.
-Notice the notation \citecoq{(A := \dots)} which must be used
-when {\coq}'s type inference algorithm cannot infer the implicit
-parameter \citecoq{A}.
-\begin{alltt}
-Check list.
-\it list
- : Type {\arrow} Type
-
-\tt Check (nil (A:=nat)).
-\it nil
- : list nat
-
-\tt Check (nil (A:= nat {\arrow} nat)).
-\it nil
- : list (nat {\arrow} nat)
-
-\tt Check (fun A: Type {\funarrow} (cons (A:=A))).
-\it fun A : Type {\funarrow} cons (A:=A)
- : {\prodsym} A : Type, A {\arrow} list A {\arrow} list A
-
-\tt Check (cons 3 (cons 2 nil)).
-\it 3 :: 2 :: nil
- : list nat
-
-\tt Check (nat :: bool ::nil).
-\it nat :: bool :: nil
- : list Set
-
-\tt Check ((3<=4) :: True ::nil).
-\it (3<=4) :: True :: nil
- : list Prop
-
-\tt Check (Prop::Set::nil).
-\it Prop::Set::nil
- : list Type
-\end{alltt}
-
-\subsection{Vectors.}
-\label{vectors}
-
-Like \texttt{list}, \citecoq{vector} is a polymorphic type:
-if $A$ is a type, and $n$ a natural number, ``~\citecoq{vector $A$ $n$}~''
-is the type of vectors of elements of $A$ and size $n$.
-
-
-\begin{alltt}
-Require Import Bvector.
-
-Print vector.
-\it
-Inductive vector (A : Type) : nat {\arrow} Type :=
- Vnil : vector A 0
- | Vcons : A {\arrow} {\prodsym} n : nat, vector A n {\arrow} vector A (S n)
-For vector: Argument scopes are [type_scope nat_scope]
-For Vnil: Argument scope is [type_scope]
-For Vcons: Argument scopes are [type_scope _ nat_scope _]
-\end{alltt}
-
-
-Remark the difference between the two parameters $A$ and $n$:
-The first one is a \textsl{general parameter}, global to all the
-introduction rules,while the second one is an \textsl{index}, which is
-instantiated differently in the introduction rules.
-Such types parameterized by regular
-values are called \emph{dependent types}.
-
-\begin{alltt}
-Check (Vnil nat).
-\it Vnil nat
- : vector nat 0
-
-\tt Check (fun (A:Type)(a:A){\funarrow} Vcons _ a _ (Vnil _)).
-\it fun (A : Type) (a : A) {\funarrow} Vcons A a 0 (Vnil A)
- : {\prodsym} A : Type, A {\arrow} vector A 1
-
-
-\tt Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
-\it Vcons nat 5 1 (Vcons nat 3 0 (Vnil nat))
- : vector nat 2
-\end{alltt}
-
-\subsection{The contradictory proposition.}
-Another example of an inductive type is the contradictory proposition.
-This type inhabits the universe of propositions, and has no element
-at all.
-%V8 A prendre
-\begin{alltt}
-Print False.
-\it{} Inductive False : Prop :=
-\end{alltt}
-
-\noindent Notice that no constructor is given in this definition.
-
-\subsection{The tautological proposition.}
-Similarly, the
-tautological proposition {\True} is defined as an inductive type
-with only one element {\I}:
-
-%V8 A prendre
-\begin{alltt}
-Print True.
-\it{}Inductive True : Prop := I : True
-\end{alltt}
-
-\subsection{Relations as inductive types.}
-Some relations can also be introduced in a smart way as an inductive family
-of propositions. Let us take as example the order $n \leq m$ on natural
-numbers, called \citecoq{le} in {\coq}.
- This relation is introduced through
-the following definition, quoted from the standard library\footnote{In the interpretation scope
-for Peano arithmetic:
-\citecoq{nat\_scope}, ``~\citecoq{n <= m}~'' is equivalent to
-``~\citecoq{le n m}~'' .}:
-
-
-
-
-%V8 A prendre
-\begin{alltt}
-Print le. \it
-Inductive le (n:nat) : nat\arrow{}Prop :=
-| le_n: n {\coqle} n
-| le_S: {\prodsym} m, n {\coqle} m \arrow{} n {\coqle} S m.
-\end{alltt}
-
-Notice that in this definition $n$ is a general parameter,
-while the second argument of \citecoq{le} is an index (see section
-~\ref{vectors}).
- This definition
-introduces the binary relation $n {\leq} m$ as the family of unary predicates
-``\textsl{to be greater or equal than a given $n$}'', parameterized by $n$.
-
-The introduction rules of this type can be seen as a sort of Prolog
-rules for proving that a given integer $n$ is less or equal than another one.
-In fact, an object of type $n{\leq} m$ is nothing but a proof
-built up using the constructors \textsl{le\_n} and
-\textsl{le\_S} of this type. As an example, let us construct
-a proof that zero is less or equal than three using {\coq}'s interactive
-proof mode.
-Such an object can be obtained applying three times the second
-introduction rule of \citecoq{le}, to a proof that zero is less or equal
-than itself,
-which is provided by the first constructor of \citecoq{le}:
-
-%V8 A prendre
-\begin{alltt}
-Theorem zero_leq_three: 0 {\coqle} 3.
-Proof.
-\it{} 1 subgoal
-
-============================
- 0 {\coqle} 3
-
-\tt{}Proof.
- constructor 2.
-
-\it{} 1 subgoal
-============================
- 0 {\coqle} 2
-
-\tt{} constructor 2.
-\it{} 1 subgoal
-============================
- 0 {\coqle} 1
-
-\tt{} constructor 2
-\it{} 1 subgoal
-============================
- 0 {\coqle} 0
-
-\tt{} constructor 1.
-
-\it{}Proof completed
-\tt{}Qed.
-\end{alltt}
-
-\noindent When
-the current goal is an inductive type, the tactic
-``~\citecoq{constructor $i$}~'' \refmancite{Section \ref{constructor}} applies the $i$-th constructor in the
-definition of the type. We can take a look at the proof constructed
-using the command \texttt{Print}:
-
-%V8 A prendre
-\begin{alltt}
-Print Print zero_leq_three.
-\it{}zero_leq_three =
-zero_leq_three = le_S 0 2 (le_S 0 1 (le_S 0 0 (le_n 0)))
- : 0 {\coqle} 3
-\end{alltt}
-
-When the parameter $i$ is not supplied, the tactic \texttt{constructor}
-tries to apply ``~\texttt{constructor $1$}~'', ``~\texttt{constructor $2$}~'',\dots,
-``~\texttt{constructor $n$}~'' where $n$ is the number of constructors
-of the inductive type (2 in our example) of the conclusion of the goal.
-Our little proof can thus be obtained iterating the tactic
-\texttt{constructor} until it fails:
-
-%V8 A prendre
-\begin{alltt}
-Lemma zero_leq_three': 0 {\coqle} 3.
- repeat constructor.
-Qed.
-\end{alltt}
-
-Notice that the strict order on \texttt{nat}, called \citecoq{lt}
-is not inductively defined: the proposition $n<p$ (notation for \citecoq{lt $n$ $p$})
-is reducible to \citecoq{(S $n$) $\leq$ p}.
-
-\begin{alltt}
-Print lt.
-\it
-lt = fun n m : nat {\funarrow} S n {\coqle} m
- : nat {\arrow} nat {\arrow} Prop
-\tt
-Lemma zero_lt_three : 0 < 3.
-Proof.
- repeat constructor.
-Qed.
-
-Print zero_lt_three.
-\it zero_lt_three = le_S 1 2 (le_S 1 1 (le_n 1))
- : 0 < 3
-\end{alltt}
-
-
-
-\subsection{About general parameters (\coq{} version $\geq$ 8.1)}
-\label{parameterstuff}
-
-Since version $8.1$, it is possible to write more compact inductive definitions
-than in earlier versions.
-
-Consider the following alternative definition of the relation $\leq$ on
-type \citecoq{nat}:
-
-\begin{alltt}
-Inductive le'(n:nat):nat -> Prop :=
- | le'_n : le' n n
- | le'_S : forall p, le' (S n) p -> le' n p.
-
-Hint Constructors le'.
-\end{alltt}
-
-We notice that the type of the second constructor of \citecoq{le'}
-has an argument whose type is \citecoq{le' (S n) p}.
-This constrasts with earlier versions
-of {\coq}, in which a general parameter $a$ of an inductive
-type $I$ had to appear only in applications of the form $I\,\dots\,a$.
-
-Since version $8.1$, if $a$ is a general parameter of an inductive
-type $I$, the type of an argument of a constructor of $I$ may be
-of the form $I\,\dots\,t_a$ , where $t_a$ is any term.
-Notice that the final type of the constructors must be of the form
-$I\,\dots\,a$, since these constructors describe how to form
-inhabitants of type $I\,\dots\,a$ (this is the role of parameter $a$).
-
-Another example of this new feature is {\coq}'s definition of accessibility
-(see Section~\ref{WellFoundedRecursion}), which has a general parameter
-$x$; the constructor for the predicate
-``$x$ is accessible'' takes an argument of type ``$y$ is accessible''.
-
-
-
-In earlier versions of {\coq}, a relation like \citecoq{le'} would have to be
-defined without $n$ being a general parameter.
-
-\begin{alltt}
-Reset le'.
-
-Inductive le': nat-> nat -> Prop :=
- | le'_n : forall n, le' n n
- | le'_S : forall n p, le' (S n) p -> le' n p.
-\end{alltt}
-
-
-
-
-\subsection{The propositional equality type.} \label{equality}
-In {\coq}, the propositional equality between two inhabitants $a$ and
-$b$ of
-the same type $A$ ,
-noted $a=b$, is introduced as a family of recursive predicates
-``~\textsl{to be equal to $a$}~'', parameterised by both $a$ and its type
-$A$. This family of types has only one introduction rule, which
-corresponds to reflexivity.
-Notice that the syntax ``\citecoq{$a$ = $b$}~'' is an abbreviation
-for ``\citecoq{eq $a$ $b$}~'', and that the parameter $A$ is \emph{implicit},
-as it can be infered from $a$.
-%V8 A prendre
-\begin{alltt}
-Print eq.
-\it{} Inductive eq (A : Type) (x : A) : A \arrow{} Prop :=
- refl_equal : x = x
-For eq: Argument A is implicit
-For refl_equal: Argument A is implicit
-For eq: Argument scopes are [type_scope _ _]
-For refl_equal: Argument scopes are [type_scope _]
-\end{alltt}
-
-Notice also that the first parameter $A$ of \texttt{eq} has type
-\texttt{Type}. The type system of {\coq} allows us to consider equality between
-various kinds of terms: elements of a set, proofs, propositions,
-types, and so on.
-Look at \cite{coqrefman, coqart} to get more details on {\coq}'s type
-system, as well as implicit arguments and argument scopes.
-
-
-\begin{alltt}
-Lemma eq_3_3 : 2 + 1 = 3.
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
-Proof.
- reflexivity.
-Qed.
-
-Print eq_proof_proof.
-\it eq_proof_proof =
-refl_equal (refl_equal (3 * 4))
- : refl_equal (2 * 6) = refl_equal (3 * 4)
-\tt
-
-Lemma eq_lt_le : ( 2 < 4) = (3 {\coqle} 4).
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_nat_nat : nat = nat.
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_Set_Set : Set = Set.
-Proof.
- reflexivity.
-Qed.
-\end{alltt}
-
-\subsection{Logical connectives.} \label{LogicalConnectives}
-The conjunction and disjunction of two propositions are also examples
-of recursive types:
-
-\begin{alltt}
-Inductive or (A B : Prop) : Prop :=
- or_introl : A \arrow{} A {\coqor} B | or_intror : B \arrow{} A {\coqor} B
-
-Inductive and (A B : Prop) : Prop :=
- conj : A \arrow{} B \arrow{} A {\coqand} B
-
-\end{alltt}
-
-The propositions $A$ and $B$ are general parameters of these
-connectives. Choosing different universes for
-$A$ and $B$ and for the inductive type itself gives rise to different
-type constructors. For example, the type \textsl{sumbool} is a
-disjunction but with computational contents.
-
-\begin{alltt}
-Inductive sumbool (A B : Prop) : Set :=
- left : A \arrow{} \{A\} + \{B\} | right : B \arrow{} \{A\} + \{B\}
-\end{alltt}
-
-
-
-This type --noted \texttt{\{$A$\}+\{$B$\}} in {\coq}-- can be used in {\coq}
-programs as a sort of boolean type, to check whether it is $A$ or $B$
-that is true. The values ``~\citecoq{left $p$}~'' and
-``~\citecoq{right $q$}~'' replace the boolean values \textsl{true} and
-\textsl{false}, respectively. The advantage of this type over
-\textsl{bool} is that it makes available the proofs $p$ of $A$ or $q$
-of $B$, which could be necessary to construct a verification proof
-about the program.
-For instance, let us consider the certified program \citecoq{le\_lt\_dec}
-of the Standard Library.
-
-\begin{alltt}
-Require Import Compare_dec.
-Check le_lt_dec.
-\it
-le_lt_dec
- : {\prodsym} n m : nat, \{n {\coqle} m\} + \{m < n\}
-
-\end{alltt}
-
-We use \citecoq{le\_lt\_dec} to build a function for computing
-the max of two natural numbers:
-
-\begin{alltt}
-Definition max (n p :nat) := match le_lt_dec n p with
- | left _ {\funarrow} p
- | right _ {\funarrow} n
- end.
-\end{alltt}
-
-In the following proof, the case analysis on the term
-``~\citecoq{le\_lt\_dec n p}~'' gives us an access to proofs
-of $n\leq p$ in the first case, $p<n$ in the other.
-
-\begin{alltt}
-Theorem le_max : {\prodsym} n p, n {\coqle} p {\arrow} max n p = p.
-Proof.
- intros n p ; unfold max ; case (le_lt_dec n p); simpl.
-\it
-2 subgoals
-
- n : nat
- p : nat
- ============================
- n {\coqle} p {\arrow} n {\coqle} p {\arrow} p = p
-
-subgoal 2 is:
- p < n {\arrow} n {\coqle} p {\arrow} n = p
-\tt
- trivial.
- intros; absurd (p < p); eauto with arith.
-Qed.
-\end{alltt}
-
-
- Once the program verified, the proofs are
-erased by the extraction procedure:
-
-\begin{alltt}
-Extraction max.
-\it
-(** val max : nat {\arrow} nat {\arrow} nat **)
-
-let max n p =
- match le_lt_dec n p with
- | Left {\arrow} p
- | Right {\arrow} n
-\end{alltt}
-
-Another example of use of \citecoq{sumbool} is given in Section
-\ref{WellFoundedRecursion}: the theorem \citecoq{eq\_nat\_dec} of
-library \citecoq{Coq.Arith.Peano\_dec} is used in an euclidean division
-algorithm.
-
-\subsection{The existential quantifier.}\label{ex-def}
-The existential quantifier is yet another example of a logical
-connective introduced as an inductive type.
-
-\begin{alltt}
-Inductive ex (A : Type) (P : A \arrow{} Prop) : Prop :=
- ex_intro : {\prodsym} x : A, P x \arrow{} ex P
-\end{alltt}
-
-Notice that {\coq} uses the abreviation ``~\citecoq{\exsym\,$x$:$A$, $B$}~''
-for \linebreak ``~\citecoq{ex (fun $x$:$A$ \funarrow{} $B$)}~''.
-
-
-\noindent The former quantifier inhabits the universe of propositions.
-As for the conjunction and disjunction connectives, there is also another
-version of existential quantification inhabiting the universes $\Type_i$,
-which is written \texttt{sig $P$}. The syntax
-``~\citecoq{\{$x$:$A$ | $B$\}}~'' is an abreviation for ``~\citecoq{sig (fun $x$:$A$ {\funarrow} $B$)}~''.
-
-
-
-%\paragraph{The logical connectives.} Conjuction and disjuction are
-%also introduced as recursive types:
-%\begin{alltt}
-%Print or.
-%\end{alltt}
-%begin{alltt}
-%Print and.
-%\end{alltt}
-
-
-\subsection{Mutually Dependent Definitions}
-\label{MutuallyDependent}
-
-Mutually dependent definitions of recursive types are also allowed in
-{\coq}. A typical example of these kind of declaration is the
-introduction of the trees of unbounded (but finite) width:
-\label{Forest}
-\begin{alltt}
-Inductive tree(A:Type) : Type :=
- node : A {\arrow} forest A \arrow{} tree A
-with forest (A: Set) : Type :=
- nochild : forest A |
- addchild : tree A \arrow{} forest A \arrow{} forest A.
-\end{alltt}
-\noindent Yet another example of mutually dependent types are the
-predicates \texttt{even} and \texttt{odd} on natural numbers:
-\label{Even}
-\begin{alltt}
-Inductive
- even : nat\arrow{}Prop :=
- evenO : even O |
- evenS : {\prodsym} n, odd n \arrow{} even (S n)
-with
- odd : nat\arrow{}Prop :=
- oddS : {\prodsym} n, even n \arrow{} odd (S n).
-\end{alltt}
-
-\begin{alltt}
-Lemma odd_49 : odd (7 * 7).
- simpl; repeat constructor.
-Qed.
-\end{alltt}
-
-
-
-\section{Case Analysis and Pattern-matching}
-\label{CaseAnalysis}
-\subsection{Non-dependent Case Analysis}
-An \textsl{elimination rule} for the type $A$ is some way to use an
-object $a:A$ in order to define an object in some type $B$.
-A natural elimination rule for an inductive type is \emph{case analysis}.
-
-
-For instance, any value of type {\nat} is built using either \texttt{O} or \texttt{S}.
-Thus, a systematic way of building a value of type $B$ from any
-value of type {\nat} is to associate to \texttt{O} a constant $t_O:B$ and
-to every term of the form ``~\texttt{S $p$}~'' a term $t_S:B$. The following
-construction has type $B$:
-\begin{alltt}
-match \(n\) return \(B\) with O \funarrow \(t\sb{O}\) | S p \funarrow \(t\sb{S}\) end
-\end{alltt}
-
-
-In most of the cases, {\coq} is able to infer the type $B$ of the object
-defined, so the ``\texttt{return $B$}'' part can be omitted.
-
-The computing rules associated with this construct are the expected ones
-(the notation $t_S\{q/\texttt{p}\}$ stands for the substitution of $p$ by
-$q$ in $t_S$ :)
-
-\begin{eqnarray*}
-\texttt{match $O$ return $b$ with O {\funarrow} $t_O$ | S p {\funarrow} $t_S$ end} &\Longrightarrow& t_O\\
-\texttt{match $S\;q$ return $b$ with O {\funarrow} $t_O$ | S p {\funarrow} $t_S$ end} &\Longrightarrow& t_S\{q/\texttt{p}\}
-\end{eqnarray*}
-
-
-\subsubsection{Example: the predecessor function.}\label{firstpred}
-An example of a definition by case analysis is the function which
-computes the predecessor of any given natural number:
-\begin{alltt}
-Definition pred (n:nat) := match n with
- | O {\funarrow} O
- | S m {\funarrow} m
- end.
-
-Eval simpl in pred 56.
-\it{} = 55
- : nat
-\tt
-Eval simpl in pred 0.
-\it{} = 0
- : nat
-
-\tt{}Eval simpl in fun p {\funarrow} pred (S p).
-\it{} = fun p : nat {\funarrow} p
- : nat {\arrow} nat
-\end{alltt}
-
-As in functional programming, tuples and wild-cards can be used in
-patterns \refmancite{Section \ref{ExtensionsOfCases}}. Such
-definitions are automatically compiled by {\coq} into an expression which
-may contain several nested case expressions. For example, the
-exclusive \emph{or} on booleans can be defined as follows:
-\begin{alltt}
-Definition xorb (b1 b2:bool) :=
- match b1, b2 with
- | false, true {\funarrow} true
- | true, false {\funarrow} true
- | _ , _ {\funarrow} false
- end.
-\end{alltt}
-
-This kind of definition is compiled in {\coq} as follows\footnote{{\coq} uses
-the conditional ``~\citecoq{if $b$ then $a$ else $b$}~'' as an abreviation to
-``~\citecoq{match $b$ with true \funarrow{} $a$ | false \funarrow{} $b$ end}~''.}:
-
-\begin{alltt}
-Print xorb.
-xorb =
-fun b1 b2 : bool {\funarrow}
-if b1 then if b2 then false else true
- else if b2 then true else false
- : bool {\arrow} bool {\arrow} bool
-\end{alltt}
-
-\subsection{Dependent Case Analysis}
-\label{DependentCase}
-
-For a pattern matching construct of the form
-``~\citecoq{match n with \dots end}~'' a more general typing rule
-is obtained considering that the type of the whole expression
-may also depend on \texttt{n}.
- For instance, let us consider some function
-$Q:\texttt{nat}\arrow{}\texttt{Type}$, and $n:\citecoq{nat}$.
-In order to build a term of type $Q\;n$, we can associate
-to the constructor \texttt{O} some term $t_O: Q\;\texttt{O}$ and to
-the pattern ``~\texttt{S p}~'' some term $t_S : Q\;(S\;p)$.
-Notice that the terms $t_O$ and $t_S$ do not have the same type.
-
-The syntax of the \emph{dependent case analysis} and its
-associated typing rule make precise how the resulting
-type depends on the argument of the pattern matching, and
-which constraint holds on the branches of the pattern matching:
-
-\label{Prod-sup-rule}
-\[
-\begin{array}[t]{l}
-Q: \texttt{nat}{\arrow}\texttt{Type}\quad{t_O}:{{Q\;\texttt{O}}} \quad
-\smalljuge{p:\texttt{nat}}{t_p}{{Q\;(\texttt{S}\;p)}} \quad n:\texttt{nat} \\
-\hline
-{\texttt{match \(n\) as \(n\sb{0}\) return \(Q\;n\sb{0}\) with | O \funarrow \(t\sb{O}\) | S p \funarrow \(t\sb{S}\) end}}:{{Q\;n}}
-\end{array}
-\]
-
-
-The interest of this rule of \textsl{dependent} pattern-matching is
-that it can also be read as the following logical principle (when $Q$ has type \citecoq{nat\arrow{}Prop}
-by \texttt{Prop} in the type of $Q$): in order to prove
-that a property $Q$ holds for all $n$, it is sufficient to prove that
-$Q$ holds for {\Z} and that for all $p:\nat$, $Q$ holds for
-$(\SUCC\;p)$. The former, non-dependent version of case analysis can
-be obtained from this latter rule just taking $Q$ as a constant
-function on $n$.
-
-Notice that destructuring $n$ into \citecoq{O} or ``~\citecoq{S p}~''
- doesn't
-make appear in the goal the equalities ``~$n=\citecoq{O}$~''
- and ``~$n=\citecoq{S p}$~''.
-They are ``internalized'' in the rules above (see section~\ref{inversion}.)
-
-\subsubsection{Example: strong specification of the predecessor function.}
-
-In Section~\ref{firstpred}, the predecessor function was defined directly
-as a function from \texttt{nat} to \texttt{nat}. It remains to prove
-that this function has some desired properties. Another way to proceed
-is to, first introduce a specification of what is the predecessor of a
-natural number, under the form of a {\coq} type, then build an inhabitant
-of this type: in other words, a realization of this specification. This way, the correctness
-of this realization is ensured by {\coq}'s type system.
-
-A reasonable specification for $\pred$ is to say that for all $n$
-there exists another $m$ such that either $m=n=0$, or $(\SUCC\;m)$
-is equal to $n$. The function $\pred$ should be just the way to
-compute such an $m$.
-
-\begin{alltt}
-Definition pred_spec (n:nat) :=
- \{m:nat | n=0{\coqand} m=0 {\coqor} n = S m\}.
-
-Definition predecessor : {\prodsym} n:nat, pred_spec n.
- intro n; case n.
-\it{}
- n : nat
- ============================
- pred_spec 0
-
-\tt{} unfold pred_spec;exists 0;auto.
-\it{}
- =========================================
- {\prodsym} n0 : nat, pred_spec (S n0)
-\tt{}
- unfold pred_spec; intro n0; exists n0; auto.
-Defined.
-\end{alltt}
-
-If we print the term built by {\coq}, its dependent pattern-matching structure can be observed:
-
-\begin{alltt}
-predecessor = fun n : nat {\funarrow}
-\textbf{match n as n0 return (pred_spec n0) with}
-\textbf{| O {\funarrow}}
- exist (fun m : nat {\funarrow} 0 = 0 {\coqand} m = 0 {\coqor} 0 = S m) 0
- (or_introl (0 = 1)
- (conj (refl_equal 0) (refl_equal 0)))
-\textbf{| S n0 {\funarrow}}
- exist (fun m : nat {\funarrow} S n0 = 0 {\coqand} m = 0 {\coqor} S n0 = S m) n0
- (or_intror (S n0 = 0 {\coqand} n0 = 0) (refl_equal (S n0)))
-\textbf{end} : {\prodsym} n : nat, \textbf{pred_spec n}
-\end{alltt}
-
-
-Notice that there are many variants to the pattern ``~\texttt{intros \dots; case \dots}~''. Look at for tactics
-``~\texttt{destruct}~'', ``~\texttt{intro \emph{pattern}}~'', etc. in
-the reference manual and/or the book.
-
-\noindent The command \texttt{Extraction} \refmancite{Section
-\ref{ExtractionIdent}} can be used to see the computational
-contents associated to the \emph{certified} function \texttt{predecessor}:
-\begin{alltt}
-Extraction predecessor.
-\it
-(** val predecessor : nat {\arrow} pred_spec **)
-
-let predecessor = function
- | O {\arrow} O
- | S n0 {\arrow} n0
-\end{alltt}
-
-
-\begin{exercise} \label{expand}
-Prove the following theorem:
-\begin{alltt}
-Theorem nat_expand : {\prodsym} n:nat,
- n = match n with
- | 0 {\funarrow} 0
- | S p {\funarrow} S p
- end.
-\end{alltt}
-\end{exercise}
-
-\subsection{Some Examples of Case Analysis}
-\label{CaseScheme}
-The reader will find in the Reference manual all details about
-typing case analysis (chapter 4: Calculus of Inductive Constructions,
-and chapter 15: Extended Pattern-Matching).
-
-The following commented examples will show the different situations to consider.
-
-
-%\subsubsection{General Scheme}
-
-%Case analysis is then the most basic elimination rule that {\coq}
-%provides for inductive types. This rule follows a general schema,
-%valid for any inductive type $I$. First, if $I$ has type
-%``~$\forall\,(z_1:A_1)\ldots(z_r:A_r),S$~'', with $S$ either $\Set$, $\Prop$ or
-%$\Type$, then a case expression on $p$ of type ``~$R\;a_1\ldots a_r$~''
-% inhabits ``~$Q\;a_1\ldots a_r\;p$~''. The types of the branches of the case expression
-%are obtained from the definition of the type in this way: if the type
-%of the $i$-th constructor $c_i$ of $R$ is
-%``~$\forall\, (x_1:T_1)\ldots
-%(x_n:T_n),(R\;q_1\ldots q_r)$~'', then the $i-th$ branch must have the
-%form ``~$c_i\; x_1\; \ldots \;x_n\; \funarrow{}\; t_i$~'' where
-%$$(x_1:T_1),\ldots, (x_n:T_n) \vdash t_i : Q\;q_1\ldots q_r)$$
-% for non-dependent case
-%analysis, and $$(x_1:T_1)\ldots (x_n:T_n)\vdash t_i :Q\;q_1\ldots
-%q_r\;({c}_i\;x_1\;\ldots x_n)$$ for dependent one. In the
-%following section, we illustrate this general scheme for different
-%recursive types.
-%%\textbf{A vérifier}
-
-\subsubsection{The Empty Type}
-
-In a definition by case analysis, there is one branch for each
-introduction rule of the type. Hence, in a definition by case analysis
-on $p:\False$ there are no cases to be considered. In other words, the
-rule of (non-dependent) case analysis for the type $\False$ is
-(for $s$ in \texttt{Prop}, \texttt{Set} or \texttt{Type}):
-
-\begin{center}
-\snregla {\JM{Q}{s}\;\;\;\;\;
- \JM{p}{\False}}
- {\JM{\texttt{match $p$ return $Q$ with end}}{Q}}
-\end{center}
-
-As a corollary, if we could construct an object in $\False$, then it
-could be possible to define an object in any type. The tactic
-\texttt{contradiction} \refmancite{Section \ref{Contradiction}}
-corresponds to the application of the elimination rule above. It
-searches in the context for an absurd hypothesis (this is, a
-hypothesis whose type is $\False$) and then proves the goal by a case
-analysis of it.
-
-\begin{alltt}
-Theorem fromFalse : False \arrow{} 0=1.
-Proof.
- intro H.
- contradiction.
-Qed.
-\end{alltt}
-
-
-In {\coq} the negation is defined as follows :
-
-\begin{alltt}
-Definition not (P:Prop) := P {\arrow} False
-\end{alltt}
-
-The proposition ``~\citecoq{not $A$}~'' is also written ``~$\neg A$~''.
-
-If $A$ and $B$ are propositions, $a$ is a proof of $A$ and
-$H$ is a proof of $\neg A$,
-the term ``~\citecoq{match $H\;a$ return $B$ with end}~'' is a proof term of
-$B$.
-Thus, if your goal is $B$ and you have some hypothesis $H:\neg A$,
-the tactic ``~\citecoq{case $H$}~'' generates a new subgoal with
-statement $A$, as shown by the following example\footnote{Notice that
-$a\coqdiff b$ is just an abreviation for ``~\coqnot a= b~''}.
-
-\begin{alltt}
-Fact Nosense : 0 {\coqdiff} 0 {\arrow} 2 = 3.
-Proof.
- intro H; case H.
-\it
-===========================
- 0 = 0
-\tt
- reflexivity.
-Qed.
-\end{alltt}
-
-The tactic ``~\texttt{absurd $A$}~'' (where $A$ is any proposition),
-is based on the same principle, but
-generates two subgoals: $A$ and $\neg A$, for solving $B$.
-
-\subsubsection{The Equality Type}
-
-Let $A:\Type$, $a$, $b$ of type $A$, and $\pi$ a proof of
-$a=b$. Non dependent case analysis of $\pi$ allows us to
-associate to any proof of ``~$Q\;a$~'' a proof of ``~$Q\;b$~'',
-where $Q:A\arrow{} s$ (where $s\in\{\Prop, \Set, \Type\}$).
-The following term is a proof of ``~$Q\;a\, \arrow{}\, Q\;b$~''.
-
-\begin{alltt}
-fun H : Q a {\funarrow}
- match \(\pi\) in (_ = y) return Q y with
- refl_equal {\funarrow} H
- end
-\end{alltt}
-Notice the header of the \texttt{match} construct.
-It expresses how the resulting type ``~\citecoq{Q y}~'' depends on
-the \emph{type} of \texttt{p}.
-Notice also that in the pattern introduced by the keyword \texttt{in},
-the parameter \texttt{a} in the type ``~\texttt{a = y}~'' must be
-implicit, and replaced by a wildcard '\texttt{\_}'.
-
-
-Therefore, case analysis on a proof of the equality $a=b$
-amounts to replacing all the occurrences of the term $b$ with the term
-$a$ in the goal to be proven. Let us illustrate this through an
-example: the transitivity property of this equality.
-\begin{alltt}
-Theorem trans : {\prodsym} n m p:nat, n=m \arrow{} m=p \arrow{} n=p.
-Proof.
- intros n m p eqnm.
-\it{}
- n : nat
- m : nat
- p : nat
- eqnm : n = m
- ============================
- m = p {\arrow} n = p
-\tt{} case eqnm.
-\it{}
- n : nat
- m : nat
- p : nat
- eqnm : n = m
- ============================
- n = p {\arrow} n = p
-\tt{} trivial.
-Qed.
-\end{alltt}
-
-%\noindent The case analysis on the hypothesis $H:n=m$ yields the
-%tautological subgoal $n=p\rightarrow n=p$, that is directly proven by
-%the tactic \texttt{Trivial}.
-
-\begin{exercise}
-Prove the symmetry property of equality.
-\end{exercise}
-
-Instead of using \texttt{case}, we can use the tactic
-\texttt{rewrite} \refmancite{Section \ref{Rewrite}}. If $H$ is a proof
-of $a=b$, then
-``~\citecoq{rewrite $H$}~''
- performs a case analysis on a proof of $b=a$, obtained by applying a
-symmetry theorem to $H$. This application of symmetry allows us to rewrite
-the equality from left to right, which looks more natural. An optional
-parameter (either \texttt{\arrow{}} or \texttt{$\leftarrow$}) can be used to precise
-in which sense the equality must be rewritten. By default,
-``~\texttt{rewrite} $H$~'' corresponds to ``~\texttt{rewrite \arrow{}} $H$~''
-\begin{alltt}
-Lemma Rw : {\prodsym} x y: nat, y = y * x {\arrow} y * x * x = y.
- intros x y e; do 2 rewrite <- e.
-\it
-1 subgoal
-
- x : nat
- y : nat
- e : y = y * x
- ============================
- y = y
-\tt
- reflexivity.
-Qed.
-\end{alltt}
-
-Notice that, if $H:a=b$, then the tactic ``~\texttt{rewrite $H$}~''
- replaces \textsl{all} the
-occurrences of $a$ by $b$. However, in certain situations we could be
-interested in rewriting some of the occurrences, but not all of them.
-This can be done using the tactic \texttt{pattern} \refmancite{Section
-\ref{Pattern}}. Let us consider yet another example to
-illustrate this.
-
-Let us start with some simple theorems of arithmetic; two of them
-are already proven in the Standard Library, the last is left as an exercise.
-
-\begin{alltt}
-\it
-mult_1_l
- : {\prodsym} n : nat, 1 * n = n
-
-mult_plus_distr_r
- : {\prodsym} n m p : nat, (n + m) * p = n * p + m * p
-
-mult_distr_S : {\prodsym} n p : nat, n * p + p = (S n)* p.
-\end{alltt}
-
-Let us now prove a simple result:
-
-\begin{alltt}
-Lemma four_n : {\prodsym} n:nat, n+n+n+n = 4*n.
-Proof.
- intro n;rewrite <- (mult_1_l n).
-\it
- n : nat
- ============================
- 1 * n + 1 * n + 1 * n + 1 * n = 4 * (1 * n)
-\end{alltt}
-
-We can see that the \texttt{rewrite} tactic call replaced \emph{all}
-the occurrences of \texttt{n} by the term ``~\citecoq{1 * n}~''.
-If we want to do the rewriting ony on the leftmost occurrence of
-\texttt{n}, we can mark this occurrence using the \texttt{pattern}
-tactic:
-
-
-\begin{alltt}
- Undo.
- intro n; pattern n at 1.
- \it
- n : nat
- ============================
- (fun n0 : nat {\funarrow} n0 + n + n + n = 4 * n) n
-\end{alltt}
-Applying the tactic ``~\citecoq{pattern n at 1}~'' allowed us
-to explicitly abstract the first occurrence of \texttt{n} from the
-goal, putting this goal under the form ``~\citecoq{$Q$ n}~'',
-thus pointing to \texttt{rewrite} the particular predicate on $n$
-that we search to prove.
-
-
-\begin{alltt}
- rewrite <- mult_1_l.
-\it
-1 subgoal
-
- n : nat
- ============================
- 1 * n + n + n + n = 4 * n
-\tt
- repeat rewrite mult_distr_S.
-\it
- n : nat
- ============================
- 4 * n = 4 * n
-\tt
- trivial.
-Qed.
-\end{alltt}
-
-\subsubsection{The Predicate $n {\leq} m$}
-
-
-The last but one instance of the elimination schema that we will illustrate is
-case analysis for the predicate $n {\leq} m$:
-
-Let $n$ and $p$ be terms of type \citecoq{nat}, and $Q$ a predicate
-of type $\citecoq{nat}\arrow{}\Prop$.
-If $H$ is a proof of ``~\texttt{n {\coqle} p}~'',
-$H_0$ a proof of ``~\texttt{$Q$ n}~'' and
-$H_S$ a proof of the statement ``~\citecoq{{\prodsym}m:nat, n {\coqle} m {\arrow} Q (S m)}~'',
-then the term
-\begin{alltt}
-match H in (_ {\coqle} q) return (Q q) with
- | le_n {\funarrow} H0
- | le_S m Hm {\funarrow} HS m Hm
-end
-\end{alltt}
- is a proof term of ``~\citecoq{$Q$ $p$}~''.
-
-
-The two patterns of this \texttt{match} construct describe
-all possible forms of proofs of ``~\citecoq{n {\coqle} m}~'' (notice
-again that the general parameter \texttt{n} is implicit in
- the ``~\texttt{in \dots}~''
-clause and is absent from the match patterns.
-
-
-Notice that the choice of introducing some of the arguments of the
-predicate as being general parameters in its definition has
-consequences on the rule of case analysis that is derived. In
-particular, the type $Q$ of the object defined by the case expression
-only depends on the indexes of the predicate, and not on the general
-parameters. In the definition of the predicate $\leq$, the first
-argument of this relation is a general parameter of the
-definition. Hence, the predicate $Q$ to be proven only depends on the
-second argument of the relation. In other words, the integer $n$ is
-also a general parameter of the rule of case analysis.
-
-An example of an application of this rule is the following theorem,
-showing that any integer greater or equal than $1$ is the successor of another
-natural number:
-
-\begin{alltt}
-Lemma predecessor_of_positive :
- {\prodsym} n, 1 {\coqle} n {\arrow} {\exsym} p:nat, n = S p.
-Proof.
- intros n H;case H.
-\it
- n : nat
- H : 1 {\coqle} n
- ============================
- {\exsym} p : nat, 1 = S p
-\tt
- exists 0; trivial.
-\it
-
- n : nat
- H : 1 {\coqle} n
- ============================
- {\prodsym} m : nat, 0 {\coqle} m {\arrow} {\exsym} p : nat, S m = S p
-\tt
- intros m _ .
- exists m.
- trivial.
-Qed.
-\end{alltt}
-
-
-\subsubsection{Vectors}
-
-The \texttt{vector} polymorphic and dependent family of types will
-give an idea of the most general scheme of pattern-matching.
-
-For instance, let us define a function for computing the tail of
-any vector. Notice that we shall build a \emph{total} function,
-by considering that the tail of an empty vector is this vector itself.
-In that sense, it will be slightly different from the \texttt{Vtail}
-function of the Standard Library, which is defined only for vectors
-of type ``~\citecoq{vector $A$ (S $n$)}~''.
-
-The header of the function we want to build is the following:
-
-\begin{verbatim}
-Definition Vtail_total
- (A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
-\end{verbatim}
-
-Since the branches will not have the same type
-(depending on the parameter \texttt{n}),
-the body of this function is a dependent pattern matching on
-\citecoq{v}.
-So we will have :
-\begin{verbatim}
-match v in (vector _ n0) return (vector A (pred n0)) with
-\end{verbatim}
-
-The first branch deals with the constructor \texttt{Vnil} and must
-return a value in ``~\citecoq{vector A (pred 0)}~'', convertible
-to ``~\citecoq{vector A 0}~''. So, we propose:
-\begin{alltt}
-| Vnil {\funarrow} Vnil A
-\end{alltt}
-
-The second branch considers a vector in ``~\citecoq{vector A (S n0)}~''
-of the form
-``~\citecoq{Vcons A n0 v0}~'', with ``~\citecoq{v0:vector A n0}~'',
-and must return a value of type ``~\citecoq{vector A (pred (S n0))}~'',
-which is convertible to ``~\citecoq{vector A n0}~''.
-This second branch is thus :
-\begin{alltt}
-| Vcons _ n0 v0 {\funarrow} v0
-\end{alltt}
-
-Here is the full definition:
-
-\begin{alltt}
-Definition Vtail_total
- (A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
-match v in (vector _ n0) return (vector A (pred n0)) with
-| Vnil {\funarrow} Vnil A
-| Vcons _ n0 v0 {\funarrow} v0
-end.
-\end{alltt}
-
-
-\subsection{Case Analysis and Logical Paradoxes}
-
-In the previous section we have illustrated the general scheme for
-generating the rule of case analysis associated to some recursive type
-from the definition of the type. However, if the logical soundness is
-to be preserved, certain restrictions to this schema are
-necessary. This section provides a brief explanation of these
-restrictions.
-
-
-\subsubsection{The Positivity Condition}
-\label{postypes}
-
-In order to make sense of recursive types as types closed under their
-introduction rules, a constraint has to be imposed on the possible
-forms of such rules. This constraint, known as the
-\textsl{positivity condition}, is necessary to prevent the user from
-naively introducing some recursive types which would open the door to
-logical paradoxes. An example of such a dangerous type is the
-``inductive type'' \citecoq{Lambda}, whose only constructor is
-\citecoq{lambda} of type \citecoq{(Lambda\arrow False)\arrow Lambda}.
- Following the pattern
-given in Section \ref{CaseScheme}, the rule of (non dependent) case
-analysis for \citecoq{Lambda} would be the following:
-
-\begin{center}
-\snregla {\JM{Q}{\Prop}\;\;\;\;\;
- \JM{p}{\texttt{Lambda}}\;\;\;\;\;
- {h : {\texttt{Lambda}}\arrow\False\; \vdash\; t\,:\,Q}}
- {\JM{\citecoq{match $p$ return $Q$ with lambda h {\funarrow} $t$ end}}{Q}}
-\end{center}
-
-In order to avoid paradoxes, it is impossible to construct
-the type \citecoq{Lambda} in {\coq}:
-
-\begin{alltt}
-Inductive Lambda : Set :=
- lambda : (Lambda {\arrow} False) {\arrow} Lambda.
-\it
-Error: Non strictly positive occurrence of "Lambda" in
- "(Lambda {\arrow} False) {\arrow} Lambda"
-\end{alltt}
-
-In order to explain this danger, we
-will declare some constants for simulating the construction of
-\texttt{Lambda} as an inductive type.
-
-Let us open some section, and declare two variables, the first one for
-\texttt{Lambda}, the other for the constructor \texttt{lambda}.
-
-\begin{alltt}
-Section Paradox.
-Variable Lambda : Set.
-Variable lambda : (Lambda {\arrow} False) {\arrow}Lambda.
-\end{alltt}
-
-Since \texttt{Lambda} is not a truely inductive type, we can't use
-the \texttt{match} construct. Nevertheless, we can simulate it by a
-variable \texttt{matchL} such that the term
-``~\citecoq{matchL $l$ $Q$ (fun $h$ : Lambda {\arrow} False {\funarrow} $t$)}~''
-should be understood as
-``~\citecoq{match $l$ return $Q$ with | lambda h {\funarrow} $t$)}~''
-
-
-\begin{alltt}
-Variable matchL : Lambda {\arrow}
- {\prodsym} Q:Prop, ((Lambda {\arrow}False) {\arrow} Q) {\arrow}
- Q.
-\end{alltt}
-
->From these constants, it is possible to define application by case
-analysis. Then, through auto-application, the well-known looping term
-$(\lambda x.(x\;x)\;\lambda x.(x\;x))$ provides a proof of falsehood.
-
-\begin{alltt}
-Definition application (f x: Lambda) :False :=
- matchL f False (fun h {\funarrow} h x).
-
-Definition Delta : Lambda :=
- lambda (fun x : Lambda {\funarrow} application x x).
-
-Definition loop : False := application Delta Delta.
-
-Theorem two_is_three : 2 = 3.
-Proof.
- elim loop.
-Qed.
-
-End Paradox.
-\end{alltt}
-
-\noindent This example can be seen as a formulation of Russell's
-paradox in type theory associating $(\textsl{application}\;x\;x)$ to the
-formula $x\not\in x$, and \textsl{Delta} to the set $\{ x \mid
-x\not\in x\}$. If \texttt{matchL} would satisfy the reduction rule
-associated to case analysis, that is,
-$$ \citecoq{matchL (lambda $f$) $Q$ $h$} \Longrightarrow h\;f$$
-then the term \texttt{loop}
-would compute into itself. This is not actually surprising, since the
-proof of the logical soundness of {\coq} strongly lays on the property
-that any well-typed term must terminate. Hence, non-termination is
-usually a synonymous of inconsistency.
-
-%\paragraph{} In this case, the construction of a non-terminating
-%program comes from the so-called \textsl{negative occurrence} of
-%$\Lambda$ in the type of the constructor $\lambda$. In order to be
-%admissible for {\coq}, all the occurrences of the recursive type in its
-%own introduction rules must be positive, in the sense on the following
-%definition:
-%
-%\begin{enumerate}
-%\item $R$ is positive in $(R\;\vec{t})$;
-%\item $R$ is positive in $(x: A)C$ if it does not
-%occur in $A$ and $R$ is positive in $C$;
-%\item if $P\equiv (\vec{x}:\vec{T})Q$, then $R$ is positive in $(P
-%\rightarrow C)$ if $R$ does not occur in $\vec{T}$, $R$ is positive
-%in $C$, and either
-%\begin{enumerate}
-%\item $Q\equiv (R\;\vec{q})$ or
-%\item $Q\equiv (J\;\vec{t})$, \label{relax}
-% where $J$ is a recursive type, and for any term $t_i$ either :
-% \begin{enumerate}
-% \item $R$ does not occur in $t_i$, or
-% \item $t_i\equiv (z:\vec{Z})(R\;\vec{q})$, $R$ does not occur
-% in $\vec{Z}$, $t_i$ instantiates a general
-% parameter of $J$, and this parameter is positive in the
-% arguments of the constructors of $J$.
-% \end{enumerate}
-%\end{enumerate}
-%\end{enumerate}
-%\noindent Those types obtained by erasing option (\ref{relax}) in the
-%definition above are called \textsl{strictly positive} types.
-
-
-\subsubsection*{Remark} In this case, the construction of a non-terminating
-program comes from the so-called \textsl{negative occurrence} of
-\texttt{Lambda} in the argument of the constructor \texttt{lambda}.
-
-The reader will find in the Reference Manual a complete formal
-definition of the notions of \emph{positivity condition} and
-\emph{strict positivity} that an inductive definition must satisfy.
-
-
-%In order to be
-%admissible for {\coq}, the type $R$ must be positive in the types of the
-%arguments of its own introduction rules, in the sense on the following
-%definition:
-
-%\textbf{La définition du manuel de référence est plus complexe:
-%la recopier ou donner seulement des exemples?
-%}
-%\begin{enumerate}
-%\item $R$ is positive in $T$ if $R$ does not occur in $T$;
-%\item $R$ is positive in $(R\;\vec{t})$ if $R$ does not occur in $\vec{t}$;
-%\item $R$ is positive in $(x:A)C$ if it does not
-% occur in $A$ and $R$ is positive in $C$;
-%\item $R$ is positive in $(J\;\vec{t})$, \label{relax}
-% if $J$ is a recursive type, and for any term $t_i$ either :
-% \begin{enumerate}
-% \item $R$ does not occur in $t_i$, or
-% \item $R$ is positive in $t_i$, $t_i$ instantiates a general
-% parameter of $J$, and this parameter is positive in the
-% arguments of the constructors of $J$.
-% \end{enumerate}
-%\end{enumerate}
-
-%\noindent When we can show that $R$ is positive without using the item
-%(\ref{relax}) of the definition above, then we say that $R$ is
-%\textsl{strictly positive}.
-
-%\textbf{Changer le discours sur les ordinaux}
-
-Notice that the positivity condition does not forbid us to
-put functional recursive
-arguments in the constructors.
-
-For instance, let us consider the type of infinitely branching trees,
-with labels in \texttt{Z}.
-\begin{alltt}
-Require Import ZArith.
-
-Inductive itree : Set :=
-| ileaf : itree
-| inode : Z {\arrow} (nat {\arrow} itree) {\arrow} itree.
-\end{alltt}
-
-In this representation, the $i$-th child of a tree
-represented by ``~\texttt{inode $z$ $s$}~'' is obtained by applying
-the function $s$ to $i$.
-The following definitions show how to construct a tree with a single
-node, a tree of height 1 and a tree of height 2:
-
-\begin{alltt}
-Definition isingle l := inode l (fun i {\funarrow} ileaf).
-
-Definition t1 := inode 0 (fun n {\funarrow} isingle (Z_of_nat n)).
-
-Definition t2 :=
- inode 0
- (fun n : nat {\funarrow}
- inode (Z_of_nat n)
- (fun p {\funarrow} isingle (Z_of_nat (n*p)))).
-\end{alltt}
-
-
-Let us define a preorder on infinitely branching trees.
- In order to compare two non-leaf trees,
-it is necessary to compare each of their children
- without taking care of the order in which they
-appear:
-
-\begin{alltt}
-Inductive itree_le : itree{\arrow} itree {\arrow} Prop :=
- | le_leaf : {\prodsym} t, itree_le ileaf t
- | le_node : {\prodsym} l l' s s',
- Zle l l' {\arrow}
- ({\prodsym} i, {\exsym} j:nat, itree_le (s i) (s' j)){\arrow}
- itree_le (inode l s) (inode l' s').
-
-\end{alltt}
-
-Notice that a call to the predicate \texttt{itree\_le} appears as
-a general parameter of the inductive type \texttt{ex} (see Sect.\ref{ex-def}).
-This kind of definition is accepted by {\coq}, but may lead to some
-difficulties, since the induction principle automatically
-generated by the system
-is not the most appropriate (see chapter 14 of~\cite{coqart} for a detailed
-explanation).
-
-
-The following definition, obtained by
-skolemising the
-proposition \linebreak $\forall\, i,\exists\, j,(\texttt{itree\_le}\;(s\;i)\;(s'\;j))$ in
-the type of \texttt{itree\_le}, does not present this problem:
-
-
-\begin{alltt}
-Inductive itree_le' : itree{\arrow} itree {\arrow} Prop :=
- | le_leaf' : {\prodsym} t, itree_le' ileaf t
- | le_node' : {\prodsym} l l' s s' g,
- Zle l l' {\arrow}
- ({\prodsym} i, itree_le' (s i) (s' (g i))) {\arrow}
- itree_le' (inode l s) (inode l' s').
-
-\end{alltt}
-\iffalse
-\begin{alltt}
-Lemma t1_le'_t2 : itree_le' t1 t2.
-Proof.
- unfold t1, t2.
- constructor 2 with (fun i : nat {\funarrow} 2 * i).
- auto with zarith.
- unfold isingle;
- intro i ; constructor 2 with (fun i :nat {\funarrow} i).
- auto with zarith.
- constructor .
-Qed.
-\end{alltt}
-\fi
-
-%In general, strictly positive definitions are preferable to only
-%positive ones. The reason is that it is sometimes difficult to derive
-%structural induction combinators for the latter ones. Such combinators
-%are automatically generated for strictly positive types, but not for
-%the only positive ones. Nevertheless, sometimes non-strictly positive
-%definitions provide a smarter or shorter way of declaring a recursive
-%type.
-
-Another example is the type of trees
- of unbounded width, in which a recursive subterm
-\texttt{(ltree A)} instantiates the type of polymorphic lists:
-
-\begin{alltt}
-Require Import List.
-
-Inductive ltree (A:Set) : Set :=
- lnode : A {\arrow} list (ltree A) {\arrow} ltree A.
-\end{alltt}
-
-This declaration can be transformed
-adding an extra type to the definition, as was done in Section
-\ref{MutuallyDependent}.
-
-
-\subsubsection{Impredicative Inductive Types}
-
-An inductive type $I$ inhabiting a universe $U$ is \textsl{predicative}
-if the introduction rules of $I$ do not make a universal
-quantification on a universe containing $U$. All the recursive types
-previously introduced are examples of predicative types. An example of
-an impredicative one is the following type:
-%\textsl{exT}, the dependent product
-%of a certain set (or proposition) $x$, and a proof of a property $P$
-%about $x$.
-
-%\begin{alltt}
-%Print exT.
-%\end{alltt}
-%\textbf{ttention, EXT c'est ex!}
-%\begin{alltt}
-%Check (exists P:Prop, P {\arrow} not P).
-%\end{alltt}
-
-%This type is useful for expressing existential quantification over
-%types, like ``there exists a proposition $x$ such that $(P\;x)$''
-%---written $(\textsl{EXT}\; x:Prop \mid (P\;x))$ in {\coq}. However,
-
-\begin{alltt}
-Inductive prop : Prop :=
- prop_intro : Prop {\arrow} prop.
-\end{alltt}
-
-Notice
-that the constructor of this type can be used to inject any
-proposition --even itself!-- into the type.
-
-\begin{alltt}
-Check (prop_intro prop).\it
-prop_intro prop
- : prop
-\end{alltt}
-
-A careless use of such a
-self-contained objects may lead to a variant of Burali-Forti's
-paradox. The construction of Burali-Forti's paradox is more
-complicated than Russel's one, so we will not describe it here, and
-point the interested reader to \cite{Bar98,Coq86}.
-
-
-Another example is the second order existential quantifier for propositions:
-
-\begin{alltt}
-Inductive ex_Prop (P : Prop {\arrow} Prop) : Prop :=
- exP_intro : {\prodsym} X : Prop, P X {\arrow} ex_Prop P.
-\end{alltt}
-
-%\begin{alltt}
-%(*
-%Check (match prop_inject with (prop_intro p _) {\funarrow} p end).
-
-%Error: Incorrect elimination of "prop_inject" in the inductive type
-% ex
-%The elimination predicate ""fun _ : prop {\funarrow} Prop" has type
-% "prop {\arrow} Type"
-%It should be one of :
-% "Prop"
-
-%Elimination of an inductive object of sort : "Prop"
-%is not allowed on a predicate in sort : "Type"
-%because non-informative objects may not construct informative ones.
-
-%*)
-%Print prop_inject.
-
-%(*
-%prop_inject =
-%prop_inject = prop_intro prop (fun H : prop {\funarrow} H)
-% : prop
-%*)
-%\end{alltt}
-
-% \textbf{Et par ça?
-%}
-
-Notice that predicativity on sort \citecoq{Set} forbids us to build
-the following definitions.
-
-
-\begin{alltt}
-Inductive aSet : Set :=
- aSet_intro: Set {\arrow} aSet.
-
-\it{}User error: Large non-propositional inductive types must be in Type
-\tt
-Inductive ex_Set (P : Set {\arrow} Prop) : Set :=
- exS_intro : {\prodsym} X : Set, P X {\arrow} ex_Set P.
-
-\it{}User error: Large non-propositional inductive types must be in Type
-\end{alltt}
-
-Nevertheless, one can define types like \citecoq{aSet} and \citecoq{ex\_Set}, as inhabitants of \citecoq{Type}.
-
-\begin{alltt}
-Inductive ex_Set (P : Set {\arrow} Prop) : Type :=
- exS_intro : {\prodsym} X : Set, P X {\arrow} ex_Set P.
-\end{alltt}
-
-In the following example, the inductive type \texttt{typ} can be defined,
-but the term associated with the interactive Definition of
-\citecoq{typ\_inject} is incompatible with {\coq}'s hierarchy of universes:
-
-
-\begin{alltt}
-Inductive typ : Type :=
- typ_intro : Type {\arrow} typ.
-
-Definition typ_inject: typ.
- split; exact typ.
-\it Proof completed
-
-\tt{}Defined.
-\it Error: Universe Inconsistency.
-\tt
-Abort.
-\end{alltt}
-
-One possible way of avoiding this new source of paradoxes is to
-restrict the kind of eliminations by case analysis that can be done on
-impredicative types. In particular, projections on those universes
-equal or bigger than the one inhabited by the impredicative type must
-be forbidden \cite{Coq86}. A consequence of this restriction is that it
-is not possible to define the first projection of the type
-``~\citecoq{ex\_Prop $P$}~'':
-\begin{alltt}
-Check (fun (P:Prop{\arrow}Prop)(p: ex_Prop P) {\funarrow}
- match p with exP_intro X HX {\funarrow} X end).
-\it
-Error:
-Incorrect elimination of "p" in the inductive type
-"ex_Prop", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs.
-\end{alltt}
-
-%In order to explain why, let us consider for example the following
-%impredicative type \texttt{ALambda}.
-%\begin{alltt}
-%Inductive ALambda : Set :=
-% alambda : (A:Set)(A\arrow{}False)\arrow{}ALambda.
-%
-%Definition Lambda : Set := ALambda.
-%Definition lambda : (ALambda\arrow{}False)\arrow{}ALambda := (alambda ALambda).
-%Lemma CaseAL : (Q:Prop)ALambda\arrow{}((ALambda\arrow{}False)\arrow{}Q)\arrow{}Q.
-%\end{alltt}
-%
-%This type contains all the elements of the dangerous type $\Lambda$
-%described at the beginning of this section. Try to construct the
-%non-ending term $(\Delta\;\Delta)$ as an object of
-%\texttt{ALambda}. Why is it not possible?
-
-\subsubsection{Extraction Constraints}
-
-There is a final constraint on case analysis that is not motivated by
-the potential introduction of paradoxes, but for compatibility reasons
-with {\coq}'s extraction mechanism \refmancite{Appendix
-\ref{CamlHaskellExtraction}}. This mechanism is based on the
-classification of basic types into the universe $\Set$ of sets and the
-universe $\Prop$ of propositions. The objects of a type in the
-universe $\Set$ are considered as relevant for computation
-purposes. The objects of a type in $\Prop$ are considered just as
-formalised comments, not necessary for execution. The extraction
-mechanism consists in erasing such formal comments in order to obtain
-an executable program. Hence, in general, it is not possible to define
-an object in a set (that should be kept by the extraction mechanism)
-by case analysis of a proof (which will be thrown away).
-
-Nevertheless, this general rule has an exception which is important in
-practice: if the definition proceeds by case analysis on a proof of a
-\textsl{singleton proposition} or an empty type (\emph{e.g.} \texttt{False}),
- then it is allowed. A singleton
-proposition is a non-recursive proposition with a single constructor
-$c$, all whose arguments are proofs. For example, the propositional
-equality and the conjunction of two propositions are examples of
-singleton propositions.
-
-%From the point of view of the extraction
-%mechanism, such types are isomorphic to a type containing a single
-%object $c$, so a definition $\Case{x}{c \Rightarrow b}$ is
-%directly replaced by $b$ as an extra optimisation.
-
-\subsubsection{Strong Case Analysis on Proofs}
-
-One could consider allowing
- to define a proposition $Q$ by case
-analysis on the proofs of another recursive proposition $R$. As we
-will see in Section \ref{Discrimination}, this would enable one to prove that
-different introduction rules of $R$ construct different
-objects. However, this property would be in contradiction with the principle
-of excluded middle of classical logic, because this principle entails
-that the proofs of a proposition cannot be distinguished. This
-principle is not provable in {\coq}, but it is frequently introduced by
-the users as an axiom, for reasoning in classical logic. For this
-reason, the definition of propositions by case analysis on proofs is
- not allowed in {\coq}.
-
-\begin{alltt}
-
-Definition comes_from_the_left (P Q:Prop)(H:P{\coqor}Q): Prop :=
- match H with
- | or_introl p {\funarrow} True
- | or_intror q {\funarrow} False
- end.
-\it
-Error:
-Incorrect elimination of "H" in the inductive type
-"or", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs.
-
-\end{alltt}
-
-On the other hand, if we replace the proposition $P {\coqor} Q$ with
-the informative type $\{P\}+\{Q\}$, the elimination is accepted:
-
-\begin{alltt}
-Definition comes_from_the_left_sumbool
- (P Q:Prop)(x:\{P\} + \{Q\}): Prop :=
- match x with
- | left p {\funarrow} True
- | right q {\funarrow} False
- end.
-\end{alltt}
-
-
-\subsubsection{Summary of Constraints}
-
-To end with this section, the following table summarizes which
-universe $U_1$ may inhabit an object of type $Q$ defined by case
-analysis on $x:R$, depending on the universe $U_2$ inhabited by the
-inductive types $R$.\footnote{In the box indexed by $U_1=\citecoq{Type}$
-and $U_2=\citecoq{Set}$, the answer ``yes'' takes into account the
-predicativity of sort \citecoq{Set}. If you are working with the
-option ``impredicative-set'', you must put in this box the
-condition ``if $R$ is predicative''.}
-
-
-\begin{center}
-%%% displease hevea less by using * in multirow rather than \LL
-\renewcommand{\multirowsetup}{\centering}
-%\newlength{\LL}
-%\settowidth{\LL}{$x : R : U_2$}
-\begin{tabular}{|c|c|c|c|c|}
-\hline
-\multirow{5}*{$x : R : U_2$} &
-\multicolumn{4}{|c|}{$Q : U_1$}\\
-\hline
-& &\textsl{Set} & \textsl{Prop} & \textsl{Type}\\
-\cline{2-5}
-&\textsl{Set} & yes & yes & yes\\
-\cline{2-5}
-&\textsl{Prop} & if $R$ singleton & yes & no\\
-\cline{2-5}
-&\textsl{Type} & yes & yes & yes\\
-\hline
-\end{tabular}
-\end{center}
-
-\section{Some Proof Techniques Based on Case Analysis}
-\label{CaseTechniques}
-
-In this section we illustrate the use of case analysis as a proof
-principle, explaining the proof techniques behind three very useful
-{\coq} tactics, called \texttt{discriminate}, \texttt{injection} and
-\texttt{inversion}.
-
-\subsection{Discrimination of introduction rules}
-\label{Discrimination}
-
-In the informal semantics of recursive types described in Section
-\ref{Introduction} it was said that each of the introduction rules of a
-recursive type is considered as being different from all the others.
-It is possible to capture this fact inside the logical system using
-the propositional equality. We take as example the following theorem,
-stating that \textsl{O} constructs a natural number different
-from any of those constructed with \texttt{S}.
-
-\begin{alltt}
-Theorem S_is_not_O : {\prodsym} n, S n {\coqdiff} 0.
-\end{alltt}
-
-In order to prove this theorem, we first define a proposition by case
-analysis on natural numbers, so that the proposition is true for {\Z}
-and false for any natural number constructed with {\SUCC}. This uses
-the empty and singleton type introduced in Sections \ref{Introduction}.
-
-\begin{alltt}
-Definition Is_zero (x:nat):= match x with
- | 0 {\funarrow} True
- | _ {\funarrow} False
- end.
-\end{alltt}
-
-\noindent Then, we prove the following lemma:
-
-\begin{alltt}
-Lemma O_is_zero : {\prodsym} m, m = 0 {\arrow} Is_zero m.
-Proof.
- intros m H; subst m.
-\it{}
-================
- Is_zero 0
-\tt{}
-simpl;trivial.
-Qed.
-\end{alltt}
-
-\noindent Finally, the proof of \texttt{S\_is\_not\_O} follows by the
-application of the previous lemma to $S\;n$.
-
-
-\begin{alltt}
-
- red; intros n Hn.
- \it{}
- n : nat
- Hn : S n = 0
- ============================
- False \tt
-
- apply O_is_zero with (m := S n).
- assumption.
-Qed.
-\end{alltt}
-
-
-The tactic \texttt{discriminate} \refmancite{Section \ref{Discriminate}} is
-a special-purpose tactic for proving disequalities between two
-elements of a recursive type introduced by different constructors. It
-generalizes the proof method described here for natural numbers to any
-[co]-inductive type. This tactic is also capable of proving disequalities
-where the difference is not in the constructors at the head of the
-terms, but deeper inside them. For example, it can be used to prove
-the following theorem:
-
-\begin{alltt}
-Theorem disc2 : {\prodsym} n, S (S n) {\coqdiff} 1.
-Proof.
- intros n Hn; discriminate.
-Qed.
-\end{alltt}
-
-When there is an assumption $H$ in the context stating a false
-equality $t_1=t_2$, \texttt{discriminate} solves the goal by first
-proving $(t_1\not =t_2)$ and then reasoning by absurdity with respect
-to $H$:
-
-\begin{alltt}
-Theorem disc3 : {\prodsym} n, S (S n) = 0 {\arrow} {\prodsym} Q:Prop, Q.
-Proof.
- intros n Hn Q.
- discriminate.
-Qed.
-\end{alltt}
-
-\noindent In this case, the proof proceeds by absurdity with respect
-to the false equality assumed, whose negation is proved by
-discrimination.
-
-\subsection{Injectiveness of introduction rules}
-
-Another useful property about recursive types is the
-\textsl{injectiveness} of introduction rules, i.e., that whenever two
-objects were built using the same introduction rule, then this rule
-should have been applied to the same element. This can be stated
-formally using the propositional equality:
-
-\begin{alltt}
-Theorem inj : {\prodsym} n m, S n = S m {\arrow} n = m.
-Proof.
-\end{alltt}
-
-\noindent This theorem is just a corollary of a lemma about the
-predecessor function:
-
-\begin{alltt}
- Lemma inj_pred : {\prodsym} n m, n = m {\arrow} pred n = pred m.
- Proof.
- intros n m eq_n_m.
- rewrite eq_n_m.
- trivial.
- Qed.
-\end{alltt}
-\noindent Once this lemma is proven, the theorem follows directly
-from it:
-\begin{alltt}
- intros n m eq_Sn_Sm.
- apply inj_pred with (n:= S n) (m := S m); assumption.
-Qed.
-\end{alltt}
-
-This proof method is implemented by the tactic \texttt{injection}
-\refmancite{Section \ref{injection}}. This tactic is applied to
-a term $t$ of type ``~$c\;{t_1}\;\dots\;t_n = c\;t'_1\;\dots\;t'_n$~'', where $c$ is some constructor of
-an inductive type. The tactic \texttt{injection} is applied as deep as
-possible to derive the equality of all pairs of subterms of $t_i$ and $t'_i$
-placed in the same position. All these equalities are put as antecedents
-of the current goal.
-
-
-
-Like \texttt{discriminate}, the tactic \citecoq{injection}
-can be also applied if $x$ does not
-occur in a direct sub-term, but somewhere deeper inside it. Its
-application may leave some trivial goals that can be easily solved
-using the tactic \texttt{trivial}.
-
-\begin{alltt}
-
- Lemma list_inject : {\prodsym} (A:Type)(a b :A)(l l':list A),
- a :: b :: l = b :: a :: l' {\arrow} a = b {\coqand} l = l'.
-Proof.
- intros A a b l l' e.
-
-
-\it
- e : a :: b :: l = b :: a :: l'
- ============================
- a = b {\coqand} l = l'
-\tt
- injection e.
-\it
- ============================
- l = l' {\arrow} b = a {\arrow} a = b {\arrow} a = b {\coqand} l = l'
-
-\tt{} auto.
-Qed.
-\end{alltt}
-
-\subsection{Inversion Techniques}\label{inversion}
-
-In section \ref{DependentCase}, we motivated the rule of dependent case
-analysis as a way of internalizing the informal equalities $n=O$ and
-$n=\SUCC\;p$ associated to each case. This internalisation
-consisted in instantiating $n$ with the corresponding term in the type
-of each branch. However, sometimes it could be better to internalise
-these equalities as extra hypotheses --for example, in order to use
-the tactics \texttt{rewrite}, \texttt{discriminate} or
-\texttt{injection} presented in the previous sections. This is
-frequently the case when the element analysed is denoted by a term
-which is not a variable, or when it is an object of a particular
-instance of a recursive family of types. Consider for example the
-following theorem:
-
-\begin{alltt}
-Theorem not_le_Sn_0 : {\prodsym} n:nat, ~ (S n {\coqle} 0).
-\end{alltt}
-
-\noindent Intuitively, this theorem should follow by case analysis on
-the hypothesis $H:(S\;n\;\leq\;\Z)$, because no introduction rule allows
-to instantiate the arguments of \citecoq{le} with respectively a successor
-and zero. However, there
-is no way of capturing this with the typing rule for case analysis
-presented in section \ref{Introduction}, because it does not take into
-account what particular instance of the family the type of $H$ is.
-Let us try it:
-\begin{alltt}
-Proof.
- red; intros n H; case H.
-\it 2 subgoals
-
- n : nat
- H : S n {\coqle} 0
- ============================
- False
-
-subgoal 2 is:
- {\prodsym} m : nat, S n {\coqle} m {\arrow} False
-\tt
-Undo.
-\end{alltt}
-
-\noindent What is necessary here is to make available the equalities
-``~$\SUCC\;n = \Z$~'' and ``~$\SUCC\;m = \Z$~''
- as extra hypotheses of the
-branches, so that the goal can be solved using the
-\texttt{Discriminate} tactic. In order to obtain the desired
-equalities as hypotheses, let us prove an auxiliary lemma, that our
-theorem is a corollary of:
-
-\begin{alltt}
- Lemma not_le_Sn_0_with_constraints :
- {\prodsym} n p , S n {\coqle} p {\arrow} p = 0 {\arrow} False.
- Proof.
- intros n p H; case H .
-\it
-2 subgoals
-
- n : nat
- p : nat
- H : S n {\coqle} p
- ============================
- S n = 0 {\arrow} False
-
-subgoal 2 is:
- {\prodsym} m : nat, S n {\coqle} m {\arrow} S m = 0 {\arrow} False
-\tt
- intros;discriminate.
- intros;discriminate.
-Qed.
-\end{alltt}
-\noindent Our main theorem can now be solved by an application of this lemma:
-\begin{alltt}
-Show.
-\it
-2 subgoals
-
- n : nat
- p : nat
- H : S n {\coqle} p
- ============================
- S n = 0 {\arrow} False
-
-subgoal 2 is:
- {\prodsym} m : nat, S n {\coqle} m {\arrow} S m = 0 {\arrow} False
-\tt
- eapply not_le_Sn_0_with_constraints; eauto.
-Qed.
-\end{alltt}
-
-
-The general method to address such situations consists in changing the
-goal to be proven into an implication, introducing as preconditions
-the equalities needed to eliminate the cases that make no
-sense. This proof technique is implemented by the tactic
-\texttt{inversion} \refmancite{Section \ref{Inversion}}. In order
-to prove a goal $G\;\vec{q}$ from an object of type $R\;\vec{t}$,
-this tactic automatically generates a lemma $\forall, \vec{x}.
-(R\;\vec{x}) \rightarrow \vec{x}=\vec{t}\rightarrow \vec{B}\rightarrow
-(G\;\vec{q})$, where the list of propositions $\vec{B}$ correspond to
-the subgoals that cannot be directly proven using
-\texttt{discriminate}. This lemma can either be saved for later
-use, or generated interactively. In this latter case, the subgoals
-yielded by the tactic are the hypotheses $\vec{B}$ of the lemma. If the
-lemma has been stored, then the tactic \linebreak
- ``~\citecoq{inversion \dots using \dots}~'' can be
-used to apply it.
-
-Let us show both techniques on our previous example:
-
-\subsubsection{Interactive mode}
-
-\begin{alltt}
-Theorem not_le_Sn_0' : {\prodsym} n:nat, ~ (S n {\coqle} 0).
-Proof.
- red; intros n H ; inversion H.
-Qed.
-\end{alltt}
-
-
-\subsubsection{Static mode}
-
-\begin{alltt}
-
-Derive Inversion le_Sn_0_inv with ({\prodsym} n :nat, S n {\coqle} 0).
-Theorem le_Sn_0'' : {\prodsym} n p : nat, ~ S n {\coqle} 0 .
-Proof.
- intros n p H;
- inversion H using le_Sn_0_inv.
-Qed.
-\end{alltt}
-
-
-In the example above, all the cases are solved using discriminate, so
-there remains no subgoal to be proven (i.e. the list $\vec{B}$ is
-empty). Let us present a second example, where this list is not empty:
-
-
-\begin{alltt}
-TTheorem le_reverse_rules :
- {\prodsym} n m:nat, n {\coqle} m {\arrow}
- n = m {\coqor}
- {\exsym} p, n {\coqle} p {\coqand} m = S p.
-Proof.
- intros n m H; inversion H.
-\it
-2 subgoals
-
-
-
-
- n : nat
- m : nat
- H : n {\coqle} m
- H0 : n = m
- ============================
- m = m {\coqor} ({\exsym} p : nat, m {\coqle} p {\coqand} m = S p)
-
-subgoal 2 is:
- n = S m0 {\coqor} ({\exsym} p : nat, n {\coqle} p {\coqand} S m0 = S p)
-\tt
- left;trivial.
- right; exists m0; split; trivial.
-\it
-Proof completed
-\end{alltt}
-
-This example shows how this tactic can be used to ``reverse'' the
-introduction rules of a recursive type, deriving the possible premises
-that could lead to prove a given instance of the predicate. This is
-why these tactics are called \texttt{inversion} tactics: they go back
-from conclusions to premises.
-
-The hypotheses corresponding to the propositional equalities are not
-needed in this example, since the tactic does the necessary rewriting
-to solve the subgoals. When the equalities are no longer needed after
-the inversion, it is better to use the tactic
-\texttt{Inversion\_clear}. This variant of the tactic clears from the
-context all the equalities introduced.
-
-\begin{alltt}
-Restart.
- intros n m H; inversion_clear H.
-\it
-\it
-
- n : nat
- m : nat
- ============================
- m = m {\coqor} ({\exsym} p : nat, m {\coqle} p {\coqand} m = S p)
-\tt
- left;trivial.
-\it
- n : nat
- m : nat
- m0 : nat
- H0 : n {\coqle} m0
- ============================
- n = S m0 {\coqor} ({\exsym} p : nat, n {\coqle} p {\coqand} S m0 = S p)
-\tt
- right; exists m0; split; trivial.
-Qed.
-\end{alltt}
-
-
-%This proof technique works in most of the cases, but not always. In
-%particular, it could not if the list $\vec{t}$ contains a term $t_j$
-%whose type $T$ depends on a previous term $t_i$, with $i<j$. Remark
-%that if this is the case, the propositional equality $x_j=t_j$ is not
-%well-typed, since $x_j:T(x_i)$ but $t_j:T(t_i)$, and both types are
-%not convertible (otherwise, the problem could be solved using the
-%tactic \texttt{Case}).
-
-
-
-\begin{exercise}
-Consider the following language of arithmetic expression, and
-its operational semantics, described by a set of rewriting rules.
-%\textbf{J'ai enlevé une règle de commutativité de l'addition qui
-%me paraissait bizarre du point de vue de la sémantique opérationnelle}
-
-\begin{alltt}
-Inductive ArithExp : Set :=
- | Zero : ArithExp
- | Succ : ArithExp {\arrow} ArithExp
- | Plus : ArithExp {\arrow} ArithExp {\arrow} ArithExp.
-
-Inductive RewriteRel : ArithExp {\arrow} ArithExp {\arrow} Prop :=
- | RewSucc : {\prodsym} e1 e2 :ArithExp,
- RewriteRel e1 e2 {\arrow}
- RewriteRel (Succ e1) (Succ e2)
- | RewPlus0 : {\prodsym} e:ArithExp,
- RewriteRel (Plus Zero e) e
- | RewPlusS : {\prodsym} e1 e2:ArithExp,
- RewriteRel e1 e2 {\arrow}
- RewriteRel (Plus (Succ e1) e2)
- (Succ (Plus e1 e2)).
-
-\end{alltt}
-\begin{enumerate}
-\item Prove that \texttt{Zero} cannot be rewritten any further.
-\item Prove that an expression of the form ``~$\texttt{Succ}\;e$~'' is always
-rewritten
-into an expression of the same form.
-\end{enumerate}
-\end{exercise}
-
-%Theorem zeroNotCompute : (e:ArithExp)~(RewriteRel Zero e).
-%Intro e.
-%Red.
-%Intro H.
-%Inversion_clear H.
-%Defined.
-%Theorem evalPlus :
-% (e1,e2:ArithExp)
-% (RewriteRel (Succ e1) e2)\arrow{}(EX e3 : ArithExp | e2=(Succ e3)).
-%Intros e1 e2 H.
-%Inversion_clear H.
-%Exists e3;Reflexivity.
-%Qed.
-
-
-\section{Inductive Types and Structural Induction}
-\label{StructuralInduction}
-
-Elements of inductive types are well-founded with
-respect to the structural order induced by the constructors of the
-type. In addition to case analysis, this extra hypothesis about
-well-foundedness justifies a stronger elimination rule for them, called
-\textsl{structural induction}. This form of elimination consists in
-defining a value ``~$f\;x$~'' from some element $x$ of the inductive type
-$I$, assuming that values have been already associated in the same way
-to the sub-parts of $x$ of type $I$.
-
-
-Definitions by structural induction are expressed through the
-\texttt{Fixpoint} command \refmancite{Section
-\ref{Fixpoint}}. This command is quite close to the
-\texttt{let-rec} construction of functional programming languages.
-For example, the following definition introduces the addition of two
-natural numbers (already defined in the Standard Library:)
-
-\begin{alltt}
-Fixpoint plus (n p:nat) \{struct n\} : nat :=
- match n with
- | 0 {\funarrow} p
- | S m {\funarrow} S (plus m p)
- end.
-\end{alltt}
-
-The definition is by structural induction on the first argument of the
-function. This is indicated by the ``~\citecoq{\{struct n\}}~''
-directive in the function's header\footnote{This directive is optional
-in the case of a function of a single argument}.
- In
-order to be accepted, the definition must satisfy a syntactical
-condition, called the \textsl{guardedness condition}. Roughly
-speaking, this condition constrains the arguments of a recursive call
-to be pattern variables, issued from a case analysis of the formal
-argument of the function pointed by the \texttt{struct} directive.
- In the case of the
-function \texttt{plus}, the argument \texttt{m} in the recursive call is a
-pattern variable issued from a case analysis of \texttt{n}. Therefore, the
-definition is accepted.
-
-Notice that we could have defined the addition with structural induction
-on its second argument:
-\begin{alltt}
-Fixpoint plus' (n p:nat) \{struct p\} : nat :=
- match p with
- | 0 {\funarrow} n
- | S q {\funarrow} S (plus' n q)
- end.
-\end{alltt}
-
-%This notation is useful when defining a function whose decreasing
-%argument has a dependent type. As an example, consider the following
-%recursivly defined proof of the theorem
-%$(n,m:\texttt{nat})n<m \rightarrow (S\;n)<(S\;m)$:
-%\begin{alltt}
-%Fixpoint lt_n_S [n,m:nat;p:(lt n m)] : (lt (S n) (S m)) :=
-% <[n0:nat](lt (S n) (S n0))>
-% Cases p of
-% lt_intro1 {\funarrow} (lt_intro1 (S n))
-% | (lt_intro2 m1 p2) {\funarrow} (lt_intro2 (S n) (S m1) (lt_n_S n m1 p2))
-% end.
-%\end{alltt}
-
-%The guardedness condition must be satisfied only by the last argument
-%of the enclosed list. For example, the following declaration is an
-%alternative way of defining addition:
-
-%\begin{alltt}
-%Reset add.
-%Fixpoint add [n:nat] : nat\arrow{}nat :=
-% Cases n of
-% O {\funarrow} [x:nat]x
-% | (S m) {\funarrow} [x:nat](add m (S x))
-% end.
-%\end{alltt}
-
-In the following definition of addition,
-the second argument of {\tt plus{'}{'}} grows at each
-recursive call. However, as the first one always decreases, the
-definition is sound.
-\begin{alltt}
-Fixpoint plus'' (n p:nat) \{struct n\} : nat :=
- match n with
- | 0 {\funarrow} p
- | S m {\funarrow} plus'' m (S p)
- end.
-\end{alltt}
-
- Moreover, the argument in the recursive call
-could be a deeper component of $n$. This is the case in the following
-definition of a boolean function determining whether a number is even
-or odd:
-
-\begin{alltt}
-Fixpoint even_test (n:nat) : bool :=
- match n
- with 0 {\funarrow} true
- | 1 {\funarrow} false
- | S (S p) {\funarrow} even_test p
- end.
-\end{alltt}
-
-Mutually dependent definitions by structural induction are also
-allowed. For example, the previous function \textsl{even} could alternatively
-be defined using an auxiliary function \textsl{odd}:
-
-\begin{alltt}
-Reset even_test.
-
-
-
-Fixpoint even_test (n:nat) : bool :=
- match n
- with
- | 0 {\funarrow} true
- | S p {\funarrow} odd_test p
- end
-with odd_test (n:nat) : bool :=
- match n
- with
- | 0 {\funarrow} false
- | S p {\funarrow} even_test p
- end.
-\end{alltt}
-
-%\begin{exercise}
-%Define a function by structural induction that computes the number of
-%nodes of a tree structure defined in page \pageref{Forest}.
-%\end{exercise}
-
-Definitions by structural induction are computed
- only when they are applied, and the decreasing argument
-is a term having a constructor at the head. We can check this using
-the \texttt{Eval} command, which computes the normal form of a well
-typed term.
-
-\begin{alltt}
-Eval simpl in even_test.
-\it
- = even_test
- : nat {\arrow} bool
-\tt
-Eval simpl in (fun x : nat {\funarrow} even x).
-\it
- = fun x : nat {\funarrow} even x
- : nat {\arrow} Prop
-\tt
-Eval simpl in (fun x : nat => plus 5 x).
-\it
- = fun x : nat {\funarrow} S (S (S (S (S x))))
-
-\tt
-Eval simpl in (fun x : nat {\funarrow} even_test (plus 5 x)).
-\it
- = fun x : nat {\funarrow} odd_test x
- : nat {\arrow} bool
-\tt
-Eval simpl in (fun x : nat {\funarrow} even_test (plus x 5)).
-\it
- = fun x : nat {\funarrow} even_test (x + 5)
- : nat {\arrow} bool
-\end{alltt}
-
-
-%\begin{exercise}
-%Prove that the second definition of even satisfies the following
-%theorem:
-%\begin{verbatim}
-%Theorem unfold_even :
-% (x:nat)
-% (even x)= (Cases x of
-% O {\funarrow} true
-% | (S O) {\funarrow} false
-% | (S (S m)) {\funarrow} (even m)
-% end).
-%\end{verbatim}
-%\end{exercise}
-
-\subsection{Proofs by Structural Induction}
-
-The principle of structural induction can be also used in order to
-define proofs, that is, to prove theorems. Let us call an
-\textsl{elimination combinator} any function that, given a predicate
-$P$, defines a proof of ``~$P\;x$~'' by structural induction on $x$. In
-{\coq}, the principle of proof by induction on natural numbers is a
-particular case of an elimination combinator. The definition of this
-combinator depends on three general parameters: the predicate to be
-proven, the base case, and the inductive step:
-
-\begin{alltt}
-Section Principle_of_Induction.
-Variable P : nat {\arrow} Prop.
-Hypothesis base_case : P 0.
-Hypothesis inductive_step : {\prodsym} n:nat, P n {\arrow} P (S n).
-Fixpoint nat_ind (n:nat) : (P n) :=
- match n return P n with
- | 0 {\funarrow} base_case
- | S m {\funarrow} inductive_step m (nat_ind m)
- end.
-
-End Principle_of_Induction.
-\end{alltt}
-
-As this proof principle is used very often, {\coq} automatically generates it
-when an inductive type is introduced. Similar principles
-\texttt{nat\_rec} and \texttt{nat\_rect} for defining objects in the
-universes $\Set$ and $\Type$ are also automatically generated
-\footnote{In fact, whenever possible, {\coq} generates the
-principle \texttt{$I$\_rect}, then derives from it the
-weaker principles \texttt{$I$\_ind} and \texttt{$I$\_rec}.
-If some principle has to be defined by hand, the user may try
-to build \texttt{$I$\_rect} (if possible). Thanks to {\coq}'s conversion
-rule, this principle can be used directly to build proofs and/or
-programs.}. The
-command \texttt{Scheme} \refmancite{Section \ref{Scheme}} can be
-used to generate an elimination combinator from certain parameters,
-like the universe that the defined objects must inhabit, whether the
-case analysis in the definitions must be dependent or not, etc. For
-example, it can be used to generate an elimination combinator for
-reasoning on even natural numbers from the mutually dependent
-predicates introduced in page \pageref{Even}. We do not display the
-combinators here by lack of space, but you can see them using the
-\texttt{Print} command.
-
-\begin{alltt}
-Scheme Even_induction := Minimality for even Sort Prop
-with Odd_induction := Minimality for odd Sort Prop.
-\end{alltt}
-
-\begin{alltt}
-Theorem even_plus_four : {\prodsym} n:nat, even n {\arrow} even (4+n).
-Proof.
- intros n H.
- elim H using Even_induction with (P0 := fun n {\funarrow} odd (4+n));
- simpl;repeat constructor;assumption.
-Qed.
-\end{alltt}
-
-Another example of an elimination combinator is the principle
-of double induction on natural numbers, introduced by the following
-definition:
-
-\begin{alltt}
-Section Principle_of_Double_Induction.
-Variable P : nat {\arrow} nat {\arrow}Prop.
-Hypothesis base_case1 : {\prodsym} m:nat, P 0 m.
-Hypothesis base_case2 : {\prodsym} n:nat, P (S n) 0.
-Hypothesis inductive_step : {\prodsym} n m:nat, P n m {\arrow}
- \,\, P (S n) (S m).
-
-Fixpoint nat_double_ind (n m:nat)\{struct n\} : P n m :=
- match n, m return P n m with
- | 0 , x {\funarrow} base_case1 x
- | (S x), 0 {\funarrow} base_case2 x
- | (S x), (S y) {\funarrow} inductive_step x y (nat_double_ind x y)
- end.
-End Principle_of_Double_Induction.
-\end{alltt}
-
-Changing the type of $P$ into $\nat\rightarrow\nat\rightarrow\Type$,
-another combinator for constructing
-(certified) programs, \texttt{nat\_double\_rect}, can be defined in exactly the same way.
-This definition is left as an exercise.\label{natdoublerect}
-
-\iffalse
-\begin{alltt}
-Section Principle_of_Double_Recursion.
-Variable P : nat {\arrow} nat {\arrow} Type.
-Hypothesis base_case1 : {\prodsym} x:nat, P 0 x.
-Hypothesis base_case2 : {\prodsym} x:nat, P (S x) 0.
-Hypothesis inductive_step : {\prodsym} n m:nat, P n m {\arrow} P (S n) (S m).
-Fixpoint nat_double_rect (n m:nat)\{struct n\} : P n m :=
- match n, m return P n m with
- 0 , x {\funarrow} base_case1 x
- | (S x), 0 {\funarrow} base_case2 x
- | (S x), (S y) {\funarrow} inductive_step x y (nat_double_rect x y)
- end.
-End Principle_of_Double_Recursion.
-\end{alltt}
-\fi
-For instance the function computing the minimum of two natural
-numbers can be defined in the following way:
-
-\begin{alltt}
-Definition min : nat {\arrow} nat {\arrow} nat :=
- nat_double_rect (fun (x y:nat) {\funarrow} nat)
- (fun (x:nat) {\funarrow} 0)
- (fun (y:nat) {\funarrow} 0)
- (fun (x y r:nat) {\funarrow} S r).
-Eval compute in (min 5 8).
-\it
-= 5 : nat
-\end{alltt}
-
-
-%\begin{exercise}
-%
-%Define the combinator \texttt{nat\_double\_rec}, and apply it
-%to give another definition of \citecoq{le\_lt\_dec} (using the theorems
-%of the \texttt{Arith} library).
-%\end{exercise}
-
-\subsection{Using Elimination Combinators.}
-The tactic \texttt{apply} can be used to apply one of these proof
-principles during the development of a proof.
-
-\begin{alltt}
-Lemma not_circular : {\prodsym} n:nat, n {\coqdiff} S n.
-Proof.
- intro n.
- apply nat_ind with (P:= fun n {\funarrow} n {\coqdiff} S n).
-\it
-
-
-
-2 subgoals
-
- n : nat
- ============================
- 0 {\coqdiff} 1
-
-
-subgoal 2 is:
- {\prodsym} n0 : nat, n0 {\coqdiff} S n0 {\arrow} S n0 {\coqdiff} S (S n0)
-
-\tt
- discriminate.
- red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.
-Qed.
-\end{alltt}
-
-The tactic \texttt{elim} \refmancite{Section \ref{Elim}} is a
-refinement of \texttt{apply}, specially designed for the application
-of elimination combinators. If $t$ is an object of an inductive type
-$I$, then ``~\citecoq{elim $t$}~'' tries to find an abstraction $P$ of the
-current goal $G$ such that $(P\;t)\equiv G$. Then it solves the goal
-applying ``~$I\texttt{\_ind}\;P$~'', where $I$\texttt{\_ind} is the
-combinator associated to $I$. The different cases of the induction
-then appear as subgoals that remain to be solved.
-In the previous proof, the tactic call ``~\citecoq{apply nat\_ind with (P:= fun n {\funarrow} n {\coqdiff} S n)}~'' can simply be replaced with ``~\citecoq{elim n}~''.
-
-The option ``~\citecoq{\texttt{elim} $t$ \texttt{using} $C$}~''
- allows to use a
-derived combinator $C$ instead of the default one. Consider the
-following theorem, stating that equality is decidable on natural
-numbers:
-
-\label{iseqpage}
-\begin{alltt}
-Lemma eq_nat_dec : {\prodsym} n p:nat, \{n=p\}+\{n {\coqdiff} p\}.
-Proof.
- intros n p.
-\end{alltt}
-
-Let us prove this theorem using the combinator \texttt{nat\_double\_rect}
-of section~\ref{natdoublerect}. The example also illustrates how
-\texttt{elim} may sometimes fail in finding a suitable abstraction $P$
-of the goal. Note that if ``~\texttt{elim n}~''
- is used directly on the
-goal, the result is not the expected one.
-
-\vspace{12pt}
-
-%\pagebreak
-\begin{alltt}
- elim n using nat_double_rect.
-\it
-4 subgoals
-
- n : nat
- p : nat
- ============================
- {\prodsym} x : nat, \{x = p\} + \{x {\coqdiff} p\}
-
-subgoal 2 is:
- nat {\arrow} \{0 = p\} + \{0 {\coqdiff} p\}
-
-subgoal 3 is:
- nat {\arrow} {\prodsym} m : nat, \{m = p\} + \{m {\coqdiff} p\} {\arrow} \{S m = p\} + \{S m {\coqdiff} p\}
-
-subgoal 4 is:
- nat
-\end{alltt}
-
-The four sub-goals obtained do not correspond to the premises that
-would be expected for the principle \texttt{nat\_double\_rec}. The
-problem comes from the fact that
-this principle for eliminating $n$
-has a universally quantified formula as conclusion, which confuses
-\texttt{elim} about the right way of abstracting the goal.
-
-%In effect, let us consider the type of the goal before the call to
-%\citecoq{elim}: ``~\citecoq{\{n = p\} + \{n {\coqdiff} p\}}~''.
-
-%Among all the abstractions that can be built by ``~\citecoq{elim n}~''
-%let us consider this one
-%$P=$\citecoq{fun n :nat {\funarrow} fun q : nat {\funarrow} {\{q= p\} + \{q {\coqdiff} p\}}}.
-%It is easy to verify that
-%$P$ has type \citecoq{nat {\arrow} nat {\arrow} Set}, and that, if some
-%$q:\citecoq{nat}$ is given, then $P\;q\;$ matches the current goal.
-%Then applying \citecoq{nat\_double\_rec} with $P$ generates
-%four goals, corresponding to
-
-
-
-
-Therefore,
-in this case the abstraction must be explicited using the
-\texttt{pattern} tactic. Once the right abstraction is provided, the rest of
-the proof is immediate:
-
-\begin{alltt}
-Undo.
- pattern p,n.
-\it
- n : nat
- p : nat
- ============================
- (fun n0 n1 : nat {\funarrow} \{n1 = n0\} + \{n1 {\coqdiff} n0\}) p n
-\tt
- elim n using nat_double_rec.
-\it
-3 subgoals
-
- n : nat
- p : nat
- ============================
- {\prodsym} x : nat, \{x = 0\} + \{x {\coqdiff} 0\}
-
-subgoal 2 is:
- {\prodsym} x : nat, \{0 = S x\} + \{0 {\coqdiff} S x\}
-subgoal 3 is:
- {\prodsym} n0 m : nat, \{m = n0\} + \{m {\coqdiff} n0\} {\arrow} \{S m = S n0\} + \{S m {\coqdiff} S n0\}
-
-\tt
- destruct x; auto.
- destruct x; auto.
- intros n0 m H; case H.
- intro eq; rewrite eq ; auto.
- intro neg; right; red ; injection 1; auto.
-Defined.
-\end{alltt}
-
-
-Notice that the tactic ``~\texttt{decide equality}~''
-\refmancite{Section\ref{DecideEquality}} generalises the proof
-above to a large class of inductive types. It can be used for proving
-a proposition of the form
-$\forall\,(x,y:R),\{x=y\}+\{x{\coqdiff}y\}$, where $R$ is an inductive datatype
-all whose constructors take informative arguments ---like for example
-the type {\nat}:
-
-\begin{alltt}
-Definition eq_nat_dec' : {\prodsym} n p:nat, \{n=p\} + \{n{\coqdiff}p\}.
- decide equality.
-Defined.
-\end{alltt}
-
-\begin{exercise}
-\begin{enumerate}
-\item Define a recursive function of name \emph{nat2itree}
-that maps any natural number $n$ into an infinitely branching
-tree of height $n$.
-\item Provide an elimination combinator for these trees.
-\item Prove that the relation \citecoq{itree\_le} is a preorder
-(i.e. reflexive and transitive).
-\end{enumerate}
-\end{exercise}
-
-\begin{exercise} \label{zeroton}
-Define the type of lists, and a predicate ``being an ordered list''
-using an inductive family. Then, define the function
-$(from\;n)=0::1\;\ldots\; n::\texttt{nil}$ and prove that it always generates an
-ordered list.
-\end{exercise}
-
-\begin{exercise}
-Prove that \citecoq{le' n p} and \citecoq{n $\leq$ p} are logically equivalent
-for all n and p. (\citecoq{le'} is defined in section \ref{parameterstuff}).
-\end{exercise}
-
-
-\subsection{Well-founded Recursion}
-\label{WellFoundedRecursion}
-
-Structural induction is a strong elimination rule for inductive types.
-This method can be used to define any function whose termination is
-a consequence of the well-foundedness of a certain order relation $R$ decreasing
-at each recursive call. What makes this principle so strong is the
-possibility of reasoning by structural induction on the proof that
-certain $R$ is well-founded. In order to illustrate this we have
-first to introduce the predicate of accessibility.
-
-\begin{alltt}
-Print Acc.
-\it
-Inductive Acc (A : Type) (R : A {\arrow} A {\arrow} Prop) (x:A) : Prop :=
- Acc_intro : ({\prodsym} y : A, R y x {\arrow} Acc R y) {\arrow} Acc R x
-For Acc: Argument A is implicit
-For Acc_intro: Arguments A, R are implicit
-
-\dots
-\end{alltt}
-
-\noindent This inductive predicate characterizes those elements $x$ of
-$A$ such that any descending $R$-chain $\ldots x_2\;R\;x_1\;R\;x$
-starting from $x$ is finite. A well-founded relation is a relation
-such that all the elements of $A$ are accessible.
-\emph{Notice the use of parameter $x$ (see Section~\ref{parameterstuff}, page
-\pageref{parameterstuff}).}
-
-Consider now the problem of representing in {\coq} the following ML
-function $\textsl{div}(x,y)$ on natural numbers, which computes
-$\lceil\frac{x}{y}\rceil$ if $y>0$ and yields $x$ otherwise.
-
-\begin{verbatim}
-let rec div x y =
- if x = 0 then 0
- else if y = 0 then x
- else (div (x-y) y)+1;;
-\end{verbatim}
-
-
-The equality test on natural numbers can be implemented using the
-function \textsl{eq\_nat\_dec} that is defined page \pageref{iseqpage}. Giving $x$ and
-$y$, this function yields either the value $(\textsl{left}\;p)$ if
-there exists a proof $p:x=y$, or the value $(\textsl{right}\;q)$ if
-there exists $q:a\not = b$. The subtraction function is already
-defined in the library \citecoq{Minus}.
-
-Hence, direct translation of the ML function \textsl{div} would be:
-
-\begin{alltt}
-Require Import Minus.
-
-Fixpoint div (x y:nat)\{struct x\}: nat :=
- if eq_nat_dec x 0
- then 0
- else if eq_nat_dec y 0
- then x
- else S (div (x-y) y).
-
-\it Error:
-Recursive definition of div is ill-formed.
-In environment
-div : nat {\arrow} nat {\arrow} nat
-x : nat
-y : nat
-_ : x {\coqdiff} 0
-_ : y {\coqdiff} 0
-
-Recursive call to div has principal argument equal to
-"x - y"
-instead of a subterm of x
-\end{alltt}
-
-
-The program \texttt{div} is rejected by {\coq} because it does not verify
-the syntactical condition to ensure termination. In particular, the
-argument of the recursive call is not a pattern variable issued from a
-case analysis on $x$.
-We would have the same problem if we had the directive
-``~\citecoq{\{struct y\}}~'' instead of ``~\citecoq{\{struct x\}}~''.
-However, we know that this program always
-stops. One way to justify its termination is to define it by
-structural induction on a proof that $x$ is accessible trough the
-relation $<$. Notice that any natural number $x$ is accessible
-for this relation. In order to do this, it is first necessary to prove
-some auxiliary lemmas, justifying that the first argument of
-\texttt{div} decreases at each recursive call.
-
-\begin{alltt}
-Lemma minus_smaller_S : {\prodsym} x y:nat, x - y < S x.
-Proof.
- intros x y; pattern y, x;
- elim x using nat_double_ind.
- destruct x0; auto with arith.
- simpl; auto with arith.
- simpl; auto with arith.
-Qed.
-
-
-Lemma minus_smaller_positive :
- {\prodsym} x y:nat, x {\coqdiff}0 {\arrow} y {\coqdiff} 0 {\arrow} x - y < x.
-Proof.
- destruct x; destruct y;
- ( simpl;intros; apply minus_smaller ||
- intros; absurd (0=0); auto).
-Qed.
-\end{alltt}
-
-\noindent The last two lemmas are necessary to prove that for any pair
-of positive natural numbers $x$ and $y$, if $x$ is accessible with
-respect to \citecoq{lt}, then so is $x-y$.
-
-\begin{alltt}
-Definition minus_decrease : {\prodsym} x y:nat, Acc lt x {\arrow}
- x {\coqdiff} 0 {\arrow}
- y {\coqdiff} 0 {\arrow}
- Acc lt (x-y).
-Proof.
- intros x y H; case H.
- intros Hz posz posy.
- apply Hz; apply minus_smaller_positive; assumption.
-Defined.
-\end{alltt}
-
-Let us take a look at the proof of the lemma \textsl{minus\_decrease}, since
-the way in which it has been proven is crucial for what follows.
-\begin{alltt}
-Print minus_decrease.
-\it
-minus_decrease =
-fun (x y : nat) (H : Acc lt x) {\funarrow}
-match H in (Acc _ y0) return (y0 {\coqdiff} 0 {\arrow} y {\coqdiff} 0 {\arrow} Acc lt (y0 - y)) with
-| Acc_intro z Hz {\funarrow}
- fun (posz : z {\coqdiff} 0) (posy : y {\coqdiff} 0) {\funarrow}
- Hz (z - y) (minus_smaller_positive z y posz posy)
-end
- : {\prodsym} x y : nat, Acc lt x {\arrow} x {\coqdiff} 0 {\arrow} y {\coqdiff} 0 {\arrow} Acc lt (x - y)
-
-\end{alltt}
-\noindent Notice that the function call
-$(\texttt{minus\_decrease}\;n\;m\;H)$
-indeed yields an accessibility proof that is \textsl{structurally
-smaller} than its argument $H$, because it is (an application of) its
-recursive component $Hz$. This enables to justify the following
-definition of \textsl{div\_aux}:
-
-\begin{alltt}
-Definition div_aux (x y:nat)(H: Acc lt x):nat.
- fix 3.
- intros.
- refine (if eq_nat_dec x 0
- then 0
- else if eq_nat_dec y 0
- then y
- else div_aux (x-y) y _).
-\it
- div_aux : {\prodsym} x : nat, nat {\arrow} Acc lt x {\arrow} nat
- x : nat
- y : nat
- H : Acc lt x
- _ : x {\coqdiff} 0
- _0 : y {\coqdiff} 0
- ============================
- Acc lt (x - y)
-
-\tt
- apply (minus_decrease x y H);auto.
-Defined.
-\end{alltt}
-
-The main division function is easily defined, using the theorem
-\citecoq{lt\_wf} of the library \citecoq{Wf\_nat}. This theorem asserts that
-\citecoq{nat} is well founded w.r.t. \citecoq{lt}, thus any natural number
-is accessible.
-\begin{alltt}
-Definition div x y := div_aux x y (lt_wf x).
-\end{alltt}
-
-Let us explain the proof above. In the definition of \citecoq{div\_aux},
-what decreases is not $x$ but the \textsl{proof} of the accessibility
-of $x$. The tactic ``~\texttt{fix 3}~'' is used to indicate that the proof
-proceeds by structural induction on the third argument of the theorem
---that is, on the accessibility proof. It also introduces a new
-hypothesis in the context, named as the current theorem, and with the
-same type as the goal. Then, the proof is refined with an incomplete
-proof term, containing a hole \texttt{\_}. This hole corresponds to the proof
-of accessibility for $x-y$, and is filled up with the (smaller!)
-accessibility proof provided by the function \texttt{minus\_decrease}.
-
-
-\noindent Let us take a look to the term \textsl{div\_aux} defined:
-
-\pagebreak
-\begin{alltt}
-Print div_aux.
-\it
-div_aux =
-(fix div_aux (x y : nat) (H : Acc lt x) \{struct H\} : nat :=
- match eq_nat_dec x 0 with
- | left _ {\funarrow} 0
- | right _ {\funarrow}
- match eq_nat_dec y 0 with
- | left _ {\funarrow} y
- | right _0 {\funarrow} div_aux (x - y) y (minus_decrease x y H _ _0)
- end
- end)
- : {\prodsym} x : nat, nat {\arrow} Acc lt x {\arrow} nat
-
-\end{alltt}
-
-If the non-informative parts from this proof --that is, the
-accessibility proof-- are erased, then we obtain exactly the program
-that we were looking for.
-\begin{alltt}
-
-Extraction div.
-
-\it
-let div x y =
- div_aux x y
-\tt
-
-Extraction div_aux.
-
-\it
-let rec div_aux x y =
- match eq_nat_dec x O with
- | Left {\arrow} O
- | Right {\arrow}
- (match eq_nat_dec y O with
- | Left {\arrow} y
- | Right {\arrow} div_aux (minus x y) y)
-\end{alltt}
-
-This methodology enables the representation
-of any program whose termination can be proved in {\coq}. Once the
-expected properties from this program have been verified, the
-justification of its termination can be thrown away, keeping just the
-desired computational behavior for it.
-
-\section{A case study in dependent elimination}\label{CaseStudy}
-
-Dependent types are very expressive, but ignoring some useful
-techniques can cause some problems to the beginner.
-Let us consider again the type of vectors (see section~\ref{vectors}).
-We want to prove a quite trivial property: the only value of type
-``~\citecoq{vector A 0}~'' is ``~\citecoq{Vnil $A$}~''.
-
-Our first naive attempt leads to a \emph{cul-de-sac}.
-\begin{alltt}
-Lemma vector0_is_vnil :
- {\prodsym} (A:Type)(v:vector A 0), v = Vnil A.
-Proof.
- intros A v;inversion v.
-\it
-1 subgoal
-
- A : Set
- v : vector A 0
- ============================
- v = Vnil A
-\tt
-Abort.
-\end{alltt}
-
-Another attempt is to do a case analysis on a vector of any length
-$n$, under an explicit hypothesis $n=0$. The tactic
-\texttt{discriminate} will help us to get rid of the case
-$n=\texttt{S $p$}$.
-Unfortunately, even the statement of our lemma is refused!
-
-\begin{alltt}
- Lemma vector0_is_vnil_aux :
- {\prodsym} (A:Type)(n:nat)(v:vector A n), n = 0 {\arrow} v = Vnil A.
-
-\it
-Error: In environment
-A : Type
-n : nat
-v : vector A n
-e : n = 0
-The term "Vnil A" has type "vector A 0" while it is expected to have type
- "vector A n"
-\end{alltt}
-
-In effect, the equality ``~\citecoq{v = Vnil A}~'' is ill-typed and this is
-because the type ``~\citecoq{vector A n}~'' is not \emph{convertible}
-with ``~\citecoq{vector A 0}~''.
-
-This problem can be solved if we consider the heterogeneous
-equality \citecoq{JMeq} \cite{conor:motive}
-which allows us to consider terms of different types, even if this
-equality can only be proven for terms in the same type.
-The axiom \citecoq{JMeq\_eq}, from the library \citecoq{JMeq} allows us to convert a
-heterogeneous equality to a standard one.
-
-\begin{alltt}
-Lemma vector0_is_vnil_aux :
- {\prodsym} (A:Type)(n:nat)(v:vector A n),
- n= 0 {\arrow} JMeq v (Vnil A).
-Proof.
- destruct v.
- auto.
- intro; discriminate.
-Qed.
-\end{alltt}
-
-Our property of vectors of null length can be easily proven:
-
-\begin{alltt}
-Lemma vector0_is_vnil : {\prodsym} (A:Type)(v:vector A 0), v = Vnil A.
- intros a v;apply JMeq_eq.
- apply vector0_is_vnil_aux.
- trivial.
-Qed.
-\end{alltt}
-
-It is interesting to look at another proof of
-\citecoq{vector0\_is\_vnil}, which illustrates a technique developed
-and used by various people (consult in the \emph{Coq-club} mailing
-list archive the contributions by Yves Bertot, Pierre Letouzey, Laurent Théry,
-Jean Duprat, and Nicolas Magaud, Venanzio Capretta and Conor McBride).
-This technique is also used for unfolding infinite list definitions
-(see chapter13 of~\cite{coqart}).
-Notice that this definition does not rely on any axiom (\emph{e.g.} \texttt{JMeq\_eq}).
-
-We first give a new definition of the identity on vectors. Before that,
-we make the use of constructors and selectors lighter thanks to
-the implicit arguments feature:
-
-\begin{alltt}
-Implicit Arguments Vcons [A n].
-Implicit Arguments Vnil [A].
-Implicit Arguments Vhead [A n].
-Implicit Arguments Vtail [A n].
-
-Definition Vid : {\prodsym} (A : Type)(n:nat), vector A n {\arrow} vector A n.
-Proof.
- destruct n; intro v.
- exact Vnil.
- exact (Vcons (Vhead v) (Vtail v)).
-Defined.
-\end{alltt}
-
-
-Then we prove that \citecoq{Vid} is the identity on vectors:
-
-\begin{alltt}
-Lemma Vid_eq : {\prodsym} (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
-Proof.
- destruct v.
-
-\it
- A : Type
- ============================
- Vnil = Vid A 0 Vnil
-
-subgoal 2 is:
- Vcons a v = Vid A (S n) (Vcons a v)
-\tt
- reflexivity.
- reflexivity.
-Defined.
-\end{alltt}
-
-Why defining a new identity function on vectors? The following
-dialogue shows that \citecoq{Vid} has some interesting computational
-properties:
-
-\begin{alltt}
-Eval simpl in (fun (A:Type)(v:vector A 0) {\funarrow} (Vid _ _ v)).
-\it = fun (A : Type) (_ : vector A 0) {\funarrow} Vnil
- : {\prodsym} A : Type, vector A 0 {\arrow} vector A 0
-
-\end{alltt}
-
-Notice that the plain identity on vectors doesn't convert \citecoq{v}
-into \citecoq{Vnil}.
-\begin{alltt}
-Eval simpl in (fun (A:Type)(v:vector A 0) {\funarrow} v).
-\it = fun (A : Type) (v : vector A 0) {\funarrow} v
- : {\prodsym} A : Type, vector A 0 {\arrow} vector A 0
-\end{alltt}
-
-Then we prove easily that any vector of length 0 is \citecoq{Vnil}:
-
-\begin{alltt}
-Theorem zero_nil : {\prodsym} A (v:vector A 0), v = Vnil.
-Proof.
- intros.
- change (Vnil (A:=A)) with (Vid _ 0 v).
-\it
-1 subgoal
-
- A : Type
- v : vector A 0
- ============================
- v = Vid A 0 v
-\tt
- apply Vid_eq.
-Defined.
-\end{alltt}
-
-A similar result can be proven about vectors of strictly positive
-length\footnote{As for \citecoq{Vid} and \citecoq{Vid\_eq}, this definition
-is from Jean Duprat.}.
-
-\begin{alltt}
-
-
-Theorem decomp :
- {\prodsym} (A : Type) (n : nat) (v : vector A (S n)),
- v = Vcons (Vhead v) (Vtail v).
-Proof.
- intros.
- change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
-\it
- 1 subgoal
-
- A : Type
- n : nat
- v : vector A (S n)
- ============================
- v = Vid A (S n) v
-
-\tt{} apply Vid_eq.
-Defined.
-\end{alltt}
-
-
-Both lemmas: \citecoq{zero\_nil} and \citecoq{decomp},
-can be used to easily derive a double recursion principle
-on vectors of same length:
-
-
-\begin{alltt}
-Definition vector_double_rect :
- {\prodsym} (A:Type) (P: {\prodsym} (n:nat),(vector A n){\arrow}(vector A n) {\arrow} Type),
- P 0 Vnil Vnil {\arrow}
- ({\prodsym} n (v1 v2 : vector A n) a b, P n v1 v2 {\arrow}
- P (S n) (Vcons a v1) (Vcons b v2)) {\arrow}
- {\prodsym} n (v1 v2 : vector A n), P n v1 v2.
- induction n.
- intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
- auto.
- intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).
- apply X0; auto.
-Defined.
-\end{alltt}
-
-Notice that, due to the conversion rule of {\coq}'s type system,
-this function can be used directly with \citecoq{Prop} or \citecoq{Type}
-instead of type (thus it is useless to build
-\citecoq{vector\_double\_ind} and \citecoq{vector\_double\_rec}) from scratch.
-
-We finish this example with showing how to define the bitwise
-\emph{or} on boolean vectors of the same length,
-and proving a little property about this
-operation.
-
-\begin{alltt}
-Definition bitwise_or n v1 v2 : vector bool n :=
- vector_double_rect
- bool
- (fun n v1 v2 {\funarrow} vector bool n)
- Vnil
- (fun n v1 v2 a b r {\funarrow} Vcons (orb a b) r) n v1 v2.
-\end{alltt}
-
-Let us define recursively the $n$-th element of a vector. Notice
-that it must be a partial function, in case $n$ is greater or equal
-than the length of the vector. Since {\coq} only considers total
-functions, the function returns a value in an \emph{option} type.
-
-\begin{alltt}
-Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p)
- \{struct v\}
- : option A :=
- match n,v with
- _ , Vnil {\funarrow} None
- | 0 , Vcons b _ _ {\funarrow} Some b
- | S n', Vcons _ p' v' {\funarrow} vector_nth A n' p' v'
- end.
-Implicit Arguments vector_nth [A p].
-\end{alltt}
-
-We can now prove --- using the double induction combinator ---
-a simple property relying \citecoq{vector\_nth} and \citecoq{bitwise\_or}:
-
-\begin{alltt}
-Lemma nth_bitwise :
- {\prodsym} (n:nat) (v1 v2: vector bool n) i a b,
- vector_nth i v1 = Some a {\arrow}
- vector_nth i v2 = Some b {\arrow}
- vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).
-Proof.
- intros n v1 v2; pattern n,v1,v2.
- apply vector_double_rect.
- simpl.
- destruct i; discriminate 1.
- destruct i; simpl;auto.
- injection 1; injection 2;intros; subst a; subst b; auto.
-Qed.
-\end{alltt}
-
-
-\section{Co-inductive Types and Non-ending Constructions}
-\label{CoInduction}
-
-The objects of an inductive type are well-founded with respect to
-the constructors of the type. In other words, these objects are built
-by applying \emph{a finite number of times} the constructors of the type.
-Co-inductive types are obtained by relaxing this condition,
-and may contain non-well-founded objects \cite{EG96,EG95a}. An
-example of a co-inductive type is the type of infinite
-sequences formed with elements of type $A$, also called streams. This
-type can be introduced through the following definition:
-
-\begin{alltt}
- CoInductive Stream (A: Type) :Type :=
- | Cons : A\arrow{}Stream A\arrow{}Stream A.
-\end{alltt}
-
-If we are interested in finite or infinite sequences, we consider the type
-of \emph{lazy lists}:
-
-\begin{alltt}
-CoInductive LList (A: Type) : Type :=
- | LNil : LList A
- | LCons : A {\arrow} LList A {\arrow} LList A.
-\end{alltt}
-
-
-It is also possible to define co-inductive types for the
-trees with infinitely-many branches (see Chapter 13 of~\cite{coqart}).
-
-Structural induction is the way of expressing that inductive types
-only contain well-founded objects. Hence, this elimination principle
-is not valid for co-inductive types, and the only elimination rule for
-streams is case analysis. This principle can be used, for example, to
-define the destructors \textsl{head} and \textsl{tail}.
-
-\begin{alltt}
- Definition head (A:Type)(s : Stream A) :=
- match s with Cons a s' {\funarrow} a end.
-
- Definition tail (A : Type)(s : Stream A) :=
- match s with Cons a s' {\funarrow} s' end.
-\end{alltt}
-
-Infinite objects are defined by means of (non-ending) methods of
-construction, like in lazy functional programming languages. Such
-methods can be defined using the \texttt{CoFixpoint} command
-\refmancite{Section \ref{CoFixpoint}}. For example, the following
-definition introduces the infinite list $[a,a,a,\ldots]$:
-
-\begin{alltt}
- CoFixpoint repeat (A:Type)(a:A) : Stream A :=
- Cons a (repeat a).
-\end{alltt}
-
-
-However, not every co-recursive definition is an admissible method of
-construction. Similarly to the case of structural induction, the
-definition must verify a \textsl{guardedness} condition to be
-accepted. This condition states that any recursive call in the
-definition must be protected --i.e, be an argument of-- some
-constructor, and only an argument of constructors \cite{EG94a}. The
-following definitions are examples of valid methods of construction:
-
-\begin{alltt}
-CoFixpoint iterate (A: Type)(f: A {\arrow} A)(a : A) : Stream A:=
- Cons a (iterate f (f a)).
-
-CoFixpoint map
- (A B:Type)(f: A {\arrow} B)(s : Stream A) : Stream B:=
- match s with Cons a tl {\funarrow} Cons (f a) (map f tl) end.
-\end{alltt}
-
-\begin{exercise}
-Define two different methods for constructing the stream which
-infinitely alternates the values \citecoq{true} and \citecoq{false}.
-\end{exercise}
-\begin{exercise}
-Using the destructors \texttt{head} and \texttt{tail}, define a function
-which takes the n-th element of an infinite stream.
-\end{exercise}
-
-A non-ending method of construction is computed lazily. This means
-that its definition is unfolded only when the object that it
-introduces is eliminated, that is, when it appears as the argument of
-a case expression. We can check this using the command
-\texttt{Eval}.
-
-\begin{alltt}
-Eval simpl in (fun (A:Type)(a:A) {\funarrow} repeat a).
-\it = fun (A : Type) (a : A) {\funarrow} repeat a
- : {\prodsym} A : Type, A {\arrow} Stream A
-\tt
-Eval simpl in (fun (A:Type)(a:A) {\funarrow} head (repeat a)).
-\it = fun (A : Type) (a : A) {\funarrow} a
- : {\prodsym} A : Type, A {\arrow} A
-\end{alltt}
-
-%\begin{exercise}
-%Prove the following theorem:
-%\begin{verbatim}
-%Theorem expand_repeat : (a:A)(repeat a)=(Cons a (repeat a)).
-%\end{verbatim}
-%Hint: Prove first the streams version of the lemma in exercise
-%\ref{expand}.
-%\end{exercise}
-
-\subsection{Extensional Properties}
-
-Case analysis is also a valid proof principle for infinite
-objects. However, this principle is not sufficient to prove
-\textsl{extensional} properties, that is, properties concerning the
-whole infinite object \cite{EG95a}. A typical example of an
-extensional property is the predicate expressing that two streams have
-the same elements. In many cases, the minimal reflexive relation $a=b$
-that is used as equality for inductive types is too small to capture
-equality between streams. Consider for example the streams
-$\texttt{iterate}\;f\;(f\;x)$ and
-$(\texttt{map}\;f\;(\texttt{iterate}\;f\;x))$. Even though these two streams have
-the same elements, no finite expansion of their definitions lead to
-equal terms. In other words, in order to deal with extensional
-properties, it is necessary to construct infinite proofs. The type of
-infinite proofs of equality can be introduced as a co-inductive
-predicate, as follows:
-\begin{alltt}
-CoInductive EqSt (A: Type) : Stream A {\arrow} Stream A {\arrow} Prop :=
- eqst : {\prodsym} s1 s2: Stream A,
- head s1 = head s2 {\arrow}
- EqSt (tail s1) (tail s2) {\arrow}
- EqSt s1 s2.
-\end{alltt}
-
-It is possible to introduce proof principles for reasoning about
-infinite objects as combinators defined through
-\texttt{CoFixpoint}. However, oppositely to the case of inductive
-types, proof principles associated to co-inductive types are not
-elimination but \textsl{introduction} combinators. An example of such
-a combinator is Park's principle for proving the equality of two
-streams, usually called the \textsl{principle of co-induction}. It
-states that two streams are equal if they satisfy a
-\textit{bisimulation}. A bisimulation is a binary relation $R$ such
-that any pair of streams $s_1$ ad $s_2$ satisfying $R$ have equal
-heads, and tails also satisfying $R$. This principle is in fact a
-method for constructing an infinite proof:
-
-\begin{alltt}
-Section Parks_Principle.
-Variable A : Type.
-Variable R : Stream A {\arrow} Stream A {\arrow} Prop.
-Hypothesis bisim1 : {\prodsym} s1 s2:Stream A,
- R s1 s2 {\arrow} head s1 = head s2.
-
-Hypothesis bisim2 : {\prodsym} s1 s2:Stream A,
- R s1 s2 {\arrow} R (tail s1) (tail s2).
-
-CoFixpoint park_ppl :
- {\prodsym} s1 s2:Stream A, R s1 s2 {\arrow} EqSt s1 s2 :=
- fun s1 s2 (p : R s1 s2) {\funarrow}
- eqst s1 s2 (bisim1 s1 s2 p)
- (park_ppl (tail s1)
- (tail s2)
- (bisim2 s1 s2 p)).
-End Parks_Principle.
-\end{alltt}
-
-Let us use the principle of co-induction to prove the extensional
-equality mentioned above.
-\begin{alltt}
-Theorem map_iterate : {\prodsym} (A:Type)(f:A{\arrow}A)(x:A),
- EqSt (iterate f (f x))
- (map f (iterate f x)).
-Proof.
- intros A f x.
- apply park_ppl with
- (R:= fun s1 s2 {\funarrow}
- {\exsym} x: A, s1 = iterate f (f x) {\coqand}
- s2 = map f (iterate f x)).
-
- intros s1 s2 (x0,(eqs1,eqs2));
- rewrite eqs1; rewrite eqs2; reflexivity.
- intros s1 s2 (x0,(eqs1,eqs2)).
- exists (f x0);split;
- [rewrite eqs1|rewrite eqs2]; reflexivity.
- exists x;split; reflexivity.
-Qed.
-\end{alltt}
-
-The use of Park's principle is sometimes annoying, because it requires
-to find an invariant relation and prove that it is indeed a
-bisimulation. In many cases, a shorter proof can be obtained trying
-to construct an ad-hoc infinite proof, defined by a guarded
-declaration. The tactic ``~``\texttt{Cofix $f$}~'' can be used to do
-that. Similarly to the tactic \texttt{fix} indicated in Section
-\ref{WellFoundedRecursion}, this tactic introduces an extra hypothesis
-$f$ into the context, whose type is the same as the current goal. Note
-that the applications of $f$ in the proof \textsl{must be guarded}. In
-order to prevent us from doing unguarded calls, we can define a tactic
-that always apply a constructor before using $f$ \refmancite{Chapter
-\ref{WritingTactics}} :
-
-\begin{alltt}
-Ltac infiniteproof f :=
- cofix f;
- constructor;
- [clear f| simpl; try (apply f; clear f)].
-\end{alltt}
-
-
-In the example above, this tactic produces a much simpler proof
-that the former one:
-
-\begin{alltt}
-Theorem map_iterate' : {\prodsym} ((A:Type)f:A{\arrow}A)(x:A),
- EqSt (iterate f (f x))
- (map f (iterate f x)).
-Proof.
- infiniteproof map_iterate'.
- reflexivity.
-Qed.
-\end{alltt}
-
-\begin{exercise}
-Define a co-inductive type of name $Nat$ that contains non-standard
-natural numbers --this is, verifying
-
-$$\exists m \in \mbox{\texttt{Nat}}, \forall\, n \in \mbox{\texttt{Nat}}, n<m$$.
-\end{exercise}
-
-\begin{exercise}
-Prove that the extensional equality of streams is an equivalence relation
-using Park's co-induction principle.
-\end{exercise}
-
-
-\begin{exercise}
-Provide a suitable definition of ``being an ordered list'' for infinite lists
-and define a principle for proving that an infinite list is ordered. Apply
-this method to the list $[0,1,\ldots ]$. Compare the result with
-exercise \ref{zeroton}.
-\end{exercise}
-
-\subsection{About injection, discriminate, and inversion}
-Since co-inductive types are closed w.r.t. their constructors,
-the techniques shown in Section~\ref{CaseTechniques} work also
-with these types.
-
-Let us consider the type of lazy lists, introduced on page~\pageref{CoInduction}.
-The following lemmas are straightforward applications
- of \texttt{discriminate} and \citecoq{injection}:
-
-\begin{alltt}
-Lemma Lnil_not_Lcons : {\prodsym} (A:Type)(a:A)(l:LList A),
- LNil {\coqdiff} (LCons a l).
-Proof.
- intros;discriminate.
-Qed.
-
-Lemma injection_demo : {\prodsym} (A:Type)(a b : A)(l l': LList A),
- LCons a (LCons b l) = LCons b (LCons a l') {\arrow}
- a = b {\coqand} l = l'.
-Proof.
- intros A a b l l' e; injection e; auto.
-Qed.
-
-\end{alltt}
-
-In order to show \citecoq{inversion} at work, let us define
-two predicates on lazy lists:
-
-\begin{alltt}
-Inductive Finite (A:Type) : LList A {\arrow} Prop :=
-| Lnil_fin : Finite (LNil (A:=A))
-| Lcons_fin : {\prodsym} a l, Finite l {\arrow} Finite (LCons a l).
-
-CoInductive Infinite (A:Type) : LList A {\arrow} Prop :=
-| LCons_inf : {\prodsym} a l, Infinite l {\arrow} Infinite (LCons a l).
-\end{alltt}
-
-\noindent
-First, two easy theorems:
-\begin{alltt}
-Lemma LNil_not_Infinite : {\prodsym} (A:Type), ~ Infinite (LNil (A:=A)).
-Proof.
- intros A H;inversion H.
-Qed.
-
-Lemma Finite_not_Infinite : {\prodsym} (A:Type)(l:LList A),
- Finite l {\arrow} ~ Infinite l.
-Proof.
- intros A l H; elim H.
- apply LNil_not_Infinite.
- intros a l0 F0 I0' I1.
- case I0'; inversion_clear I1.
- trivial.
-Qed.
-\end{alltt}
-
-
-On the other hand, the next proof uses the \citecoq{cofix} tactic.
-Notice the destructuration of \citecoq{l}, which allows us to
-apply the constructor \texttt{LCons\_inf}, thus satisfying
- the guard condition:
-\begin{alltt}
-Lemma Not_Finite_Infinite : {\prodsym} (A:Type)(l:LList A),
- ~ Finite l {\arrow} Infinite l.
-Proof.
- cofix H.
- destruct l.
- intro;
- absurd (Finite (LNil (A:=A)));
- [auto|constructor].
-\it
-
-
-
-
-1 subgoal
-
- H : forall (A : Type) (l : LList A), ~ Finite l -> Infinite l
- A : Type
- a : A
- l : LList A
- H0 : ~ Finite (LCons a l)
- ============================
- Infinite l
-\end{alltt}
-At this point, one must not apply \citecoq{H}! . It would be possible
-to solve the current goal by an inversion of ``~\citecoq{Finite (LCons a l)}~'', but, since the guard condition would be violated, the user
-would get an error message after typing \citecoq{Qed}.
-In order to satisfy the guard condition, we apply the constructor of
-\citecoq{Infinite}, \emph{then} apply \citecoq{H}.
-
-\begin{alltt}
- constructor.
- apply H.
- red; intro H1;case H0.
- constructor.
- trivial.
-Qed.
-\end{alltt}
-
-
-
-
-The reader is invited to replay this proof and understand each of its steps.
-
-
-\bibliographystyle{abbrv}
-\bibliography{manbiblio,morebib}
-
-\end{document}
-
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v
deleted file mode 100644
index 28aaf752..00000000
--- a/doc/RecTutorial/RecTutorial.v
+++ /dev/null
@@ -1,1232 +0,0 @@
-Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3).
-
-
-
-Inductive nat : Set :=
- | O : nat
- | S : nat->nat.
-Check nat.
-Check O.
-Check S.
-
-Reset nat.
-Print nat.
-
-
-Print le.
-
-Theorem zero_leq_three: 0 <= 3.
-
-Proof.
- constructor 2.
- constructor 2.
- constructor 2.
- constructor 1.
-
-Qed.
-
-Print zero_leq_three.
-
-
-Lemma zero_leq_three': 0 <= 3.
- repeat constructor.
-Qed.
-
-
-Lemma zero_lt_three : 0 < 3.
-Proof.
- repeat constructor.
-Qed.
-
-Print zero_lt_three.
-
-Inductive le'(n:nat):nat -> Prop :=
- | le'_n : le' n n
- | le'_S : forall p, le' (S n) p -> le' n p.
-
-Hint Constructors le'.
-
-
-Require Import List.
-
-Print list.
-
-Check list.
-
-Check (nil (A:=nat)).
-
-Check (nil (A:= nat -> nat)).
-
-Check (fun A: Type => (cons (A:=A))).
-
-Check (cons 3 (cons 2 nil)).
-
-Check (nat :: bool ::nil).
-
-Check ((3<=4) :: True ::nil).
-
-Check (Prop::Set::nil).
-
-Require Import Bvector.
-
-Print vector.
-
-Check (Vnil nat).
-
-Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)).
-
-Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
-
-Lemma eq_3_3 : 2 + 1 = 3.
-Proof.
- reflexivity.
-Qed.
-Print eq_3_3.
-
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
-Proof.
- reflexivity.
-Qed.
-Print eq_proof_proof.
-
-Lemma eq_lt_le : ( 2 < 4) = (3 <= 4).
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_nat_nat : nat = nat.
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_Set_Set : Set = Set.
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_Type_Type : Type = Type.
-Proof.
- reflexivity.
-Qed.
-
-
-Check (2 + 1 = 3).
-
-
-Check (Type = Type).
-
-Goal Type = Type.
-reflexivity.
-Qed.
-
-
-Print or.
-
-Print and.
-
-
-Print sumbool.
-
-Print ex.
-
-Require Import ZArith.
-Require Import Compare_dec.
-
-Check le_lt_dec.
-
-Definition max (n p :nat) := match le_lt_dec n p with
- | left _ => p
- | right _ => n
- end.
-
-Theorem le_max : forall n p, n <= p -> max n p = p.
-Proof.
- intros n p ; unfold max ; case (le_lt_dec n p); simpl.
- trivial.
- intros; absurd (p < p); eauto with arith.
-Qed.
-
-Extraction max.
-
-
-
-
-
-
-Inductive tree(A:Type) : Type :=
- node : A -> forest A -> tree A
-with
- forest (A: Type) : Type :=
- nochild : forest A |
- addchild : tree A -> forest A -> forest A.
-
-
-
-
-
-Inductive
- even : nat->Prop :=
- evenO : even O |
- evenS : forall n, odd n -> even (S n)
-with
- odd : nat->Prop :=
- oddS : forall n, even n -> odd (S n).
-
-Lemma odd_49 : odd (7 * 7).
- simpl; repeat constructor.
-Qed.
-
-
-
-Definition nat_case :=
- fun (Q : Type)(g0 : Q)(g1 : nat -> Q)(n:nat) =>
- match n return Q with
- | 0 => g0
- | S p => g1 p
- end.
-
-Eval simpl in (nat_case nat 0 (fun p => p) 34).
-
-Eval simpl in (fun g0 g1 => nat_case nat g0 g1 34).
-
-Eval simpl in (fun g0 g1 => nat_case nat g0 g1 0).
-
-
-Definition pred (n:nat) := match n with O => O | S m => m end.
-
-Eval simpl in pred 56.
-
-Eval simpl in pred 0.
-
-Eval simpl in fun p => pred (S p).
-
-
-Definition xorb (b1 b2:bool) :=
-match b1, b2 with
- | false, true => true
- | true, false => true
- | _ , _ => false
-end.
-
-
- Definition pred_spec (n:nat) := {m:nat | n=0 /\ m=0 \/ n = S m}.
-
-
- Definition predecessor : forall n:nat, pred_spec n.
- intro n;case n.
- unfold pred_spec;exists 0;auto.
- unfold pred_spec; intro n0;exists n0; auto.
- Defined.
-
-Print predecessor.
-
-Extraction predecessor.
-
-Theorem nat_expand :
- forall n:nat, n = match n with 0 => 0 | S p => S p end.
- intro n;case n;simpl;auto.
-Qed.
-
-Check (fun p:False => match p return 2=3 with end).
-
-Theorem fromFalse : False -> 0=1.
- intro absurd.
- contradiction.
-Qed.
-
-Section equality_elimination.
- Variables (A: Type)
- (a b : A)
- (p : a = b)
- (Q : A -> Type).
- Check (fun H : Q a =>
- match p in (eq _ y) return Q y with
- refl_equal => H
- end).
-
-End equality_elimination.
-
-
-Theorem trans : forall n m p:nat, n=m -> m=p -> n=p.
-Proof.
- intros n m p eqnm.
- case eqnm.
- trivial.
-Qed.
-
-Lemma Rw : forall x y: nat, y = y * x -> y * x * x = y.
- intros x y e; do 2 rewrite <- e.
- reflexivity.
-Qed.
-
-
-Require Import Arith.
-
-Check mult_1_l.
-(*
-mult_1_l
- : forall n : nat, 1 * n = n
-*)
-
-Check mult_plus_distr_r.
-(*
-mult_plus_distr_r
- : forall n m p : nat, (n + m) * p = n * p + m * p
-
-*)
-
-Lemma mult_distr_S : forall n p : nat, n * p + p = (S n)* p.
- simpl;auto with arith.
-Qed.
-
-Lemma four_n : forall n:nat, n+n+n+n = 4*n.
- intro n;rewrite <- (mult_1_l n).
-
- Undo.
- intro n; pattern n at 1.
-
-
- rewrite <- mult_1_l.
- repeat rewrite mult_distr_S.
- trivial.
-Qed.
-
-
-Section Le_case_analysis.
- Variables (n p : nat)
- (H : n <= p)
- (Q : nat -> Prop)
- (H0 : Q n)
- (HS : forall m, n <= m -> Q (S m)).
- Check (
- match H in (_ <= q) return (Q q) with
- | le_n => H0
- | le_S m Hm => HS m Hm
- end
- ).
-
-
-End Le_case_analysis.
-
-
-Lemma predecessor_of_positive : forall n, 1 <= n -> exists p:nat, n = S p.
-Proof.
- intros n H; case H.
- exists 0; trivial.
- intros m Hm; exists m;trivial.
-Qed.
-
-Definition Vtail_total
- (A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
-match v in (vector _ n0) return (vector A (pred n0)) with
-| Vnil => Vnil A
-| Vcons _ n0 v0 => v0
-end.
-
-Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n).
- intros A n v; case v.
- simpl.
- exact (Vnil A).
- simpl.
- auto.
-Defined.
-
-(*
-Inductive Lambda : Set :=
- lambda : (Lambda -> False) -> Lambda.
-
-
-Error: Non strictly positive occurrence of "Lambda" in
- "(Lambda -> False) -> Lambda"
-
-*)
-
-Section Paradox.
- Variable Lambda : Set.
- Variable lambda : (Lambda -> False) ->Lambda.
-
- Variable matchL : Lambda -> forall Q:Prop, ((Lambda ->False) -> Q) -> Q.
- (*
- understand matchL Q l (fun h : Lambda -> False => t)
-
- as match l return Q with lambda h => t end
- *)
-
- Definition application (f x: Lambda) :False :=
- matchL f False (fun h => h x).
-
- Definition Delta : Lambda := lambda (fun x : Lambda => application x x).
-
- Definition loop : False := application Delta Delta.
-
- Theorem two_is_three : 2 = 3.
- Proof.
- elim loop.
- Qed.
-
-End Paradox.
-
-
-Require Import ZArith.
-
-
-
-Inductive itree : Set :=
-| ileaf : itree
-| inode : Z-> (nat -> itree) -> itree.
-
-Definition isingle l := inode l (fun i => ileaf).
-
-Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))).
-
-Definition t2 := inode 0
- (fun n : nat =>
- inode (Z_of_nat n)
- (fun p => isingle (Z_of_nat (n*p)))).
-
-
-Inductive itree_le : itree-> itree -> Prop :=
- | le_leaf : forall t, itree_le ileaf t
- | le_node : forall l l' s s',
- Zle l l' ->
- (forall i, exists j:nat, itree_le (s i) (s' j)) ->
- itree_le (inode l s) (inode l' s').
-
-
-Theorem itree_le_trans :
- forall t t', itree_le t t' ->
- forall t'', itree_le t' t'' -> itree_le t t''.
- induction t.
- constructor 1.
-
- intros t'; case t'.
- inversion 1.
- intros z0 i0 H0.
- intro t'';case t''.
- inversion 1.
- intros.
- inversion_clear H1.
- constructor 2.
- inversion_clear H0;eauto with zarith.
- inversion_clear H0.
- intro i2; case (H4 i2).
- intros.
- generalize (H i2 _ H0).
- intros.
- case (H3 x);intros.
- generalize (H5 _ H6).
- exists x0;auto.
-Qed.
-
-
-
-Inductive itree_le' : itree-> itree -> Prop :=
- | le_leaf' : forall t, itree_le' ileaf t
- | le_node' : forall l l' s s' g,
- Zle l l' ->
- (forall i, itree_le' (s i) (s' (g i))) ->
- itree_le' (inode l s) (inode l' s').
-
-
-
-
-
-Lemma t1_le_t2 : itree_le t1 t2.
- unfold t1, t2.
- constructor.
- auto with zarith.
- intro i; exists (2 * i).
- unfold isingle.
- constructor.
- auto with zarith.
- exists i;constructor.
-Qed.
-
-
-
-Lemma t1_le'_t2 : itree_le' t1 t2.
- unfold t1, t2.
- constructor 2 with (fun i : nat => 2 * i).
- auto with zarith.
- unfold isingle;
- intro i ; constructor 2 with (fun i :nat => i).
- auto with zarith.
- constructor .
-Qed.
-
-
-Require Import List.
-
-Inductive ltree (A:Set) : Set :=
- lnode : A -> list (ltree A) -> ltree A.
-
-Inductive prop : Prop :=
- prop_intro : Prop -> prop.
-
-Check (prop_intro prop).
-
-Inductive ex_Prop (P : Prop -> Prop) : Prop :=
- exP_intro : forall X : Prop, P X -> ex_Prop P.
-
-Lemma ex_Prop_inhabitant : ex_Prop (fun P => P -> P).
-Proof.
- exists (ex_Prop (fun P => P -> P)).
- trivial.
-Qed.
-
-
-
-
-(*
-
-Check (fun (P:Prop->Prop)(p: ex_Prop P) =>
- match p with exP_intro X HX => X end).
-Error:
-Incorrect elimination of "p" in the inductive type
-"ex_Prop", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs
-
-*)
-
-
-Inductive typ : Type :=
- typ_intro : Type -> typ.
-
-Definition typ_inject: typ.
-split.
-exact typ.
-(*
-Defined.
-
-Error: Universe Inconsistency.
-*)
-Abort.
-(*
-
-Inductive aSet : Set :=
- aSet_intro: Set -> aSet.
-
-
-User error: Large non-propositional inductive types must be in Type
-
-*)
-
-Inductive ex_Set (P : Set -> Prop) : Type :=
- exS_intro : forall X : Set, P X -> ex_Set P.
-
-
-Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop :=
- c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p).
-
-Goal (comes_from_the_left _ _ (or_introl True I)).
-split.
-Qed.
-
-Goal ~(comes_from_the_left _ _ (or_intror True I)).
- red;inversion 1.
- (* discriminate H0.
- *)
-Abort.
-
-Reset comes_from_the_left.
-
-(*
-
-
-
-
-
-
- Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop :=
- match H with
- | or_introl p => True
- | or_intror q => False
- end.
-
-Error:
-Incorrect elimination of "H" in the inductive type
-"or", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs
-
-*)
-
-Definition comes_from_the_left_sumbool
- (P Q:Prop)(x:{P}+{Q}): Prop :=
- match x with
- | left p => True
- | right q => False
- end.
-
-
-
-
-Close Scope Z_scope.
-
-
-
-
-
-Theorem S_is_not_O : forall n, S n <> 0.
-
-Definition Is_zero (x:nat):= match x with
- | 0 => True
- | _ => False
- end.
- Lemma O_is_zero : forall m, m = 0 -> Is_zero m.
- Proof.
- intros m H; subst m.
- (*
- ============================
- Is_zero 0
- *)
- simpl;trivial.
- Qed.
-
- red; intros n Hn.
- apply O_is_zero with (m := S n).
- assumption.
-Qed.
-
-Theorem disc2 : forall n, S (S n) <> 1.
-Proof.
- intros n Hn; discriminate.
-Qed.
-
-
-Theorem disc3 : forall n, S (S n) = 0 -> forall Q:Prop, Q.
-Proof.
- intros n Hn Q.
- discriminate.
-Qed.
-
-
-
-Theorem inj_succ : forall n m, S n = S m -> n = m.
-Proof.
-
-
-Lemma inj_pred : forall n m, n = m -> pred n = pred m.
-Proof.
- intros n m eq_n_m.
- rewrite eq_n_m.
- trivial.
-Qed.
-
- intros n m eq_Sn_Sm.
- apply inj_pred with (n:= S n) (m := S m); assumption.
-Qed.
-
-Lemma list_inject : forall (A:Type)(a b :A)(l l':list A),
- a :: b :: l = b :: a :: l' -> a = b /\ l = l'.
-Proof.
- intros A a b l l' e.
- injection e.
- auto.
-Qed.
-
-
-Theorem not_le_Sn_0 : forall n:nat, ~ (S n <= 0).
-Proof.
- red; intros n H.
- case H.
-Undo.
-
-Lemma not_le_Sn_0_with_constraints :
- forall n p , S n <= p -> p = 0 -> False.
-Proof.
- intros n p H; case H ;
- intros; discriminate.
-Qed.
-
-eapply not_le_Sn_0_with_constraints; eauto.
-Qed.
-
-
-Theorem not_le_Sn_0' : forall n:nat, ~ (S n <= 0).
-Proof.
- red; intros n H ; inversion H.
-Qed.
-
-Derive Inversion le_Sn_0_inv with (forall n :nat, S n <= 0).
-Check le_Sn_0_inv.
-
-Theorem le_Sn_0'' : forall n p : nat, ~ S n <= 0 .
-Proof.
- intros n p H;
- inversion H using le_Sn_0_inv.
-Qed.
-
-Derive Inversion_clear le_Sn_0_inv' with (forall n :nat, S n <= 0).
-Check le_Sn_0_inv'.
-
-
-Theorem le_reverse_rules :
- forall n m:nat, n <= m ->
- n = m \/
- exists p, n <= p /\ m = S p.
-Proof.
- intros n m H; inversion H.
- left;trivial.
- right; exists m0; split; trivial.
-Restart.
- intros n m H; inversion_clear H.
- left;trivial.
- right; exists m0; split; trivial.
-Qed.
-
-Inductive ArithExp : Set :=
- Zero : ArithExp
- | Succ : ArithExp -> ArithExp
- | Plus : ArithExp -> ArithExp -> ArithExp.
-
-Inductive RewriteRel : ArithExp -> ArithExp -> Prop :=
- RewSucc : forall e1 e2 :ArithExp,
- RewriteRel e1 e2 -> RewriteRel (Succ e1) (Succ e2)
- | RewPlus0 : forall e:ArithExp,
- RewriteRel (Plus Zero e) e
- | RewPlusS : forall e1 e2:ArithExp,
- RewriteRel e1 e2 ->
- RewriteRel (Plus (Succ e1) e2) (Succ (Plus e1 e2)).
-
-
-
-Fixpoint plus (n p:nat) {struct n} : nat :=
- match n with
- | 0 => p
- | S m => S (plus m p)
- end.
-
-Fixpoint plus' (n p:nat) {struct p} : nat :=
- match p with
- | 0 => n
- | S q => S (plus' n q)
- end.
-
-Fixpoint plus'' (n p:nat) {struct n} : nat :=
- match n with
- | 0 => p
- | S m => plus'' m (S p)
- end.
-
-
-Fixpoint even_test (n:nat) : bool :=
- match n
- with 0 => true
- | 1 => false
- | S (S p) => even_test p
- end.
-
-
-Reset even_test.
-
-Fixpoint even_test (n:nat) : bool :=
- match n
- with
- | 0 => true
- | S p => odd_test p
- end
-with odd_test (n:nat) : bool :=
- match n
- with
- | 0 => false
- | S p => even_test p
- end.
-
-
-
-Eval simpl in even_test.
-
-
-
-Eval simpl in (fun x : nat => even_test x).
-
-Eval simpl in (fun x : nat => plus 5 x).
-Eval simpl in (fun x : nat => even_test (plus 5 x)).
-
-Eval simpl in (fun x : nat => even_test (plus x 5)).
-
-
-Section Principle_of_Induction.
-Variable P : nat -> Prop.
-Hypothesis base_case : P 0.
-Hypothesis inductive_step : forall n:nat, P n -> P (S n).
-Fixpoint nat_ind (n:nat) : (P n) :=
- match n return P n with
- | 0 => base_case
- | S m => inductive_step m (nat_ind m)
- end.
-
-End Principle_of_Induction.
-
-Scheme Even_induction := Minimality for even Sort Prop
-with Odd_induction := Minimality for odd Sort Prop.
-
-Theorem even_plus_four : forall n:nat, even n -> even (4+n).
-Proof.
- intros n H.
- elim H using Even_induction with (P0 := fun n => odd (4+n));
- simpl;repeat constructor;assumption.
-Qed.
-
-
-Section Principle_of_Double_Induction.
-Variable P : nat -> nat ->Prop.
-Hypothesis base_case1 : forall x:nat, P 0 x.
-Hypothesis base_case2 : forall x:nat, P (S x) 0.
-Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
-Fixpoint nat_double_ind (n m:nat){struct n} : P n m :=
- match n, m return P n m with
- | 0 , x => base_case1 x
- | (S x), 0 => base_case2 x
- | (S x), (S y) => inductive_step x y (nat_double_ind x y)
- end.
-End Principle_of_Double_Induction.
-
-Section Principle_of_Double_Recursion.
-Variable P : nat -> nat -> Type.
-Hypothesis base_case1 : forall x:nat, P 0 x.
-Hypothesis base_case2 : forall x:nat, P (S x) 0.
-Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
-Fixpoint nat_double_rect (n m:nat){struct n} : P n m :=
- match n, m return P n m with
- | 0 , x => base_case1 x
- | (S x), 0 => base_case2 x
- | (S x), (S y) => inductive_step x y (nat_double_rect x y)
- end.
-End Principle_of_Double_Recursion.
-
-Definition min : nat -> nat -> nat :=
- nat_double_rect (fun (x y:nat) => nat)
- (fun (x:nat) => 0)
- (fun (y:nat) => 0)
- (fun (x y r:nat) => S r).
-
-Eval compute in (min 5 8).
-Eval compute in (min 8 5).
-
-
-
-Lemma not_circular : forall n:nat, n <> S n.
-Proof.
- intro n.
- apply nat_ind with (P:= fun n => n <> S n).
- discriminate.
- red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.
-Qed.
-
-Definition eq_nat_dec : forall n p:nat , {n=p}+{n <> p}.
-Proof.
- intros n p.
- apply nat_double_rect with (P:= fun (n q:nat) => {q=p}+{q <> p}).
-Undo.
- pattern p,n.
- elim n using nat_double_rect.
- destruct x; auto.
- destruct x; auto.
- intros n0 m H; case H.
- intro eq; rewrite eq ; auto.
- intro neg; right; red ; injection 1; auto.
-Defined.
-
-Definition eq_nat_dec' : forall n p:nat, {n=p}+{n <> p}.
- decide equality.
-Defined.
-
-
-
-Require Import Le.
-Lemma le'_le : forall n p, le' n p -> n <= p.
-Proof.
- induction 1;auto with arith.
-Qed.
-
-Lemma le'_n_Sp : forall n p, le' n p -> le' n (S p).
-Proof.
- induction 1;auto.
-Qed.
-
-Hint Resolve le'_n_Sp.
-
-
-Lemma le_le' : forall n p, n<=p -> le' n p.
-Proof.
- induction 1;auto with arith.
-Qed.
-
-
-Print Acc.
-
-
-Require Import Minus.
-
-(*
-Fixpoint div (x y:nat){struct x}: nat :=
- if eq_nat_dec x 0
- then 0
- else if eq_nat_dec y 0
- then x
- else S (div (x-y) y).
-
-Error:
-Recursive definition of div is ill-formed.
-In environment
-div : nat -> nat -> nat
-x : nat
-y : nat
-_ : x <> 0
-_ : y <> 0
-
-Recursive call to div has principal argument equal to
-"x - y"
-instead of a subterm of x
-
-*)
-
-Lemma minus_smaller_S: forall x y:nat, x - y < S x.
-Proof.
- intros x y; pattern y, x;
- elim x using nat_double_ind.
- destruct x0; auto with arith.
- simpl; auto with arith.
- simpl; auto with arith.
-Qed.
-
-Lemma minus_smaller_positive : forall x y:nat, x <>0 -> y <> 0 ->
- x - y < x.
-Proof.
- destruct x; destruct y;
- ( simpl;intros; apply minus_smaller_S ||
- intros; absurd (0=0); auto).
-Qed.
-
-Definition minus_decrease : forall x y:nat, Acc lt x ->
- x <> 0 ->
- y <> 0 ->
- Acc lt (x-y).
-Proof.
- intros x y H; case H.
- intros Hz posz posy.
- apply Hz; apply minus_smaller_positive; assumption.
-Defined.
-
-Print minus_decrease.
-
-
-
-Definition div_aux (x y:nat)(H: Acc lt x):nat.
- fix 3.
- intros.
- refine (if eq_nat_dec x 0
- then 0
- else if eq_nat_dec y 0
- then y
- else div_aux (x-y) y _).
- apply (minus_decrease x y H);assumption.
-Defined.
-
-
-Print div_aux.
-(*
-div_aux =
-(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat :=
- match eq_nat_dec x 0 with
- | left _ => 0
- | right _ =>
- match eq_nat_dec y 0 with
- | left _ => y
- | right _0 => div_aux (x - y) y (minus_decrease x y H _ _0)
- end
- end)
- : forall x : nat, nat -> Acc lt x -> nat
-*)
-
-Require Import Wf_nat.
-Definition div x y := div_aux x y (lt_wf x).
-
-Extraction div.
-(*
-let div x y =
- div_aux x y
-*)
-
-Extraction div_aux.
-
-(*
-let rec div_aux x y =
- match eq_nat_dec x O with
- | Left -> O
- | Right ->
- (match eq_nat_dec y O with
- | Left -> y
- | Right -> div_aux (minus x y) y)
-*)
-
-Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
-Proof.
- intros A v;inversion v.
-Abort.
-
-(*
- Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
- n= 0 -> v = Vnil A.
-
-Toplevel input, characters 40281-40287
-> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A.
-> ^^^^^^
-Error: In environment
-A : Set
-n : nat
-v : vector A n
-e : n = 0
-The term "Vnil A" has type "vector A 0" while it is expected to have type
- "vector A n"
-*)
- Require Import JMeq.
-
-
-(* On devrait changer Set en Type ? *)
-
-Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
- n= 0 -> JMeq v (Vnil A).
-Proof.
- destruct v.
- auto.
- intro; discriminate.
-Qed.
-
-Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
-Proof.
- intros a v;apply JMeq_eq.
- apply vector0_is_vnil_aux.
- trivial.
-Qed.
-
-
-Implicit Arguments Vcons [A n].
-Implicit Arguments Vnil [A].
-Implicit Arguments Vhead [A n].
-Implicit Arguments Vtail [A n].
-
-Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n.
-Proof.
- destruct n; intro v.
- exact Vnil.
- exact (Vcons (Vhead v) (Vtail v)).
-Defined.
-
-Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)).
-
-Eval simpl in (fun (A:Type)(v:vector A 0) => v).
-
-
-
-Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
-Proof.
- destruct v.
- reflexivity.
- reflexivity.
-Defined.
-
-Theorem zero_nil : forall A (v:vector A 0), v = Vnil.
-Proof.
- intros.
- change (Vnil (A:=A)) with (Vid _ 0 v).
- apply Vid_eq.
-Defined.
-
-
-Theorem decomp :
- forall (A : Type) (n : nat) (v : vector A (S n)),
- v = Vcons (Vhead v) (Vtail v).
-Proof.
- intros.
- change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
- apply Vid_eq.
-Defined.
-
-
-
-Definition vector_double_rect :
- forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
- P 0 Vnil Vnil ->
- (forall n (v1 v2 : vector A n) a b, P n v1 v2 ->
- P (S n) (Vcons a v1) (Vcons b v2)) ->
- forall n (v1 v2 : vector A n), P n v1 v2.
- induction n.
- intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
- auto.
- intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).
- apply X0; auto.
-Defined.
-
-Require Import Bool.
-
-Definition bitwise_or n v1 v2 : vector bool n :=
- vector_double_rect bool (fun n v1 v2 => vector bool n)
- Vnil
- (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2.
-
-
-Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v}
- : option A :=
- match n,v with
- _ , Vnil => None
- | 0 , Vcons b _ _ => Some b
- | S n', Vcons _ p' v' => vector_nth A n' p' v'
- end.
-
-Implicit Arguments vector_nth [A p].
-
-
-Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b,
- vector_nth i v1 = Some a ->
- vector_nth i v2 = Some b ->
- vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).
-Proof.
- intros n v1 v2; pattern n,v1,v2.
- apply vector_double_rect.
- simpl.
- destruct i; discriminate 1.
- destruct i; simpl;auto.
- injection 1; injection 2;intros; subst a; subst b; auto.
-Qed.
-
- Set Implicit Arguments.
-
- CoInductive Stream (A:Type) : Type :=
- | Cons : A -> Stream A -> Stream A.
-
- CoInductive LList (A: Type) : Type :=
- | LNil : LList A
- | LCons : A -> LList A -> LList A.
-
-
-
-
-
- Definition head (A:Type)(s : Stream A) := match s with Cons a s' => a end.
-
- Definition tail (A : Type)(s : Stream A) :=
- match s with Cons a s' => s' end.
-
- CoFixpoint repeat (A:Type)(a:A) : Stream A := Cons a (repeat a).
-
- CoFixpoint iterate (A: Type)(f: A -> A)(a : A) : Stream A:=
- Cons a (iterate f (f a)).
-
- CoFixpoint map (A B:Type)(f: A -> B)(s : Stream A) : Stream B:=
- match s with Cons a tl => Cons (f a) (map f tl) end.
-
-Eval simpl in (fun (A:Type)(a:A) => repeat a).
-
-Eval simpl in (fun (A:Type)(a:A) => head (repeat a)).
-
-
-CoInductive EqSt (A: Type) : Stream A -> Stream A -> Prop :=
- eqst : forall s1 s2: Stream A,
- head s1 = head s2 ->
- EqSt (tail s1) (tail s2) ->
- EqSt s1 s2.
-
-
-Section Parks_Principle.
-Variable A : Type.
-Variable R : Stream A -> Stream A -> Prop.
-Hypothesis bisim1 : forall s1 s2:Stream A, R s1 s2 ->
- head s1 = head s2.
-Hypothesis bisim2 : forall s1 s2:Stream A, R s1 s2 ->
- R (tail s1) (tail s2).
-
-CoFixpoint park_ppl : forall s1 s2:Stream A, R s1 s2 ->
- EqSt s1 s2 :=
- fun s1 s2 (p : R s1 s2) =>
- eqst s1 s2 (bisim1 p)
- (park_ppl (bisim2 p)).
-End Parks_Principle.
-
-
-Theorem map_iterate : forall (A:Type)(f:A->A)(x:A),
- EqSt (iterate f (f x)) (map f (iterate f x)).
-Proof.
- intros A f x.
- apply park_ppl with
- (R:= fun s1 s2 => exists x: A,
- s1 = iterate f (f x) /\ s2 = map f (iterate f x)).
-
- intros s1 s2 (x0,(eqs1,eqs2));rewrite eqs1;rewrite eqs2;reflexivity.
- intros s1 s2 (x0,(eqs1,eqs2)).
- exists (f x0);split;[rewrite eqs1|rewrite eqs2]; reflexivity.
- exists x;split; reflexivity.
-Qed.
-
-Ltac infiniteproof f :=
- cofix f; constructor; [clear f| simpl; try (apply f; clear f)].
-
-
-Theorem map_iterate' : forall (A:Type)(f:A->A)(x:A),
- EqSt (iterate f (f x)) (map f (iterate f x)).
-infiniteproof map_iterate'.
- reflexivity.
-Qed.
-
-
-Implicit Arguments LNil [A].
-
-Lemma Lnil_not_Lcons : forall (A:Type)(a:A)(l:LList A),
- LNil <> (LCons a l).
- intros;discriminate.
-Qed.
-
-Lemma injection_demo : forall (A:Type)(a b : A)(l l': LList A),
- LCons a (LCons b l) = LCons b (LCons a l') ->
- a = b /\ l = l'.
-Proof.
- intros A a b l l' e; injection e; auto.
-Qed.
-
-
-Inductive Finite (A:Type) : LList A -> Prop :=
-| Lnil_fin : Finite (LNil (A:=A))
-| Lcons_fin : forall a l, Finite l -> Finite (LCons a l).
-
-CoInductive Infinite (A:Type) : LList A -> Prop :=
-| LCons_inf : forall a l, Infinite l -> Infinite (LCons a l).
-
-Lemma LNil_not_Infinite : forall (A:Type), ~ Infinite (LNil (A:=A)).
-Proof.
- intros A H;inversion H.
-Qed.
-
-Lemma Finite_not_Infinite : forall (A:Type)(l:LList A),
- Finite l -> ~ Infinite l.
-Proof.
- intros A l H; elim H.
- apply LNil_not_Infinite.
- intros a l0 F0 I0' I1.
- case I0'; inversion_clear I1.
- trivial.
-Qed.
-
-Lemma Not_Finite_Infinite : forall (A:Type)(l:LList A),
- ~ Finite l -> Infinite l.
-Proof.
- cofix H.
- destruct l.
- intro; absurd (Finite (LNil (A:=A)));[auto|constructor].
- constructor.
- apply H.
- red; intro H1;case H0.
- constructor.
- trivial.
-Qed.
-
-
-
diff --git a/doc/RecTutorial/coqartmacros.tex b/doc/RecTutorial/coqartmacros.tex
deleted file mode 100644
index 6fb7534d..00000000
--- a/doc/RecTutorial/coqartmacros.tex
+++ /dev/null
@@ -1,180 +0,0 @@
-\usepackage{url}
-
-\newcommand{\variantspringer}[1]{#1}
-\newcommand{\marginok}[1]{\marginpar{\raggedright OK:#1}}
-\newcommand{\tab}{{\null\hskip1cm}}
-\newcommand{\Ltac}{\mbox{\emph{$\cal L$}tac}}
-\newcommand{\coq}{\mbox{\emph{Coq}}}
-\newcommand{\lcf}{\mbox{\emph{LCF}}}
-\newcommand{\hol}{\mbox{\emph{HOL}}}
-\newcommand{\pvs}{\mbox{\emph{PVS}}}
-\newcommand{\isabelle}{\mbox{\emph{Isabelle}}}
-\newcommand{\prolog}{\mbox{\emph{Prolog}}}
-\newcommand{\goalbar}{\tt{}============================\it}
-\newcommand{\gallina}{\mbox{\emph{Gallina}}}
-\newcommand{\joker}{\texttt{\_}}
-\newcommand{\eprime}{\(\e^{\prime}\)}
-\newcommand{\Ztype}{\citecoq{Z}}
-\newcommand{\propsort}{\citecoq{Prop}}
-\newcommand{\setsort}{\citecoq{Set}}
-\newcommand{\typesort}{\citecoq{Type}}
-\newcommand{\ocaml}{\mbox{\emph{OCAML}}}
-\newcommand{\haskell}{\mbox{\emph{Haskell}}}
-\newcommand{\why}{\mbox{\emph{Why}}}
-\newcommand{\Pascal}{\mbox{\emph{Pascal}}}
-
-\newcommand{\ml}{\mbox{\emph{ML}}}
-
-\newcommand{\scheme}{\mbox{\emph{Scheme}}}
-\newcommand{\lisp}{\mbox{\emph{Lisp}}}
-
-\newcommand{\implarrow}{\mbox{$\Rightarrow$}}
-\newcommand{\metavar}[1]{?#1}
-\newcommand{\notincoq}[1]{#1}
-\newcommand{\coqscope}[1]{\%#1}
-\newcommand{\arrow}{\mbox{$\rightarrow$}}
-\newcommand{\fleche}{\arrow}
-\newcommand{\funarrow}{\mbox{$\Rightarrow$}}
-\newcommand{\ltacarrow}{\funarrow}
-\newcommand{\coqand}{\mbox{\(\wedge\)}}
-\newcommand{\coqor}{\mbox{\(\vee\)}}
-\newcommand{\coqnot}{\mbox{\(\neg\)}}
-\newcommand{\hide}[1]{}
-\newcommand{\hidedots}[1]{...}
-\newcommand{\sig}[3]{\texttt{\{}#1\texttt{:}#2 \texttt{|} #3\texttt{\}}}
-\renewcommand{\neg}{\sim}
-\renewcommand{\marginpar}[1]{}
-
-\addtocounter{secnumdepth}{1}
-\providecommand{\og}{«}
-\providecommand{\fg}{»}
-
-
-\newcommand{\hard}{\mbox{\small *}}
-\newcommand{\xhard}{\mbox{\small **}}
-\newcommand{\xxhard}{\mbox{\small ***}}
-
-%%% Operateurs, etc.
-\newcommand{\impl}{\mbox{$\rightarrow$}}
-\newcommand{\appli}[2]{\mbox{\tt{#1 #2}}}
-\newcommand{\applis}[1]{\mbox{\texttt{#1}}}
-\newcommand{\abst}[3]{\mbox{\tt{fun #1:#2 \funarrow #3}}}
-\newcommand{\coqle}{\mbox{$\leq$}}
-\newcommand{\coqge}{\mbox{$\geq$}}
-\newcommand{\coqdiff}{\mbox{$\neq$}}
-\newcommand{\coqiff}{\mbox{$\leftrightarrow$}}
-\newcommand{\prodsym}{\mbox{\(\forall\,\)}}
-\newcommand{\exsym}{\mbox{\(\exists\,\)}}
-
-\newcommand{\substsign}{/}
-\newcommand{\subst}[3]{\mbox{#1\{#2\substsign{}#3\}}}
-\newcommand{\anoabst}[2]{\mbox{\tt[#1]#2}}
-\newcommand{\letin}[3]{\mbox{\tt let #1:=#2 in #3}}
-\newcommand{\prodep}[3]{\mbox{\tt \(\forall\,\)#1:#2,$\,$#3}}
-\newcommand{\prodplus}[2]{\mbox{\tt\(\forall\,\)$\,$#1,$\,$#2}}
-\newcommand{\dom}[1]{\textrm{dom}(#1)} % domaine d'un contexte (log function)
-\newcommand{\norm}[1]{\textrm{n}(#1)} % forme normale (log function)
-\newcommand{\coqZ}[1]{\mbox{\tt{`#1`}}}
-\newcommand{\coqnat}[1]{\mbox{\tt{#1}}}
-\newcommand{\coqcart}[2]{\mbox{\tt{#1*#2}}}
-\newcommand{\alphacong}{\mbox{$\,\cong_{\alpha}\,$}} % alpha-congruence
-\newcommand{\betareduc}{\mbox{$\,\rightsquigarrow_{\!\beta}$}\,} % beta reduction
-%\newcommand{\betastar}{\mbox{$\,\Rightarrow_{\!\beta}^{*}\,$}} % beta reduction
-\newcommand{\deltareduc}{\mbox{$\,\rightsquigarrow_{\!\delta}$}\,} % delta reduction
-\newcommand{\dbreduc}{\mbox{$\,\rightsquigarrow_{\!\delta\beta}$}\,} % delta,beta reduction
-\newcommand{\ireduc}{\mbox{$\,\rightsquigarrow_{\!\iota}$}\,} % delta,beta reduction
-
-
-% jugement de typage
-\newcommand{\these}{\boldsymbol{\large \vdash}}
-\newcommand{\disj}{\mbox{$\backslash/$}}
-\newcommand{\conj}{\mbox{$/\backslash$}}
-%\newcommand{\juge}[3]{\mbox{$#1 \boldsymbol{\vdash} #2 : #3 $}}
-\newcommand{\juge}[4]{\mbox{$#1,#2 \these #3 \boldsymbol{:} #4 $}}
-\newcommand{\smalljuge}[3]{\mbox{$#1 \these #2 \boldsymbol{:} #3 $}}
-\newcommand{\goal}[3]{\mbox{$#1,#2 \these^{\!\!\!?} #3 $}}
-\newcommand{\sgoal}[2]{\mbox{$#1\these^{\!\!\!\!?} #2 $}}
-\newcommand{\reduc}[5]{\mbox{$#1,#2 \these #3 \rhd_{#4}#5 $}}
-\newcommand{\convert}[5]{\mbox{$#1,#2 \these #3 =_{#4}#5 $}}
-\newcommand{\convorder}[5]{\mbox{$#1,#2 \these #3\leq _{#4}#5 $}}
-\newcommand{\wouff}[2]{\mbox{$\emph{WF}(#1)[#2]$}}
-
-
-%\newcommand{\mthese}{\underset{M}{\vdash}}
-\newcommand{\mthese}{\boldsymbol{\vdash}_{\!\!M}}
-\newcommand{\type}{\boldsymbol{:}}
-
-% jugement absolu
-
-%\newcommand{\ajuge}[2]{\mbox{$ \boldsymbol{\vdash} #1 : #2 $}}
-\newcommand{\ajuge}[2]{\mbox{$\these #1 \boldsymbol{:} #2 $}}
-
-%%% logique minimale
-\newcommand{\propzero}{\mbox{$P_0$}} % types de Fzero
-
-%%% logique propositionnelle classique
-\newcommand {\ff}{\boldsymbol{f}} % faux
-\newcommand {\vv}{\boldsymbol{t}} % vrai
-
-\newcommand{\verite}{\mbox{$\cal{B}$}} % {\ff,\vv}
-\newcommand{\sequ}[2]{\mbox{$#1 \vdash #2 $}} % sequent
-\newcommand{\strip}[1]{#1^o} % enlever les variables d'un contexte
-
-
-
-%%% tactiques
-\newcommand{\decomp}{\delta} % decomposition
-\newcommand{\recomp}{\rho} % recomposition
-
-%%% divers
-\newcommand{\cqfd}{\mbox{\textbf{cqfd}}}
-\newcommand{\fail}{\mbox{\textbf{F}}}
-\newcommand{\succes}{\mbox{$\blacksquare$}}
-%%% Environnements
-
-
-%% Fzero
-\newcommand{\con}{\mbox{$\cal C$}}
-\newcommand{\var}{\mbox{$\cal V$}}
-
-\newcommand{\atomzero}{\mbox{${\cal A}_0$}} % types de base de Fzero
-\newcommand{\typezero}{\mbox{${\cal T}_0$}} % types de Fzero
-\newcommand{\termzero}{\mbox{$\Lambda_0$}} % termes de Fzero
-\newcommand{\conzero}{\mbox{$\cal C_0$}} % contextes de Fzero
-
-\newcommand{\buts}{\mbox{$\cal B$}} % buts
-
-%%% for drawing terms
-% abstraction [x:t]e
-\newcommand{\PicAbst}[3]{\begin{bundle}{\bf abst}\chunk{#1}\chunk{#2}\chunk{#3}%
- \end{bundle}}
-
-% the same in DeBruijn form
-\newcommand{\PicDbj}[2]{\begin{bundle}{\bf abst}\chunk{#1}\chunk{#2}
- \end{bundle}}
-
-
-% applications
-\newcommand{\PicAppl}[2]{\begin{bundle}{\bf appl}\chunk{#1}\chunk{#2}%
- \end{bundle}}
-
-% variables
-\newcommand{\PicVar}[1]{\begin{bundle}{\bf var}\chunk{#1}
- \end{bundle}}
-
-% constantes
-\newcommand{\PicCon}[1]{\begin{bundle}{\bf const}\chunk{#1}\end{bundle}}
-
-% arrows
-\newcommand{\PicImpl}[2]{\begin{bundle}{\impl}\chunk{#1}\chunk{#2}%
- \end{bundle}}
-
-
-
-%%%% scripts coq
-\newcommand{\prompt}{\mbox{\sl Coq $<\;$}}
-\newcommand{\natquicksort}{\texttt{nat\_quicksort}}
-\newcommand{\citecoq}[1]{\mbox{\texttt{#1}}}
-\newcommand{\safeit}{\it}
-\newtheorem{remarque}{Remark}[section]
-%\newtheorem{definition}{Definition}[chapter]
diff --git a/doc/RecTutorial/manbiblio.bib b/doc/RecTutorial/manbiblio.bib
deleted file mode 100644
index 099e3bbd..00000000
--- a/doc/RecTutorial/manbiblio.bib
+++ /dev/null
@@ -1,875 +0,0 @@
-
-@STRING{toappear="To appear"}
-@STRING{lncs="Lecture Notes in Computer Science"}
-
-@TECHREPORT{RefManCoq,
- AUTHOR = {Bruno~Barras, Samuel~Boutin,
- Cristina~Cornes, Judicaël~Courant, Yann~Coscoy, David~Delahaye,
- Daniel~de~Rauglaudre, Jean-Christophe~Filliâtre, Eduardo~Giménez,
- Hugo~Herbelin, Gérard~Huet, Henri~Laulhère, César~Muñoz,
- Chetan~Murthy, Catherine~Parent-Vigouroux, Patrick~Loiseleur,
- Christine~Paulin-Mohring, Amokrane~Saïbi, Benjamin~Werner},
- INSTITUTION = {INRIA},
- TITLE = {{The Coq Proof Assistant Reference Manual -- Version V6.2}},
- YEAR = {1998}
-}
-
-@INPROCEEDINGS{Aud91,
- AUTHOR = {Ph. Audebaud},
- BOOKTITLE = {Proceedings of the sixth Conf. on Logic in Computer Science.},
- PUBLISHER = {IEEE},
- TITLE = {Partial {Objects} in the {Calculus of Constructions}},
- YEAR = {1991}
-}
-
-@PHDTHESIS{Aud92,
- AUTHOR = {Ph. Audebaud},
- SCHOOL = {{Universit\'e} Bordeaux I},
- TITLE = {Extension du Calcul des Constructions par Points fixes},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{Audebaud92b,
- AUTHOR = {Ph. Audebaud},
- BOOKTITLE = {{Proceedings of the 1992 Workshop on Types for Proofs and Programs}},
- EDITOR = {{B. Nordstr\"om and K. Petersson and G. Plotkin}},
- NOTE = {Also Research Report LIP-ENS-Lyon},
- PAGES = {pp 21--34},
- TITLE = {{CC+ : an extension of the Calculus of Constructions with fixpoints}},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{Augustsson85,
- AUTHOR = {L. Augustsson},
- TITLE = {{Compiling Pattern Matching}},
- BOOKTITLE = {Conference Functional Programming and
-Computer Architecture},
- YEAR = {1985}
-}
-
-@INPROCEEDINGS{EG94a,
- AUTHOR = {E. Gim\'enez},
- EDITORS = {P. Dybjer and B. Nordstr\"om and J. Smith},
- BOOKTITLE = {Workshop on Types for Proofs and Programs},
- PAGES = {39-59},
- SERIES = {LNCS},
- NUMBER = {996},
- TITLE = {{Codifying guarded definitions with recursive schemes}},
- YEAR = {1994},
- PUBLISHER = {Springer-Verlag},
-}
-
-@INPROCEEDINGS{EG95a,
- AUTHOR = {E. Gim\'enez},
- BOOKTITLE = {Workshop on Types for Proofs and Programs},
- SERIES = {LNCS},
- NUMBER = {1158},
- PAGES = {135-152},
- TITLE = {An application of co-Inductive types in Coq:
- verification of the Alternating Bit Protocol},
- EDITORS = {S. Berardi and M. Coppo},
- PUBLISHER = {Springer-Verlag},
- YEAR = {1995}
-}
-
-@PhdThesis{EG96,
- author = {E. Gim\'enez},
- title = {A Calculus of Infinite Constructions and its
- application to the verification of communicating systems},
- school = {Ecole Normale Sup\'erieure de Lyon},
- year = {1996}
-}
-
-@ARTICLE{BaCo85,
- AUTHOR = {J.L. Bates and R.L. Constable},
- JOURNAL = {ACM transactions on Programming Languages and Systems},
- TITLE = {Proofs as {Programs}},
- VOLUME = {7},
- YEAR = {1985}
-}
-
-@BOOK{Bar81,
- AUTHOR = {H.P. Barendregt},
- PUBLISHER = {North-Holland},
- TITLE = {The Lambda Calculus its Syntax and Semantics},
- YEAR = {1981}
-}
-
-@TECHREPORT{Bar91,
- AUTHOR = {H. Barendregt},
- INSTITUTION = {Catholic University Nijmegen},
- NOTE = {In Handbook of Logic in Computer Science, Vol II},
- NUMBER = {91-19},
- TITLE = {Lambda {Calculi with Types}},
- YEAR = {1991}
-}
-
-@BOOK{Bastad92,
- EDITOR = {B. Nordstr\"om and K. Petersson and G. Plotkin},
- PUBLISHER = {Available by ftp at site ftp.inria.fr},
- TITLE = {Proceedings of the 1992 Workshop on Types for Proofs and Programs},
- YEAR = {1992}
-}
-
-@BOOK{Bee85,
- AUTHOR = {M.J. Beeson},
- PUBLISHER = {Springer-Verlag},
- TITLE = {Foundations of Constructive Mathematics, Metamathematical Studies},
- YEAR = {1985}
-}
-
-@ARTICLE{BeKe92,
- AUTHOR = {G. Bellin and J. Ketonen},
- JOURNAL = {Theoretical Computer Science},
- PAGES = {115--142},
- TITLE = {A decision procedure revisited : Notes on direct logic, linear logic and its implementation},
- VOLUME = {95},
- YEAR = {1992}
-}
-
-@BOOK{Bis67,
- AUTHOR = {E. Bishop},
- PUBLISHER = {McGraw-Hill},
- TITLE = {Foundations of Constructive Analysis},
- YEAR = {1967}
-}
-
-@BOOK{BoMo79,
- AUTHOR = {R.S. Boyer and J.S. Moore},
- KEY = {BoMo79},
- PUBLISHER = {Academic Press},
- SERIES = {ACM Monograph},
- TITLE = {A computational logic},
- YEAR = {1979}
-}
-
-@MASTERSTHESIS{Bou92,
- AUTHOR = {S. Boutin},
- MONTH = sep,
- SCHOOL = {{Universit\'e Paris 7}},
- TITLE = {Certification d'un compilateur {ML en Coq}},
- YEAR = {1992}
-}
-
-@ARTICLE{Bru72,
- AUTHOR = {N.J. de Bruijn},
- JOURNAL = {Indag. Math.},
- TITLE = {{Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem}},
- VOLUME = {34},
- YEAR = {1972}
-}
-
-@INCOLLECTION{Bru80,
- AUTHOR = {N.J. de Bruijn},
- BOOKTITLE = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.},
- EDITOR = {J.P. Seldin and J.R. Hindley},
- PUBLISHER = {Academic Press},
- TITLE = {A survey of the project {Automath}},
- YEAR = {1980}
-}
-
-@TECHREPORT{Leroy90,
- AUTHOR = {X. Leroy},
- TITLE = {The {ZINC} experiment: an economical implementation
-of the {ML} language},
- INSTITUTION = {INRIA},
- NUMBER = {117},
- YEAR = {1990}
-}
-
-@BOOK{Caml,
- AUTHOR = {P. Weis and X. Leroy},
- PUBLISHER = {InterEditions},
- TITLE = {Le langage Caml},
- YEAR = {1993}
-}
-
-@TECHREPORT{CoC89,
- AUTHOR = {Projet Formel},
- INSTITUTION = {INRIA},
- NUMBER = {110},
- TITLE = {{The Calculus of Constructions. Documentation and user's guide, Version 4.10}},
- YEAR = {1989}
-}
-
-@INPROCEEDINGS{CoHu85a,
- AUTHOR = {Th. Coquand and G. Huet},
- ADDRESS = {Linz},
- BOOKTITLE = {EUROCAL'85},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{Constructions : A Higher Order Proof System for Mechanizing Mathematics}},
- VOLUME = {203},
- YEAR = {1985}
-}
-
-@Misc{Bar98,
- author = {B. Barras},
- title = {A formalisation of
- \uppercase{B}urali-\uppercase{F}orti's paradox in Coq},
- howpublished = {Distributed within the bunch of contribution to the
- Coq system},
- year = {1998},
- month = {March},
- note = {\texttt{http://pauillac.inria.fr/coq}}
-}
-
-
-@INPROCEEDINGS{CoHu85b,
- AUTHOR = {Th. Coquand and G. Huet},
- BOOKTITLE = {Logic Colloquium'85},
- EDITOR = {The Paris Logic Group},
- PUBLISHER = {North-Holland},
- TITLE = {{Concepts Math\'ematiques et Informatiques formalis\'es dans le Calcul des Constructions}},
- YEAR = {1987}
-}
-
-@ARTICLE{CoHu86,
- AUTHOR = {Th. Coquand and G. Huet},
- JOURNAL = {Information and Computation},
- NUMBER = {2/3},
- TITLE = {The {Calculus of Constructions}},
- VOLUME = {76},
- YEAR = {1988}
-}
-
-@BOOK{Con86,
- AUTHOR = {R.L. {Constable et al.}},
- PUBLISHER = {Prentice-Hall},
- TITLE = {{Implementing Mathematics with the Nuprl Proof Development System}},
- YEAR = {1986}
-}
-
-@INPROCEEDINGS{CoPa89,
- AUTHOR = {Th. Coquand and C. Paulin-Mohring},
- BOOKTITLE = {Proceedings of Colog'88},
- EDITOR = {P. Martin-L{\"o}f and G. Mints},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {Inductively defined types},
- VOLUME = {417},
- YEAR = {1990}
-}
-
-@PHDTHESIS{Coq85,
- AUTHOR = {Th. Coquand},
- MONTH = jan,
- SCHOOL = {Universit\'e Paris~7},
- TITLE = {Une Th\'eorie des Constructions},
- YEAR = {1985}
-}
-
-@INPROCEEDINGS{Coq86,
- AUTHOR = {Th. Coquand},
- ADDRESS = {Cambridge, MA},
- BOOKTITLE = {Symposium on Logic in Computer Science},
- PUBLISHER = {IEEE Computer Society Press},
- TITLE = {{An Analysis of Girard's Paradox}},
- YEAR = {1986}
-}
-
-@INPROCEEDINGS{Coq90,
- AUTHOR = {Th. Coquand},
- BOOKTITLE = {Logic and Computer Science},
- EDITOR = {P. Oddifredi},
- NOTE = {INRIA Research Report 1088, also in~\cite{CoC89}},
- PUBLISHER = {Academic Press},
- TITLE = {{Metamathematical Investigations of a Calculus of Constructions}},
- YEAR = {1990}
-}
-
-@INPROCEEDINGS{Coq92,
- AUTHOR = {Th. Coquand},
- BOOKTITLE = {in \cite{Bastad92}},
- TITLE = {{Pattern Matching with Dependent Types}},
- YEAR = {1992},
- crossref = {Bastad92}
-}
-
-@TECHREPORT{COQ93,
- AUTHOR = {G. Dowek and A. Felty and H. Herbelin and G. Huet and C. Murthy and C. Parent and C. Paulin-Mohring and B. Werner},
- INSTITUTION = {INRIA},
- MONTH = may,
- NUMBER = {154},
- TITLE = {{The Coq Proof Assistant User's Guide Version 5.8}},
- YEAR = {1993}
-}
-
-@INPROCEEDINGS{Coquand93,
- AUTHOR = {Th. Coquand},
- BOOKTITLE = {in \cite{Nijmegen93}},
- TITLE = {{Infinite Objects in Type Theory}},
- YEAR = {1993},
- crossref = {Nijmegen93}
-}
-
-@MASTERSTHESIS{Cou94a,
- AUTHOR = {J. Courant},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique, ENS Lyon},
- TITLE = {Explicitation de preuves par r\'ecurrence implicite},
- YEAR = {1994}
-}
-
-@TECHREPORT{CPar93,
- AUTHOR = {C. Parent},
- INSTITUTION = {Ecole {Normale} {Sup\'erieure} de {Lyon}},
- MONTH = oct,
- NOTE = {Also in~\cite{Nijmegen93}},
- NUMBER = {93-29},
- TITLE = {Developing certified programs in the system {Coq}- {The} {Program} tactic},
- YEAR = {1993}
-}
-
-@PHDTHESIS{CPar95,
- AUTHOR = {C. Parent},
- SCHOOL = {Ecole {Normale} {Sup\'erieure} de {Lyon}},
- TITLE = {{Synth\`ese de preuves de programmes dans le Calcul des Constructions Inductives}},
- YEAR = {1995}
-}
-
-@TECHREPORT{Dow90,
- AUTHOR = {G. Dowek},
- INSTITUTION = {INRIA},
- NUMBER = {1283},
- TITLE = {{Naming and Scoping in a Mathematical Vernacular}},
- TYPE = {Research Report},
- YEAR = {1990}
-}
-
-@ARTICLE{Dow91a,
- AUTHOR = {G. Dowek},
- JOURNAL = {{Compte Rendu de l'Acad\'emie des Sciences}},
- NOTE = {(The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors)},
- NUMBER = {12},
- PAGES = {951--956},
- TITLE = {{L'Ind\'ecidabilit\'e du Filtrage du Troisi\`eme Ordre dans les Calculs avec Types D\'ependants ou Constructeurs de Types}},
- VOLUME = {I, 312},
- YEAR = {1991}
-}
-
-@INPROCEEDINGS{Dow91b,
- AUTHOR = {G. Dowek},
- BOOKTITLE = {Proceedings of Mathematical Foundation of Computer Science},
- NOTE = {Also INRIA Research Report},
- PAGES = {151--160},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{A Second Order Pattern Matching Algorithm in the Cube of Typed {$\lambda$}-calculi}},
- VOLUME = {520},
- YEAR = {1991}
-}
-
-@PHDTHESIS{Dow91c,
- AUTHOR = {G. Dowek},
- MONTH = dec,
- SCHOOL = {{Universit\'e Paris 7}},
- TITLE = {{D\'emonstration automatique dans le Calcul des Constructions}},
- YEAR = {1991}
-}
-
-@ARTICLE{dowek93,
- AUTHOR = {G. Dowek},
- TITLE = {{A Complete Proof Synthesis Method for the Cube of Type Systems}},
- JOURNAL = {Journal Logic Computation},
- VOLUME = {3},
- NUMBER = {3},
- PAGES = {287--315},
- MONTH = {June},
- YEAR = {1993}
-}
-
-@UNPUBLISHED{Dow92a,
- AUTHOR = {G. Dowek},
- NOTE = {To appear in Theoretical Computer Science},
- TITLE = {{The Undecidability of Pattern Matching in Calculi where Primitive Recursive Functions are Representable}},
- YEAR = {1992}
-}
-
-@ARTICLE{Dow94a,
- AUTHOR = {G. Dowek},
- JOURNAL = {Annals of Pure and Applied Logic},
- VOLUME = {69},
- PAGES = {135--155},
- TITLE = {Third order matching is decidable},
- YEAR = {1994}
-}
-
-@INPROCEEDINGS{Dow94b,
- AUTHOR = {G. Dowek},
- BOOKTITLE = {Proceedings of the second international conference on typed lambda calculus and applications},
- TITLE = {{Lambda-calculus, Combinators and the Comprehension Schema}},
- YEAR = {1995}
-}
-
-@INPROCEEDINGS{Dyb91,
- AUTHOR = {P. Dybjer},
- BOOKTITLE = {Logical Frameworks},
- EDITOR = {G. Huet and G. Plotkin},
- PAGES = {59--79},
- PUBLISHER = {Cambridge University Press},
- TITLE = {{Inductive sets and families in {Martin-L{\"o}f's Type Theory} and their set-theoretic semantics : An inversion principle for {Martin-L\"of's} type theory}},
- VOLUME = {14},
- YEAR = {1991}
-}
-
-@ARTICLE{Dyc92,
- AUTHOR = {Roy Dyckhoff},
- JOURNAL = {The Journal of Symbolic Logic},
- MONTH = sep,
- NUMBER = {3},
- TITLE = {Contraction-free sequent calculi for intuitionistic logic},
- VOLUME = {57},
- YEAR = {1992}
-}
-
-@MASTERSTHESIS{Fil94,
- AUTHOR = {J.-C. Filli\^atre},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique, ENS Lyon},
- TITLE = {Une proc\'edure de d\'ecision pour le {C}alcul des {P}r\'edicats {D}irect. {E}tude et impl\'ementation dans le syst\`eme {C}oq},
- YEAR = {1994}
-}
-
-@TECHREPORT{Filliatre95,
- AUTHOR = {J.-C. Filli\^atre},
- INSTITUTION = {LIP-ENS-Lyon},
- TITLE = {{A decision procedure for Direct Predicate Calculus}},
- TYPE = {Research report},
- NUMBER = {96--25},
- YEAR = {1995}
-}
-
-@UNPUBLISHED{Fle90,
- AUTHOR = {E. Fleury},
- MONTH = jul,
- NOTE = {Rapport de Stage},
- TITLE = {Implantation des algorithmes de {Floyd et de Dijkstra} dans le {Calcul des Constructions}},
- YEAR = {1990}
-}
-
-
-@TechReport{Gim98,
- author = {E. Gim\'nez},
- title = {A Tutorial on Recursive Types in Coq},
- institution = {INRIA},
- year = {1998}
-}
-
-@TECHREPORT{HKP97,
- author = {G. Huet and G. Kahn and Ch. Paulin-Mohring},
- title = {The {Coq} Proof Assistant - A tutorial, Version 6.1},
- institution = {INRIA},
- type = {rapport technique},
- month = {Août},
- year = {1997},
- note = {Version révisée distribuée avec {Coq}},
- number = {204},
-}
-
-<<<<<<< biblio.bib
-
-
-=======
->>>>>>> 1.4
-@INPROCEEDINGS{Gir70,
- AUTHOR = {J.-Y. Girard},
- BOOKTITLE = {Proceedings of the 2nd Scandinavian Logic Symposium},
- PUBLISHER = {North-Holland},
- TITLE = {Une extension de l'interpr\'etation de {G\"odel} \`a l'analyse, et son application \`a l'\'elimination des coupures dans l'analyse et la th\'eorie des types},
- YEAR = {1970}
-}
-
-@PHDTHESIS{Gir72,
- AUTHOR = {J.-Y. Girard},
- SCHOOL = {Universit\'e Paris~7},
- TITLE = {Interpr\'etation fonctionnelle et \'elimination des coupures de l'arithm\'etique d'ordre sup\'erieur},
- YEAR = {1972}
-}
-
-@BOOK{Gir89,
- AUTHOR = {J.-Y. Girard and Y. Lafont and P. Taylor},
- PUBLISHER = {Cambridge University Press},
- SERIES = {Cambridge Tracts in Theoretical Computer Science 7},
- TITLE = {Proofs and Types},
- YEAR = {1989}
-}
-
-@MASTERSTHESIS{Hir94,
- AUTHOR = {D. Hirschkoff},
- MONTH = sep,
- SCHOOL = {DEA IARFA, Ecole des Ponts et Chauss\'ees, Paris},
- TITLE = {{Ecriture d'une tactique arithm\'etique pour le syst\`eme Coq}},
- YEAR = {1994}
-}
-
-@INCOLLECTION{How80,
- AUTHOR = {W.A. Howard},
- BOOKTITLE = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.},
- EDITOR = {J.P. Seldin and J.R. Hindley},
- NOTE = {Unpublished 1969 Manuscript},
- PUBLISHER = {Academic Press},
- TITLE = {The Formulae-as-Types Notion of Constructions},
- YEAR = {1980}
-}
-
-@INCOLLECTION{HuetLevy79,
- AUTHOR = {G. Huet and J.-J. L\'{e}vy},
- TITLE = {Call by Need Computations in Non-Ambigous
-Linear Term Rewriting Systems},
- NOTE = {Also research report 359, INRIA, 1979},
- BOOKTITLE = {Computational Logic, Essays in Honor of
-Alan Robinson},
- EDITOR = {J.-L. Lassez and G. Plotkin},
- PUBLISHER = {The MIT press},
- YEAR = {1991}
-}
-
-@INPROCEEDINGS{Hue87,
- AUTHOR = {G. Huet},
- BOOKTITLE = {Programming of Future Generation Computers},
- EDITOR = {K. Fuchi and M. Nivat},
- NOTE = {Also in Proceedings of TAPSOFT87, LNCS 249, Springer-Verlag, 1987, pp 276--286},
- PUBLISHER = {Elsevier Science},
- TITLE = {Induction Principles Formalized in the {Calculus of Constructions}},
- YEAR = {1988}
-}
-
-@INPROCEEDINGS{Hue88,
- AUTHOR = {G. Huet},
- BOOKTITLE = {A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney},
- EDITOR = {R. Narasimhan},
- NOTE = {Also in~\cite{CoC89}},
- PUBLISHER = {World Scientific Publishing},
- TITLE = {{The Constructive Engine}},
- YEAR = {1989}
-}
-
-@BOOK{Hue89,
- EDITOR = {G. Huet},
- PUBLISHER = {Addison-Wesley},
- SERIES = {The UT Year of Programming Series},
- TITLE = {Logical Foundations of Functional Programming},
- YEAR = {1989}
-}
-
-@INPROCEEDINGS{Hue92,
- AUTHOR = {G. Huet},
- BOOKTITLE = {Proceedings of 12th FST/TCS Conference, New Delhi},
- PAGES = {229--240},
- PUBLISHER = {Springer Verlag},
- SERIES = {LNCS},
- TITLE = {{The Gallina Specification Language : A case study}},
- VOLUME = {652},
- YEAR = {1992}
-}
-
-@ARTICLE{Hue94,
- AUTHOR = {G. Huet},
- JOURNAL = {J. Functional Programming},
- PAGES = {371--394},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Residual theory in $\lambda$-calculus: a formal development},
- VOLUME = {4,3},
- YEAR = {1994}
-}
-
-@ARTICLE{KeWe84,
- AUTHOR = {J. Ketonen and R. Weyhrauch},
- JOURNAL = {Theoretical Computer Science},
- PAGES = {297--307},
- TITLE = {A decidable fragment of {P}redicate {C}alculus},
- VOLUME = {32},
- YEAR = {1984}
-}
-
-@BOOK{Kle52,
- AUTHOR = {S.C. Kleene},
- PUBLISHER = {North-Holland},
- SERIES = {Bibliotheca Mathematica},
- TITLE = {Introduction to Metamathematics},
- YEAR = {1952}
-}
-
-@BOOK{Kri90,
- AUTHOR = {J.-L. Krivine},
- PUBLISHER = {Masson},
- SERIES = {Etudes et recherche en informatique},
- TITLE = {Lambda-calcul {types et mod\`eles}},
- YEAR = {1990}
-}
-
-@ARTICLE{Laville91,
- AUTHOR = {A. Laville},
- TITLE = {Comparison of Priority Rules in Pattern
-Matching and Term Rewriting},
- JOURNAL = {Journal of Symbolic Computation},
- VOLUME = {11},
- PAGES = {321--347},
- YEAR = {1991}
-}
-
-@BOOK{LE92,
- EDITOR = {G. Huet and G. Plotkin},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Logical Environments},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{LePa94,
- AUTHOR = {F. Leclerc and C. Paulin-Mohring},
- BOOKTITLE = {{Types for Proofs and Programs, Types' 93}},
- EDITOR = {H. Barendregt and T. Nipkow},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{Programming with Streams in Coq. A case study : The Sieve of Eratosthenes}},
- VOLUME = {806},
- YEAR = {1994}
-}
-
-@BOOK{LF91,
- EDITOR = {G. Huet and G. Plotkin},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Logical Frameworks},
- YEAR = {1991}
-}
-
-@BOOK{MaL84,
- AUTHOR = {{P. Martin-L\"of}},
- PUBLISHER = {Bibliopolis},
- SERIES = {Studies in Proof Theory},
- TITLE = {Intuitionistic Type Theory},
- YEAR = {1984}
-}
-
-@INPROCEEDINGS{manoury94,
- AUTHOR = {P. Manoury},
- TITLE = {{A User's Friendly Syntax to Define
-Recursive Functions as Typed $\lambda-$Terms}},
- BOOKTITLE = {{Types for Proofs and Programs, TYPES'94}},
- SERIES = {LNCS},
- VOLUME = {996},
- MONTH = jun,
- YEAR = {1994}
-}
-
-@ARTICLE{MaSi94,
- AUTHOR = {P. Manoury and M. Simonot},
- JOURNAL = {TCS},
- TITLE = {Automatizing termination proof of recursively defined function},
- YEAR = {To appear}
-}
-
-@TECHREPORT{maranget94,
- AUTHOR = {L. Maranget},
- INSTITUTION = {INRIA},
- NUMBER = {2385},
- TITLE = {{Two Techniques for Compiling Lazy Pattern Matching}},
- YEAR = {1994}
-}
-
-@INPROCEEDINGS{Moh89a,
- AUTHOR = {C. Paulin-Mohring},
- ADDRESS = {Austin},
- BOOKTITLE = {Sixteenth Annual ACM Symposium on Principles of Programming Languages},
- MONTH = jan,
- PUBLISHER = {ACM},
- TITLE = {Extracting ${F}_{\omega}$'s programs from proofs in the {Calculus of Constructions}},
- YEAR = {1989}
-}
-
-@PHDTHESIS{Moh89b,
- AUTHOR = {C. Paulin-Mohring},
- MONTH = jan,
- SCHOOL = {{Universit\'e Paris 7}},
- TITLE = {Extraction de programmes dans le {Calcul des Constructions}},
- YEAR = {1989}
-}
-
-@INPROCEEDINGS{Moh93,
- AUTHOR = {C. Paulin-Mohring},
- BOOKTITLE = {Proceedings of the conference Typed Lambda Calculi and Applications},
- EDITOR = {M. Bezem and J.-F. Groote},
- NOTE = {Also LIP research report 92-49, ENS Lyon},
- NUMBER = {664},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{Inductive Definitions in the System Coq - Rules and Properties}},
- YEAR = {1993}
-}
-
-@MASTERSTHESIS{Mun94,
- AUTHOR = {C. Mu\~noz},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique Fondamentale, Universit\'e Paris 7},
- TITLE = {D\'emonstration automatique dans la logique propositionnelle intuitionniste},
- YEAR = {1994}
-}
-
-@BOOK{Nijmegen93,
- EDITOR = {H. Barendregt and T. Nipkow},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {Types for Proofs and Programs},
- VOLUME = {806},
- YEAR = {1994}
-}
-
-@BOOK{NoPS90,
- AUTHOR = {B. {Nordstr\"om} and K. Peterson and J. Smith},
- BOOKTITLE = {Information Processing 83},
- PUBLISHER = {Oxford Science Publications},
- SERIES = {International Series of Monographs on Computer Science},
- TITLE = {Programming in {Martin-L\"of's} Type Theory},
- YEAR = {1990}
-}
-
-@ARTICLE{Nor88,
- AUTHOR = {B. {Nordstr\"om}},
- JOURNAL = {BIT},
- TITLE = {Terminating General Recursion},
- VOLUME = {28},
- YEAR = {1988}
-}
-
-@BOOK{Odi90,
- EDITOR = {P. Odifreddi},
- PUBLISHER = {Academic Press},
- TITLE = {Logic and Computer Science},
- YEAR = {1990}
-}
-
-@INPROCEEDINGS{PaMS92,
- AUTHOR = {M. Parigot and P. Manoury and M. Simonot},
- ADDRESS = {St. Petersburg, Russia},
- BOOKTITLE = {Logic Programming and automated reasoning},
- EDITOR = {A. Voronkov},
- MONTH = jul,
- NUMBER = {624},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{ProPre : A Programming language with proofs}},
- YEAR = {1992}
-}
-
-@ARTICLE{Par92,
- AUTHOR = {M. Parigot},
- JOURNAL = {Theoretical Computer Science},
- NUMBER = {2},
- PAGES = {335--356},
- TITLE = {{Recursive Programming with Proofs}},
- VOLUME = {94},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{Parent95b,
- AUTHOR = {C. Parent},
- BOOKTITLE = {{Mathematics of Program Construction'95}},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{Synthesizing proofs from programs in
-the Calculus of Inductive Constructions}},
- VOLUME = {947},
- YEAR = {1995}
-}
-
-@ARTICLE{PaWe92,
- AUTHOR = {C. Paulin-Mohring and B. Werner},
- JOURNAL = {Journal of Symbolic Computation},
- PAGES = {607--640},
- TITLE = {{Synthesis of ML programs in the system Coq}},
- VOLUME = {15},
- YEAR = {1993}
-}
-
-@INPROCEEDINGS{Prasad93,
- AUTHOR = {K.V. Prasad},
- BOOKTITLE = {{Proceedings of CONCUR'93}},
- PUBLISHER = {Springer-Verlag},
- SERIES = {LNCS},
- TITLE = {{Programming with broadcasts}},
- VOLUME = {715},
- YEAR = {1993}
-}
-
-@INPROCEEDINGS{puel-suarez90,
- AUTHOR = {L.Puel and A. Su\'arez},
- BOOKTITLE = {{Conference Lisp and Functional Programming}},
- SERIES = {ACM},
- PUBLISHER = {Springer-Verlag},
- TITLE = {{Compiling Pattern Matching by Term
-Decomposition}},
- YEAR = {1990}
-}
-
-@UNPUBLISHED{Rou92,
- AUTHOR = {J. Rouyer},
- MONTH = aug,
- NOTE = {To appear as a technical report},
- TITLE = {{D\'eveloppement de l'Algorithme d'Unification dans le Calcul des Constructions}},
- YEAR = {1992}
-}
-
-@TECHREPORT{Saibi94,
- AUTHOR = {A. Sa\"{\i}bi},
- INSTITUTION = {INRIA},
- MONTH = dec,
- NUMBER = {2345},
- TITLE = {{Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System}},
- YEAR = {1994}
-}
-
-@MASTERSTHESIS{saidi94,
- AUTHOR = {H. Saidi},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique Fondamentale, Universit\'e Paris 7},
- TITLE = {R\'esolution d'\'equations dans le syst\`eme T
- de G\"odel},
- YEAR = {1994}
-}
-
-@MASTERSTHESIS{Ter92,
- AUTHOR = {D. Terrasse},
- MONTH = sep,
- SCHOOL = {IARFA},
- TITLE = {{Traduction de TYPOL en COQ. Application \`a Mini ML}},
- YEAR = {1992}
-}
-
-@TECHREPORT{ThBeKa92,
- AUTHOR = {L. Th\'ery and Y. Bertot and G. Kahn},
- INSTITUTION = {INRIA Sophia},
- MONTH = may,
- NUMBER = {1684},
- TITLE = {Real theorem provers deserve real user-interfaces},
- TYPE = {Research Report},
- YEAR = {1992}
-}
-
-@BOOK{TrDa89,
- AUTHOR = {A.S. Troelstra and D. van Dalen},
- PUBLISHER = {North-Holland},
- SERIES = {Studies in Logic and the foundations of Mathematics, volumes 121 and 123},
- TITLE = {Constructivism in Mathematics, an introduction},
- YEAR = {1988}
-}
-
-@INCOLLECTION{wadler87,
- AUTHOR = {P. Wadler},
- TITLE = {Efficient Compilation of Pattern Matching},
- BOOKTITLE = {The Implementation of Functional Programming
-Languages},
- EDITOR = {S.L. Peyton Jones},
- PUBLISHER = {Prentice-Hall},
- YEAR = {1987}
-}
-
-@PHDTHESIS{Wer94,
- AUTHOR = {B. Werner},
- SCHOOL = {Universit\'e Paris 7},
- TITLE = {Une th\'eorie des constructions inductives},
- TYPE = {Th\`ese de Doctorat},
- YEAR = {1994}
-}
-
-
diff --git a/doc/RecTutorial/morebib.bib b/doc/RecTutorial/morebib.bib
deleted file mode 100644
index 11dde2cd..00000000
--- a/doc/RecTutorial/morebib.bib
+++ /dev/null
@@ -1,55 +0,0 @@
-@book{coqart,
- title = "Interactive Theorem Proving and Program Development.
- Coq'Art: The Calculus of Inductive Constructions",
- author = "Yves Bertot and Pierre Castéran",
- publisher = "Springer Verlag",
- series = "Texts in Theoretical Computer Science. An EATCS series",
- year = 2004
-}
-
-@Article{Coquand:Huet,
- author = {Thierry Coquand and Gérard Huet},
- title = {The Calculus of Constructions},
- journal = {Information and Computation},
- year = {1988},
- volume = {76},
-}
-
-@INcollection{Coquand:metamathematical,
- author = "Thierry Coquand",
- title = "Metamathematical Investigations on a Calculus of Constructions",
- booktitle="Logic and Computer Science",
- year = {1990},
- editor="P. Odifreddi",
- publisher = "Academic Press",
-}
-
-@Misc{coqrefman,
- title = {The {C}oq reference manual},
- author={{C}oq {D}evelopment Team},
- note= {LogiCal Project, \texttt{http://coq.inria.fr/}}
- }
-
-@Misc{coqsite,
- author= {{C}oq {D}evelopment Team},
- title = {The \emph{Coq} proof assistant},
- note = {Documentation, system download. {C}ontact: \texttt{http://coq.inria.fr/}}
-}
-
-
-
-@Misc{Booksite,
- author = {Yves Bertot and Pierre Cast\'eran},
- title = {Coq'{A}rt: examples and exercises},
- note = {\url{http://www.labri.fr/Perso/~casteran/CoqArt}}
-}
-
-
-@InProceedings{conor:motive,
- author ="Conor McBride",
- title = "Elimination with a motive",
- booktitle = "Types for Proofs and Programs'2000",
- volume = 2277,
- pages = "197-217",
- year = "2002",
-}
diff --git a/doc/RecTutorial/recmacros.tex b/doc/RecTutorial/recmacros.tex
deleted file mode 100644
index 0334553f..00000000
--- a/doc/RecTutorial/recmacros.tex
+++ /dev/null
@@ -1,75 +0,0 @@
-%===================================
-% Style of the document
-%===================================
-%\newtheorem{example}{Example}[section]
-%\newtheorem{exercise}{Exercise}[section]
-
-
-\newcommand{\comentario}[1]{\texttt{#1}}
-
-%===================================
-% Keywords
-%===================================
-
-\newcommand{\Prop}{\texttt{Prop}}
-\newcommand{\Set}{\texttt{Set}}
-\newcommand{\Type}{\texttt{Type}}
-\newcommand{\true}{\texttt{true}}
-\newcommand{\false}{\texttt{false}}
-\newcommand{\Lth}{\texttt{Lth}}
-
-\newcommand{\Nat}{\texttt{nat}}
-\newcommand{\nat}{\texttt{nat}}
-\newcommand{\Z} {\texttt{O}}
-\newcommand{\SUCC}{\texttt{S}}
-\newcommand{\pred}{\texttt{pred}}
-
-\newcommand{\False}{\texttt{False}}
-\newcommand{\True}{\texttt{True}}
-\newcommand{\I}{\texttt{I}}
-
-\newcommand{\natind}{\texttt{nat\_ind}}
-\newcommand{\natrec}{\texttt{nat\_rec}}
-\newcommand{\natrect}{\texttt{nat\_rect}}
-
-\newcommand{\eqT}{\texttt{eqT}}
-\newcommand{\identityT}{\texttt{identityT}}
-
-\newcommand{\map}{\texttt{map}}
-\newcommand{\iterates}{\texttt{iterates}}
-
-
-%===================================
-% Numbering
-%===================================
-
-
-\newtheorem{definition}{Definition}[section]
-\newtheorem{example}{Example}[section]
-
-
-%===================================
-% Judgements
-%===================================
-
-
-\newcommand{\JM}[2]{\ensuremath{#1 : #2}}
-
-%===================================
-% Expressions
-%===================================
-
-\newcommand{\Case}[3][]{\ensuremath{#1\textsf{Case}~#2~\textsf of}~#3~\textsf{end}}
-
-%=======================================
-
-\newcommand{\snreglados} [3] {\begin{tabular}{c} \ensuremath{#1} \\[2pt]
- \ensuremath{#2}\\ \hline \ensuremath{#3} \end{tabular}}
-
-
-\newcommand{\snregla} [2] {\begin{tabular}{c}
- \ensuremath{#1}\\ \hline \ensuremath{#2} \end{tabular}}
-
-
-%=======================================
-
diff --git a/doc/common/macros.tex b/doc/common/macros.tex
deleted file mode 100755
index d745f34a..00000000
--- a/doc/common/macros.tex
+++ /dev/null
@@ -1,529 +0,0 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% MACROS FOR THE REFERENCE MANUAL OF COQ %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-% For commentaries (define \com as {} for the release manual)
-%\newcommand{\com}[1]{{\it(* #1 *)}}
-%\newcommand{\com}[1]{}
-
-%%OPTIONS for HACHA
-%\renewcommand{\cuttingunit}{section}
-
-
-%BEGIN LATEX
-\newenvironment{centerframe}%
-{\bgroup
-\dimen0=\textwidth
-\advance\dimen0 by -2\fboxrule
-\advance\dimen0 by -2\fboxsep
-\setbox0=\hbox\bgroup
-\begin{minipage}{\dimen0}%
-\begin{center}}%
-{\end{center}%
-\end{minipage}\egroup
-\centerline{\fbox{\box0}}\egroup
-}
-%END LATEX
-%HEVEA \newenvironment{centerframe}{\begin{center}}{\end{center}}
-
-%HEVEA \renewcommand{\vec}[1]{\mathbf{#1}}
-%\renewcommand{\ominus}{-} % Hevea does a good job translating these commands
-%\renewcommand{\oplus}{+}
-%\renewcommand{\otimes}{\times}
-%\newcommand{\land}{\wedge}
-%\newcommand{\lor}{\vee}
-%HEVEA \renewcommand{\k}[1]{#1} % \k{a} is supposed to produce a with a little stroke
-%HEVEA \newcommand{\phantom}[1]{\qquad}
-
-%%%%%%%%%%%%%%%%%%%%%%%
-% Formatting commands %
-%%%%%%%%%%%%%%%%%%%%%%%
-
-\newcommand{\ErrMsg}{\medskip \noindent {\bf Error message: }}
-\newcommand{\ErrMsgx}{\medskip \noindent {\bf Error messages: }}
-\newcommand{\variant}{\medskip \noindent {\bf Variant: }}
-\newcommand{\variants}{\medskip \noindent {\bf Variants: }}
-\newcommand{\SeeAlso}{\medskip \noindent {\bf See also: }}
-\newcommand{\Rem}{\medskip \noindent {\bf Remark: }}
-\newcommand{\Rems}{\medskip \noindent {\bf Remarks: }}
-\newcommand{\Example}{\medskip \noindent {\bf Example: }}
-\newcommand{\examples}{\medskip \noindent {\bf Examples: }}
-\newcommand{\Warning}{\medskip \noindent {\bf Warning: }}
-\newcommand{\Warns}{\medskip \noindent {\bf Warnings: }}
-\newcounter{ex}
-\newcommand{\firstexample}{\setcounter{ex}{1}}
-\newcommand{\example}[1]{
-\medskip \noindent \textbf{Example \arabic{ex}: }\textit{#1}
-\addtocounter{ex}{1}}
-
-\newenvironment{Variant}{\variant\begin{enumerate}}{\end{enumerate}}
-\newenvironment{Variants}{\variants\begin{enumerate}}{\end{enumerate}}
-\newenvironment{ErrMsgs}{\ErrMsgx\begin{enumerate}}{\end{enumerate}}
-\newenvironment{Remarks}{\Rems\begin{enumerate}}{\end{enumerate}}
-\newenvironment{Warnings}{\Warns\begin{enumerate}}{\end{enumerate}}
-\newenvironment{Examples}{\medskip\noindent{\bf Examples:}
-\begin{enumerate}}{\end{enumerate}}
-
-%\newcommand{\bd}{\noindent\bf}
-%\newcommand{\sbd}{\vspace{8pt}\noindent\bf}
-%\newcommand{\sdoll}[1]{\begin{small}$ #1~ $\end{small}}
-%\newcommand{\sdollnb}[1]{\begin{small}$ #1 $\end{small}}
-\newcommand{\kw}[1]{\textsf{#1}}
-%\newcommand{\spec}[1]{\{\,#1\,\}}
-
-% Building regular expressions
-\newcommand{\zeroone}[1]{\mbox{\sl [}#1\mbox{\sl ]}}
-%\newcommand{\zeroonemany}[1]{$\{$#1$\}$*}
-%\newcommand{\onemany}[1]{$\{$#1$\}$+}
-\newcommand{\nelist}[2]{{#1} {\tt #2}~{\ldots}~{\tt #2} {#1}}
-\newcommand{\sequence}[2]{{\sl [}{#1} {\tt #2}~{\ldots}~{\tt #2} {#1}{\sl ]}}
-\newcommand{\nelistwithoutblank}[2]{#1{\tt #2}\ldots{\tt #2}#1}
-\newcommand{\sequencewithoutblank}[2]{$[$#1{\tt #2}\ldots{\tt #2}#1$]$}
-
-% Used for RefMan-gal
-%\newcommand{\ml}[1]{\hbox{\tt{#1}}}
-%\newcommand{\op}{\,|\,}
-
-%%%%%%%%%%%%%%%%%%%%%%%%
-% Trademarks and so on %
-%%%%%%%%%%%%%%%%%%%%%%%%
-
-\newcommand{\Coq}{\textsc{Coq}}
-\newcommand{\gallina}{\textsc{Gallina}}
-\newcommand{\Gallina}{\textsc{Gallina}}
-\newcommand{\CoqIDE}{\textsc{CoqIDE}}
-\newcommand{\ocaml}{\textsc{Objective Caml}}
-\newcommand{\camlpppp}{\textsc{Camlp4}}
-\newcommand{\emacs}{\textsc{GNU Emacs}}
-\newcommand{\CIC}{\pCIC}
-\newcommand{\pCIC}{p\textsc{Cic}}
-\newcommand{\iCIC}{\textsc{Cic}}
-\newcommand{\FW}{\ensuremath{F_{\omega}}}
-\newcommand{\Program}{\textsc{Program}}
-\newcommand{\Russell}{\textsc{Russell}}
-\newcommand{\PVS}{\textsc{PVS}}
-%\newcommand{\bn}{{\sf BNF}}
-
-%%%%%%%%%%%%%%%%%%%
-% Name of tactics %
-%%%%%%%%%%%%%%%%%%%
-
-%\newcommand{\Natural}{\mbox{\tt Natural}}
-
-%%%%%%%%%%%%%%%%%
-% \rm\sl series %
-%%%%%%%%%%%%%%%%%
-
-\newcommand{\nterm}[1]{\textrm{\textsl{#1}}}
-
-\newcommand{\qstring}{\nterm{string}}
-
-%% New syntax specific entries
-\newcommand{\annotation}{\nterm{annotation}}
-\newcommand{\assums}{\nterm{assums}} % vernac
-\newcommand{\simpleassums}{\nterm{simple\_assums}} % assumptions
-\newcommand{\binder}{\nterm{binder}}
-\newcommand{\binders}{\nterm{binders}}
-\newcommand{\caseitems}{\nterm{match\_items}}
-\newcommand{\caseitem}{\nterm{match\_item}}
-\newcommand{\eqn}{\nterm{equation}}
-\newcommand{\ifitem}{\nterm{dep\_ret\_type}}
-\newcommand{\convclause}{\nterm{conversion\_clause}}
-\newcommand{\occclause}{\nterm{occurrence\_clause}}
-\newcommand{\occgoalset}{\nterm{goal\_occurrences}}
-\newcommand{\atoccurrences}{\nterm{at\_occurrences}}
-\newcommand{\occlist}{\nterm{occurrences}}
-\newcommand{\params}{\nterm{params}} % vernac
-\newcommand{\returntype}{\nterm{return\_type}}
-\newcommand{\idparams}{\nterm{ident\_with\_params}}
-\newcommand{\statkwd}{\nterm{assertion\_keyword}} % vernac
-\newcommand{\termarg}{\nterm{arg}}
-
-\newcommand{\typecstr}{\zeroone{{\tt :}~{\term}}}
-\newcommand{\typecstrwithoutblank}{\zeroone{{\tt :}{\term}}}
-
-
-\newcommand{\Fwterm}{\nterm{Fwterm}}
-\newcommand{\Index}{\nterm{index}}
-\newcommand{\abbrev}{\nterm{abbreviation}}
-\newcommand{\atomictac}{\nterm{atomic\_tactic}}
-\newcommand{\bindinglist}{\nterm{bindings\_list}}
-\newcommand{\cast}{\nterm{cast}}
-\newcommand{\cofixpointbodies}{\nterm{cofix\_bodies}}
-\newcommand{\cofixpointbody}{\nterm{cofix\_body}}
-\newcommand{\commandtac}{\nterm{tactic\_invocation}}
-\newcommand{\constructor}{\nterm{constructor}}
-\newcommand{\convtactic}{\nterm{conv\_tactic}}
-\newcommand{\assumptionkeyword}{\nterm{assumption\_keyword}}
-\newcommand{\assumption}{\nterm{assumption}}
-\newcommand{\definition}{\nterm{definition}}
-\newcommand{\digit}{\nterm{digit}}
-\newcommand{\exteqn}{\nterm{ext\_eqn}}
-\newcommand{\field}{\nterm{field}}
-\newcommand{\firstletter}{\nterm{first\_letter}}
-\newcommand{\fixpg}{\nterm{fix\_pgm}}
-\newcommand{\fixpointbodies}{\nterm{fix\_bodies}}
-\newcommand{\fixpointbody}{\nterm{fix\_body}}
-\newcommand{\fixpoint}{\nterm{fixpoint}}
-\newcommand{\flag}{\nterm{flag}}
-\newcommand{\form}{\nterm{form}}
-\newcommand{\entry}{\nterm{entry}}
-\newcommand{\proditem}{\nterm{production\_item}}
-\newcommand{\taclevel}{\nterm{tactic\_level}}
-\newcommand{\tacargtype}{\nterm{tactic\_argument\_type}}
-\newcommand{\scope}{\nterm{scope}}
-\newcommand{\delimkey}{\nterm{key}}
-\newcommand{\optscope}{\nterm{opt\_scope}}
-\newcommand{\declnotation}{\nterm{decl\_notation}}
-\newcommand{\symbolentry}{\nterm{symbol}}
-\newcommand{\modifiers}{\nterm{modifiers}}
-\newcommand{\localdef}{\nterm{local\_def}}
-\newcommand{\localdecls}{\nterm{local\_decls}}
-\newcommand{\ident}{\nterm{ident}}
-\newcommand{\accessident}{\nterm{access\_ident}}
-\newcommand{\possiblybracketedident}{\nterm{possibly\_bracketed\_ident}}
-\newcommand{\inductivebody}{\nterm{ind\_body}}
-\newcommand{\inductive}{\nterm{inductive}}
-\newcommand{\naturalnumber}{\nterm{natural}}
-\newcommand{\integer}{\nterm{integer}}
-\newcommand{\multpattern}{\nterm{mult\_pattern}}
-\newcommand{\mutualcoinductive}{\nterm{mutual\_coinductive}}
-\newcommand{\mutualinductive}{\nterm{mutual\_inductive}}
-\newcommand{\nestedpattern}{\nterm{nested\_pattern}}
-\newcommand{\name}{\nterm{name}}
-\newcommand{\num}{\nterm{num}}
-\newcommand{\pattern}{\nterm{pattern}} % pattern for pattern-matching
-\newcommand{\orpattern}{\nterm{or\_pattern}}
-\newcommand{\intropattern}{\nterm{intro\_pattern}}
-\newcommand{\disjconjintropattern}{\nterm{disj\_conj\_intro\_pattern}}
-\newcommand{\namingintropattern}{\nterm{naming\_intro\_pattern}}
-\newcommand{\termpattern}{\nterm{term\_pattern}} % term with holes
-\newcommand{\pat}{\nterm{pat}}
-\newcommand{\pgs}{\nterm{pgms}}
-\newcommand{\pg}{\nterm{pgm}}
-%BEGIN LATEX
-\newcommand{\proof}{\nterm{proof}}
-%END LATEX
-%HEVEA \renewcommand{\proof}{\nterm{proof}}
-\newcommand{\record}{\nterm{record}}
-\newcommand{\rewrule}{\nterm{rewriting\_rule}}
-\newcommand{\sentence}{\nterm{sentence}}
-\newcommand{\simplepattern}{\nterm{simple\_pattern}}
-\newcommand{\sort}{\nterm{sort}}
-\newcommand{\specif}{\nterm{specif}}
-\newcommand{\assertion}{\nterm{assertion}}
-\newcommand{\str}{\nterm{string}}
-\newcommand{\subsequentletter}{\nterm{subsequent\_letter}}
-\newcommand{\switch}{\nterm{switch}}
-\newcommand{\messagetoken}{\nterm{message\_token}}
-\newcommand{\tac}{\nterm{tactic}}
-\newcommand{\terms}{\nterm{terms}}
-\newcommand{\term}{\nterm{term}}
-\newcommand{\module}{\nterm{module}}
-\newcommand{\modexpr}{\nterm{module\_expression}}
-\newcommand{\modtype}{\nterm{module\_type}}
-\newcommand{\onemodbinding}{\nterm{module\_binding}}
-\newcommand{\modbindings}{\nterm{module\_bindings}}
-\newcommand{\qualid}{\nterm{qualid}}
-\newcommand{\qualidorstring}{\nterm{qualid\_or\_string}}
-\newcommand{\class}{\nterm{class}}
-\newcommand{\dirpath}{\nterm{dirpath}}
-\newcommand{\typedidents}{\nterm{typed\_idents}}
-\newcommand{\type}{\nterm{type}}
-\newcommand{\vref}{\nterm{ref}}
-\newcommand{\zarithformula}{\nterm{zarith\_formula}}
-\newcommand{\zarith}{\nterm{zarith}}
-\newcommand{\ltac}{\mbox{${\cal L}_{tac}$}}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% \mbox{\sf } series for roman text in maths formulas %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\newcommand{\alors}{\mbox{\textsf{then}}}
-\newcommand{\alter}{\mbox{\textsf{alter}}}
-\newcommand{\bool}{\mbox{\textsf{bool}}}
-\newcommand{\conc}{\mbox{\textsf{conc}}}
-\newcommand{\cons}{\mbox{\textsf{cons}}}
-\newcommand{\consf}{\mbox{\textsf{consf}}}
-\newcommand{\emptyf}{\mbox{\textsf{emptyf}}}
-\newcommand{\EqSt}{\mbox{\textsf{EqSt}}}
-\newcommand{\false}{\mbox{\textsf{false}}}
-\newcommand{\filter}{\mbox{\textsf{filter}}}
-\newcommand{\forest}{\mbox{\textsf{forest}}}
-\newcommand{\from}{\mbox{\textsf{from}}}
-\newcommand{\hd}{\mbox{\textsf{hd}}}
-\newcommand{\Length}{\mbox{\textsf{Length}}}
-\newcommand{\length}{\mbox{\textsf{length}}}
-\newcommand{\LengthA}{\mbox {\textsf{Length\_A}}}
-\newcommand{\List}{\mbox{\textsf{List}}}
-\newcommand{\ListA}{\mbox{\textsf{List\_A}}}
-\newcommand{\LNil}{\mbox{\textsf{Lnil}}}
-\newcommand{\LCons}{\mbox{\textsf{Lcons}}}
-\newcommand{\nat}{\mbox{\textsf{nat}}}
-\newcommand{\nO}{\mbox{\textsf{O}}}
-\newcommand{\nS}{\mbox{\textsf{S}}}
-\newcommand{\node}{\mbox{\textsf{node}}}
-\newcommand{\Nil}{\mbox{\textsf{nil}}}
-\newcommand{\Prop}{\mbox{\textsf{Prop}}}
-\newcommand{\Set}{\mbox{\textsf{Set}}}
-\newcommand{\si}{\mbox{\textsf{if}}}
-\newcommand{\sinon}{\mbox{\textsf{else}}}
-\newcommand{\Str}{\mbox{\textsf{Stream}}}
-\newcommand{\tl}{\mbox{\textsf{tl}}}
-\newcommand{\tree}{\mbox{\textsf{tree}}}
-\newcommand{\true}{\mbox{\textsf{true}}}
-\newcommand{\Type}{\mbox{\textsf{Type}}}
-\newcommand{\unfold}{\mbox{\textsf{unfold}}}
-\newcommand{\zeros}{\mbox{\textsf{zeros}}}
-
-%%%%%%%%%
-% Misc. %
-%%%%%%%%%
-\newcommand{\T}{\texttt{T}}
-\newcommand{\U}{\texttt{U}}
-\newcommand{\real}{\textsf{Real}}
-\newcommand{\Data}{\textit{Data}}
-\newcommand{\In} {{\textbf{in }}}
-\newcommand{\AND} {{\textbf{and}}}
-\newcommand{\If}{{\textbf{if }}}
-\newcommand{\Else}{{\textbf{else }}}
-\newcommand{\Then} {{\textbf{then }}}
-%\newcommand{\Let}{{\textbf{let }}} % looks like this is never used
-\newcommand{\Where}{{\textbf{where rec }}}
-\newcommand{\Function}{{\textbf{function }}}
-\newcommand{\Rec}{{\textbf{rec }}}
-%\newcommand{\cn}{\centering}
-\newcommand{\nth}{\mbox{$^{\mbox{\scriptsize th}}$}}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Math commands and symbols %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\newcommand{\la}{\leftarrow}
-\newcommand{\ra}{\rightarrow}
-\newcommand{\Ra}{\Rightarrow}
-\newcommand{\rt}{\Rightarrow}
-\newcommand{\lla}{\longleftarrow}
-\newcommand{\lra}{\longrightarrow}
-\newcommand{\Llra}{\Longleftrightarrow}
-\newcommand{\mt}{\mapsto}
-\newcommand{\ov}{\overrightarrow}
-\newcommand{\wh}{\widehat}
-\newcommand{\up}{\uparrow}
-\newcommand{\dw}{\downarrow}
-\newcommand{\nr}{\nearrow}
-\newcommand{\se}{\searrow}
-\newcommand{\sw}{\swarrow}
-\newcommand{\nw}{\nwarrow}
-\newcommand{\mto}{,}
-
-\newcommand{\vm}[1]{\vspace{#1em}}
-\newcommand{\vx}[1]{\vspace{#1ex}}
-\newcommand{\hm}[1]{\hspace{#1em}}
-\newcommand{\hx}[1]{\hspace{#1ex}}
-\newcommand{\sm}{\mbox{ }}
-\newcommand{\mx}{\mbox}
-
-%\newcommand{\nq}{\neq}
-%\newcommand{\eq}{\equiv}
-\newcommand{\fa}{\forall}
-%\newcommand{\ex}{\exists}
-\newcommand{\impl}{\rightarrow}
-%\newcommand{\Or}{\vee}
-%\newcommand{\And}{\wedge}
-\newcommand{\ms}{\models}
-\newcommand{\bw}{\bigwedge}
-\newcommand{\ts}{\times}
-\newcommand{\cc}{\circ}
-%\newcommand{\es}{\emptyset}
-%\newcommand{\bs}{\backslash}
-\newcommand{\vd}{\vdash}
-%\newcommand{\lan}{{\langle }}
-%\newcommand{\ran}{{\rangle }}
-
-%\newcommand{\al}{\alpha}
-\newcommand{\bt}{\beta}
-%\newcommand{\io}{\iota}
-\newcommand{\lb}{\lambda}
-%\newcommand{\sg}{\sigma}
-%\newcommand{\sa}{\Sigma}
-%\newcommand{\om}{\Omega}
-%\newcommand{\tu}{\tau}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%
-% Custom maths commands %
-%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\newcommand{\sumbool}[2]{\{#1\}+\{#2\}}
-\newcommand{\myifthenelse}[3]{\kw{if} ~ #1 ~\kw{then} ~ #2 ~ \kw{else} ~ #3}
-\newcommand{\fun}[2]{\item[]{\tt {#1}}. \quad\\ #2}
-\newcommand{\WF}[2]{\ensuremath{{\cal W\!F}(#1)[#2]}}
-\newcommand{\WFE}[1]{\WF{E}{#1}}
-\newcommand{\WT}[4]{\ensuremath{#1[#2] \vdash #3 : #4}}
-\newcommand{\WTE}[3]{\WT{E}{#1}{#2}{#3}}
-\newcommand{\WTEG}[2]{\WTE{\Gamma}{#1}{#2}}
-
-\newcommand{\WTM}[3]{\WT{#1}{}{#2}{#3}}
-\newcommand{\WFT}[2]{\ensuremath{#1[] \vdash {\cal W\!F}(#2)}}
-\newcommand{\WS}[3]{\ensuremath{#1[] \vdash #2 <: #3}}
-\newcommand{\WSE}[2]{\WS{E}{#1}{#2}}
-\newcommand{\WEV}[3]{\mbox{$#1[] \vdash #2 \lra #3$}}
-\newcommand{\WEVT}[3]{\mbox{$#1[] \vdash #2 \lra$}\\ \mbox{$ #3$}}
-
-\newcommand{\WTRED}[5]{\mbox{$#1[#2] \vdash #3 #4 #5$}}
-\newcommand{\WTERED}[4]{\mbox{$E[#1] \vdash #2 #3 #4$}}
-\newcommand{\WTELECONV}[3]{\WTERED{#1}{#2}{\leconvert}{#3}}
-\newcommand{\WTEGRED}[3]{\WTERED{\Gamma}{#1}{#2}{#3}}
-\newcommand{\WTECONV}[3]{\WTERED{#1}{#2}{\convert}{#3}}
-\newcommand{\WTEGCONV}[2]{\WTERED{\Gamma}{#1}{\convert}{#2}}
-\newcommand{\WTEGLECONV}[2]{\WTERED{\Gamma}{#1}{\leconvert}{#2}}
-
-\newcommand{\lab}[1]{\mathit{labels}(#1)}
-\newcommand{\dom}[1]{\mathit{dom}(#1)}
-
-\newcommand{\CI}[2]{\mbox{$\{#1\}^{#2}$}}
-\newcommand{\CIP}[3]{\mbox{$\{#1\}_{#2}^{#3}$}}
-\newcommand{\CIPV}[1]{\CIP{#1}{I_1.. I_k}{P_1.. P_k}}
-\newcommand{\CIPI}[1]{\CIP{#1}{I}{P}}
-\newcommand{\CIF}[1]{\mbox{$\{#1\}_{f_1.. f_n}$}}
-%BEGIN LATEX
-\newcommand{\NInd}[3]{\mbox{{\sf Ind}$(#1)(\begin{array}[t]{@{}l}#2:=#3
- \,)\end{array}$}}
-\newcommand{\Ind}[4]{\mbox{{\sf Ind}$(#1)[#2](\begin{array}[t]{@{}l@{}}#3:=#4
- \,)\end{array}$}}
-%END LATEX
-%HEVEA \newcommand{\NInd}[3]{\mbox{{\sf Ind}$(#1)(#2:=#3\,)$}}
-%HEVEA \newcommand{\Ind}[4]{\mbox{{\sf Ind}$(#1)[#2](#3:=#4\,)$}}
-
-\newcommand{\Indp}[5]{\mbox{{\sf Ind}$_{#5}(#1)[#2](\begin{array}[t]{@{}l}#3:=#4
- \,)\end{array}$}}
-\newcommand{\Indpstr}[6]{\mbox{{\sf Ind}$_{#5}(#1)[#2](\begin{array}[t]{@{}l}#3:=#4
- \,)/{#6}\end{array}$}}
-\newcommand{\Def}[4]{\mbox{{\sf Def}$(#1)(#2:=#3:#4)$}}
-\newcommand{\Assum}[3]{\mbox{{\sf Assum}$(#1)(#2:#3)$}}
-\newcommand{\Match}[3]{\mbox{$<\!#1\!>\!{\mbox{\tt Match}}~#2~{\mbox{\tt with}}~#3~{\mbox{\tt end}}$}}
-\newcommand{\Case}[3]{\mbox{$\kw{case}(#2,#1,#3)$}}
-\newcommand{\match}[3]{\mbox{$\kw{match}~ #2 ~\kw{with}~ #3 ~\kw{end}$}}
-\newcommand{\Fix}[2]{\mbox{\tt Fix}~#1\{#2\}}
-\newcommand{\CoFix}[2]{\mbox{\tt CoFix}~#1\{#2\}}
-\newcommand{\With}[2]{\mbox{\tt ~with~}}
-\newcommand{\subst}[3]{#1\{#2/#3\}}
-\newcommand{\substs}[4]{#1\{(#2/#3)_{#4}\}}
-\newcommand{\Sort}{\mbox{$\cal S$}}
-\newcommand{\convert}{=_{\beta\delta\iota\zeta}}
-\newcommand{\leconvert}{\leq_{\beta\delta\iota\zeta}}
-\newcommand{\NN}{\mathbb{N}}
-\newcommand{\inference}[1]{$${#1}$$}
-
-\newcommand{\compat}[2]{\mbox{$[#1|#2]$}}
-\newcommand{\tristackrel}[3]{\mathrel{\mathop{#2}\limits_{#3}^{#1}}}
-
-\newcommand{\Impl}{{\it Impl}}
-\newcommand{\elem}{{\it e}}
-\newcommand{\Mod}[3]{{\sf Mod}({#1}:{#2}\,\zeroone{:={#3}})}
-\newcommand{\ModS}[2]{{\sf Mod}({#1}:{#2})}
-\newcommand{\ModType}[2]{{\sf ModType}({#1}:={#2})}
-\newcommand{\ModA}[2]{{\sf ModA}({#1}=={#2})}
-\newcommand{\functor}[3]{\ensuremath{{\sf Functor}(#1:#2)\;#3}}
-\newcommand{\funsig}[3]{\ensuremath{{\sf Funsig}(#1:#2)\;#3}}
-\newcommand{\sig}[1]{\ensuremath{{\sf Sig}~#1~{\sf End}}}
-\newcommand{\struct}[1]{\ensuremath{{\sf Struct}~#1~{\sf End}}}
-\newcommand{\structe}[1]{\ensuremath{
- {\sf Struct}~\elem_1;\ldots;\elem_i;#1;\elem_{i+2};\ldots
- ;\elem_n~{\sf End}}}
-\newcommand{\structes}[2]{\ensuremath{
- {\sf Struct}~\elem_1;\ldots;\elem_i;#1;\elem_{i+2}\{#2\}
- ;\ldots;\elem_n\{#2\}~{\sf End}}}
-\newcommand{\with}[3]{\ensuremath{#1~{\sf with}~#2 := #3}}
-
-\newcommand{\Spec}{{\it Spec}}
-\newcommand{\ModSEq}[3]{{\sf Mod}({#1}:{#2}:={#3})}
-
-
-%\newbox\tempa
-%\newbox\tempb
-%\newdimen\tempc
-%\newcommand{\mud}[1]{\hfil $\displaystyle{\mathstrut #1}$\hfil}
-%\newcommand{\rig}[1]{\hfil $\displaystyle{#1}$}
-% \newcommand{\irulehelp}[3]{\setbox\tempa=\hbox{$\displaystyle{\mathstrut #2}$}%
-% \setbox\tempb=\vbox{\halign{##\cr
-% \mud{#1}\cr
-% \noalign{\vskip\the\lineskip}
-% \noalign{\hrule height 0pt}
-% \rig{\vbox to 0pt{\vss\hbox to 0pt{${\; #3}$\hss}\vss}}\cr
-% \noalign{\hrule}
-% \noalign{\vskip\the\lineskip}
-% \mud{\copy\tempa}\cr}}
-% \tempc=\wd\tempb
-% \advance\tempc by \wd\tempa
-% \divide\tempc by 2 }
-% \newcommand{\irule}[3]{{\irulehelp{#1}{#2}{#3}
-% \hbox to \wd\tempa{\hss \box\tempb \hss}}}
-
-\newcommand{\sverb}[1]{{\tt #1}}
-\newcommand{\mover}[2]{{#1\over #2}}
-\newcommand{\jd}[2]{#1 \vdash #2}
-\newcommand{\mathline}[1]{\[#1\]}
-\newcommand{\zrule}[2]{#2: #1}
-\newcommand{\orule}[3]{#3: {\mover{#1}{#2}}}
-\newcommand{\trule}[4]{#4: \mover{#1 \qquad #2} {#3}}
-\newcommand{\thrule}[5]{#5: {\mover{#1 \qquad #2 \qquad #3}{#4}}}
-
-
-
-% placement of figures
-
-%BEGIN LATEX
-\renewcommand{\topfraction}{.99}
-\renewcommand{\bottomfraction}{.99}
-\renewcommand{\textfraction}{.01}
-\renewcommand{\floatpagefraction}{.9}
-%END LATEX
-
-% Macros Bruno pour description de la syntaxe
-
-\def\bfbar{\ensuremath{|\hskip -0.22em{}|\hskip -0.24em{}|}}
-\def\TERMbar{\bfbar}
-\def\TERMbarbar{\bfbar\bfbar}
-
-
-%% Macros pour les grammaires
-\def\GR#1{\text{\large(}#1\text{\large)}}
-\def\NT#1{\langle\textit{#1}\rangle}
-\def\NTL#1#2{\langle\textit{#1}\rangle_{#2}}
-\def\TERM#1{{\bf\textrm{\bf #1}}}
-%\def\TERM#1{{\bf\textsf{#1}}}
-\def\KWD#1{\TERM{#1}}
-\def\ETERM#1{\TERM{#1}}
-\def\CHAR#1{\TERM{#1}}
-
-\def\STAR#1{#1*}
-\def\STARGR#1{\GR{#1}*}
-\def\PLUS#1{#1+}
-\def\PLUSGR#1{\GR{#1}+}
-\def\OPT#1{#1?}
-\def\OPTGR#1{\GR{#1}?}
-%% Tableaux de definition de non-terminaux
-\newenvironment{cadre}
- {\begin{array}{|c|}\hline\\}
- {\\\\\hline\end{array}}
-\newenvironment{rulebox}
- {$$\begin{cadre}\begin{array}{r@{~}c@{~}l@{}l@{}r}}
- {\end{array}\end{cadre}$$}
-\def\DEFNT#1{\NT{#1} & ::= &}
-\def\EXTNT#1{\NT{#1} & ::= & ... \\&|&}
-\def\RNAME#1{(\textsc{#1})}
-\def\SEPDEF{\\\\}
-\def\nlsep{\\&|&}
-\def\nlcont{\\&&}
-\newenvironment{rules}
- {\begin{center}\begin{rulebox}}
- {\end{rulebox}\end{center}}
-
-% $Id: macros.tex 13091 2010-06-08 13:56:19Z herbelin $
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/common/styles/html/coqremote/cover.html b/doc/common/styles/html/coqremote/cover.html
deleted file mode 100644
index c3091b4e..00000000
--- a/doc/common/styles/html/coqremote/cover.html
+++ /dev/null
@@ -1,131 +0,0 @@
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
-
-<head>
-
-<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"/>
-<title>Reference Manual | The Coq Proof Assistant</title>
-
-<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
-<style type="text/css" media="all">@import "http://coq.inria.fr/modules/node/node.css";</style>
-
-<style type="text/css" media="all">@import "http://coq.inria.fr/modules/system/defaults.css";</style>
-
-<style type="text/css" media="all">@import "http://coq.inria.fr/modules/system/system.css";</style>
-<style type="text/css" media="all">@import "http://coq.inria.fr/modules/user/user.css";</style>
-
-<style type="text/css" media="all">@import "http://coq.inria.fr/sites/all/themes/coq/style.css";</style>
-<style type="text/css" media="all">@import "http://coq.inria.fr/sites/all/themes/coq/coqdoc.css";</style>
-
-</head>
-
-<body>
-
-<div id="container">
-<div id="headertop">
-<div id="nav">
-
- <ul class="links-menu">
- <li><a href="http://coq.inria.fr/" class="active">Home</a></li>
- <li><a href="http://coq.inria.fr/about-coq" title="More about coq">About Coq</a></li>
- <li><a href="http://coq.inria.fr/download">Get Coq</a></li>
- <li><a href="http://coq.inria.fr/documentation">Documentation</a></li>
- <li><a href="http://coq.inria.fr/community">Community</a></li>
- </ul>
-</div>
-</div>
-
-<div id="header">
-
-<div id="logoWrapper">
-
-<div id="logo"><a href="http://coq.inria.fr/" title="Home"><img src="http://coq.inria.fr/files/barron_logo.png" alt="Home" /></a>
-</div>
-<div id="siteName"><a href="http://coq.inria.fr/" title="Home">The Coq Proof Assistant</a>
-</div>
-
-</div>
-</div>
-
-<div id="content">
-
-<br/><br/><br/><br/>
-<h1 style="text-align: center; font-weight:bold; font-size: 300%; line-height: 2ex">Reference Manual</h1>
-
-<h2 style="text-align:center; font-size: 120%">
- Version 8.3<a name="text1"></a><sup><a href="#note1"><span style="font-size: 80%">1</span></a></sup>
-
-<br/><br/><br/><br/><br/><br/>
-<span style="text-align: center; font-size: 120%; ">The Coq Development Team</span>
-<br/><br/><br/><br/><br/><br/>
-</h2>
-
-<div style="text-align: left; font-size: 80%; text-indent: 0pt">
-<ul style="list-style: none; margin-left: 0pt">
- <li>V7.x © INRIA 1999-2004</li>
- <li>V8.x © INRIA 2004-2010</li>
-</ul>
-
-<p style="text-indent: 0pt">This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at <a href="http://www.opencontent.org/openpub">http://www.opencontent.org/openpub</a>). Options A and B are not elected.</p>
-</div>
-<br/>
-
-<hr style="width: 75%"/>
-<div style="text-align: left; font-size: 80%; text-indent: 0pt">
-<dl>
- <dt><a name="note1" href="toc.html#text1">1</a></dt>
- <dd>This research was partly supported by IST working group ``Types''</dd>
-</dl>
-</div>
-
-</div>
-
-</div>
-
-<div id="sidebarWrapper">
-<div id="sidebar">
-
-<div class="block">
-<h2 class="title">Navigation</h2>
-<div class="content">
-
-<ul class="menu">
-
-<li class="leaf"><a href="index.html">Cover</a></li>
-
-<li class="leaf"><a href="toc.html">Table of contents</a></li>
-<li class="leaf">Index
- <ul class="menu">
- <li><a href="general-index.html">General</a></li>
- <li><a href="command-index.html">Commands</a></li>
- <li><a href="tactic-index.html">Tactics</a></li>
- <li><a href="error-index.html">Errors</a></li>
- </ul>
-
-</li>
-
-</ul>
-
-</div>
-</div>
-
-</div>
-</div>
-
-
-<div id="footer">
-<div id="nav-footer">
- <ul class="links-menu-footer">
- <li><a href="mailto:www-coq at lix.polytechnique.fr">webmaster</a></li>
- <li><a href="http://validator.w3.org/check?uri=referer">xhtml valid</a></li>
- <li><a href="http://jigsaw.w3.org/css-validator/check/referer">CSS valid</a></li>
- </ul>
-
-</div>
-
-</div>
-
-</body>
-
-</html>
diff --git a/doc/common/styles/html/coqremote/hevea.css b/doc/common/styles/html/coqremote/hevea.css
deleted file mode 100644
index 5f4edef6..00000000
--- a/doc/common/styles/html/coqremote/hevea.css
+++ /dev/null
@@ -1,36 +0,0 @@
-
-.li-itemize{margin:1ex 0ex;}
-.li-enumerate{margin:1ex 0ex;}
-.dd-description{margin:0ex 0ex 1ex 4ex;}
-.dt-description{margin:0ex;}
-.toc{list-style:none;}
-.thefootnotes{text-align:left;margin:0ex;}
-.dt-thefootnotes{margin:0em;}
-.dd-thefootnotes{margin:0em 0em 0em 2em;}
-.footnoterule{margin:1em auto 1em 0px;width:50%;}
-.caption{padding-left:2ex; padding-right:2ex; margin-left:auto; margin-right:auto}
-.title{margin:2ex auto;text-align:center}
-.center{text-align:center;margin-left:auto;margin-right:auto;}
-.flushleft{text-align:left;margin-left:0ex;margin-right:auto;}
-.flushright{text-align:right;margin-left:auto;margin-right:0ex;}
-DIV TABLE{margin-left:inherit;margin-right:inherit;}
-PRE{text-align:left;margin-left:0ex;margin-right:auto;}
-BLOCKQUOTE{margin-left:4ex;margin-right:4ex;text-align:left;}
-TD P{margin:0px;}
-.boxed{border:1px solid black}
-.textboxed{border:1px solid black}
-.vbar{border:none;width:2px;background-color:black;}
-.hbar{border:none;height:2px;width:100%;background-color:black;}
-.hfill{border:none;height:1px;width:200%;background-color:black;}
-.vdisplay{border-collapse:separate;border-spacing:2px;width:auto; empty-cells:show; border:2px solid red;}
-.vdcell{white-space:nowrap;padding:0px;width:auto; border:2px solid green;}
-.display{border-collapse:separate;border-spacing:2px;width:auto; border:none;}
-.dcell{white-space:nowrap;padding:0px;width:auto; border:none;}
-.dcenter{margin:0ex auto;}
-.vdcenter{border:solid #FF8000 2px; margin:0ex auto;}
-.minipage{text-align:left; margin-left:0em; margin-right:auto;}
-.marginpar{border:solid thin black; width:20%; text-align:left;}
-.marginparleft{float:left; margin-left:0ex; margin-right:1ex;}
-.marginparright{float:right; margin-left:1ex; margin-right:0ex;}
-.theorem{text-align:left;margin:1ex auto 1ex 0ex;}
-.part{margin:2ex auto;text-align:center}
diff --git a/doc/common/styles/html/coqremote/styles.hva b/doc/common/styles/html/coqremote/styles.hva
deleted file mode 100644
index ec14840b..00000000
--- a/doc/common/styles/html/coqremote/styles.hva
+++ /dev/null
@@ -1,95 +0,0 @@
-\renewcommand{\@meta}{
-\begin{rawhtml}
-<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
-
-<LINK rel="shortcut icon" href="favicon.ico" type="image/x-icon">
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/modules/node/node.css";</STYLE>
-
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/modules/system/defaults.css";</STYLE>
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/modules/system/system.css";</STYLE>
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/modules/user/user.css";</STYLE>
-
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/sites/all/themes/coq/style.css";</STYLE>
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/sites/all/themes/coq/coqdoc.css";</STYLE>
-<STYLE type="text/css" media="all">@import "http://coq.inria.fr/sites/all/themes/coq/hevea.css";</STYLE>
-\end{rawhtml}}
-
-% for HeVeA
-
-\htmlhead{\begin{rawhtml}
-<div id="container">
-<div id="headertop">
-<div id="nav">
- <ul class="links-menu">
- <li><a href="http://coq.inria.fr/" class="active">Home</a></li>
-
- <li><a href="http://coq.inria.fr/about-coq" title="More about coq">About Coq</a></li>
- <li><a href="http://coq.inria.fr/download">Get Coq</a></li>
- <li><a href="http://coq.inria.fr/documentation">Documentation</a></li>
- <li><a href="http://coq.inria.fr/community">Community</a></li>
- </ul>
-</div>
-</div>
-
-<div id="header">
-
-<div id="logoWrapper">
-
-<div id="logo"><a href="http://coq.inria.fr/" title="Home"><img src="http://coq.inria.fr/files/barron_logo.png" alt="Home"></a>
-</div>
-<div id="siteName"><a href="http://coq.inria.fr/" title="Home">The Coq Proof Assistant</a>
-</div>
-
-</div>
-</div>
-
-<div id="content">
-
-\end{rawhtml}}
-
-\htmlfoot{\begin{rawhtml}
-<div id="sidebarWrapper">
-<div id="sidebar">
-
-<div class="block">
-<h2 class="title">Navigation</h2>
-<div class="content">
-
-<ul class="menu">
-
-<li class="leaf"><a href="index.html">Cover</a></li>
-<li class="leaf"><a href="toc.html">Table of contents</a></li>
-<li class="leaf">Index
- <ul class="menu">
- <li><a href="general-index.html">General</a></li>
- <li><a href="command-index.html">Commands</a></li>
- <li><a href="tactic-index.html">Tactics</a></li>
- <li><a href="error-index.html">Errors</a></li>
- </ul>
-</li>
-
-</ul>
-
-</div>
-</div>
-
-</div>
-</div>
-
-
-</div>
-
-<div id="footer">
-<div id="nav-footer">
- <ul class="links-menu-footer">
- <li><a href="mailto:www-coq at lix.polytechnique.fr">webmaster</a></li>
- <li><a href="http://validator.w3.org/check?uri=referer">xhtml valid</a></li>
- <li><a href="http://jigsaw.w3.org/css-validator/check/referer">CSS valid</a></li>
- </ul>
-
-</div>
-</div>
-
-</div>
-\end{rawhtml}}
-
diff --git a/doc/common/styles/html/simple/cover.html b/doc/common/styles/html/simple/cover.html
deleted file mode 100644
index b377396d..00000000
--- a/doc/common/styles/html/simple/cover.html
+++ /dev/null
@@ -1,77 +0,0 @@
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
-
-<head>
-
-<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"/>
-<title>Reference Manual | The Coq Proof Assistant</title>
-
-<link rel="stylesheet" type="text/css" href="style.css"/>
-<link rel="stylesheet" type="text/css" href="coqdoc.css"/>
-
-</head>
-
-<body>
-
-<div id="container">
-<div id="header">
-</div>
-
-<div id="content">
-
-<br/><br/><br/><br/>
-<div style="text-align:center">
-<h1 style="font-weight:bold; font-size: 300%; line-height: 2ex">Reference Manual</h1>
-
-<h2 style="font-size: 120%">
- Version 8.3<a name="text1"></a><a href="#note1"><sup><span style="font-size: 80%">1</span></sup></a></h2>
-
-<br/><br/><br/><br/><br/><br/>
-<p><span style="text-align: center; font-size: 120%; ">The Coq Development Team</span></p>
-<br/><br/><br/><br/><br/><br/>
-
-
-<div style="text-align: left; font-size: 80%; text-indent: 0pt">
-<ul style="list-style: none; margin-left: 0pt">
- <li>V7.x © INRIA 1999-2004</li>
- <li>V8.x © INRIA 2004-2010</li>
-</ul>
-
-<p style="text-indent: 0pt">This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at <a href="http://www.opencontent.org/openpub">http://www.opencontent.org/openpub</a>). Options A and B are not elected.</p>
-</div>
-<br/>
-
-<hr/>
-<div style="text-align: left; font-size: 80%; text-indent: 0pt">
-<dl>
- <dt><a name="note1" href="toc.html#text1">1</a></dt>
- <dd>This research was partly supported by IST working group ``Types''</dd>
-</dl>
-</div>
-
-</div>
-
-</div>
-
-
-<div id="footer">
-
-<div class="content">
-<ul class="menu">
- <li><a href="index.html">Cover</a></li>
- <li><a href="toc.html">Table of contents</a></li>
- <li><a href="general-index.html">General index</a></li>
- <li><a href="command-index.html">Commands index</a></li>
- <li><a href="tactic-index.html">Tactics index</a></li>
- <li><a href="error-index.html">Errors index</a></li>
-</ul>
-</div>
-
-</div>
-
-</div>
-
-</body>
-
-</html>
diff --git a/doc/common/styles/html/simple/hevea.css b/doc/common/styles/html/simple/hevea.css
deleted file mode 100644
index 5f4edef6..00000000
--- a/doc/common/styles/html/simple/hevea.css
+++ /dev/null
@@ -1,36 +0,0 @@
-
-.li-itemize{margin:1ex 0ex;}
-.li-enumerate{margin:1ex 0ex;}
-.dd-description{margin:0ex 0ex 1ex 4ex;}
-.dt-description{margin:0ex;}
-.toc{list-style:none;}
-.thefootnotes{text-align:left;margin:0ex;}
-.dt-thefootnotes{margin:0em;}
-.dd-thefootnotes{margin:0em 0em 0em 2em;}
-.footnoterule{margin:1em auto 1em 0px;width:50%;}
-.caption{padding-left:2ex; padding-right:2ex; margin-left:auto; margin-right:auto}
-.title{margin:2ex auto;text-align:center}
-.center{text-align:center;margin-left:auto;margin-right:auto;}
-.flushleft{text-align:left;margin-left:0ex;margin-right:auto;}
-.flushright{text-align:right;margin-left:auto;margin-right:0ex;}
-DIV TABLE{margin-left:inherit;margin-right:inherit;}
-PRE{text-align:left;margin-left:0ex;margin-right:auto;}
-BLOCKQUOTE{margin-left:4ex;margin-right:4ex;text-align:left;}
-TD P{margin:0px;}
-.boxed{border:1px solid black}
-.textboxed{border:1px solid black}
-.vbar{border:none;width:2px;background-color:black;}
-.hbar{border:none;height:2px;width:100%;background-color:black;}
-.hfill{border:none;height:1px;width:200%;background-color:black;}
-.vdisplay{border-collapse:separate;border-spacing:2px;width:auto; empty-cells:show; border:2px solid red;}
-.vdcell{white-space:nowrap;padding:0px;width:auto; border:2px solid green;}
-.display{border-collapse:separate;border-spacing:2px;width:auto; border:none;}
-.dcell{white-space:nowrap;padding:0px;width:auto; border:none;}
-.dcenter{margin:0ex auto;}
-.vdcenter{border:solid #FF8000 2px; margin:0ex auto;}
-.minipage{text-align:left; margin-left:0em; margin-right:auto;}
-.marginpar{border:solid thin black; width:20%; text-align:left;}
-.marginparleft{float:left; margin-left:0ex; margin-right:1ex;}
-.marginparright{float:right; margin-left:1ex; margin-right:0ex;}
-.theorem{text-align:left;margin:1ex auto 1ex 0ex;}
-.part{margin:2ex auto;text-align:center}
diff --git a/doc/common/styles/html/simple/styles.hva b/doc/common/styles/html/simple/styles.hva
deleted file mode 100644
index a2d46f3e..00000000
--- a/doc/common/styles/html/simple/styles.hva
+++ /dev/null
@@ -1,46 +0,0 @@
-\renewcommand{\@meta}{
-\begin{rawhtml}
-<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
-<title>Reference Manual | The Coq Proof Assistant</title>
-
-<link rel="stylesheet" type="text/css" href="style.css">
-<link rel="stylesheet" type="text/css" href="coqdoc.css">
-<link rel="stylesheet" type="text/css" href="hevea.css">
-
-\end{rawhtml}}
-
-% for HeVeA
-
-\htmlhead{\begin{rawhtml}
-
-<div id="container">
-
-<div id="header">
-<h1>Coq Reference Manual</h1>
-</div>
-
-<div id="content">
-
-\end{rawhtml}}
-
-\htmlfoot{\begin{rawhtml}
-
-<div id="footer">
-
-<div class="content">
-<ul class="menu">
- <li><a href="index.html">Cover</a></li>
- <li><a href="toc.html">Table of contents</a></li>
- <li><a href="general-index.html">General index</a></li>
- <li><a href="command-index.html">Commands index</a></li>
- <li><a href="tactic-index.html">Tactics index</a></li>
- <li><a href="error-index.html">Errors index</a></li>
-</ul>
-
-</div>
-</div>
-
-</div>
-</div>
-\end{rawhtml}}
-
diff --git a/doc/common/title.tex b/doc/common/title.tex
deleted file mode 100755
index e782fafd..00000000
--- a/doc/common/title.tex
+++ /dev/null
@@ -1,73 +0,0 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% File title.tex
-% Page formatting commands
-% Macro \coverpage
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-%\setlength{\marginparwidth}{0pt}
-%\setlength{\oddsidemargin}{0pt}
-%\setlength{\evensidemargin}{0pt}
-%\setlength{\marginparsep}{0pt}
-%\setlength{\topmargin}{0pt}
-%\setlength{\textwidth}{16.9cm}
-%\setlength{\textheight}{22cm}
-%\usepackage{fullpage}
-
-%\newcommand{\printingdate}{\today}
-%\newcommand{\isdraft}{\Large\bf\today\\[20pt]}
-%\newcommand{\isdraft}{\vspace{20pt}}
-
-\newcommand{\coverpage}[3]{
-\thispagestyle{empty}
-\begin{center}
-\bfseries % for the rest of this page, until \end{center}
-\Huge
-The Coq Proof Assistant\\[12pt]
-#1\\[20pt]
-\Large\today\\[20pt]
-Version \coqversion%\footnote[1]{This research was partly supported by IST working group ``Types''}
-
-\vspace{0pt plus .5fill}
-#2
-\par\vfill
-The Coq Development Team
-
-\vspace*{15pt}
-\end{center}
-\newpage
-
-\thispagestyle{empty}
-\hbox{}\vfill % without \hbox \vfill does not work at the top of the page
-\begin{flushleft}
-%BEGIN LATEX
-V\coqversion, \today
-\par\vspace{20pt}
-%END LATEX
-\copyright INRIA 1999-2004 ({\Coq} versions 7.x)
-
-\copyright INRIA 2004-2010 ({\Coq} versions 8.x)
-
-#3
-\end{flushleft}
-} % end of \coverpage definition
-
-
-% \newcommand{\shorttitle}[1]{
-% \begin{center}
-% \begin{huge}
-% \begin{bf}
-% The Coq Proof Assistant\\
-% \vspace{10pt}
-% #1\\
-% \end{bf}
-% \end{huge}
-% \end{center}
-% \vspace{5pt}
-% }
-
-% Local Variables:
-% mode: LaTeX
-% TeX-master: ""
-% End:
-
-% $Id: title.tex 13524 2010-10-11 12:07:17Z herbelin $
diff --git a/doc/faq/FAQ.tex b/doc/faq/FAQ.tex
deleted file mode 100644
index de1d84be..00000000
--- a/doc/faq/FAQ.tex
+++ /dev/null
@@ -1,2546 +0,0 @@
-\RequirePackage{ifpdf}
-\ifpdf % si on est en pdflatex
-\documentclass[a4paper,pdftex]{article}
-\else
-\documentclass[a4paper]{article}
-\fi
-\pagestyle{plain}
-
-% yay les symboles
-\usepackage{stmaryrd}
-\usepackage{amssymb}
-\usepackage{url}
-%\usepackage{multicol}
-\usepackage{hevea}
-\usepackage{fullpage}
-\usepackage[latin1]{inputenc}
-\usepackage[english]{babel}
-
-\ifpdf % si on est en pdflatex
- \usepackage[pdftex]{graphicx}
-\else
- \usepackage[dvips]{graphicx}
-\fi
-
-\input{../common/version.tex}
-%\input{../macros.tex}
-
-% Making hevea happy
-%HEVEA \renewcommand{\textbar}{|}
-%HEVEA \renewcommand{\textunderscore}{\_}
-
-\def\Question#1{\stepcounter{question}\subsubsection{#1}}
-
-% version et date
-\def\faqversion{0.1}
-
-% les macros d'amour
-\def\Coq{\textsc{Coq}}
-\def\Why{\textsc{Why}}
-\def\Caduceus{\textsc{Caduceus}}
-\def\Krakatoa{\textsc{Krakatoa}}
-\def\Ltac{\textsc{Ltac}}
-\def\CoqIde{\textsc{CoqIde}}
-
-\newcommand{\coqtt}[1]{{\tt #1}}
-\newcommand{\coqimp}{{\mbox{\tt ->}}}
-\newcommand{\coqequiv}{{\mbox{\tt <->}}}
-
-
-% macro pour les tactics
-\def\split{{\tt split}}
-\def\assumption{{\tt assumption}}
-\def\auto{{\tt auto}}
-\def\trivial{{\tt trivial}}
-\def\tauto{{\tt tauto}}
-\def\left{{\tt left}}
-\def\right{{\tt right}}
-\def\decompose{{\tt decompose}}
-\def\intro{{\tt intro}}
-\def\intros{{\tt intros}}
-\def\field{{\tt field}}
-\def\ring{{\tt ring}}
-\def\apply{{\tt apply}}
-\def\exact{{\tt exact}}
-\def\cut{{\tt cut}}
-\def\assert{{\tt assert}}
-\def\solve{{\tt solve}}
-\def\idtac{{\tt idtac}}
-\def\fail{{\tt fail}}
-\def\existstac{{\tt exists}}
-\def\firstorder{{\tt firstorder}}
-\def\congruence{{\tt congruence}}
-\def\gb{{\tt gb}}
-\def\generalize{{\tt generalize}}
-\def\abstracttac{{\tt abstract}}
-\def\eapply{{\tt eapply}}
-\def\unfold{{\tt unfold}}
-\def\rewrite{{\tt rewrite}}
-\def\replace{{\tt replace}}
-\def\simpl{{\tt simpl}}
-\def\elim{{\tt elim}}
-\def\set{{\tt set}}
-\def\pose{{\tt pose}}
-\def\case{{\tt case}}
-\def\destruct{{\tt destruct}}
-\def\reflexivity{{\tt reflexivity}}
-\def\transitivity{{\tt transitivity}}
-\def\symmetry{{\tt symmetry}}
-\def\Focus{{\tt Focus}}
-\def\discriminate{{\tt discriminate}}
-\def\contradiction{{\tt contradiction}}
-\def\intuition{{\tt intuition}}
-\def\try{{\tt try}}
-\def\repeat{{\tt repeat}}
-\def\eauto{{\tt eauto}}
-\def\subst{{\tt subst}}
-\def\symmetryin{{\tt symmetryin}}
-\def\instantiate{{\tt instantiate}}
-\def\inversion{{\tt inversion}}
-\def\Defined{{\tt Defined}}
-\def\Qed{{\tt Qed}}
-\def\pattern{{\tt pattern}}
-\def\Type{{\tt Type}}
-\def\Prop{{\tt Prop}}
-\def\Set{{\tt Set}}
-
-
-\newcommand\vfile[2]{\ahref{#1}{\tt {#2}.v}}
-\urldef{\InitWf}\url
- {http://coq.inria.fr/library/Coq.Init.Wf.html}
-\urldef{\LogicBerardi}\url
- {http://coq.inria.fr/library/Coq.Logic.Berardi.html}
-\urldef{\LogicClassical}\url
- {http://coq.inria.fr/library/Coq.Logic.Classical.html}
-\urldef{\LogicClassicalFacts}\url
- {http://coq.inria.fr/library/Coq.Logic.ClassicalFacts.html}
-\urldef{\LogicClassicalDescription}\url
- {http://coq.inria.fr/library/Coq.Logic.ClassicalDescription.html}
-\urldef{\LogicProofIrrelevance}\url
- {http://coq.inria.fr/library/Coq.Logic.ProofIrrelevance.html}
-\urldef{\LogicEqdep}\url
- {http://coq.inria.fr/library/Coq.Logic.Eqdep.html}
-\urldef{\LogicEqdepDec}\url
- {http://coq.inria.fr/library/Coq.Logic.Eqdep_dec.html}
-
-
-
-
-\begin{document}
-\bibliographystyle{plain}
-\newcounter{question}
-\renewcommand{\thesubsubsection}{\arabic{question}}
-
-%%%%%%% Coq pour les nuls %%%%%%%
-
-\title{Coq Version {\coqversion} for the Clueless\\
- \large(\protect\ref{lastquestion}
- \ Hints)
-}
-\author{Pierre Castéran \and Hugo Herbelin \and Florent Kirchner \and Benjamin Monate \and Julien Narboux}
-\maketitle
-
-%%%%%%%
-
-\begin{abstract}
-This note intends to provide an easy way to get acquainted with the
-{\Coq} theorem prover. It tries to formulate appropriate answers
-to some of the questions any newcomers will face, and to give
-pointers to other references when possible.
-\end{abstract}
-
-%%%%%%%
-
-%\begin{multicols}{2}
-\tableofcontents
-%\end{multicols}
-
-%%%%%%%
-
-\newpage
-
-\section{Introduction}
-This FAQ is the sum of the questions that came to mind as we developed
-proofs in \Coq. Since we are singularly short-minded, we wrote the
-answers we found on bits of papers to have them at hand whenever the
-situation occurs again. This is pretty much the result of that: a
-collection of tips one can refer to when proofs become intricate. Yes,
-this means we won't take the blame for the shortcomings of this
-FAQ. But if you want to contribute and send in your own question and
-answers, feel free to write to us\ldots
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{Presentation}
-
-\Question{What is {\Coq}?}\label{whatiscoq}
-The {\Coq} tool is a formal proof management system: a proof done with {\Coq} is mechanically checked by the machine.
-In particular, {\Coq} allows:
-\begin{itemize}
- \item the definition of mathematical objects and programming objects,
- \item to state mathematical theorems and software specifications,
- \item to interactively develop formal proofs of these theorems,
- \item to check these proofs by a small certification ``kernel''.
-\end{itemize}
-{\Coq} is based on a logical framework called ``Calculus of Inductive
-Constructions'' extended by a modular development system for theories.
-
-\Question{Did you really need to name it like that?}
-Some French computer scientists have a tradition of naming their
-software as animal species: Caml, Elan, Foc or Phox are examples
-of this tacit convention. In French, ``coq'' means rooster, and it
-sounds like the initials of the Calculus of Constructions CoC on which
-it is based.
-
-\Question{Is {\Coq} a theorem prover?}
-
-{\Coq} comes with decision and semi-decision procedures (
-propositional calculus, Presburger's arithmetic, ring and field
-simplification, resolution, ...) but the main style for proving
-theorems is interactively by using LCF-style tactics.
-
-
-\Question{What are the other theorem provers?}
-Many other theorem provers are available for use nowadays.
-Isabelle, HOL, HOL Light, Lego, Nuprl, PVS are examples of provers that are fairly similar
-to {\Coq} by the way they interact with the user. Other relatives of
-{\Coq} are ACL2, Agda/Alfa, Twelf, Kiv, Mizar, NqThm,
-\begin{htmlonly}%
-Omega\ldots
-\end{htmlonly}
-\begin{latexonly}%
-{$\Omega$}mega\ldots
-\end{latexonly}
-
-\Question{What do I have to trust when I see a proof checked by Coq?}
-
-You have to trust:
-
-\begin{description}
-\item[The theory behind Coq] The theory of {\Coq} version 8.0 is
-generally admitted to be consistent wrt Zermelo-Fraenkel set theory +
-inaccessible cardinals. Proofs of consistency of subsystems of the
-theory of Coq can be found in the literature.
-\item[The Coq kernel implementation] You have to trust that the
-implementation of the {\Coq} kernel mirrors the theory behind {\Coq}. The
-kernel is intentionally small to limit the risk of conceptual or
-accidental implementation bugs.
-\item[The Objective Caml compiler] The {\Coq} kernel is written using the
-Objective Caml language but it uses only the most standard features
-(no object, no label ...), so that it is highly unprobable that an
-Objective Caml bug breaks the consistency of {\Coq} without breaking all
-other kinds of features of {\Coq} or of other software compiled with
-Objective Caml.
-\item[Your hardware] In theory, if your hardware does not work
-properly, it can accidentally be the case that False becomes
-provable. But it is more likely the case that the whole {\Coq} system
-will be unusable. You can check your proof using different computers
-if you feel the need to.
-\item[Your axioms] Your axioms must be consistent with the theory
-behind {\Coq}.
-\end{description}
-
-
-\Question{Where can I find information about the theory behind {\Coq}?}
-\begin{description}
-\item[The Calculus of Inductive Constructions] The
-\ahref{http://coq.inria.fr/doc/Reference-Manual006.html}{corresponding}
-chapter and the chapter on
-\ahref{http://coq.inria.fr/doc/Reference-Manual007.html}{modules} in
-the {\Coq} Reference Manual.
-\item[Type theory] A book~\cite{ProofsTypes} or some lecture
-notes~\cite{Types:Dowek}.
-\item[Inductive types]
-Christine Paulin-Mohring's habilitation thesis~\cite{Pau96b}.
-\item[Co-Inductive types]
-Eduardo Giménez' thesis~\cite{EGThese}.
-\item[Miscellaneous] A
-\ahref{http://coq.inria.fr/doc/biblio.html}{bibliography} about Coq
-\end{description}
-
-
-\Question{How can I use {\Coq} to prove programs?}
-
-You can either extract a program from a proof by using the extraction
-mechanism or use dedicated tools, such as
-\ahref{http://why.lri.fr}{\Why},
-\ahref{http://krakatoa.lri.fr}{\Krakatoa},
-\ahref{http://why.lri.fr/caduceus/index.en.html}{\Caduceus}, to prove
-annotated programs written in other languages.
-
-%\Question{How many {\Coq} users are there?}
-%
-%An estimation is about 100 regular users.
-
-\Question{How old is {\Coq}?}
-
-The first implementation is from 1985 (it was named {\sf CoC} which is
-the acronym of the name of the logic it implemented: the Calculus of
-Constructions). The first official release of {\Coq} (version 4.10)
-was distributed in 1989.
-
-\Question{What are the \Coq-related tools?}
-
-There are graphical user interfaces:
-\begin{description}
-\item[Coqide] A GTK based GUI for \Coq.
-\item[Pcoq] A GUI for {\Coq} with proof by pointing and pretty printing.
-\item[coqwc] A tool similar to {\tt wc} to count lines in {\Coq} files.
-\item[Proof General] A emacs mode for {\Coq} and many other proof assistants.
-\item[ProofWeb] The ProofWeb online web interface for {\Coq} (and other proof assistants), with a focus on teaching.
-\item[ProverEditor] is an experimental Eclipse plugin with support for {\Coq}.
-\end{description}
-
-There are documentation and browsing tools:
-
-\begin{description}
-\item[Helm/Mowgli] A rendering, searching and publishing tool.
-\item[coq-tex] A tool to insert {\Coq} examples within .tex files.
-\item[coqdoc] A documentation tool for \Coq.
-\item[coqgraph] A tool to generate a dependency graph from {\Coq} sources.
-\end{description}
-
-There are front-ends for specific languages:
-
-\begin{description}
-\item[Why] A back-end generator of verification conditions.
-\item[Krakatoa] A Java code certification tool that uses both {\Coq} and {\Why} to verify the soundness of implementations with regards to the specifications.
-\item[Caduceus] A C code certification tool that uses both {\Coq} and \Why.
-\item[Zenon] A first-order theorem prover.
-\item[Focal] The \ahref{http://focal.inria.fr}{Focal} project aims at building an environment to develop certified computer algebra libraries.
-\item[Concoqtion] is a dependently-typed extension of Objective Caml (and of MetaOCaml) with specifications expressed and proved in Coq.
-\item[Ynot] is an extension of Coq providing a "Hoare Type Theory" for specifying higher-order, imperative and concurrent programs.
-\item[Ott]is a tool to translate the descriptions of the syntax and semantics of programming languages to the syntax of Coq, or of other provers.
-\end{description}
-
-\Question{What are the high-level tactics of \Coq}
-
-\begin{itemize}
-\item Decision of quantifier-free Presburger's Arithmetic
-\item Simplification of expressions on rings and fields
-\item Decision of closed systems of equations
-\item Semi-decision of first-order logic
-\item Prolog-style proof search, possibly involving equalities
-\end{itemize}
-
-\Question{What are the main libraries available for \Coq}
-
-\begin{itemize}
-\item Basic Peano's arithmetic, binary integer numbers, rational numbers,
-\item Real analysis,
-\item Libraries for lists, boolean, maps, floating-point numbers,
-\item Libraries for relations, sets and constructive algebra,
-\item Geometry
-\end{itemize}
-
-
-\Question{What are the mathematical applications for {\Coq}?}
-
-{\Coq} is used for formalizing mathematical theories, for teaching,
-and for proving properties of algorithms or programs libraries.
-
-The largest mathematical formalization has been done at the University
-of Nijmegen (see the
-\ahref{http://c-corn.cs.ru.nl}{Constructive Coq
-Repository at Nijmegen}).
-
-A symbolic step has also been obtained by formalizing in full a proof
-of the Four Color Theorem.
-
-\Question{What are the industrial applications for {\Coq}?}
-
-{\Coq} is used e.g. to prove properties of the JavaCard system
-(especially by Schlumberger and Trusted Logic). It has
-also been used to formalize the semantics of the Lucid-Synchrone
-data-flow synchronous calculus used by Esterel-Technologies.
-
-\iffalse
-todo christine compilo lustre?
-\fi
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{Documentation}
-
-\Question{Where can I find documentation about {\Coq}?}
-All the documentation about \Coq, from the reference manual~\cite{Coq:manual} to
-friendly tutorials~\cite{Coq:Tutorial} and documentation of the standard library, is available
-\ahref{http://coq.inria.fr/doc-eng.html}{online}.
-All these documents are viewable either in browsable HTML, or as
-downloadable postscripts.
-
-\Question{Where can I find this FAQ on the web?}
-
-This FAQ is available online at \ahref{http://coq.inria.fr/faq}{\url{http://coq.inria.fr/faq}}.
-
-\Question{How can I submit suggestions / improvements / additions for this FAQ?}
-
-This FAQ is unfinished (in the sense that there are some obvious
-sections that are missing). Please send contributions to Coq-Club.
-
-\Question{Is there any mailing list about {\Coq}?}
-The main {\Coq} mailing list is \url{coq-club@inria.fr}, which
-broadcasts questions and suggestions about the implementation, the
-logical formalism or proof developments. See
-\ahref{http://coq.inria.fr/mailman/listinfo/coq-club}{\url{https://sympa-roc.inria.fr/wws/info/coq-club}} for
-subscription. For bugs reports see question \ref{coqbug}.
-
-\Question{Where can I find an archive of the list?}
-The archives of the {\Coq} mailing list are available at
-\ahref{http://pauillac.inria.fr/pipermail/coq-club}{\url{https://sympa-roc.inria.fr/wws/arc/coq-club}}.
-
-
-\Question{How can I be kept informed of new releases of {\Coq}?}
-
-New versions of {\Coq} are announced on the coq-club mailing list.
-
-
-\Question{Is there any book about {\Coq}?}
-
-The first book on \Coq, Yves Bertot and Pierre Castéran's Coq'Art has been published by Springer-Verlag in 2004:
-\begin{quote}
-``This book provides a pragmatic introduction to the development of
-proofs and certified programs using \Coq. With its large collection of
-examples and exercises it is an invaluable tool for researchers,
-students, and engineers interested in formal methods and the
-development of zero-default software.''
-\end{quote}
-
-\Question{Where can I find some {\Coq} examples?}
-
-There are examples in the manual~\cite{Coq:manual} and in the
-Coq'Art~\cite{Coq:coqart} exercises \ahref{\url{http://www.labri.fr/Perso/~casteran/CoqArt/index.html}}{\url{http://www.labri.fr/Perso/~casteran/CoqArt/index.html}}.
-You can also find large developments using
-{\Coq} in the {\Coq} user contributions:
-\ahref{http://coq.inria.fr/contribs}{\url{http://coq.inria.fr/contribs}}.
-
-\Question{How can I report a bug?}\label{coqbug}
-
-You can use the web interface accessible at \ahref{http://coq.inria.fr/bugs}{\url{http://coq.inria.fr/bugs}}.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{Installation}
-
-\Question{What is the license of {\Coq}?}
-{\Coq} is distributed under the GNU Lesser General License
-(LGPL).
-
-\Question{Where can I find the sources of {\Coq}?}
-The sources of {\Coq} can be found online in the tar.gz'ed packages
-(\ahref{http://coq.inria.fr}{\url{http://coq.inria.fr}}, link
-``download''). Development sources can be accessed at
-\ahref{https://gforge.inria.fr/scm/?group_id=269}{\url{https://gforge.inria.fr/scm/?group_id=269}}
-
-\Question{On which platform is {\Coq} available?}
-Compiled binaries are available for Linux, MacOS X, and Windows. The
-sources can be easily compiled on all platforms supporting Objective
-Caml.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\section{The logic of {\Coq}}
-
-\subsection{General}
-
-\Question{What is the logic of \Coq?}
-
-{\Coq} is based on an axiom-free type theory called
-the Calculus of Inductive Constructions (see Coquand \cite{CoHu86},
-Luo~\cite{Luo90}
-and Coquand--Paulin-Mohring \cite{CoPa89}). It includes higher-order
-functions and predicates, inductive and co-inductive datatypes and
-predicates, and a stratified hierarchy of sets.
-
-\Question{Is \Coq's logic intuitionistic or classical?}
-
-{\Coq}'s logic is modular. The core logic is intuitionistic
-(i.e. excluded-middle $A\vee\neg A$ is not granted by default). It can
-be extended to classical logic on demand by requiring an
-optional module stating $A\vee\neg A$.
-
-\Question{Can I define non-terminating programs in \Coq?}
-
-All programs in {\Coq} are terminating. Especially, loops
-must come with an evidence of their termination.
-
-Non-terminating programs can be simulated by passing around a
-bound on how long the program is allowed to run before dying.
-
-\Question{How is equational reasoning working in {\Coq}?}
-
- {\Coq} comes with an internal notion of computation called
-{\em conversion} (e.g. $(x+1)+y$ is internally equivalent to
-$(x+y)+1$; similarly applying argument $a$ to a function mapping $x$
-to some expression $t$ converts to the expression $t$ where $x$ is
-replaced by $a$). This notion of conversion (which is decidable
-because {\Coq} programs are terminating) covers a certain part of
-equational reasoning but is limited to sequential evaluation of
-expressions of (not necessarily closed) programs. Besides conversion,
-equations have to be treated by hand or using specialised tactics.
-
-\subsection{Axioms}
-
-\Question{What axioms can be safely added to {\Coq}?}
-
-There are a few typical useful axioms that are independent from the
-Calculus of Inductive Constructions and that are considered consistent with
-the theory of {\Coq}.
-Most of these axioms are stated in the directory {\tt Logic} of the
-standard library of {\Coq}. The most interesting ones are
-
-\begin{itemize}
-\item Excluded-middle: $\forall A:Prop, A \vee \neg A$
-\item Proof-irrelevance: $\forall A:Prop \forall p_1 p_2:A, p_1=p_2$
-\item Unicity of equality proofs (or equivalently Streicher's axiom $K$):
-$\forall A \forall x y:A \forall p_1 p_2:x=y, p_1=p_2$
-\item Hilbert's $\epsilon$ operator: if $A \neq \emptyset$, then there is $\epsilon_P$ such that $\exists x P(x) \rightarrow P(\epsilon_P)$
-\item Church's $\iota$ operator: if $A \neq \emptyset$, then there is $\iota_P$ such that $\exists! x P(x) \rightarrow P(\iota_P)$
-\item The axiom of unique choice: $\forall x \exists! y R(x,y) \rightarrow \exists f \forall x R(x,f(x))$
-\item The functional axiom of choice: $\forall x \exists y R(x,y) \rightarrow \exists f \forall x R(x,f(x))$
-\item Extensionality of predicates: $\forall P Q:A\rightarrow Prop, (\forall x, P(x) \leftrightarrow Q(x)) \rightarrow P=Q$
-\item Extensionality of functions: $\forall f g:A\rightarrow B, (\forall x, f(x)=g(x)) \rightarrow f=g$
-\end{itemize}
-
-Here is a summary of the relative strength of these axioms, most
-proofs can be found in directory {\tt Logic} of the standard library.
-The justification of their validity relies on the interpretability in
-set theory.
-
-%HEVEA\imgsrc{axioms.png}
-%BEGIN LATEX
-\ifpdf % si on est en pdflatex
-\includegraphics[width=1.0\textwidth]{axioms.png}
-\else
-\includegraphics[width=1.0\textwidth]{axioms.eps}
-\fi
-%END LATEX
-
-\Question{What standard axioms are inconsistent with {\Coq}?}
-
-The axiom of unique choice together with classical logic
-(e.g. excluded-middle) are inconsistent in the variant of the Calculus
-of Inductive Constructions where {\Set} is impredicative.
-
-As a consequence, the functional form of the axiom of choice and
-excluded-middle, or any form of the axiom of choice together with
-predicate extensionality are inconsistent in the {\Set}-impredicative
-version of the Calculus of Inductive Constructions.
-
-The main purpose of the \Set-predicative restriction of the Calculus
-of Inductive Constructions is precisely to accommodate these axioms
-which are quite standard in mathematical usage.
-
-The $\Set$-predicative system is commonly considered consistent by
-interpreting it in a standard set-theoretic boolean model, even with
-classical logic, axiom of choice and predicate extensionality added.
-
-\Question{What is Streicher's axiom $K$}
-\label{Streicher}
-
-Streicher's axiom $K$~\cite{HofStr98} is an axiom that asserts
-dependent elimination of reflexive equality proofs.
-
-\begin{coq_example*}
-Axiom Streicher_K :
- forall (A:Type) (x:A) (P: x=x -> Prop),
- P (refl_equal x) -> forall p: x=x, P p.
-\end{coq_example*}
-
-In the general case, axiom $K$ is an independent statement of the
-Calculus of Inductive Constructions. However, it is true on decidable
-domains (see file \vfile{\LogicEqdepDec}{Eqdep\_dec}). It is also
-trivially a consequence of proof-irrelevance (see
-\ref{proof-irrelevance}) hence of classical logic.
-
-Axiom $K$ is equivalent to {\em Uniqueness of Identity Proofs} \cite{HofStr98}
-
-\begin{coq_example*}
-Axiom UIP : forall (A:Set) (x y:A) (p1 p2: x=y), p1 = p2.
-\end{coq_example*}
-
-Axiom $K$ is also equivalent to {\em Uniqueness of Reflexive Identity Proofs} \cite{HofStr98}
-
-\begin{coq_example*}
-Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = refl_equal x.
-\end{coq_example*}
-
-Axiom $K$ is also equivalent to
-
-\begin{coq_example*}
-Axiom
- eq_rec_eq :
- forall (A:Set) (x:A) (P: A->Set) (p:P x) (h: x=x),
- p = eq_rect x P p x h.
-\end{coq_example*}
-
-It is also equivalent to the injectivity of dependent equality (dependent equality is itself equivalent to equality of dependent pairs).
-
-\begin{coq_example*}
-Inductive eq_dep (U:Set) (P:U -> Set) (p:U) (x:P p) :
-forall q:U, P q -> Prop :=
- eq_dep_intro : eq_dep U P p x p x.
-Axiom
- eq_dep_eq :
- forall (U:Set) (u:U) (P:U -> Set) (p1 p2:P u),
- eq_dep U P u p1 u p2 -> p1 = p2.
-\end{coq_example*}
-
-\Question{What is proof-irrelevance}
-\label{proof-irrelevance}
-
-A specificity of the Calculus of Inductive Constructions is to permit
-statements about proofs. This leads to the question of comparing two
-proofs of the same proposition. Identifying all proofs of the same
-proposition is called {\em proof-irrelevance}:
-$$
-\forall A:\Prop, \forall p q:A, p=q
-$$
-
-Proof-irrelevance (in {\Prop}) can be assumed without contradiction in
-{\Coq}. It expresses that only provability matters, whatever the exact
-form of the proof is. This is in harmony with the common purely
-logical interpretation of {\Prop}. Contrastingly, proof-irrelevance is
-inconsistent in {\Set} since there are types in {\Set}, such as the
-type of booleans, that provably have at least two distinct elements.
-
-Proof-irrelevance (in {\Prop}) is a consequence of classical logic
-(see proofs in file \vfile{\LogicClassical}{Classical} and
-\vfile{\LogicBerardi}{Berardi}). Proof-irrelevance is also a
-consequence of propositional extensionality (i.e. \coqtt{(A {\coqequiv} B)
-{\coqimp} A=B}, see the proof in file
-\vfile{\LogicClassicalFacts}{ClassicalFacts}).
-
-Proof-irrelevance directly implies Streicher's axiom $K$.
-
-\Question{What about functional extensionality?}
-
-Extensionality of functions is admittedly consistent with the
-Set-predicative Calculus of Inductive Constructions.
-
-%\begin{coq_example*}
-% Axiom extensionality : (A,B:Set)(f,g:(A->B))(x:A)(f x)=(g x)->f=g.
-%\end{coq_example*}
-
-Let {\tt A}, {\tt B} be types. To deal with extensionality on
-\verb=A->B= without relying on a general extensionality axiom,
-a possible approach is to define one's own extensional equality on
-\verb=A->B=.
-
-\begin{coq_eval}
-Variables A B : Set.
-\end{coq_eval}
-
-\begin{coq_example*}
-Definition ext_eq (f g: A->B) := forall x:A, f x = g x.
-\end{coq_example*}
-
-and to reason on \verb=A->B= as a setoid (see the Chapter on
-Setoids in the Reference Manual).
-
-\Question{Is {\Prop} impredicative?}
-
-Yes, the sort {\Prop} of propositions is {\em
-impredicative}. Otherwise said, a statement of the form $\forall
-A:Prop, P(A)$ can be instantiated by itself: if $\forall A:\Prop, P(A)$
-is provable, then $P(\forall A:\Prop, P(A))$ is.
-
-\Question{Is {\Set} impredicative?}
-
-No, the sort {\Set} lying at the bottom of the hierarchy of
-computational types is {\em predicative} in the basic {\Coq} system.
-This means that a family of types in {\Set}, e.g. $\forall A:\Set, A
-\rightarrow A$, is not a type in {\Set} and it cannot be applied on
-itself.
-
-However, the sort {\Set} was impredicative in the original versions of
-{\Coq}. For backward compatibility, or for experiments by
-knowledgeable users, the logic of {\Coq} can be set impredicative for
-{\Set} by calling {\Coq} with the option {\tt -impredicative-set}.
-
-{\Set} has been made predicative from version 8.0 of {\Coq}. The main
-reason is to interact smoothly with a classical mathematical world
-where both excluded-middle and the axiom of description are valid (see
-file \vfile{\LogicClassicalDescription}{ClassicalDescription} for a
-proof that excluded-middle and description implies the double negation
-of excluded-middle in {\Set} and file {\tt Hurkens\_Set.v} from the
-user contribution {\tt Rocq/PARADOXES} for a proof that
-impredicativity of {\Set} implies the simple negation of
-excluded-middle in {\Set}).
-
-\Question{Is {\Type} impredicative?}
-
-No, {\Type} is stratified. This is hidden for the
-user, but {\Coq} internally maintains a set of constraints ensuring
-stratification.
-
-If {\Type} were impredicative then it would be possible to encode
-Girard's systems $U-$ and $U$ in {\Coq} and it is known from Girard,
-Coquand, Hurkens and Miquel that systems $U-$ and $U$ are inconsistent
-[Girard 1972, Coquand 1991, Hurkens 1993, Miquel 2001]. This encoding
-can be found in file {\tt Logic/Hurkens.v} of {\Coq} standard library.
-
-For instance, when the user see {\tt $\forall$ X:Type, X->X : Type}, each
-occurrence of {\Type} is implicitly bound to a different level, say
-$\alpha$ and $\beta$ and the actual statement is {\tt
-forall X:Type($\alpha$), X->X : Type($\beta$)} with the constraint
-$\alpha<\beta$.
-
-When a statement violates a constraint, the message {\tt Universe
-inconsistency} appears. Example: {\tt fun (x:Type) (y:$\forall$ X:Type, X
-{\coqimp} X) => y x x}.
-
-\Question{I have two proofs of the same proposition. Can I prove they are equal?}
-
-In the base {\Coq} system, the answer is generally no. However, if
-classical logic is set, the answer is yes for propositions in {\Prop}.
-The answer is also yes if proof irrelevance holds (see question
-\ref{proof-irrelevance}).
-
-There are also ``simple enough'' propositions for which you can prove
-the equality without requiring any extra axioms. This is typically
-the case for propositions defined deterministically as a first-order
-inductive predicate on decidable sets. See for instance in question
-\ref{le-uniqueness} an axiom-free proof of the unicity of the proofs of
-the proposition {\tt le m n} (less or equal on {\tt nat}).
-
-% It is an ongoing work of research to natively include proof
-% irrelevance in {\Coq}.
-
-\Question{I have two proofs of an equality statement. Can I prove they are
-equal?}
-
- Yes, if equality is decidable on the domain considered (which
-is the case for {\tt nat}, {\tt bool}, etc): see {\Coq} file
-\verb=Eqdep_dec.v=). No otherwise, unless
-assuming Streicher's axiom $K$ (see \cite{HofStr98}) or a more general
-assumption such as proof-irrelevance (see \ref{proof-irrelevance}) or
-classical logic.
-
-All of these statements can be found in file \vfile{\LogicEqdep}{Eqdep}.
-
-\Question{Can I prove that the second components of equal dependent
-pairs are equal?}
-
- The answer is the same as for proofs of equality
-statements. It is provable if equality on the domain of the first
-component is decidable (look at \verb=inj_right_pair= from file
-\vfile{\LogicEqdepDec}{Eqdep\_dec}), but not provable in the general
-case. However, it is consistent (with the Calculus of Constructions)
-to assume it is true. The file \vfile{\LogicEqdep}{Eqdep} actually
-provides an axiom (equivalent to Streicher's axiom $K$) which entails
-the result (look at \verb=inj_pair2= in \vfile{\LogicEqdep}{Eqdep}).
-
-\subsection{Impredicativity}
-
-\Question{Why {\tt injection} does not work on impredicative {\tt Set}?}
-
- E.g. in this case (this occurs only in the {\tt Set}-impredicative
- variant of \Coq):
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive I : Type :=
- intro : forall k:Set, k -> I.
-Lemma eq_jdef :
- forall x y:nat, intro _ x = intro _ y -> x = y.
-Proof.
- intros x y H; injection H.
-\end{coq_example*}
-
- Injectivity of constructors is restricted to predicative types. If
-injectivity on large inductive types were not restricted, we would be
-allowed to derive an inconsistency (e.g. following the lines of
-Burali-Forti paradox). The question remains open whether injectivity
-is consistent on some large inductive types not expressive enough to
-encode known paradoxes (such as type I above).
-
-
-\Question{What is a ``large inductive definition''?}
-
-An inductive definition in {\Prop} or {\Set} is called large
-if its constructors embed sets or propositions. As an example, here is
-a large inductive type:
-
-\begin{coq_example*}
-Inductive sigST (P:Set -> Set) : Type :=
- existST : forall X:Set, P X -> sigST P.
-\end{coq_example*}
-
-In the {\tt Set} impredicative variant of {\Coq}, large inductive
-definitions in {\tt Set} have restricted elimination schemes to
-prevent inconsistencies. Especially, projecting the set or the
-proposition content of a large inductive definition is forbidden. If
-it were allowed, it would be possible to encode e.g. Burali-Forti
-paradox \cite{Gir70,Coq85}.
-
-
-\Question{Is Coq's logic conservative over Coquand's Calculus of
-Constructions?}
-
-Yes for the non Set-impredicative version of the Calculus of Inductive
-Constructions. Indeed, the impredicative sort of the Calculus of
-Constructions can only be interpreted as the sort {\Prop} since {\Set}
-is predicative. But {\Prop} can be
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Talkin' with the Rooster}
-
-
-%%%%%%%
-\subsection{My goal is ..., how can I prove it?}
-
-
-\Question{My goal is a conjunction, how can I prove it?}
-
-Use some theorem or assumption or use the {\split} tactic.
-\begin{coq_example}
-Goal forall A B:Prop, A->B-> A/\B.
-intros.
-split.
-assumption.
-assumption.
-Qed.
-\end{coq_example}
-
-\Question{My goal contains a conjunction as an hypothesis, how can I use it?}
-
-If you want to decompose your hypothesis into other hypothesis you can use the {\decompose} tactic:
-
-\begin{coq_example}
-Goal forall A B:Prop, A/\B-> B.
-intros.
-decompose [and] H.
-assumption.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is a disjunction, how can I prove it?}
-
-You can prove the left part or the right part of the disjunction using
-{\left} or {\right} tactics. If you want to do a classical
-reasoning step, use the {\tt classic} axiom to prove the right part with the assumption
-that the left part of the disjunction is false.
-
-\begin{coq_example}
-Goal forall A B:Prop, A-> A\/B.
-intros.
-left.
-assumption.
-Qed.
-\end{coq_example}
-
-An example using classical reasoning:
-
-\begin{coq_example}
-Require Import Classical.
-
-Ltac classical_right :=
-match goal with
-| _:_ |-?X1 \/ _ => (elim (classic X1);intro;[left;trivial|right])
-end.
-
-Ltac classical_left :=
-match goal with
-| _:_ |- _ \/?X1 => (elim (classic X1);intro;[right;trivial|left])
-end.
-
-
-Goal forall A B:Prop, (~A -> B) -> A\/B.
-intros.
-classical_right.
-auto.
-Qed.
-\end{coq_example}
-
-\Question{My goal is an universally quantified statement, how can I prove it?}
-
-Use some theorem or assumption or introduce the quantified variable in
-the context using the {\intro} tactic. If there are several
-variables you can use the {\intros} tactic. A good habit is to
-provide names for these variables: {\Coq} will do it anyway, but such
-automatic naming decreases legibility and robustness.
-
-
-\Question{My goal is an existential, how can I prove it?}
-
-Use some theorem or assumption or exhibit the witness using the {\existstac} tactic.
-\begin{coq_example}
-Goal exists x:nat, forall y, x+y=y.
-exists 0.
-intros.
-auto.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is solvable by some lemma, how can I prove it?}
-
-Just use the {\apply} tactic.
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{coq_example}
-Lemma mylemma : forall x, x+0 = x.
-auto.
-Qed.
-
-Goal 3+0 = 3.
-apply mylemma.
-Qed.
-\end{coq_example}
-
-
-
-\Question{My goal contains False as an hypothesis, how can I prove it?}
-
-You can use the {\contradiction} or {\intuition} tactics.
-
-
-\Question{My goal is an equality of two convertible terms, how can I prove it?}
-
-Just use the {\reflexivity} tactic.
-
-\begin{coq_example}
-Goal forall x, 0+x = x.
-intros.
-reflexivity.
-Qed.
-\end{coq_example}
-
-\Question{My goal is a {\tt let x := a in ...}, how can I prove it?}
-
-Just use the {\intro} tactic.
-
-
-\Question{My goal is a {\tt let (a, ..., b) := c in}, how can I prove it?}
-
-Just use the {\destruct} c as (a,...,b) tactic.
-
-
-\Question{My goal contains some existential hypotheses, how can I use it?}
-
-You can use the tactic {\elim} with you hypotheses as an argument.
-
-\Question{My goal contains some existential hypotheses, how can I use it and decompose my knowledge about this new thing into different hypotheses?}
-
-\begin{verbatim}
-Ltac DecompEx H P := elim H;intro P;intro TO;decompose [and] TO;clear TO;clear H.
-\end{verbatim}
-
-
-\Question{My goal is an equality, how can I swap the left and right hand terms?}
-
-Just use the {\symmetry} tactic.
-\begin{coq_example}
-Goal forall x y : nat, x=y -> y=x.
-intros.
-symmetry.
-assumption.
-Qed.
-\end{coq_example}
-
-\Question{My hypothesis is an equality, how can I swap the left and right hand terms?}
-
-Just use the {\symmetryin} tactic.
-
-\begin{coq_example}
-Goal forall x y : nat, x=y -> y=x.
-intros.
-symmetry in H.
-assumption.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is an equality, how can I prove it by transitivity?}
-
-Just use the {\transitivity} tactic.
-\begin{coq_example}
-Goal forall x y z : nat, x=y -> y=z -> x=z.
-intros.
-transitivity y.
-assumption.
-assumption.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal would be solvable using {\tt apply;assumption} if it would not create meta-variables, how can I prove it?}
-
-You can use {\tt eapply yourtheorem;eauto} but it won't work in all cases ! (for example if more than one hypothesis match one of the subgoals generated by \eapply) so you should rather use {\tt try solve [eapply yourtheorem;eauto]}, otherwise some metavariables may be incorrectly instantiated.
-
-\begin{coq_example}
-Lemma trans : forall x y z : nat, x=y -> y=z -> x=z.
-intros.
-transitivity y;assumption.
-Qed.
-
-Goal forall x y z : nat, x=y -> y=z -> x=z.
-intros.
-eapply trans;eauto.
-Qed.
-
-Goal forall x y z t : nat, x=y -> x=t -> y=z -> x=z.
-intros.
-eapply trans;eauto.
-Undo.
-eapply trans.
-apply H.
-auto.
-Qed.
-
-Goal forall x y z t : nat, x=y -> x=t -> y=z -> x=z.
-intros.
-eapply trans;eauto.
-Undo.
-try solve [eapply trans;eauto].
-eapply trans.
-apply H.
-auto.
-Qed.
-
-\end{coq_example}
-
-\Question{My goal is solvable by some lemma within a set of lemmas and I don't want to remember which one, how can I prove it?}
-
-You can use a what is called a hints' base.
-
-\begin{coq_example}
-Require Import ZArith.
-Require Ring.
-Open Local Scope Z_scope.
-Lemma toto1 : 1+1 = 2.
-ring.
-Qed.
-Lemma toto2 : 2+2 = 4.
-ring.
-Qed.
-Lemma toto3 : 2+1 = 3.
-ring.
-Qed.
-
-Hint Resolve toto1 toto2 toto3 : mybase.
-
-Goal 2+(1+1)=4.
-auto with mybase.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is one of the hypotheses, how can I prove it?}
-
-Use the {\assumption} tactic.
-
-\begin{coq_example}
-Goal 1=1 -> 1=1.
-intro.
-assumption.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal appears twice in the hypotheses and I want to choose which one is used, how can I do it?}
-
-Use the {\exact} tactic.
-\begin{coq_example}
-Goal 1=1 -> 1=1 -> 1=1.
-intros.
-exact H0.
-Qed.
-\end{coq_example}
-
-\Question{What can be the difference between applying one hypothesis or another in the context of the last question?}
-
-From a proof point of view it is equivalent but if you want to extract
-a program from your proof, the two hypotheses can lead to different
-programs.
-
-
-\Question{My goal is a propositional tautology, how can I prove it?}
-
-Just use the {\tauto} tactic.
-\begin{coq_example}
-Goal forall A B:Prop, A-> (A\/B) /\ A.
-intros.
-tauto.
-Qed.
-\end{coq_example}
-
-\Question{My goal is a first order formula, how can I prove it?}
-
-Just use the semi-decision tactic: \firstorder.
-
-\iffalse
-todo: demander un exemple à Pierre
-\fi
-
-\Question{My goal is solvable by a sequence of rewrites, how can I prove it?}
-
-Just use the {\congruence} tactic.
-\begin{coq_example}
-Goal forall a b c d e, a=d -> b=e -> c+b=d -> c+e=a.
-intros.
-congruence.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is a disequality solvable by a sequence of rewrites, how can I prove it?}
-
-Just use the {\congruence} tactic.
-
-\begin{coq_example}
-Goal forall a b c d, a<>d -> b=a -> d=c+b -> b<>c+b.
-intros.
-congruence.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is an equality on some ring (e.g. natural numbers), how can I prove it?}
-
-Just use the {\ring} tactic.
-
-\begin{coq_example}
-Require Import ZArith.
-Require Ring.
-Open Local Scope Z_scope.
-Goal forall a b : Z, (a+b)*(a+b) = a*a + 2*a*b + b*b.
-intros.
-ring.
-Qed.
-\end{coq_example}
-
-\Question{My goal is an equality on some field (e.g. real numbers), how can I prove it?}
-
-Just use the {\field} tactic.
-
-\begin{coq_example}
-Require Import Reals.
-Require Ring.
-Open Local Scope R_scope.
-Goal forall a b : R, b*a<>0 -> (a/b) * (b/a) = 1.
-intros.
-field.
-cut (b*a <>0 -> a<>0).
-cut (b*a <>0 -> b<>0).
-auto.
-auto with real.
-auto with real.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is an inequality on integers in Presburger's arithmetic (an expression build from +,-,constants and variables), how can I prove it?}
-
-
-\begin{coq_example}
-Require Import ZArith.
-Require Omega.
-Open Local Scope Z_scope.
-Goal forall a : Z, a>0 -> a+a > a.
-intros.
-omega.
-Qed.
-\end{coq_example}
-
-
-\Question{My goal is an equation solvable using equational hypothesis on some ring (e.g. natural numbers), how can I prove it?}
-
-You need the {\gb} tactic (see Loïc Pottier's homepage).
-
-\subsection{Tactics usage}
-
-\Question{I want to state a fact that I will use later as an hypothesis, how can I do it?}
-
-If you want to use forward reasoning (first proving the fact and then
-using it) you just need to use the {\assert} tactic. If you want to use
-backward reasoning (proving your goal using an assumption and then
-proving the assumption) use the {\cut} tactic.
-
-\begin{coq_example}
-Goal forall A B C D : Prop, (A -> B) -> (B->C) -> A -> C.
-intros.
-assert (A->C).
-intro;apply H0;apply H;assumption.
-apply H2.
-assumption.
-Qed.
-
-Goal forall A B C D : Prop, (A -> B) -> (B->C) -> A -> C.
-intros.
-cut (A->C).
-intro.
-apply H2;assumption.
-intro;apply H0;apply H;assumption.
-Qed.
-\end{coq_example}
-
-
-
-
-\Question{I want to state a fact that I will use later as an hypothesis and prove it later, how can I do it?}
-
-You can use {\cut} followed by {\intro} or you can use the following {\Ltac} command:
-\begin{verbatim}
-Ltac assert_later t := cut t;[intro|idtac].
-\end{verbatim}
-
-\Question{What is the difference between {\Qed} and {\Defined}?}
-
-These two commands perform type checking, but when {\Defined} is used the new definition is set as transparent, otherwise it is defined as opaque (see \ref{opaque}).
-
-
-\Question{How can I know what a tactic does?}
-
-You can use the {\tt info} command.
-
-
-
-\Question{Why {\auto} does not work? How can I fix it?}
-
-You can increase the depth of the proof search or add some lemmas in the base of hints.
-Perhaps you may need to use \eauto.
-
-\Question{What is {\eauto}?}
-
-This is the same tactic as \auto, but it relies on {\eapply} instead of \apply.
-
-\Question{How can I speed up {\auto}?}
-
-You can use \texttt{info }{\auto} to replace {\auto} by the tactics it generates.
-You can split your hint bases into smaller ones.
-
-
-\Question{What is the equivalent of {\tauto} for classical logic?}
-
-Currently there are no equivalent tactic for classical logic. You can use Gödel's ``not not'' translation.
-
-
-\Question{I want to replace some term with another in the goal, how can I do it?}
-
-If one of your hypothesis (say {\tt H}) states that the terms are equal you can use the {\rewrite} tactic. Otherwise you can use the {\replace} {\tt with} tactic.
-
-\Question{I want to replace some term with another in an hypothesis, how can I do it?}
-
-You can use the {\rewrite} {\tt in} tactic.
-
-\Question{I want to replace some symbol with its definition, how can I do it?}
-
-You can use the {\unfold} tactic.
-
-\Question{How can I reduce some term?}
-
-You can use the {\simpl} tactic.
-
-\Question{How can I declare a shortcut for some term?}
-
-You can use the {\set} or {\pose} tactics.
-
-\Question{How can I perform case analysis?}
-
-You can use the {\case} or {\destruct} tactics.
-
-\Question{How can I prevent the case tactic from losing information ?}
-
-You may want to use the (now standard) {\tt case\_eq} tactic. See the Coq'Art page 159.
-
-\Question{Why should I name my intros?}
-
-When you use the {\intro} tactic you don't have to give a name to your
-hypothesis. If you do so the name will be generated by {\Coq} but your
-scripts may be less robust. If you add some hypothesis to your theorem
-(or change their order), you will have to change your proof to adapt
-to the new names.
-
-\Question{How can I automatize the naming?}
-
-You can use the {\tt Show Intro.} or {\tt Show Intros.} commands to generate the names and use your editor to generate a fully named {\intro} tactic.
-This can be automatized within {\tt xemacs}.
-
-\begin{coq_example}
-Goal forall A B C : Prop, A -> B -> C -> A/\B/\C.
-Show Intros.
-(*
-A B C H H0
-H1
-*)
-intros A B C H H0 H1.
-repeat split;assumption.
-Qed.
-\end{coq_example}
-
-\Question{I want to automatize the use of some tactic, how can I do it?}
-
-You need to use the {\tt proof with T} command and add {\ldots} at the
-end of your sentences.
-
-For instance:
-\begin{coq_example}
-Goal forall A B C : Prop, A -> B/\C -> A/\B/\C.
-Proof with assumption.
-intros.
-split...
-Qed.
-\end{coq_example}
-
-\Question{I want to execute the {\texttt proof with} tactic only if it solves the goal, how can I do it?}
-
-You need to use the {\try} and {\solve} tactics. For instance:
-\begin{coq_example}
-Require Import ZArith.
-Require Ring.
-Open Local Scope Z_scope.
-Goal forall a b c : Z, a+b=b+a.
-Proof with try solve [ring].
-intros...
-Qed.
-\end{coq_example}
-
-\Question{How can I do the opposite of the {\intro} tactic?}
-
-You can use the {\generalize} tactic.
-
-\begin{coq_example}
-Goal forall A B : Prop, A->B-> A/\B.
-intros.
-generalize H.
-intro.
-auto.
-Qed.
-\end{coq_example}
-
-\Question{One of the hypothesis is an equality between a variable and some term, I want to get rid of this variable, how can I do it?}
-
-You can use the {\subst} tactic. This will rewrite the equality everywhere and clear the assumption.
-
-\Question{What can I do if I get ``{\tt generated subgoal term has metavariables in it }''?}
-
-You should use the {\eapply} tactic, this will generate some goals containing metavariables.
-
-\Question{How can I instantiate some metavariable?}
-
-Just use the {\instantiate} tactic.
-
-
-\Question{What is the use of the {\pattern} tactic?}
-
-The {\pattern} tactic transforms the current goal, performing
-beta-expansion on all the applications featuring this tactic's
-argument. For instance, if the current goal includes a subterm {\tt
-phi(t)}, then {\tt pattern t} transforms the subterm into {\tt (fun
-x:A => phi(x)) t}. This can be useful when {\apply} fails on matching,
-to abstract the appropriate terms.
-
-\Question{What is the difference between assert, cut and generalize?}
-
-PS: Notice for people that are interested in proof rendering that \assert
-and {\pose} (and \cut) are not rendered the same as {\generalize} (see the
-HELM experimental rendering tool at \ahref{http://helm.cs.unibo.it/library.html}{\url{http://helm.cs.unibo.it}}, link
-HELM, link COQ Online). Indeed {\generalize} builds a beta-expanded term
-while \assert, {\pose} and {\cut} uses a let-in.
-
-\begin{verbatim}
- (* Goal is T *)
- generalize (H1 H2).
- (* Goal is A->T *)
- ... a proof of A->T ...
-\end{verbatim}
-
-is rendered into something like
-\begin{verbatim}
- (h) ... the proof of A->T ...
- we proved A->T
- (h0) by (H1 H2) we proved A
- by (h h0) we proved T
-\end{verbatim}
-while
-\begin{verbatim}
- (* Goal is T *)
- assert q := (H1 H2).
- (* Goal is A *)
- ... a proof of A ...
- (* Goal is A |- T *)
- ... a proof of T ...
-\end{verbatim}
-is rendered into something like
-\begin{verbatim}
- (q) ... the proof of A ...
- we proved A
- ... the proof of T ...
- we proved T
-\end{verbatim}
-Otherwise said, {\generalize} is not rendered in a forward-reasoning way,
-while {\assert} is.
-
-\Question{What can I do if \Coq can not infer some implicit argument ?}
-
-You can state explicitely what this implicit argument is. See \ref{implicit}.
-
-\Question{How can I explicit some implicit argument ?}\label{implicit}
-
-Just use \texttt{A:=term} where \texttt{A} is the argument.
-
-For instance if you want to use the existence of ``nil'' on nat*nat lists:
-\begin{verbatim}
-exists (nil (A:=(nat*nat))).
-\end{verbatim}
-
-\iffalse
-\Question{Is there anyway to do pattern matching with dependent types?}
-
-todo
-\fi
-
-\subsection{Proof management}
-
-
-\Question{How can I change the order of the subgoals?}
-
-You can use the {\Focus} command to concentrate on some goal. When the goal is proved you will see the remaining goals.
-
-\Question{How can I change the order of the hypothesis?}
-
-You can use the {\tt Move ... after} command.
-
-\Question{How can I change the name of an hypothesis?}
-
-You can use the {\tt Rename ... into} command.
-
-\Question{How can I delete some hypothesis?}
-
-You can use the {\tt Clear} command.
-
-\Question{How can use a proof which is not finished?}
-
-You can use the {\tt Admitted} command to state your current proof as an axiom.
-You can use the {\tt admit} tactic to omit a portion of a proof.
-
-\Question{How can I state a conjecture?}
-
-You can use the {\tt Admitted} command to state your current proof as an axiom.
-
-\Question{What is the difference between a lemma, a fact and a theorem?}
-
-From {\Coq} point of view there are no difference. But some tools can
-have a different behavior when you use a lemma rather than a
-theorem. For instance {\tt coqdoc} will not generate documentation for
-the lemmas within your development.
-
-\Question{How can I organize my proofs?}
-
-You can organize your proofs using the section mechanism of \Coq. Have
-a look at the manual for further information.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Inductive and Co-inductive types}
-
-\subsection{General}
-
-\Question{How can I prove that two constructors are different?}
-
-You can use the {\discriminate} tactic.
-
-\begin{coq_example}
-Inductive toto : Set := | C1 : toto | C2 : toto.
-Goal C1 <> C2.
-discriminate.
-Qed.
-\end{coq_example}
-
-\Question{During an inductive proof, how to get rid of impossible cases of an inductive definition?}
-
-Use the {\inversion} tactic.
-
-
-\Question{How can I prove that 2 terms in an inductive set are equal? Or different?}
-
-Have a look at \coqtt{decide equality} and \coqtt{discriminate} in the \ahref{http://coq.inria.fr/doc/main.html}{Reference Manual}.
-
-\Question{Why is the proof of \coqtt{0+n=n} on natural numbers
-trivial but the proof of \coqtt{n+0=n} is not?}
-
- Since \coqtt{+} (\coqtt{plus}) on natural numbers is defined by analysis on its first argument
-
-\begin{coq_example}
-Print plus.
-\end{coq_example}
-
-{\noindent} The expression \coqtt{0+n} evaluates to \coqtt{n}. As {\Coq} reasons
-modulo evaluation of expressions, \coqtt{0+n} and \coqtt{n} are
-considered equal and the theorem \coqtt{0+n=n} is an instance of the
-reflexivity of equality. On the other side, \coqtt{n+0} does not
-evaluate to \coqtt{n} and a proof by induction on \coqtt{n} is
-necessary to trigger the evaluation of \coqtt{+}.
-
-\Question{Why is dependent elimination in Prop not
-available by default?}
-
-
-This is just because most of the time it is not needed. To derive a
-dependent elimination principle in {\tt Prop}, use the command {\tt Scheme} and
-apply the elimination scheme using the \verb=using= option of
-\verb=elim=, \verb=destruct= or \verb=induction=.
-
-
-\Question{Argh! I cannot write expressions like ``~{\tt if n <= p then p else n}~'', as in any programming language}
-\label{minmax}
-
-The short answer : You should use {\texttt le\_lt\_dec n p} instead.\\
-
-That's right, you can't.
-If you type for instance the following ``definition'':
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Definition max (n p : nat) := if n <= p then p else n.
-\end{coq_example}
-
-As \Coq~ says, the term ``~\texttt{n <= p}~'' is a proposition, i.e. a
-statement that belongs to the mathematical world. There are many ways to
-prove such a proposition, either by some computation, or using some already
-proven theoremas. For instance, proving $3-2 \leq 2^{45503}$ is very easy,
-using some theorems on arithmetical operations. If you compute both numbers
-before comparing them, you risk to use a lot of time and space.
-
-
-On the contrary, a function for computing the greatest of two natural numbers
-is an algorithm which, called on two natural numbers
-$n$ and $p$, determines wether $n\leq p$ or $p < n$.
-Such a function is a \emph{decision procedure} for the inequality of
- \texttt{nat}. The possibility of writing such a procedure comes
-directly from de decidability of the order $\leq$ on natural numbers.
-
-
-When you write a piece of code like
-``~\texttt{if n <= p then \dots{} else \dots}~''
-in a
-programming language like \emph{ML} or \emph{Java}, a call to such a
-decision procedure is generated. The decision procedure is in general
-a primitive function, written in a low-level language, in the correctness
-of which you have to trust.
-
-The standard Library of the system \emph{Coq} contains a
-(constructive) proof of decidability of the order $\leq$ on
-\texttt{nat} : the function \texttt{le\_lt\_dec} of
-the module \texttt{Compare\_dec} of library \texttt{Arith}.
-
-The following code shows how to define correctly \texttt{min} and
-\texttt{max}, and prove some properties of these functions.
-
-\begin{coq_example}
-Require Import Compare_dec.
-
-Definition max (n p : nat) := if le_lt_dec n p then p else n.
-
-Definition min (n p : nat) := if le_lt_dec n p then n else p.
-
-Eval compute in (min 4 7).
-
-Theorem min_plus_max : forall n p, min n p + max n p = n + p.
-Proof.
- intros n p;
- unfold min, max;
- case (le_lt_dec n p);
- simpl; auto with arith.
-Qed.
-
-Theorem max_equiv : forall n p, max n p = p <-> n <= p.
-Proof.
- unfold max; intros n p; case (le_lt_dec n p);simpl; auto.
- intuition auto with arith.
- split.
- intro e; rewrite e; auto with arith.
- intro H; absurd (p < p); eauto with arith.
-Qed.
-\end{coq_example}
-
-\Question{I wrote my own decision procedure for $\leq$, which
-is much faster than yours, but proving such theorems as
- \texttt{max\_equiv} seems to be quite difficult}
-
-Your code is probably the following one:
-
-\begin{coq_example}
-Fixpoint my_le_lt_dec (n p :nat) {struct n}: bool :=
- match n, p with 0, _ => true
- | S n', S p' => my_le_lt_dec n' p'
- | _ , _ => false
- end.
-
-Definition my_max (n p:nat) := if my_le_lt_dec n p then p else n.
-
-Definition my_min (n p:nat) := if my_le_lt_dec n p then n else p.
-\end{coq_example}
-
-
-For instance, the computation of \texttt{my\_max 567 321} is almost
-immediate, whereas one can't wait for the result of
-\texttt{max 56 32}, using \emph{Coq's} \texttt{le\_lt\_dec}.
-
-This is normal. Your definition is a simple recursive function which
-returns a boolean value. Coq's \texttt{le\_lt\_dec} is a \emph{certified
-function}, i.e. a complex object, able not only to tell wether $n\leq p$
-or $p<n$, but also of building a complete proof of the correct inequality.
-What make \texttt{le\_lt\_dec} inefficient for computing \texttt{min}
-and \texttt{max} is the building of a huge proof term.
-
-Nevertheless, \texttt{le\_lt\_dec} is very useful. Its type
-is a strong specification, using the
-\texttt{sumbool} type (look at the reference manual or chapter 9 of
-\cite{coqart}). Eliminations of the form
-``~\texttt{case (le\_lt\_dec n p)}~'' provide proofs of
-either $n \leq p$ or $p < n$, allowing to prove easily theorems as in
-question~\ref{minmax}. Unfortunately, this not the case of your
-\texttt{my\_le\_lt\_dec}, which returns a quite non-informative boolean
-value.
-
-
-\begin{coq_example}
-Check le_lt_dec.
-\end{coq_example}
-
-You should keep in mind that \texttt{le\_lt\_dec} is useful to build
-certified programs which need to compare natural numbers, and is not
-designed to compare quickly two numbers.
-
-Nevertheless, the \emph{extraction} of \texttt{le\_lt\_dec} towards
-\emph{Ocaml} or \emph{Haskell}, is a reasonable program for comparing two
-natural numbers in Peano form in linear time.
-
-It is also possible to keep your boolean function as a decision procedure,
-but you have to establish yourself the relationship between \texttt{my\_le\_lt\_dec} and the propositions $n\leq p$ and $p<n$:
-
-\begin{coq_example*}
-Theorem my_le_lt_dec_true :
- forall n p, my_le_lt_dec n p = true <-> n <= p.
-
-Theorem my_le_lt_dec_false :
- forall n p, my_le_lt_dec n p = false <-> p < n.
-\end{coq_example*}
-
-
-\subsection{Recursion}
-
-\Question{Why can't I define a non terminating program?}
-
- Because otherwise the decidability of the type-checking
-algorithm (which involves evaluation of programs) is not ensured. On
-another side, if non terminating proofs were allowed, we could get a
-proof of {\tt False}:
-
-\begin{coq_example*}
-(* This is fortunately not allowed! *)
-Fixpoint InfiniteProof (n:nat) : False := InfiniteProof n.
-Theorem Paradox : False.
-Proof (InfiniteProof O).
-\end{coq_example*}
-
-
-\Question{Why only structurally well-founded loops are allowed?}
-
- The structural order on inductive types is a simple and
-powerful notion of termination. The consistency of the Calculus of
-Inductive Constructions relies on it and another consistency proof
-would have to be made for stronger termination arguments (such
-as the termination of the evaluation of CIC programs themselves!).
-
-In spite of this, all non-pathological termination orders can be mapped
-to a structural order. Tools to do this are provided in the file
-\vfile{\InitWf}{Wf} of the standard library of {\Coq}.
-
-\Question{How to define loops based on non structurally smaller
-recursive calls?}
-
- The procedure is as follows (we consider the definition of {\tt
-mergesort} as an example).
-
-\begin{itemize}
-
-\item Define the termination order, say {\tt R} on the type {\tt A} of
-the arguments of the loop.
-
-\begin{coq_eval}
-Open Scope R_scope.
-Require Import List.
-\end{coq_eval}
-
-\begin{coq_example*}
-Definition R (a b:list nat) := length a < length b.
-\end{coq_example*}
-
-\item Prove that this order is well-founded (in fact that all elements in {\tt A} are accessible along {\tt R}).
-
-\begin{coq_example*}
-Lemma Rwf : well_founded R.
-\end{coq_example*}
-
-\item Define the step function (which needs proofs that recursive
-calls are on smaller arguments).
-
-\begin{coq_example*}
-Definition split (l : list nat)
- : {l1: list nat | R l1 l} * {l2 : list nat | R l2 l}
- := (* ... *) .
-Definition concat (l1 l2 : list nat) : list nat := (* ... *) .
-Definition merge_step (l : list nat) (f: forall l':list nat, R l' l -> list nat) :=
- let (lH1,lH2) := (split l) in
- let (l1,H1) := lH1 in
- let (l2,H2) := lH2 in
- concat (f l1 H1) (f l2 H2).
-\end{coq_example*}
-
-\item Define the recursive function by fixpoint on the step function.
-
-\begin{coq_example*}
-Definition merge := Fix Rwf (fun _ => list nat) merge_step.
-\end{coq_example*}
-
-\end{itemize}
-
-\Question{What is behind the accessibility and well-foundedness proofs?}
-
- Well-foundedness of some relation {\tt R} on some type {\tt A}
-is defined as the accessibility of all elements of {\tt A} along {\tt R}.
-
-\begin{coq_example}
-Print well_founded.
-Print Acc.
-\end{coq_example}
-
-The structure of the accessibility predicate is a well-founded tree
-branching at each node {\tt x} in {\tt A} along all the nodes {\tt x'}
-less than {\tt x} along {\tt R}. Any sequence of elements of {\tt A}
-decreasing along the order {\tt R} are branches in the accessibility
-tree. Hence any decreasing along {\tt R} is mapped into a structural
-decreasing in the accessibility tree of {\tt R}. This is emphasised in
-the definition of {\tt fix} which recurs not on its argument {\tt x:A}
-but on the accessibility of this argument along {\tt R}.
-
-See file \vfile{\InitWf}{Wf}.
-
-\Question{How to perform simultaneous double induction?}
-
- In general a (simultaneous) double induction is simply solved by an
-induction on the first hypothesis followed by an inversion over the
-second hypothesis. Here is an example
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{coq_example}
-Inductive even : nat -> Prop :=
- | even_O : even 0
- | even_S : forall n:nat, even n -> even (S (S n)).
-
-Inductive odd : nat -> Prop :=
- | odd_SO : odd 1
- | odd_S : forall n:nat, odd n -> odd (S (S n)).
-
-Lemma not_even_and_odd : forall n:nat, even n -> odd n -> False.
-induction 1.
- inversion 1.
- inversion 1. apply IHeven; trivial.
-\end{coq_example}
-\begin{coq_eval}
-Qed.
-\end{coq_eval}
-
-In case the type of the second induction hypothesis is not
-dependent, {\tt inversion} can just be replaced by {\tt destruct}.
-
-\Question{How to define a function by simultaneous double recursion?}
-
- The same trick applies, you can even use the pattern-matching
-compilation algorithm to do the work for you. Here is an example:
-
-\begin{coq_example}
-Fixpoint minus (n m:nat) {struct n} : nat :=
- match n, m with
- | O, _ => 0
- | S k, O => S k
- | S k, S l => minus k l
- end.
-Print minus.
-\end{coq_example}
-
-In case of dependencies in the type of the induction objects
-$t_1$ and $t_2$, an extra argument stating $t_1=t_2$ must be given to
-the fixpoint definition
-
-\Question{How to perform nested and double induction?}
-
- To reason by nested (i.e. lexicographic) induction, just reason by
-induction on the successive components.
-
-\smallskip
-
-Double induction (or induction on pairs) is a restriction of the
-lexicographic induction. Here is an example of double induction.
-
-\begin{coq_example}
-Lemma nat_double_ind :
-forall P : nat -> nat -> Prop, P 0 0 ->
- (forall m n, P m n -> P m (S n)) ->
- (forall m n, P m n -> P (S m) n) ->
- forall m n, P m n.
-intros P H00 HmS HSn; induction m.
-(* case 0 *)
-induction n; [assumption | apply HmS; apply IHn].
-(* case Sm *)
-intro n; apply HSn; apply IHm.
-\end{coq_example}
-\begin{coq_eval}
-Qed.
-\end{coq_eval}
-
-\Question{How to define a function by nested recursion?}
-
- The same trick applies. Here is the example of Ackermann
-function.
-
-\begin{coq_example}
-Fixpoint ack (n:nat) : nat -> nat :=
- match n with
- | O => S
- | S n' =>
- (fix ack' (m:nat) : nat :=
- match m with
- | O => ack n' 1
- | S m' => ack n' (ack' m')
- end)
- end.
-\end{coq_example}
-
-
-\subsection{Co-inductive types}
-
-\Question{I have a cofixpoint $t:=F(t)$ and I want to prove $t=F(t)$. How to do it?}
-
-Just case-expand $F({\tt t})$ then complete by a trivial case analysis.
-Here is what it gives on e.g. the type of streams on naturals
-
-\begin{coq_eval}
-Set Implicit Arguments.
-\end{coq_eval}
-\begin{coq_example}
-CoInductive Stream (A:Set) : Set :=
- Cons : A -> Stream A -> Stream A.
-CoFixpoint nats (n:nat) : Stream nat := Cons n (nats (S n)).
-Lemma Stream_unfold :
- forall n:nat, nats n = Cons n (nats (S n)).
-Proof.
- intro;
- change (nats n = match nats n with
- | Cons x s => Cons x s
- end).
- case (nats n); reflexivity.
-Qed.
-\end{coq_example}
-
-
-
-\section{Syntax and notations}
-
-\Question{I do not want to type ``forall'' because it is too long, what can I do?}
-
-You can define your own notation for forall:
-\begin{verbatim}
-Notation "fa x : t, P" := (forall x:t, P) (at level 200, x ident).
-\end{verbatim}
-or if your are using {\CoqIde} you can define a pretty symbol for for all and an input method (see \ref{forallcoqide}).
-
-
-
-\Question{How can I define a notation for square?}
-
-You can use for instance:
-\begin{verbatim}
-Notation "x ^2" := (Rmult x x) (at level 20).
-\end{verbatim}
-Note that you can not use:
-\begin{tt}
-Notation "x $^²$" := (Rmult x x) (at level 20).
-\end{tt}
-because ``$^2$'' is an iso-latin character. If you really want this kind of notation you should use UTF-8.
-
-
-\Question{Why ``no associativity'' and ``left associativity'' at the same level does not work?}
-
-Because we relie on camlp4 for syntactical analysis and camlp4 does not really implement no associativity. By default, non associative operators are defined as right associative.
-
-
-
-\Question{How can I know the associativity associated with a level?}
-
-You can do ``Print Grammar constr'', and decode the output from camlp4, good luck !
-
-\section{Modules}
-
-
-
-
-%%%%%%%
-\section{\Ltac}
-
-\Question{What is {\Ltac}?}
-
-{\Ltac} is the tactic language for \Coq. It provides the user with a
-high-level ``toolbox'' for tactic creation.
-
-\Question{Is there any printing command in {\Ltac}?}
-
-You can use the {\idtac} tactic with a string argument. This string
-will be printed out. The same applies to the {\fail} tactic
-
-\Question{What is the syntax for let in {\Ltac}?}
-
-If $x_i$ are identifiers and $e_i$ and $expr$ are tactic expressions, then let reads:
-\begin{center}
-{\tt let $x_1$:=$e_1$ with $x_2$:=$e_2$\ldots with $x_n$:=$e_n$ in
-$expr$}.
-\end{center}
-Beware that if $expr$ is complex (i.e. features at least a sequence) parenthesis
-should be added around it. For example:
-\begin{coq_example}
-Ltac twoIntro := let x:=intro in (x;x).
-\end{coq_example}
-
-\Question{What is the syntax for pattern matching in {\Ltac}?}
-
-Pattern matching on a term $expr$ (non-linear first order unification)
-with patterns $p_i$ and tactic expressions $e_i$ reads:
-\begin{center}
-\hspace{10ex}
-{\tt match $expr$ with
-\hspace*{2ex}$p_1$ => $e_1$
-\hspace*{1ex}\textbar$p_2$ => $e_2$
-\hspace*{1ex}\ldots
-\hspace*{1ex}\textbar$p_n$ => $e_n$
-\hspace*{1ex}\textbar\ \textunderscore\ => $e_{n+1}$
-end.
-}
-\end{center}
-Underscore matches all terms.
-
-\Question{What is the semantics for ``match goal''?}
-
-The semantics of {\tt match goal} depends on whether it returns
-tactics or not. The {\tt match goal} expression matches the current
-goal against a series of patterns: {$hyp_1 {\ldots} hyp_n$ \textbar-
-$ccl$}. It uses a first-order unification algorithm and in case of
-success, if the right-hand-side is an expression, it tries to type it
-while if the right-hand-side is a tactic, it tries to apply it. If the
-typing or the tactic application fails, the {\tt match goal} tries all
-the possible combinations of $hyp_i$ before dropping the branch and
-moving to the next one. Underscore matches all terms.
-
-\Question{Why can't I use a ``match goal'' returning a tactic in a non
-tail-recursive position?}
-
-This is precisely because the semantics of {\tt match goal} is to
-apply the tactic on the right as soon as a pattern unifies what is
-meaningful only in tail-recursive uses.
-
-The semantics in non tail-recursive call could have been the one used
-for terms (i.e. fail if the tactic expression is not typable, but
-don't try to apply it). For uniformity of semantics though, this has
-been rejected.
-
-\Question{How can I generate a new name?}
-
-You can use the following syntax:
-{\tt let id:=fresh in \ldots}\\
-For example:
-\begin{coq_example}
-Ltac introIdGen := let id:=fresh in intro id.
-\end{coq_example}
-
-
-\iffalse
-\Question{How can I access the type of a term?}
-
-You can use typeof.
-todo
-\fi
-
-\iffalse
-\Question{How can I define static and dynamic code?}
-\fi
-
-\section{Tactics written in Ocaml}
-
-\Question{Can you show me an example of a tactic written in OCaml?}
-
-You have some examples of tactics written in Ocaml in the ``plugins'' directory of {\Coq} sources.
-
-
-
-
-\section{Case studies}
-
-\iffalse
-\Question{How can I define vectors or lists of size n?}
-\fi
-
-
-\Question{How to prove that 2 sets are different?}
-
- You need to find a property true on one set and false on the
-other one. As an example we show how to prove that {\tt bool} and {\tt
-nat} are discriminable. As discrimination property we take the
-property to have no more than 2 elements.
-
-\begin{coq_example*}
-Theorem nat_bool_discr : bool <> nat.
-Proof.
- pose (discr :=
- fun X:Set =>
- ~ (forall a b:X, ~ (forall x:X, x <> a -> x <> b -> False))).
- intro Heq; assert (H: discr bool).
- intro H; apply (H true false); destruct x; auto.
- rewrite Heq in H; apply H; clear H.
- destruct a; destruct b as [|n]; intro H0; eauto.
- destruct n; [ apply (H0 2); discriminate | eauto ].
-Qed.
-\end{coq_example*}
-
-\Question{Is there an axiom-free proof of Streicher's axiom $K$ for
-the equality on {\tt nat}?}
-\label{K-nat}
-
-Yes, because equality is decidable on {\tt nat}. Here is the proof.
-
-\begin{coq_example*}
-Require Import Eqdep_dec.
-Require Import Peano_dec.
-Theorem K_nat :
- forall (x:nat) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
-Proof.
-intros; apply K_dec_set with (p := p).
-apply eq_nat_dec.
-assumption.
-Qed.
-\end{coq_example*}
-
-Similarly, we have
-
-\begin{coq_example*}
-Theorem eq_rect_eq_nat :
- forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
-Proof.
-intros; apply K_nat with (p := h); reflexivity.
-Qed.
-\end{coq_example*}
-
-\Question{How to prove that two proofs of {\tt n<=m} on {\tt nat} are equal?}
-\label{le-uniqueness}
-
-This is provable without requiring any axiom because axiom $K$
-directly holds on {\tt nat}. Here is a proof using question \ref{K-nat}.
-
-\begin{coq_example*}
-Require Import Arith.
-Scheme le_ind' := Induction for le Sort Prop.
-Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
-Proof.
-induction p using le_ind'; intro q.
- replace (le_n n) with
- (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
- 2:reflexivity.
- generalize (refl_equal n).
- pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
- rewrite <- eq_rect_eq_nat; trivial.
- contradiction (le_Sn_n m); rewrite <- e; assumption.
- replace (le_S n m p) with
- (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
- 2:reflexivity.
- generalize (refl_equal (S m)).
- pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
- contradiction (le_Sn_n m); rewrite Heq; assumption.
- injection HeqS; intro Heq; generalize l HeqS.
- rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
- rewrite (IHp l0); reflexivity.
-Qed.
-\end{coq_example*}
-
-\Question{How to exploit equalities on sets}
-
-To extract information from an equality on sets, you need to
-find a predicate of sets satisfied by the elements of the sets. As an
-example, let's consider the following theorem.
-
-\begin{coq_example*}
-Theorem interval_discr :
- forall m n:nat,
- {x : nat | x <= m} = {x : nat | x <= n} -> m = n.
-\end{coq_example*}
-
-We have a proof requiring the axiom of proof-irrelevance. We
-conjecture that proof-irrelevance can be circumvented by introducing a
-primitive definition of discrimination of the proofs of
-\verb!{x : nat | x <= m}!.
-
-\begin{latexonly}%
-The proof can be found in file {\tt interval$\_$discr.v} in this directory.
-%Here is the proof
-%\begin{small}
-%\begin{flushleft}
-%\begin{texttt}
-%\def_{\ifmmode\sb\else\subscr\fi}
-%\include{interval_discr.v}
-%%% WARNING semantics of \_ has changed !
-%\end{texttt}
-%$a\_b\_c$
-%\end{flushleft}
-%\end{small}
-\end{latexonly}%
-\begin{htmlonly}%
-\ahref{./interval_discr.v}{Here} is the proof.
-\end{htmlonly}
-
-\Question{I have a problem of dependent elimination on
-proofs, how to solve it?}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive Def1 : Set := c1 : Def1.
-Inductive DefProp : Def1 -> Prop :=
- c2 : forall d:Def1, DefProp d.
-Inductive Comb : Set :=
- c3 : forall d:Def1, DefProp d -> Comb.
-Lemma eq_comb :
- forall (d1 d1':Def1) (d2:DefProp d1) (d2':DefProp d1'),
- d1 = d1' -> c3 d1 d2 = c3 d1' d2'.
-\end{coq_example*}
-
- You need to derive the dependent elimination
-scheme for DefProp by hand using {\coqtt Scheme}.
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\begin{coq_example*}
-Scheme DefProp_elim := Induction for DefProp Sort Prop.
-Lemma eq_comb :
- forall d1 d1':Def1,
- d1 = d1' ->
- forall (d2:DefProp d1) (d2':DefProp d1'), c3 d1 d2 = c3 d1' d2'.
-intros.
-destruct H.
-destruct d2 using DefProp_elim.
-destruct d2' using DefProp_elim.
-reflexivity.
-Qed.
-\end{coq_example*}
-
-
-\Question{And what if I want to prove the following?}
-
-\begin{coq_example*}
-Inductive natProp : nat -> Prop :=
- | p0 : natProp 0
- | pS : forall n:nat, natProp n -> natProp (S n).
-Inductive package : Set :=
- pack : forall n:nat, natProp n -> package.
-Lemma eq_pack :
- forall n n':nat,
- n = n' ->
- forall (np:natProp n) (np':natProp n'), pack n np = pack n' np'.
-\end{coq_example*}
-
-
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example*}
-Scheme natProp_elim := Induction for natProp Sort Prop.
-Definition pack_S : package -> package.
-destruct 1.
-apply (pack (S n)).
-apply pS; assumption.
-Defined.
-Lemma eq_pack :
- forall n n':nat,
- n = n' ->
- forall (np:natProp n) (np':natProp n'), pack n np = pack n' np'.
-intros n n' Heq np np'.
-generalize dependent n'.
-induction np using natProp_elim.
-induction np' using natProp_elim; intros; auto.
- discriminate Heq.
-induction np' using natProp_elim; intros; auto.
- discriminate Heq.
-change (pack_S (pack n np) = pack_S (pack n0 np')).
-apply (f_equal (A:=package)).
-apply IHnp.
-auto.
-Qed.
-\end{coq_example*}
-
-
-
-
-
-
-
-\section{Publishing tools}
-
-\Question{How can I generate some latex from my development?}
-
-You can use {\tt coqdoc}.
-
-\Question{How can I generate some HTML from my development?}
-
-You can use {\tt coqdoc}.
-
-\Question{How can I generate some dependency graph from my development?}
-
-You can use the tool \verb|coqgraph| developped by Philippe Audebaud in 2002.
-This tool transforms dependancies generated by \verb|coqdep| into 'dot' files which can be visualized using the Graphviz software (http://www.graphviz.org/).
-
-\Question{How can I cite some {\Coq} in my latex document?}
-
-You can use {\tt coq\_tex}.
-
-\Question{How can I cite the {\Coq} reference manual?}
-
-You can use this bibtex entry:
-\begin{verbatim}
-@Manual{Coq:manual,
- title = {The Coq proof assistant reference manual},
- author = {\mbox{The Coq development team}},
- note = {Version 8.3},
- year = {2009},
- url = "http://coq.inria.fr"
-}
-\end{verbatim}
-
-\Question{Where can I publish my developments in {\Coq}?}
-
-You can submit your developments as a user contribution to the {\Coq}
-development team. This ensures its liveness along the evolution and
-possible changes of {\Coq}.
-
-You can also submit your developments to the HELM/MoWGLI repository at
-the University of Bologna (see
-\ahref{http://mowgli.cs.unibo.it}{\url{http://mowgli.cs.unibo.it}}). For
-developments submitted in this database, it is possible to visualize
-the developments in natural language and execute various retrieving
-requests.
-
-\Question{How can I read my proof in natural language?}
-
-You can submit your proof to the HELM/MoWGLI repository and use the
-rendering tool provided by the server (see
-\ahref{http://mowgli.cs.unibo.it}{\url{http://mowgli.cs.unibo.it}}).
-
-\section{\CoqIde}
-
-\Question{What is {\CoqIde}?}
-
-{\CoqIde} is a gtk based GUI for \Coq.
-
-\Question{How to enable Emacs keybindings?}
-
-Depending on your configuration, use either one of these two methods
-
-\begin{itemize}
-
-\item Insert \texttt{gtk-key-theme-name = "Emacs"}
- in your \texttt{.coqide-gtk2rc} file. It may be in the current dir
- or in \verb#$HOME# dir. This is done by default.
-
-\item If in Gnome, run the gnome configuration editor (\texttt{gconf-editor})
-and set key \texttt{gtk-key-theme} to \texttt{Emacs} in the category
-\texttt{desktop/gnome/interface}.
-
-\end{itemize}
-
-
-
-%$ juste pour que la coloration emacs marche
-
-\Question{How to enable antialiased fonts?}
-
- Set the \verb#GDK_USE_XFT# variable to \verb#1#. This is by default
- with \verb#Gtk >= 2.2#. If some of your fonts are not available,
- set \verb#GDK_USE_XFT# to \verb#0#.
-
-\Question{How to use those Forall and Exists pretty symbols?}\label{forallcoqide}
- Thanks to the notation features in \Coq, you just need to insert these
-lines in your {\Coq} buffer:\\
-\begin{tt}
-Notation "$\forall$ x : t, P" := (forall x:t, P) (at level 200, x ident).
-\end{tt}\\
-\begin{tt}
-Notation "$\exists$ x : t, P" := (exists x:t, P) (at level 200, x ident).
-\end{tt}
-
-Copy/Paste of these lines from this file will not work outside of \CoqIde.
-You need to load a file containing these lines or to enter the $\forall$
-using an input method (see \ref{inputmeth}). To try it just use \verb#Require Import utf8# from inside
-\CoqIde.
-To enable these notations automatically start coqide with
-\begin{verbatim}
- coqide -l utf8
-\end{verbatim}
-In the ide subdir of {\Coq} library, you will find a sample utf8.v with some
-pretty simple notations.
-
-\Question{How to define an input method for non ASCII symbols?}\label{inputmeth}
-
-\begin{itemize}
-\item First solution: type \verb#<CONTROL><SHIFT>2200# to enter a forall in the script widow.
- 2200 is the hexadecimal code for forall in unicode charts and is encoded as
- in UTF-8.
- 2203 is for exists. See \ahref{http://www.unicode.org}{\url{http://www.unicode.org}} for more codes.
-\item Second solution: rebind \verb#<AltGr>a# to forall and \verb#<AltGr>e# to exists.
- Under X11, you need to use something like
-\begin{verbatim}
- xmodmap -e "keycode 24 = a A F13 F13"
- xmodmap -e "keycode 26 = e E F14 F14"
-\end{verbatim}
- and then to add
-\begin{verbatim}
- bind "F13" {"insert-at-cursor" ("")}
- bind "F14" {"insert-at-cursor" ("")}
-\end{verbatim}
- to your "binding "text"" section in \verb#.coqiderc-gtk2rc.#
- The strange ("") argument is the UTF-8 encoding for
- 0x2200.
- You can compute these encodings using the lablgtk2 toplevel with
-\begin{verbatim}
-Glib.Utf8.from_unichar 0x2200;;
-\end{verbatim}
- Further symbols can be bound on higher Fxx keys or on even on other keys you
- do not need .
-\end{itemize}
-
-\Question{How to build a custom {\CoqIde} with user ml code?}
- Use
- coqmktop -ide -byte m1.cmo...mi.cmo
- or
- coqmktop -ide -opt m1.cmx...mi.cmx
-
-\Question{How to customize the shortcuts for menus?}
- Two solutions are offered:
-\begin{itemize}
-\item Edit \$HOME/.coqide.keys by hand or
-\item Add "gtk-can-change-accels = 1" in your .coqide-gtk2rc file. Then
- from \CoqIde, you may select a menu entry and press the desired
- shortcut.
-\end{itemize}
-
-\Question{What encoding should I use? What is this $\backslash$x\{iiii\} in my file?}
- The encoding option is related to the way files are saved.
- Keep it as UTF-8 until it becomes important for you to exchange files
- with non UTF-8 aware applications.
- If you choose something else than UTF-8, then missing characters will
- be encoded by $\backslash$x\{....\} or $\backslash$x\{........\}
- where each dot is an hex. digit.
- The number between braces is the hexadecimal UNICODE index for the
- missing character.
-
-\Question{How to get rid of annoying unwanted automatic templates?}
-
-Some users may experiment problems with unwanted automatic
-templates while using Coqide. This is due to a change in the
-modifiers keys available through GTK. The straightest way to get
-rid of the problem is to edit by hand your .coqiderc (either
-\verb|/home/<user>/.coqiderc| under Linux, or \\
-\verb|C:\Documents and Settings\<user>\.coqiderc| under Windows)
- and replace any occurence of \texttt{MOD4} by \texttt{MOD1}.
-
-
-
-\section{Extraction}
-
-\Question{What is program extraction?}
-
-Program extraction consist in generating a program from a constructive proof.
-
-\Question{Which language can I extract to?}
-
-You can extract your programs to Objective Caml and Haskell.
-
-\Question{How can I extract an incomplete proof?}
-
-You can provide programs for your axioms.
-
-
-
-%%%%%%%
-\section{Glossary}
-
-\Question{Can you explain me what an evaluable constant is?}
-
-An evaluable constant is a constant which is unfoldable.
-
-\Question{What is a goal?}
-
-The goal is the statement to be proved.
-
-\Question{What is a meta variable?}
-
-A meta variable in {\Coq} represents a ``hole'', i.e. a part of a proof
-that is still unknown.
-
-\Question{What is Gallina?}
-
-Gallina is the specification language of \Coq. Complete documentation
-of this language can be found in the Reference Manual.
-
-\Question{What is The Vernacular?}
-
-It is the language of commands of Gallina i.e. definitions, lemmas, {\ldots}
-
-
-\Question{What is a dependent type?}
-
-A dependant type is a type which depends on some term. For instance
-``vector of size n'' is a dependant type representing all the vectors
-of size $n$. Its type depends on $n$
-
-\Question{What is a proof by reflection?}
-
-This is a proof generated by some computation which is done using the
-internal reduction of {\Coq} (not using the tactic language of {\Coq}
-(\Ltac) nor the implementation language for \Coq). An example of
-tactic using the reflection mechanism is the {\ring} tactic. The
-reflection method consist in reflecting a subset of {\Coq} language (for
-example the arithmetical expressions) into an object of the {\Coq}
-language itself (in this case an inductive type denoting arithmetical
-expressions). For more information see~\cite{howe,harrison,boutin}
-and the last chapter of the Coq'Art.
-
-\Question{What is intuitionistic logic?}
-
-This is any logic which does not assume that ``A or not A''.
-
-
-\Question{What is proof-irrelevance?}
-
-See question \ref{proof-irrelevance}
-
-
-\Question{What is the difference between opaque and transparent?}{\label{opaque}}
-
-Opaque definitions can not be unfolded but transparent ones can.
-
-
-\section{Troubleshooting}
-
-\Question{What can I do when {\tt Qed.} is slow?}
-
-Sometime you can use the {\abstracttac} tactic, which makes as if you had
-stated some local lemma, this speeds up the typing process.
-
-\Question{Why \texttt{Reset Initial.} does not work when using \texttt{coqc}?}
-
-The initial state corresponds to the state of \texttt{coqtop} when the interactive
-session began. It does not make sense in files to compile.
-
-
-\Question{What can I do if I get ``No more subgoals but non-instantiated existential variables''?}
-
-This means that {\eauto} or {\eapply} didn't instantiate an
-existential variable which eventually got erased by some computation.
-You may backtrack to the faulty occurrence of {\eauto} or {\eapply}
-and give the missing argument an explicit value. Alternatively, you
-can use the commands \texttt{Show Existentials.} and
-\texttt{Existential.} to display and instantiate the remainig
-existential variables.
-
-
-\begin{coq_example}
-Lemma example_show_existentials : forall a b c:nat, a=b -> b=c -> a=c.
-Proof.
-intros.
-eapply trans_equal.
-Show Existentials.
-eassumption.
-assumption.
-Qed.
-\end{coq_example}
-
-
-\Question{What can I do if I get ``Cannot solve a second-order unification problem''?}
-
-You can help {\Coq} using the {\pattern} tactic.
-
-\Question{Why does {\Coq} tell me that \texttt{\{x:A|(P x)\}} is not convertible with \texttt{(sig A P)}?}
-
- This is because \texttt{\{x:A|P x\}} is a notation for
-\texttt{sig (fun x:A => P x)}. Since {\Coq} does not reason up to
-$\eta$-conversion, this is different from \texttt{sig P}.
-
-
-\Question{I copy-paste a term and {\Coq} says it is not convertible
- to the original term. Sometimes it even says the copied term is not
-well-typed.}
-
- This is probably due to invisible implicit information (implicit
-arguments, coercions and Cases annotations) in the printed term, which
-is not re-synthesised from the copied-pasted term in the same way as
-it is in the original term.
-
- Consider for instance {\tt (@eq Type True True)}. This term is
-printed as {\tt True=True} and re-parsed as {\tt (@eq Prop True
-True)}. The two terms are not convertible (hence they fool tactics
-like {\tt pattern}).
-
- There is currently no satisfactory answer to the problem. However,
-the command {\tt Set Printing All} is useful for diagnosing the
-problem.
-
- Due to coercions, one may even face type-checking errors. In some
-rare cases, the criterion to hide coercions is a bit too loose, which
-may result in a typing error message if the parser is not able to find
-again the missing coercion.
-
-
-
-\section{Conclusion and Farewell.}
-\label{ccl}
-
-\Question{What if my question isn't answered here?}
-\label{lastquestion}
-
-Don't panic \verb+:-)+. You can try the {\Coq} manual~\cite{Coq:manual} for a technical
-description of the prover. The Coq'Art~\cite{Coq:coqart} is the first
-book written on {\Coq} and provides a comprehensive review of the
-theorem prover as well as a number of example and exercises. Finally,
-the tutorial~\cite{Coq:Tutorial} provides a smooth introduction to
-theorem proving in \Coq.
-
-
-%%%%%%%
-\newpage
-\nocite{LaTeX:intro}
-\nocite{LaTeX:symb}
-\bibliography{fk}
-
-%%%%%%%
-\typeout{*********************************************}
-\typeout{********* That makes {\thequestion} questions **********}
-\typeout{*********************************************}
-
-\end{document}
diff --git a/doc/faq/axioms.eps b/doc/faq/axioms.eps
deleted file mode 100644
index 3f3c01c4..00000000
--- a/doc/faq/axioms.eps
+++ /dev/null
@@ -1,378 +0,0 @@
-%!PS-Adobe-2.0 EPSF-2.0
-%%Title: axioms.fig
-%%Creator: fig2dev Version 3.2 Patchlevel 4
-%%CreationDate: Wed May 5 18:30:03 2004
-%%For: herbelin@limoux.polytechnique.fr (Hugo Herbelin)
-%%BoundingBox: 0 0 437 372
-%%Magnification: 1.0000
-%%EndComments
-/$F2psDict 200 dict def
-$F2psDict begin
-$F2psDict /mtrx matrix put
-/col-1 {0 setgray} bind def
-/col0 {0.000 0.000 0.000 srgb} bind def
-/col1 {0.000 0.000 1.000 srgb} bind def
-/col2 {0.000 1.000 0.000 srgb} bind def
-/col3 {0.000 1.000 1.000 srgb} bind def
-/col4 {1.000 0.000 0.000 srgb} bind def
-/col5 {1.000 0.000 1.000 srgb} bind def
-/col6 {1.000 1.000 0.000 srgb} bind def
-/col7 {1.000 1.000 1.000 srgb} bind def
-/col8 {0.000 0.000 0.560 srgb} bind def
-/col9 {0.000 0.000 0.690 srgb} bind def
-/col10 {0.000 0.000 0.820 srgb} bind def
-/col11 {0.530 0.810 1.000 srgb} bind def
-/col12 {0.000 0.560 0.000 srgb} bind def
-/col13 {0.000 0.690 0.000 srgb} bind def
-/col14 {0.000 0.820 0.000 srgb} bind def
-/col15 {0.000 0.560 0.560 srgb} bind def
-/col16 {0.000 0.690 0.690 srgb} bind def
-/col17 {0.000 0.820 0.820 srgb} bind def
-/col18 {0.560 0.000 0.000 srgb} bind def
-/col19 {0.690 0.000 0.000 srgb} bind def
-/col20 {0.820 0.000 0.000 srgb} bind def
-/col21 {0.560 0.000 0.560 srgb} bind def
-/col22 {0.690 0.000 0.690 srgb} bind def
-/col23 {0.820 0.000 0.820 srgb} bind def
-/col24 {0.500 0.190 0.000 srgb} bind def
-/col25 {0.630 0.250 0.000 srgb} bind def
-/col26 {0.750 0.380 0.000 srgb} bind def
-/col27 {1.000 0.500 0.500 srgb} bind def
-/col28 {1.000 0.630 0.630 srgb} bind def
-/col29 {1.000 0.750 0.750 srgb} bind def
-/col30 {1.000 0.880 0.880 srgb} bind def
-/col31 {1.000 0.840 0.000 srgb} bind def
-
-end
-save
-newpath 0 372 moveto 0 0 lineto 437 0 lineto 437 372 lineto closepath clip newpath
--90.0 435.2 translate
-1 -1 scale
-
-/cp {closepath} bind def
-/ef {eofill} bind def
-/gr {grestore} bind def
-/gs {gsave} bind def
-/sa {save} bind def
-/rs {restore} bind def
-/l {lineto} bind def
-/m {moveto} bind def
-/rm {rmoveto} bind def
-/n {newpath} bind def
-/s {stroke} bind def
-/sh {show} bind def
-/slc {setlinecap} bind def
-/slj {setlinejoin} bind def
-/slw {setlinewidth} bind def
-/srgb {setrgbcolor} bind def
-/rot {rotate} bind def
-/sc {scale} bind def
-/sd {setdash} bind def
-/ff {findfont} bind def
-/sf {setfont} bind def
-/scf {scalefont} bind def
-/sw {stringwidth} bind def
-/tr {translate} bind def
-/tnt {dup dup currentrgbcolor
- 4 -2 roll dup 1 exch sub 3 -1 roll mul add
- 4 -2 roll dup 1 exch sub 3 -1 roll mul add
- 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
- bind def
-/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
- 4 -2 roll mul srgb} bind def
-/reencdict 12 dict def /ReEncode { reencdict begin
-/newcodesandnames exch def /newfontname exch def /basefontname exch def
-/basefontdict basefontname findfont def /newfont basefontdict maxlength dict def
-basefontdict { exch dup /FID ne { dup /Encoding eq
-{ exch dup length array copy newfont 3 1 roll put }
-{ exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall
-newfont /FontName newfontname put newcodesandnames aload pop
-128 1 255 { newfont /Encoding get exch /.notdef put } for
-newcodesandnames length 2 idiv { newfont /Encoding get 3 1 roll put } repeat
-newfontname newfont definefont pop end } def
-/isovec [
-8#055 /minus 8#200 /grave 8#201 /acute 8#202 /circumflex 8#203 /tilde
-8#204 /macron 8#205 /breve 8#206 /dotaccent 8#207 /dieresis
-8#210 /ring 8#211 /cedilla 8#212 /hungarumlaut 8#213 /ogonek 8#214 /caron
-8#220 /dotlessi 8#230 /oe 8#231 /OE
-8#240 /space 8#241 /exclamdown 8#242 /cent 8#243 /sterling
-8#244 /currency 8#245 /yen 8#246 /brokenbar 8#247 /section 8#250 /dieresis
-8#251 /copyright 8#252 /ordfeminine 8#253 /guillemotleft 8#254 /logicalnot
-8#255 /hyphen 8#256 /registered 8#257 /macron 8#260 /degree 8#261 /plusminus
-8#262 /twosuperior 8#263 /threesuperior 8#264 /acute 8#265 /mu 8#266 /paragraph
-8#267 /periodcentered 8#270 /cedilla 8#271 /onesuperior 8#272 /ordmasculine
-8#273 /guillemotright 8#274 /onequarter 8#275 /onehalf
-8#276 /threequarters 8#277 /questiondown 8#300 /Agrave 8#301 /Aacute
-8#302 /Acircumflex 8#303 /Atilde 8#304 /Adieresis 8#305 /Aring
-8#306 /AE 8#307 /Ccedilla 8#310 /Egrave 8#311 /Eacute
-8#312 /Ecircumflex 8#313 /Edieresis 8#314 /Igrave 8#315 /Iacute
-8#316 /Icircumflex 8#317 /Idieresis 8#320 /Eth 8#321 /Ntilde 8#322 /Ograve
-8#323 /Oacute 8#324 /Ocircumflex 8#325 /Otilde 8#326 /Odieresis 8#327 /multiply
-8#330 /Oslash 8#331 /Ugrave 8#332 /Uacute 8#333 /Ucircumflex
-8#334 /Udieresis 8#335 /Yacute 8#336 /Thorn 8#337 /germandbls 8#340 /agrave
-8#341 /aacute 8#342 /acircumflex 8#343 /atilde 8#344 /adieresis 8#345 /aring
-8#346 /ae 8#347 /ccedilla 8#350 /egrave 8#351 /eacute
-8#352 /ecircumflex 8#353 /edieresis 8#354 /igrave 8#355 /iacute
-8#356 /icircumflex 8#357 /idieresis 8#360 /eth 8#361 /ntilde 8#362 /ograve
-8#363 /oacute 8#364 /ocircumflex 8#365 /otilde 8#366 /odieresis 8#367 /divide
-8#370 /oslash 8#371 /ugrave 8#372 /uacute 8#373 /ucircumflex
-8#374 /udieresis 8#375 /yacute 8#376 /thorn 8#377 /ydieresis] def
-/Times-Roman /Times-Roman-iso isovec ReEncode
-/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
-/$F2psEnd {$F2psEnteredState restore end} def
-
-$F2psBegin
-10 setmiterlimit
-0 slj 0 slc
- 0.06000 0.06000 sc
-%
-% Fig objects follow
-%
-%
-% here starts figure with depth 50
-% Arc
-7.500 slw
-gs clippath
-3599 6933 m 3626 6879 l 3492 6812 l 3586 6893 l 3465 6865 l cp
-eoclip
-n 3600.0 6750.0 150.0 90.0 -90.0 arc
-gs col0 s gr
- gr
-
-% arrowhead
-n 3465 6865 m 3586 6893 l 3492 6812 l 3465 6865 l cp gs 0.00 setgray ef gr col0 s
-% Arc
-gs clippath
-3599 6633 m 3626 6579 l 3492 6512 l 3586 6593 l 3465 6565 l cp
-eoclip
-n 3600.0 6450.0 150.0 90.0 -90.0 arc
-gs col0 s gr
- gr
-
-% arrowhead
-n 3465 6565 m 3586 6593 l 3492 6512 l 3465 6565 l cp gs 0.00 setgray ef gr col0 s
-% Arc
-gs clippath
-3626 6020 m 3599 5966 l 3465 6034 l 3586 6007 l 3492 6087 l cp
-3599 6333 m 3626 6279 l 3492 6212 l 3586 6293 l 3465 6265 l cp
-eoclip
-n 3600.0 6150.0 150.0 90.0 -90.0 arc
-gs col0 s gr
- gr
-
-% arrowhead
-n 3492 6087 m 3586 6007 l 3465 6034 l 3492 6087 l cp gs 0.00 setgray ef gr col0 s
-% arrowhead
-n 3465 6265 m 3586 6293 l 3492 6212 l 3465 6265 l cp gs 0.00 setgray ef gr col0 s
-% Arc
-gs clippath
-3626 6320 m 3599 6266 l 3465 6334 l 3586 6307 l 3492 6387 l cp
-3599 6633 m 3626 6579 l 3492 6512 l 3586 6593 l 3465 6565 l cp
-eoclip
-n 3600.0 6450.0 150.0 90.0 -90.0 arc
-gs col0 s gr
- gr
-
-% arrowhead
-n 3492 6387 m 3586 6307 l 3465 6334 l 3492 6387 l cp gs 0.00 setgray ef gr col0 s
-% arrowhead
-n 3465 6565 m 3586 6593 l 3492 6512 l 3465 6565 l cp gs 0.00 setgray ef gr col0 s
-% Arc
-gs clippath
-3626 6620 m 3599 6566 l 3465 6634 l 3586 6607 l 3492 6687 l cp
-3599 6933 m 3626 6879 l 3492 6812 l 3586 6893 l 3465 6865 l cp
-eoclip
-n 3600.0 6750.0 150.0 90.0 -90.0 arc
-gs col0 s gr
- gr
-
-% arrowhead
-n 3492 6687 m 3586 6607 l 3465 6634 l 3492 6687 l cp gs 0.00 setgray ef gr col0 s
-% arrowhead
-n 3465 6865 m 3586 6893 l 3492 6812 l 3465 6865 l cp gs 0.00 setgray ef gr col0 s
-% Arc
-gs clippath
-3626 6920 m 3599 6866 l 3465 6934 l 3586 6907 l 3492 6987 l cp
-3599 7233 m 3626 7179 l 3492 7112 l 3586 7193 l 3465 7165 l cp
-eoclip
-n 3600.0 7050.0 150.0 90.0 -90.0 arc
-gs col0 s gr
- gr
-
-% arrowhead
-n 3492 6987 m 3586 6907 l 3465 6934 l 3492 6987 l cp gs 0.00 setgray ef gr col0 s
-% arrowhead
-n 3465 7165 m 3586 7193 l 3492 7112 l 3465 7165 l cp gs 0.00 setgray ef gr col0 s
-% Arc
-gs clippath
-4168 4060 m 4227 4068 l 4247 3919 l 4202 4034 l 4188 3911 l cp
-eoclip
-n 14032.5 5272.5 9908.2 -159.9 -172.9 arcn
-gs col0 s gr
- gr
-
-% arrowhead
-n 4188 3911 m 4202 4034 l 4247 3919 l 4188 3911 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-gs clippath
-4170 5790 m 4230 5790 l 4230 5639 l 4200 5759 l 4170 5639 l cp
-eoclip
-n 4200 5175 m
- 4200 5775 l gs col0 s gr gr
-
-% arrowhead
-n 4170 5639 m 4200 5759 l 4230 5639 l 4170 5639 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-gs clippath
-4553 5749 m 4567 5807 l 4714 5771 l 4591 5771 l 4700 5713 l cp
-eoclip
-n 7050 5175 m
- 4575 5775 l gs col0 s gr gr
-
-% arrowhead
-n 4700 5713 m 4591 5771 l 4714 5771 l 4700 5713 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-gs clippath
-4170 4890 m 4230 4890 l 4230 4739 l 4200 4859 l 4170 4739 l cp
-eoclip
-n 4200 4275 m
- 4200 4875 l gs col0 s gr gr
-
-% arrowhead
-n 4170 4739 m 4200 4859 l 4230 4739 l 4170 4739 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-gs clippath
-7131 4907 m 7147 4850 l 7001 4810 l 7109 4871 l 6985 4868 l cp
-eoclip
-n 4950 4275 m
- 7125 4875 l gs col0 s gr gr
-
-% arrowhead
-n 6985 4868 m 7109 4871 l 7001 4810 l 6985 4868 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-gs clippath
-7167 4057 m 7225 4071 l 7262 3924 l 7204 4034 l 7204 3910 l cp
-eoclip
-n 7725 1950 m
- 7200 4050 l gs col0 s gr gr
-
-% arrowhead
-n 7204 3910 m 7204 4034 l 7262 3924 l 7204 3910 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-n 4350 3075 m
- 7350 1950 l gs col0 s gr
-% Polyline
-gs clippath
-7170 4890 m 7230 4890 l 7230 4739 l 7200 4859 l 7170 4739 l cp
-eoclip
-n 7200 4275 m
- 7200 4875 l gs col0 s gr gr
-
-% arrowhead
-n 7170 4739 m 7200 4859 l 7230 4739 l 7170 4739 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-n 3075 1875 m
- 3975 1875 l gs col0 s gr
-% Polyline
-gs clippath
-5520 4065 m 5580 4065 l 5580 3914 l 5550 4034 l 5520 3914 l cp
-5580 3660 m 5520 3660 l 5520 3811 l 5550 3691 l 5580 3811 l cp
-eoclip
-n 5550 3675 m
- 5550 4050 l gs col0 s gr gr
-
-% arrowhead
-n 5580 3811 m 5550 3691 l 5520 3811 l 5580 3811 l cp gs 0.00 setgray ef gr col0 s
-% arrowhead
-n 5520 3914 m 5550 4034 l 5580 3914 l 5520 3914 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-n 4575 4050 m
- 6450 4050 l gs col0 s gr
-% Polyline
-gs clippath
-3495 2265 m 3555 2265 l 3555 2114 l 3525 2234 l 3495 2114 l cp
-3555 1860 m 3495 1860 l 3495 2011 l 3525 1891 l 3555 2011 l cp
-eoclip
-n 3525 1875 m
- 3525 2250 l gs col0 s gr gr
-
-% arrowhead
-n 3555 2011 m 3525 1891 l 3495 2011 l 3555 2011 l cp gs 0.00 setgray ef gr col0 s
-% arrowhead
-n 3495 2114 m 3525 2234 l 3555 2114 l 3495 2114 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-gs clippath
-2219 3988 m 2279 3991 l 2285 3840 l 2251 3959 l 2225 3838 l cp
-eoclip
-n 2325 1875 m
- 2250 3975 l gs col0 s gr gr
-
-% arrowhead
-n 2225 3838 m 2251 3959 l 2285 3840 l 2225 3838 l cp gs 0.00 setgray ef gr col0 s
-% Polyline
-n 7800 1275 m
- 2100 1275 l gs col0 s gr
-/Times-Roman-iso ff 180.00 scf sf
-6600 5100 m
-gs 1 -1 sc (Proof-irrelevance) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3675 4200 m
-gs 1 -1 sc (Excluded-middle) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-6900 1800 m
-gs 1 -1 sc (Predicate extensionality) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3375 3525 m
-gs 1 -1 sc (\(Diaconescu\)) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-4650 3600 m
-gs 1 -1 sc (Propositional degeneracy) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3825 1800 m
-gs 1 -1 sc (Relational choice axiom) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-1725 1800 m
-gs 1 -1 sc (Description principle) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-2550 2400 m
-gs 1 -1 sc (Functional choice axiom) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3600 5100 m
-gs 1 -1 sc (Decidability of equality on $A$) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-4425 4575 m
-gs 1 -1 sc (\(needs Prop-impredicativity\)) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-5025 4725 m
-gs 1 -1 sc (\(Berardi\)) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-1500 3075 m
-gs 1 -1 sc (\(if Set impredicative\)) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-1500 4200 m
-gs 1 -1 sc (Not excluded-middle) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3600 6000 m
-gs 1 -1 sc (Axiom K on A) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3600 7200 m
-gs 1 -1 sc (Invariance by substitution of reflexivity proofs for equality on A) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-6150 4200 m
-gs 1 -1 sc (Propositional extensionality) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-2100 1200 m
-gs 1 -1 sc (The dependency graph of axioms in the Calculus of Inductive Constructions) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3600 6900 m
-gs 1 -1 sc (Injectivity of equality on sigma-types on A) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3600 6300 m
-gs 1 -1 sc (Uniqueness of reflexivity proofs for equality on A) col0 sh gr
-/Times-Roman-iso ff 180.00 scf sf
-3600 6600 m
-gs 1 -1 sc (Uniqueness of equality proofs on A) col0 sh gr
-% here ends figure;
-$F2psEnd
-rs
-showpage
diff --git a/doc/faq/axioms.fig b/doc/faq/axioms.fig
deleted file mode 100644
index 78e44886..00000000
--- a/doc/faq/axioms.fig
+++ /dev/null
@@ -1,137 +0,0 @@
-#FIG 3.2
-Landscape
-Center
-Inches
-Letter
-100.00
-Single
--2
-1200 2
-5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 14032.500 7222.500 4725 3825 4425 4800 4200 6000
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 0 0 1 3600.000 8925.000 3600 9075 3450 8925 3600 8775
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 0 0 1 3600.000 8625.000 3600 8775 3450 8625 3600 8475
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 0 1 1 3600.000 8325.000 3600 8475 3450 8325 3600 8175
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 0 1 1 3600.000 8625.000 3600 8775 3450 8625 3600 8475
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 0 1 1 3600.000 8925.000 3600 9075 3450 8925 3600 8775
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 0 1 1 3600.000 9225.000 3600 9375 3450 9225 3600 9075
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
-5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 6309.515 5767.724 4200 3825 3450 5550 3825 7200
- 1 1 1.00 60.00 120.00
-6 2025 300 7725 525
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
- 7725 525 2025 525
-4 0 0 50 -1 0 12 0.0000 4 180 5700 2025 450 The dependency graph of axioms in the Calculus of Inductive Constructions\001
--6
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 4200 6225 4200 7200
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 7725 3900 7200 6000
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 7200 6225 7200 7050
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 1 2
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
- 5550 5625 5550 6000
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
- 4575 6000 6450 6000
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 1 2
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
- 3375 3225 3375 3600
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 3373 1950 3376 2250
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 1 2
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
- 3375 2625 3375 3000
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
- 2175 3600 3750 3600
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 3075 2475 2475 2475
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 3374 1125 3377 1425
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 1049 1950 1052 2250
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 1048 1125 1051 1425
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 3075 975 1575 975
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 3075 1725 2025 1725
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 4
- 8025 5925 8250 5925 9000 4950 9150 4950
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 8625 5400 8250 3900
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 7050 7350 4575 7950
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 4200 7500 4200 7950
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 4714 6255 7039 7080
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
- 1 1 1.00 60.00 120.00
- 1500 3900 2175 6000
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 1 2
- 1 1 1.00 60.00 120.00
- 1 1 1.00 60.00 120.00
- 1139 2771 1364 3521
-2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
- 4425 4875 7350 3825
-3 0 0 1 0 7 50 -1 -1 0.000 0 0 0 4
- 6450 7050 4050 6675 3750 6825 3750 7050
- 0.000 1.000 1.000 0.000
-4 0 0 50 -1 0 12 0.0000 4 180 1830 6900 3750 Predicate extensionality\001
-4 0 0 50 -1 0 12 0.0000 4 135 1800 3825 3750 Relational choice axiom\001
-4 0 0 50 -1 0 12 0.0000 4 180 2100 6150 6150 Propositional extensionality\001
-4 0 0 50 -1 0 12 0.0000 4 180 1005 450 1050 Operator iota\001
-4 0 0 50 -1 2 12 0.0000 4 135 1020 450 1650 Constructive\001
-4 0 0 50 -1 2 12 0.0000 4 180 1530 450 1875 definite description\001
-4 0 0 50 -1 2 12 0.0000 4 180 2010 9000 5175 Functional extensionality\001
-4 0 0 50 -1 0 12 0.0000 4 180 4740 150 10050 Statements in boldface are the most "interesting" ones for Coq\001
-4 0 0 50 -1 0 12 0.0000 4 180 4800 3600 9375 Invariance by substitution of reflexivity proofs for equality on A\001
-4 0 0 50 -1 0 12 0.0000 4 180 3735 3600 8475 Uniqueness of reflexivity proofs for equality on A\001
-4 0 0 50 -1 0 12 0.0000 4 180 2670 3600 8775 Uniqueness of equality proofs on A\001
-4 0 0 50 -1 0 12 0.0000 4 135 1080 3600 8175 Axiom K on A\001
-4 0 0 50 -1 2 12 0.0000 4 135 1455 6450 7275 Proof-irrelevance\001
-4 0 0 50 -1 2 12 0.0000 4 180 3360 3600 9075 Injectivity of equality on Sigma-types on A\001
-4 0 0 50 -1 0 12 0.0000 4 180 2175 4950 6525 (needs Prop-impredicativity)\001
-4 0 0 50 -1 0 12 0.0000 4 180 705 6000 6750 (Berardi)\001
-4 0 0 50 -1 2 12 0.0000 4 135 1290 3675 6225 Excluded-middle\001
-4 0 0 50 -1 0 12 0.0000 4 180 1905 4950 5550 Propositional degeneracy\001
-4 0 0 50 -1 0 12 0.0000 4 180 1050 3750 5250 (Diaconescu)\001
-4 0 0 50 -1 0 12 0.0000 4 180 2475 3375 7425 Decidability of equality on any A\001
-4 0 0 50 -1 0 12 0.0000 4 180 1620 1275 5025 (if Set impredicative)\001
-4 0 0 50 -1 0 12 0.0000 4 135 1560 1575 6225 Not excluded-middle\001
-4 0 0 50 -1 0 12 0.0000 4 180 1770 450 2625 in propositional context\001
-4 0 0 50 -1 2 12 0.0000 4 135 1020 3150 1650 Constructive\001
-4 0 0 50 -1 2 12 0.0000 4 180 1665 3150 1875 indefinite description\001
-4 0 0 50 -1 0 12 0.0000 4 180 2610 3150 2400 Constructive indefinite description\001
-4 0 0 50 -1 0 12 0.0000 4 180 1770 3150 2625 in propositional context\001
-4 0 0 50 -1 2 12 0.0000 4 135 1935 3150 3150 Functional choice axiom\001
-4 0 0 50 -1 0 12 0.0000 4 135 2100 450 2400 Constructive definite descr.\001
-4 0 0 50 -1 2 12 0.0000 4 180 1845 450 3750 Axiom of unique choice\001
-4 0 0 50 -1 2 12 0.0000 4 180 1365 3150 1050 Operator epsilon\001
diff --git a/doc/faq/axioms.png b/doc/faq/axioms.png
deleted file mode 100644
index 2aee0916..00000000
--- a/doc/faq/axioms.png
+++ /dev/null
Binary files differ
diff --git a/doc/faq/fk.bib b/doc/faq/fk.bib
deleted file mode 100644
index 976b36b0..00000000
--- a/doc/faq/fk.bib
+++ /dev/null
@@ -1,2220 +0,0 @@
-%%%%%%% FAQ %%%%%%%
-
-@book{ProofsTypes,
- Author="Girard, Jean-Yves and Yves Lafont and Paul Taylor",
- Title="Proofs and Types",
- Publisher="Cambrige Tracts in Theoretical Computer Science, Cambridge University Press",
- Year="1989"
-}
-
-@misc{Types:Dowek,
- author = "Gilles Dowek",
- title = "Th{\'e}orie des types",
- year = 2002,
- howpublished = "Lecture notes",
- url= "http://www.lix.polytechnique.fr/~dowek/Cours/theories_des_types.ps.gz"
-}
-
-@PHDTHESIS{EGThese,
- author = {Eduardo Giménez},
- title = {Un Calcul de Constructions Infinies et son application
-a la vérification de systèmes communicants},
- type = {thèse d'Université},
- school = {Ecole Normale Supérieure de Lyon},
- month = {December},
- year = {1996},
-}
-
-
-%%%%%%% Semantique %%%%%%%
-
-@misc{Sem:cours,
- author = "François Pottier",
- title = "{Typage et Programmation}",
- year = "2002",
- howpublished = "Lecture notes",
- note = "DEA PSPL"
-}
-
-@inproceedings{Sem:Dubois,
- author = {Catherine Dubois},
- editor = {Mark Aagaard and
- John Harrison},
- title = "{Proving ML Type Soundness Within Coq}",
- pages = {126-144},
- booktitle = {TPHOLs},
- publisher = {Springer},
- series = {Lecture Notes in Computer Science},
- volume = {1869},
- year = {2000},
- isbn = {3-540-67863-8},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-
-@techreport{Sem:Plotkin,
-author = {Gordon D. Plotkin},
-institution = {Aarhus University},
-number = {{DAIMI FN-19}},
-title = {{A structural approach to operational semantics}},
-year = {1981}
-}
-
-@article{Sem:RemyV98,
- author = "Didier R{\'e}my and J{\'e}r{\^o}me Vouillon",
- title = "Objective {ML}:
- An effective object-oriented extension to {ML}",
- journal = "Theory And Practice of Object Systems",
- year = 1998,
- volume = "4",
- number = "1",
- pages = "27--50",
- note = {A preliminary version appeared in the proceedings
- of the 24th ACM Conference on Principles
- of Programming Languages, 1997}
-}
-
-@book{Sem:Winskel,
- AUTHOR = {Winskel, Glynn},
- TITLE = {The Formal Semantics of Programming Languages},
- NOTE = {WIN g2 93:1 P-Ex},
- YEAR = {1993},
- PUBLISHER = {The MIT Press},
- SERIES = {Foundations of Computing},
- }
-
-@Article{Sem:WrightFelleisen,
- refkey = "C1210",
- title = "A Syntactic Approach to Type Soundness",
- author = "Andrew K. Wright and Matthias Felleisen",
- pages = "38--94",
- journal = "Information and Computation",
- month = "15~" # nov,
- year = "1994",
- volume = "115",
- number = "1"
-}
-
-@inproceedings{Sem:Nipkow-MOD,
- author={Tobias Nipkow},
- title={Jinja: Towards a Comprehensive Formal Semantics for a
- {J}ava-like Language},
- booktitle={Proc.\ Marktobderdorf Summer School 2003},
- publisher={IOS Press},editor={H. Schwichtenberg and K. Spies},
- year=2003,
- note={To appear}
-}
-
-%%%%%%% Coq %%%%%%%
-
-@book{Coq:coqart,
- title = "Interactive Theorem Proving and Program Development,
- Coq'Art: The Calculus of Inductive Constructions",
- author = "Yves Bertot and Pierre Castéran",
- publisher = "Springer Verlag",
- series = "Texts in Theoretical Computer Science. An
- EATCS series",
- year = 2004
-}
-
-@phdthesis{Coq:Del01,
- AUTHOR = "David Delahaye",
- TITLE = "Conception de langages pour décrire les preuves et les
- automatisations dans les outils d'aide à la preuve",
- SCHOOL = {Universit\'e Paris~6},
- YEAR = "2001",
- Type = {Th\`ese de Doctorat}
-}
-
-@techreport{Coq:gimenez-tut,
- author = "Eduardo Gim\'enez",
- title = "A Tutorial on Recursive Types in Coq",
- number = "RT-0221",
- pages = "42 p.",
- url = "citeseer.nj.nec.com/gimenez98tutorial.html" }
-
-@phdthesis{Coq:Mun97,
- AUTHOR = "César Mu{\~{n}}oz",
- TITLE = "Un calcul de substitutions pour la repr\'esentation
- de preuves partielles en th\'eorie de types",
- SCHOOL = {Universit\'e Paris~7},
- Number = {Unit\'e de recherche INRIA-Rocquencourt, TU-0488},
- YEAR = "1997",
- Note = {English version available as INRIA research report RR-3309},
- Type = {Th\`ese de Doctorat}
-}
-
-@PHDTHESIS{Coq:Filliatre99,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Preuve de programmes imp\'eratifs en th\'eorie des types}},
- TYPE = {Th{\`e}se de Doctorat},
- SCHOOL = {Universit\'e Paris-Sud},
- YEAR = 1999,
- MONTH = {July},
-}
-
-@manual{Coq:Tutorial,
- AUTHOR = {G\'erard Huet and Gilles Kahn and Christine Paulin-Mohring},
- TITLE = {{The Coq Proof Assistant A Tutorial}},
- YEAR = 2004
-}
-
-%%%%%%% PVS %%%%%%%
-
-@manual{PVS:prover,
- title = "{PVS} Prover Guide",
- author = "N. Shankar and S. Owre and J. M. Rushby and D. W. J.
- Stringer-Calvert",
- month = sep,
- year = "1999",
- organization = "Computer Science Laboratory, SRI International",
- address = "Menlo Park, CA",
-}
-
-@techreport{PVS-Semantics:TR,
- TITLE = {The Formal Semantics of {PVS}},
- AUTHOR = {Sam Owre and Natarajan Shankar},
- NUMBER = {CR-1999-209321},
- INSTITUTION = {Computer Science Laboratory, SRI International},
- ADDRESS = {Menlo Park, CA},
- MONTH = may,
- YEAR = 1999,
-}
-
-@techreport{PVS-Tactics:DiVito,
- TITLE = {A {PVS} Prover Strategy Package for Common Manipulations},
- AUTHOR = {Ben L. Di Vito},
- NUMBER = {TM-2002-211647},
- INSTITUTION = {Langley Research Center},
- ADDRESS = {Hampton, VA},
- MONTH = apr,
- YEAR = 2002,
-}
-
-@misc{PVS-Tactics:cours,
- author = "César Muñoz",
- title = "Strategies in {PVS}",
- howpublished = "Lecture notes",
- note = "National Institute of Aerospace",
- year = 2002
-}
-
-@techreport{PVS-Tactics:field,
- author = "C. Mu{\~n}oz and M. Mayero",
- title = "Real Automation in the Field",
- institution = "ICASE-NASA Langley",
- number = "NASA/CR-2001-211271 Interim ICASE Report No. 39",
- month = "dec",
- year = "2001"
-}
-
-%%%%%%% Autres Prouveurs %%%%%%%
-
-@misc{ACL2:repNuPrl,
- author = "James L. Caldwell and John Cowles",
- title = "{Representing Nuprl Proof Objects in ACL2: toward a proof checker for Nuprl}",
- url = "http://www.cs.uwyo.edu/~jlc/papers/proof_checking.ps" }
-
-@inproceedings{Elan:ckl-strat,
- author = {H. Cirstea and C. Kirchner and L. Liquori},
- title = "{Rewrite Strategies in the Rewriting Calculus}",
- booktitle = {WRLA'02},
- publisher = "{Elsevier Science B.V.}",
- series = {Electronic Notes in Theoretical Computer Science},
- volume = {71},
- year = {2003},
-}
-
-@book{LCF:GMW,
- author = {M. Gordon and R. Milner and C. Wadsworth},
- publisher = {sv},
- series = {lncs},
- volume = 78,
- title = {Edinburgh {LCF}: A Mechanized Logic of Computation},
- year = 1979
-}
-
-%%%%%%% LaTeX %%%%%%%
-
-@manual{LaTeX:symb,
- title = "The Great, Big List of \LaTeX\ Symbols",
- author = "David Carlisle and Scott Pakin and Alexander Holt",
- month = feb,
- year = 2001,
-}
-
-@manual{LaTeX:intro,
- title = "The Not So Short Introduction to \LaTeX2e",
- author = "Tobias Oetiker",
- month = jan,
- year = 1999,
-}
-
-@MANUAL{CoqManualV7,
- AUTHOR = {{The {Coq} Development Team}},
- TITLE = {{The Coq Proof Assistant Reference Manual -- Version
- V7.1}},
- YEAR = {2001},
- MONTH = OCT,
- NOTE = {http://coq.inria.fr}
-}
-
-@MANUAL{CoqManual96,
- TITLE = {The {Coq Proof Assistant Reference Manual} Version 6.1},
- AUTHOR = {B. Barras and S. Boutin and C. Cornes and J. Courant and
- J.-C. Filli\^atre and
- H. Herbelin and G. Huet and P. Manoury and C. Mu{\~{n}}oz and
- C. Murthy and C. Parent and C. Paulin-Mohring and
- A. Sa{\"\i}bi and B. Werner},
- ORGANIZATION = {{INRIA-Rocquencourt}-{CNRS-ENS Lyon}},
- URL = {ftp://ftp.inria.fr/INRIA/coq/V6.1/doc/Reference-Manual.dvi.gz},
- YEAR = 1996,
- MONTH = DEC
-}
-
-@MANUAL{CoqTutorial99,
- AUTHOR = {G.~Huet and G.~Kahn and Ch.~Paulin-Mohring},
- TITLE = {The {\sf Coq} Proof Assistant - A tutorial - Version 6.3},
- MONTH = JUL,
- YEAR = {1999},
- ABSTRACT = {http://coq.inria.fr/doc/tutorial.html}
-}
-
-@MANUAL{CoqTutorialV7,
- AUTHOR = {G.~Huet and G.~Kahn and Ch.~Paulin-Mohring},
- TITLE = {The {\sf Coq} Proof Assistant - A tutorial - Version 7.1},
- MONTH = OCT,
- YEAR = {2001},
- NOTE = {http://coq.inria.fr}
-}
-
-@TECHREPORT{modelpa2000,
- AUTHOR = {B. Bérard and P. Castéran and E. Fleury and L. Fribourg
- and J.-F. Monin and C. Paulin and A. Petit and D. Rouillard},
- TITLE = {Automates temporisés CALIFE},
- INSTITUTION = {Calife},
- YEAR = 2000,
- URL = {http://www.loria.fr/projets/calife/WebCalifePublic/FOURNITURES/F1.1.ps.gz},
- TYPE = {Fourniture {F1.1}}
-}
-
-@TECHREPORT{CaFrPaRo2000,
- AUTHOR = {P. Castéran and E. Freund and C. Paulin and D. Rouillard},
- TITLE = {Bibliothèques Coq et Isabelle-HOL pour les systèmes de transitions et les p-automates},
- INSTITUTION = {Calife},
- YEAR = 2000,
- URL = {http://www.loria.fr/projets/calife/WebCalifePublic/FOURNITURES/F5.4.ps.gz},
- TYPE = {Fourniture {F5.4}}
-}
-
-@PROCEEDINGS{TPHOLs99,
- TITLE = {International Conference on
- Theorem Proving in Higher Order Logics (TPHOLs'99)},
- YEAR = 1999,
- EDITOR = {Y. Bertot and G. Dowek and C. Paulin-Mohring and L. Th{\'e}ry},
- SERIES = {Lecture Notes in Computer Science},
- MONTH = SEP,
- PUBLISHER = {{Sprin\-ger-Verlag}},
- ADDRESS = {Nice},
- TYPE_PUBLI = {editeur}
-}
-
-@INPROCEEDINGS{Pau01,
- AUTHOR = {Christine Paulin-Mohring},
- TITLE = {Modelisation of Timed Automata in {Coq}},
- BOOKTITLE = {Theoretical Aspects of Computer Software (TACS'2001)},
- PAGES = {298--315},
- YEAR = 2001,
- EDITOR = {N. Kobayashi and B. Pierce},
- VOLUME = 2215,
- SERIES = {Lecture Notes in Computer Science},
- PUBLISHER = {Springer-Verlag}
-}
-
-@PHDTHESIS{Moh89b,
- AUTHOR = {C. Paulin-Mohring},
- MONTH = JAN,
- SCHOOL = {{Paris 7}},
- TITLE = {Extraction de programmes dans le {Calcul des Constructions}},
- TYPE = {Thèse d'université},
- YEAR = {1989},
- URL = {http://www.lri.fr/~paulin/these.ps.gz}
-}
-
-@ARTICLE{HuMo92,
- AUTHOR = {G. Huet and C. Paulin-Mohring},
- EDITION = {INRIA},
- JOURNAL = {Courrier du CNRS - Informatique},
- TITLE = {Preuves et Construction de Programmes},
- YEAR = {1992},
- CATEGORY = {national}
-}
-
-@INPROCEEDINGS{LePa94,
- AUTHOR = {F. Leclerc and C. Paulin-Mohring},
- TITLE = {Programming with Streams in {Coq}. A case study : The Sieve of Eratosthenes},
- EDITOR = {H. Barendregt and T. Nipkow},
- VOLUME = 806,
- SERIES = {Lecture Notes in Computer Science},
- BOOKTITLE = {{Types for Proofs and Programs, Types' 93}},
- YEAR = 1994,
- PUBLISHER = {Springer-Verlag}
-}
-
-@INPROCEEDINGS{Moh86,
- AUTHOR = {C. Mohring},
- ADDRESS = {Cambridge, MA},
- BOOKTITLE = {Symposium on Logic in Computer Science},
- PUBLISHER = {IEEE Computer Society Press},
- TITLE = {Algorithm Development in the {Calculus of Constructions}},
- YEAR = {1986}
-}
-
-@INPROCEEDINGS{Moh89a,
- AUTHOR = {C. Paulin-Mohring},
- ADDRESS = {Austin},
- BOOKTITLE = {Sixteenth Annual ACM Symposium on Principles of Programming Languages},
- MONTH = JAN,
- PUBLISHER = {ACM},
- TITLE = {Extracting ${F}_{\omega}$'s programs from proofs in the {Calculus of Constructions}},
- YEAR = {1989}
-}
-
-@INCOLLECTION{Moh89c,
- AUTHOR = {C. Paulin-Mohring},
- TITLE = {{R\'ealisabilit\'e et extraction de programmes}},
- BOOKTITLE = {Logique et Informatique : une introduction},
- PUBLISHER = {INRIA},
- YEAR = 1991,
- EDITOR = {B. Courcelle},
- VOLUME = 8,
- SERIES = {Collection Didactique},
- PAGES = {163-180},
- CATEGORY = {national}
-}
-
-@INPROCEEDINGS{Moh93,
- AUTHOR = {C. Paulin-Mohring},
- BOOKTITLE = {Proceedings of the conference Typed Lambda Calculi a
-nd Applications},
- EDITOR = {M. Bezem and J.-F. Groote},
- INSTITUTION = {LIP-ENS Lyon},
- NOTE = {LIP research report 92-49},
- NUMBER = 664,
- SERIES = {Lecture Notes in Computer Science},
- TITLE = {{Inductive Definitions in the System {Coq} - Rules and Properties}},
- TYPE = {research report},
- YEAR = 1993
-}
-
-@ARTICLE{PaWe92,
- AUTHOR = {C. Paulin-Mohring and B. Werner},
- JOURNAL = {Journal of Symbolic Computation},
- TITLE = {{Synthesis of ML programs in the system Coq}},
- VOLUME = {15},
- YEAR = {1993},
- PAGES = {607--640}
-}
-
-@INPROCEEDINGS{Pau96,
- AUTHOR = {C. Paulin-Mohring},
- TITLE = {Circuits as streams in {Coq} : Verification of a sequential multiplier},
- BOOKTITLE = {Types for Proofs and Programs, TYPES'95},
- EDITOR = {S. Berardi and M. Coppo},
- SERIES = {Lecture Notes in Computer Science},
- YEAR = 1996,
- VOLUME = 1158
-}
-
-@PHDTHESIS{Pau96b,
- AUTHOR = {Christine Paulin-Mohring},
- TITLE = {Définitions Inductives en Théorie des Types d'Ordre Supérieur},
- SCHOOL = {Université Claude Bernard Lyon I},
- YEAR = 1996,
- MONTH = DEC,
- TYPE = {Habilitation à diriger les recherches},
- URL = {http://www.lri.fr/~paulin/habilitation.ps.gz}
-}
-
-@INPROCEEDINGS{PfPa89,
- AUTHOR = {F. Pfenning and C. Paulin-Mohring},
- BOOKTITLE = {Proceedings of Mathematical Foundations of Programming Semantics},
- NOTE = {technical report CMU-CS-89-209},
- PUBLISHER = {Springer-Verlag},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = 442,
- TITLE = {Inductively defined types in the {Calculus of Constructions}},
- YEAR = {1990}
-}
-
-@MISC{krakatoa02,
- AUTHOR = {Claude March\'e and Christine Paulin and Xavier Urbain},
- TITLE = {The \textsc{Krakatoa} proof tool},
- YEAR = 2002,
- NOTE = {\url{http://krakatoa.lri.fr/}}
-}
-
-@ARTICLE{marche03jlap,
- AUTHOR = {Claude March{\'e} and Christine Paulin-Mohring and Xavier Urbain},
- TITLE = {The \textsc{Krakatoa} Tool for Certification of \textsc{Java/JavaCard} Programs annotated in \textsc{JML}},
- JOURNAL = {Journal of Logic and Algebraic Programming},
- YEAR = 2003,
- NOTE = {To appear},
- URL = {http://krakatoa.lri.fr},
- TOPICS = {team}
-}
-@ARTICLE{marche04jlap,
- AUTHOR = {Claude March{\'e} and Christine Paulin-Mohring and Xavier Urbain},
- TITLE = {The \textsc{Krakatoa} Tool for Certification of \textsc{Java/JavaCard} Programs annotated in \textsc{JML}},
- JOURNAL = {Journal of Logic and Algebraic Programming},
- YEAR = 2004,
- VOLUME = 58,
- NUMBER = {1--2},
- PAGES = {89--106},
- URL = {http://krakatoa.lri.fr},
- TOPICS = {team}
-}
-
-@TECHREPORT{catano03deliv,
- AUTHOR = {N{\'e}stor Cata{\~n}o and Marek Gawkowski and
-Marieke Huisman and Bart Jacobs and Claude March{\'e} and Christine Paulin
-and Erik Poll and Nicole Rauch and Xavier Urbain},
- TITLE = {Logical Techniques for Applet Verification},
- INSTITUTION = {VerifiCard Project},
- YEAR = 2003,
- TYPE = {Deliverable},
- NUMBER = {5.2},
- TOPICS = {team},
- NOTE = {Available from \url{http://www.verificard.org}}
-}
-
-@TECHREPORT{kmu2002rr,
- AUTHOR = {Keiichirou Kusakari and Claude Marché and Xavier Urbain},
- TITLE = {Termination of Associative-Commutative Rewriting using Dependency Pairs Criteria},
- INSTITUTION = {LRI},
- YEAR = 2002,
- TYPE = {Research Report},
- NUMBER = 1304,
- TYPE_PUBLI = {interne},
- TOPICS = {team},
- NOTE = {\url{http://www.lri.fr/~urbain/textes/rr1304.ps.gz}},
- URL = {http://www.lri.fr/~urbain/textes/rr1304.ps.gz}
-}
-
-@ARTICLE{marche2004jsc,
- AUTHOR = {Claude March\'e and Xavier Urbain},
- TITLE = {Modular {\&} Incremental Proofs of {AC}-Termination},
- JOURNAL = {Journal of Symbolic Computation},
- YEAR = 2004,
- TOPICS = {team}
-}
-
-@INPROCEEDINGS{contejean03wst,
- AUTHOR = {Evelyne Contejean and Claude Marché and Benjamin Monate and Xavier Urbain},
- TITLE = {{Proving Termination of Rewriting with {\sc C\textit{i}ME}}},
- CROSSREF = {wst03},
- PAGES = {71--73},
- NOTE = {\url{http://cime.lri.fr/}},
- URL = {http://cime.lri.fr/},
- YEAR = 2003,
- TYPE_PUBLI = {icolcomlec},
- TOPICS = {team}
-}
-
-@TECHREPORT{contejean04rr,
- AUTHOR = {Evelyne Contejean and Claude March{\'e} and Ana-Paula Tom{\'a}s and Xavier Urbain},
- TITLE = {Mechanically proving termination using polynomial interpretations},
- INSTITUTION = {LRI},
- YEAR = {2004},
- TYPE = {Research Report},
- NUMBER = {1382},
- TYPE_PUBLI = {interne},
- TOPICS = {team},
- URL = {http://www.lri.fr/~urbain/textes/rr1382.ps.gz}
-}
-
-@UNPUBLISHED{duran_sub,
- AUTHOR = {Francisco Duran and Salvador Lucas and
- Claude {March\'e} and {Jos\'e} Meseguer and Xavier Urbain},
- TITLE = {Termination of Membership Equational Programs},
- NOTE = {Submitted}
-}
-
-@PROCEEDINGS{comon95lncs,
- TITLE = {Term Rewriting},
- BOOKTITLE = {Term Rewriting},
- TOPICS = {team, cclserver},
- YEAR = 1995,
- EDITOR = {Hubert Comon and Jean-Pierre Jouannaud},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = {909},
- PUBLISHER = {{Sprin\-ger-Verlag}},
- ORGANIZATION = {French Spring School of Theoretical Computer
- Science},
- TYPE_PUBLI = {editeur},
- CLEF_LABO = {CJ95}
-}
-
-@PROCEEDINGS{lics94,
- TITLE = {Proceedings of the Ninth Annual IEEE Symposium on Logic
- in Computer Science},
- BOOKTITLE = {Proceedings of the Ninth Annual IEEE Symposium on Logic
- in Computer Science},
- YEAR = 1994,
- MONTH = JUL,
- ADDRESS = {Paris, France},
- ORGANIZATION = {{IEEE} Comp. Soc. Press}
-}
-
-@PROCEEDINGS{rta91,
- TITLE = {4th International Conference on Rewriting Techniques and
- Applications},
- BOOKTITLE = {4th International Conference on Rewriting Techniques and
- Applications},
- EDITOR = {Ronald. V. Book},
- YEAR = 1991,
- MONTH = APR,
- ADDRESS = {Como, Italy},
- PUBLISHER = {{Sprin\-ger-Verlag}},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = 488
-}
-
-@PROCEEDINGS{rta96,
- TITLE = {7th International Conference on Rewriting Techniques and
- Applications},
- BOOKTITLE = {7th International Conference on Rewriting Techniques and
- Applications},
- EDITOR = {Harald Ganzinger},
- PUBLISHER = {{Sprin\-ger-Verlag}},
- YEAR = 1996,
- MONTH = JUL,
- ADDRESS = {New Brunswick, NJ, USA},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = 1103
-}
-
-@PROCEEDINGS{rta97,
- TITLE = {8th International Conference on Rewriting Techniques and
- Applications},
- BOOKTITLE = {8th International Conference on Rewriting Techniques and
- Applications},
- EDITOR = {Hubert Comon},
- PUBLISHER = {{Sprin\-ger-Verlag}},
- YEAR = 1997,
- MONTH = JUN,
- ADDRESS = {Barcelona, Spain},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = {1232}
-}
-
-@PROCEEDINGS{rta98,
- TITLE = {9th International Conference on Rewriting Techniques and
- Applications},
- BOOKTITLE = {9th International Conference on Rewriting Techniques and
- Applications},
- EDITOR = {Tobias Nipkow},
- PUBLISHER = {{Sprin\-ger-Verlag}},
- YEAR = 1998,
- MONTH = APR,
- ADDRESS = {Tsukuba, Japan},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = {1379}
-}
-
-@PROCEEDINGS{rta00,
- TITLE = {11th International Conference on Rewriting Techniques and Applications},
- BOOKTITLE = {11th International Conference on Rewriting Techniques and Applications},
- EDITOR = {Leo Bachmair},
- PUBLISHER = {{Sprin\-ger-Verlag}},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = 1833,
- MONTH = JUL,
- YEAR = 2000,
- ADDRESS = {Norwich, UK}
-}
-
-@PROCEEDINGS{srt95,
- TITLE = {Proceedings of the Conference on Symbolic Rewriting
- Techniques},
- BOOKTITLE = {Proceedings of the Conference on Symbolic Rewriting
- Techniques},
- YEAR = 1995,
- EDITOR = {Manuel Bronstein and Volker Weispfenning},
- ADDRESS = {Monte Verita, Switzerland}
-}
-
-@BOOK{comon01cclbook,
- BOOKTITLE = {Constraints in Computational Logics},
- TITLE = {Constraints in Computational Logics},
- EDITOR = {Hubert Comon and Claude March{\'e} and Ralf Treinen},
- YEAR = 2001,
- PUBLISHER = {{Sprin\-ger-Verlag}},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = 2002,
- TOPICS = {team},
- TYPE_PUBLI = {editeur}
-}
-
-@PROCEEDINGS{wst03,
- BOOKTITLE = {{Extended Abstracts of the 6th International Workshop on Termination, WST'03}},
- TITLE = {{Extended Abstracts of the 6th International Workshop on Termination, WST'03}},
- YEAR = {2003},
- EDITOR = {Albert Rubio},
- MONTH = JUN,
- NOTE = {Technical Report DSIC II/15/03, Universidad Politécnica de Valencia, Spain}
-}
-
-@INPROCEEDINGS{FilliatreLetouzey03,
- AUTHOR = {J.-C. Filli\^atre and P. Letouzey},
- TITLE = {{Functors for Proofs and Programs}},
- BOOKTITLE = {Proceedings of The European Symposium on Programming},
- YEAR = 2004,
- ADDRESS = {Barcelona, Spain},
- MONTH = {March 29-April 2},
- NOTE = {To appear},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/fpp.ps.gz}
-}
-
-@TECHREPORT{Filliatre03,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Why: a multi-language multi-prover verification tool}},
- INSTITUTION = {{LRI, Universit\'e Paris Sud}},
- TYPE = {{Research Report}},
- NUMBER = {1366},
- MONTH = {March},
- YEAR = 2003,
- URL = {http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz}
-}
-
-@ARTICLE{FilliatrePottier02,
- AUTHOR = {J.-C. Filli{\^a}tre and F. Pottier},
- TITLE = {{Producing All Ideals of a Forest, Functionally}},
- JOURNAL = {Journal of Functional Programming},
- VOLUME = 13,
- NUMBER = 5,
- PAGES = {945--956},
- MONTH = {September},
- YEAR = 2003,
- URL = {http://www.lri.fr/~filliatr/ftp/publis/kr-fp.ps.gz},
- ABSTRACT = {
- We present a functional implementation of Koda and Ruskey's
- algorithm for generating all ideals of a forest poset as a Gray
- code. Using a continuation-based approach, we give an extremely
- concise formulation of the algorithm's core. Then, in a number of
- steps, we derive a first-order version whose efficiency is
- comparable to a C implementation given by Knuth.}
-}
-
-@UNPUBLISHED{FORS01,
- AUTHOR = {J.-C. Filli{\^a}tre and S. Owre and H. Rue{\ss} and N. Shankar},
- TITLE = {Deciding Propositional Combinations of Equalities and Inequalities},
- NOTE = {Unpublished},
- MONTH = OCT,
- YEAR = 2001,
- URL = {http://www.lri.fr/~filliatr/ftp/publis/ics.ps},
- ABSTRACT = {
- We address the problem of combining individual decision procedures
- into a single decision procedure. Our combination approach is based
- on using the canonizer obtained from Shostak's combination algorithm
- for equality. We illustrate our approach with a combination
- algorithm for equality, disequality, arithmetic inequality, and
- propositional logic. Unlike the Nelson--Oppen combination where the
- processing of equalities is distributed across different closed
- decision procedures, our combination involves the centralized
- processing of equalities in a single procedure. The termination
- argument for the combination is based on that for Shostak's
- algorithm. We also give soundness and completeness arguments.}
-}
-
-@INPROCEEDINGS{ICS,
- AUTHOR = {J.-C. Filli{\^a}tre and S. Owre and H. Rue{\ss} and N. Shankar},
- TITLE = {{ICS: Integrated Canonization and Solving (Tool presentation)}},
- BOOKTITLE = {Proceedings of CAV'2001},
- EDITOR = {G. Berry and H. Comon and A. Finkel},
- PUBLISHER = {Springer-Verlag},
- SERIES = {Lecture Notes in Computer Science},
- VOLUME = 2102,
- PAGES = {246--249},
- YEAR = 2001
-}
-
-@INPROCEEDINGS{Filliatre01a,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {La supériorité de l'ordre supérieur},
- BOOKTITLE = {Journées Francophones des Langages Applicatifs},
- PAGES = {15--26},
- MONTH = {Janvier},
- YEAR = 2002,
- ADDRESS = {Anglet, France},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/sos.ps.gz},
- CODE = {http://www.lri.fr/~filliatr/ftp/ocaml/misc/koda-ruskey.ps},
- ABSTRACT = {
- Nous présentons ici une écriture fonctionnelle de l'algorithme de
- Koda-Ruskey, un algorithme pour engendrer une large famille
- de codes de Gray. En s'inspirant de techniques de programmation par
- continuation, nous aboutissons à un code de neuf lignes seulement,
- bien plus élégant que les implantations purement impératives
- proposées jusqu'ici, notamment par Knuth. Dans un second temps,
- nous montrons comment notre code peut être légèrement modifié pour
- aboutir à une version de complexité optimale.
- Notre implantation en Objective Caml rivalise d'efficacité avec les
- meilleurs codes C. Nous détaillons les calculs de complexité,
- un exercice intéressant en présence d'ordre supérieur et d'effets de
- bord combinés.}
-}
-
-@TECHREPORT{Filliatre00c,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Design of a proof assistant: Coq version 7}},
- INSTITUTION = {{LRI, Universit\'e Paris Sud}},
- TYPE = {{Research Report}},
- NUMBER = {1369},
- MONTH = {October},
- YEAR = 2000,
- URL = {http://www.lri.fr/~filliatr/ftp/publis/coqv7.ps.gz},
- ABSTRACT = {
- We present the design and implementation of the new version of the
- Coq proof assistant. The main novelty is the isolation of the
- critical part of the system, which consists in a type checker for
- the Calculus of Inductive Constructions. This kernel is now
- completely independent of the rest of the system and has been
- rewritten in a purely functional way. This leads to greater clarity
- and safety, without compromising efficiency. It also opens the way to
- the ``bootstrap'' of the Coq system, where the kernel will be
- certified using Coq itself.}
-}
-
-@TECHREPORT{Filliatre00b,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Hash consing in an ML framework}},
- INSTITUTION = {{LRI, Universit\'e Paris Sud}},
- TYPE = {{Research Report}},
- NUMBER = {1368},
- MONTH = {September},
- YEAR = 2000,
- URL = {http://www.lri.fr/~filliatr/ftp/publis/hash-consing.ps.gz},
- ABSTRACT = {
- Hash consing is a technique to share values that are structurally
- equal. Beyond the obvious advantage of saving memory blocks, hash
- consing may also be used to gain speed in several operations (like
- equality test) and data structures (like sets or maps) when sharing is
- maximal. However, physical adresses cannot be used directly for this
- purpose when the garbage collector is likely to move blocks
- underneath. We present an easy solution in such a framework, with
- many practical benefits.}
-}
-
-@MISC{ocamlweb,
- AUTHOR = {J.-C. Filli\^atre and C. March\'e},
- TITLE = {{ocamlweb, a literate programming tool for Objective Caml}},
- NOTE = {Available at \url{http://www.lri.fr/~filliatr/ocamlweb/}},
- URL = {http://www.lri.fr/~filliatr/ocamlweb/}
-}
-
-@ARTICLE{Filliatre00a,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Verification of Non-Functional Programs
- using Interpretations in Type Theory}},
- JOURNAL = {Journal of Functional Programming},
- VOLUME = 13,
- NUMBER = 4,
- PAGES = {709--745},
- MONTH = {July},
- YEAR = 2003,
- NOTE = {English translation of~\cite{Filliatre99}.},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/jphd.ps.gz},
- ABSTRACT = {We study the problem of certifying programs combining imperative and
- functional features within the general framework of type theory.
-
- Type theory constitutes a powerful specification language, which is
- naturally suited for the proof of purely functional programs. To
- deal with imperative programs, we propose a logical interpretation
- of an annotated program as a partial proof of its specification. The
- construction of the corresponding partial proof term is based on a
- static analysis of the effects of the program, and on the use of
- monads. The usual notion of monads is refined in order to account
- for the notion of effect. The missing subterms in the partial proof
- term are seen as proof obligations, whose actual proofs are left to
- the user. We show that the validity of those proof obligations
- implies the total correctness of the program.
- We also establish a result of partial completeness.
-
- This work has been implemented in the Coq proof assistant.
- It appears as a tactic taking an annotated program as argument and
- generating a set of proof obligations. Several nontrivial
- algorithms have been certified using this tactic.}
-}
-
-@ARTICLE{Filliatre99c,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Formal Proof of a Program: Find}},
- JOURNAL = {Science of Computer Programming},
- YEAR = 2001,
- NOTE = {To appear},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/find.ps.gz},
- ABSTRACT = {In 1971, C.~A.~R.~Hoare gave the proof of correctness and termination of a
- rather complex algorithm, in a paper entitled \emph{Proof of a
- program: Find}. It is a hand-made proof, where the
- program is given together with its formal specification and where
- each step is fully
- justified by a mathematical reasoning. We present here a formal
- proof of the same program in the system Coq, using the
- recent tactic of the system developed to establishing the total
- correctness of
- imperative programs. We follow Hoare's paper as close as
- possible, keeping the same program and the same specification. We
- show that we get exactly the same proof obligations, which are
- proved in a straightforward way, following the original paper.
- We also explain how more informal reasonings of Hoare's proof are
- formalized in the system Coq.
- This demonstrates the adequacy of the system Coq in the
- process of certifying imperative programs.}
-}
-
-@TECHREPORT{Filliatre99b,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{A theory of monads parameterized by effects}},
- INSTITUTION = {{LRI, Universit\'e Paris Sud}},
- TYPE = {{Research Report}},
- NUMBER = {1367},
- MONTH = {November},
- YEAR = 1999,
- URL = {http://www.lri.fr/~filliatr/ftp/publis/monads.ps.gz},
- ABSTRACT = {Monads were introduced in computer science to express the semantics
- of programs with computational effects, while type and effect
- inference was introduced to mark out those effects.
- In this article, we propose a combination of the notions of effects
- and monads, where the monadic operators are parameterized by effects.
- We establish some relationships between those generalized monads and
- the classical ones.
- Then we use a generalized monad to translate imperative programs
- into purely functional ones. We establish the correctness of that
- translation. This work has been put into practice in the Coq proof
- assistant to establish the correctness of imperative programs.}
-}
-
-@PHDTHESIS{Filliatre99,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Preuve de programmes imp\'eratifs en th\'eorie des types}},
- TYPE = {Th{\`e}se de Doctorat},
- SCHOOL = {Universit\'e Paris-Sud},
- YEAR = 1999,
- MONTH = {July},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/these.ps.gz},
- ABSTRACT = {Nous étudions le problème de la certification de programmes mêlant
- traits impératifs et fonctionnels dans le cadre de la théorie des
- types.
-
- La théorie des types constitue un puissant langage de spécification,
- naturellement adapté à la preuve de programmes purement
- fonctionnels. Pour y certifier également des programmes impératifs,
- nous commençons par exprimer leur sémantique de manière purement
- fonctionnelle. Cette traduction repose sur une analyse statique des
- effets de bord des programmes, et sur l'utilisation de la notion de
- monade, notion que nous raffinons en l'associant à la notion d'effet
- de manière générale. Nous montrons que cette traduction est
- sémantiquement correcte.
-
- Puis, à partir d'un programme annoté, nous construisons une preuve
- de sa spécification, traduite de manière fonctionnelle. Cette preuve
- est bâtie sur la traduction fonctionnelle précédemment
- introduite. Elle est presque toujours incomplète, les parties
- manquantes étant autant d'obligations de preuve qui seront laissées
- à la charge de l'utilisateur. Nous montrons que la validité de ces
- obligations entraîne la correction totale du programme.
-
- Nous avons implanté notre travail dans l'assistant de preuve
- Coq, avec lequel il est dès à présent distribué. Cette
- implantation se présente sous la forme d'une tactique prenant en
- argument un programme annoté et engendrant les obligations de
- preuve. Plusieurs algorithmes non triviaux ont été certifiés à
- l'aide de cet outil (Find, Quicksort, Heapsort, algorithme de
- Knuth-Morris-Pratt).}
-}
-
-@INPROCEEDINGS{FilliatreMagaud99,
- AUTHOR = {J.-C. Filli\^atre and N. Magaud},
- TITLE = {{Certification of sorting algorithms in the system Coq}},
- BOOKTITLE = {Theorem Proving in Higher Order Logics:
- Emerging Trends},
- YEAR = 1999,
- ABSTRACT = {We present the formal proofs of total correctness of three sorting
- algorithms in the system Coq, namely \textit{insertion sort},
- \textit{quicksort} and \textit{heapsort}. The implementations are
- imperative programs working in-place on a given array. Those
- developments demonstrate the usefulness of inductive types and higher-order
- logic in the process of software certification. They also
- show that the proof of rather complex algorithms may be done in a
- small amount of time --- only a few days for each development ---
- and without great difficulty.},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/Filliatre-Magaud.ps.gz}
-}
-
-@INPROCEEDINGS{Filliatre98,
- AUTHOR = {J.-C. Filli\^atre},
- TITLE = {{Proof of Imperative Programs in Type Theory}},
- BOOKTITLE = {International Workshop, TYPES '98, Kloster Irsee, Germany},
- PUBLISHER = {Springer-Verlag},
- VOLUME = 1657,
- SERIES = {Lecture Notes in Computer Science},
- MONTH = MAR,
- YEAR = {1998},
- ABSTRACT = {We present a new approach to certifying imperative programs,
- in the context of Type Theory.
- The key is a functional translation of imperative programs, which is
- made possible by an analysis of their effects.
- On sequential imperative programs, we get the same proof
- obligations as those given by Floyd-Hoare logic,
- but our approach also includes functional constructions.
- As a side-effect, we propose a way to eradicate the use of auxiliary
- variables in specifications.
- This work has been implemented in the Coq Proof Assistant and applied
- on non-trivial examples.},
- URL = {http://www.lri.fr/~filliatr/ftp/publis/types98.ps.gz}
-}
-
-@TECHREPORT{Filliatre97,
- AUTHOR = {J.-C. Filli\^atre},
- INSTITUTION = {LIP - ENS Lyon},
- NUMBER = {97--04},
- TITLE = {{Finite Automata Theory in Coq:
- A constructive proof of Kleene's theorem}},
- TYPE = {Research Report},
- MONTH = {February},
- YEAR = {1997},
- ABSTRACT = {We describe here a development in the system Coq
- of a piece of Finite Automata Theory. The main result is the Kleene's
- theorem, expressing that regular expressions and finite automata
- define the same languages. From a constructive proof of this result,
- we automatically obtain a functional program that compiles any
- regular expression into a finite automata, which constitutes the main
- part of the implementation of {\tt grep}-like programs. This
- functional program is obtained by the automatic method of {\em
- extraction} which removes the logical parts of the proof to keep only
- its informative contents. Starting with an idea of what we would
- have written in ML, we write the specification and do the proofs in
- such a way that we obtain the expected program, which is therefore
- efficient.},
- URL = {ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR97/RR97-04.ps.Z}
-}
-
-@TECHREPORT{Filliatre95,
- AUTHOR = {J.-C. Filli\^atre},
- INSTITUTION = {LIP - ENS Lyon},
- NUMBER = {96--25},
- TITLE = {{A decision procedure for Direct Predicate
- Calculus: study and implementation in
- the Coq system}},
- TYPE = {Research Report},
- MONTH = {February},
- YEAR = {1995},
- ABSTRACT = {The paper of J. Ketonen and R. Weyhrauch \emph{A
- decidable fragment of Predicate Calculus} defines a decidable
- fragment of first-order predicate logic - Direct Predicate Calculus
- - as the subset which is provable in Gentzen sequent calculus
- without the contraction rule, and gives an effective decision
- procedure for it. This report is a detailed study of this
- procedure. We extend the decidability to non-prenex formulas. We
- prove that the intuitionnistic fragment is still decidable, with a
- refinement of the same procedure. An intuitionnistic version has
- been implemented in the Coq system using a translation into
- natural deduction.},
- URL = {ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR96/RR96-25.ps.Z}
-}
-
-@TECHREPORT{Filliatre94,
- AUTHOR = {J.-C. Filli\^atre},
- MONTH = {Juillet},
- INSTITUTION = {Ecole Normale Sup\'erieure},
- TITLE = {{Une proc\'edure de d\'ecision pour le Calcul des Pr\'edicats Direct~: \'etude et impl\'ementation dans le syst\`eme Coq}},
- TYPE = {Rapport de {DEA}},
- YEAR = {1994},
- URL = {ftp://ftp.lri.fr/LRI/articles/filliatr/memoire.dvi.gz}
-}
-
-@TECHREPORT{CourantFilliatre93,
- AUTHOR = {J. Courant et J.-C. Filli\^atre},
- MONTH = {Septembre},
- INSTITUTION = {Ecole Normale Sup\'erieure},
- TITLE = {{Formalisation de la th\'eorie des langages
- formels en Coq}},
- TYPE = {Rapport de ma\^{\i}trise},
- YEAR = {1993},
- URL = {http://www.ens-lyon.fr/~jcourant/stage_maitrise.dvi.gz},
- URL2 = {http://www.ens-lyon.fr/~jcourant/stage_maitrise.ps.gz}
-}
-
-@INPROCEEDINGS{tphols2000-Letouzey,
- crossref = "tphols2000",
- title = "Formalizing {S}t{\aa}lmarck's algorithm in {C}oq",
- author = "Pierre Letouzey and Laurent Th{\'e}ry",
- pages = "387--404"}
-
-@PROCEEDINGS{tphols2000,
- editor = "J. Harrison and M. Aagaard",
- booktitle = "Theorem Proving in Higher Order Logics:
- 13th International Conference, TPHOLs 2000",
- series = "Lecture Notes in Computer Science",
- volume = 1869,
- year = 2000,
- publisher = "Springer-Verlag"}
-
-@InCollection{howe,
- author = {Doug Howe},
- title = {Computation Meta theory in Nuprl},
- booktitle = {The Proceedings of the Ninth International Conference of Autom
-ated Deduction},
- volume = {310},
- editor = {E. Lusk and R. Overbeek},
- publisher = {Springer-Verlag},
- pages = {238--257},
- year = {1988}
-}
-
-@TechReport{harrison,
- author = {John Harrison},
- title = {Meta theory and Reflection in Theorem Proving:a Survey and Cri
-tique},
- institution = {SRI International Cambridge Computer Science Research Center},
- year = {1995},
- number = {CRC-053}
-}
-
-@InCollection{cc,
- author = {Thierry Coquand and Gérard Huet},
- title = {The Calculus of Constructions},
- booktitle = {Information and Computation},
- year = {1988},
- volume = {76},
- number = {2/3}
-}
-
-
-@InProceedings{coquandcci,
- author = {Thierry Coquand and Christine Paulin-Mohring},
- title = {Inductively defined types},
- booktitle = {Proceedings of Colog'88},
- year = {1990},
- editor = {P. Martin-Löf and G. Mints},
- volume = {417},
- series = {LNCS},
- publisher = {Springer-Verlag}
-}
-
-
-@InProceedings{boutin,
- author = {Samuel Boutin},
- title = {Using reflection to build efficient and certified decision pro
-cedures.},
- booktitle = {Proceedings of TACS'97},
- year = {1997},
- editor = {M. Abadi and T. Ito},
- volume = {1281},
- series = {LNCS},
- publisher = {Springer-Verlag}
-}
-
-@Manual{Coq:manual,
- title = {The Coq proof assistant reference manual},
- author = {\mbox{The Coq development team}},
- note = {Version 8.3},
- year = {2010},
- url = "http://coq.inria.fr/doc"
-}
-
-@string{jfp = "Journal of Functional Programming"}
-@STRING{lncs="Lecture Notes in Computer Science"}
-@STRING{lnai="Lecture Notes in Artificial Intelligence"}
-@string{SV = "{Sprin\-ger-Verlag}"}
-
-@INPROCEEDINGS{Aud91,
- AUTHOR = {Ph. Audebaud},
- BOOKTITLE = {Proceedings of the sixth Conf. on Logic in Computer Science.},
- PUBLISHER = {IEEE},
- TITLE = {Partial {Objects} in the {Calculus of Constructions}},
- YEAR = {1991}
-}
-
-@PHDTHESIS{Aud92,
- AUTHOR = {Ph. Audebaud},
- SCHOOL = {{Universit\'e} Bordeaux I},
- TITLE = {Extension du Calcul des Constructions par Points fixes},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{Audebaud92b,
- AUTHOR = {Ph. Audebaud},
- BOOKTITLE = {{Proceedings of the 1992 Workshop on Types for Proofs and Programs}},
- EDITOR = {{B. Nordstr\"om and K. Petersson and G. Plotkin}},
- NOTE = {Also Research Report LIP-ENS-Lyon},
- PAGES = {pp 21--34},
- TITLE = {{CC+ : an extension of the Calculus of Constructions with fixpoints}},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{Augustsson85,
- AUTHOR = {L. Augustsson},
- TITLE = {{Compiling Pattern Matching}},
- BOOKTITLE = {Conference Functional Programming and
-Computer Architecture},
- YEAR = {1985}
-}
-
-@ARTICLE{BaCo85,
- AUTHOR = {J.L. Bates and R.L. Constable},
- JOURNAL = {ACM transactions on Programming Languages and Systems},
- TITLE = {Proofs as {Programs}},
- VOLUME = {7},
- YEAR = {1985}
-}
-
-@BOOK{Bar81,
- AUTHOR = {H.P. Barendregt},
- PUBLISHER = {North-Holland},
- TITLE = {The Lambda Calculus its Syntax and Semantics},
- YEAR = {1981}
-}
-
-@TECHREPORT{Bar91,
- AUTHOR = {H. Barendregt},
- INSTITUTION = {Catholic University Nijmegen},
- NOTE = {In Handbook of Logic in Computer Science, Vol II},
- NUMBER = {91-19},
- TITLE = {Lambda {Calculi with Types}},
- YEAR = {1991}
-}
-
-@ARTICLE{BeKe92,
- AUTHOR = {G. Bellin and J. Ketonen},
- JOURNAL = {Theoretical Computer Science},
- PAGES = {115--142},
- TITLE = {A decision procedure revisited : Notes on direct logic, linear logic and its implementation},
- VOLUME = {95},
- YEAR = {1992}
-}
-
-@BOOK{Bee85,
- AUTHOR = {M.J. Beeson},
- PUBLISHER = SV,
- TITLE = {Foundations of Constructive Mathematics, Metamathematical Studies},
- YEAR = {1985}
-}
-
-@BOOK{Bis67,
- AUTHOR = {E. Bishop},
- PUBLISHER = {McGraw-Hill},
- TITLE = {Foundations of Constructive Analysis},
- YEAR = {1967}
-}
-
-@BOOK{BoMo79,
- AUTHOR = {R.S. Boyer and J.S. Moore},
- KEY = {BoMo79},
- PUBLISHER = {Academic Press},
- SERIES = {ACM Monograph},
- TITLE = {A computational logic},
- YEAR = {1979}
-}
-
-@MASTERSTHESIS{Bou92,
- AUTHOR = {S. Boutin},
- MONTH = sep,
- SCHOOL = {{Universit\'e Paris 7}},
- TITLE = {Certification d'un compilateur {ML en Coq}},
- YEAR = {1992}
-}
-
-@inproceedings{Bou97,
- title = {Using reflection to build efficient and certified decision procedure
-s},
- author = {S. Boutin},
- booktitle = {TACS'97},
- editor = {Martin Abadi and Takahashi Ito},
- publisher = SV,
- series = lncs,
- volume=1281,
- PS={http://pauillac.inria.fr/~boutin/public_w/submitTACS97.ps.gz},
- year = {1997}
-}
-
-@PhdThesis{Bou97These,
- author = {S. Boutin},
- title = {R\'eflexions sur les quotients},
- school = {Paris 7},
- year = 1997,
- type = {th\`ese d'Universit\'e},
- month = apr
-}
-
-@ARTICLE{Bru72,
- AUTHOR = {N.J. de Bruijn},
- JOURNAL = {Indag. Math.},
- TITLE = {{Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem}},
- VOLUME = {34},
- YEAR = {1972}
-}
-
-
-@INCOLLECTION{Bru80,
- AUTHOR = {N.J. de Bruijn},
- BOOKTITLE = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.},
- EDITOR = {J.P. Seldin and J.R. Hindley},
- PUBLISHER = {Academic Press},
- TITLE = {A survey of the project {Automath}},
- YEAR = {1980}
-}
-
-@TECHREPORT{COQ93,
- AUTHOR = {G. Dowek and A. Felty and H. Herbelin and G. Huet and C. Murthy and C. Parent and C. Paulin-Mohring and B. Werner},
- INSTITUTION = {INRIA},
- MONTH = may,
- NUMBER = {154},
- TITLE = {{The Coq Proof Assistant User's Guide Version 5.8}},
- YEAR = {1993}
-}
-
-@TECHREPORT{CPar93,
- AUTHOR = {C. Parent},
- INSTITUTION = {Ecole {Normale} {Sup\'erieure} de {Lyon}},
- MONTH = oct,
- NOTE = {Also in~\cite{Nijmegen93}},
- NUMBER = {93-29},
- TITLE = {Developing certified programs in the system {Coq}- {The} {Program} tactic},
- YEAR = {1993}
-}
-
-@PHDTHESIS{CPar95,
- AUTHOR = {C. Parent},
- SCHOOL = {Ecole {Normale} {Sup\'erieure} de {Lyon}},
- TITLE = {{Synth\`ese de preuves de programmes dans le Calcul des Constructions Inductives}},
- YEAR = {1995}
-}
-
-@BOOK{Caml,
- AUTHOR = {P. Weis and X. Leroy},
- PUBLISHER = {InterEditions},
- TITLE = {Le langage Caml},
- YEAR = {1993}
-}
-
-@INPROCEEDINGS{ChiPotSimp03,
- AUTHOR = {Laurent Chicli and Lo\"{\i}c Pottier and Carlos Simpson},
- ADDRESS = {Berg en Dal, The Netherlands},
- TITLE = {Mathematical Quotients and Quotient Types in Coq},
- BOOKTITLE = {TYPES'02},
- PUBLISHER = SV,
- SERIES = LNCS,
- VOLUME = {2646},
- YEAR = {2003}
-}
-
-@TECHREPORT{CoC89,
- AUTHOR = {Projet Formel},
- INSTITUTION = {INRIA},
- NUMBER = {110},
- TITLE = {{The Calculus of Constructions. Documentation and user's guide, Version 4.10}},
- YEAR = {1989}
-}
-
-@INPROCEEDINGS{CoHu85a,
- AUTHOR = {Thierry Coquand and Gérard Huet},
- ADDRESS = {Linz},
- BOOKTITLE = {EUROCAL'85},
- PUBLISHER = SV,
- SERIES = LNCS,
- TITLE = {{Constructions : A Higher Order Proof System for Mechanizing Mathematics}},
- VOLUME = {203},
- YEAR = {1985}
-}
-
-@INPROCEEDINGS{CoHu85b,
- AUTHOR = {Thierry Coquand and Gérard Huet},
- BOOKTITLE = {Logic Colloquium'85},
- EDITOR = {The Paris Logic Group},
- PUBLISHER = {North-Holland},
- TITLE = {{Concepts Math\'ematiques et Informatiques formalis\'es dans le Calcul des Constructions}},
- YEAR = {1987}
-}
-
-@ARTICLE{CoHu86,
- AUTHOR = {Thierry Coquand and Gérard Huet},
- JOURNAL = {Information and Computation},
- NUMBER = {2/3},
- TITLE = {The {Calculus of Constructions}},
- VOLUME = {76},
- YEAR = {1988}
-}
-
-@INPROCEEDINGS{CoPa89,
- AUTHOR = {Thierry Coquand and Christine Paulin-Mohring},
- BOOKTITLE = {Proceedings of Colog'88},
- EDITOR = {P. Martin-L\"of and G. Mints},
- PUBLISHER = SV,
- SERIES = LNCS,
- TITLE = {Inductively defined types},
- VOLUME = {417},
- YEAR = {1990}
-}
-
-@BOOK{Con86,
- AUTHOR = {R.L. {Constable et al.}},
- PUBLISHER = {Prentice-Hall},
- TITLE = {{Implementing Mathematics with the Nuprl Proof Development System}},
- YEAR = {1986}
-}
-
-@PHDTHESIS{Coq85,
- AUTHOR = {Thierry Coquand},
- MONTH = jan,
- SCHOOL = {Universit\'e Paris~7},
- TITLE = {Une Th\'eorie des Constructions},
- YEAR = {1985}
-}
-
-@INPROCEEDINGS{Coq86,
- AUTHOR = {Thierry Coquand},
- ADDRESS = {Cambridge, MA},
- BOOKTITLE = {Symposium on Logic in Computer Science},
- PUBLISHER = {IEEE Computer Society Press},
- TITLE = {{An Analysis of Girard's Paradox}},
- YEAR = {1986}
-}
-
-@INPROCEEDINGS{Coq90,
- AUTHOR = {Thierry Coquand},
- BOOKTITLE = {Logic and Computer Science},
- EDITOR = {P. Oddifredi},
- NOTE = {INRIA Research Report 1088, also in~\cite{CoC89}},
- PUBLISHER = {Academic Press},
- TITLE = {{Metamathematical Investigations of a Calculus of Constructions}},
- YEAR = {1990}
-}
-
-@INPROCEEDINGS{Coq91,
- AUTHOR = {Thierry Coquand},
- BOOKTITLE = {Proceedings 9th Int. Congress of Logic, Methodology and Philosophy of Science},
- TITLE = {{A New Paradox in Type Theory}},
- MONTH = {August},
- YEAR = {1991}
-}
-
-@INPROCEEDINGS{Coq92,
- AUTHOR = {Thierry Coquand},
- TITLE = {{Pattern Matching with Dependent Types}},
- YEAR = {1992},
- crossref = {Bastad92}
-}
-
-@INPROCEEDINGS{Coquand93,
- AUTHOR = {Thierry Coquand},
- TITLE = {{Infinite Objects in Type Theory}},
- YEAR = {1993},
- crossref = {Nijmegen93}
-}
-
-@MASTERSTHESIS{Cou94a,
- AUTHOR = {J. Courant},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique, ENS Lyon},
- TITLE = {Explicitation de preuves par r\'ecurrence implicite},
- YEAR = {1994}
-}
-
-@INPROCEEDINGS{Del99,
- author = "Delahaye, D.",
- title = "Information Retrieval in a Coq Proof Library using
- Type Isomorphisms",
- booktitle = {Proceedings of TYPES'99, L\"okeberg},
- publisher = SV,
- series = lncs,
- year = "1999",
- url =
- "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"#
- "{\sf TYPES99-SIsos.ps.gz}"
-}
-
-@INPROCEEDINGS{Del00,
- author = "Delahaye, D.",
- title = "A {T}actic {L}anguage for the {S}ystem {{\sf Coq}}",
- booktitle = "Proceedings of Logic for Programming and Automated Reasoning
- (LPAR), Reunion Island",
- publisher = SV,
- series = LNCS,
- volume = "1955",
- pages = "85--95",
- month = "November",
- year = "2000",
- url =
- "{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"#
- "{\sf LPAR2000-ltac.ps.gz}"
-}
-
-@INPROCEEDINGS{DelMay01,
- author = "Delahaye, D. and Mayero, M.",
- title = {{\tt Field}: une proc\'edure de d\'ecision pour les nombres r\'eels
- en {\Coq}},
- booktitle = "Journ\'ees Francophones des Langages Applicatifs, Pontarlier",
- publisher = "INRIA",
- month = "Janvier",
- year = "2001",
- url =
- "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"#
- "{\sf JFLA2000-Field.ps.gz}"
-}
-
-@TECHREPORT{Dow90,
- AUTHOR = {G. Dowek},
- INSTITUTION = {INRIA},
- NUMBER = {1283},
- TITLE = {Naming and Scoping in a Mathematical Vernacular},
- TYPE = {Research Report},
- YEAR = {1990}
-}
-
-@ARTICLE{Dow91a,
- AUTHOR = {G. Dowek},
- JOURNAL = {Compte-Rendus de l'Acad\'emie des Sciences},
- NOTE = {The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors},
- NUMBER = {12},
- PAGES = {951--956},
- TITLE = {L'Ind\'ecidabilit\'e du Filtrage du Troisi\`eme Ordre dans les Calculs avec Types D\'ependants ou Constructeurs de Types},
- VOLUME = {I, 312},
- YEAR = {1991}
-}
-
-@INPROCEEDINGS{Dow91b,
- AUTHOR = {G. Dowek},
- BOOKTITLE = {Proceedings of Mathematical Foundation of Computer Science},
- NOTE = {Also INRIA Research Report},
- PAGES = {151--160},
- PUBLISHER = SV,
- SERIES = LNCS,
- TITLE = {A Second Order Pattern Matching Algorithm in the Cube of Typed $\lambda$-calculi},
- VOLUME = {520},
- YEAR = {1991}
-}
-
-@PHDTHESIS{Dow91c,
- AUTHOR = {G. Dowek},
- MONTH = dec,
- SCHOOL = {Universit\'e Paris 7},
- TITLE = {D\'emonstration automatique dans le Calcul des Constructions},
- YEAR = {1991}
-}
-
-@article{Dow92a,
- AUTHOR = {G. Dowek},
- TITLE = {The Undecidability of Pattern Matching in Calculi where Primitive Recursive Functions are Representable},
- YEAR = 1993,
- journal = tcs,
- volume = 107,
- number = 2,
- pages = {349-356}
-}
-
-
-@ARTICLE{Dow94a,
- AUTHOR = {G. Dowek},
- JOURNAL = {Annals of Pure and Applied Logic},
- VOLUME = {69},
- PAGES = {135--155},
- TITLE = {Third order matching is decidable},
- YEAR = {1994}
-}
-
-@INPROCEEDINGS{Dow94b,
- AUTHOR = {G. Dowek},
- BOOKTITLE = {Proceedings of the second international conference on typed lambda calculus and applications},
- TITLE = {Lambda-calculus, Combinators and the Comprehension Schema},
- YEAR = {1995}
-}
-
-@INPROCEEDINGS{Dyb91,
- AUTHOR = {P. Dybjer},
- BOOKTITLE = {Logical Frameworks},
- EDITOR = {G. Huet and G. Plotkin},
- PAGES = {59--79},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Inductive sets and families in {Martin-L{\"o}f's}
- Type Theory and their set-theoretic semantics: An inversion principle for {Martin-L\"of's} type theory},
- VOLUME = {14},
- YEAR = {1991}
-}
-
-@ARTICLE{Dyc92,
- AUTHOR = {Roy Dyckhoff},
- JOURNAL = {The Journal of Symbolic Logic},
- MONTH = sep,
- NUMBER = {3},
- TITLE = {Contraction-free sequent calculi for intuitionistic logic},
- VOLUME = {57},
- YEAR = {1992}
-}
-
-@MASTERSTHESIS{Fil94,
- AUTHOR = {J.-C. Filli\^atre},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique, ENS Lyon},
- TITLE = {Une proc\'edure de d\'ecision pour le Calcul des Pr\'edicats Direct. {\'E}tude et impl\'ementation dans le syst\`eme {\Coq}},
- YEAR = {1994}
-}
-
-@TECHREPORT{Filliatre95,
- AUTHOR = {J.-C. Filli\^atre},
- INSTITUTION = {LIP-ENS-Lyon},
- TITLE = {A decision procedure for Direct Predicate Calculus},
- TYPE = {Research report},
- NUMBER = {96--25},
- YEAR = {1995}
-}
-
-@Article{Filliatre03jfp,
- author = {J.-C. Filli{\^a}tre},
- title = {Verification of Non-Functional Programs
- using Interpretations in Type Theory},
- journal = jfp,
- volume = 13,
- number = 4,
- pages = {709--745},
- month = jul,
- year = 2003,
- note = {[English translation of \cite{Filliatre99}]},
- url = {http://www.lri.fr/~filliatr/ftp/publis/jphd.ps.gz},
- topics = "team, lri",
- type_publi = "irevcomlec"
-}
-
-
-@PhdThesis{Filliatre99,
- author = {J.-C. Filli\^atre},
- title = {Preuve de programmes imp\'eratifs en th\'eorie des types},
- type = {Th{\`e}se de Doctorat},
- school = {Universit\'e Paris-Sud},
- year = 1999,
- month = {July},
- url = {\url{http://www.lri.fr/~filliatr/ftp/publis/these.ps.gz}}
-}
-
-@Unpublished{Filliatre99c,
- author = {J.-C. Filli\^atre},
- title = {{Formal Proof of a Program: Find}},
- month = {January},
- year = 2000,
- note = {Submitted to \emph{Science of Computer Programming}},
- url = {\url{http://www.lri.fr/~filliatr/ftp/publis/find.ps.gz}}
-}
-
-@InProceedings{FilliatreMagaud99,
- author = {J.-C. Filli\^atre and N. Magaud},
- title = {Certification of sorting algorithms in the system {\Coq}},
- booktitle = {Theorem Proving in Higher Order Logics:
- Emerging Trends},
- year = 1999,
- url = {\url{http://www.lri.fr/~filliatr/ftp/publis/Filliatre-Magaud.ps.gz}}
-}
-
-@UNPUBLISHED{Fle90,
- AUTHOR = {E. Fleury},
- MONTH = jul,
- NOTE = {Rapport de Stage},
- TITLE = {Implantation des algorithmes de {Floyd et de Dijkstra} dans le {Calcul des Constructions}},
- YEAR = {1990}
-}
-
-@BOOK{Fourier,
- AUTHOR = {Jean-Baptiste-Joseph Fourier},
- PUBLISHER = {Gauthier-Villars},
- TITLE = {Fourier's method to solve linear
- inequations/equations systems.},
- YEAR = {1890}
-}
-
-@INPROCEEDINGS{Gim94,
- AUTHOR = {Eduardo Gim\'enez},
- BOOKTITLE = {Types'94 : Types for Proofs and Programs},
- NOTE = {Extended version in LIP research report 95-07, ENS Lyon},
- PUBLISHER = SV,
- SERIES = LNCS,
- TITLE = {Codifying guarded definitions with recursive schemes},
- VOLUME = {996},
- YEAR = {1994}
-}
-
-@TechReport{Gim98,
- author = {E. Gim\'enez},
- title = {A Tutorial on Recursive Types in Coq},
- institution = {INRIA},
- year = 1998,
- month = mar
-}
-
-@INPROCEEDINGS{Gimenez95b,
- AUTHOR = {E. Gim\'enez},
- BOOKTITLE = {Workshop on Types for Proofs and Programs},
- SERIES = LNCS,
- NUMBER = {1158},
- PAGES = {135-152},
- TITLE = {An application of co-Inductive types in Coq:
- verification of the Alternating Bit Protocol},
- EDITORS = {S. Berardi and M. Coppo},
- PUBLISHER = SV,
- YEAR = {1995}
-}
-
-@INPROCEEDINGS{Gir70,
- AUTHOR = {Jean-Yves Girard},
- BOOKTITLE = {Proceedings of the 2nd Scandinavian Logic Symposium},
- PUBLISHER = {North-Holland},
- TITLE = {Une extension de l'interpr\'etation de {G\"odel} \`a l'analyse, et son application \`a l'\'elimination des coupures dans l'analyse et la th\'eorie des types},
- YEAR = {1970}
-}
-
-@PHDTHESIS{Gir72,
- AUTHOR = {Jean-Yves Girard},
- SCHOOL = {Universit\'e Paris~7},
- TITLE = {Interpr\'etation fonctionnelle et \'elimination des coupures de l'arithm\'etique d'ordre sup\'erieur},
- YEAR = {1972}
-}
-
-
-
-@BOOK{Gir89,
- AUTHOR = {Jean-Yves Girard and Yves Lafont and Paul Taylor},
- PUBLISHER = {Cambridge University Press},
- SERIES = {Cambridge Tracts in Theoretical Computer Science 7},
- TITLE = {Proofs and Types},
- YEAR = {1989}
-}
-
-@TechReport{Har95,
- author = {John Harrison},
- title = {Metatheory and Reflection in Theorem Proving: A Survey and Critique},
- institution = {SRI International Cambridge Computer Science Research Centre,},
- year = 1995,
- type = {Technical Report},
- number = {CRC-053},
- abstract = {http://www.cl.cam.ac.uk/users/jrh/papers.html}
-}
-
-@MASTERSTHESIS{Hir94,
- AUTHOR = {Daniel Hirschkoff},
- MONTH = sep,
- SCHOOL = {DEA IARFA, Ecole des Ponts et Chauss\'ees, Paris},
- TITLE = {{\'E}criture d'une tactique arithm\'etique pour le syst\`eme {\Coq}},
- YEAR = {1994}
-}
-
-@INPROCEEDINGS{HofStr98,
- AUTHOR = {Martin Hofmann and Thomas Streicher},
- TITLE = {The groupoid interpretation of type theory},
- BOOKTITLE = {Proceedings of the meeting Twenty-five years of constructive type theory},
- PUBLISHER = {Oxford University Press},
- YEAR = {1998}
-}
-
-@INCOLLECTION{How80,
- AUTHOR = {W.A. Howard},
- BOOKTITLE = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.},
- EDITOR = {J.P. Seldin and J.R. Hindley},
- NOTE = {Unpublished 1969 Manuscript},
- PUBLISHER = {Academic Press},
- TITLE = {The Formulae-as-Types Notion of Constructions},
- YEAR = {1980}
-}
-
-
-
-@InProceedings{Hue87tapsoft,
- author = {G. Huet},
- title = {Programming of Future Generation Computers},
- booktitle = {Proceedings of TAPSOFT87},
- series = LNCS,
- volume = 249,
- pages = {276--286},
- year = 1987,
- publisher = SV
-}
-
-@INPROCEEDINGS{Hue87,
- AUTHOR = {G. Huet},
- BOOKTITLE = {Programming of Future Generation Computers},
- EDITOR = {K. Fuchi and M. Nivat},
- NOTE = {Also in \cite{Hue87tapsoft}},
- PUBLISHER = {Elsevier Science},
- TITLE = {Induction Principles Formalized in the {Calculus of Constructions}},
- YEAR = {1988}
-}
-
-
-
-@INPROCEEDINGS{Hue88,
- AUTHOR = {G. Huet},
- BOOKTITLE = {A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney},
- EDITOR = {R. Narasimhan},
- NOTE = {Also in~\cite{CoC89}},
- PUBLISHER = {World Scientific Publishing},
- TITLE = {{The Constructive Engine}},
- YEAR = {1989}
-}
-
-@BOOK{Hue89,
- EDITOR = {G. Huet},
- PUBLISHER = {Addison-Wesley},
- SERIES = {The UT Year of Programming Series},
- TITLE = {Logical Foundations of Functional Programming},
- YEAR = {1989}
-}
-
-@INPROCEEDINGS{Hue92,
- AUTHOR = {G. Huet},
- BOOKTITLE = {Proceedings of 12th FST/TCS Conference, New Delhi},
- PAGES = {229--240},
- PUBLISHER = SV,
- SERIES = LNCS,
- TITLE = {The Gallina Specification Language : A case study},
- VOLUME = {652},
- YEAR = {1992}
-}
-
-@ARTICLE{Hue94,
- AUTHOR = {G. Huet},
- JOURNAL = {J. Functional Programming},
- PAGES = {371--394},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Residual theory in $\lambda$-calculus: a formal development},
- VOLUME = {4,3},
- YEAR = {1994}
-}
-
-@INCOLLECTION{HuetLevy79,
- AUTHOR = {G. Huet and J.-J. L\'{e}vy},
- TITLE = {Call by Need Computations in Non-Ambigous
-Linear Term Rewriting Systems},
- NOTE = {Also research report 359, INRIA, 1979},
- BOOKTITLE = {Computational Logic, Essays in Honor of
-Alan Robinson},
- EDITOR = {J.-L. Lassez and G. Plotkin},
- PUBLISHER = {The MIT press},
- YEAR = {1991}
-}
-
-@ARTICLE{KeWe84,
- AUTHOR = {J. Ketonen and R. Weyhrauch},
- JOURNAL = {Theoretical Computer Science},
- PAGES = {297--307},
- TITLE = {A decidable fragment of {P}redicate {C}alculus},
- VOLUME = {32},
- YEAR = {1984}
-}
-
-@BOOK{Kle52,
- AUTHOR = {S.C. Kleene},
- PUBLISHER = {North-Holland},
- SERIES = {Bibliotheca Mathematica},
- TITLE = {Introduction to Metamathematics},
- YEAR = {1952}
-}
-
-@BOOK{Kri90,
- AUTHOR = {J.-L. Krivine},
- PUBLISHER = {Masson},
- SERIES = {Etudes et recherche en informatique},
- TITLE = {Lambda-calcul {types et mod\`eles}},
- YEAR = {1990}
-}
-
-@BOOK{LE92,
- EDITOR = {G. Huet and G. Plotkin},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Logical Environments},
- YEAR = {1992}
-}
-
-@BOOK{LF91,
- EDITOR = {G. Huet and G. Plotkin},
- PUBLISHER = {Cambridge University Press},
- TITLE = {Logical Frameworks},
- YEAR = {1991}
-}
-
-@ARTICLE{Laville91,
- AUTHOR = {A. Laville},
- TITLE = {Comparison of Priority Rules in Pattern
-Matching and Term Rewriting},
- JOURNAL = {Journal of Symbolic Computation},
- VOLUME = {11},
- PAGES = {321--347},
- YEAR = {1991}
-}
-
-@INPROCEEDINGS{LePa94,
- AUTHOR = {F. Leclerc and C. Paulin-Mohring},
- BOOKTITLE = {{Types for Proofs and Programs, Types' 93}},
- EDITOR = {H. Barendregt and T. Nipkow},
- PUBLISHER = SV,
- SERIES = {LNCS},
- TITLE = {{Programming with Streams in Coq. A case study : The Sieve of Eratosthenes}},
- VOLUME = {806},
- YEAR = {1994}
-}
-
-@TECHREPORT{Leroy90,
- AUTHOR = {X. Leroy},
- TITLE = {The {ZINC} experiment: an economical implementation
-of the {ML} language},
- INSTITUTION = {INRIA},
- NUMBER = {117},
- YEAR = {1990}
-}
-
-@INPROCEEDINGS{Let02,
- author = {P. Letouzey},
- title = {A New Extraction for Coq},
- booktitle = {Proceedings of the TYPES'2002 workshop},
- year = 2002,
- note = {to appear},
- url = {draft at \url{http://www.lri.fr/~letouzey/download/extraction2002.ps.gz}}
-}
-
-@BOOK{MaL84,
- AUTHOR = {{P. Martin-L\"of}},
- PUBLISHER = {Bibliopolis},
- SERIES = {Studies in Proof Theory},
- TITLE = {Intuitionistic Type Theory},
- YEAR = {1984}
-}
-
-@ARTICLE{MaSi94,
- AUTHOR = {P. Manoury and M. Simonot},
- JOURNAL = {TCS},
- TITLE = {Automatizing termination proof of recursively defined function},
- YEAR = {To appear}
-}
-
-@INPROCEEDINGS{Moh89a,
- AUTHOR = {Christine Paulin-Mohring},
- ADDRESS = {Austin},
- BOOKTITLE = {Sixteenth Annual ACM Symposium on Principles of Programming Languages},
- MONTH = jan,
- PUBLISHER = {ACM},
- TITLE = {Extracting ${F}_{\omega}$'s programs from proofs in the {Calculus of Constructions}},
- YEAR = {1989}
-}
-
-@PHDTHESIS{Moh89b,
- AUTHOR = {Christine Paulin-Mohring},
- MONTH = jan,
- SCHOOL = {{Universit\'e Paris 7}},
- TITLE = {Extraction de programmes dans le {Calcul des Constructions}},
- YEAR = {1989}
-}
-
-@INPROCEEDINGS{Moh93,
- AUTHOR = {Christine Paulin-Mohring},
- BOOKTITLE = {Proceedings of the conference Typed Lambda Calculi and Applications},
- EDITOR = {M. Bezem and J.-F. Groote},
- NOTE = {Also LIP research report 92-49, ENS Lyon},
- NUMBER = {664},
- PUBLISHER = SV,
- SERIES = {LNCS},
- TITLE = {{Inductive Definitions in the System Coq - Rules and Properties}},
- YEAR = {1993}
-}
-
-@BOOK{Moh97,
- AUTHOR = {Christine Paulin-Mohring},
- MONTH = jan,
- PUBLISHER = {{ENS Lyon}},
- TITLE = {{Le syst\`eme Coq. \mbox{Th\`ese d'habilitation}}},
- YEAR = {1997}
-}
-
-@MASTERSTHESIS{Mun94,
- AUTHOR = {C. Mu{\~n}oz},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique Fondamentale, Universit\'e Paris 7},
- TITLE = {D\'emonstration automatique dans la logique propositionnelle intuitionniste},
- YEAR = {1994}
-}
-
-@PHDTHESIS{Mun97d,
- AUTHOR = "C. Mu{\~{n}}oz",
- TITLE = "Un calcul de substitutions pour la repr\'esentation
- de preuves partielles en th\'eorie de types",
- SCHOOL = {Universit\'e Paris 7},
- YEAR = "1997",
- Note = {Version en anglais disponible comme rapport de
- recherche INRIA RR-3309},
- Type = {Th\`ese de Doctorat}
-}
-
-@BOOK{NoPS90,
- AUTHOR = {B. {Nordstr\"om} and K. Peterson and J. Smith},
- BOOKTITLE = {Information Processing 83},
- PUBLISHER = {Oxford Science Publications},
- SERIES = {International Series of Monographs on Computer Science},
- TITLE = {Programming in {Martin-L\"of's} Type Theory},
- YEAR = {1990}
-}
-
-@ARTICLE{Nor88,
- AUTHOR = {B. {Nordstr\"om}},
- JOURNAL = {BIT},
- TITLE = {Terminating General Recursion},
- VOLUME = {28},
- YEAR = {1988}
-}
-
-@BOOK{Odi90,
- EDITOR = {P. Odifreddi},
- PUBLISHER = {Academic Press},
- TITLE = {Logic and Computer Science},
- YEAR = {1990}
-}
-
-@INPROCEEDINGS{PaMS92,
- AUTHOR = {M. Parigot and P. Manoury and M. Simonot},
- ADDRESS = {St. Petersburg, Russia},
- BOOKTITLE = {Logic Programming and automated reasoning},
- EDITOR = {A. Voronkov},
- MONTH = jul,
- NUMBER = {624},
- PUBLISHER = SV,
- SERIES = {LNCS},
- TITLE = {{ProPre : A Programming language with proofs}},
- YEAR = {1992}
-}
-
-@ARTICLE{PaWe92,
- AUTHOR = {Christine Paulin-Mohring and Benjamin Werner},
- JOURNAL = {Journal of Symbolic Computation},
- PAGES = {607--640},
- TITLE = {{Synthesis of ML programs in the system Coq}},
- VOLUME = {15},
- YEAR = {1993}
-}
-
-@ARTICLE{Par92,
- AUTHOR = {M. Parigot},
- JOURNAL = {Theoretical Computer Science},
- NUMBER = {2},
- PAGES = {335--356},
- TITLE = {{Recursive Programming with Proofs}},
- VOLUME = {94},
- YEAR = {1992}
-}
-
-@INPROCEEDINGS{Parent95b,
- AUTHOR = {C. Parent},
- BOOKTITLE = {{Mathematics of Program Construction'95}},
- PUBLISHER = SV,
- SERIES = {LNCS},
- TITLE = {{Synthesizing proofs from programs in
-the Calculus of Inductive Constructions}},
- VOLUME = {947},
- YEAR = {1995}
-}
-
-@INPROCEEDINGS{Prasad93,
- AUTHOR = {K.V. Prasad},
- BOOKTITLE = {{Proceedings of CONCUR'93}},
- PUBLISHER = SV,
- SERIES = {LNCS},
- TITLE = {{Programming with broadcasts}},
- VOLUME = {715},
- YEAR = {1993}
-}
-
-@BOOK{RC95,
- author = "di~Cosmo, R.",
- title = "Isomorphisms of Types: from $\lambda$-calculus to information
- retrieval and language design",
- series = "Progress in Theoretical Computer Science",
- publisher = "Birkhauser",
- year = "1995",
- note = "ISBN-0-8176-3763-X"
-}
-
-@TECHREPORT{Rou92,
- AUTHOR = {J. Rouyer},
- INSTITUTION = {INRIA},
- MONTH = nov,
- NUMBER = {1795},
- TITLE = {{D{\'e}veloppement de l'Algorithme d'Unification dans le Calcul des Constructions}},
- YEAR = {1992}
-}
-
-@TECHREPORT{Saibi94,
- AUTHOR = {A. Sa\"{\i}bi},
- INSTITUTION = {INRIA},
- MONTH = dec,
- NUMBER = {2345},
- TITLE = {{Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System}},
- YEAR = {1994}
-}
-
-
-@MASTERSTHESIS{Ter92,
- AUTHOR = {D. Terrasse},
- MONTH = sep,
- SCHOOL = {IARFA},
- TITLE = {{Traduction de TYPOL en COQ. Application \`a Mini ML}},
- YEAR = {1992}
-}
-
-@TECHREPORT{ThBeKa92,
- AUTHOR = {L. Th\'ery and Y. Bertot and G. Kahn},
- INSTITUTION = {INRIA Sophia},
- MONTH = may,
- NUMBER = {1684},
- TITLE = {Real theorem provers deserve real user-interfaces},
- TYPE = {Research Report},
- YEAR = {1992}
-}
-
-@BOOK{TrDa89,
- AUTHOR = {A.S. Troelstra and D. van Dalen},
- PUBLISHER = {North-Holland},
- SERIES = {Studies in Logic and the foundations of Mathematics, volumes 121 and 123},
- TITLE = {Constructivism in Mathematics, an introduction},
- YEAR = {1988}
-}
-
-@PHDTHESIS{Wer94,
- AUTHOR = {B. Werner},
- SCHOOL = {Universit\'e Paris 7},
- TITLE = {Une th\'eorie des constructions inductives},
- TYPE = {Th\`ese de Doctorat},
- YEAR = {1994}
-}
-
-@PHDTHESIS{Bar99,
- AUTHOR = {B. Barras},
- SCHOOL = {Universit\'e Paris 7},
- TITLE = {Auto-validation d'un système de preuves avec familles inductives},
- TYPE = {Th\`ese de Doctorat},
- YEAR = {1999}
-}
-
-@UNPUBLISHED{ddr98,
- AUTHOR = {D. de Rauglaudre},
- TITLE = {Camlp4 version 1.07.2},
- YEAR = {1998},
- NOTE = {In Camlp4 distribution}
-}
-
-@ARTICLE{dowek93,
- AUTHOR = {G. Dowek},
- TITLE = {{A Complete Proof Synthesis Method for the Cube of Type Systems}},
- JOURNAL = {Journal Logic Computation},
- VOLUME = {3},
- NUMBER = {3},
- PAGES = {287--315},
- MONTH = {June},
- YEAR = {1993}
-}
-
-@INPROCEEDINGS{manoury94,
- AUTHOR = {P. Manoury},
- TITLE = {{A User's Friendly Syntax to Define
-Recursive Functions as Typed $\lambda-$Terms}},
- BOOKTITLE = {{Types for Proofs and Programs, TYPES'94}},
- SERIES = {LNCS},
- VOLUME = {996},
- MONTH = jun,
- YEAR = {1994}
-}
-
-@TECHREPORT{maranget94,
- AUTHOR = {L. Maranget},
- INSTITUTION = {INRIA},
- NUMBER = {2385},
- TITLE = {{Two Techniques for Compiling Lazy Pattern Matching}},
- YEAR = {1994}
-}
-
-@INPROCEEDINGS{puel-suarez90,
- AUTHOR = {L.Puel and A. Su\'arez},
- BOOKTITLE = {{Conference Lisp and Functional Programming}},
- SERIES = {ACM},
- PUBLISHER = SV,
- TITLE = {{Compiling Pattern Matching by Term
-Decomposition}},
- YEAR = {1990}
-}
-
-@MASTERSTHESIS{saidi94,
- AUTHOR = {H. Saidi},
- MONTH = sep,
- SCHOOL = {DEA d'Informatique Fondamentale, Universit\'e Paris 7},
- TITLE = {R\'esolution d'\'equations dans le syst\`eme T
- de G\"odel},
- YEAR = {1994}
-}
-
-@misc{streicher93semantical,
- author = "T. Streicher",
- title = "Semantical Investigations into Intensional Type Theory",
- note = "Habilitationsschrift, LMU Munchen.",
- year = "1993" }
-
-
-
-@Misc{Pcoq,
- author = {Lemme Team},
- title = {Pcoq a graphical user-interface for {Coq}},
- note = {\url{http://www-sop.inria.fr/lemme/pcoq/}}
-}
-
-
-@Misc{ProofGeneral,
- author = {David Aspinall},
- title = {Proof General},
- note = {\url{http://proofgeneral.inf.ed.ac.uk/}}
-}
-
-
-
-@Book{CoqArt,
- author = {Yves bertot and Pierre Castéran},
- title = {Coq'Art},
- publisher = {Springer-Verlag},
- year = 2004,
- note = {To appear}
-}
-
-@INCOLLECTION{wadler87,
- AUTHOR = {P. Wadler},
- TITLE = {Efficient Compilation of Pattern Matching},
- BOOKTITLE = {The Implementation of Functional Programming
-Languages},
- EDITOR = {S.L. Peyton Jones},
- PUBLISHER = {Prentice-Hall},
- YEAR = {1987}
-}
-
-
-@COMMENT{cross-references, must be at end}
-
-@BOOK{Bastad92,
- EDITOR = {B. Nordstr\"om and K. Petersson and G. Plotkin},
- PUBLISHER = {Available by ftp at site ftp.inria.fr},
- TITLE = {Proceedings of the 1992 Workshop on Types for Proofs and Programs},
- YEAR = {1992}
-}
-
-@BOOK{Nijmegen93,
- EDITOR = {H. Barendregt and T. Nipkow},
- PUBLISHER = SV,
- SERIES = LNCS,
- TITLE = {Types for Proofs and Programs},
- VOLUME = {806},
- YEAR = {1994}
-}
-
-@PHDTHESIS{Luo90,
- AUTHOR = {Z. Luo},
- TITLE = {An Extended Calculus of Constructions},
- SCHOOL = {University of Edinburgh},
- YEAR = {1990}
-}
diff --git a/doc/faq/hevea.sty b/doc/faq/hevea.sty
deleted file mode 100644
index 6d49aa8c..00000000
--- a/doc/faq/hevea.sty
+++ /dev/null
@@ -1,78 +0,0 @@
-% hevea : hevea.sty
-% This is a very basic style file for latex document to be processed
-% with hevea. It contains definitions of LaTeX environment which are
-% processed in a special way by the translator.
-% Mostly :
-% - latexonly, not processed by hevea, processed by latex.
-% - htmlonly , the reverse.
-% - rawhtml, to include raw HTML in hevea output.
-% - toimage, to send text to the image file.
-% The package also provides hevea logos, html related commands (ahref
-% etc.), void cutting and image commands.
-\NeedsTeXFormat{LaTeX2e}
-\ProvidesPackage{hevea}[2002/01/11]
-\RequirePackage{comment}
-\newif\ifhevea\heveafalse
-\@ifundefined{ifimagen}{\newif\ifimagen\imagenfalse}
-\makeatletter%
-\newcommand{\heveasmup}[2]{%
-\raise #1\hbox{$\m@th$%
- \csname S@\f@size\endcsname
- \fontsize\sf@size 0%
- \math@fontsfalse\selectfont
-#2%
-}}%
-\DeclareRobustCommand{\hevea}{H\kern-.15em\heveasmup{.2ex}{E}\kern-.15emV\kern-.15em\heveasmup{.2ex}{E}\kern-.15emA}%
-\DeclareRobustCommand{\hacha}{H\kern-.15em\heveasmup{.2ex}{A}\kern-.15emC\kern-.1em\heveasmup{.2ex}{H}\kern-.15emA}%
-\DeclareRobustCommand{\html}{\protect\heveasmup{0.ex}{HTML}}
-%%%%%%%%% Hyperlinks hevea style
-\newcommand{\ahref}[2]{{#2}}
-\newcommand{\ahrefloc}[2]{{#2}}
-\newcommand{\aname}[2]{{#2}}
-\newcommand{\ahrefurl}[1]{\texttt{#1}}
-\newcommand{\footahref}[2]{#2\footnote{\texttt{#1}}}
-\newcommand{\mailto}[1]{\texttt{#1}}
-\newcommand{\imgsrc}[2][]{}
-\newcommand{\home}[1]{\protect\raisebox{-.75ex}{\char126}#1}
-\AtBeginDocument
-{\@ifundefined{url}
-{%url package is not loaded
-\let\url\ahref\let\oneurl\ahrefurl\let\footurl\footahref}
-{}}
-%% Void cutting instructions
-\newcounter{cuttingdepth}
-\newcommand{\tocnumber}{}
-\newcommand{\notocnumber}{}
-\newcommand{\cuttingunit}{}
-\newcommand{\cutdef}[2][]{}
-\newcommand{\cuthere}[2]{}
-\newcommand{\cutend}{}
-\newcommand{\htmlhead}[1]{}
-\newcommand{\htmlfoot}[1]{}
-\newcommand{\htmlprefix}[1]{}
-\newenvironment{cutflow}[1]{}{}
-\newcommand{\cutname}[1]{}
-\newcommand{\toplinks}[3]{}
-%%%% Html only
-\excludecomment{rawhtml}
-\newcommand{\rawhtmlinput}[1]{}
-\excludecomment{htmlonly}
-%%%% Latex only
-\newenvironment{latexonly}{}{}
-\newenvironment{verblatex}{}{}
-%%%% Image file stuff
-\def\toimage{\endgroup}
-\def\endtoimage{\begingroup\def\@currenvir{toimage}}
-\def\verbimage{\endgroup}
-\def\endverbimage{\begingroup\def\@currenvir{verbimage}}
-\newcommand{\imageflush}[1][]{}
-%%% Bgcolor definition
-\newsavebox{\@bgcolorbin}
-\newenvironment{bgcolor}[2][]
- {\newcommand{\@mycolor}{#2}\begin{lrbox}{\@bgcolorbin}\vbox\bgroup}
- {\egroup\end{lrbox}%
- \begin{flushleft}%
- \colorbox{\@mycolor}{\usebox{\@bgcolorbin}}%
- \end{flushleft}}
-%%% Postlude
-\makeatother
diff --git a/doc/faq/interval_discr.v b/doc/faq/interval_discr.v
deleted file mode 100644
index ed2c0e37..00000000
--- a/doc/faq/interval_discr.v
+++ /dev/null
@@ -1,419 +0,0 @@
-(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
-
- - preliminary results on the irrelevance of boundedness proofs
- - introduce the notion of finite cardinal |A|
- - prove that |{p:nat|p<=n}| = n
- - prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
- - prove that equality is decidable on A
- - conclude
-*)
-
-(** * Preliminary results on [nat] and [le] *)
-
-(** Proving axiom K on [nat] *)
-
-Require Import Eqdep_dec.
-Require Import Arith.
-
-Theorem eq_rect_eq_nat :
- forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
-Proof.
-intros.
-apply K_dec_set with (p := h).
-apply eq_nat_dec.
-reflexivity.
-Qed.
-
-(** Proving unicity of proofs of [(n<=m)%nat] *)
-
-Scheme le_ind' := Induction for le Sort Prop.
-
-Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
-Proof.
-induction p using le_ind'; intro q.
- replace (le_n n) with
- (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
- 2:reflexivity.
- generalize (refl_equal n).
- pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
- rewrite <- eq_rect_eq_nat; trivial.
- contradiction (le_Sn_n m); rewrite <- e; assumption.
- replace (le_S n m p) with
- (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
- 2:reflexivity.
- generalize (refl_equal (S m)).
- pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
- contradiction (le_Sn_n m); rewrite Heq; assumption.
- injection HeqS; intro Heq; generalize l HeqS.
- rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
- rewrite (IHp l0); reflexivity.
-Qed.
-
-(** Proving irrelevance of boundedness proofs while building
- elements of interval *)
-
-Lemma dep_pair_intro :
- forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
- exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
-Proof.
-intros n x y Hx Hy Heq.
-generalize Hy.
-rewrite <- Heq.
-intros.
-rewrite (le_uniqueness_proof x n Hx Hy0).
-reflexivity.
-Qed.
-
-(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)
-
-(** Definition of having finite cardinality [n+1] for a set [A] *)
-
-Definition card (A:Set) n :=
- exists f,
- (forall x:A, f x <= n) /\
- (forall x y:A, f x = f y -> x = y) /\
- (forall m, m <= n -> exists x:A, f x = m).
-
-Require Import Arith.
-
-(** Showing that the interval [0;n] has cardinality [n+1] *)
-
-Theorem card_interval : forall n, card {x:nat|x<=n} n.
-Proof.
-intro n.
-exists (fun x:{x:nat|x<=n} => proj1_sig x).
-split.
-(* bounded *)
-intro x; apply (proj2_sig x).
-split.
-(* injectivity *)
-intros (p,Hp) (q,Hq).
-simpl.
-intro Hpq.
-apply dep_pair_intro; assumption.
-(* surjectivity *)
-intros m Hmn.
-exists (exist (fun x : nat => x <= n) m Hmn).
-reflexivity.
-Qed.
-
-(** Showing that equality on the interval [0;n] is decidable *)
-
-Lemma interval_dec :
- forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
-Proof.
-intros n (p,Hp).
-induction p; intros ([|q],Hq).
-left.
- apply dep_pair_intro.
- reflexivity.
-right.
- intro H; discriminate H.
-right.
- intro H; discriminate H.
-assert (Hp' : p <= n).
- apply le_Sn_le; assumption.
-assert (Hq' : q <= n).
- apply le_Sn_le; assumption.
-destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
- as [Heq|Hneq].
-left.
- injection Heq; intro Heq'.
- apply dep_pair_intro.
- apply eq_S.
- assumption.
-right.
- intro HeqS.
- injection HeqS; intro Heq.
- apply Hneq.
- apply dep_pair_intro.
- assumption.
-Qed.
-
-(** Showing that the cardinality relation is functional on decidable sets *)
-
-Lemma card_inj_aux :
- forall (A:Type) f g n,
- (forall x:A, f x <= 0) ->
- (forall x y:A, f x = f y -> x = y) ->
- (forall m, m <= S n -> exists x:A, g x = m)
- -> False.
-Proof.
-intros A f g n Hfbound Hfinj Hgsurj.
-destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
-destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
-assert (Hfx : 0 = f x).
-apply le_n_O_eq.
-apply Hfbound.
-assert (Hfx' : 0 = f x').
-apply le_n_O_eq.
-apply Hfbound.
-assert (x=x').
-apply Hfinj.
-rewrite <- Hfx.
-rewrite <- Hfx'.
-reflexivity.
-rewrite H in Hx.
-rewrite Hx' in Hx.
-apply (n_Sn _ Hx).
-Qed.
-
-(** For [dec_restrict], we use a lemma on the negation of equality
-that requires proof-irrelevance. It should be possible to avoid this
-lemma by generalizing over a first-order definition of [x<>y], say
-[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
-[neq], unicity of proofs could be proven *)
-
- Require Import Classical.
- Lemma neq_dep_intro :
- forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
- exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
- Proof.
- intros A z x y p q Heq.
- generalize q; clear q; rewrite <- Heq; intro q.
- rewrite (proof_irrelevance _ p q); reflexivity.
- Qed.
-
-Lemma dec_restrict :
- forall (A:Set),
- (forall x y :A, {x=y}+{x<>y}) ->
- forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
-Proof.
-intros A Hdec z (x,Hx) (y,Hy).
-destruct (Hdec x y) as [Heq|Hneq].
-left; apply neq_dep_intro; assumption.
-right; intro Heq; injection Heq; exact Hneq.
-Qed.
-
-Lemma pred_inj : forall n m,
- 0 <> n -> 0 <> m -> pred m = pred n -> m = n.
-Proof.
-destruct n.
-intros m H; destruct H; reflexivity.
-destruct m.
-intros _ H; destruct H; reflexivity.
-simpl; intros _ _ H.
-rewrite H.
-reflexivity.
-Qed.
-
-Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
-Proof.
-intros n m Hle Hneq.
-destruct (le_lt_eq_dec n m Hle).
-assumption.
-contradiction.
-Qed.
-
-Lemma inj_restrict :
- forall (A:Set) (f:A->nat) x y z,
- (forall x y : A, f x = f y -> x = y)
- -> x <> z -> f y < f z -> f z <= f x
- -> pred (f x) = f y
- -> False.
-
-(* Search error sans le type de f !! *)
-Proof.
-intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
-assert (f z <> f x).
- apply sym_not_eq.
- intro Heqf.
- apply Hneqx.
- apply Hfinj.
- assumption.
-assert (f x = S (f y)).
- assert (0 < f x).
- apply le_lt_trans with (f z).
- apply le_O_n.
- apply le_neq_lt; assumption.
- apply pred_inj.
- apply O_S.
- apply lt_O_neq; assumption.
- exact Heq.
-assert (f z <= f y).
-destruct (le_lt_or_eq _ _ Hfx).
- apply lt_n_Sm_le.
- rewrite <- H0.
- assumption.
- contradiction Hneqx.
- symmetry.
- apply Hfinj.
- assumption.
-contradiction (lt_not_le (f y) (f z)).
-Qed.
-
-Theorem card_inj : forall m n (A:Set),
- (forall x y :A, {x=y}+{x<>y}) ->
- card A m -> card A n -> m = n.
-Proof.
-induction m; destruct n;
-intros A Hdec
- (f,(Hfbound,(Hfinj,Hfsurj)))
- (g,(Hgbound,(Hginj,Hgsurj))).
-(* 0/0 *)
-reflexivity.
-(* 0/Sm *)
-destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
-(* Sn/0 *)
-destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
-(* Sn/Sm *)
-destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
-rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
-reflexivity.
-(* decidability of eq on {x:A|x<>xSm} *)
-apply dec_restrict.
-assumption.
-(* cardinality of {x:A|x<>xSn} is m *)
-pose (f' := fun x' : {x:A|x<>xSn} =>
- let (x,Hneq) := x' in
- if le_lt_dec (f xSn) (f x)
- then pred (f x)
- else f x).
-exists f'.
-split.
-(* f' is bounded *)
-unfold f'.
-intros (x,_).
-destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
-change m with (pred (S m)).
-apply le_pred.
-apply Hfbound.
-apply le_S_n.
-apply le_trans with (f xSn).
-exact Hge.
-apply Hfbound.
-split.
-(* f' is injective *)
-unfold f'.
-intros (x,Hneqx) (y,Hneqy) Heqf'.
-destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
-destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
-(* f xSn <= f x et f xSn <= f y *)
-assert (Heq : x = y).
- apply Hfinj.
- assert (f xSn <> f y).
- apply sym_not_eq.
- intro Heqf.
- apply Hneqy.
- apply Hfinj.
- assumption.
- assert (0 < f y).
- apply le_lt_trans with (f xSn).
- apply le_O_n.
- apply le_neq_lt; assumption.
- assert (f xSn <> f x).
- apply sym_not_eq.
- intro Heqf.
- apply Hneqx.
- apply Hfinj.
- assumption.
- assert (0 < f x).
- apply le_lt_trans with (f xSn).
- apply le_O_n.
- apply le_neq_lt; assumption.
- apply pred_inj.
- apply lt_O_neq; assumption.
- apply lt_O_neq; assumption.
- assumption.
-apply neq_dep_intro; assumption.
-(* f y < f xSn <= f x *)
-destruct (inj_restrict A f x y xSn); assumption.
-(* f x < f xSn <= f y *)
-symmetry in Heqf'.
-destruct (inj_restrict A f y x xSn); assumption.
-(* f x < f xSn et f y < f xSn *)
-assert (Heq : x=y).
- apply Hfinj; assumption.
-apply neq_dep_intro; assumption.
-(* f' is surjective *)
-intros p Hlep.
-destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
-(* case f xSn <= p *)
-destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
-assert (Hneq : x <> xSn).
- intro Heqx.
- rewrite Heqx in Hx.
- rewrite Hx in Hle.
- apply le_Sn_n with p; assumption.
-exists (exist (fun a => a<>xSn) x Hneq).
-unfold f'.
-destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
-rewrite Hx; reflexivity.
-rewrite Hx in Hlt'.
-contradiction (le_not_lt (f xSn) p).
-apply lt_trans with (S p).
-apply lt_n_Sn.
-assumption.
-(* case p < f xSn *)
-destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
-assert (Hneq : x <> xSn).
- intro Heqx.
- rewrite Heqx in Hx.
- rewrite Hx in Hlt.
- apply (lt_irrefl p).
- assumption.
-exists (exist (fun a => a<>xSn) x Hneq).
-unfold f'.
-destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
- rewrite Hx in Hle'.
- contradiction (lt_irrefl p).
- apply lt_le_trans with (f xSn); assumption.
- assumption.
-(* cardinality of {x:A|x<>xSn} is n *)
-pose (g' := fun x' : {x:A|x<>xSn} =>
- let (x,Hneq) := x' in
- if Hdec x xSn then 0 else g x).
-exists g'.
-split.
-(* g is bounded *)
-unfold g'.
-intros (x,_).
-destruct (Hdec x xSn) as [_|Hneq].
-apply le_O_n.
-assert (Hle_gx:=Hgbound x).
-destruct (le_lt_or_eq _ _ Hle_gx).
-apply lt_n_Sm_le.
-assumption.
-contradiction Hneq.
-apply Hginj.
-rewrite HSnx.
-assumption.
-split.
-(* g is injective *)
-unfold g'.
-intros (x,Hneqx) (y,Hneqy) Heqg'.
-destruct (Hdec x xSn) as [Heqx|_].
-contradiction Hneqx.
-destruct (Hdec y xSn) as [Heqy|_].
-contradiction Hneqy.
-assert (Heq : x=y).
- apply Hginj; assumption.
-apply neq_dep_intro; assumption.
-(* g is surjective *)
-intros p Hlep.
-destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
-assert (Hneq : x<>xSn).
- intro Heq.
- rewrite Heq in Hx.
- rewrite Hx in HSnx.
- rewrite HSnx in Hlep.
- contradiction (le_Sn_n _ Hlep).
-exists (exist (fun a => a<>xSn) x Hneq).
-simpl.
-destruct (Hdec x xSn) as [Heqx|_].
-contradiction Hneq.
-assumption.
-Qed.
-
-(** Conclusion *)
-
-Theorem interval_discr :
- forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
-Proof.
-intros n m Heq.
-apply card_inj with (A := {p:nat|p<=n}).
-apply interval_dec.
-apply card_interval.
-rewrite Heq.
-apply card_interval.
-Qed.
diff --git a/doc/refman/AddRefMan-pre.tex b/doc/refman/AddRefMan-pre.tex
deleted file mode 100644
index 461e8e6d..00000000
--- a/doc/refman/AddRefMan-pre.tex
+++ /dev/null
@@ -1,62 +0,0 @@
-%\coverpage{Addendum to the Reference Manual}{\ }
-%\addcontentsline{toc}{part}{Additional documentation}
-%BEGIN LATEX
-\setheaders{Presentation of the Addendum}
-%END LATEX
-\chapter*{Presentation of the Addendum}
-
-Here you will find several pieces of additional documentation for the
-\Coq\ Reference Manual. Each of this chapters is concentrated on a
-particular topic, that should interest only a fraction of the \Coq\
-users: that's the reason why they are apart from the Reference
-Manual.
-
-\begin{description}
-
-\item[Extended pattern-matching] This chapter details the use of
- generalized pattern-matching. It is contributed by Cristina Cornes
- and Hugo Herbelin.
-
-\item[Implicit coercions] This chapter details the use of the coercion
- mechanism. It is contributed by Amokrane Saïbi.
-
-%\item[Proof of imperative programs] This chapter explains how to
-% prove properties of annotated programs with imperative features.
-% It is contributed by Jean-Christophe Filliâtre
-
-\item[Program extraction] This chapter explains how to extract in practice ML
- files from $\FW$ terms. It is contributed by Jean-Christophe
- Filliâtre and Pierre Letouzey.
-
-\item[Program] This chapter explains the use of the \texttt{Program}
- vernacular which allows the development of certified
- programs in \Coq. It is contributed by Matthieu Sozeau and replaces
- the previous \texttt{Program} tactic by Catherine Parent.
-
-%\item[Natural] This chapter is due to Yann Coscoy. It is the user
-% manual of the tools he wrote for printing proofs in natural
-% language. At this time, French and English languages are supported.
-
-\item[omega] \texttt{omega}, written by Pierre Crégut, solves a whole
- class of arithmetic problems.
-
-\item[The {\tt ring} tactic] This is a tactic to do AC rewriting. This
- chapter explains how to use it and how it works.
- The chapter is contributed by Patrick Loiseleur.
-
-\item[The {\tt Setoid\_replace} tactic] This is a
- tactic to do rewriting on types equipped with specific (only partially
- substitutive) equality. The chapter is contributed by Clément Renard.
-
-\item[Calling external provers] This chapter describes several tactics
- which call external provers.
-
-\end{description}
-
-\atableofcontents
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Cases.tex b/doc/refman/Cases.tex
deleted file mode 100644
index 6f58269f..00000000
--- a/doc/refman/Cases.tex
+++ /dev/null
@@ -1,750 +0,0 @@
-\achapter{Extended pattern-matching}
-%BEGIN LATEX
-\defaultheaders
-%END LATEX
-\aauthor{Cristina Cornes and Hugo Herbelin}
-
-\label{Mult-match-full}
-\ttindex{Cases}
-\index{ML-like patterns}
-
-This section describes the full form of pattern-matching in {\Coq} terms.
-
-\asection{Patterns}\label{implementation} The full syntax of {\tt
-match} is presented in Figures~\ref{term-syntax}
-and~\ref{term-syntax-aux}. Identifiers in patterns are either
-constructor names or variables. Any identifier that is not the
-constructor of an inductive or coinductive type is considered to be a
-variable. A variable name cannot occur more than once in a given
-pattern. It is recommended to start variable names by a lowercase
-letter.
-
-If a pattern has the form $(c~\vec{x})$ where $c$ is a constructor
-symbol and $\vec{x}$ is a linear vector of (distinct) variables, it is
-called {\em simple}: it is the kind of pattern recognized by the basic
-version of {\tt match}. On the opposite, if it is a variable $x$ or
-has the form $(c~\vec{p})$ with $p$ not only made of variables, the
-pattern is called {\em nested}.
-
-A variable pattern matches any value, and the identifier is bound to
-that value. The pattern ``\texttt{\_}'' (called ``don't care'' or
-``wildcard'' symbol) also matches any value, but does not bind
-anything. It may occur an arbitrary number of times in a
-pattern. Alias patterns written \texttt{(}{\sl pattern} \texttt{as}
-{\sl identifier}\texttt{)} are also accepted. This pattern matches the
-same values as {\sl pattern} does and {\sl identifier} is bound to the
-matched value.
-A pattern of the form {\pattern}{\tt |}{\pattern} is called
-disjunctive. A list of patterns separated with commas is also
-considered as a pattern and is called {\em multiple pattern}. However
-multiple patterns can only occur at the root of pattern-matching
-equations. Disjunctions of {\em multiple pattern} are allowed though.
-
-Since extended {\tt match} expressions are compiled into the primitive
-ones, the expressiveness of the theory remains the same. Once the
-stage of parsing has finished only simple patterns remain. Re-nesting
-of pattern is performed at printing time. An easy way to see the
-result of the expansion is to toggle off the nesting performed at
-printing (use here {\tt Set Printing Matching}), then by printing the term
-with \texttt{Print} if the term is a constant, or using the command
-\texttt{Check}.
-
-The extended \texttt{match} still accepts an optional {\em elimination
-predicate} given after the keyword \texttt{return}. Given a pattern
-matching expression, if all the right-hand-sides of \texttt{=>} ({\em
-rhs} in short) have the same type, then this type can be sometimes
-synthesized, and so we can omit the \texttt{return} part. Otherwise
-the predicate after \texttt{return} has to be provided, like for the basic
-\texttt{match}.
-
-Let us illustrate through examples the different aspects of extended
-pattern matching. Consider for example the function that computes the
-maximum of two natural numbers. We can write it in primitive syntax
-by:
-
-\begin{coq_example}
-Fixpoint max (n m:nat) {struct m} : nat :=
- match n with
- | O => m
- | S n' => match m with
- | O => S n'
- | S m' => S (max n' m')
- end
- end.
-\end{coq_example}
-
-\paragraph{Multiple patterns}
-
-Using multiple patterns in the definition of {\tt max} allows to write:
-
-\begin{coq_example}
-Reset max.
-Fixpoint max (n m:nat) {struct m} : nat :=
- match n, m with
- | O, _ => m
- | S n', O => S n'
- | S n', S m' => S (max n' m')
- end.
-\end{coq_example}
-
-which will be compiled into the previous form.
-
-The pattern-matching compilation strategy examines patterns from left
-to right. A \texttt{match} expression is generated {\bf only} when
-there is at least one constructor in the column of patterns. E.g. the
-following example does not build a \texttt{match} expression.
-
-\begin{coq_example}
-Check (fun x:nat => match x return nat with
- | y => y
- end).
-\end{coq_example}
-
-\paragraph{Aliasing subpatterns}
-
-We can also use ``\texttt{as} {\ident}'' to associate a name to a
-sub-pattern:
-
-\begin{coq_example}
-Reset max.
-Fixpoint max (n m:nat) {struct n} : nat :=
- match n, m with
- | O, _ => m
- | S n' as p, O => p
- | S n', S m' => S (max n' m')
- end.
-\end{coq_example}
-
-\paragraph{Nested patterns}
-
-Here is now an example of nested patterns:
-
-\begin{coq_example}
-Fixpoint even (n:nat) : bool :=
- match n with
- | O => true
- | S O => false
- | S (S n') => even n'
- end.
-\end{coq_example}
-
-This is compiled into:
-
-\begin{coq_example}
-Print even.
-\end{coq_example}
-
-In the previous examples patterns do not conflict with, but
-sometimes it is comfortable to write patterns that admit a non
-trivial superposition. Consider
-the boolean function \texttt{lef} that given two natural numbers
-yields \texttt{true} if the first one is less or equal than the second
-one and \texttt{false} otherwise. We can write it as follows:
-
-\begin{coq_example}
-Fixpoint lef (n m:nat) {struct m} : bool :=
- match n, m with
- | O, x => true
- | x, O => false
- | S n, S m => lef n m
- end.
-\end{coq_example}
-
-Note that the first and the second multiple pattern superpose because
-the couple of values \texttt{O O} matches both. Thus, what is the result
-of the function on those values? To eliminate ambiguity we use the
-{\em textual priority rule}: we consider patterns ordered from top to
-bottom, then a value is matched by the pattern at the $ith$ row if and
-only if it is not matched by some pattern of a previous row. Thus in the
-example,
-\texttt{O O} is matched by the first pattern, and so \texttt{(lef O O)}
-yields \texttt{true}.
-
-Another way to write this function is:
-
-\begin{coq_example}
-Reset lef.
-Fixpoint lef (n m:nat) {struct m} : bool :=
- match n, m with
- | O, x => true
- | S n, S m => lef n m
- | _, _ => false
- end.
-\end{coq_example}
-
-Here the last pattern superposes with the first two. Because
-of the priority rule, the last pattern
-will be used only for values that do not match neither the first nor
-the second one.
-
-Terms with useless patterns are not accepted by the
-system. Here is an example:
-% Test failure
-\begin{coq_eval}
-Set Printing Depth 50.
- (********** The following is not correct and should produce **********)
- (**************** Error: This clause is redundant ********************)
-\end{coq_eval}
-\begin{coq_example}
-Check (fun x:nat =>
- match x with
- | O => true
- | S _ => false
- | x => true
- end).
-\end{coq_example}
-
-\paragraph{Disjunctive patterns}
-
-Multiple patterns that share the same right-hand-side can be
-factorized using the notation \nelist{\multpattern}{\tt |}. For instance,
-{\tt max} can be rewritten as follows:
-
-\begin{coq_eval}
-Reset max.
-\end{coq_eval}
-\begin{coq_example}
-Fixpoint max (n m:nat) {struct m} : nat :=
- match n, m with
- | S n', S m' => S (max n' m')
- | 0, p | p, 0 => p
- end.
-\end{coq_example}
-
-Similarly, factorization of (non necessary multiple) patterns
-that share the same variables is possible by using the notation
-\nelist{\pattern}{\tt |}. Here is an example:
-
-\begin{coq_example}
-Definition filter_2_4 (n:nat) : nat :=
- match n with
- | 2 as m | 4 as m => m
- | _ => 0
- end.
-\end{coq_example}
-
-Here is another example using disjunctive subpatterns.
-
-\begin{coq_example}
-Definition filter_some_square_corners (p:nat*nat) : nat*nat :=
- match p with
- | ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n)
- | _ => (0,0)
- end.
-\end{coq_example}
-
-\asection{About patterns of parametric types}
-When matching objects of a parametric type, constructors in patterns
-{\em do not expect} the parameter arguments. Their value is deduced
-during expansion.
-Consider for example the type of polymorphic lists:
-
-\begin{coq_example}
-Inductive List (A:Set) : Set :=
- | nil : List A
- | cons : A -> List A -> List A.
-\end{coq_example}
-
-We can check the function {\em tail}:
-
-\begin{coq_example}
-Check
- (fun l:List nat =>
- match l with
- | nil => nil nat
- | cons _ l' => l'
- end).
-\end{coq_example}
-
-
-When we use parameters in patterns there is an error message:
-% Test failure
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is not correct and should produce **********)
-(******** Error: The constructor cons expects 2 arguments ************)
-\end{coq_eval}
-\begin{coq_example}
-Check
- (fun l:List nat =>
- match l with
- | nil A => nil nat
- | cons A _ l' => l'
- end).
-\end{coq_example}
-
-
-
-\asection{Matching objects of dependent types}
-The previous examples illustrate pattern matching on objects of
-non-dependent types, but we can also
-use the expansion strategy to destructure objects of dependent type.
-Consider the type \texttt{listn} of lists of a certain length:
-\label{listn}
-
-\begin{coq_example}
-Inductive listn : nat -> Set :=
- | niln : listn 0
- | consn : forall n:nat, nat -> listn n -> listn (S n).
-\end{coq_example}
-
-\asubsection{Understanding dependencies in patterns}
-We can define the function \texttt{length} over \texttt{listn} by:
-
-\begin{coq_example}
-Definition length (n:nat) (l:listn n) := n.
-\end{coq_example}
-
-Just for illustrating pattern matching,
-we can define it by case analysis:
-
-\begin{coq_example}
-Reset length.
-Definition length (n:nat) (l:listn n) :=
- match l with
- | niln => 0
- | consn n _ _ => S n
- end.
-\end{coq_example}
-
-We can understand the meaning of this definition using the
-same notions of usual pattern matching.
-
-%
-% Constraining of dependencies is not longer valid in V7
-%
-\iffalse
-Now suppose we split the second pattern of \texttt{length} into two
-cases so to give an
-alternative definition using nested patterns:
-\begin{coq_example}
-Definition length1 (n:nat) (l:listn n) :=
- match l with
- | niln => 0
- | consn n _ niln => S n
- | consn n _ (consn _ _ _) => S n
- end.
-\end{coq_example}
-
-It is obvious that \texttt{length1} is another version of
-\texttt{length}. We can also give the following definition:
-\begin{coq_example}
-Definition length2 (n:nat) (l:listn n) :=
- match l with
- | niln => 0
- | consn n _ niln => 1
- | consn n _ (consn m _ _) => S (S m)
- end.
-\end{coq_example}
-
-If we forget that \texttt{listn} is a dependent type and we read these
-definitions using the usual semantics of pattern matching, we can conclude
-that \texttt{length1}
-and \texttt{length2} are different functions.
-In fact, they are equivalent
-because the pattern \texttt{niln} implies that \texttt{n} can only match
-the value $0$ and analogously the pattern \texttt{consn} determines that \texttt{n} can
-only match values of the form $(S~v)$ where $v$ is the value matched by
-\texttt{m}.
-
-The converse is also true. If
-we destructure the length value with the pattern \texttt{O} then the list
-value should be $niln$.
-Thus, the following term \texttt{length3} corresponds to the function
-\texttt{length} but this time defined by case analysis on the dependencies instead of on the list:
-
-\begin{coq_example}
-Definition length3 (n:nat) (l:listn n) :=
- match l with
- | niln => 0
- | consn O _ _ => 1
- | consn (S n) _ _ => S (S n)
- end.
-\end{coq_example}
-
-When we have nested patterns of dependent types, the semantics of
-pattern matching becomes a little more difficult because
-the set of values that are matched by a sub-pattern may be conditioned by the
-values matched by another sub-pattern. Dependent nested patterns are
-somehow constrained patterns.
-In the examples, the expansion of
-\texttt{length1} and \texttt{length2} yields exactly the same term
- but the
-expansion of \texttt{length3} is completely different. \texttt{length1} and
-\texttt{length2} are expanded into two nested case analysis on
-\texttt{listn} while \texttt{length3} is expanded into a case analysis on
-\texttt{listn} containing a case analysis on natural numbers inside.
-
-
-In practice the user can think about the patterns as independent and
-it is the expansion algorithm that cares to relate them. \\
-\fi
-%
-%
-%
-
-\asubsection{When the elimination predicate must be provided}
-The examples given so far do not need an explicit elimination predicate
- because all the rhs have the same type and the
-strategy succeeds to synthesize it.
-Unfortunately when dealing with dependent patterns it often happens
-that we need to write cases where the type of the rhs are
-different instances of the elimination predicate.
-The function \texttt{concat} for \texttt{listn}
-is an example where the branches have different type
-and we need to provide the elimination predicate:
-
-\begin{coq_example}
-Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
- listn (n + m) :=
- match l in listn n return listn (n + m) with
- | niln => l'
- | consn n' a y => consn (n' + m) a (concat n' y m l')
- end.
-\end{coq_example}
-The elimination predicate is {\tt fun (n:nat) (l:listn n) => listn~(n+m)}.
-In general if $m$ has type $(I~q_1\ldots q_r~t_1\ldots t_s)$ where
-$q_1\ldots q_r$ are parameters, the elimination predicate should be of
-the form~:
-{\tt fun $y_1$\ldots $y_s$ $x$:($I$~$q_1$\ldots $q_r$~$y_1$\ldots
- $y_s$) => Q}.
-
-In the concrete syntax, it should be written~:
-\[ \kw{match}~m~\kw{as}~x~\kw{in}~(I~\_\ldots \_~y_1\ldots y_s)~\kw{return}~Q~\kw{with}~\ldots~\kw{end}\]
-
-The variables which appear in the \kw{in} and \kw{as} clause are new
-and bounded in the property $Q$ in the \kw{return} clause. The
-parameters of the inductive definitions should not be mentioned and
-are replaced by \kw{\_}.
-
-Recall that a list of patterns is also a pattern. So, when
-we destructure several terms at the same time and the branches have
-different type we need to provide
-the elimination predicate for this multiple pattern.
-It is done using the same scheme, each term may be associated to an
-\kw{as} and \kw{in} clause in order to introduce a dependent product.
-
-For example, an equivalent definition for \texttt{concat} (even though the matching on the second term is trivial) would have
-been:
-
-\begin{coq_example}
-Reset concat.
-Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
- listn (n + m) :=
- match l in listn n, l' return listn (n + m) with
- | niln, x => x
- | consn n' a y, x => consn (n' + m) a (concat n' y m x)
- end.
-\end{coq_example}
-
-% Notice that this time, the predicate \texttt{[n,\_:nat](listn (plus n
-% m))} is binary because we
-% destructure both \texttt{l} and \texttt{l'} whose types have arity one.
-% In general, if we destructure the terms $e_1\ldots e_n$
-% the predicate will be of arity $m$ where $m$ is the sum of the
-% number of dependencies of the type of $e_1, e_2,\ldots e_n$
-% (the $\lambda$-abstractions
-% should correspond from left to right to each dependent argument of the
-% type of $e_1\ldots e_n$).
-When the arity of the predicate (i.e. number of abstractions) is not
-correct Coq raises an error message. For example:
-
-% Test failure
-\begin{coq_eval}
-Reset concat.
-Set Printing Depth 50.
-(********** The following is not correct and should produce ***********)
-(** Error: the term l' has type listn m while it is expected to have **)
-(** type listn (?31 + ?32) **)
-\end{coq_eval}
-\begin{coq_example}
-Fixpoint concat
- (n:nat) (l:listn n) (m:nat)
- (l':listn m) {struct l} : listn (n + m) :=
- match l, l' with
- | niln, x => x
- | consn n' a y, x => consn (n' + m) a (concat n' y m x)
- end.
-\end{coq_example}
-
-\asection{Using pattern matching to write proofs}
-In all the previous examples the elimination predicate does not depend
-on the object(s) matched. But it may depend and the typical case
-is when we write a proof by induction or a function that yields an
-object of dependent type. An example of proof using \texttt{match} in
-given in Section~\ref{refine-example}.
-
-For example, we can write
-the function \texttt{buildlist} that given a natural number
-$n$ builds a list of length $n$ containing zeros as follows:
-
-\begin{coq_example}
-Fixpoint buildlist (n:nat) : listn n :=
- match n return listn n with
- | O => niln
- | S n => consn n 0 (buildlist n)
- end.
-\end{coq_example}
-
-We can also use multiple patterns.
-Consider the following definition of the predicate less-equal
-\texttt{Le}:
-
-\begin{coq_example}
-Inductive LE : nat -> nat -> Prop :=
- | LEO : forall n:nat, LE 0 n
- | LES : forall n m:nat, LE n m -> LE (S n) (S m).
-\end{coq_example}
-
-We can use multiple patterns to write the proof of the lemma
- \texttt{forall (n m:nat), (LE n m)}\verb=\/=\texttt{(LE m n)}:
-
-\begin{coq_example}
-Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n :=
- match n, m return LE n m \/ LE m n with
- | O, x => or_introl (LE x 0) (LEO x)
- | x, O => or_intror (LE x 0) (LEO x)
- | S n as n', S m as m' =>
- match dec n m with
- | or_introl h => or_introl (LE m' n') (LES n m h)
- | or_intror h => or_intror (LE n' m') (LES m n h)
- end
- end.
-\end{coq_example}
-In the example of \texttt{dec},
-the first \texttt{match} is dependent while
-the second is not.
-
-% In general, consider the terms $e_1\ldots e_n$,
-% where the type of $e_i$ is an instance of a family type
-% $\lb (\vec{d_i}:\vec{D_i}) \mto T_i$ ($1\leq i
-% \leq n$). Then, in expression \texttt{match} $e_1,\ldots,
-% e_n$ \texttt{of} \ldots \texttt{end}, the
-% elimination predicate ${\cal P}$ should be of the form:
-% $[\vec{d_1}:\vec{D_1}][x_1:T_1]\ldots [\vec{d_n}:\vec{D_n}][x_n:T_n]Q.$
-
-The user can also use \texttt{match} in combination with the tactic
-\texttt{refine} (see Section~\ref{refine}) to build incomplete proofs
-beginning with a \texttt{match} construction.
-
-\asection{Pattern-matching on inductive objects involving local
-definitions}
-
-If local definitions occur in the type of a constructor, then there
-are two ways to match on this constructor. Either the local
-definitions are skipped and matching is done only on the true arguments
-of the constructors, or the bindings for local definitions can also
-be caught in the matching.
-
-Example.
-
-\begin{coq_eval}
-Reset Initial.
-Require Import Arith.
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive list : nat -> Set :=
- | nil : list 0
- | cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).
-\end{coq_example*}
-
-In the next example, the local definition is not caught.
-
-\begin{coq_example}
-Fixpoint length n (l:list n) {struct l} : nat :=
- match l with
- | nil => 0
- | cons n l0 => S (length (2 * n) l0)
- end.
-\end{coq_example}
-
-But in this example, it is.
-
-\begin{coq_example}
-Fixpoint length' n (l:list n) {struct l} : nat :=
- match l with
- | nil => 0
- | cons _ m l0 => S (length' m l0)
- end.
-\end{coq_example}
-
-\Rem for a given matching clause, either none of the local
-definitions or all of them can be caught.
-
-\asection{Pattern-matching and coercions}
-
-If a mismatch occurs between the expected type of a pattern and its
-actual type, a coercion made from constructors is sought. If such a
-coercion can be found, it is automatically inserted around the
-pattern.
-
-Example:
-
-\begin{coq_example}
-Inductive I : Set :=
- | C1 : nat -> I
- | C2 : I -> I.
-Coercion C1 : nat >-> I.
-Check (fun x => match x with
- | C2 O => 0
- | _ => 0
- end).
-\end{coq_example}
-
-
-\asection{When does the expansion strategy fail ?}\label{limitations}
-The strategy works very like in ML languages when treating
-patterns of non-dependent type.
-But there are new cases of failure that are due to the presence of
-dependencies.
-
-The error messages of the current implementation may be sometimes
-confusing. When the tactic fails because patterns are somehow
-incorrect then error messages refer to the initial expression. But the
-strategy may succeed to build an expression whose sub-expressions are
-well typed when the whole expression is not. In this situation the
-message makes reference to the expanded expression. We encourage
-users, when they have patterns with the same outer constructor in
-different equations, to name the variable patterns in the same
-positions with the same name.
-E.g. to write {\small\texttt{(cons n O x) => e1}}
-and {\small\texttt{(cons n \_ x) => e2}} instead of
-{\small\texttt{(cons n O x) => e1}} and
-{\small\texttt{(cons n' \_ x') => e2}}.
-This helps to maintain certain name correspondence between the
-generated expression and the original.
-
-Here is a summary of the error messages corresponding to each situation:
-
-\begin{ErrMsgs}
-\item \sverb{The constructor } {\sl
- ident} \sverb{ expects } {\sl num} \sverb{ arguments}
-
- \sverb{The variable } {\sl ident} \sverb{ is bound several times
- in pattern } {\sl term}
-
- \sverb{Found a constructor of inductive type } {\term}
- \sverb{ while a constructor of } {\term} \sverb{ is expected}
-
- Patterns are incorrect (because constructors are not applied to
- the correct number of the arguments, because they are not linear or
- they are wrongly typed).
-
-\item \errindex{Non exhaustive pattern-matching}
-
-The pattern matching is not exhaustive.
-
-\item \sverb{The elimination predicate } {\sl term} \sverb{ should be
- of arity } {\sl num} \sverb{ (for non dependent case) or } {\sl
- num} \sverb{ (for dependent case)}
-
-The elimination predicate provided to \texttt{match} has not the
- expected arity.
-
-
-%\item the whole expression is wrongly typed
-
-% CADUC ?
-% , or the synthesis of
-% implicit arguments fails (for example to find the elimination
-% predicate or to resolve implicit arguments in the rhs).
-
-% There are {\em nested patterns of dependent type}, the elimination
-% predicate corresponds to non-dependent case and has the form
-% $[x_1:T_1]...[x_n:T_n]T$ and {\bf some} $x_i$ occurs {\bf free} in
-% $T$. Then, the strategy may fail to find out a correct elimination
-% predicate during some step of compilation. In this situation we
-% recommend the user to rewrite the nested dependent patterns into
-% several \texttt{match} with {\em simple patterns}.
-
-\item {\tt Unable to infer a match predicate\\
- Either there is a type incompatiblity or the problem involves\\
- dependencies}
-
- There is a type mismatch between the different branches.
- The user should provide an elimination predicate.
-
-% Obsolete ?
-% \item because of nested patterns, it may happen that even though all
-% the rhs have the same type, the strategy needs dependent elimination
-% and so an elimination predicate must be provided. The system warns
-% about this situation, trying to compile anyway with the
-% non-dependent strategy. The risen message is:
-
-% \begin{itemize}
-% \item {\tt Warning: This pattern matching may need dependent
-% elimination to be compiled. I will try, but if fails try again
-% giving dependent elimination predicate.}
-% \end{itemize}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% % LA PROPAGATION DES CONTRAINTES ARRIERE N'EST PAS FAITE DANS LA V7
-% TODO
-% \item there are {\em nested patterns of dependent type} and the
-% strategy builds a term that is well typed but recursive calls in fix
-% point are reported as illegal:
-% \begin{itemize}
-% \item {\tt Error: Recursive call applied to an illegal term ...}
-% \end{itemize}
-
-% This is because the strategy generates a term that is correct w.r.t.
-% the initial term but which does not pass the guard condition. In
-% this situation we recommend the user to transform the nested dependent
-% patterns into {\em several \texttt{match} of simple patterns}. Let us
-% explain this with an example. Consider the following definition of a
-% function that yields the last element of a list and \texttt{O} if it is
-% empty:
-
-% \begin{coq_example}
-% Fixpoint last [n:nat; l:(listn n)] : nat :=
-% match l of
-% (consn _ a niln) => a
-% | (consn m _ x) => (last m x) | niln => O
-% end.
-% \end{coq_example}
-
-% It fails because of the priority between patterns, we know that this
-% definition is equivalent to the following more explicit one (which
-% fails too):
-
-% \begin{coq_example*}
-% Fixpoint last [n:nat; l:(listn n)] : nat :=
-% match l of
-% (consn _ a niln) => a
-% | (consn n _ (consn m b x)) => (last n (consn m b x))
-% | niln => O
-% end.
-% \end{coq_example*}
-
-% Note that the recursive call {\tt (last n (consn m b x))} is not
-% guarded. When treating with patterns of dependent types the strategy
-% interprets the first definition of \texttt{last} as the second
-% one\footnote{In languages of the ML family the first definition would
-% be translated into a term where the variable \texttt{x} is shared in
-% the expression. When patterns are of non-dependent types, Coq
-% compiles as in ML languages using sharing. When patterns are of
-% dependent types the compilation reconstructs the term as in the
-% second definition of \texttt{last} so to ensure the result of
-% expansion is well typed.}. Thus it generates a term where the
-% recursive call is rejected by the guard condition.
-
-% You can get rid of this problem by writing the definition with
-% \emph{simple patterns}:
-
-% \begin{coq_example}
-% Fixpoint last [n:nat; l:(listn n)] : nat :=
-% <[_:nat]nat>match l of
-% (consn m a x) => Cases x of niln => a | _ => (last m x) end
-% | niln => O
-% end.
-% \end{coq_example}
-
-\end{ErrMsgs}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Classes.tex b/doc/refman/Classes.tex
deleted file mode 100644
index 7bd4f352..00000000
--- a/doc/refman/Classes.tex
+++ /dev/null
@@ -1,412 +0,0 @@
-\def\Haskell{\textsc{Haskell}\xspace}
-\def\eol{\setlength\parskip{0pt}\par}
-\def\indent#1{\noindent\kern#1}
-\def\cst#1{\textsf{#1}}
-
-\newcommand\tele[1]{\overrightarrow{#1}}
-
-\achapter{\protect{Type Classes}}
-\aauthor{Matthieu Sozeau}
-\label{typeclasses}
-
-\begin{flushleft}
- \em The status of Type Classes is (extremely) experimental.
-\end{flushleft}
-
-This chapter presents a quick reference of the commands related to type
-classes. For an actual introduction to type classes, there is a
-description of the system \cite{sozeau08} and the literature on type
-classes in \Haskell which also applies.
-
-\asection{Class and Instance declarations}
-\label{ClassesInstances}
-
-The syntax for class and instance declarations is the same as
-record syntax of \Coq:
-\def\kw{\texttt}
-\def\classid{\texttt}
-
-\begin{center}
-\[\begin{array}{l}
-\kw{Class}~\classid{Id}~(\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n)
-[: \sort] := \{\\
-\begin{array}{p{0em}lcl}
- & \cst{f}_1 & : & \type_1 ; \\
- & \vdots & & \\
- & \cst{f}_m & : & \type_m \}.
-\end{array}\end{array}\]
-\end{center}
-\begin{center}
-\[\begin{array}{l}
-\kw{Instance}~\ident~:~\classid{Id}~\term_1 \cdots \term_n := \{\\
-\begin{array}{p{0em}lcl}
- & \cst{f}_1 & := & \term_{f_1} ; \\
- & \vdots & & \\
- & \cst{f}_m & := & \term_{f_m} \}.
-\end{array}\end{array}\]
-\end{center}
-\begin{coq_eval}
- Reset Initial.
- Generalizable All Variables.
-\end{coq_eval}
-
-The $\tele{\alpha_i : \tau_i}$ variables are called the \emph{parameters}
-of the class and the $\tele{f_k : \type_k}$ are called the
-\emph{methods}. Each class definition gives rise to a corresponding
-record declaration and each instance is a regular definition whose name
-is given by $\ident$ and type is an instantiation of the record type.
-
-We'll use the following example class in the rest of the chapter:
-
-\begin{coq_example*}
-Class EqDec (A : Type) := {
- eqb : A -> A -> bool ;
- eqb_leibniz : forall x y, eqb x y = true -> x = y }.
-\end{coq_example*}
-
-This class implements a boolean equality test which is compatible with
-Leibniz equality on some type. An example implementation is:
-
-\begin{coq_example*}
-Instance unit_EqDec : EqDec unit :=
-{ eqb x y := true ;
- eqb_leibniz x y H :=
- match x, y return x = y with tt, tt => refl_equal tt end }.
-\end{coq_example*}
-
-If one does not give all the members in the \texttt{Instance}
-declaration, Coq enters the proof-mode and the user is asked to build
-inhabitants of the remaining fields, e.g.:
-
-\begin{coq_example*}
-Instance eq_bool : EqDec bool :=
-{ eqb x y := if x then y else negb y }.
-\end{coq_example*}
-\begin{coq_example}
-Proof. intros x y H.
- destruct x ; destruct y ; (discriminate || reflexivity).
-Defined.
-\end{coq_example}
-
-One has to take care that the transparency of every field is determined
-by the transparency of the \texttt{Instance} proof. One can use
-alternatively the \texttt{Program} \texttt{Instance} \comindex{Program Instance} variant which has
-richer facilities for dealing with obligations.
-
-\asection{Binding classes}
-
-Once a type class is declared, one can use it in class binders:
-\begin{coq_example}
-Definition neqb {A} {eqa : EqDec A} (x y : A) := negb (eqb x y).
-\end{coq_example}
-
-When one calls a class method, a constraint is generated that is
-satisfied only in contexts where the appropriate instances can be
-found. In the example above, a constraint \texttt{EqDec A} is generated and
-satisfied by \texttt{{eqa : EqDec A}}. In case no satisfying constraint can be
-found, an error is raised:
-
-\begin{coq_example}
-Definition neqb' (A : Type) (x y : A) := negb (eqb x y).
-\end{coq_example}
-
-The algorithm used to solve constraints is a variant of the eauto tactic
-that does proof search with a set of lemmas (the instances). It will use
-local hypotheses as well as declared lemmas in the
-\texttt{typeclass\_instances} database. Hence the example can also be
-written:
-
-\begin{coq_example}
-Definition neqb' A (eqa : EqDec A) (x y : A) := negb (eqb x y).
-\end{coq_example}
-
-However, the generalizing binders should be used instead as they have
-particular support for type classes:
-\begin{itemize}
-\item They automatically set the maximally implicit status for type
- class arguments, making derived functions as easy to use as class
- methods. In the example above, \texttt{A} and \texttt{eqa} should be
- set maximally implicit.
-\item They support implicit quantification on partialy applied type
- classes (\S \ref{implicit-generalization}).
- Any argument not given as part of a type class binder will be
- automatically generalized.
-\item They also support implicit quantification on superclasses
- (\S \ref{classes:superclasses})
-\end{itemize}
-
-Following the previous example, one can write:
-\begin{coq_example}
-Definition neqb_impl `{eqa : EqDec A} (x y : A) := negb (eqb x y).
-\end{coq_example}
-
-Here \texttt{A} is implicitly generalized, and the resulting function
-is equivalent to the one above.
-
-\asection{Parameterized Instances}
-
-One can declare parameterized instances as in \Haskell simply by giving
-the constraints as a binding context before the instance, e.g.:
-
-\begin{coq_example}
-Instance prod_eqb `(EA : EqDec A, EB : EqDec B) : EqDec (A * B) :=
-{ eqb x y := match x, y with
- | (la, ra), (lb, rb) => andb (eqb la lb) (eqb ra rb)
- end }.
-\end{coq_example}
-\begin{coq_eval}
-Admitted.
-\end{coq_eval}
-
-These instances are used just as well as lemmas in the instance hint database.
-
-\asection{Sections and contexts}
-\label{SectionContext}
-To ease the parametrization of developments by type classes, we provide
-a new way to introduce variables into section contexts, compatible with
-the implicit argument mechanism.
-The new command works similarly to the \texttt{Variables} vernacular
-(see \ref{Variable}), except it accepts any binding context as argument.
-For example:
-
-\begin{coq_example}
-Section EqDec_defs.
- Context `{EA : EqDec A}.
-\end{coq_example}
-
-\begin{coq_example*}
- Global Instance option_eqb : EqDec (option A) :=
- { eqb x y := match x, y with
- | Some x, Some y => eqb x y
- | None, None => true
- | _, _ => false
- end }.
-\end{coq_example*}
-\begin{coq_eval}
-Proof.
-intros x y ; destruct x ; destruct y ; intros H ;
-try discriminate ; try apply eqb_leibniz in H ;
-subst ; auto.
-Defined.
-\end{coq_eval}
-
-\begin{coq_example}
-End EqDec_defs.
-About option_eqb.
-\end{coq_example}
-
-Here the \texttt{Global} modifier redeclares the instance at the end of
-the section, once it has been generalized by the context variables it uses.
-
-\asection{Building hierarchies}
-
-\subsection{Superclasses}
-\label{classes:superclasses}
-One can also parameterize classes by other classes, generating a
-hierarchy of classes and superclasses. In the same way, we give the
-superclasses as a binding context:
-
-\begin{coq_example*}
-Class Ord `(E : EqDec A) :=
- { le : A -> A -> bool }.
-\end{coq_example*}
-
-Contrary to \Haskell, we have no special syntax for superclasses, but
-this declaration is morally equivalent to:
-\begin{verbatim}
-Class `(E : EqDec A) => Ord A :=
- { le : A -> A -> bool }.
-\end{verbatim}
-
-This declaration means that any instance of the \texttt{Ord} class must
-have an instance of \texttt{EqDec}. The parameters of the subclass contain
-at least all the parameters of its superclasses in their order of
-appearance (here \texttt{A} is the only one).
-As we have seen, \texttt{Ord} is encoded as a record type with two parameters:
-a type \texttt{A} and an \texttt{E} of type \texttt{EqDec A}. However, one can
-still use it as if it had a single parameter inside generalizing binders: the
-generalization of superclasses will be done automatically.
-\begin{coq_example*}
-Definition le_eqb `{Ord A} (x y : A) := andb (le x y) (le y x).
-\end{coq_example*}
-
-In some cases, to be able to specify sharing of structures, one may want to give
-explicitly the superclasses. It is is possible to do it directly in regular
-binders, and using the \texttt{!} modifier in class binders. For
-example:
-\begin{coq_example*}
-Definition lt `{eqa : EqDec A, ! Ord eqa} (x y : A) :=
- andb (le x y) (neqb x y).
-\end{coq_example*}
-
-The \texttt{!} modifier switches the way a binder is parsed back to the
-regular interpretation of Coq. In particular, it uses the implicit
-arguments mechanism if available, as shown in the example.
-
-\subsection{Substructures}
-
-Substructures are components of a class which are instances of a class
-themselves. They often arise when using classes for logical properties,
-e.g.:
-
-\begin{coq_eval}
-Require Import Relations.
-\end{coq_eval}
-\begin{coq_example*}
-Class Reflexive (A : Type) (R : relation A) :=
- reflexivity : forall x, R x x.
-Class Transitive (A : Type) (R : relation A) :=
- transitivity : forall x y z, R x y -> R y z -> R x z.
-\end{coq_example*}
-
-This declares singleton classes for reflexive and transitive relations,
-(see \ref{SingletonClass} for an explanation).
-These may be used as part of other classes:
-
-\begin{coq_example*}
-Class PreOrder (A : Type) (R : relation A) :=
-{ PreOrder_Reflexive :> Reflexive A R ;
- PreOrder_Transitive :> Transitive A R }.
-\end{coq_example*}
-
-The syntax \texttt{:>} indicates that each \texttt{PreOrder} can be seen
-as a \texttt{Reflexive} relation. So each time a reflexive relation is
-needed, a preorder can be used instead. This is very similar to the
-coercion mechanism of \texttt{Structure} declarations.
-The implementation simply declares each projection as an instance.
-
-One can also declare existing objects or structure
-projections using the \texttt{Existing Instance} command to achieve the
-same effect.
-
-\section{Summary of the commands
-\label{TypeClassCommands}}
-
-\subsection{\tt Class {\ident} {\binder$_1$ \ldots~\binder$_n$}
- : \sort := \{ field$_1$ ; \ldots ; field$_k$ \}.}
-\comindex{Class}
-\label{Class}
-
-The \texttt{Class} command is used to declare a type class with
-parameters {\binder$_1$} to {\binder$_n$} and fields {\tt field$_1$} to
-{\tt field$_k$}.
-
-\begin{Variants}
-\item \label{SingletonClass} {\tt Class {\ident} {\binder$_1$ \ldots \binder$_n$}
- : \sort := \ident$_1$ : \type$_1$.}
- This variant declares a \emph{singleton} class whose only method is
- {\tt \ident$_1$}. This singleton class is a so-called definitional
- class, represented simply as a definition
- {\tt {\ident} \binder$_1$ \ldots \binder$_n$ := \type$_1$} and whose
- instances are themselves objects of this type. Definitional classes
- are not wrapped inside records, and the trivial projection of an
- instance of such a class is convertible to the instance itself. This can
- be useful to make instances of existing objects easily and to reduce
- proof size by not inserting useless projections. The class
- constant itself is declared rigid during resolution so that the class
- abstraction is maintained.
-
-\item \label{ExistingClass} {\tt Existing Class {\ident}.\comindex{Existing Class}}
- This variant declares a class a posteriori from a constant or
- inductive definition. No methods or instances are defined.
-\end{Variants}
-
-\subsection{\tt Instance {\ident} {\binder$_1$ \ldots \binder$_n$} :
- {Class} {t$_1$ \ldots t$_n$} [| \textit{priority}]
- := \{ field$_1$ := b$_1$ ; \ldots ; field$_i$ := b$_i$ \}}
-\comindex{Instance}
-\label{Instance}
-
-The \texttt{Instance} command is used to declare a type class instance
-named {\ident} of the class \emph{Class} with parameters {t$_1$} to {t$_n$} and
-fields {\tt b$_1$} to {\tt b$_i$}, where each field must be a declared
-field of the class. Missing fields must be filled in interactive proof mode.
-
-An arbitrary context of the form {\tt \binder$_1$ \ldots \binder$_n$}
-can be put after the name of the instance and before the colon to
-declare a parameterized instance.
-An optional \textit{priority} can be declared, 0 being the highest
-priority as for auto hints.
-
-\begin{Variants}
-\item {\tt Instance {\ident} {\binder$_1$ \ldots \binder$_n$} :
- forall {\binder$_{n+1}$ \ldots \binder$_m$},
- {Class} {t$_1$ \ldots t$_n$} [| \textit{priority}] := \term}
- This syntax is used for declaration of singleton class instances or
- for directly giving an explicit term of type
- {\tt forall {\binder$_{n+1}$ \ldots \binder$_m$}, {Class} {t$_1$ \ldots t$_n$}}.
- One need not even mention the unique field name for singleton classes.
-
-\item {\tt Global Instance} One can use the \texttt{Global} modifier on
- instances declared in a section so that their generalization is automatically
- redeclared after the section is closed.
-
-\item {\tt Program Instance} \comindex{Program Instance}
- Switches the type-checking to \Program~(chapter \ref{Program})
- and uses the obligation mechanism to manage missing fields.
-
-\item {\tt Declare Instance} \comindex{Declare Instance}
- In a {\tt Module Type}, this command states that a corresponding
- concrete instance should exist in any implementation of this
- {\tt Module Type}. This is similar to the distinction between
- {\tt Parameter} vs. {\tt Definition}, or between {\tt Declare Module}
- and {\tt Module}.
-
-\end{Variants}
-
-Besides the {\tt Class} and {\tt Instance} vernacular commands, there
-are a few other commands related to type classes.
-
-\subsection{\tt Existing Instance {\ident}}
-\comindex{Existing Instance}
-\label{ExistingInstance}
-
-This commands adds an arbitrary constant whose type ends with an applied
-type class to the instance database. It can be used for redeclaring
-instances at the end of sections, or declaring structure projections as
-instances. This is almost equivalent to {\tt Hint Resolve {\ident} :
- typeclass\_instances}.
-
-\subsection{\tt Context {\binder$_1$ \ldots \binder$_n$}}
-\comindex{Context}
-\label{Context}
-
-Declares variables according to the given binding context, which might
-use implicit generalization (see \ref{SectionContext}).
-
-\subsection{\tt Typeclasses Transparent, Opaque {\ident$_1$ \ldots \ident$_n$}}
-\comindex{Typeclasses Transparent}
-\comindex{Typeclasses Opaque}
-\label{TypeclassesTransparency}
-
-This commands defines the transparency of {\ident$_1$ \ldots \ident$_n$}
-during type class resolution. It is useful when some constants prevent some
-unifications and make resolution fail. It is also useful to declare
-constants which should never be unfolded during proof-search, like
-fixpoints or anything which does not look like an abbreviation. This can
-additionally speed up proof search as the typeclass map can be indexed
-by such rigid constants (see \ref{HintTransparency}).
-By default, all constants and local variables are considered transparent.
-One should take care not to make opaque any constant that is used to
-abbreviate a type, like {\tt relation A := A -> A -> Prop}.
-
-This is equivalent to {\tt Hint Transparent,Opaque} {\ident} {\tt: typeclass\_instances}.
-
-\subsection{\tt Typeclasses eauto := [debug] [dfs | bfs] [\emph{depth}]}
-\comindex{Typeclasses eauto}
-\label{TypeclassesEauto}
-
-This commands allows to customize the type class resolution tactic,
-based on a variant of eauto. The flags semantics are:
-\begin{itemize}
-\item {\tt debug} In debug mode, the trace of successfully applied
- tactics is printed.
-\item {\tt dfs, bfs} This sets the search strategy to depth-first search
- (the default) or breadth-first search.
-\item {\emph{depth}} This sets the depth of the search (the default is 100).
-\end{itemize}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Coercion.tex b/doc/refman/Coercion.tex
deleted file mode 100644
index 3b6c949b..00000000
--- a/doc/refman/Coercion.tex
+++ /dev/null
@@ -1,564 +0,0 @@
-\achapter{Implicit Coercions}
-\aauthor{Amokrane Saïbi}
-
-\label{Coercions-full}
-\index{Coercions!presentation}
-
-\asection{General Presentation}
-
-This section describes the inheritance mechanism of {\Coq}. In {\Coq} with
-inheritance, we are not interested in adding any expressive power to
-our theory, but only convenience. Given a term, possibly not typable,
-we are interested in the problem of determining if it can be well
-typed modulo insertion of appropriate coercions. We allow to write:
-
-\begin{itemize}
-\item $f~a$ where $f:forall~ x:A, B$ and $a:A'$ when $A'$ can
- be seen in some sense as a subtype of $A$.
-\item $x:A$ when $A$ is not a type, but can be seen in
- a certain sense as a type: set, group, category etc.
-\item $f~a$ when $f$ is not a function, but can be seen in a certain sense
- as a function: bijection, functor, any structure morphism etc.
-\end{itemize}
-
-\asection{Classes}
-\index{Coercions!classes}
- A class with $n$ parameters is any defined name with a type
-$forall~ (x_1:A_1)..(x_n:A_n), s$ where $s$ is a sort. Thus a class with
-parameters is considered as a single class and not as a family of
-classes. An object of a class $C$ is any term of type $C~t_1
-.. t_n$. In addition to these user-classes, we have two abstract
-classes:
-
-\begin{itemize}
-\item {\tt Sortclass}, the class of sorts;
- its objects are the terms whose type is a sort.
-\item {\tt Funclass}, the class of functions;
- its objects are all the terms with a functional
- type, i.e. of form $forall~ x:A, B$.
-\end{itemize}
-
-Formally, the syntax of a classes is defined on Figure~\ref{fig:classes}.
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\class} & ::= & {\qualid} \\
- & $|$ & {\tt Sortclass} \\
- & $|$ & {\tt Funclass}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of classes}
-\label{fig:classes}
-\end{figure}
-
-\asection{Coercions}
-\index{Coercions!Funclass}
-\index{Coercions!Sortclass}
- A name $f$ can be declared as a coercion between a source user-class
-$C$ with $n$ parameters and a target class $D$ if one of these
-conditions holds:
-
-\newcommand{\oftype}{\!:\!}
-
-\begin{itemize}
-\item $D$ is a user-class, then the type of $f$ must have the form
- $forall~ (x_1 \oftype A_1)..(x_n \oftype A_n)(y\oftype C~x_1..x_n), D~u_1..u_m$ where $m$
- is the number of parameters of $D$.
-\item $D$ is {\tt Funclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n)(x:A), B$.
-\item $D$ is {\tt Sortclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n), s$ with $s$ a sort.
-\end{itemize}
-
-We then write $f:C \mbox{\texttt{>->}} D$. The restriction on the type
-of coercions is called {\em the uniform inheritance condition}.
-Remark that the abstract classes {\tt Funclass} and {\tt Sortclass}
-cannot be source classes.
-
-To coerce an object $t:C~t_1..t_n$ of $C$ towards $D$, we have to
-apply the coercion $f$ to it; the obtained term $f~t_1..t_n~t$ is
-then an object of $D$.
-
-\asection{Identity Coercions}
-\index{Coercions!identity}
-
- Identity coercions are special cases of coercions used to go around
-the uniform inheritance condition. Let $C$ and $D$ be two classes
-with respectively $n$ and $m$ parameters and
-$f:forall~(x_1:T_1)..(x_k:T_k)(y:C~u_1..u_n), D~v_1..v_m$ a function which
-does not verify the uniform inheritance condition. To declare $f$ as
-coercion, one has first to declare a subclass $C'$ of $C$:
-
-$$C' := fun~ (x_1:T_1)..(x_k:T_k) => C~u_1..u_n$$
-
-\noindent We then define an {\em identity coercion} between $C'$ and $C$:
-\begin{eqnarray*}
-Id\_C'\_C & := & fun~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k) => (y:C~u_1..u_n)\\
-\end{eqnarray*}
-
-We can now declare $f$ as coercion from $C'$ to $D$, since we can
-``cast'' its type as
-$forall~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k),D~v_1..v_m$.\\ The identity
-coercions have a special status: to coerce an object $t:C'~t_1..t_k$
-of $C'$ towards $C$, we does not have to insert explicitly $Id\_C'\_C$
-since $Id\_C'\_C~t_1..t_k~t$ is convertible with $t$. However we
-``rewrite'' the type of $t$ to become an object of $C$; in this case,
-it becomes $C~u_1^*..u_k^*$ where each $u_i^*$ is the result of the
-substitution in $u_i$ of the variables $x_j$ by $t_j$.
-
-
-\asection{Inheritance Graph}
-\index{Coercions!inheritance graph}
-Coercions form an inheritance graph with classes as nodes. We call
-{\em coercion path} an ordered list of coercions between two nodes of
-the graph. A class $C$ is said to be a subclass of $D$ if there is a
-coercion path in the graph from $C$ to $D$; we also say that $C$
-inherits from $D$. Our mechanism supports multiple inheritance since a
-class may inherit from several classes, contrary to simple inheritance
-where a class inherits from at most one class. However there must be
-at most one path between two classes. If this is not the case, only
-the {\em oldest} one is valid and the others are ignored. So the order
-of declaration of coercions is important.
-
-We extend notations for coercions to coercion paths. For instance
-$[f_1;..;f_k]:C \mbox{\texttt{>->}} D$ is the coercion path composed
-by the coercions $f_1..f_k$. The application of a coercion path to a
-term consists of the successive application of its coercions.
-
-\asection{Declaration of Coercions}
-
-%%%%% "Class" is useless, since classes are implicitely defined via coercions.
-
-% \asubsection{\tt Class {\qualid}.}\comindex{Class}
-% Declares {\qualid} as a new class.
-
-% \begin{ErrMsgs}
-% \item {\qualid} \errindex{not declared}
-% \item {\qualid} \errindex{is already a class}
-% \item \errindex{Type of {\qualid} does not end with a sort}
-% \end{ErrMsgs}
-
-% \begin{Variant}
-% \item {\tt Class Local {\qualid}.} \\
-% Declares the construction denoted by {\qualid} as a new local class to
-% the current section.
-% \end{Variant}
-
-% END "Class" is useless
-
-\asubsection{\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Coercion}
-
-Declares the construction denoted by {\qualid} as a coercion between
-{\class$_1$} and {\class$_2$}.
-
-% Useless information
-% The classes {\class$_1$} and {\class$_2$} are first declared if necessary.
-
-\begin{ErrMsgs}
-\item {\qualid} \errindex{not declared}
-\item {\qualid} \errindex{is already a coercion}
-\item \errindex{Funclass cannot be a source class}
-\item \errindex{Sortclass cannot be a source class}
-\item {\qualid} \errindex{is not a function}
-\item \errindex{Cannot find the source class of {\qualid}}
-\item \errindex{Cannot recognize {\class$_1$} as a source class of {\qualid}}
-\item {\qualid} \errindex{does not respect the uniform inheritance condition}
-\item \errindex{Found target class {\class} instead of {\class$_2$}}
-
-\end{ErrMsgs}
-
-When the coercion {\qualid} is added to the inheritance graph, non
-valid coercion paths are ignored; they are signaled by a warning.
-\\[0.3cm]
-\noindent {\bf Warning :}
-\begin{enumerate}
-\item \begin{tabbing}
-{\tt Ambiguous paths: }\= $[f_1^1;..;f_{n_1}^1] : C_1\mbox{\tt >->}D_1$\\
- \> ... \\
- \>$[f_1^m;..;f_{n_m}^m] : C_m\mbox{\tt >->}D_m$
- \end{tabbing}
-\end{enumerate}
-
-\begin{Variants}
-\item {\tt Local Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Local Coercion}\\
- Declares the construction denoted by {\qualid} as a coercion local to
- the current section.
-
-\item {\tt Coercion {\ident} := {\term}}\comindex{Coercion}\\
- This defines {\ident} just like \texttt{Definition {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item {\tt Coercion {\ident} := {\term} : {\type}}\\
- This defines {\ident} just like
- \texttt{Definition {\ident} : {\type} := {\term}}, and then
- declares {\ident} as a coercion between it source and its target.
-
-\item {\tt Local Coercion {\ident} := {\term}}\comindex{Local Coercion}\\
- This defines {\ident} just like \texttt{Let {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item Assumptions can be declared as coercions at declaration
-time. This extends the grammar of assumptions from
-Figure~\ref{sentences-syntax} as follows:
-\comindex{Variable \mbox{\rm (and coercions)}}
-\comindex{Axiom \mbox{\rm (and coercions)}}
-\comindex{Parameter \mbox{\rm (and coercions)}}
-\comindex{Hypothesis \mbox{\rm (and coercions)}}
-
-\begin{tabular}{lcl}
-%% Declarations
-{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
-&&\\
-{\assums} & ::= & {\simpleassums} \\
- & $|$ & \nelist{{\tt (} \simpleassums {\tt )}}{} \\
-&&\\
-{\simpleassums} & ::= & \nelist{\ident}{} {\tt :}\zeroone{{\tt >}} {\term}\\
-\end{tabular}
-
-If the extra {\tt >} is present before the type of some assumptions, these
-assumptions are declared as coercions.
-
-\item Constructors of inductive types can be declared as coercions at
-definition time of the inductive type. This extends and modifies the
-grammar of inductive types from Figure \ref{sentences-syntax} as follows:
-\comindex{Inductive \mbox{\rm (and coercions)}}
-\comindex{CoInductive \mbox{\rm (and coercions)}}
-
-\begin{center}
-\begin{tabular}{lcl}
-%% Inductives
-{\inductive} & ::= &
- {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
- & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
- & & \\
-{\inductivebody} & ::= &
- {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
- && ~~~\zeroone{\zeroone{\tt |} \nelist{\constructor}{|}} \\
- & & \\
-{\constructor} & ::= & {\ident} \zeroone{\binders} \zeroone{{\tt :}\zeroone{\tt >} {\term}} \\
-\end{tabular}
-\end{center}
-
-Especially, if the extra {\tt >} is present in a constructor
-declaration, this constructor is declared as a coercion.
-\end{Variants}
-
-\asubsection{\tt Identity Coercion {\ident}:{\class$_1$} >-> {\class$_2$}.}
-\comindex{Identity Coercion}
-
-We check that {\class$_1$} is a constant with a value of the form
-$fun~ (x_1:T_1)..(x_n:T_n) => (\mbox{\class}_2~t_1..t_m)$ where $m$ is the
-number of parameters of \class$_2$. Then we define an identity
-function with the type
-$forall~ (x_1:T_1)..(x_n:T_n)(y:\mbox{\class}_1~x_1..x_n),
-{\mbox{\class}_2}~t_1..t_m$, and we declare it as an identity
-coercion between {\class$_1$} and {\class$_2$}.
-
-\begin{ErrMsgs}
-\item {\class$_1$} \errindex{must be a transparent constant}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Local Identity Coercion {\ident}:{\ident$_1$} >-> {\ident$_2$}.} \\
-Idem but locally to the current section.
-
-\item {\tt SubClass {\ident} := {\type}.} \\
-\comindex{SubClass}
- If {\type} is a class
-{\ident'} applied to some arguments then {\ident} is defined and an
-identity coercion of name {\tt Id\_{\ident}\_{\ident'}} is
-declared. Otherwise said, this is an abbreviation for
-
-{\tt Definition {\ident} := {\type}.}
-
- followed by
-
-{\tt Identity Coercion Id\_{\ident}\_{\ident'}:{\ident} >-> {\ident'}}.
-
-\item {\tt Local SubClass {\ident} := {\type}.} \\
-Same as before but locally to the current section.
-
-\end{Variants}
-
-\asection{Displaying Available Coercions}
-
-\asubsection{\tt Print Classes.}
-\comindex{Print Classes}
-Print the list of declared classes in the current context.
-
-\asubsection{\tt Print Coercions.}
-\comindex{Print Coercions}
-Print the list of declared coercions in the current context.
-
-\asubsection{\tt Print Graph.}
-\comindex{Print Graph}
-Print the list of valid coercion paths in the current context.
-
-\asubsection{\tt Print Coercion Paths {\class$_1$} {\class$_2$}.}
-\comindex{Print Coercion Paths}
-Print the list of valid coercion paths from {\class$_1$} to {\class$_2$}.
-
-\asection{Activating the Printing of Coercions}
-
-\asubsection{\tt Set Printing Coercions.}
-\comindex{Set Printing Coercions}
-\comindex{Unset Printing Coercions}
-
-This command forces all the coercions to be printed.
-Conversely, to skip the printing of coercions, use
- {\tt Unset Printing Coercions}.
-By default, coercions are not printed.
-
-\asubsection{\tt Set Printing Coercion {\qualid}.}
-\comindex{Set Printing Coercion}
-\comindex{Unset Printing Coercion}
-
-This command forces coercion denoted by {\qualid} to be printed.
-To skip the printing of coercion {\qualid}, use
- {\tt Unset Printing Coercion {\qualid}}.
-By default, a coercion is never printed.
-
-\asection{Classes as Records}
-\label{Coercions-and-records}
-\index{Coercions!and records}
-We allow the definition of {\em Structures with Inheritance} (or
-classes as records) by extending the existing {\tt Record} macro
-(see Section~\ref{Record}). Its new syntax is:
-
-\begin{center}
-\begin{tabular}{l}
-{\tt Record \zeroone{>}~{\ident} \zeroone{\binders} : {\sort} := \zeroone{\ident$_0$} \verb+{+} \\
-~~~~\begin{tabular}{l}
- {\tt \ident$_1$ $[$:$|$:>$]$ \term$_1$ ;} \\
- ... \\
- {\tt \ident$_n$ $[$:$|$:>$]$ \term$_n$ \verb+}+. }
- \end{tabular}
-\end{tabular}
-\end{center}
-The identifier {\ident} is the name of the defined record and {\sort}
-is its type. The identifier {\ident$_0$} is the name of its
-constructor. The identifiers {\ident$_1$}, .., {\ident$_n$} are the
-names of its fields and {\term$_1$}, .., {\term$_n$} their respective
-types. The alternative {\tt $[$:$|$:>$]$} is ``{\tt :}'' or ``{\tt
-:>}''. If {\tt {\ident$_i$}:>{\term$_i$}}, then {\ident$_i$} is
-automatically declared as coercion from {\ident} to the class of
-{\term$_i$}. Remark that {\ident$_i$} always verifies the uniform
-inheritance condition. If the optional ``{\tt >}'' before {\ident} is
-present, then {\ident$_0$} (or the default name {\tt Build\_{\ident}}
-if {\ident$_0$} is omitted) is automatically declared as a coercion
-from the class of {\term$_n$} to {\ident} (this may fail if the
-uniform inheritance condition is not satisfied).
-
-\Rem The keyword {\tt Structure}\comindex{Structure} is a synonym of {\tt
-Record}.
-
-\asection{Coercions and Sections}
-\index{Coercions!and sections}
- The inheritance mechanism is compatible with the section
-mechanism. The global classes and coercions defined inside a section
-are redefined after its closing, using their new value and new
-type. The classes and coercions which are local to the section are
-simply forgotten.
-Coercions with a local source class or a local target class, and
-coercions which do not verify the uniform inheritance condition any longer
-are also forgotten.
-
-\asection{Coercions and Modules}
-\index{Coercions!and modules}
-
-From Coq version 8.3, the coercions present in a module are activated
-only when the module is explicitly imported. Formerly, the coercions
-were activated as soon as the module was required, whatever it was
-imported or not.
-
-To recover the behavior of the versions of Coq prior to 8.3, use the
-following command:
-
-\comindex{Set Automatic Coercions Import}
-\comindex{Unset Automatic Coercions Import}
-\begin{verbatim}
-Set Automatic Coercions Import.
-\end{verbatim}
-
-To cancel the effect of the option, use instead:
-
-\begin{verbatim}
-Unset Automatic Coercions Import.
-\end{verbatim}
-
-\asection{Examples}
-
- There are three situations:
-
-\begin{itemize}
-\item $f~a$ is ill-typed where $f:forall~x:A,B$ and $a:A'$. If there is a
- coercion path between $A'$ and $A$, $f~a$ is transformed into
- $f~a'$ where $a'$ is the result of the application of this
- coercion path to $a$.
-
-We first give an example of coercion between atomic inductive types
-
-%\begin{\small}
-\begin{coq_example}
-Definition bool_in_nat (b:bool) := if b then 0 else 1.
-Coercion bool_in_nat : bool >-> nat.
-Check (0 = true).
-Set Printing Coercions.
-Check (0 = true).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\Warning ``\verb|Check true=O.|'' fails. This is ``normal'' behaviour of
-coercions. To validate \verb|true=O|, the coercion is searched from
-\verb=nat= to \verb=bool=. There is none.
-
-We give an example of coercion between classes with parameters.
-
-%\begin{\small}
-\begin{coq_example}
-Parameters
- (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
-Parameter f : forall n:nat, C n -> D (S n) true.
-Coercion f : C >-> D.
-Parameter g : forall (n:nat) (b:bool), D n b -> E b.
-Coercion g : D >-> E.
-Parameter c : C 0.
-Parameter T : E true -> nat.
-Check (T c).
-Set Printing Coercions.
-Check (T c).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-We give now an example using identity coercions.
-
-%\begin{small}
-\begin{coq_example}
-Definition D' (b:bool) := D 1 b.
-Identity Coercion IdD'D : D' >-> D.
-Print IdD'D.
-Parameter d' : D' true.
-Check (T d').
-Set Printing Coercions.
-Check (T d').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-
- In the case of functional arguments, we use the monotonic rule of
-sub-typing. Approximatively, to coerce $t:forall~x:A, B$ towards
-$forall~x:A',B'$, one have to coerce $A'$ towards $A$ and $B$ towards
-$B'$. An example is given below:
-
-%\begin{small}
-\begin{coq_example}
-Parameters (A B : Set) (h : A -> B).
-Coercion h : A >-> B.
-Parameter U : (A -> E true) -> nat.
-Parameter t : B -> C 0.
-Check (U t).
-Set Printing Coercions.
-Check (U t).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
- Remark the changes in the result following the modification of the
-previous example.
-
-%\begin{small}
-\begin{coq_example}
-Parameter U' : (C 0 -> B) -> nat.
-Parameter t' : E true -> A.
-Check (U' t').
-Set Printing Coercions.
-Check (U' t').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item An assumption $x:A$ when $A$ is not a type, is ill-typed. It is
- replaced by $x:A'$ where $A'$ is the result of the application
- to $A$ of the coercion path between the class of $A$ and {\tt
- Sortclass} if it exists. This case occurs in the abstraction
- $fun~ x:A => t$, universal quantification $forall~x:A, B$,
- global variables and parameters of (co-)inductive definitions
- and functions. In $forall~x:A, B$, such a coercion path may be
- applied to $B$ also if necessary.
-
-%\begin{small}
-\begin{coq_example}
-Parameter Graph : Type.
-Parameter Node : Graph -> Type.
-Coercion Node : Graph >-> Sortclass.
-Parameter G : Graph.
-Parameter Arrows : G -> G -> Type.
-Check Arrows.
-Parameter fg : G -> G.
-Check fg.
-Set Printing Coercions.
-Check fg.
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item $f~a$ is ill-typed because $f:A$ is not a function. The term
- $f$ is replaced by the term obtained by applying to $f$ the
- coercion path between $A$ and {\tt Funclass} if it exists.
-
-%\begin{small}
-\begin{coq_example}
-Parameter bij : Set -> Set -> Set.
-Parameter ap : forall A B:Set, bij A B -> A -> B.
-Coercion ap : bij >-> Funclass.
-Parameter b : bij nat nat.
-Check (b 0).
-Set Printing Coercions.
-Check (b 0).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-Let us see the resulting graph of this session.
-
-%\begin{small}
-\begin{coq_example}
-Print Graph.
-\end{coq_example}
-%\end{small}
-
-\end{itemize}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Extraction.tex b/doc/refman/Extraction.tex
deleted file mode 100644
index af5d4049..00000000
--- a/doc/refman/Extraction.tex
+++ /dev/null
@@ -1,551 +0,0 @@
-\achapter{Extraction of programs in Objective Caml and Haskell}
-\label{Extraction}
-\aauthor{Jean-Christophe Filliâtre and Pierre Letouzey}
-\index{Extraction}
-
-We present here the \Coq\ extraction commands, used to build certified
-and relatively efficient functional programs, extracting them from
-either \Coq\ functions or \Coq\ proofs of specifications. The
-functional languages available as output are currently \ocaml{},
-\textsc{Haskell} and \textsc{Scheme}. In the following, ``ML'' will
-be used (abusively) to refer to any of the three.
-
-\paragraph{Differences with old versions.}
-The current extraction mechanism is new for version 7.0 of {\Coq}.
-In particular, the \FW\ toplevel used as an intermediate step between
-\Coq\ and ML has been withdrawn. It is also not possible
-any more to import ML objects in this \FW\ toplevel.
-The current mechanism also differs from
-the one in previous versions of \Coq: there is no more
-an explicit toplevel for the language (formerly called \textsc{Fml}).
-
-\asection{Generating ML code}
-\comindex{Extraction}
-\comindex{Recursive Extraction}
-\comindex{Extraction Module}
-\comindex{Recursive Extraction Module}
-
-The next two commands are meant to be used for rapid preview of
-extraction. They both display extracted term(s) inside \Coq.
-
-\begin{description}
-\item {\tt Extraction \qualid.} ~\par
- Extracts one constant or module in the \Coq\ toplevel.
-
-\item {\tt Recursive Extraction \qualid$_1$ \dots\ \qualid$_n$.} ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies in the \Coq\ toplevel.
-\end{description}
-
-%% TODO error messages
-
-All the following commands produce real ML files. User can choose to produce
-one monolithic file or one file per \Coq\ library.
-
-\begin{description}
-\item {\tt Extraction "{\em file}"}
- \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies in one monolithic file {\em file}.
- Global and local identifiers are renamed according to the chosen ML
- language to fulfill its syntactic conventions, keeping original
- names as much as possible.
-
-\item {\tt Extraction Library} \ident. ~\par
- Extraction of the whole \Coq\ library {\tt\ident.v} to an ML module
- {\tt\ident.ml}. In case of name clash, identifiers are here renamed
- using prefixes \verb!coq_! or \verb!Coq_! to ensure a
- session-independent renaming.
-
-\item {\tt Recursive Extraction Library} \ident. ~\par
- Extraction of the \Coq\ library {\tt\ident.v} and all other modules
- {\tt\ident.v} depends on.
-\end{description}
-
-The list of globals \qualid$_i$ does not need to be
-exhaustive: it is automatically completed into a complete and minimal
-environment.
-
-\asection{Extraction options}
-
-\asubsection{Setting the target language}
-\comindex{Extraction Language}
-
-The ability to fix target language is the first and more important
-of the extraction options. Default is Ocaml.
-\begin{description}
-\item {\tt Extraction Language Ocaml}.
-\item {\tt Extraction Language Haskell}.
-\item {\tt Extraction Language Scheme}.
-\end{description}
-
-\asubsection{Inlining and optimizations}
-
-Since Objective Caml is a strict language, the extracted
-code has to be optimized in order to be efficient (for instance, when
-using induction principles we do not want to compute all the recursive
-calls but only the needed ones). So the extraction mechanism provides
-an automatic optimization routine that will be
-called each time the user want to generate Ocaml programs. Essentially,
-it performs constants inlining and reductions. Therefore some
-constants may not appear in resulting monolithic Ocaml program.
-In the case of modular extraction, even if some inlining is done, the
-inlined constant are nevertheless printed, to ensure
-session-independent programs.
-
-Concerning Haskell, such optimizations are less useful because of
-lazyness. We still make some optimizations, for example in order to
-produce more readable code.
-
-All these optimizations are controled by the following \Coq\ options:
-
-\begin{description}
-
-\item \comindex{Set Extraction Optimize}
-{\tt Set Extraction Optimize.}
-
-\item \comindex{Unset Extraction Optimize}
-{\tt Unset Extraction Optimize.}
-
-Default is Set. This control all optimizations made on the ML terms
-(mostly reduction of dummy beta/iota redexes, but also simplifications on
-Cases, etc). Put this option to Unset if you want a ML term as close as
-possible to the Coq term.
-
-\item \comindex{Set Extraction AutoInline}
-{\tt Set Extraction AutoInline.}
-
-\item \comindex{Unset Extraction AutoInline}
-{\tt Unset Extraction AutoInline.}
-
-Default is Set, so by default, the extraction mechanism feels free to
-inline the bodies of some defined constants, according to some heuristics
-like size of bodies, useness of some arguments, etc. Those heuristics are
-not always perfect, you may want to disable this feature, do it by Unset.
-
-\item \comindex{Extraction Inline}
-{\tt Extraction Inline} \qualid$_1$ \dots\ \qualid$_n$.
-
-\item \comindex{Extraction NoInline}
-{\tt Extraction NoInline} \qualid$_1$ \dots\ \qualid$_n$.
-
-In addition to the automatic inline feature, you can now tell precisely to
-inline some more constants by the {\tt Extraction Inline} command. Conversely,
-you can forbid the automatic inlining of some specific constants by
-the {\tt Extraction NoInline} command.
-Those two commands enable a precise control of what is inlined and what is not.
-
-\item \comindex{Print Extraction Inline}
-{\tt Print Extraction Inline}.
-
-Prints the current state of the table recording the custom inlinings
-declared by the two previous commands.
-
-\item \comindex{Reset Extraction Inline}
-{\tt Reset Extraction Inline}.
-
-Puts the table recording the custom inlinings back to empty.
-
-\end{description}
-
-
-\paragraph{Inlining and printing of a constant declaration.}
-
-A user can explicitly ask for a constant to be extracted by two means:
-\begin{itemize}
-\item by mentioning it on the extraction command line
-\item by extracting the whole \Coq\ module of this constant.
-\end{itemize}
-In both cases, the declaration of this constant will be present in the
-produced file.
-But this same constant may or may not be inlined in the following
-terms, depending on the automatic/custom inlining mechanism.
-
-
-For the constants non-explicitly required but needed for dependency
-reasons, there are two cases:
-\begin{itemize}
-\item If an inlining decision is taken, whether automatically or not,
-all occurrences of this constant are replaced by its extracted body, and
-this constant is not declared in the generated file.
-\item If no inlining decision is taken, the constant is normally
- declared in the produced file.
-\end{itemize}
-
-\asubsection{Extra elimination of useless arguments}
-
-\begin{description}
-\item \comindex{Extraction Implicit}
- {\tt Extraction Implicit} \qualid\ [ \ident$_1$ \dots\ \ident$_n$ ].
-
-This experimental command allows to declare some arguments of
-\qualid\ as implicit, i.e. useless in extracted code and hence to
-be removed by extraction. Here \qualid\ can be any function or
-inductive constructor, and \ident$_i$ are the names of the concerned
-arguments. In fact, an argument can also be referred by a number
-indicating its position, starting from 1. When an actual extraction
-takes place, an error is raised if the {\tt Extraction Implicit}
-declarations cannot be honored, that is if any of the implicited
-variables still occurs in the final code. This declaration of useless
-arguments is independent but complementary to the main elimination
-principles of extraction (logical parts and types).
-\end{description}
-
-\asubsection{Realizing axioms}\label{extraction:axioms}
-
-Extraction will fail if it encounters an informative
-axiom not realized (see Section~\ref{extraction:axioms}).
-A warning will be issued if it encounters an logical axiom, to remind
-user that inconsistent logical axioms may lead to incorrect or
-non-terminating extracted terms.
-
-It is possible to assume some axioms while developing a proof. Since
-these axioms can be any kind of proposition or object or type, they may
-perfectly well have some computational content. But a program must be
-a closed term, and of course the system cannot guess the program which
-realizes an axiom. Therefore, it is possible to tell the system
-what ML term corresponds to a given axiom.
-
-\comindex{Extract Constant}
-\begin{description}
-\item{\tt Extract Constant \qualid\ => \str.} ~\par
- Give an ML extraction for the given constant.
- The \str\ may be an identifier or a quoted string.
-\item{\tt Extract Inlined Constant \qualid\ => \str.} ~\par
- Same as the previous one, except that the given ML terms will
- be inlined everywhere instead of being declared via a let.
-\end{description}
-
-Note that the {\tt Extract Inlined Constant} command is sugar
-for an {\tt Extract Constant} followed by a {\tt Extraction Inline}.
-Hence a {\tt Reset Extraction Inline} will have an effect on the
-realized and inlined axiom.
-
-Of course, it is the responsibility of the user to ensure that the ML
-terms given to realize the axioms do have the expected types. In
-fact, the strings containing realizing code are just copied in the
-extracted files. The extraction recognizes whether the realized axiom
-should become a ML type constant or a ML object declaration.
-
-\Example
-\begin{coq_example}
-Axiom X:Set.
-Axiom x:X.
-Extract Constant X => "int".
-Extract Constant x => "0".
-\end{coq_example}
-
-Notice that in the case of type scheme axiom (i.e. whose type is an
-arity, that is a sequence of product finished by a sort), then some type
-variables has to be given. The syntax is then:
-
-\begin{description}
-\item{\tt Extract Constant \qualid\ \str$_1$ \ldots \str$_n$ => \str.} ~\par
-\end{description}
-
-The number of type variables is checked by the system.
-
-\Example
-\begin{coq_example}
-Axiom Y : Set -> Set -> Set.
-Extract Constant Y "'a" "'b" => " 'a*'b ".
-\end{coq_example}
-
-Realizing an axiom via {\tt Extract Constant} is only useful in the
-case of an informative axiom (of sort Type or Set). A logical axiom
-have no computational content and hence will not appears in extracted
-terms. But a warning is nonetheless issued if extraction encounters a
-logical axiom. This warning reminds user that inconsistent logical
-axioms may lead to incorrect or non-terminating extracted terms.
-
-If an informative axiom has not been realized before an extraction, a
-warning is also issued and the definition of the axiom is filled with
-an exception labeled {\tt AXIOM TO BE REALIZED}. The user must then
-search these exceptions inside the extracted file and replace them by
-real code.
-
-\comindex{Extract Inductive}
-
-The system also provides a mechanism to specify ML terms for inductive
-types and constructors. For instance, the user may want to use the ML
-native boolean type instead of \Coq\ one. The syntax is the following:
-
-\begin{description}
-\item{\tt Extract Inductive \qualid\ => \str\ [ \str\ \dots \str\ ]\
-{\it optstring}.} ~\par
- Give an ML extraction for the given inductive type. You must specify
- extractions for the type itself (first \str) and all its
- constructors (between square brackets). If given, the final optional
- string should contain a function emulating pattern-matching over this
- inductive type. If this optional string is not given, the ML
- extraction must be an ML inductive datatype, and the native
- pattern-matching of the language will be used.
-\end{description}
-
-For an inductive type with $k$ constructor, the function used to
-emulate the match should expect $(k+1)$ arguments, first the $k$
-branches in functional form, and then the inductive element to
-destruct. For instance, the match branch \verb$| S n => foo$ gives the
-functional form \verb$(fun n -> foo)$. Note that a constructor with no
-argument is considered to have one unit argument, in order to block
-early evaluation of the branch: \verb$| O => bar$ leads to the functional
-form \verb$(fun () -> bar)$. For instance, when extracting {\tt nat}
-into {\tt int}, the code to provide has type:
-{\tt (unit->'a)->(int->'a)->int->'a}.
-
-As for {\tt Extract Inductive}, this command should be used with care:
-\begin{itemize}
-\item The ML code provided by the user is currently \emph{not} checked at all by
- extraction, even for syntax errors.
-
-\item Extracting an inductive type to a pre-existing ML inductive type
-is quite sound. But extracting to a general type (by providing an
-ad-hoc pattern-matching) will often \emph{not} be fully rigorously
-correct. For instance, when extracting {\tt nat} to Ocaml's {\tt
-int}, it is theoretically possible to build {\tt nat} values that are
-larger than Ocaml's {\tt max\_int}. It is the user's responsability to
-be sure that no overflow or other bad events occur in practice.
-
-\item Translating an inductive type to an ML type does \emph{not}
-magically improve the asymptotic complexity of functions, even if the
-ML type is an efficient representation. For instance, when extracting
-{\tt nat} to Ocaml's {\tt int}, the function {\tt mult} stays
-quadratic. It might be interesting to associate this translation with
-some specific {\tt Extract Constant} when primitive counterparts exist.
-\end{itemize}
-
-\Example
-Typical examples are the following:
-\begin{coq_example}
-Extract Inductive unit => "unit" [ "()" ].
-Extract Inductive bool => "bool" [ "true" "false" ].
-Extract Inductive sumbool => "bool" [ "true" "false" ].
-\end{coq_example}
-
-If an inductive constructor or type has arity 2 and the corresponding
-string is enclosed by parenthesis, then the rest of the string is used
-as infix constructor or type.
-\begin{coq_example}
-Extract Inductive list => "list" [ "[]" "(::)" ].
-Extract Inductive prod => "(*)" [ "(,)" ].
-\end{coq_example}
-
-As an example of translation to a non-inductive datatype, let's turn
-{\tt nat} into Ocaml's {\tt int} (see caveat above):
-\begin{coq_example}
-Extract Inductive nat => int [ "0" "succ" ]
- "(fun fO fS n => if n=0 then fO () else fS (n-1))".
-\end{coq_example}
-
-\asubsection{Avoiding conflicts with existing filenames}
-
-\comindex{Extraction Blacklist}
-
-When using {\tt Extraction Library}, the names of the extracted files
-directly depends from the names of the \Coq\ files. It may happen that
-these filenames are in conflict with already existing files,
-either in the standard library of the target language or in other
-code that is meant to be linked with the extracted code.
-For instance the module {\tt List} exists both in \Coq\ and in Ocaml.
-It is possible to instruct the extraction not to use particular filenames.
-
-\begin{description}
-\item{\tt Extraction Blacklist \ident \ldots \ident.} ~\par
- Instruct the extraction to avoid using these names as filenames
- for extracted code.
-\item{\tt Print Extraction Blacklist.} ~\par
- Show the current list of filenames the extraction should avoid.
-\item{\tt Reset Extraction Blacklist.} ~\par
- Allow the extraction to use any filename.
-\end{description}
-
-For Ocaml, a typical use of these commands is
-{\tt Extraction Blacklist String List}.
-
-\asection{Differences between \Coq\ and ML type systems}
-
-
-Due to differences between \Coq\ and ML type systems,
-some extracted programs are not directly typable in ML.
-We now solve this problem (at least in Ocaml) by adding
-when needed some unsafe casting {\tt Obj.magic}, which give
-a generic type {\tt 'a} to any term.
-
-For example, here are two kinds of problem that can occur:
-
-\begin{itemize}
- \item If some part of the program is {\em very} polymorphic, there
- may be no ML type for it. In that case the extraction to ML works
- all right but the generated code may be refused by the ML
- type-checker. A very well known example is the {\em distr-pair}
- function:
-\begin{verbatim}
-Definition dp :=
- fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y).
-\end{verbatim}
-
-In Ocaml, for instance, the direct extracted term would be:
-
-\begin{verbatim}
-let dp x y f = Pair((f () x),(f () y))
-\end{verbatim}
-
-and would have type:
-\begin{verbatim}
-dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
-\end{verbatim}
-
-which is not its original type, but a restriction.
-
-We now produce the following correct version:
-\begin{verbatim}
-let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))
-\end{verbatim}
-
- \item Some definitions of \Coq\ may have no counterpart in ML. This
- happens when there is a quantification over types inside the type
- of a constructor; for example:
-\begin{verbatim}
-Inductive anything : Set := dummy : forall A:Set, A -> anything.
-\end{verbatim}
-
-which corresponds to the definition of an ML dynamic type.
-In Ocaml, we must cast any argument of the constructor dummy.
-
-\end{itemize}
-
-Even with those unsafe castings, you should never get error like
-``segmentation fault''. In fact even if your program may seem
-ill-typed to the Ocaml type-checker, it can't go wrong: it comes
-from a Coq well-typed terms, so for example inductives will always
-have the correct number of arguments, etc.
-
-More details about the correctness of the extracted programs can be
-found in \cite{Let02}.
-
-We have to say, though, that in most ``realistic'' programs, these
-problems do not occur. For example all the programs of Coq library are
-accepted by Caml type-checker without any {\tt Obj.magic} (see examples below).
-
-
-
-\asection{Some examples}
-
-We present here two examples of extractions, taken from the
-\Coq\ Standard Library. We choose \ocaml\ as target language,
-but all can be done in the other dialects with slight modifications.
-We then indicate where to find other examples and tests of Extraction.
-
-\asubsection{A detailed example: Euclidean division}
-
-The file {\tt Euclid} contains the proof of Euclidean division
-(theorem {\tt eucl\_dev}). The natural numbers defined in the example
-files are unary integers defined by two constructors $O$ and $S$:
-\begin{coq_example*}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-\end{coq_example*}
-
-This module contains a theorem {\tt eucl\_dev}, whose type is:
-\begin{verbatim}
-forall b:nat, b > 0 -> forall a:nat, diveucl a b
-\end{verbatim}
-where {\tt diveucl} is a type for the pair of the quotient and the
-modulo, plus some logical assertions that disappear during extraction.
-We can now extract this program to \ocaml:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Import Euclid Wf_nat.
-Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
-Recursive Extraction eucl_dev.
-\end{coq_example}
-
-The inlining of {\tt gt\_wf\_rec} and others is not
-mandatory. It only enhances readability of extracted code.
-You can then copy-paste the output to a file {\tt euclid.ml} or let
-\Coq\ do it for you with the following command:
-
-\begin{coq_example}
-Extraction "euclid" eucl_dev.
-\end{coq_example}
-
-Let us play the resulting program:
-
-\begin{verbatim}
-# #use "euclid.ml";;
-type nat = O | S of nat
-type sumbool = Left | Right
-val minus : nat -> nat -> nat = <fun>
-val le_lt_dec : nat -> nat -> sumbool = <fun>
-val le_gt_dec : nat -> nat -> sumbool = <fun>
-type diveucl = Divex of nat * nat
-val eucl_dev : nat -> nat -> diveucl = <fun>
-# eucl_dev (S (S O)) (S (S (S (S (S O)))));;
-- : diveucl = Divex (S (S O), S O)
-\end{verbatim}
-It is easier to test on \ocaml\ integers:
-\begin{verbatim}
-# let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
-val i2n : int -> nat = <fun>
-# let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
-val n2i : nat -> int = <fun>
-# let div a b =
- let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
- in (int_of_nat q, int_of_nat r);;
-val div : int -> int -> int * int = <fun>
-# div 173 15;;
-- : int * int = (11, 8)
-\end{verbatim}
-
-Note that these {\tt nat\_of\_int} and {\tt int\_of\_nat} are now
-available via a mere {\tt Require Import ExtrOcamlIntConv} and then
-adding these functions to the list of functions to extract. This file
-{\tt ExtrOcamlIntConv.v} and some others in {\tt plugins/extraction/}
-are meant to help building concrete program via extraction.
-
-\asubsection{Extraction's horror museum}
-
-Some pathological examples of extraction are grouped in the file
-{\tt test-suite/success/extraction.v} of the sources of \Coq.
-
-\asubsection{Users' Contributions}
-
- Several of the \Coq\ Users' Contributions use extraction to produce
- certified programs. In particular the following ones have an automatic
- extraction test (just run {\tt make} in those directories):
-
- \begin{itemize}
- \item Bordeaux/Additions
- \item Bordeaux/EXCEPTIONS
- \item Bordeaux/SearchTrees
- \item Dyade/BDDS
- \item Lannion
- \item Lyon/CIRCUITS
- \item Lyon/FIRING-SQUAD
- \item Marseille/CIRCUITS
- \item Muenchen/Higman
- \item Nancy/FOUnify
- \item Rocq/ARITH/Chinese
- \item Rocq/COC
- \item Rocq/GRAPHS
- \item Rocq/HIGMAN
- \item Sophia-Antipolis/Stalmarck
- \item Suresnes/BDD
- \end{itemize}
-
- Lannion, Rocq/HIGMAN and Lyon/CIRCUITS are a bit particular. They are
- examples of developments where {\tt Obj.magic} are needed.
- This is probably due to an heavy use of impredicativity.
- After compilation those two examples run nonetheless,
- thanks to the correction of the extraction~\cite{Let02}.
-
-% $Id: Extraction.tex 13153 2010-06-15 16:09:43Z letouzey $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Helm.tex b/doc/refman/Helm.tex
deleted file mode 100644
index ed94dfc5..00000000
--- a/doc/refman/Helm.tex
+++ /dev/null
@@ -1,313 +0,0 @@
-\label{Helm}
-\index{XML exportation}
-\index{Proof rendering}
-
-This section describes the exportation of {\Coq} theories to XML that
-has been contributed by Claudio Sacerdoti Coen. Currently, the main
-applications are the rendering and searching tool
-developed within the HELM\footnote{Hypertextual Electronic Library of
-Mathematics} and MoWGLI\footnote{Mathematics on the Web, Get it by
-Logic and Interfaces} projects mainly at the University of Bologna and
-partly at INRIA-Sophia Antipolis.
-
-\subsection{Practical use of the XML exportation tool}
-
-The basic way to export the logical content of a file into XML format
-is to use {\tt coqc} with option {\tt -xml}.
-When the {\tt -xml} flag is set, every definition or declaration is
-immediately exported to XML once concluded.
-The system environment variable {\tt COQ\_XML\_LIBRARY\_ROOT} must be
-previously set to a directory in which the logical structure of the
-exported objects is reflected.
-
- For {\tt Makefile} files generated by \verb+coq_makefile+ (see section
- \ref{Makefile}), it is sufficient to compile the files using
- \begin{quotation}
- \verb+make COQ_XML=-xml+
- \end{quotation}
-
- To export a development to XML, the suggested procedure is then:
-
- \begin{enumerate}
- \item add to your own contribution a valid \verb+Make+ file and use
- \verb+coq_makefile+ to generate the \verb+Makefile+ from the \verb+Make+
- file.
-
- \Warning Since logical names are used to structure the XML
- hierarchy, always add to the \verb+Make+ file at least one \verb+"-R"+
- option to map physical file names to logical module paths.
- \item set the \verb+COQ_XML_LIBRARY_ROOT+ environment variable to
- the directory where the XML file hierarchy must be physically
- rooted.
- \item compile your contribution with \verb+"make COQ_XML=-xml"+
- \end{enumerate}
-
-\Rem In case the system variable {\tt COQ\_XML\_LIBRARY\_ROOT} is not set,
-the output is done on the standard output. Also, the files are
-compressed using {\tt gzip} after creation. This is to save disk space
-since the XML format is very verbose.
-
-\subsection{Reflection of the logical structure into the file system}
-
-For each {\Coq} logical object, several independent files associated
-to this object are created. The structure of the long name of the
-object is reflected in the directory structure of the file system.
-E.g. an object of long name {\tt
-{\ident$_1$}.{\ldots}.{\ident$_n$}.{\ident}} is exported to files in the
-subdirectory {{\ident$_1$}/{\ldots}/{\ident$_n$}} of the directory
-bound to the environment variable {\tt COQ\_XML\_LIBRARY\_ROOT}.
-
-\subsection{What is exported?}
-
-The XML exportation tool exports the logical content of {\Coq}
-theories. This covers global definitions (including lemmas, theorems,
-...), global assumptions (parameters and axioms), local assumptions or
-definitions, and inductive definitions.
-
-Vernacular files are exported to {\tt .theory.xml} files.
-%Variables,
-%definitions, theorems, axioms and proofs are exported to individual
-%files whose suffixes range from {\tt .var.xml}, {\tt .con.xml}, {\tt
-%.con.body.xml}, {\tt .con.types.xml} to {\tt .con.proof_tree.xml}.
-Comments are pre-processed with {\sf coqdoc} (see section
-\ref{coqdoc}). Especially, they have to be enclosed within {\tt (**}
-and {\tt *)} to be exported.
-
-For each inductive definition of name
-{\ident$_1$}.{\ldots}.{\ident$_n$}.{\ident}, a file named {\tt
-{\ident}.ind.xml} is created in the subdirectory {\tt
-{\ident$_1$}/{\ldots}/{\ident$_n$}} of the xml library root
-directory. It contains the arities and constructors of the type. For mutual inductive definitions, the file is named after the
-name of the first inductive type of the block.
-
-For each global definition of base name {\tt
-{\ident$_1$}.{\ldots}.{\ident$_n$}.{\ident}}, files named
-{\tt {\ident}.con.body.xml} and {\tt {\ident}.con.xml} are created in the
-subdirectory {\tt {\ident$_1$}/{\ldots}/{\ident$_n$}}. They
-respectively contain the body and the type of the definition.
-
-For each global assumption of base name {\tt
-{\ident$_1$}.{\ident$_2$}.{\ldots}.{\ident$_n$}.{\ident}}, a file
-named {\tt {\ident}.con.xml} is created in the subdirectory {\tt
-{\ident$_1$}/{\ldots}/{\ident$_n$}}. It contains the type of the
-global assumption.
-
-For each local assumption or definition of base name {\ident} located
-in sections {\ident$'_1$}, {\ldots}, {\ident$'_p$} of the module {\tt
-{\ident$_1$}.{\ident$_2$}.{\ldots}.{\ident$_n$}.{\ident}}, a file
-named {\tt {\ident}.var.xml} is created in the subdirectory {\tt
-{\ident$_1$}/{\ldots}/{\ident$_n$}/{\ident$'_1$}/\ldots/{\ident$'_p$}}.
-It contains its type and, if a definition, its body.
-
-In order to do proof-rendering (for example in natural language), some
-redundant typing information is required, i.e. the type of at least
-some of the subterms of the bodies and types of the CIC objects. These
-types are called inner types and are exported to files of suffix {\tt
-.types.xml} by the exportation tool.
-
-
-% Deactivated
-%% \subsection{Proof trees}
-
-%% For each definition or theorem that has been built with tactics, an
-%% extra file of suffix {\tt proof\_tree.xml} is created. It contains the
-%% proof scripts and is used for rendering the proof.
-
-\subsection[Inner types]{Inner types\label{inner-types}}
-
-The type of a subterm of a construction is called an {\em inner type}
-if it respects the following conditions.
-
-\begin{enumerate}
- \item Its sort is \verb+Prop+\footnote{or {\tt CProp} which is the
- "sort"-like definition used in C-CoRN (see
- \url{http://vacuumcleaner.cs.kun.nl/c-corn}) to type
- computationally relevant predicative propositions.}.
- \item It is not a type cast nor an atomic term (variable, constructor or constant).
- \item If it's root is an abstraction, then the root's parent node is
- not an abstraction, i.e. only the type of the outer abstraction of
- a block of nested abstractions is printed.
-\end{enumerate}
-
-The rationale for the 3$^{rd}$ condition is that the type of the inner
-abstractions could be easily computed starting from the type of the
-outer ones; moreover, the types of the inner abstractions requires a
-lot of disk/memory space: removing the 3$^{rd}$ condition leads to XML
-file that are two times as big as the ones exported applying the 3$^{rd}$
-condition.
-
-\subsection{Interactive exportation commands}
-
-There are also commands to be used interactively in {\tt coqtop}.
-
-\subsubsection[\tt Print XML {\qualid}]{\tt Print XML {\qualid}\comindex{Print XML}}
-
-If the variable {\tt COQ\_XML\_LIBRARY\_ROOT} is set, this command creates
-files containing the logical content in XML format of {\qualid}. If
-the variable is not set, the result is displayed on the standard
-output.
-
-\begin{Variants}
-\item {\tt Print XML File {\str} {\qualid}}\\
-This writes the logical content of {\qualid} in XML format to files
-whose prefix is {\str}.
-\end{Variants}
-
-\subsubsection[{\tt Show XML Proof}]{{\tt Show XML Proof}\comindex{Show XML Proof}}
-
-If the variable {\tt COQ\_XML\_LIBRARY\_ROOT} is set, this command creates
-files containing the current proof in progress in XML format. It
-writes also an XML file made of inner types. If the variable is not
-set, the result is displayed on the standard output.
-
-\begin{Variants}
-\item {\tt Show XML File {\str} Proof}\\ This writes the
-logical content of {\qualid} in XML format to files whose prefix is
-{\str}.
-\end{Variants}
-
-\subsection{Applications: rendering, searching and publishing}
-
-The HELM team at the University of Bologna has developed tools
-exploiting the XML exportation of {\Coq} libraries. This covers
-rendering, searching and publishing tools.
-
-All these tools require a running http server and, if possible, a
-MathML compliant browser. The procedure to install the suite of tools
-ultimately allowing rendering and searching can be found on the HELM
-web site \url{http://helm.cs.unibo.it/library.html}.
-
-It may be easier though to upload your developments on the HELM http
-server and to re-use the infrastructure running on it. This requires
-publishing your development. To this aim, follow the instructions on
-\url{http://mowgli.cs.unibo.it}.
-
-Notice that the HELM server already hosts a copy of the standard
-library of {\Coq} and of the {\Coq} user contributions.
-
-\subsection{Technical informations}
-
-\subsubsection{CIC with Explicit Named Substitutions}
-
-The exported files are XML encoding of the lambda-terms used by the
-\Coq\ system. The implementative details of the \Coq\ system are hidden as much
-as possible, so that the XML DTD is a straightforward encoding of the
-Calculus of (Co)Inductive Constructions.
-
-Nevertheless, there is a feature of the \Coq\ system that can not be
-hidden in a completely satisfactory way: discharging (see Sect.\ref{Section}).
-In \Coq\ it is possible
-to open a section, declare variables and use them in the rest of the section
-as if they were axiom declarations. Once the section is closed, every definition and theorem in the section is discharged by abstracting it over the section
-variables. Variable declarations as well as section declarations are entirely
-dropped. Since we are interested in an XML encoding of definitions and
-theorems as close as possible to those directly provided the user, we
-do not want to export discharged forms. Exporting non-discharged theorem
-and definitions together with theorems that rely on the discharged forms
-obliges the tools that work on the XML encoding to implement discharging to
-achieve logical consistency. Moreover, the rendering of the files can be
-misleading, since hyperlinks can be shown between occurrences of the discharge
-form of a definition and the non-discharged definition, that are different
-objects.
-
-To overcome the previous limitations, Claudio Sacerdoti Coen developed in his
-PhD. thesis an extension of CIC, called Calculus of (Co)Inductive Constructions
-with Explicit Named Substitutions, that is a slight extension of CIC where
-discharging is not necessary. The DTD of the exported XML files describes
-constants, inductive types and variables of the Calculus of (Co)Inductive
-Constructions with Explicit Named Substitutions. The conversion to the new
-calculus is performed during the exportation phase.
-
-The following example shows a very small \Coq\ development together with its
-version in CIC with Explicit Named Substitutions.
-
-\begin{verbatim}
-# CIC version: #
-Section S.
- Variable A : Prop.
-
- Definition impl := A -> A.
-
- Theorem t : impl. (* uses the undischarged form of impl *)
- Proof.
- exact (fun (a:A) => a).
- Qed.
-
-End S.
-
-Theorem t' : (impl False). (* uses the discharged form of impl *)
- Proof.
- exact (t False). (* uses the discharged form of t *)
- Qed.
-\end{verbatim}
-
-\begin{verbatim}
-# Corresponding CIC with Explicit Named Substitutions version: #
-Section S.
- Variable A : Prop.
-
- Definition impl(A) := A -> A. (* theorems and definitions are
- explicitly abstracted over the
- variables. The name is sufficient to
- completely describe the abstraction *)
-
- Theorem t(A) : impl. (* impl where A is not instantiated *)
- Proof.
- exact (fun (a:A) => a).
- Qed.
-
-End S.
-
-Theorem t'() : impl{False/A}. (* impl where A is instantiated with False
- Notice that t' does not depend on A *)
- Proof.
- exact t{False/A}. (* t where A is instantiated with False *)
- Qed.
-\end{verbatim}
-
-Further details on the typing and reduction rules of the calculus can be
-found in Claudio Sacerdoti Coen PhD. dissertation, where the consistency
-of the calculus is also proved.
-
-\subsubsection{The CIC with Explicit Named Substitutions XML DTD}
-
-A copy of the DTD can be found in the file ``\verb+cic.dtd+'' in the
-\verb+plugins/xml+ source directory of \Coq.
-The following is a very brief overview of the elements described in the DTD.
-
-\begin{description}
- \item[]\texttt{<ConstantType>}
- is the root element of the files that correspond to constant types.
- \item[]\texttt{<ConstantBody>}
- is the root element of the files that correspond to constant bodies.
- It is used only for closed definitions and theorems (i.e. when no
- metavariable occurs in the body or type of the constant)
- \item[]\texttt{<CurrentProof>}
- is the root element of the file that correspond to the body of a constant
- that depends on metavariables (e.g. unfinished proofs)
- \item[]\texttt{<Variable>}
- is the root element of the files that correspond to variables
- \item[]\texttt{<InductiveTypes>}
- is the root element of the files that correspond to blocks
- of mutually defined inductive definitions
-\end{description}
-
-The elements
- \verb+<LAMBDA>+, \verb+<CAST>+, \verb+<PROD>+, \verb+<REL>+, \verb+<SORT>+,
- \verb+<APPLY>+, \verb+<VAR>+, \verb+<META>+, \verb+<IMPLICIT>+, \verb+<CONST>+, \verb+<LETIN>+, \verb+<MUTIND>+, \verb+<MUTCONSTRUCT>+, \verb+<MUTCASE>+,
- \verb+<FIX>+ and \verb+<COFIX>+ are used to encode the constructors of CIC.
- The \verb+sort+ or \verb+type+ attribute of the element, if present, is
- respectively the sort or the type of the term, that is a sort because of the
- typing rules of CIC.
-
-The element \verb+<instantiate>+ correspond to the application of an explicit
-named substitution to its first argument, that is a reference to a definition
-or declaration in the environment.
-
-All the other elements are just syntactic sugar.
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Micromega.tex b/doc/refman/Micromega.tex
deleted file mode 100644
index 2fe7c2f7..00000000
--- a/doc/refman/Micromega.tex
+++ /dev/null
@@ -1,198 +0,0 @@
-\achapter{Micromega : tactics for solving arithmetics goals over ordered rings}
-\aauthor{Frédéric Besson and Evgeny Makarov}
-\newtheorem{theorem}{Theorem}
-
-For using the tactics out-of-the-box, read Section~\ref{sec:psatz-hurry}.
-%
-Section~\ref{sec:psatz-back} presents some background explaining the proof principle for solving polynomials goals.
-%
-Section~\ref{sec:lia} explains how to get a complete procedure for linear integer arithmetic.
-
-\asection{The {\tt psatz} tactic in a hurry}
-\tacindex{psatz}
-\label{sec:psatz-hurry}
-Load the {\tt Psatz} module ({\tt Require Psatz}.). This module defines the tactics:
-{\tt lia}, {\tt psatzl D}, %{\tt sos D}
-and {\tt psatz D n} where {\tt D} is {\tt Z}, {\tt Q} or {\tt R} and {\tt n} is an optional integer limiting the proof search depth.
- %
- \begin{itemize}
- \item The {\tt psatzl} tactic solves linear goals using an embedded (naive) linear programming prover \emph{i.e.},
- fourier elimination.
- \item The {\tt psatz} tactic solves polynomial goals using John Harrison's Hol light driver to the external prover {\tt cspd}\footnote{Sources and binaries can be found at \url{https://projects.coin-or.org/Csdp}}. Note that the {\tt csdp} driver is generating
- a \emph{proof cache} thus allowing to rerun scripts even without {\tt csdp}.
- \item The {\tt lia} (linear integer arithmetic) tactic is specialised to solve linear goals over $\mathbb{Z}$.
- It extends {\tt psatzl Z} and exploits the discreetness of $\mathbb{Z}$.
-%% \item The {\tt sos} tactic is another Hol light driver to the {\tt csdp} prover. In theory, it is less general than
-%% {\tt psatz}. In practice, even when {\tt psatz} fails, it can be worth a try -- see
-%% Section~\ref{sec:psatz-back} for details.
- \end{itemize}
-
-These tactics solve propositional formulas parameterised by atomic arithmetics expressions
-interpreted over a domain $D \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R} \}$.
-The syntax of the formulas is the following:
-\[
-\begin{array}{lcl}
- F &::=& A \mid P \mid \mathit{True} \mid \mathit{False} \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid F_1 \leftrightarrow F_2 \mid F_1 \to F_2 \mid \sim F\\
- A &::=& p_1 = p_2 \mid p_1 > p_2 \mid p_1 < p_2 \mid p_1 \ge p_2 \mid p_1 \le p_2 \\
- p &::=& c \mid x \mid {-}p \mid p_1 - p_2 \mid p_1 + p_2 \mid p_1 \times p_2 \mid p \verb!^! n
- \end{array}
- \]
- where $c$ is a numeric constant, $x\in D$ is a numeric variable and the operators $-$, $+$, $\times$, are
- respectively subtraction, addition, product, $p \verb!^!n $ is exponentiation by a constant $n$, $P$ is an
- arbitrary proposition. %that is mostly ignored.
-%%
-%% Over $\mathbb{Z}$, $c$ is an integer ($c \in \mathtt{Z}$), over $\mathbb{Q}$, $c$ is
-The following table details for each domain $D \in \{\mathbb{Z},\mathbb{Q},\mathbb{R}\}$ the range of constants $c$ and exponent $n$.
-\[
-\begin{array}{|c|c|c|c|}
- \hline
- &\mathbb{Z} & \mathbb{Q} & \mathbb{R} \\
- \hline
- c &\mathtt{Z} & \mathtt{Q} & \{R1, R0\} \\
- \hline
- n &\mathtt{Z} & \mathtt{Z} & \mathtt{nat}\\
- \hline
-\end{array}
-\]
-
-\asection{\emph{Positivstellensatz} refutations}
-\label{sec:psatz-back}
-
-The name {\tt psatz} is an abbreviation for \emph{positivstellensatz} -- literally positivity theorem -- which
-generalises Hilbert's \emph{nullstellensatz}.
-%
-It relies on the notion of $\mathit{Cone}$. Given a (finite) set of polynomials $S$, $Cone(S)$ is
-inductively defined as the smallest set of polynomials closed under the following rules:
-\[
-\begin{array}{l}
-\dfrac{p \in S}{p \in Cone(S)} \quad
-\dfrac{}{p^2 \in Cone(S)} \quad
-\dfrac{p_1 \in Cone(S) \quad p_2 \in Cone(S) \quad \Join \in \{+,*\}} {p_1 \Join p_2 \in Cone(S)}\\
-\end{array}
-\]
-The following theorem provides a proof principle for checking that a set of polynomial inequalities do not have solutions\footnote{Variants deal with equalities and strict inequalities.}:
-\begin{theorem}
- \label{thm:psatz}
- Let $S$ be a set of polynomials.\\
- If ${-}1$ belongs to $Cone(S)$ then the conjunction $\bigwedge_{p \in S} p\ge 0$ is unsatisfiable.
-\end{theorem}
-A proof based on this theorem is called a \emph{positivstellensatz} refutation.
-%
-The tactics work as follows. Formulas are normalised into conjonctive normal form $\bigwedge_i C_i$ where
-$C_i$ has the general form $(\bigwedge_{j\in S_i} p_j \Join 0) \to \mathit{False})$ and $\Join \in \{>,\ge,=\}$ for $D\in
-\{\mathbb{Q},\mathbb{R}\}$ and $\Join \in \{\ge, =\}$ for $\mathbb{Z}$.
-%
-For each conjunct $C_i$, the tactic calls a oracle which searches for $-1$ within the cone.
-%
-Upon success, the oracle returns a \emph{cone expression} that is normalised by the {\tt ring} tactic (see chapter~\ref{ring}) and checked to be
-$-1$.
-
-To illustrate the working of the tactic, consider we wish to prove the following Coq goal.\\
-\begin{coq_eval}
- Require Import ZArith Psatz.
- Open Scope Z_scope.
-\end{coq_eval}
-\begin{coq_example*}
- Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
-\end{coq_example*}
-\begin{coq_eval}
-intro x; psatz Z 2.
-\end{coq_eval}
-Such a goal is solved by {\tt intro x; psatz Z 2}. The oracle returns the cone expression $2 \times
-(\mathbf{x-1}) + \mathbf{x-1}\times\mathbf{x-1} + \mathbf{-x^2}$ (polynomial hypotheses are printed in bold). By construction, this
-expression belongs to $Cone(\{-x^2, x -1\})$. Moreover, by running {\tt ring} we obtain $-1$. By
-Theorem~\ref{thm:psatz}, the goal is valid.
-%
-
-\paragraph{The {\tt psatzl} tactic} is searching for \emph{linear} refutations using a fourier
-elimination\footnote{More efficient linear programming techniques could equally be employed}.
-As a result, this tactic explore a subset of the $Cone$ defined as:
-\[
-LinCone(S) =\left\{ \left. \sum_{p \in S} \alpha_p \times p\ \right|\ \alpha_p \mbox{ are positive constants} \right\}
-\]
-Basically, the deductive power of {\tt psatzl} is the combined deductive power of {\tt ring\_simplify} and {\tt fourier}.
-
-\paragraph{The {\tt psatz} tactic} explores the $Cone$ by increasing degrees -- hence the depth parameter $n$.
-In theory, such a proof search is complete -- if the goal is provable the search eventually stops.
-Unfortunately, the external oracle is using numeric (approximate) optimisation techniques that might miss a
-refutation.
-
-%% \paragraph{The {\tt sos} tactic} -- where {\tt sos} stands for \emph{sum of squares} -- tries to prove that a
-%% single polynomial $p$ is positive by expressing it as a sum of squares \emph{i.e.,} $\sum_{i\in S} p_i^2$.
-%% This amounts to searching for $p$ in the cone without generators \emph{i.e.}, $Cone(\{\})$.
-%
-
-\asection{ {\tt lia} : the linear integer arithmetic tactic }
-\tacindex{lia}
-\label{sec:lia}
-
-The tactic {\tt lia} offers an alternative to the {\tt omega} and {\tt romega} tactic (see
-Chapter~\ref{OmegaChapter}). It solves goals that {\tt omega} and {\tt romega} do not solve, such as the
-following so-called \emph{omega nightmare}~\cite{TheOmegaPaper}.
-\begin{coq_example*}
- Goal forall x y,
- 27 <= 11 * x + 13 * y <= 45 ->
- -10 <= 7 * x - 9 * y <= 4 -> False.
-\end{coq_example*}
-\begin{coq_eval}
-intro x; lia;
-\end{coq_eval}
-The estimation of the relative efficiency of lia \emph{vs} {\tt omega}
-and {\tt romega} is under evaluation.
-
-\paragraph{High level view of {\tt lia}.}
-Over $\mathbb{R}$, \emph{positivstellensatz} refutations are a complete proof principle\footnote{In practice, the oracle might fail to produce such a refutation.}.
-%
-However, this is not the case over $\mathbb{Z}$.
-%
-Actually, \emph{positivstellensatz} refutations are not even sufficient to decide linear \emph{integer}
-arithmetics.
-%
-The canonical exemple is {\tt 2 * x = 1 -> False} which is a theorem of $\mathbb{Z}$ but not a theorem of $\mathbb{R}$.
-%
-To remedy this weakness, the {\tt lia} tactic is using recursively a combination of:
-%
-\begin{itemize}
-\item linear \emph{positivstellensatz} refutations \emph{i.e.}, {\tt psatzl Z};
-\item cutting plane proofs;
-\item case split.
-\end{itemize}
-
-\paragraph{Cutting plane proofs} are a way to take into account the discreetness of $\mathbb{Z}$ by rounding up
-(rational) constants up-to the closest integer.
-%
-\begin{theorem}
- Let $p$ be an integer and $c$ a rational constant.
- \[
- p \ge c \Rightarrow p \ge \lceil c \rceil
- \]
-\end{theorem}
-For instance, from $2 * x = 1$ we can deduce
-\begin{itemize}
-\item $x \ge 1/2$ which cut plane is $ x \ge \lceil 1/2 \rceil = 1$;
-\item $ x \le 1/2$ which cut plane is $ x \le \lfloor 1/2 \rfloor = 0$.
-\end{itemize}
-By combining these two facts (in normal form) $x - 1 \ge 0$ and $-x \ge 0$, we conclude by exhibiting a
-\emph{positivstellensatz} refutation ($-1 \equiv \mathbf{x-1} + \mathbf{-x} \in Cone(\{x-1,x\})$).
-
-Cutting plane proofs and linear \emph{positivstellensatz} refutations are a complete proof principle for integer linear arithmetic.
-
-\paragraph{Case split} allow to enumerate over the possible values of an expression.
-\begin{theorem}
- Let $p$ be an integer and $c_1$ and $c_2$ integer constants.
- \[
- c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1,c_2]} p = x
- \]
-\end{theorem}
-Our current oracle tries to find an expression $e$ with a small range $[c_1,c_2]$.
-%
-We generate $c_2 - c_1$ subgoals which contexts are enriched with an equation $e = i$ for $i \in [c_1,c_2]$ and
-recursively search for a proof.
-
-% This technique is used to solve so-called \emph{Omega nightmare}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Natural.tex b/doc/refman/Natural.tex
deleted file mode 100644
index 9a9abe5d..00000000
--- a/doc/refman/Natural.tex
+++ /dev/null
@@ -1,425 +0,0 @@
-\achapter{\texttt{Natural} : proofs in natural language}
-\aauthor{Yann Coscoy}
-
-\asection{Introduction}
-
-\Natural~ is a package allowing the writing of proofs in natural
-language. For instance, the proof in \Coq~of the induction principle on pairs
-of natural numbers looks like this:
-
-\begin{coq_example*}
-Require Natural.
-\end{coq_example*}
-\begin{coq_example}
-Print nat_double_ind.
-\end{coq_example}
-
-Piping it through the \Natural~pretty-printer gives:
-
-\comindex{Print Natural}
-\begin{coq_example}
-Print Natural nat_double_ind.
-\end{coq_example}
-
-\asection{Activating \Natural}
-
-To enable the printing of proofs in natural language, you should
-type under \texttt{coqtop} or \texttt{coqtop -full} the command
-
-\begin{coq_example*}
-Require Natural.
-\end{coq_example*}
-
-By default, proofs are transcripted in english. If you wish to print them
-in French, set the French option by
-
-\comindex{Set Natural}
-\begin{coq_example*}
-Set Natural French.
-\end{coq_example*}
-
-If you want to go back to English, type in
-
-\begin{coq_example*}
-Set Natural English.
-\end{coq_example*}
-
-Currently, only \verb=French= and \verb=English= are available.
-
-You may see for example the natural transcription of the proof of
-the induction principle on pairs of natural numbers:
-
-\begin{coq_example*}
-Print Natural nat_double_ind.
-\end{coq_example*}
-
-You may also show in natural language the current proof in progress:
-
-\comindex{Show Natural}
-\begin{coq_example}
-Goal (n:nat)(le O n).
-Induction n.
-Show Natural Proof.
-\end{coq_example}
-
-\subsection*{Restrictions}
-
-For \Natural, a proof is an object of type a proposition (i.e. an
-object of type something of type {\tt Prop}). Only proofs are written
-in natural language when typing {\tt Print Natural \ident}. All other
-objects (the objects of type something which is of type {\tt Set} or
-{\tt Type}) are written as usual $\lambda$-terms.
-
-\asection{Customizing \Natural}
-
-The transcription of proofs in natural language is mainly a paraphrase of
-the formal proofs, but some specific hints in the transcription
-can be given.
-Three kinds of customization are available.
-
-\asubsection{Implicit proof steps}
-
-\subsubsection*{Implicit lemmas}
-
-Applying a given lemma or theorem \verb=lem1= of statement, say $A
-\Rightarrow B$, to an hypothesis, say $H$ (assuming $A$) produces the
-following kind of output translation:
-
-\begin{verbatim}
-...
-Using lem1 with H we get B.
-...
-\end{verbatim}
-
-But sometimes, you may prefer not to see the explicit invocation to
-the lemma. You may prefer to see:
-
-\begin{verbatim}
-...
-With H we have A.
-...
-\end{verbatim}
-
-This is possible by declaring the lemma as implicit. You should type:
-
-\comindex{Add Natural}
-\begin{coq_example*}
-Add Natural Implicit lem1.
-\end{coq_example*}
-
-By default, the lemmas \verb=proj1=, \verb=proj2=, \verb=sym_equal=
-and \verb=sym_eqT= are declared implicit. To remove a lemma or a theorem
-previously declared as implicit, say \verb=lem1=, use the command
-
-\comindex{Remove Natural}
-\begin{coq_example*}
-Remove Natural Implicit lem1.
-\end{coq_example*}
-
-To test if the lemma or theorem \verb=lem1= is, or is not,
-declared as implicit, type
-
-\comindex{Test Natural}
-\begin{coq_example*}
-Test Natural Implicit for lem1.
-\end{coq_example*}
-
-\subsubsection*{Implicit proof constructors}
-
-Let \verb=constr1= be a proof constructor of a given inductive
-proposition (or predicate)
-\verb=Q= (of type \verb=Prop=). Assume \verb=constr1= proves
-\verb=(x:A)(P x)->(Q x)=. Then, applying \verb=constr1= to an hypothesis,
-say \verb=H= (assuming \verb=(P a)=) produces the following kind of output:
-
-\begin{verbatim}
-...
-By the definition of Q, with H we have (Q a).
-...
-\end{verbatim}
-
-But sometimes, you may prefer not to see the explicit invocation to
-this constructor. You may prefer to see:
-
-\begin{verbatim}
-...
-With H we have (Q a).
-...
-\end{verbatim}
-
-This is possible by declaring the constructor as implicit. You should
-type, as before:
-
-\comindex{Add Natural Implicit}
-\begin{coq_example*}
-Add Natural Implicit constr1.
-\end{coq_example*}
-
-By default, the proposition (or predicate) constructors
-
-\verb=conj=, \verb=or_introl=, \verb=or_intror=, \verb=ex_intro=,
-\verb=exT_intro=, \verb=refl_equal=, \verb=refl_eqT= and \verb=exist=
-
-\noindent are declared implicit. Note that declaring implicit the
-constructor of a datatype (i.e. an inductive type of type \verb=Set=)
-has no effect.
-
-As above, you can remove or test a constant declared implicit.
-
-\subsubsection*{Implicit inductive constants}
-
-Let \verb=Ind= be an inductive type (either a proposition (or a
-predicate) -- on \verb=Prop= --, or a datatype -- on \verb=Set=).
-Suppose the proof proceeds by induction on an hypothesis \verb=h=
-proving \verb=Ind= (or more generally \verb=(Ind A1 ... An)=). The
-following kind of output is produced:
-
-\begin{verbatim}
-...
-With H, we will prove A by induction on the definition of Ind.
-Case 1. ...
-Case 2. ...
-...
-\end{verbatim}
-
-But sometimes, you may prefer not to see the explicit invocation to
-\verb=Ind=. You may prefer to see:
-
-\begin{verbatim}
-...
-We will prove A by induction on H.
-Case 1. ...
-Case 2. ...
-...
-\end{verbatim}
-
-This is possible by declaring the inductive type as implicit. You should
-type, as before:
-
-\comindex{Add Natural Implicit}
-\begin{coq_example*}
-Add Natural Implicit Ind.
-\end{coq_example*}
-
-This kind of parameterization works for any inductively defined
-proposition (or predicate) or datatype. Especially, it works whatever
-the definition is recursive or purely by cases.
-
-By default, the data type \verb=nat= and the inductive connectives
-\verb=and=, \verb=or=, \verb=sig=, \verb=False=, \verb=eq=,
-\verb=eqT=, \verb=ex= and \verb=exT= are declared implicit.
-
-As above, you can remove or test a constant declared implicit. Use
-{\tt Remove Natural Contractible $id$} or {\tt Test Natural
-Contractible for $id$}.
-
-\asubsection{Contractible proof steps}
-
-\subsubsection*{Contractible lemmas or constructors}
-
-Some lemmas, theorems or proof constructors of inductive predicates are
-often applied in a row and you obtain an output of this kind:
-
-\begin{verbatim}
-...
-Using T with H1 and H2 we get P.
- * By H3 we have Q.
- Using T with theses results we get R.
-...
-\end{verbatim}
-
-where \verb=T=, \verb=H1=, \verb=H2= and \verb=H3= prove statements
-of the form \verb=(X,Y:Prop)X->Y->(L X Y)=, \verb=A=, \verb=B= and \verb=C=
-respectively (and thus \verb=R= is \verb=(L (L A B) C)=).
-
-You may obtain a condensed output of the form
-
-\begin{verbatim}
-...
-Using T with H1, H2, and H3 we get R.
-...
-\end{verbatim}
-
-by declaring \verb=T= as contractible:
-
-\comindex{Add Natural Contractible}
-\begin{coq_example*}
-Add Natural Contractible T.
-\end{coq_example*}
-
-By default, the lemmas \verb=proj1=, \verb=proj2= and the proof
-constructors \verb=conj=, \verb=or_introl=, \verb=or_intror= are
-declared contractible. As for implicit notions, you can remove or
-test a lemma or constructor declared contractible.
-
-\subsubsection*{Contractible induction steps}
-
-Let \verb=Ind= be an inductive type. When the proof proceeds by
-induction in a row, you may obtain an output of this kind:
-
-\begin{verbatim}
-...
-We have (Ind A (Ind B C)).
-We use definition of Ind in a study in two cases.
-Case 1: We have A.
-Case 2: We have (Ind B C).
- We use definition of Ind in a study of two cases.
- Case 2.1: We have B.
- Case 2.2: We have C.
-...
-\end{verbatim}
-
-You may prefer to see
-
-\begin{verbatim}
-...
-We have (Ind A (Ind B C)).
-We use definition of Ind in a study in three cases.
-Case 1: We have A.
-Case 2: We have B.
-Case 3: We have C.
-...
-\end{verbatim}
-
-This is possible by declaring \verb=Ind= as contractible:
-
-\begin{coq_example*}
-Add Natural Contractible T.
-\end{coq_example*}
-
-By default, only \verb=or= is declared as a contractible inductive
-constant.
-As for implicit notions, you can remove or test an inductive notion declared
-contractible.
-
-\asubsection{Transparent definitions}
-
-``Normal'' definitions are all constructions except proofs and proof constructors.
-
-\subsubsection*{Transparent non inductive normal definitions}
-
-When using the definition of a non inductive constant, say \verb=D=, the
-following kind of output is produced:
-
-\begin{verbatim}
-...
-We have proved C which is equivalent to D.
-...
-\end{verbatim}
-
-But you may prefer to hide that D comes from the definition of C as
-follows:
-
-\begin{verbatim}
-...
-We have prove D.
-...
-\end{verbatim}
-
-This is possible by declaring \verb=C= as transparent:
-
-\comindex{Add Natural Transparent}
-\begin{coq_example*}
-Add Natural Transparent D.
-\end{coq_example*}
-
-By default, only \verb=not= (normally written \verb=~=) is declared as
-a non inductive transparent definition.
-As for implicit and contractible definitions, you can remove or test a
-non inductive definition declared transparent.
-Use \texttt{Remove Natural Transparent} \ident or
-\texttt{Test Natural Transparent for} \ident.
-
-\subsubsection*{Transparent inductive definitions}
-
-Let \verb=Ind= be an inductive proposition (more generally: a
-predicate \verb=(Ind x1 ... xn)=). Suppose the definition of
-\verb=Ind= is non recursive and built with just
-one constructor proving something like \verb=A -> B -> Ind=.
-When coming back to the definition of \verb=Ind= the
-following kind of output is produced:
-
-\begin{verbatim}
-...
-Assume Ind (H).
- We use H with definition of Ind.
- We have A and B.
- ...
-\end{verbatim}
-
-When \verb=H= is not used a second time in the proof, you may prefer
-to hide that \verb=A= and \verb=B= comes from the definition of
-\verb=Ind=. You may prefer to get directly:
-
-\begin{verbatim}
-...
-Assume A and B.
-...
-\end{verbatim}
-
-This is possible by declaring \verb=Ind= as transparent:
-
-\begin{coq_example*}
-Add Natural Transparent Ind.
-\end{coq_example*}
-
-By default, \verb=and=, \verb=or=, \verb=ex=, \verb=exT=, \verb=sig=
-are declared as inductive transparent constants. As for implicit and
-contractible constants, you can remove or test an inductive
-constant declared transparent.
-
-As for implicit and contractible constants, you can remove or test an
-inductive constant declared transparent.
-
-\asubsection{Extending the maximal depth of nested text}
-
-The depth of nested text is limited. To know the current depth, do:
-
-\comindex{Set Natural Depth}
-\begin{coq_example}
-Set Natural Depth.
-\end{coq_example}
-
-To change the maximal depth of nested text (for instance to 125) do:
-
-\begin{coq_example}
-Set Natural Depth 125.
-\end{coq_example}
-
-\asubsection{Restoring the default parameterization}
-
-The command \verb=Set Natural Default= sets back the parameterization tables of
-\Natural~ to their default values, as listed in the above sections.
-Moreover, the language is set back to English and the max depth of
-nested text is set back to its initial value.
-
-\asubsection{Printing the current parameterization}
-
-The commands {\tt Print Natural Implicit}, {\tt Print Natural
-Contractible} and {\tt Print \\ Natural Transparent} print the list of
-constructions declared {\tt Implicit}, {\tt Contractible},
-{\tt Transparent} respectively.
-
-\asubsection{Interferences with \texttt{Reset}}
-
-The customization of \texttt{Natural} is dependent of the \texttt{Reset}
-command. If you reset the environment back to a point preceding an
-\verb=Add Natural ...= command, the effect of the command will be
-erased. Similarly, a reset back to a point before a
-\verb=Remove Natural ... = command invalidates the removal.
-
-\asection{Error messages}
-
-An error occurs when trying to \verb=Print=, to \verb=Add=, to
-\verb=Test=, or to \verb=remove= an undefined ident. Similarly, an
-error occurs when trying to set a language unknown from \Natural.
-Errors may also occur when trying to parameterize the printing of
-proofs: some parameterization are effectively forbidden.
-Note that to \verb=Remove= an ident absent from a table or to
-\verb=Add= to a table an already present ident does not lead to an
-error.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Nsatz.tex b/doc/refman/Nsatz.tex
deleted file mode 100644
index 794e461f..00000000
--- a/doc/refman/Nsatz.tex
+++ /dev/null
@@ -1,110 +0,0 @@
-\achapter{Nsatz: tactics for proving equalities in integral domains}
-\aauthor{Loïc Pottier}
-
-The tactic \texttt{nsatz} proves goals of the form
-
-\[ \begin{array}{l}
- \forall X_1,\ldots,X_n \in A,\\
- P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
- \vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
- \end{array}
-\]
-where $P,Q, P_1,Q_1,\ldots,P_s,Q_s$ are polynomials and A is an integral
-domain, i.e. a commutative ring with no zero divisor. For example, A can be
-$\mathbb{R}$, $\mathbb{Z}$, of $\mathbb{Q}$. Note that the equality $=$ used in these
-goals can be any setoid equality
-(see \ref{setoidtactics})
-, not only Leibnitz equality.
-
-It also proves formulas
-\[ \begin{array}{l}
- \forall X_1,\ldots,X_n \in A,\\
- P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
- \rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
- \end{array}
-\] doing automatic introductions.
-
-\asection{Using the basic tactic \texttt{nsatz}}
-\tacindex{nsatz}
-
-Load the
-\texttt{Nsatz} module: \texttt{Require Import Nsatz}.\\
- and use the tactic \texttt{nsatz}.
-
-\asection{More about \texttt{nsatz}}
-
-Hilbert's Nullstellensatz theorem shows how to reduce proofs of equalities on
-polynomials on a commutative ring A with no zero divisor to algebraic computations: it is easy to see that if a polynomial
-$P$ in $A[X_1,\ldots,X_n]$ verifies $c P^r = \sum_{i=1}^{s} S_i P_i$, with $c
-\in A$, $c \not = 0$, $r$ a positive integer, and the $S_i$s in
-$A[X_1,\ldots,X_n]$, then $P$ is zero whenever polynomials $P_1,...,P_s$ are
-zero (the converse is also true when A is an algebraic closed field:
-the method is complete).
-
-So, proving our initial problem can reduce into finding $S_1,\ldots,S_s$, $c$
-and $r$ such that $c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)$, which will be proved by the
-tactic \texttt{ring}.
-
-This is achieved by the computation of a Groebner basis of the
-ideal generated by $P_1-Q_1,...,P_s-Q_s$, with an adapted version of the Buchberger
-algorithm.
-
-This computation is done after a step of {\em reification}, which is
-performed using {\em Type Classes}
-(see \ref{typeclasses})
-.
-
-The \texttt{Nsatz} module defines the generic tactic
-\texttt{nsatz}, which uses the low-level tactic \texttt{nsatz\_domainpv}: \\
-\vspace*{3mm}
-\texttt{nsatz\_domainpv pretac rmax strategy lparam lvar simpltac domain}
-
-where:
-
-\begin{itemize}
- \item \texttt{pretac} is a tactic depending on the ring A; its goal is to
-make apparent the generic operations of a domain (ring\_eq, ring\_plus, etc),
-both in the goal and the hypotheses; it is executed first. By default it is \texttt{ltac:idtac}.
-
- \item \texttt{rmax} is a bound when for searching r s.t.$c (P-Q)^r =
-\sum_{i=1..s} S_i (P_i - Q_i)$
-
- \item \texttt{strategy} gives the order on variables $X_1,...X_n$ and
-the strategy used in Buchberger algorithm (see
-\cite{sugar} for details):
-
- \begin{itemize}
- \item strategy = 0: reverse lexicographic order and newest s-polynomial.
- \item strategy = 1: reverse lexicographic order and sugar strategy.
- \item strategy = 2: pure lexicographic order and newest s-polynomial.
- \item strategy = 3: pure lexicographic order and sugar strategy.
- \end{itemize}
-
- \item \texttt{lparam} is the list of variables
-$X_{i_1},\ldots,X_{i_k}$ among $X_1,...,X_n$ which are considered as
- parameters: computation will be performed with rational fractions in these
- variables, i.e. polynomials are considered with coefficients in
-$R(X_{i_1},\ldots,X_{i_k})$. In this case, the coefficient $c$ can be a non
-constant polynomial in $X_{i_1},\ldots,X_{i_k}$, and the tactic produces a goal
-which states that $c$ is not zero.
-
- \item \texttt{lvar} is the list of the variables
-in the decreasing order in which they will be used in Buchberger algorithm. If \texttt{lvar} = {(@nil
-R)}, then \texttt{lvar} is replaced by all the variables which are not in
-lparam.
-
- \item \texttt{simpltac} is a tactic depending on the ring A; its goal is to
-simplify goals and make apparent the generic operations of a domain after
-simplifications. By default it is \texttt{ltac:simpl}.
-
- \item \texttt{domain} is the object of type Domain representing A, its
-operations and properties of integral domain.
-
-\end{itemize}
-
-See file \texttt{Nsatz.v} for examples.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Omega.tex b/doc/refman/Omega.tex
deleted file mode 100644
index b9e899ce..00000000
--- a/doc/refman/Omega.tex
+++ /dev/null
@@ -1,226 +0,0 @@
-\achapter{Omega: a solver of quantifier-free problems in
-Presburger Arithmetic}
-\aauthor{Pierre Crégut}
-\label{OmegaChapter}
-
-\asection{Description of {\tt omega}}
-\tacindex{omega}
-\label{description}
-
-{\tt omega} solves a goal in Presburger arithmetic, i.e. a universally
-quantified formula made of equations and inequations. Equations may
-be specified either on the type \verb=nat= of natural numbers or on
-the type \verb=Z= of binary-encoded integer numbers. Formulas on
-\verb=nat= are automatically injected into \verb=Z=. The procedure
-may use any hypothesis of the current proof session to solve the goal.
-
-Multiplication is handled by {\tt omega} but only goals where at
-least one of the two multiplicands of products is a constant are
-solvable. This is the restriction meant by ``Presburger arithmetic''.
-
-If the tactic cannot solve the goal, it fails with an error message.
-In any case, the computation eventually stops.
-
-\asubsection{Arithmetical goals recognized by {\tt omega}}
-
-{\tt omega} applied only to quantifier-free formulas built from the
-connectors
-
-\begin{quote}
-\verb=/\, \/, ~, ->=
-\end{quote}
-
-on atomic formulas. Atomic formulas are built from the predicates
-
-\begin{quote}
-\verb!=, le, lt, gt, ge!
-\end{quote}
-
- on \verb=nat= or from the predicates
-
-\begin{quote}
-\verb!=, <, <=, >, >=!
-\end{quote}
-
- on \verb=Z=. In expressions of type \verb=nat=, {\tt omega} recognizes
-
-\begin{quote}
-\verb!plus, minus, mult, pred, S, O!
-\end{quote}
-
-and in expressions of type \verb=Z=, {\tt omega} recognizes
-
-\begin{quote}
-\verb!+, -, *, Zsucc!, and constants.
-\end{quote}
-
-All expressions of type \verb=nat= or \verb=Z= not built on these
-operators are considered abstractly as if they
-were arbitrary variables of type \verb=nat= or \verb=Z=.
-
-\asubsection{Messages from {\tt omega}}
-\label{errors}
-
-When {\tt omega} does not solve the goal, one of the following errors
-is generated:
-
-\begin{ErrMsgs}
-
-\item \errindex{omega can't solve this system}
-
- This may happen if your goal is not quantifier-free (if it is
- universally quantified, try {\tt intros} first; if it contains
- existentials quantifiers too, {\tt omega} is not strong enough to solve your
- goal). This may happen also if your goal contains arithmetical
- operators unknown from {\tt omega}. Finally, your goal may be really
- wrong!
-
-\item \errindex{omega: Not a quantifier-free goal}
-
- If your goal is universally quantified, you should first apply {\tt
- intro} as many time as needed.
-
-\item \errindex{omega: Unrecognized predicate or connective: {\sl ident}}
-
-\item \errindex{omega: Unrecognized atomic proposition: {\sl prop}}
-
-\item \errindex{omega: Can't solve a goal with proposition variables}
-
-\item \errindex{omega: Unrecognized proposition}
-
-\item \errindex{omega: Can't solve a goal with non-linear products}
-
-\item \errindex{omega: Can't solve a goal with equality on {\sl type}}
-
-\end{ErrMsgs}
-
-%% Ce code est débranché pour l'instant
-%%
-% \asubsection{Control over the output}
-% There are some flags that can be set to get more information on the procedure
-
-% \begin{itemize}
-% \item \verb=Time= to get the time used by the procedure
-% \item \verb=System= to visualize the normalized systems.
-% \item \verb=Action= to visualize the actions performed by the OMEGA
-% procedure (see \ref{technical}).
-% \end{itemize}
-
-% \comindex{Set omega Time}
-% \comindex{UnSet omega Time}
-% \comindex{Switch omega Time}
-% \comindex{Set omega System}
-% \comindex{UnSet omega System}
-% \comindex{Switch omega System}
-% \comindex{Set omega Action}
-% \comindex{UnSet omega Action}
-% \comindex{Switch omega Action}
-
-% Use {\tt Set omega {\rm\sl flag}} to set the flag
-% {\rm\sl flag}. Use {\tt Unset omega {\rm\sl flag}} to unset it and
-% {\tt Switch omega {\rm\sl flag}} to toggle it.
-
-\section{Using {\tt omega}}
-
-The {\tt omega} tactic does not belong to the core system. It should be
-loaded by
-\begin{coq_example*}
-Require Import Omega.
-Open Scope Z_scope.
-\end{coq_example*}
-
-\example{}
-
-\begin{coq_example}
-Goal forall m n:Z, 1 + 2 * m <> 2 * n.
-intros; omega.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\example{}
-
-\begin{coq_example}
-Goal forall z:Z, z > 0 -> 2 * z + 1 > z.
-intro; omega.
-\end{coq_example}
-
-% Other examples can be found in \verb+$COQLIB/theories/DEMOS/OMEGA+.
-
-\asection{Technical data}
-\label{technical}
-
-\asubsection{Overview of the tactic}
-\begin{itemize}
-
-\item The goal is negated twice and the first negation is introduced as an
- hypothesis.
-\item Hypothesis are decomposed in simple equations or inequations. Multiple
- goals may result from this phase.
-\item Equations and inequations over \verb=nat= are translated over
- \verb=Z=, multiple goals may result from the translation of
- substraction.
-\item Equations and inequations are normalized.
-\item Goals are solved by the {\it OMEGA} decision procedure.
-\item The script of the solution is replayed.
-
-\end{itemize}
-
-\asubsection{Overview of the {\it OMEGA} decision procedure}
-
-The {\it OMEGA} decision procedure involved in the {\tt omega} tactic uses
-a small subset of the decision procedure presented in
-
-\begin{quote}
- "The Omega Test: a fast and practical integer programming
-algorithm for dependence analysis", William Pugh, Communication of the
-ACM , 1992, p 102-114.
-\end{quote}
-
-Here is an overview, look at the original paper for more information.
-
-\begin{itemize}
-
-\item Equations and inequations are normalized by division by the GCD of their
- coefficients.
-\item Equations are eliminated, using the Banerjee test to get a coefficient
- equal to one.
-\item Note that each inequation defines a half space in the space of real value
- of the variables.
- \item Inequations are solved by projecting on the hyperspace
- defined by cancelling one of the variable. They are partitioned
- according to the sign of the coefficient of the eliminated
- variable. Pairs of inequations from different classes define a
- new edge in the projection.
- \item Redundant inequations are eliminated or merged in new
- equations that can be eliminated by the Banerjee test.
-\item The last two steps are iterated until a contradiction is reached
- (success) or there is no more variable to eliminate (failure).
-
-\end{itemize}
-
-It may happen that there is a real solution and no integer one. The last
-steps of the Omega procedure (dark shadow) are not implemented, so the
-decision procedure is only partial.
-
-\asection{Bugs}
-
-\begin{itemize}
-\item The simplification procedure is very dumb and this results in
- many redundant cases to explore.
-
-\item Much too slow.
-
-\item Certainly other bugs! You can report them to
-
-\begin{quote}
- \url{Pierre.Cregut@cnet.francetelecom.fr}
-\end{quote}
-
-\end{itemize}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex
deleted file mode 100644
index 3898bf4c..00000000
--- a/doc/refman/Polynom.tex
+++ /dev/null
@@ -1,1000 +0,0 @@
-\achapter{The \texttt{ring} and \texttt{field} tactic families}
-\aauthor{Bruno Barras, Benjamin Gr\'egoire, Assia
- Mahboubi, Laurent Th\'ery\footnote{based on previous work from
- Patrick Loiseleur and Samuel Boutin}}
-\label{ring}
-\tacindex{ring}
-
-This chapter presents the tactics dedicated to deal with ring and
-field equations.
-
-\asection{What does this tactic do?}
-
-\texttt{ring} does associative-commutative rewriting in ring and semi-ring
-structures. Assume you have two binary functions $\oplus$ and $\otimes$
-that are associative and commutative, with $\oplus$ distributive on
-$\otimes$, and two constants 0 and 1 that are unities for $\oplus$ and
-$\otimes$. A \textit{polynomial} is an expression built on variables $V_0, V_1,
-\dots$ and constants by application of $\oplus$ and $\otimes$.
-
-Let an {\it ordered product} be a product of variables $V_{i_1}
-\otimes \ldots \otimes V_{i_n}$ verifying $i_1 \le i_2 \le \dots \le
-i_n$. Let a \textit{monomial} be the product of a constant and an
-ordered product. We can order the monomials by the lexicographic
-order on products of variables. Let a \textit{canonical sum} be an
-ordered sum of monomials that are all different, i.e. each monomial in
-the sum is strictly less than the following monomial according to the
-lexicographic order. It is an easy theorem to show that every
-polynomial is equivalent (modulo the ring properties) to exactly one
-canonical sum. This canonical sum is called the \textit{normal form}
-of the polynomial. In fact, the actual representation shares monomials
-with same prefixes. So what does \texttt{ring}? It normalizes
-polynomials over any ring or semi-ring structure. The basic use of
-\texttt{ring} is to simplify ring expressions, so that the user does
-not have to deal manually with the theorems of associativity and
-commutativity.
-
-\begin{Examples}
-\item In the ring of integers, the normal form of
-$x (3 + yx + 25(1 - z)) + zx$ is $28x + (-24)xz + xxy$.
-\end{Examples}
-
-\texttt{ring} is also able to compute a normal form modulo monomial
-equalities. For example, under the hypothesis that $2x^2 = yz+1$,
- the normal form of $2(x + 1)x - x - zy$ is $x+1$.
-
-\asection{The variables map}
-
-It is frequent to have an expression built with + and
- $\times$, but rarely on variables only.
-Let us associate a number to each subterm of a ring
-expression in the \gallina\ language. For example in the ring
-\texttt{nat}, consider the expression:
-
-\begin{quotation}
-\begin{verbatim}
-(plus (mult (plus (f (5)) x) x)
- (mult (if b then (4) else (f (3))) (2)))
-\end{verbatim}
-\end{quotation}
-
-\noindent As a ring expression, it has 3 subterms. Give each subterm a
-number in an arbitrary order:
-
-\begin{tabular}{ccl}
-0 & $\mapsto$ & \verb|if b then (4) else (f (3))| \\
-1 & $\mapsto$ & \verb|(f (5))| \\
-2 & $\mapsto$ & \verb|x| \\
-\end{tabular}
-
-\noindent Then normalize the ``abstract'' polynomial
-
-$$((V_1 \otimes V_2) \oplus V_2) \oplus (V_0 \otimes 2) $$
-
-\noindent In our example the normal form is:
-
-$$(2 \otimes V_0) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2)$$
-
-\noindent Then substitute the variables by their values in the variables map to
-get the concrete normal polynomial:
-
-\begin{quotation}
-\begin{verbatim}
-(plus (mult (2) (if b then (4) else (f (3))))
- (plus (mult (f (5)) x) (mult x x)))
-\end{verbatim}
-\end{quotation}
-
-\asection{Is it automatic?}
-
-Yes, building the variables map and doing the substitution after
-normalizing is automatically done by the tactic. So you can just forget
-this paragraph and use the tactic according to your intuition.
-
-\asection{Concrete usage in \Coq
-\tacindex{ring}
-\tacindex{ring\_simplify}}
-
-The {\tt ring} tactic solves equations upon polynomial expressions of
-a ring (or semi-ring) structure. It proceeds by normalizing both hand
-sides of the equation (w.r.t. associativity, commutativity and
-distributivity, constant propagation, rewriting of monomials)
-and comparing syntactically the results.
-
-{\tt ring\_simplify} applies the normalization procedure described
-above to the terms given. The tactic then replaces all occurrences of
-the terms given in the conclusion of the goal by their normal
-forms. If no term is given, then the conclusion should be an equation
-and both hand sides are normalized.
-The tactic can also be applied in a hypothesis.
-
-The tactic must be loaded by \texttt{Require Import Ring}. The ring
-structures must be declared with the \texttt{Add Ring} command (see
-below). The ring of booleans is predefined; if one wants to use the
-tactic on \texttt{nat} one must first require the module
-\texttt{ArithRing} (exported by \texttt{Arith});
-for \texttt{Z}, do \texttt{Require Import
-ZArithRing} or simply \texttt{Require Import ZArith};
-for \texttt{N}, do \texttt{Require Import NArithRing} or
-\texttt{Require Import NArith}.
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Import ZArith.
-Open Scope Z_scope.
-Goal forall a b c:Z,
- (a + b + c)^2 =
- a * a + b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
-\end{coq_example}
-\begin{coq_example}
-intros; ring.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall a b:Z, 2*a*b = 30 ->
- (a+b)^2 = a^2 + b^2 + 30.
-\end{coq_example}
-\begin{coq_example}
-intros a b H; ring [H].
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Variants}
- \item {\tt ring [\term$_1$ {\ldots} \term$_n$]} decides the equality of two
- terms modulo ring operations and rewriting of the equalities
- defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$
- {\ldots} \term$_n$ has to be a proof of some equality $m = p$,
- where $m$ is a monomial (after ``abstraction''),
- $p$ a polynomial and $=$ the corresponding equality of the ring structure.
-
- \item {\tt ring\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1 \ldots t_m$ in
-{\ident}}
- performs the simplification in the hypothesis named {\tt ident}.
-\end{Variants}
-
-\Warning \texttt{ring\_simplify \term$_1$; ring\_simplify \term$_2$} is
-not equivalent to \texttt{ring\_simplify \term$_1$ \term$_2$}. In the
-latter case the variables map is shared between the two terms, and
-common subterm $t$ of \term$_1$ and \term$_2$ will have the same
-associated variable number. So the first alternative should be
-avoided for terms belonging to the same ring theory.
-
-
-\begin{ErrMsgs}
-\item \errindex{not a valid ring equation}
- The conclusion of the goal is not provable in the corresponding ring
- theory.
-\item \errindex{arguments of ring\_simplify do not have all the same type}
- {\tt ring\_simplify} cannot simplify terms of several rings at the
- same time. Invoke the tactic once per ring structure.
-\item \errindex{cannot find a declared ring structure over {\tt term}}
- No ring has been declared for the type of the terms to be
- simplified. Use {\tt Add Ring} first.
-\item \errindex{cannot find a declared ring structure for equality
- {\tt term}}
- Same as above is the case of the {\tt ring} tactic.
-\end{ErrMsgs}
-
-\asection{Adding a ring structure
-\comindex{Add Ring}}
-
-Declaring a new ring consists in proving that a ring signature (a
-carrier set, an equality, and ring operations: {\tt
-Ring\_theory.ring\_theory} and {\tt Ring\_theory.semi\_ring\_theory})
-satisfies the ring axioms. Semi-rings (rings without $+$ inverse) are
-also supported. The equality can be either Leibniz equality, or any
-relation declared as a setoid (see~\ref{setoidtactics}). The definition
-of ring and semi-rings (see module {\tt Ring\_theory}) is:
-\begin{verbatim}
- Record ring_theory : Prop := mk_rt {
- Radd_0_l : forall x, 0 + x == x;
- Radd_sym : forall x y, x + y == y + x;
- Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
- Rmul_1_l : forall x, 1 * x == x;
- Rmul_sym : forall x y, x * y == y * x;
- Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
- Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
- Rsub_def : forall x y, x - y == x + -y;
- Ropp_def : forall x, x + (- x) == 0
- }.
-
-Record semi_ring_theory : Prop := mk_srt {
- SRadd_0_l : forall n, 0 + n == n;
- SRadd_sym : forall n m, n + m == m + n ;
- SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
- SRmul_1_l : forall n, 1*n == n;
- SRmul_0_l : forall n, 0*n == 0;
- SRmul_sym : forall n m, n*m == m*n;
- SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
- SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
- }.
-\end{verbatim}
-
-This implementation of {\tt ring} also features a notion of constant
-that can be parameterized. This can be used to improve the handling of
-closed expressions when operations are effective. It consists in
-introducing a type of \emph{coefficients} and an implementation of the
-ring operations, and a morphism from the coefficient type to the ring
-carrier type. The morphism needs not be injective, nor surjective. As
-an example, one can consider the real numbers. The set of coefficients
-could be the rational numbers, upon which the ring operations can be
-implemented. The fact that there exists a morphism is defined by the
-following properties:
-\begin{verbatim}
- Record ring_morph : Prop := mkmorph {
- morph0 : [cO] == 0;
- morph1 : [cI] == 1;
- morph_add : forall x y, [x +! y] == [x]+[y];
- morph_sub : forall x y, [x -! y] == [x]-[y];
- morph_mul : forall x y, [x *! y] == [x]*[y];
- morph_opp : forall x, [-!x] == -[x];
- morph_eq : forall x y, x?=!y = true -> [x] == [y]
- }.
-
- Record semi_morph : Prop := mkRmorph {
- Smorph0 : [cO] == 0;
- Smorph1 : [cI] == 1;
- Smorph_add : forall x y, [x +! y] == [x]+[y];
- Smorph_mul : forall x y, [x *! y] == [x]*[y];
- Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
- }.
-\end{verbatim}
-where {\tt c0} and {\tt cI} denote the 0 and 1 of the coefficient set,
-{\tt +!}, {\tt *!}, {\tt -!} are the implementations of the ring
-operations, {\tt ==} is the equality of the coefficients, {\tt ?+!} is
-an implementation of this equality, and {\tt [x]} is a notation for
-the image of {\tt x} by the ring morphism.
-
-Since {\tt Z} is an initial ring (and {\tt N} is an initial
-semi-ring), it can always be considered as a set of
-coefficients. There are basically three kinds of (semi-)rings:
-\begin{description}
-\item[abstract rings] to be used when operations are not
- effective. The set of coefficients is {\tt Z} (or {\tt N} for
- semi-rings).
-\item[computational rings] to be used when operations are
- effective. The set of coefficients is the ring itself. The user only
- has to provide an implementation for the equality.
-\item[customized ring] for other cases. The user has to provide the
- coefficient set and the morphism.
-\end{description}
-
-This implementation of ring can also recognize simple
-power expressions as ring expressions. A power function is specified by
-the following property:
-\begin{verbatim}
- Section POWER.
- Variable Cpow : Set.
- Variable Cp_phi : N -> Cpow.
- Variable rpow : R -> Cpow -> R.
-
- Record power_theory : Prop := mkpow_th {
- rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
- }.
-
- End POWER.
-\end{verbatim}
-
-
-The syntax for adding a new ring is {\tt Add Ring $name$ : $ring$
-($mod_1$,\dots,$mod_2$)}. The name is not relevent. It is just used
-for error messages. The term $ring$ is a proof that the ring signature
-satisfies the (semi-)ring axioms. The optional list of modifiers is
-used to tailor the behavior of the tactic. The following list
-describes their syntax and effects:
-\begin{description}
-\item[abstract] declares the ring as abstract. This is the default.
-\item[decidable \term] declares the ring as computational. The expression
- \term{} is
- the correctness proof of an equality test {\tt ?=!} (which should be
- evaluable). Its type should be of
- the form {\tt forall x y, x?=!y = true $\rightarrow$ x == y}.
-\item[morphism \term] declares the ring as a customized one. The expression
- \term{} is
- a proof that there exists a morphism between a set of coefficient
- and the ring carrier (see {\tt Ring\_theory.ring\_morph} and {\tt
- Ring\_theory.semi\_morph}).
-\item[setoid \term$_1$ \term$_2$] forces the use of given setoid. The
- expression \term$_1$ is a proof that the equality is indeed a setoid
- (see {\tt Setoid.Setoid\_Theory}), and \term$_2$ a proof that the
- ring operations are morphisms (see {\tt Ring\_theory.ring\_eq\_ext} and
- {\tt Ring\_theory.sring\_eq\_ext}). This modifier needs not be used if the
- setoid and morphisms have been declared.
-\item[constants [\ltac]] specifies a tactic expression that, given a term,
- returns either an object of the coefficient set that is mapped to
- the expression via the morphism, or returns {\tt
- InitialRing.NotConstant}. The default behaviour is to map only 0 and
- 1 to their counterpart in the coefficient set. This is generally not
- desirable for non trivial computational rings.
-\item[preprocess [\ltac]]
- specifies a tactic that is applied as a preliminary step for {\tt
- ring} and {\tt ring\_simplify}. It can be used to transform a goal
- so that it is better recognized. For instance, {\tt S n} can be
- changed to {\tt plus 1 n}.
-\item[postprocess [\ltac]] specifies a tactic that is applied as a final step
- for {\tt ring\_simplify}. For instance, it can be used to undo
- modifications of the preprocessor.
-\item[power\_tac {\term} [\ltac]] allows {\tt ring} and {\tt ring\_simplify} to
- recognize power expressions with a constant positive integer exponent
- (example: $x^2$). The term {\term} is a proof that a given power function
- satisfies the specification of a power function ({\term} has to be a
- proof of {\tt Ring\_theory.power\_theory}) and {\ltac} specifies a
- tactic expression that, given a term, ``abstracts'' it into an
- object of type {\tt N} whose interpretation via {\tt Cp\_phi} (the
- evaluation function of power coefficient) is the original term, or
- returns {\tt InitialRing.NotConstant} if not a constant coefficient
- (i.e. {\ltac} is the inverse function of {\tt Cp\_phi}).
- See files {\tt plugins/setoid\_ring/ZArithRing.v} and
- {\tt plugins/setoid\_ring/RealField.v} for examples.
- By default the tactic does not recognize power expressions as ring
- expressions.
-\item[sign {\term}] allows {\tt ring\_simplify} to use a minus operation
- when outputing its normal form, i.e writing $x - y$ instead of $x + (-y)$.
- The term {\term} is a proof that a given sign function indicates expressions
- that are signed ({\term} has to be a
- proof of {\tt Ring\_theory.get\_sign}). See {\tt plugins/setoid\_ring/IntialRing.v} for examples of sign function.
-\item[div {\term}] allows {\tt ring} and {\tt ring\_simplify} to use moniomals
-with coefficient other than 1 in the rewriting. The term {\term} is a proof that a given division function satisfies the specification of an euclidean
- division function ({\term} has to be a
- proof of {\tt Ring\_theory.div\_theory}). For example, this function is
- called when trying to rewrite $7x$ by $2x = z$ to tell that $7 = 3 * 2 + 1$.
- See {\tt plugins/setoid\_ring/IntialRing.v} for examples of div function.
-
-\end{description}
-
-
-\begin{ErrMsgs}
-\item \errindex{bad ring structure}
- The proof of the ring structure provided is not of the expected type.
-\item \errindex{bad lemma for decidability of equality}
- The equality function provided in the case of a computational ring
- has not the expected type.
-\item \errindex{ring {\it operation} should be declared as a morphism}
- A setoid associated to the carrier of the ring structure as been
- found, but the ring operation should be declared as
- morphism. See~\ref{setoidtactics}.
-\end{ErrMsgs}
-
-\asection{How does it work?}
-
-The code of \texttt{ring} is a good example of tactic written using
-\textit{reflection}. What is reflection? Basically, it is writing
-\Coq{} tactics in \Coq, rather than in \ocaml. From the philosophical
-point of view, it is using the ability of the Calculus of
-Constructions to speak and reason about itself. For the \texttt{ring}
-tactic we used \Coq\ as a programming language and also as a proof
-environment to build a tactic and to prove it correctness.
-
-The interested reader is strongly advised to have a look at the file
-\texttt{Ring\_polynom.v}. Here a type for polynomials is defined:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Inductive PExpr : Type :=
- | PEc : C -> PExpr
- | PEX : positive -> PExpr
- | PEadd : PExpr -> PExpr -> PExpr
- | PEsub : PExpr -> PExpr -> PExpr
- | PEmul : PExpr -> PExpr -> PExpr
- | PEopp : PExpr -> PExpr
- | PEpow : PExpr -> N -> PExpr.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-Polynomials in normal form are defined as:
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
- Inductive Pol : Type :=
- | Pc : C -> Pol
- | Pinj : positive -> Pol -> Pol
- | PX : Pol -> positive -> Pol -> Pol.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-where {\tt Pinj n P} denotes $P$ in which $V_i$ is replaced by
-$V_{i+n}$, and {\tt PX P n Q} denotes $P \otimes V_1^{n} \oplus Q'$,
-$Q'$ being $Q$ where $V_i$ is replaced by $V_{i+1}$.
-
-
-Variables maps are represented by list of ring elements, and two
-interpretation functions, one that maps a variables map and a
-polynomial to an element of the concrete ring, and the second one that
-does the same for normal forms:
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Definition PEeval : list R -> PExpr -> R := [...].
-Definition Pphi_dev : list R -> Pol -> R := [...].
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-A function to normalize polynomials is defined, and the big theorem is
-its correctness w.r.t interpretation, that is:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Definition norm : PExpr -> Pol := [...].
-Lemma Pphi_dev_ok :
- forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-So now, what is the scheme for a normalization proof? Let \texttt{p}
-be the polynomial expression that the user wants to normalize. First a
-little piece of ML code guesses the type of \texttt{p}, the ring
-theory \texttt{T} to use, an abstract polynomial \texttt{ap} and a
-variables map \texttt{v} such that \texttt{p} is
-$\beta\delta\iota$-equivalent to \verb|(PEeval v ap)|. Then we
-replace it by \verb|(Pphi_dev v (norm ap))|, using the
-main correctness theorem and we reduce it to a concrete expression
-\texttt{p'}, which is the concrete normal form of
-\texttt{p}. This is summarized in this diagram:
-\begin{center}
-\begin{tabular}{rcl}
-\texttt{p} & $\rightarrow_{\beta\delta\iota}$
- & \texttt{(PEeval v ap)} \\
- & & $=_{\mathrm{(by\ the\ main\ correctness\ theorem)}}$ \\
-\texttt{p'}
- & $\leftarrow_{\beta\delta\iota}$
- & \texttt{(Pphi\_dev v (norm ap))}
-\end{tabular}
-\end{center}
-The user do not see the right part of the diagram.
-From outside, the tactic behaves like a
-$\beta\delta\iota$ simplification extended with AC rewriting rules.
-Basically, the proof is only the application of the main
-correctness theorem to well-chosen arguments.
-
-
-\asection{Dealing with fields
-\tacindex{field}
-\tacindex{field\_simplify}
-\tacindex{field\_simplify\_eq}}
-
-
-The {\tt field} tactic is an extension of the {\tt ring} to deal with
-rational expresision. Given a rational expression $F=0$. It first reduces the expression $F$ to a common denominator $N/D= 0$ where $N$ and $D$ are two ring
-expressions.
-For example, if we take $F = (1 - 1/x) x - x + 1$, this gives
-$ N= (x -1) x - x^2 + x$ and $D= x$. It then calls {\tt ring}
-to solve $N=0$. Note that {\tt field} also generates non-zero conditions
-for all the denominators it encounters in the reduction.
-In our example, it generates the condition $x \neq 0$. These
-conditions appear as one subgoal which is a conjunction if there are
-several denominators.
-Non-zero conditions are {\it always} polynomial expressions. For example
-when reducing the expression $1/(1 + 1/x)$, two side conditions are
-generated: $x\neq 0$ and $x + 1 \neq 0$. Factorized expressions are
-broken since a field is an integral domain, and when the equality test
-on coefficients is complete w.r.t. the equality of the target field,
-constants can be proven different from zero automatically.
-
-The tactic must be loaded by \texttt{Require Import Field}. New field
-structures can be declared to the system with the \texttt{Add Field}
-command (see below). The field of real numbers is defined in module
-\texttt{RealField} (in texttt{plugins/setoid\_ring}). It is exported
-by module \texttt{Rbase}, so that requiring \texttt{Rbase} or
-\texttt{Reals} is enough to use the field tactics on real
-numbers. Rational numbers in canonical form are also declared as a
-field in module \texttt{Qcanon}.
-
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Import Reals.
-Open Scope R_scope.
-Goal forall x, x <> 0 ->
- (1 - 1/x) * x - x + 1 = 0.
-\end{coq_example}
-\begin{coq_example}
-intros; field; auto.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall x y, y <> 0 -> y = x -> x/y = 1.
-\end{coq_example}
-\begin{coq_example}
-intros x y H H1; field [H1]; auto.
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Variants}
- \item {\tt field [\term$_1$ {\ldots} \term$_n$]} decides the equality of two
- terms modulo field operations and rewriting of the equalities
- defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$
- {\ldots} \term$_n$ has to be a proof of some equality $m = p$,
- where $m$ is a monomial (after ``abstraction''),
- $p$ a polynomial and $=$ the corresponding equality of the field structure.
- Beware that rewriting works with the equality $m=p$ only if $p$ is a
- polynomial since rewriting is handled by the underlying {\tt ring}
- tactic.
- \item {\tt field\_simplify}
- performs the simplification in the conclusion of the goal, $F_1 = F_2$
- becomes $N_1/D_1 = N_2/D_2$. A normalization step (the same as the
- one for rings) is then applied to $N_1$, $D_1$, $N_2$ and
- $D_2$. This way, polynomials remain in factorized form during the
- fraction simplifications. This yields smaller expressions when
- reducing to the same denominator since common factors can be
- cancelled.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$]}
- performs the simplification in the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots
-$t_m$}
- performs the simplification in the terms $t_1$ \ldots $t_m$
- of the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify in $H$}
- performs the simplification in the assumption $H$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] in $H$}
- performs the simplification in the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots
-$t_m$ in $H$}
- performs the simplification in the terms $t_1$ \ldots $t_n$
- of the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_m$.
-
- \item {\tt field\_simplify\_eq}
- performs the simplification in the conclusion of the goal removing
- the denominator. $F_1 = F_2$
- becomes $N_1 D_2 = N_2 D_1$.
-
- \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$]}
- performs the simplification in the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify\_eq} in $H$
- performs the simplification in the assumption $H$.
-
- \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$] in $H$}
- performs the simplification in the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-\end{Variants}
-
-\asection{Adding a new field structure
-\comindex{Add Field}}
-
-Declaring a new field consists in proving that a field signature (a
-carrier set, an equality, and field operations: {\tt
-Field\_theory.field\_theory} and {\tt Field\_theory.semi\_field\_theory})
-satisfies the field axioms. Semi-fields (fields without $+$ inverse) are
-also supported. The equality can be either Leibniz equality, or any
-relation declared as a setoid (see~\ref{setoidtactics}). The definition
-of fields and semi-fields is:
-\begin{verbatim}
-Record field_theory : Prop := mk_field {
- F_R : ring_theory rO rI radd rmul rsub ropp req;
- F_1_neq_0 : ~ 1 == 0;
- Fdiv_def : forall p q, p / q == p * / q;
- Finv_l : forall p, ~ p == 0 -> / p * p == 1
-}.
-
-Record semi_field_theory : Prop := mk_sfield {
- SF_SR : semi_ring_theory rO rI radd rmul req;
- SF_1_neq_0 : ~ 1 == 0;
- SFdiv_def : forall p q, p / q == p * / q;
- SFinv_l : forall p, ~ p == 0 -> / p * p == 1
-}.
-\end{verbatim}
-
-The result of the normalization process is a fraction represented by
-the following type:
-\begin{verbatim}
-Record linear : Type := mk_linear {
- num : PExpr C;
- denum : PExpr C;
- condition : list (PExpr C) }.
-\end{verbatim}
-where {\tt num} and {\tt denum} are the numerator and denominator;
-{\tt condition} is a list of expressions that have appeared as a
-denominator during the normalization process. These expressions must
-be proven different from zero for the correctness of the algorithm.
-
-The syntax for adding a new field is {\tt Add Field $name$ : $field$
-($mod_1$,\dots,$mod_2$)}. The name is not relevent. It is just used
-for error messages. $field$ is a proof that the field signature
-satisfies the (semi-)field axioms. The optional list of modifiers is
-used to tailor the behaviour of the tactic. Since field tactics are
-built upon ring tactics, all mofifiers of the {\tt Add Ring}
-apply. There is only one specific modifier:
-\begin{description}
-\item[completeness \term] allows the field tactic to prove
- automatically that the image of non-zero coefficients are mapped to
- non-zero elements of the field. \term is a proof of {\tt forall x y,
- [x] == [y] -> x?=!y = true}, which is the completeness of equality
- on coefficients w.r.t. the field equality.
-\end{description}
-
-\asection{Legacy implementation}
-
-\Warning This tactic is the {\tt ring} tactic of previous versions of
-\Coq{} and it should be considered as deprecated. It will probably be
-removed in future releases. It has been kept only for compatibility
-reasons and in order to help moving existing code to the newer
-implementation described above. For more details, please refer to the
-Coq Reference Manual, version 8.0.
-
-
-\subsection{\tt legacy ring \term$_1$ \dots\ \term$_n$
-\tacindex{legacy ring}
-\comindex{Add Legacy Ring}
-\comindex{Add Legacy Semi Ring}}
-
-This tactic, written by Samuel Boutin and Patrick Loiseleur, applies
-associative commutative rewriting on every ring. The tactic must be
-loaded by \texttt{Require Import LegacyRing}. The ring must be declared in
-the \texttt{Add Ring} command. The ring of booleans (with \texttt{andb}
-as multiplication and \texttt{xorb} as addition)
-is predefined; if one wants to use the tactic on \texttt{nat} one must
-first require the module \texttt{LegacyArithRing}; for \texttt{Z}, do
-\texttt{Require Import LegacyZArithRing}; for \texttt{N}, do \texttt{Require
-Import LegacyNArithRing}.
-
-The terms \term$_1$, \dots, \term$_n$ must be subterms of the goal
-conclusion. The tactic \texttt{ring} normalizes these terms
-w.r.t. associativity and commutativity and replace them by their
-normal form.
-
-\begin{Variants}
-\item \texttt{legacy ring} When the goal is an equality $t_1=t_2$, it
- acts like \texttt{ring\_simplify} $t_1$ $t_2$ and then
- solves the equality by reflexivity.
-
-\item \texttt{ring\_nat} is a tactic macro for \texttt{repeat rewrite
- S\_to\_plus\_one; ring}. The theorem \texttt{S\_to\_plus\_one} is a
- proof that \texttt{forall (n:nat), S n = plus (S O) n}.
-
-\end{Variants}
-
-You can have a look at the files \texttt{LegacyRing.v},
-\texttt{ArithRing.v}, \texttt{ZArithRing.v} to see examples of the
-\texttt{Add Ring} command.
-
-\subsection{Add a ring structure}
-
-It can be done in the \Coq toplevel (No ML file to edit and to link
-with \Coq). First, \texttt{ring} can handle two kinds of structure:
-rings and semi-rings. Semi-rings are like rings without an opposite to
-addition. Their precise specification (in \gallina) can be found in
-the file
-
-\begin{quotation}
-\begin{verbatim}
-plugins/ring/Ring_theory.v
-\end{verbatim}
-\end{quotation}
-
-The typical example of ring is \texttt{Z}, the typical
-example of semi-ring is \texttt{nat}.
-
-The specification of a
-ring is divided in two parts: first the record of constants
-($\oplus$, $\otimes$, 1, 0, $\ominus$) and then the theorems
-(associativity, commutativity, etc.).
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Section Theory_of_semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-(* There is also a "weakly decidable" equality on A. That means
- that if (A_eq x y)=true then x=y but x=y can arise when
- (A_eq x y)=false. On an abstract ring the function [x,y:A]false
- is a good choice. The proof of A_eq_prop is in this case easy. *)
-Variable Aeq : A -> A -> bool.
-
-Record Semi_Ring_Theory : Prop :=
-{ SR_plus_sym : (n,m:A)[| n + m == m + n |];
- SR_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |];
-
- SR_mult_sym : (n,m:A)[| n*m == m*n |];
- SR_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |];
- SR_plus_zero_left :(n:A)[| 0 + n == n|];
- SR_mult_one_left : (n:A)[| 1*n == n |];
- SR_mult_zero_left : (n:A)[| 0*n == 0 |];
- SR_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |];
- SR_plus_reg_left : (n,m,p:A)[| n + m == n + p |] -> m==p;
- SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Section Theory_of_rings.
-
-Variable A : Type.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-
-Record Ring_Theory : Prop :=
-{ Th_plus_sym : (n,m:A)[| n + m == m + n |];
- Th_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |];
- Th_mult_sym : (n,m:A)[| n*m == m*n |];
- Th_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |];
- Th_plus_zero_left :(n:A)[| 0 + n == n|];
- Th_mult_one_left : (n:A)[| 1*n == n |];
- Th_opp_def : (n:A) [| n + (-n) == 0 |];
- Th_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |];
- Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-To define a ring structure on A, you must provide an addition, a
-multiplication, an opposite function and two unities 0 and 1.
-
-You must then prove all theorems that make
-(A,Aplus,Amult,Aone,Azero,Aeq)
-a ring structure, and pack them with the \verb|Build_Ring_Theory|
-constructor.
-
-Finally to register a ring the syntax is:
-
-\comindex{Add Legacy Ring}
-\begin{quotation}
- \texttt{Add Legacy Ring} \textit{A Aplus Amult Aone Azero Ainv Aeq T}
- \texttt{[} \textit{c1 \dots cn} \texttt{].}
-\end{quotation}
-
-\noindent where \textit{A} is a term of type \texttt{Set},
-\textit{Aplus} is a term of type \texttt{A->A->A},
-\textit{Amult} is a term of type \texttt{A->A->A},
-\textit{Aone} is a term of type \texttt{A},
-\textit{Azero} is a term of type \texttt{A},
-\textit{Ainv} is a term of type \texttt{A->A},
-\textit{Aeq} is a term of type \texttt{A->bool},
-\textit{T} is a term of type
-\texttt{(Ring\_Theory }\textit{A Aplus Amult Aone Azero Ainv
- Aeq}\texttt{)}.
-The arguments \textit{c1 \dots cn},
-are the names of constructors which define closed terms: a
-subterm will be considered as a constant if it is either one of the
-terms \textit{c1 \dots cn} or the application of one of these terms to
-closed terms. For \texttt{nat}, the given constructors are \texttt{S}
-and \texttt{O}, and the closed terms are \texttt{O}, \texttt{(S O)},
-\texttt{(S (S O))}, \ldots
-
-\begin{Variants}
-\item \texttt{Add Legacy Semi Ring} \textit{A Aplus Amult Aone Azero Aeq T}
- \texttt{[} \textit{c1 \dots\ cn} \texttt{].}\comindex{Add Legacy Semi
- Ring}
-
- There are two differences with the \texttt{Add Ring} command: there
- is no inverse function and the term $T$ must be of type
- \texttt{(Semi\_Ring\_Theory }\textit{A Aplus Amult Aone Azero
- Aeq}\texttt{)}.
-
-\item \texttt{Add Legacy Abstract Ring} \textit{A Aplus Amult Aone Azero Ainv
- Aeq T}\texttt{.}\comindex{Add Legacy Abstract Ring}
-
- This command should be used for when the operations of rings are not
- computable; for example the real numbers of
- \texttt{theories/REALS/}. Here $0+1$ is not beta-reduced to $1$ but
- you still may want to \textit{rewrite} it to $1$ using the ring
- axioms. The argument \texttt{Aeq} is not used; a good choice for
- that function is \verb+[x:A]false+.
-
-\item \texttt{Add Legacy Abstract Semi Ring} \textit{A Aplus Amult Aone Azero
- Aeq T}\texttt{.}\comindex{Add Legacy Abstract Semi Ring}
-
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{Not a valid (semi)ring theory}.
-
- That happens when the typing condition does not hold.
-\end{ErrMsgs}
-
-Currently, the hypothesis is made than no more than one ring structure
-may be declared for a given type in \texttt{Set} or \texttt{Type}.
-This allows automatic detection of the theory used to achieve the
-normalization. On popular demand, we can change that and allow several
-ring structures on the same set.
-
-The table of ring theories is compatible with the \Coq\
-sectioning mechanism. If you declare a ring inside a section, the
-declaration will be thrown away when closing the section.
-And when you load a compiled file, all the \texttt{Add Ring}
-commands of this file that are not inside a section will be loaded.
-
-The typical example of ring is \texttt{Z}, and the typical example of
-semi-ring is \texttt{nat}. Another ring structure is defined on the
-booleans.
-
-\Warning Only the ring of booleans is loaded by default with the
-\texttt{Ring} module. To load the ring structure for \texttt{nat},
-load the module \texttt{ArithRing}, and for \texttt{Z},
-load the module \texttt{ZArithRing}.
-
-\subsection{\tt legacy field
-\tacindex{legacy field}}
-
-This tactic written by David~Delahaye and Micaela~Mayero solves equalities
-using commutative field theory. Denominators have to be non equal to zero and,
-as this is not decidable in general, this tactic may generate side conditions
-requiring some expressions to be non equal to zero. This tactic must be loaded
-by {\tt Require Import LegacyField}. Field theories are declared (as for
-{\tt legacy ring}) with
-the {\tt Add Legacy Field} command.
-
-\subsection{\tt Add Legacy Field
-\comindex{Add Legacy Field}}
-
-This vernacular command adds a commutative field theory to the database for the
-tactic {\tt field}. You must provide this theory as follows:
-\begin{flushleft}
-{\tt Add Legacy Field {\it A} {\it Aplus} {\it Amult} {\it Aone} {\it Azero} {\it
-Aopp} {\it Aeq} {\it Ainv} {\it Rth} {\it Tinvl}}
-\end{flushleft}
-where {\tt {\it A}} is a term of type {\tt Type}, {\tt {\it Aplus}} is
-a term of type {\tt A->A->A}, {\tt {\it Amult}} is a term of type {\tt
- A->A->A}, {\tt {\it Aone}} is a term of type {\tt A}, {\tt {\it
- Azero}} is a term of type {\tt A}, {\tt {\it Aopp}} is a term of
-type {\tt A->A}, {\tt {\it Aeq}} is a term of type {\tt A->bool}, {\tt
- {\it Ainv}} is a term of type {\tt A->A}, {\tt {\it Rth}} is a term
-of type {\tt (Ring\_Theory {\it A Aplus Amult Aone Azero Ainv Aeq})},
-and {\tt {\it Tinvl}} is a term of type {\tt forall n:{\it A},
- {\~{}}(n={\it Azero})->({\it Amult} ({\it Ainv} n) n)={\it Aone}}.
-To build a ring theory, refer to Chapter~\ref{ring} for more details.
-
-This command adds also an entry in the ring theory table if this theory is not
-already declared. So, it is useless to keep, for a given type, the {\tt Add
-Ring} command if you declare a theory with {\tt Add Field}, except if you plan
-to use specific features of {\tt ring} (see Chapter~\ref{ring}). However, the
-module {\tt ring} is not loaded by {\tt Add Field} and you have to make a {\tt
-Require Import Ring} if you want to call the {\tt ring} tactic.
-
-\begin{Variants}
-
-\item {\tt Add Legacy Field {\it A} {\it Aplus} {\it Amult} {\it Aone} {\it Azero}
-{\it Aopp} {\it Aeq} {\it Ainv} {\it Rth} {\it Tinvl}}\\
-{\tt \phantom{Add Field }with minus:={\it Aminus}}
-
-Adds also the term {\it Aminus} which must be a constant expressed by
-means of {\it Aopp}.
-
-\item {\tt Add Legacy Field {\it A} {\it Aplus} {\it Amult} {\it Aone} {\it Azero}
-{\it Aopp} {\it Aeq} {\it Ainv} {\it Rth} {\it Tinvl}}\\
-{\tt \phantom{Add Legacy Field }with div:={\it Adiv}}
-
-Adds also the term {\it Adiv} which must be a constant expressed by
-means of {\it Ainv}.
-
-\end{Variants}
-
-\SeeAlso \cite{DelMay01} for more details regarding the implementation of {\tt
-legacy field}.
-
-\asection{History of \texttt{ring}}
-
-First Samuel Boutin designed the tactic \texttt{ACDSimpl}.
-This tactic did lot of rewriting. But the proofs
-terms generated by rewriting were too big for \Coq's type-checker.
-Let us see why:
-
-\begin{coq_eval}
-Require Import ZArith.
-Open Scope Z_scope.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y.
-\end{coq_example}
-\begin{coq_example*}
-intros; rewrite (Zmult_comm y z); reflexivity.
-Save toto.
-\end{coq_example*}
-\begin{coq_example}
-Print toto.
-\end{coq_example}
-
-At each step of rewriting, the whole context is duplicated in the proof
-term. Then, a tactic that does hundreds of rewriting generates huge proof
-terms. Since \texttt{ACDSimpl} was too slow, Samuel Boutin rewrote it
-using reflection (see his article in TACS'97 \cite{Bou97}). Later, the
-stuff was rewritten by Patrick
-Loiseleur: the new tactic does not any more require \texttt{ACDSimpl}
-to compile and it makes use of $\beta\delta\iota$-reduction
-not only to replace the rewriting steps, but also to achieve the
-interleaving of computation and
-reasoning (see \ref{DiscussReflection}). He also wrote a
-few ML code for the \texttt{Add Ring} command, that allow to register
-new rings dynamically.
-
-Proofs terms generated by \texttt{ring} are quite small, they are
-linear in the number of $\oplus$ and $\otimes$ operations in the
-normalized terms. Type-checking those terms requires some time because it
-makes a large use of the conversion rule, but
-memory requirements are much smaller.
-
-\asection{Discussion}
-\label{DiscussReflection}
-
-Efficiency is not the only motivation to use reflection
-here. \texttt{ring} also deals with constants, it rewrites for example the
-expression $34 + 2*x -x + 12$ to the expected result $x + 46$. For the
-tactic \texttt{ACDSimpl}, the only constants were 0 and 1. So the
-expression $34 + 2*(x - 1) + 12$ is interpreted as
-$V_0 \oplus V_1 \otimes (V_2 \ominus 1) \oplus V_3$,
-with the variables mapping
-$\{V_0 \mt 34; V_1 \mt 2; V_2 \mt x; V_3 \mt 12 \}$. Then it is
-rewritten to $34 - x + 2*x + 12$, very far from the expected
-result. Here rewriting is not sufficient: you have to do some kind of
-reduction (some kind of \textit{computation}) to achieve the
-normalization.
-
-The tactic \texttt{ring} is not only faster than a classical one:
-using reflection, we get for free integration of computation and
-reasoning that would be very complex to implement in the classic fashion.
-
-Is it the ultimate way to write tactics? The answer is: yes and
-no. The \texttt{ring} tactic uses intensively the conversion rule of
-\CIC, that is replaces proof by computation the most as it is
-possible. It can be useful in all situations where a classical tactic
-generates huge proof terms. Symbolic Processing and Tautologies are in
-that case. But there are also tactics like \texttt{auto} or
-\texttt{linear} that do many complex computations, using side-effects
-and backtracking, and generate a small proof term. Clearly, it would
-be significantly less efficient to replace them by tactics using
-reflection.
-
-Another idea suggested by Benjamin Werner: reflection could be used to
-couple an external tool (a rewriting program or a model checker) with
-\Coq. We define (in \Coq) a type of terms, a type of \emph{traces},
-and prove a correction theorem that states that \emph{replaying
-traces} is safe w.r.t some interpretation. Then we let the external
-tool do every computation (using side-effects, backtracking,
-exception, or others features that are not available in pure lambda
-calculus) to produce the trace: now we can check in Coq{} that the
-trace has the expected semantic by applying the correction lemma.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Program.tex b/doc/refman/Program.tex
deleted file mode 100644
index b41014ab..00000000
--- a/doc/refman/Program.tex
+++ /dev/null
@@ -1,295 +0,0 @@
-\achapter{\Program{}}
-\label{Program}
-\aauthor{Matthieu Sozeau}
-\index{Program}
-
-\begin{flushleft}
- \em The status of \Program\ is experimental.
-\end{flushleft}
-
-We present here the new \Program\ tactic commands, used to build certified
-\Coq\ programs, elaborating them from their algorithmic skeleton and a
-rich specification \cite{Sozeau06}. It can be sought of as a dual of extraction
-(see Chapter~\ref{Extraction}). The goal of \Program~is to program as in a regular
-functional programming language whilst using as rich a specification as
-desired and proving that the code meets the specification using the whole \Coq{} proof
-apparatus. This is done using a technique originating from the
-``Predicate subtyping'' mechanism of \PVS \cite{Rushby98}, which generates type-checking
-conditions while typing a term constrained to a particular type.
-Here we insert existential variables in the term, which must be filled
-with proofs to get a complete \Coq\ term. \Program\ replaces the
-\Program\ tactic by Catherine Parent \cite{Parent95b} which had a similar goal but is no longer
-maintained.
-
-The languages available as input are currently restricted to \Coq's term
-language, but may be extended to \ocaml{}, \textsc{Haskell} and others
-in the future. We use the same syntax as \Coq\ and permit to use implicit
-arguments and the existing coercion mechanism.
-Input terms and types are typed in an extended system (\Russell) and
-interpreted into \Coq\ terms. The interpretation process may produce
-some proof obligations which need to be resolved to create the final term.
-
-\asection{Elaborating programs}
-The main difference from \Coq\ is that an object in a type $T : \Set$
-can be considered as an object of type $\{ x : T~|~P\}$ for any
-wellformed $P : \Prop$.
-If we go from $T$ to the subset of $T$ verifying property $P$, we must
-prove that the object under consideration verifies it. \Russell\ will
-generate an obligation for every such coercion. In the other direction,
-\Russell\ will automatically insert a projection.
-
-Another distinction is the treatment of pattern-matching. Apart from the
-following differences, it is equivalent to the standard {\tt match}
-operation (see Section~\ref{Caseexpr}).
-\begin{itemize}
-\item Generation of equalities. A {\tt match} expression is always
- generalized by the corresponding equality. As an example,
- the expression:
-
-\begin{coq_example*}
- match x with
- | 0 => t
- | S n => u
- end.
-\end{coq_example*}
-will be first rewrote to:
-\begin{coq_example*}
- (match x as y return (x = y -> _) with
- | 0 => fun H : x = 0 -> t
- | S n => fun H : x = S n -> u
- end) (refl_equal n).
-\end{coq_example*}
-
- This permits to get the proper equalities in the context of proof
- obligations inside clauses, without which reasoning is very limited.
-
-\item Generation of inequalities. If a pattern intersects with a
- previous one, an inequality is added in the context of the second
- branch. See for example the definition of {\tt div2} below, where the second
- branch is typed in a context where $\forall p, \_ <> S (S p)$.
-
-\item Coercion. If the object being matched is coercible to an inductive
- type, the corresponding coercion will be automatically inserted. This also
- works with the previous mechanism.
-\end{itemize}
-
-To give more control over the generation of equalities, the typechecker will
-fall back directly to \Coq's usual typing of dependent pattern-matching
-if a {\tt return} or {\tt in} clause is specified. Likewise,
-the {\tt if} construct is not treated specially by \Program{} so boolean
-tests in the code are not automatically reflected in the obligations.
-One can use the {\tt dec} combinator to get the correct hypotheses as in:
-
-\begin{coq_eval}
-Require Import Program Arith.
-\end{coq_eval}
-\begin{coq_example}
-Program Definition id (n : nat) : { x : nat | x = n } :=
- if dec (leb n 0) then 0
- else S (pred n).
-\end{coq_example}
-
-Finally, the let tupling construct {\tt let (x1, ..., xn) := t in b}
-does not produce an equality, contrary to the let pattern construct
-{\tt let '(x1, ..., xn) := t in b}.
-
-The next two commands are similar to their standard counterparts
-Definition (see Section~\ref{Basic-definitions}) and Fixpoint (see Section~\ref{Fixpoint}) in that
-they define constants. However, they may require the user to prove some
-goals to construct the final definitions.
-
-\subsection{\tt Program Definition {\ident} := {\term}.
- \comindex{Program Definition}\label{ProgramDefinition}}
-
-This command types the value {\term} in \Russell\ and generate proof
-obligations. Once solved using the commands shown below, it binds the final
-\Coq\ term to the name {\ident} in the environment.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Program Definition {\ident} {\tt :}{\term$_1$} :=
- {\term$_2$}.}\\
- It interprets the type {\term$_1$}, potentially generating proof
- obligations to be resolved. Once done with them, we have a \Coq\ type
- {\term$_1'$}. It then checks that the type of the interpretation of
- {\term$_2$} is coercible to {\term$_1'$}, and registers {\ident} as
- being of type {\term$_1'$} once the set of obligations generated
- during the interpretation of {\term$_2$} and the aforementioned
- coercion derivation are solved.
-\item {\tt Program Definition {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
- This is equivalent to \\
- {\tt Program Definition\,{\ident}\,{\tt :\,forall} %
- {\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}} \\
- \qquad {\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,%
- {\tt .}
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{In environment {\dots} the term: {\term$_2$} does not have type
- {\term$_1$}}.\\
- \texttt{Actually, it has type {\term$_3$}}.
-\end{ErrMsgs}
-
-\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}
-
-\subsection{\tt Program Fixpoint {\ident} {\params} {\tt \{order\}} : type := \term
- \comindex{Program Fixpoint}
- \label{ProgramFixpoint}}
-
-The structural fixpoint operator behaves just like the one of Coq
-(see Section~\ref{Fixpoint}), except it may also generate obligations.
-It works with mutually recursive definitions too.
-
-\begin{coq_eval}
-Admit Obligations.
-\end{coq_eval}
-\begin{coq_example}
-Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
- match n with
- | S (S p) => S (div2 p)
- | _ => O
- end.
-\end{coq_example}
-
-Here we have one obligation for each branch (branches for \verb:0: and \verb:(S 0): are
-automatically generated by the pattern-matching compilation algorithm).
-\begin{coq_example}
- Obligation 1.
-\end{coq_example}
-
-One can use a well-founded order or a measure as termination orders using the syntax:
-\begin{coq_eval}
-Reset Initial.
-Require Import Arith.
-Require Import Program.
-\end{coq_eval}
-\begin{coq_example*}
-Program Fixpoint div2 (n : nat) {measure n} :
- { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
- match n with
- | S (S p) => S (div2 p)
- | _ => O
- end.
-\end{coq_example*}
-
-The order annotation can be either:
-\begin{itemize}
-\item {\tt measure f (R)?} where {\tt f} is a value of type {\tt X}
- computed on any subset of the arguments and the optional
- (parenthesised) term {\tt (R)} is a relation
- on {\tt X}. By default {\tt X} defaults to {\tt nat} and {\tt R} to
- {\tt lt}.
-\item {\tt wf R x} which is equivalent to {\tt measure x (R)}.
-\end{itemize}
-
-\paragraph{Caution}
-When defining structurally recursive functions, the
-generated obligations should have the prototype of the currently defined functional
-in their context. In this case, the obligations should be transparent
-(e.g. defined using {\tt Defined}) so that the guardedness condition on
-recursive calls can be checked by the
-kernel's type-checker. There is an optimization in the generation of
-obligations which gets rid of the hypothesis corresponding to the
-functionnal when it is not necessary, so that the obligation can be
-declared opaque (e.g. using {\tt Qed}). However, as soon as it appears in the
-context, the proof of the obligation is \emph{required} to be declared transparent.
-
-No such problems arise when using measures or well-founded recursion.
-
-\subsection{\tt Program Lemma {\ident} : type.
- \comindex{Program Lemma}
- \label{ProgramLemma}}
-
-The \Russell\ language can also be used to type statements of logical
-properties. It will generate obligations, try to solve them
-automatically and fail if some unsolved obligations remain.
-In this case, one can first define the lemma's
-statement using {\tt Program Definition} and use it as the goal afterwards.
-Otherwise the proof will be started with the elobarted version as a goal.
-The {\tt Program} prefix can similarly be used as a prefix for {\tt Variable}, {\tt
- Hypothesis}, {\tt Axiom} etc...
-
-\section{Solving obligations}
-The following commands are available to manipulate obligations. The
-optional identifier is used when multiple functions have unsolved
-obligations (e.g. when defining mutually recursive blocks). The optional
-tactic is replaced by the default one if not specified.
-
-\begin{itemize}
-\item {\tt [Local|Global] Obligation Tactic := \tacexpr}\comindex{Obligation Tactic}
- Sets the default obligation
- solving tactic applied to all obligations automatically, whether to
- solve them or when starting to prove one, e.g. using {\tt Next}.
- Local makes the setting last only for the current module. Inside
- sections, local is the default.
-\item {\tt Show Obligation Tactic}\comindex{Show Obligation Tactic}
- Displays the current default tactic.
-\item {\tt Obligations [of \ident]}\comindex{Obligations} Displays all remaining
- obligations.
-\item {\tt Obligation num [of \ident]}\comindex{Obligation} Start the proof of
- obligation {\tt num}.
-\item {\tt Next Obligation [of \ident]}\comindex{Next Obligation} Start the proof of the next
- unsolved obligation.
-\item {\tt Solve Obligations [of \ident] [using
- \tacexpr]}\comindex{Solve Obligations}
- Tries to solve
- each obligation of \ident using the given tactic or the default one.
-\item {\tt Solve All Obligations [using \tacexpr]} Tries to solve
- each obligation of every program using the given tactic or the default
- one (useful for mutually recursive definitions).
-\item {\tt Admit Obligations [of \ident]}\comindex{Admit Obligations}
- Admits all obligations (does not work with structurally recursive programs).
-\item {\tt Preterm [of \ident]}\comindex{Preterm}
- Shows the term that will be fed to
- the kernel once the obligations are solved. Useful for debugging.
-\item {\tt Set Transparent Obligations}\comindex{Set Transparent Obligations}
- Control whether all obligations should be declared as transparent (the
- default), or if the system should infer which obligations can be declared opaque.
-\end{itemize}
-
-The module {\tt Coq.Program.Tactics} defines the default tactic for solving
-obligations called {\tt program\_simpl}. Importing
-{\tt Coq.Program.Program} also adds some useful notations, as documented in the file itself.
-
-\section{Frequently Asked Questions
- \label{ProgramFAQ}}
-
-\begin{itemize}
-\item {Ill-formed recursive definitions}
- This error can happen when one tries to define a
- function by structural recursion on a subset object, which means the Coq
- function looks like:
-
- \verb$Program Fixpoint f (x : A | P) := match x with A b => f b end.$
-
- Supposing $b : A$, the argument at the recursive call to f is not a
- direct subterm of x as b is wrapped inside an {\tt exist} constructor to build
- an object of type \verb${x : A | P}$. Hence the definition is rejected
- by the guardedness condition checker. However one can use
- wellfounded recursion on subset objects like this:
-
-\begin{verbatim}
-Program Fixpoint f (x : A | P) { measure (size x) } :=
- match x with A b => f b end.
-\end{verbatim}
-
- One will then just have to prove that the measure decreases at each recursive
- call. There are three drawbacks though:
- \begin{enumerate}
- \item A measure function has to be defined;
- \item The reduction is a little more involved, although it works well
- using lazy evaluation;
- \item Mutual recursion on the underlying inductive type isn't possible
- anymore, but nested mutual recursion is always possible.
- \end{enumerate}
-\end{itemize}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% compile-command: "BIBINPUTS=\".\" make QUICK=1 -C ../.. doc/refman/Reference-Manual.pdf"
-%%% End:
diff --git a/doc/refman/RefMan-add.tex b/doc/refman/RefMan-add.tex
deleted file mode 100644
index 9d7ca7b1..00000000
--- a/doc/refman/RefMan-add.tex
+++ /dev/null
@@ -1,60 +0,0 @@
-\chapter[List of additional documentation]{List of additional documentation\label{Addoc}}
-
-\section[Tutorials]{Tutorials\label{Tutorial}}
-A companion volume to this reference manual, the \Coq\ Tutorial, is
-aimed at gently introducing new users to developing proofs in \Coq\
-without assuming prior knowledge of type theory. In a second step, the
-user can read also the tutorial on recursive types (document {\tt
-RecTutorial.ps}).
-
-\section[The \Coq\ standard library]{The \Coq\ standard library\label{Addoc-library}}
-A brief description of the \Coq\ standard library is given in the additional
-document {\tt Library.dvi}.
-
-\section[Installation and un-installation procedures]{Installation and un-installation procedures\label{Addoc-install}}
-A \verb!INSTALL! file in the distribution explains how to install
-\Coq.
-
-\section[{\tt Extraction} of programs]{{\tt Extraction} of programs\label{Addoc-extract}}
-{\tt Extraction} is a package offering some special facilities to
-extract ML program files. It is described in the separate document
-{\tt Extraction.dvi}
-\index{Extraction of programs}
-
-\section[{\tt Program}]{A tool for {\tt Program}-ing\label{Addoc-program}}
-{\tt Program} is a package offering some special facilities to
-extract ML program files. It is described in the separate document
-{\tt Program.dvi}
-\index{Program-ing}
-
-\section[Proof printing in {\tt Natural} language]{Proof printing in {\tt Natural} language\label{Addoc-natural}}
-{\tt Natural} is a tool to print proofs in natural language.
-It is described in the separate document {\tt Natural.dvi}.
-\index{Natural@{\tt Print Natural}}
-\index{Printing in natural language}
-
-\section[The {\tt Omega} decision tactic]{The {\tt Omega} decision tactic\label{Addoc-omega}}
-{\bf Omega} is a tactic to automatically solve arithmetical goals in
-Presburger arithmetic (i.e. arithmetic without multiplication).
-It is described in the separate document {\tt Omega.dvi}.
-\index{Omega@{\tt Omega}}
-
-\section[Simplification on rings]{Simplification on rings\label{Addoc-polynom}}
-A documentation of the package {\tt polynom} (simplification on rings)
-can be found in the document {\tt Polynom.dvi}
-\index{Polynom@{\tt Polynom}}
-\index{Simplification on rings}
-
-%\section[Anomalies]{Anomalies\label{Addoc-anomalies}}
-%The separate document {\tt Anomalies.*} gives a list of known
-%anomalies and bugs of the system. Before communicating us an
-%anomalous behavior, please check first whether it has been already
-%reported in this document.
-
-% $Id: RefMan-add.tex 10061 2007-08-08 13:14:05Z msozeau $
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex
deleted file mode 100644
index dab164e7..00000000
--- a/doc/refman/RefMan-cic.tex
+++ /dev/null
@@ -1,1716 +0,0 @@
-\chapter[Calculus of Inductive Constructions]{Calculus of Inductive Constructions
-\label{Cic}
-\index{Cic@\textsc{CIC}}
-\index{pCic@p\textsc{CIC}}
-\index{Calculus of (Co)Inductive Constructions}}
-
-The underlying formal language of {\Coq} is a {\em Calculus of
- Constructions} with {\em Inductive Definitions}. It is presented in
-this chapter.
-For {\Coq} version V7, this Calculus was known as the
-{\em Calculus of (Co)Inductive Constructions}\index{Calculus of
- (Co)Inductive Constructions} (\iCIC\ in short).
-The underlying calculus of {\Coq} version V8.0 and up is a weaker
- calculus where the sort \Set{} satisfies predicative rules.
-We call this calculus the
-{\em Predicative Calculus of (Co)Inductive
- Constructions}\index{Predicative Calculus of
- (Co)Inductive Constructions} (\pCIC\ in short).
-In Section~\ref{impredicativity} we give the extra-rules for \iCIC. A
- compiling option of \Coq{} allows to type-check theories in this
- extended system.
-
-In \CIC\, all objects have a {\em type}. There are types for functions (or
-programs), there are atomic types (especially datatypes)... but also
-types for proofs and types for the types themselves.
-Especially, any object handled in the formalism must belong to a
-type. For instance, the statement {\it ``for all x, P''} is not
-allowed in type theory; you must say instead: {\it ``for all x
-belonging to T, P''}. The expression {\it ``x belonging to T''} is
-written {\it ``x:T''}. One also says: {\it ``x has type T''}.
-The terms of {\CIC} are detailed in Section~\ref{Terms}.
-
-In \CIC\, there is an internal reduction mechanism. In particular, it
-allows to decide if two programs are {\em intentionally} equal (one
-says {\em convertible}). Convertibility is presented in section
-\ref{convertibility}.
-
-The remaining sections are concerned with the type-checking of terms.
-The beginner can skip them.
-
-The reader seeking a background on the Calculus of Inductive
-Constructions may read several papers. Giménez and Castéran~\cite{GimCas05}
-provide
-an introduction to inductive and coinductive definitions in Coq. In
-their book~\cite{CoqArt}, Bertot and Castéran give a precise
-description of the \CIC{} based on numerous practical examples.
-Barras~\cite{Bar99}, Werner~\cite{Wer94} and
-Paulin-Mohring~\cite{Moh97} are the most recent theses dealing with
-Inductive Definitions. Coquand-Huet~\cite{CoHu85a,CoHu85b,CoHu86}
-introduces the Calculus of Constructions. Coquand-Paulin~\cite{CoPa89}
-extended this calculus to inductive definitions. The {\CIC} is a
-formulation of type theory including the possibility of inductive
-constructions, Barendregt~\cite{Bar91} studies the modern form of type
-theory.
-
-\section[The terms]{The terms\label{Terms}}
-
-In most type theories, one usually makes a syntactic distinction
-between types and terms. This is not the case for \CIC\ which defines
-both types and terms in the same syntactical structure. This is
-because the type-theory itself forces terms and types to be defined in
-a mutual recursive way and also because similar constructions can be
-applied to both terms and types and consequently can share the same
-syntactic structure.
-
-Consider for instance the $\ra$ constructor and assume \nat\ is the
-type of natural numbers. Then $\ra$ is used both to denote
-$\nat\ra\nat$ which is the type of functions from \nat\ to \nat, and
-to denote $\nat \ra \Prop$ which is the type of unary predicates over
-the natural numbers. Consider abstraction which builds functions. It
-serves to build ``ordinary'' functions as $\kw{fun}~x:\nat \Ra ({\tt mult} ~x~x)$ (assuming {\tt mult} is already defined) but may build also
-predicates over the natural numbers. For instance $\kw{fun}~x:\nat \Ra
-(x=x)$ will
-represent a predicate $P$, informally written in mathematics
-$P(x)\equiv x=x$. If $P$ has type $\nat \ra \Prop$, $(P~x)$ is a
-proposition, furthermore $\kw{forall}~x:\nat,(P~x)$ will represent the type of
-functions which associate to each natural number $n$ an object of
-type $(P~n)$ and consequently represent proofs of the formula
-``$\forall x.P(x)$''.
-
-\subsection[Sorts]{Sorts\label{Sorts}
-\index{Sorts}}
-Types are seen as terms of the language and then should belong to
-another type. The type of a type is always a constant of the language
-called a {\em sort}.
-
-The two basic sorts in the language of \CIC\ are \Set\ and \Prop.
-
-The sort \Prop\ intends to be the type of logical propositions. If
-$M$ is a logical proposition then it denotes a class, namely the class
-of terms representing proofs of $M$. An object $m$ belonging to $M$
-witnesses the fact that $M$ is true. An object of type \Prop\ is
-called a {\em proposition}.
-
-The sort \Set\ intends to be the type of specifications. This includes
-programs and the usual sets such as booleans, naturals, lists
-etc.
-
-These sorts themselves can be manipulated as ordinary terms.
-Consequently sorts also should be given a type. Because assuming
-simply that \Set\ has type \Set\ leads to an inconsistent theory, we
-have infinitely many sorts in the language of \CIC. These are, in
-addition to \Set\ and \Prop\, a hierarchy of universes \Type$(i)$
-for any integer $i$. We call \Sort\ the set of sorts
-which is defined by:
-\[\Sort \equiv \{\Prop,\Set,\Type(i)| i \in \NN\} \]
-\index{Type@{\Type}}
-\index{Prop@{\Prop}}
-\index{Set@{\Set}}
-The sorts enjoy the following properties: {\Prop:\Type(0)}, {\Set:\Type(0)} and
- {\Type$(i)$:\Type$(i+1)$}.
-
-The user will never mention explicitly the index $i$ when referring to
-the universe \Type$(i)$. One only writes \Type. The
-system itself generates for each instance of \Type\ a new
-index for the universe and checks that the constraints between these
-indexes can be solved. From the user point of view we consequently
-have {\sf Type :Type}.
-
-We shall make precise in the typing rules the constraints between the
-indexes.
-
-\paragraph{Implementation issues}
-In practice, the {\Type} hierarchy is implemented using algebraic
-universes. An algebraic universe $u$ is either a variable (a qualified
-identifier with a number) or a successor of an algebraic universe (an
-expression $u+1$), or an upper bound of algebraic universes (an
-expression $max(u_1,...,u_n)$), or the base universe (the expression
-$0$) which corresponds, in the arity of sort-polymorphic inductive
-types, to the predicative sort {\Set}. A graph of constraints between
-the universe variables is maintained globally. To ensure the existence
-of a mapping of the universes to the positive integers, the graph of
-constraints must remain acyclic. Typing expressions that violate the
-acyclicity of the graph of constraints results in a \errindex{Universe
-inconsistency} error (see also Section~\ref{PrintingUniverses}).
-
-\subsection{Constants}
-Besides the sorts, the language also contains constants denoting
-objects in the environment. These constants may denote previously
-defined objects but also objects related to inductive definitions
-(either the type itself or one of its constructors or destructors).
-
-\medskip\noindent {\bf Remark. } In other presentations of \CIC,
-the inductive objects are not seen as
-external declarations but as first-class terms. Usually the
-definitions are also completely ignored. This is a nice theoretical
-point of view but not so practical. An inductive definition is
-specified by a possibly huge set of declarations, clearly we want to
-share this specification among the various inductive objects and not
-to duplicate it. So the specification should exist somewhere and the
-various objects should refer to it. We choose one more level of
-indirection where the objects are just represented as constants and
-the environment gives the information on the kind of object the
-constant refers to.
-
-\medskip
-Our inductive objects will be manipulated as constants declared in the
-environment. This roughly corresponds to the way they are actually
-implemented in the \Coq\ system. It is simple to map this presentation
-in a theory where inductive objects are represented by terms.
-
-\subsection{Terms}
-
-Terms are built from variables, global names, constructors,
-abstraction, application, local declarations bindings (``let-in''
-expressions) and product.
-
-From a syntactic point of view, types cannot be distinguished from terms,
-except that they cannot start by an abstraction, and that if a term is
-a sort or a product, it should be a type.
-
-More precisely the language of the {\em Calculus of Inductive
- Constructions} is built from the following rules:
-
-\begin{enumerate}
-\item the sorts {\sf Set, Prop, Type} are terms.
-\item names for global constants of the environment are terms.
-\item variables are terms.
-\item if $x$ is a variable and $T$, $U$ are terms then $\forall~x:T,U$
- ($\kw{forall}~x:T,U$ in \Coq{} concrete syntax) is a term. If $x$
- occurs in $U$, $\forall~x:T,U$ reads as {\it ``for all x of type T,
- U''}. As $U$ depends on $x$, one says that $\forall~x:T,U$ is a
- {\em dependent product}. If $x$ doesn't occurs in $U$ then
- $\forall~x:T,U$ reads as {\it ``if T then U''}. A non dependent
- product can be written: $T \rightarrow U$.
-\item if $x$ is a variable and $T$, $U$ are terms then $\lb~x:T \mto U$
- ($\kw{fun}~x:T\Ra U$ in \Coq{} concrete syntax) is a term. This is a
- notation for the $\lambda$-abstraction of
- $\lambda$-calculus\index{lambda-calculus@$\lambda$-calculus}
- \cite{Bar81}. The term $\lb~x:T \mto U$ is a function which maps
- elements of $T$ to $U$.
-\item if $T$ and $U$ are terms then $(T\ U)$ is a term
- ($T~U$ in \Coq{} concrete syntax). The term $(T\
- U)$ reads as {\it ``T applied to U''}.
-\item if $x$ is a variable, and $T$, $U$ are terms then
- $\kw{let}~x:=T~\kw{in}~U$ is a
- term which denotes the term $U$ where the variable $x$ is locally
- bound to $T$. This stands for the common ``let-in'' construction of
- functional programs such as ML or Scheme.
-\end{enumerate}
-
-\paragraph{Notations.} Application associates to the left such that
-$(t~t_1\ldots t_n)$ represents $(\ldots (t~t_1)\ldots t_n)$. The
-products and arrows associate to the right such that $\forall~x:A,B\ra C\ra
-D$ represents $\forall~x:A,(B\ra (C\ra D))$. One uses sometimes
-$\forall~x~y:A,B$ or
-$\lb~x~y:A\mto B$ to denote the abstraction or product of several variables
-of the same type. The equivalent formulation is $\forall~x:A, \forall y:A,B$ or
-$\lb~x:A \mto \lb y:A \mto B$
-
-\paragraph{Free variables.}
-The notion of free variables is defined as usual. In the expressions
-$\lb~x:T\mto U$ and $\forall x:T, U$ the occurrences of $x$ in $U$
-are bound. They are represented by de Bruijn indexes in the internal
-structure of terms.
-
-\paragraph[Substitution.]{Substitution.\index{Substitution}}
-The notion of substituting a term $t$ to free occurrences of a
-variable $x$ in a term $u$ is defined as usual. The resulting term
-is written $\subst{u}{x}{t}$.
-
-
-\section[Typed terms]{Typed terms\label{Typed-terms}}
-
-As objects of type theory, terms are subjected to {\em type
-discipline}. The well typing of a term depends on an environment which
-consists in a global environment (see below) and a local context.
-
-\paragraph{Local context.}
-A {\em local context} (or shortly context) is an ordered list of
-declarations of variables. The declaration of some variable $x$ is
-either an assumption, written $x:T$ ($T$ is a type) or a definition,
-written $x:=t:T$. We use brackets to write contexts. A
-typical example is $[x:T;y:=u:U;z:V]$. Notice that the variables
-declared in a context must be distinct. If $\Gamma$ declares some $x$,
-we write $x \in \Gamma$. By writing $(x:T) \in \Gamma$ we mean that
-either $x:T$ is an assumption in $\Gamma$ or that there exists some $t$ such
-that $x:=t:T$ is a definition in $\Gamma$. If $\Gamma$ defines some
-$x:=t:T$, we also write $(x:=t:T) \in \Gamma$. Contexts must be
-themselves {\em well formed}. For the rest of the chapter, the
-notation $\Gamma::(y:T)$ (resp. $\Gamma::(y:=t:T)$) denotes the context
-$\Gamma$ enriched with the declaration $y:T$ (resp. $y:=t:T$). The
-notation $[]$ denotes the empty context. \index{Context}
-
-% Does not seem to be used further...
-% Si dans l'explication WF(E)[Gamma] concernant les constantes
-% definies ds un contexte
-
-We define the inclusion of two contexts $\Gamma$ and $\Delta$ (written
-as $\Gamma \subset \Delta$) as the property, for all variable $x$,
-type $T$ and term $t$, if $(x:T) \in \Gamma$ then $(x:T) \in \Delta$
-and if $(x:=t:T) \in \Gamma$ then $(x:=t:T) \in \Delta$.
-%We write
-% $|\Delta|$ for the length of the context $\Delta$, that is for the number
-% of declarations (assumptions or definitions) in $\Delta$.
-
-A variable $x$ is said to be free in $\Gamma$ if $\Gamma$ contains a
-declaration $y:T$ such that $x$ is free in $T$.
-
-\paragraph[Environment.]{Environment.\index{Environment}}
-Because we are manipulating global declarations (constants and global
-assumptions), we also need to consider a global environment $E$.
-
-An environment is an ordered list of declarations of global
-names. Declarations are either assumptions or ``standard''
-definitions, that is abbreviations for well-formed terms
-but also definitions of inductive objects. In the latter
-case, an object in the environment will define one or more constants
-(that is types and constructors, see Section~\ref{Cic-inductive-definitions}).
-
-An assumption will be represented in the environment as
-\Assum{\Gamma}{c}{T} which means that $c$ is assumed of some type $T$
-well-defined in some context $\Gamma$. An (ordinary) definition will
-be represented in the environment as \Def{\Gamma}{c}{t}{T} which means
-that $c$ is a constant which is valid in some context $\Gamma$ whose
-value is $t$ and type is $T$.
-
-The rules for inductive definitions (see section
-\ref{Cic-inductive-definitions}) have to be considered as assumption
-rules to which the following definitions apply: if the name $c$ is
-declared in $E$, we write $c \in E$ and if $c:T$ or $c:=t:T$ is
-declared in $E$, we write $(c : T) \in E$.
-
-\paragraph[Typing rules.]{Typing rules.\label{Typing-rules}\index{Typing rules}}
-In the following, we assume $E$ is a valid environment w.r.t.
-inductive definitions. We define simultaneously two
-judgments. The first one \WTEG{t}{T} means the term $t$ is well-typed
-and has type $T$ in the environment $E$ and context $\Gamma$. The
-second judgment \WFE{\Gamma} means that the environment $E$ is
-well-formed and the context $\Gamma$ is a valid context in this
-environment. It also means a third property which makes sure that any
-constant in $E$ was defined in an environment which is included in
-$\Gamma$
-\footnote{This requirement could be relaxed if we instead introduced
- an explicit mechanism for instantiating constants. At the external
- level, the Coq engine works accordingly to this view that all the
- definitions in the environment were built in a sub-context of the
- current context.}.
-
-A term $t$ is well typed in an environment $E$ iff there exists a
-context $\Gamma$ and a term $T$ such that the judgment \WTEG{t}{T} can
-be derived from the following rules.
-\begin{description}
-\item[W-E] \inference{\WF{[]}{[]}}
-\item[W-S] % Ce n'est pas vrai : x peut apparaitre plusieurs fois dans Gamma
-\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~x \not\in
- \Gamma % \cup E
- }
- {\WFE{\Gamma::(x:T)}}~~~~~
- \frac{\WTEG{t}{T}~~~~x \not\in
- \Gamma % \cup E
- }{\WFE{\Gamma::(x:=t:T)}}}
-\item[Def] \inference{\frac{\WTEG{t}{T}~~~c \notin E \cup \Gamma}
- {\WF{E;\Def{\Gamma}{c}{t}{T}}{\Gamma}}}
-\item[Assum] \inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~c \notin E \cup \Gamma}
- {\WF{E;\Assum{\Gamma}{c}{T}}{\Gamma}}}
-\item[Ax] \index{Typing rules!Ax}
-\inference{\frac{\WFE{\Gamma}}{\WTEG{\Prop}{\Type(p)}}~~~~~
-\frac{\WFE{\Gamma}}{\WTEG{\Set}{\Type(q)}}}
-\inference{\frac{\WFE{\Gamma}~~~~i<j}{\WTEG{\Type(i)}{\Type(j)}}}
-\item[Var]\index{Typing rules!Var}
- \inference{\frac{ \WFE{\Gamma}~~~~~(x:T) \in \Gamma~~\mbox{or}~~(x:=t:T) \in \Gamma~\mbox{for some $t$}}{\WTEG{x}{T}}}
-\item[Const] \index{Typing rules!Const}
-\inference{\frac{\WFE{\Gamma}~~~~(c:T) \in E~~\mbox{or}~~(c:=t:T) \in E~\mbox{for some $t$} }{\WTEG{c}{T}}}
-\item[Prod] \index{Typing rules!Prod}
-\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~
- \WTE{\Gamma::(x:T)}{U}{\Prop}}
- { \WTEG{\forall~x:T,U}{\Prop}}}
-\inference{\frac{\WTEG{T}{s}~~~~s \in\{\Prop, \Set\}~~~~~~
- \WTE{\Gamma::(x:T)}{U}{\Set}}
- { \WTEG{\forall~x:T,U}{\Set}}}
-\inference{\frac{\WTEG{T}{\Type(i)}~~~~i\leq k~~~
- \WTE{\Gamma::(x:T)}{U}{\Type(j)}~~~j \leq k}
- {\WTEG{\forall~x:T,U}{\Type(k)}}}
-\item[Lam]\index{Typing rules!Lam}
-\inference{\frac{\WTEG{\forall~x:T,U}{s}~~~~ \WTE{\Gamma::(x:T)}{t}{U}}
- {\WTEG{\lb~x:T\mto t}{\forall x:T, U}}}
-\item[App]\index{Typing rules!App}
- \inference{\frac{\WTEG{t}{\forall~x:U,T}~~~~\WTEG{u}{U}}
- {\WTEG{(t\ u)}{\subst{T}{x}{u}}}}
-\item[Let]\index{Typing rules!Let}
-\inference{\frac{\WTEG{t}{T}~~~~ \WTE{\Gamma::(x:=t:T)}{u}{U}}
- {\WTEG{\kw{let}~x:=t~\kw{in}~u}{\subst{U}{x}{t}}}}
-\end{description}
-
-\Rem We may have $\kw{let}~x:=t~\kw{in}~u$
-well-typed without having $((\lb~x:T\mto u)~t)$ well-typed (where
-$T$ is a type of $t$). This is because the value $t$ associated to $x$
-may be used in a conversion rule (see Section~\ref{conv-rules}).
-
-\section[Conversion rules]{Conversion rules\index{Conversion rules}
-\label{conv-rules}}
-\paragraph[$\beta$-reduction.]{$\beta$-reduction.\label{beta}\index{beta-reduction@$\beta$-reduction}}
-
-We want to be able to identify some terms as we can identify the
-application of a function to a given argument with its result. For
-instance the identity function over a given type $T$ can be written
-$\lb~x:T\mto x$. In any environment $E$ and context $\Gamma$, we want to identify any object $a$ (of type $T$) with the
-application $((\lb~x:T\mto x)~a)$. We define for this a {\em reduction} (or a
-{\em conversion}) rule we call $\beta$:
-\[ \WTEGRED{((\lb~x:T\mto
- t)~u)}{\triangleright_{\beta}}{\subst{t}{x}{u}} \]
-We say that $\subst{t}{x}{u}$ is the {\em $\beta$-contraction} of
-$((\lb~x:T\mto t)~u)$ and, conversely, that $((\lb~x:T\mto t)~u)$
-is the {\em $\beta$-expansion} of $\subst{t}{x}{u}$.
-
-According to $\beta$-reduction, terms of the {\em Calculus of
- Inductive Constructions} enjoy some fundamental properties such as
-confluence, strong normalization, subject reduction. These results are
-theoretically of great importance but we will not detail them here and
-refer the interested reader to \cite{Coq85}.
-
-\paragraph[$\iota$-reduction.]{$\iota$-reduction.\label{iota}\index{iota-reduction@$\iota$-reduction}}
-A specific conversion rule is associated to the inductive objects in
-the environment. We shall give later on (see Section~\ref{iotared}) the
-precise rules but it just says that a destructor applied to an object
-built from a constructor behaves as expected. This reduction is
-called $\iota$-reduction and is more precisely studied in
-\cite{Moh93,Wer94}.
-
-
-\paragraph[$\delta$-reduction.]{$\delta$-reduction.\label{delta}\index{delta-reduction@$\delta$-reduction}}
-
-We may have defined variables in contexts or constants in the global
-environment. It is legal to identify such a reference with its value,
-that is to expand (or unfold) it into its value. This
-reduction is called $\delta$-reduction and shows as follows.
-
-$$\WTEGRED{x}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(x:=t:T) \in \Gamma$}~~~~~~~~~\WTEGRED{c}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(c:=t:T) \in E$}$$
-
-
-\paragraph[$\zeta$-reduction.]{$\zeta$-reduction.\label{zeta}\index{zeta-reduction@$\zeta$-reduction}}
-
-Coq allows also to remove local definitions occurring in terms by
-replacing the defined variable by its value. The declaration being
-destroyed, this reduction differs from $\delta$-reduction. It is
-called $\zeta$-reduction and shows as follows.
-
-$$\WTEGRED{\kw{let}~x:=u~\kw{in}~t}{\triangleright_{\zeta}}{\subst{t}{x}{u}}$$
-
-\paragraph[Convertibility.]{Convertibility.\label{convertibility}
-\index{beta-reduction@$\beta$-reduction}\index{iota-reduction@$\iota$-reduction}\index{delta-reduction@$\delta$-reduction}\index{zeta-reduction@$\zeta$-reduction}}
-
-Let us write $\WTEGRED{t}{\triangleright}{u}$ for the contextual closure of the relation $t$ reduces to $u$ in the environment $E$ and context $\Gamma$ with one of the previous reduction $\beta$, $\iota$, $\delta$ or $\zeta$.
-
-We say that two terms $t_1$ and $t_2$ are {\em convertible} (or {\em
- equivalent)} in the environment $E$ and context $\Gamma$ iff there exists a term $u$ such that $\WTEGRED{t_1}{\triangleright \ldots \triangleright}{u}$
-and $\WTEGRED{t_2}{\triangleright \ldots \triangleright}{u}$.
-We then write $\WTEGCONV{t_1}{t_2}$.
-
-The convertibility relation allows to introduce a new typing rule
-which says that two convertible well-formed types have the same
-inhabitants.
-
-At the moment, we did not take into account one rule between universes
-which says that any term in a universe of index $i$ is also a term in
-the universe of index $i+1$. This property is included into the
-conversion rule by extending the equivalence relation of
-convertibility into an order inductively defined by:
-\begin{enumerate}
-\item if $\WTEGCONV{t}{u}$ then $\WTEGLECONV{t}{u}$,
-\item if $i \leq j$ then $\WTEGLECONV{\Type(i)}{\Type(j)}$,
-\item for any $i$, $\WTEGLECONV{\Prop}{\Type(i)}$,
-\item for any $i$, $\WTEGLECONV{\Set}{\Type(i)}$,
-\item $\WTEGLECONV{\Prop}{\Set}$,
-\item if $\WTEGCONV{T}{U}$ and $\WTELECONV{\Gamma::(x:T)}{T'}{U'}$ then $\WTEGLECONV{\forall~x:T,T'}{\forall~x:U,U'}$.
-\end{enumerate}
-
-The conversion rule is now exactly:
-
-\begin{description}\label{Conv}
-\item[Conv]\index{Typing rules!Conv}
- \inference{
- \frac{\WTEG{U}{s}~~~~\WTEG{t}{T}~~~~\WTEGLECONV{T}{U}}{\WTEG{t}{U}}}
- \end{description}
-
-
-\paragraph{$\eta$-conversion.
-\label{eta}
-\index{eta-conversion@$\eta$-conversion}
-\index{eta-reduction@$\eta$-reduction}}
-
-An other important rule is the $\eta$-conversion. It is to identify
-terms over a dummy abstraction of a variable followed by an
-application of this variable. Let $T$ be a type, $t$ be a term in
-which the variable $x$ doesn't occurs free. We have
-\[ \WTEGRED{\lb~x:T\mto (t\ x)}{\triangleright}{t} \]
-Indeed, as $x$ doesn't occur free in $t$, for any $u$ one
-applies to $\lb~x:T\mto (t\ x)$, it $\beta$-reduces to $(t\ u)$. So
-$\lb~x:T\mto (t\ x)$ and $t$ can be identified.
-
-\Rem The $\eta$-reduction is not taken into account in the
-convertibility rule of \Coq.
-
-\paragraph[Normal form.]{Normal form.\index{Normal form}\label{Normal-form}\label{Head-normal-form}\index{Head normal form}}
-A term which cannot be any more reduced is said to be in {\em normal
- form}. There are several ways (or strategies) to apply the reduction
-rule. Among them, we have to mention the {\em head reduction} which
-will play an important role (see Chapter~\ref{Tactics}). Any term can
-be written as $\lb~x_1:T_1\mto \ldots \lb x_k:T_k \mto
-(t_0\ t_1\ldots t_n)$ where
-$t_0$ is not an application. We say then that $t_0$ is the {\em head
- of $t$}. If we assume that $t_0$ is $\lb~x:T\mto u_0$ then one step of
-$\beta$-head reduction of $t$ is:
-\[\lb~x_1:T_1\mto \ldots \lb x_k:T_k\mto (\lb~x:T\mto u_0\ t_1\ldots t_n)
-~\triangleright ~ \lb~(x_1:T_1)\ldots(x_k:T_k)\mto
-(\subst{u_0}{x}{t_1}\ t_2 \ldots t_n)\]
-Iterating the process of head reduction until the head of the reduced
-term is no more an abstraction leads to the {\em $\beta$-head normal
- form} of $t$:
-\[ t \triangleright \ldots \triangleright
-\lb~x_1:T_1\mto \ldots\lb x_k:T_k\mto (v\ u_1
-\ldots u_m)\]
-where $v$ is not an abstraction (nor an application). Note that the
-head normal form must not be confused with the normal form since some
-$u_i$ can be reducible.
-
-Similar notions of head-normal forms involving $\delta$, $\iota$ and $\zeta$
-reductions or any combination of those can also be defined.
-
-\section{Derived rules for environments}
-
-From the original rules of the type system, one can derive new rules
-which change the context of definition of objects in the environment.
-Because these rules correspond to elementary operations in the \Coq\
-engine used in the discharge mechanism at the end of a section, we
-state them explicitly.
-
-\paragraph{Mechanism of substitution.}
-
-One rule which can be proved valid, is to replace a term $c$ by its
-value in the environment. As we defined the substitution of a term for
-a variable in a term, one can define the substitution of a term for a
-constant. One easily extends this substitution to contexts and
-environments.
-
-\paragraph{Substitution Property:}
-\inference{\frac{\WF{E;\Def{\Gamma}{c}{t}{T}; F}{\Delta}}
- {\WF{E; \subst{F}{c}{t}}{\subst{\Delta}{c}{t}}}}
-
-
-\paragraph{Abstraction.}
-
-One can modify the context of definition of a constant $c$ by
-abstracting a constant with respect to the last variable $x$ of its
-defining context. For doing that, we need to check that the constants
-appearing in the body of the declaration do not depend on $x$, we need
-also to modify the reference to the constant $c$ in the environment
-and context by explicitly applying this constant to the variable $x$.
-Because of the rules for building environments and terms we know the
-variable $x$ is available at each stage where $c$ is mentioned.
-
-\paragraph{Abstracting property:}
- \inference{\frac{\WF{E; \Def{\Gamma::(x:U)}{c}{t}{T};
- F}{\Delta}~~~~\WFE{\Gamma}}
- {\WF{E;\Def{\Gamma}{c}{\lb~x:U\mto t}{\forall~x:U,T};
- \subst{F}{c}{(c~x)}}{\subst{\Delta}{c}{(c~x)}}}}
-
-\paragraph{Pruning the context.}
-We said the judgment \WFE{\Gamma} means that the defining contexts of
-constants in $E$ are included in $\Gamma$. If one abstracts or
-substitutes the constants with the above rules then it may happen
-that the context $\Gamma$ is now bigger than the one needed for
-defining the constants in $E$. Because defining contexts are growing
-in $E$, the minimum context needed for defining the constants in $E$
-is the same as the one for the last constant. One can consequently
-derive the following property.
-
-\paragraph{Pruning property:}
-\inference{\frac{\WF{E; \Def{\Delta}{c}{t}{T}}{\Gamma}}
- {\WF{E;\Def{\Delta}{c}{t}{T}}{\Delta}}}
-
-
-\section[Inductive Definitions]{Inductive Definitions\label{Cic-inductive-definitions}}
-
-A (possibly mutual) inductive definition is specified by giving the
-names and the type of the inductive sets or families to be
-defined and the names and types of the constructors of the inductive
-predicates. An inductive declaration in the environment can
-consequently be represented with two contexts (one for inductive
-definitions, one for constructors).
-
-Stating the rules for inductive definitions in their general form
-needs quite tedious definitions. We shall try to give a concrete
-understanding of the rules by precising them on running examples. We
-take as examples the type of natural numbers, the type of
-parameterized lists over a type $A$, the relation which states that
-a list has some given length and the mutual inductive definition of trees and
-forests.
-
-\subsection{Representing an inductive definition}
-\subsubsection{Inductive definitions without parameters}
-As for constants, inductive definitions can be defined in a non-empty
-context. \\
-We write \NInd{\Gamma}{\Gamma_I}{\Gamma_C} an inductive
-definition valid in a context $\Gamma$, a
-context of definitions $\Gamma_I$ and a context of constructors
-$\Gamma_C$.
-\paragraph{Examples.}
-The inductive declaration for the type of natural numbers will be:
-\[\NInd{}{\nat:\Set}{\nO:\nat,\nS:\nat\ra\nat}\]
-In a context with a variable $A:\Set$, the lists of elements in $A$ are
-represented by:
-\[\NInd{A:\Set}{\List:\Set}{\Nil:\List,\cons : A \ra \List \ra
- \List}\]
- Assuming
- $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is
- $[c_1:C_1;\ldots;c_n:C_n]$, the general typing rules are,
- for $1\leq j\leq k$ and $1\leq i\leq n$:
-
-\bigskip
-\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E}{(I_j:A_j) \in E}}
-
-\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E}{(c_i:C_i) \in E}}
-
-\subsubsection{Inductive definitions with parameters}
-
-We have to slightly complicate the representation above in order to handle
-the delicate problem of parameters.
-Let us explain that on the example of \List. With the above definition,
-the type \List\ can only be used in an environment where we
-have a variable $A:\Set$. Generally one want to consider lists of
-elements in different types. For constants this is easily done by abstracting
-the value over the parameter. In the case of inductive definitions we
-have to handle the abstraction over several objects.
-
-One possible way to do that would be to define the type \List\
-inductively as being an inductive family of type $\Set\ra\Set$:
-\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set,\List~A),
- \cons : (\forall A:\Set, A \ra \List~A \ra \List~A)}\]
-There are drawbacks to this point of view. The
-information which says that for any $A$, $(\List~A)$ is an inductively defined
-\Set\ has been lost.
-So we introduce two important definitions.
-
-\paragraph{Inductive parameters, real arguments.}
-An inductive definition $\NInd{\Gamma}{\Gamma_I}{\Gamma_C}$ admits
-$r$ inductive parameters if each type of constructors $(c:C)$ in
-$\Gamma_C$ is such that
-\[C\equiv \forall
-p_1:P_1,\ldots,\forall p_r:P_r,\forall a_1:A_1, \ldots \forall a_n:A_n,
-(I~p_1~\ldots p_r~t_1\ldots t_q)\]
-with $I$ one of the inductive definitions in $\Gamma_I$.
-We say that $q$ is the number of real arguments of the constructor
-$c$.
-\paragraph{Context of parameters.}
-If an inductive definition $\NInd{\Gamma}{\Gamma_I}{\Gamma_C}$ admits
-$r$ inductive parameters, then there exists a context $\Gamma_P$ of
-size $r$, such that $\Gamma_P=[p_1:P_1;\ldots;p_r:P_r]$ and
-if $(t:A) \in \Gamma_I,\Gamma_C$ then $A$ can be written as
-$\forall p_1:P_1,\ldots \forall p_r:P_r,A'$.
-We call $\Gamma_P$ the context of parameters of the inductive
-definition and use the notation $\forall \Gamma_P,A'$ for the term $A$.
-\paragraph{Remark.}
-If we have a term $t$ in an instance of an
-inductive definition $I$ which starts with a constructor $c$, then the
-$r$ first arguments of $c$ (the parameters) can be deduced from the
-type $T$ of $t$: these are exactly the $r$ first arguments of $I$ in
-the head normal form of $T$.
-\paragraph{Examples.}
-The \List{} definition has $1$ parameter:
-\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set, \List~A),
- \cons : (\forall A:\Set, A \ra \List~A \ra \List~A)}\]
-This is also the case for this more complex definition where there is
-a recursive argument on a different instance of \List:
-\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set, \List~A),
- \cons : (\forall A:\Set, A \ra \List~(A \ra A) \ra \List~A)}\]
-But the following definition has $0$ parameters:
-\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set, \List~A),
- \cons : (\forall A:\Set, A \ra \List~A \ra \List~(A*A))}\]
-
-%\footnote{
-%The interested reader may compare the above definition with the two
-%following ones which have very different logical meaning:\\
-%$\NInd{}{\List:\Set}{\Nil:\List,\cons : (A:\Set)A
-% \ra \List \ra \List}$ \\
-%$\NInd{}{\List:\Set\ra\Set}{\Nil:(A:\Set)(\List~A),\cons : (A:\Set)A
-% \ra (\List~A\ra A) \ra (\List~A)}$.}
-\paragraph{Concrete syntax.}
-In the Coq system, the context of parameters is given explicitly
-after the name of the inductive definitions and is shared between the
-arities and the type of constructors.
-% The vernacular declaration of polymorphic trees and forests will be:\\
-% \begin{coq_example*}
-% Inductive Tree (A:Set) : Set :=
-% Node : A -> Forest A -> Tree A
-% with Forest (A : Set) : Set :=
-% Empty : Forest A
-% | Cons : Tree A -> Forest A -> Forest A
-% \end{coq_example*}
-% will correspond in our formalism to:
-% \[\NInd{}{{\tt Tree}:\Set\ra\Set;{\tt Forest}:\Set\ra \Set}
-% {{\tt Node} : \forall A:\Set, A \ra {\tt Forest}~A \ra {\tt Tree}~A,
-% {\tt Empty} : \forall A:\Set, {\tt Forest}~A,
-% {\tt Cons} : \forall A:\Set, {\tt Tree}~A \ra {\tt Forest}~A \ra
-% {\tt Forest}~A}\]
-We keep track in the syntax of the number of
-parameters.
-
-Formally the representation of an inductive declaration
-will be
-\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} for an inductive
-definition valid in a context $\Gamma$ with $p$ parameters, a
-context of definitions $\Gamma_I$ and a context of constructors
-$\Gamma_C$.
-
-The definition \Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} will be
-well-formed exactly when \NInd{\Gamma}{\Gamma_I}{\Gamma_C} is and
-when $p$ is (less or equal than) the number of parameters in
-\NInd{\Gamma}{\Gamma_I}{\Gamma_C}.
-
-\paragraph{Examples}
-The declaration for parameterized lists is:
-\[\Ind{}{1}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set,\List~A),\cons :
- (\forall A:\Set, A \ra \List~A \ra \List~A)}\]
-
-The declaration for the length of lists is:
-\[\Ind{}{1}{\Length:\forall A:\Set, (\List~A)\ra \nat\ra\Prop}
- {\LNil:\forall A:\Set, \Length~A~(\Nil~A)~\nO,\\
- \LCons :\forall A:\Set,\forall a:A, \forall l:(\List~A),\forall n:\nat, (\Length~A~l~n)\ra (\Length~A~(\cons~A~a~l)~(\nS~n))}\]
-
-The declaration for a mutual inductive definition of forests and trees is:
-\[\NInd{}{\tree:\Set,\forest:\Set}
- {\\~~\node:\forest \ra \tree,
- \emptyf:\forest,\consf:\tree \ra \forest \ra \forest\-}\]
-
-These representations are the ones obtained as the result of the \Coq\
-declaration:
-\begin{coq_example*}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-Inductive list (A:Set) : Set :=
- | nil : list A
- | cons : A -> list A -> list A.
-\end{coq_example*}
-\begin{coq_example*}
-Inductive Length (A:Set) : list A -> nat -> Prop :=
- | Lnil : Length A (nil A) O
- | Lcons :
- forall (a:A) (l:list A) (n:nat),
- Length A l n -> Length A (cons A a l) (S n).
-Inductive tree : Set :=
- node : forest -> tree
-with forest : Set :=
- | emptyf : forest
- | consf : tree -> forest -> forest.
-\end{coq_example*}
-% The inductive declaration in \Coq\ is slightly different from the one
-% we described theoretically. The difference is that in the type of
-% constructors the inductive definition is explicitly applied to the
-% parameters variables.
-The \Coq\ type-checker verifies that all
-parameters are applied in the correct manner in the conclusion of the
-type of each constructors~:
-
-In particular, the following definition will not be accepted because
-there is an occurrence of \List\ which is not applied to the parameter
-variable in the conclusion of the type of {\tt cons'}:
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is not correct and should produce **********)
-(********* Error: The 1st argument of list' must be A in ... *********)
-\end{coq_eval}
-\begin{coq_example}
-Inductive list' (A:Set) : Set :=
- | nil' : list' A
- | cons' : A -> list' A -> list' (A*A).
-\end{coq_example}
-Since \Coq{} version 8.1, there is no restriction about parameters in
-the types of arguments of constructors. The following definition is
-valid:
-\begin{coq_example}
-Inductive list' (A:Set) : Set :=
- | nil' : list' A
- | cons' : A -> list' (A->A) -> list' A.
-\end{coq_example}
-
-
-\subsection{Types of inductive objects}
-We have to give the type of constants in an environment $E$ which
-contains an inductive declaration.
-
-\begin{description}
-\item[Ind-Const] Assuming
- $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is
- $[c_1:C_1;\ldots;c_n:C_n]$,
-
-\inference{\frac{\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E
- ~~j=1\ldots k}{(I_j:A_j) \in E}}
-
-\inference{\frac{\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E
- ~~~~i=1.. n}
- {(c_i:C_i) \in E}}
-\end{description}
-
-\paragraph{Example.}
-We have $(\List:\Set \ra \Set), (\cons:\forall~A:\Set,A\ra(\List~A)\ra
-(\List~A))$, \\
-$(\Length:\forall~A:\Set, (\List~A)\ra\nat\ra\Prop)$, $\tree:\Set$ and $\forest:\Set$.
-
-From now on, we write $\ListA$ instead of $(\List~A)$ and $\LengthA$
-for $(\Length~A)$.
-
-%\paragraph{Parameters.}
-%%The parameters introduce a distortion between the inside specification
-%%of the inductive declaration where parameters are supposed to be
-%%instantiated (this representation is appropriate for checking the
-%%correctness or deriving the destructor principle) and the outside
-%%typing rules where the inductive objects are seen as objects
-%%abstracted with respect to the parameters.
-
-%In the definition of \List\ or \Length\, $A$ is a parameter because
-%what is effectively inductively defined is $\ListA$ or $\LengthA$ for
-%a given $A$ which is constant in the type of constructors. But when
-%we define $(\LengthA~l~n)$, $l$ and $n$ are not parameters because the
-%constructors manipulate different instances of this family.
-
-\subsection{Well-formed inductive definitions}
-We cannot accept any inductive declaration because some of them lead
-to inconsistent systems. We restrict ourselves to definitions which
-satisfy a syntactic criterion of positivity. Before giving the formal
-rules, we need a few definitions:
-
-\paragraph[Definitions]{Definitions\index{Positivity}\label{Positivity}}
-
-A type $T$ is an {\em arity of sort $s$}\index{Arity} if it converts
-to the sort $s$ or to a product $\forall~x:T,U$ with $U$ an arity
-of sort $s$. (For instance $A\ra \Set$ or $\forall~A:\Prop,A\ra
-\Prop$ are arities of sort respectively \Set\ and \Prop). A {\em type
- of constructor of $I$}\index{Type of constructor} is either a term
-$(I~t_1\ldots ~t_n)$ or $\fa x:T,C$ with $C$ recursively
-a {\em type of constructor of $I$}.
-
-\smallskip
-
-The type of constructor $T$ will be said to {\em satisfy the positivity
-condition} for a constant $X$ in the following cases:
-
-\begin{itemize}
-\item $T=(X~t_1\ldots ~t_n)$ and $X$ does not occur free in
-any $t_i$
-\item $T=\forall~x:U,V$ and $X$ occurs only strictly positively in $U$ and
-the type $V$ satisfies the positivity condition for $X$
-\end{itemize}
-
-The constant $X$ {\em occurs strictly positively} in $T$ in the
-following cases:
-
-\begin{itemize}
-\item $X$ does not occur in $T$
-\item $T$ converts to $(X~t_1 \ldots ~t_n)$ and $X$ does not occur in
- any of $t_i$
-\item $T$ converts to $\forall~x:U,V$ and $X$ does not occur in
- type $U$ but occurs strictly positively in type $V$
-\item $T$ converts to $(I~a_1 \ldots ~a_m ~ t_1 \ldots ~t_p)$ where
- $I$ is the name of an inductive declaration of the form
- $\Ind{\Gamma}{m}{I:A}{c_1:\forall p_1:P_1,\ldots \forall
- p_m:P_m,C_1;\ldots;c_n:\forall p_1:P_1,\ldots \forall
- p_m:P_m,C_n}$
- (in particular, it is not mutually defined and it has $m$
- parameters) and $X$ does not occur in any of the $t_i$, and the
- (instantiated) types of constructor $C_i\{p_j/a_j\}_{j=1\ldots m}$
- of $I$ satisfy
- the nested positivity condition for $X$
-%\item more generally, when $T$ is not a type, $X$ occurs strictly
-%positively in $T[x:U]u$ if $X$ does not occur in $U$ but occurs
-%strictly positively in $u$
-\end{itemize}
-
-The type of constructor $T$ of $I$ {\em satisfies the nested
-positivity condition} for a constant $X$ in the following
-cases:
-
-\begin{itemize}
-\item $T=(I~b_1\ldots b_m~u_1\ldots ~u_{p})$, $I$ is an inductive
- definition with $m$ parameters and $X$ does not occur in
-any $u_i$
-\item $T=\forall~x:U,V$ and $X$ occurs only strictly positively in $U$ and
-the type $V$ satisfies the nested positivity condition for $X$
-\end{itemize}
-
-\paragraph{Example}
-
-$X$ occurs strictly positively in $A\ra X$ or $X*A$ or $({\tt list}~
-X)$ but not in $X \ra A$ or $(X \ra A)\ra A$ nor $({\tt neg}~X)$
-assuming the notion of product and lists were already defined and {\tt
- neg} is an inductive definition with declaration \Ind{}{A:\Set}{{\tt
- neg}:\Set}{{\tt neg}:(A\ra{\tt False}) \ra {\tt neg}}. Assuming
-$X$ has arity ${\tt nat \ra Prop}$ and {\tt ex} is the inductively
-defined existential quantifier, the occurrence of $X$ in ${\tt (ex~
- nat~ \lb~n:nat\mto (X~ n))}$ is also strictly positive.
-
-\paragraph{Correctness rules.}
-We shall now describe the rules allowing the introduction of a new
-inductive definition.
-
-\begin{description}
-\item[W-Ind] Let $E$ be an environment and
- $\Gamma,\Gamma_P,\Gamma_I,\Gamma_C$ are contexts such that
- $\Gamma_I$ is $[I_1:\forall \Gamma_P,A_1;\ldots;I_k:\forall
- \Gamma_P,A_k]$ and $\Gamma_C$ is
- $[c_1:\forall \Gamma_P,C_1;\ldots;c_n:\forall \Gamma_P,C_n]$.
-\inference{
- \frac{
- (\WTE{\Gamma;\Gamma_P}{A_j}{s'_j})_{j=1\ldots k}
- ~~ (\WTE{\Gamma;\Gamma_I;\Gamma_P}{C_i}{s_{q_i}})_{i=1\ldots n}
-}
- {\WF{E;\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}}{\Gamma}}}
-provided that the following side conditions hold:
-\begin{itemize}
-\item $k>0$ and all of $I_j$ and $c_i$ are distinct names for $j=1\ldots k$ and $i=1\ldots n$,
-\item $p$ is the number of parameters of \NInd{\Gamma}{\Gamma_I}{\Gamma_C}
- and $\Gamma_P$ is the context of parameters,
-\item for $j=1\ldots k$ we have that $A_j$ is an arity of sort $s_j$ and $I_j
- \notin \Gamma \cup E$,
-\item for $i=1\ldots n$ we have that $C_i$ is a type of constructor of
- $I_{q_i}$ which satisfies the positivity condition for $I_1 \ldots I_k$
- and $c_i \notin \Gamma \cup E$.
-\end{itemize}
-\end{description}
-One can remark that there is a constraint between the sort of the
-arity of the inductive type and the sort of the type of its
-constructors which will always be satisfied for the impredicative sort
-(\Prop) but may fail to define inductive definition
-on sort \Set{} and generate constraints between universes for
-inductive definitions in the {\Type} hierarchy.
-
-\paragraph{Examples.}
-It is well known that existential quantifier can be encoded as an
-inductive definition.
-The following declaration introduces the second-order existential
-quantifier $\exists X.P(X)$.
-\begin{coq_example*}
-Inductive exProp (P:Prop->Prop) : Prop
- := exP_intro : forall X:Prop, P X -> exProp P.
-\end{coq_example*}
-The same definition on \Set{} is not allowed and fails~:
-\begin{coq_eval}
-(********** The following is not correct and should produce **********)
-(*** Error: Large non-propositional inductive types must be in Type***)
-\end{coq_eval}
-\begin{coq_example}
-Inductive exSet (P:Set->Prop) : Set
- := exS_intro : forall X:Set, P X -> exSet P.
-\end{coq_example}
-It is possible to declare the same inductive definition in the
-universe \Type.
-The \texttt{exType} inductive definition has type $(\Type_i \ra\Prop)\ra
-\Type_j$ with the constraint that the parameter \texttt{X} of \texttt{exT\_intro} has type $\Type_k$ with $k<j$ and $k\leq i$.
-\begin{coq_example*}
-Inductive exType (P:Type->Prop) : Type
- := exT_intro : forall X:Type, P X -> exType P.
-\end{coq_example*}
-%We shall assume for the following definitions that, if necessary, we
-%annotated the type of constructors such that we know if the argument
-%is recursive or not. We shall write the type $(x:_R T)C$ if it is
-%a recursive argument and $(x:_P T)C$ if the argument is not recursive.
-
-\paragraph[Sort-polymorphism of inductive families.]{Sort-polymorphism of inductive families.\index{Sort-polymorphism of inductive families}}
-
-From {\Coq} version 8.1, inductive families declared in {\Type} are
-polymorphic over their arguments in {\Type}.
-
-If $A$ is an arity and $s$ a sort, we write $A_{/s}$ for the arity
-obtained from $A$ by replacing its sort with $s$. Especially, if $A$
-is well-typed in some environment and context, then $A_{/s}$ is typable
-by typability of all products in the Calculus of Inductive Constructions.
-The following typing rule is added to the theory.
-
-\begin{description}
-\item[Ind-Family] Let $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$ be an
- inductive definition. Let $\Gamma_P = [p_1:P_1;\ldots;p_{p}:P_{p}]$
- be its context of parameters, $\Gamma_I = [I_1:\forall
- \Gamma_P,A_1;\ldots;I_k:\forall \Gamma_P,A_k]$ its context of
- definitions and $\Gamma_C = [c_1:\forall
- \Gamma_P,C_1;\ldots;c_n:\forall \Gamma_P,C_n]$ its context of
- constructors, with $c_i$ a constructor of $I_{q_i}$.
-
- Let $m \leq p$ be the length of the longest prefix of parameters
- such that the $m$ first arguments of all occurrences of all $I_j$ in
- all $C_k$ (even the occurrences in the hypotheses of $C_k$) are
- exactly applied to $p_1~\ldots~p_m$ ($m$ is the number of {\em
- recursively uniform parameters} and the $p-m$ remaining parameters
- are the {\em recursively non-uniform parameters}). Let $q_1$,
- \ldots, $q_r$, with $0\leq r\leq m$, be a (possibly) partial
- instantiation of the recursively uniform parameters of
- $\Gamma_P$. We have:
-
-\inference{\frac
-{\left\{\begin{array}{l}
-\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E\\
-(E[\Gamma] \vdash q_l : P'_l)_{l=1\ldots r}\\
-(\WTEGLECONV{P'_l}{\subst{P_l}{p_u}{q_u}_{u=1\ldots l-1}})_{l=1\ldots r}\\
-1 \leq j \leq k
-\end{array}
-\right.}
-{E[\Gamma] \vdash (I_j\,q_1\,\ldots\,q_r:\forall [p_{r+1}:P_{r+1};\ldots;p_{p}:P_{p}], (A_j)_{/s_j})}
-}
-
-provided that the following side conditions hold:
-
-\begin{itemize}
-\item $\Gamma_{P'}$ is the context obtained from $\Gamma_P$ by
-replacing each $P_l$ that is an arity with $P'_l$ for $1\leq l \leq r$ (notice that
-$P_l$ arity implies $P'_l$ arity since $\WTEGLECONV{P'_l}{ \subst{P_l}{p_u}{q_u}_{u=1\ldots l-1}}$);
-\item there are sorts $s_i$, for $1 \leq i \leq k$ such that, for
- $\Gamma_{I'} = [I_1:\forall
- \Gamma_{P'},(A_1)_{/s_1};\ldots;I_k:\forall \Gamma_{P'},(A_k)_{/s_k}]$
-we have $(\WTE{\Gamma;\Gamma_{I'};\Gamma_{P'}}{C_i}{s_{q_i}})_{i=1\ldots n}$;
-\item the sorts are such that all eliminations, to {\Prop}, {\Set} and
- $\Type(j)$, are allowed (see section~\ref{elimdep}).
-\end{itemize}
-\end{description}
-
-Notice that if $I_j\,q_1\,\ldots\,q_r$ is typable using the rules {\bf
-Ind-Const} and {\bf App}, then it is typable using the rule {\bf
-Ind-Family}. Conversely, the extended theory is not stronger than the
-theory without {\bf Ind-Family}. We get an equiconsistency result by
-mapping each $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$ occurring into a
-given derivation into as many different inductive types and constructors
-as the number of different (partial) replacements of sorts, needed for
-this derivation, in the parameters that are arities (this is possible
-because $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$ well-formed implies
-that $\Ind{\Gamma}{p}{\Gamma_{I'}}{\Gamma_{C'}}$ is well-formed and
-has the same allowed eliminations, where
-$\Gamma_{I'}$ is defined as above and $\Gamma_{C'} = [c_1:\forall
-\Gamma_{P'},C_1;\ldots;c_n:\forall \Gamma_{P'},C_n]$). That is,
-the changes in the types of each partial instance
-$q_1\,\ldots\,q_r$ can be characterized by the ordered sets of arity
-sorts among the types of parameters, and to each signature is
-associated a new inductive definition with fresh names. Conversion is
-preserved as any (partial) instance $I_j\,q_1\,\ldots\,q_r$ or
-$C_i\,q_1\,\ldots\,q_r$ is mapped to the names chosen in the specific
-instance of $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$.
-
-\newcommand{\Single}{\mbox{\textsf{Set}}}
-
-In practice, the rule {\bf Ind-Family} is used by {\Coq} only when all the
-inductive types of the inductive definition are declared with an arity whose
-sort is in the $\Type$
-hierarchy. Then, the polymorphism is over the parameters whose
-type is an arity of sort in the {\Type} hierarchy.
-The sort $s_j$ are
-chosen canonically so that each $s_j$ is minimal with respect to the
-hierarchy ${\Prop}\subset{\Set_p}\subset\Type$ where $\Set_p$ is
-predicative {\Set}.
-%and ${\Prop_u}$ is the sort of small singleton
-%inductive types (i.e. of inductive types with one single constructor
-%and that contains either proofs or inhabitants of singleton types
-%only).
-More precisely, an empty or small singleton inductive definition
-(i.e. an inductive definition of which all inductive types are
-singleton -- see paragraph~\ref{singleton}) is set in
-{\Prop}, a small non-singleton inductive family is set in {\Set} (even
-in case {\Set} is impredicative -- see Section~\ref{impredicativity}),
-and otherwise in the {\Type} hierarchy.
-% TODO: clarify the case of a partial application ??
-
-Note that the side-condition about allowed elimination sorts in the
-rule~{\bf Ind-Family} is just to avoid to recompute the allowed
-elimination sorts at each instance of a pattern-matching (see
-section~\ref{elimdep}).
-
-As an example, let us consider the following definition:
-\begin{coq_example*}
-Inductive option (A:Type) : Type :=
-| None : option A
-| Some : A -> option A.
-\end{coq_example*}
-
-As the definition is set in the {\Type} hierarchy, it is used
-polymorphically over its parameters whose types are arities of a sort
-in the {\Type} hierarchy. Here, the parameter $A$ has this property,
-hence, if \texttt{option} is applied to a type in {\Set}, the result is
-in {\Set}. Note that if \texttt{option} is applied to a type in {\Prop},
-then, the result is not set in \texttt{Prop} but in \texttt{Set}
-still. This is because \texttt{option} is not a singleton type (see
-section~\ref{singleton}) and it would loose the elimination to {\Set} and
-{\Type} if set in {\Prop}.
-
-\begin{coq_example}
-Check (fun A:Set => option A).
-Check (fun A:Prop => option A).
-\end{coq_example}
-
-Here is another example.
-
-\begin{coq_example*}
-Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B.
-\end{coq_example*}
-
-As \texttt{prod} is a singleton type, it will be in {\Prop} if applied
-twice to propositions, in {\Set} if applied twice to at least one type
-in {\Set} and none in {\Type}, and in {\Type} otherwise. In all cases,
-the three kind of eliminations schemes are allowed.
-
-\begin{coq_example}
-Check (fun A:Set => prod A).
-Check (fun A:Prop => prod A A).
-Check (fun (A:Prop) (B:Set) => prod A B).
-Check (fun (A:Type) (B:Prop) => prod A B).
-\end{coq_example}
-
-\subsection{Destructors}
-The specification of inductive definitions with arities and
-constructors is quite natural. But we still have to say how to use an
-object in an inductive type.
-
-This problem is rather delicate. There are actually several different
-ways to do that. Some of them are logically equivalent but not always
-equivalent from the computational point of view or from the user point
-of view.
-
-From the computational point of view, we want to be able to define a
-function whose domain is an inductively defined type by using a
-combination of case analysis over the possible constructors of the
-object and recursion.
-
-Because we need to keep a consistent theory and also we prefer to keep
-a strongly normalizing reduction, we cannot accept any sort of
-recursion (even terminating). So the basic idea is to restrict
-ourselves to primitive recursive functions and functionals.
-
-For instance, assuming a parameter $A:\Set$ exists in the context, we
-want to build a function \length\ of type $\ListA\ra \nat$ which
-computes the length of the list, so such that $(\length~(\Nil~A)) = \nO$
-and $(\length~(\cons~A~a~l)) = (\nS~(\length~l))$. We want these
-equalities to be recognized implicitly and taken into account in the
-conversion rule.
-
-From the logical point of view, we have built a type family by giving
-a set of constructors. We want to capture the fact that we do not
-have any other way to build an object in this type. So when trying to
-prove a property $(P~m)$ for $m$ in an inductive definition it is
-enough to enumerate all the cases where $m$ starts with a different
-constructor.
-
-In case the inductive definition is effectively a recursive one, we
-want to capture the extra property that we have built the smallest
-fixed point of this recursive equation. This says that we are only
-manipulating finite objects. This analysis provides induction
-principles.
-
-For instance, in order to prove $\forall l:\ListA,(\LengthA~l~(\length~l))$
-it is enough to prove:
-
-\noindent $(\LengthA~(\Nil~A)~(\length~(\Nil~A)))$ and
-
-\smallskip
-$\forall a:A, \forall l:\ListA, (\LengthA~l~(\length~l)) \ra
-(\LengthA~(\cons~A~a~l)~(\length~(\cons~A~a~l)))$.
-\smallskip
-
-\noindent which given the conversion equalities satisfied by \length\ is the
-same as proving:
-$(\LengthA~(\Nil~A)~\nO)$ and $\forall a:A, \forall l:\ListA,
-(\LengthA~l~(\length~l)) \ra
-(\LengthA~(\cons~A~a~l)~(\nS~(\length~l)))$.
-
-One conceptually simple way to do that, following the basic scheme
-proposed by Martin-L\"of in his Intuitionistic Type Theory, is to
-introduce for each inductive definition an elimination operator. At
-the logical level it is a proof of the usual induction principle and
-at the computational level it implements a generic operator for doing
-primitive recursion over the structure.
-
-But this operator is rather tedious to implement and use. We choose in
-this version of Coq to factorize the operator for primitive recursion
-into two more primitive operations as was first suggested by Th. Coquand
-in~\cite{Coq92}. One is the definition by pattern-matching. The second one is a definition by guarded fixpoints.
-
-\subsubsection[The {\tt match\ldots with \ldots end} construction.]{The {\tt match\ldots with \ldots end} construction.\label{Caseexpr}
-\index{match@{\tt match\ldots with\ldots end}}}
-
-The basic idea of this destructor operation is that we have an object
-$m$ in an inductive type $I$ and we want to prove a property $(P~m)$
-which in general depends on $m$. For this, it is enough to prove the
-property for $m = (c_i~u_1\ldots u_{p_i})$ for each constructor of $I$.
-
-The \Coq{} term for this proof will be written~:
-\[\kw{match}~m~\kw{with}~ (c_1~x_{11}~...~x_{1p_1}) \Ra f_1 ~|~\ldots~|~
- (c_n~x_{n1}...x_{np_n}) \Ra f_n~ \kw{end}\]
-In this expression, if
-$m$ is a term built from a constructor $(c_i~u_1\ldots u_{p_i})$ then
-the expression will behave as it is specified with $i$-th branch and
-will reduce to $f_i$ where the $x_{i1}$\ldots $x_{ip_i}$ are replaced
-by the $u_1\ldots u_p$ according to the $\iota$-reduction.
-
-Actually, for type-checking a \kw{match\ldots with\ldots end}
-expression we also need to know the predicate $P$ to be proved by case
-analysis. In the general case where $I$ is an inductively defined
-$n$-ary relation, $P$ is a $n+1$-ary relation: the $n$ first arguments
-correspond to the arguments of $I$ (parameters excluded), and the last
-one corresponds to object $m$. \Coq{} can sometimes infer this
-predicate but sometimes not. The concrete syntax for describing this
-predicate uses the \kw{as\ldots in\ldots return} construction. For
-instance, let us assume that $I$ is an unary predicate with one
-parameter. The predicate is made explicit using the syntax~:
-\[\kw{match}~m~\kw{as}~ x~ \kw{in}~ I~\verb!_!~a~ \kw{return}~ (P~ x)
- ~\kw{with}~ (c_1~x_{11}~...~x_{1p_1}) \Ra f_1 ~|~\ldots~|~
- (c_n~x_{n1}...x_{np_n}) \Ra f_n \kw{end}\]
-The \kw{as} part can be omitted if either the result type does not
-depend on $m$ (non-dependent elimination) or $m$ is a variable (in
-this case, the result type can depend on $m$). The \kw{in} part can be
-omitted if the result type does not depend on the arguments of
-$I$. Note that the arguments of $I$ corresponding to parameters
-\emph{must} be \verb!_!, because the result type is not generalized to
-all possible values of the parameters. The expression after \kw{in}
-must be seen as an \emph{inductive type pattern}. As a final remark,
-expansion of implicit arguments and notations apply to this pattern.
-
-For the purpose of presenting the inference rules, we use a more
-compact notation~:
-\[ \Case{(\lb a x \mto P)}{m}{ \lb x_{11}~...~x_{1p_1} \mto f_1 ~|~\ldots~|~
- \lb x_{n1}...x_{np_n} \mto f_n}\]
-
-%% CP 06/06 Obsolete avec la nouvelle syntaxe et incompatible avec la
-%% presentation theorique qui suit
-% \paragraph{Non-dependent elimination.}
-%
-% When defining a function of codomain $C$ by case analysis over an
-% object in an inductive type $I$, we build an object of type $I
-% \ra C$. The minimality principle on an inductively defined logical
-% predicate $I$ of type $A \ra \Prop$ is often used to prove a property
-% $\forall x:A,(I~x)\ra (C~x)$. These are particular cases of the dependent
-% principle that we stated before with a predicate which does not depend
-% explicitly on the object in the inductive definition.
-
-% For instance, a function testing whether a list is empty
-% can be
-% defined as:
-% \[\kw{fun} l:\ListA \Ra \kw{match}~l~\kw{with}~ \Nil \Ra \true~
-% |~(\cons~a~m) \Ra \false \kw{end}\]
-% represented by
-% \[\lb~l:\ListA \mto\Case{\bool}{l}{\true~ |~ \lb a~m,~\false}\]
-%\noindent {\bf Remark. }
-
-% In the system \Coq\ the expression above, can be
-% written without mentioning
-% the dummy abstraction:
-% \Case{\bool}{l}{\Nil~ \mbox{\tt =>}~\true~ |~ (\cons~a~m)~
-% \mbox{\tt =>}~ \false}
-
-\paragraph[Allowed elimination sorts.]{Allowed elimination sorts.\index{Elimination sorts}}
-
-An important question for building the typing rule for \kw{match} is
-what can be the type of $P$ with respect to the type of the inductive
-definitions.
-
-We define now a relation \compat{I:A}{B} between an inductive
-definition $I$ of type $A$ and an arity $B$. This relation states that
-an object in the inductive definition $I$ can be eliminated for
-proving a property $P$ of type $B$.
-
-The case of inductive definitions in sorts \Set\ or \Type{} is simple.
-There is no restriction on the sort of the predicate to be
-eliminated.
-
-\paragraph{Notations.}
-The \compat{I:A}{B} is defined as the smallest relation satisfying the
-following rules:
-We write \compat{I}{B} for \compat{I:A}{B} where $A$ is the type of
-$I$.
-
-\begin{description}
-\item[Prod] \inference{\frac{\compat{(I~x):A'}{B'}}
- {\compat{I:\forall x:A, A'}{\forall x:A, B'}}}
-\item[{\Set} \& \Type] \inference{\frac{
- s_1 \in \{\Set,\Type(j)\},
- s_2 \in \Sort}{\compat{I:s_1}{I\ra s_2}}}
-\end{description}
-
-The case of Inductive definitions of sort \Prop{} is a bit more
-complicated, because of our interpretation of this sort. The only
-harmless allowed elimination, is the one when predicate $P$ is also of
-sort \Prop.
-\begin{description}
-\item[\Prop] \inference{\compat{I:\Prop}{I\ra\Prop}}
-\end{description}
-\Prop{} is the type of logical propositions, the proofs of properties
-$P$ in \Prop{} could not be used for computation and are consequently
-ignored by the extraction mechanism.
-Assume $A$ and $B$ are two propositions, and the logical disjunction
-$A\vee B$ is defined inductively by~:
-\begin{coq_example*}
-Inductive or (A B:Prop) : Prop :=
- lintro : A -> or A B | rintro : B -> or A B.
-\end{coq_example*}
-The following definition which computes a boolean value by case over
-the proof of \texttt{or A B} is not accepted~:
-\begin{coq_eval}
-(***************************************************************)
-(*** This example should fail with ``Incorrect elimination'' ***)
-\end{coq_eval}
-\begin{coq_example}
-Definition choice (A B: Prop) (x:or A B) :=
- match x with lintro a => true | rintro b => false end.
-\end{coq_example}
-From the computational point of view, the structure of the proof of
-\texttt{(or A B)} in this term is needed for computing the boolean
-value.
-
-In general, if $I$ has type \Prop\ then $P$ cannot have type $I\ra
-\Set$, because it will mean to build an informative proof of type
-$(P~m)$ doing a case analysis over a non-computational object that
-will disappear in the extracted program. But the other way is safe
-with respect to our interpretation we can have $I$ a computational
-object and $P$ a non-computational one, it just corresponds to proving
-a logical property of a computational object.
-
-% Also if $I$ is in one of the sorts \{\Prop, \Set\}, one cannot in
-% general allow an elimination over a bigger sort such as \Type. But
-% this operation is safe whenever $I$ is a {\em small inductive} type,
-% which means that all the types of constructors of
-% $I$ are small with the following definition:\\
-% $(I~t_1\ldots t_s)$ is a {\em small type of constructor} and
-% $\forall~x:T,C$ is a small type of constructor if $C$ is and if $T$
-% has type \Prop\ or \Set. \index{Small inductive type}
-
-% We call this particular elimination which gives the possibility to
-% compute a type by induction on the structure of a term, a {\em strong
-% elimination}\index{Strong elimination}.
-
-In the same spirit, elimination on $P$ of type $I\ra
-\Type$ cannot be allowed because it trivially implies the elimination
-on $P$ of type $I\ra \Set$ by cumulativity. It also implies that there
-is two proofs of the same property which are provably different,
-contradicting the proof-irrelevance property which is sometimes a
-useful axiom~:
-\begin{coq_example}
-Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
-\end{coq_example}
-\begin{coq_eval}
-Reset proof_irrelevance.
-\end{coq_eval}
-The elimination of an inductive definition of type \Prop\ on a
-predicate $P$ of type $I\ra \Type$ leads to a paradox when applied to
-impredicative inductive definition like the second-order existential
-quantifier \texttt{exProp} defined above, because it give access to
-the two projections on this type.
-
-%\paragraph{Warning: strong elimination}
-%\index{Elimination!Strong elimination}
-%In previous versions of Coq, for a small inductive definition, only the
-%non-informative strong elimination on \Type\ was allowed, because
-%strong elimination on \Typeset\ was not compatible with the current
-%extraction procedure. In this version, strong elimination on \Typeset\
-%is accepted but a dummy element is extracted from it and may generate
-%problems if extracted terms are explicitly used such as in the
-%{\tt Program} tactic or when extracting ML programs.
-
-\paragraph[Empty and singleton elimination]{Empty and singleton elimination\label{singleton}
-\index{Elimination!Singleton elimination}
-\index{Elimination!Empty elimination}}
-
-There are special inductive definitions in \Prop\ for which more
-eliminations are allowed.
-\begin{description}
-\item[\Prop-extended]
-\inference{
- \frac{I \mbox{~is an empty or singleton
- definition}~~~s \in \Sort}{\compat{I:\Prop}{I\ra s}}
-}
-\end{description}
-
-% A {\em singleton definition} has always an informative content,
-% even if it is a proposition.
-
-A {\em singleton
-definition} has only one constructor and all the arguments of this
-constructor have type \Prop. In that case, there is a canonical
-way to interpret the informative extraction on an object in that type,
-such that the elimination on any sort $s$ is legal. Typical examples are
-the conjunction of non-informative propositions and the equality.
-If there is an hypothesis $h:a=b$ in the context, it can be used for
-rewriting not only in logical propositions but also in any type.
-% In that case, the term \verb!eq_rec! which was defined as an axiom, is
-% now a term of the calculus.
-\begin{coq_example}
-Print eq_rec.
-Extraction eq_rec.
-\end{coq_example}
-An empty definition has no constructors, in that case also,
-elimination on any sort is allowed.
-
-\paragraph{Type of branches.}
-Let $c$ be a term of type $C$, we assume $C$ is a type of constructor
-for an inductive definition $I$. Let $P$ be a term that represents the
-property to be proved.
-We assume $r$ is the number of parameters.
-
-We define a new type \CI{c:C}{P} which represents the type of the
-branch corresponding to the $c:C$ constructor.
-\[
-\begin{array}{ll}
-\CI{c:(I_i~p_1\ldots p_r\ t_1 \ldots t_p)}{P} &\equiv (P~t_1\ldots ~t_p~c) \\[2mm]
-\CI{c:\forall~x:T,C}{P} &\equiv \forall~x:T,\CI{(c~x):C}{P}
-\end{array}
-\]
-We write \CI{c}{P} for \CI{c:C}{P} with $C$ the type of $c$.
-
-\paragraph{Examples.}
-For $\ListA$ the type of $P$ will be $\ListA\ra s$ for $s \in \Sort$. \\
-$ \CI{(\cons~A)}{P} \equiv
-\forall a:A, \forall l:\ListA,(P~(\cons~A~a~l))$.
-
-For $\LengthA$, the type of $P$ will be
-$\forall l:\ListA,\forall n:\nat, (\LengthA~l~n)\ra \Prop$ and the expression
-\CI{(\LCons~A)}{P} is defined as:\\
-$\forall a:A, \forall l:\ListA, \forall n:\nat, \forall
-h:(\LengthA~l~n), (P~(\cons~A~a~l)~(\nS~n)~(\LCons~A~a~l~n~l))$.\\
-If $P$ does not depend on its third argument, we find the more natural
-expression:\\
-$\forall a:A, \forall l:\ListA, \forall n:\nat,
-(\LengthA~l~n)\ra(P~(\cons~A~a~l)~(\nS~n))$.
-
-\paragraph{Typing rule.}
-
-Our very general destructor for inductive definition enjoys the
-following typing rule
-% , where we write
-% \[
-% \Case{P}{c}{[x_{11}:T_{11}]\ldots[x_{1p_1}:T_{1p_1}]g_1\ldots
-% [x_{n1}:T_{n1}]\ldots[x_{np_n}:T_{np_n}]g_n}
-% \]
-% for
-% \[
-% \Case{P}{c}{(c_1~x_{11}~...~x_{1p_1}) \Ra g_1 ~|~\ldots~|~
-% (c_n~x_{n1}...x_{np_n}) \Ra g_n }
-% \]
-
-\begin{description}
-\item[match] \label{elimdep} \index{Typing rules!match}
-\inference{
-\frac{\WTEG{c}{(I~q_1\ldots q_r~t_1\ldots t_s)}~~
- \WTEG{P}{B}~~\compat{(I~q_1\ldots q_r)}{B}
- ~~
-(\WTEG{f_i}{\CI{(c_{p_i}~q_1\ldots q_r)}{P}})_{i=1\ldots l}}
-{\WTEG{\Case{P}{c}{f_1|\ldots |f_l}}{(P\ t_1\ldots t_s\ c)}}}%\\[3mm]
-
-provided $I$ is an inductive type in a declaration
-\Ind{\Delta}{r}{\Gamma_I}{\Gamma_C} with
-$\Gamma_C = [c_1:C_1;\ldots;c_n:C_n]$ and $c_{p_1}\ldots c_{p_l}$ are the
-only constructors of $I$.
-\end{description}
-
-\paragraph{Example.}
-For \List\ and \Length\ the typing rules for the {\tt match} expression
-are (writing just $t:M$ instead of \WTEG{t}{M}, the environment and
-context being the same in all the judgments).
-
-\[\frac{l:\ListA~~P:\ListA\ra s~~~f_1:(P~(\Nil~A))~~
- f_2:\forall a:A, \forall l:\ListA, (P~(\cons~A~a~l))}
- {\Case{P}{l}{f_1~|~f_2}:(P~l)}\]
-
-\[\frac{
- \begin{array}[b]{@{}c@{}}
-H:(\LengthA~L~N) \\ P:\forall l:\ListA, \forall n:\nat, (\LengthA~l~n)\ra
- \Prop\\
- f_1:(P~(\Nil~A)~\nO~\LNil) \\
- f_2:\forall a:A, \forall l:\ListA, \forall n:\nat, \forall
- h:(\LengthA~l~n), (P~(\cons~A~a~n)~(\nS~n)~(\LCons~A~a~l~n~h))
- \end{array}}
- {\Case{P}{H}{f_1~|~f_2}:(P~L~N~H)}\]
-
-\paragraph[Definition of $\iota$-reduction.]{Definition of $\iota$-reduction.\label{iotared}
-\index{iota-reduction@$\iota$-reduction}}
-We still have to define the $\iota$-reduction in the general case.
-
-A $\iota$-redex is a term of the following form:
-\[\Case{P}{(c_{p_i}~q_1\ldots q_r~a_1\ldots a_m)}{f_1|\ldots |
- f_l}\]
-with $c_{p_i}$ the $i$-th constructor of the inductive type $I$ with $r$
-parameters.
-
-The $\iota$-contraction of this term is $(f_i~a_1\ldots a_m)$ leading
-to the general reduction rule:
-\[ \Case{P}{(c_{p_i}~q_1\ldots q_r~a_1\ldots a_m)}{f_1|\ldots |
- f_n} \triangleright_{\iota} (f_i~a_1\ldots a_m) \]
-
-\subsection[Fixpoint definitions]{Fixpoint definitions\label{Fix-term} \index{Fix@{\tt Fix}}}
-The second operator for elimination is fixpoint definition.
-This fixpoint may involve several mutually recursive definitions.
-The basic concrete syntax for a recursive set of mutually recursive
-declarations is (with $\Gamma_i$ contexts)~:
-\[\kw{fix}~f_1 (\Gamma_1) :A_1:=t_1~\kw{with} \ldots \kw{with}~ f_n
-(\Gamma_n) :A_n:=t_n\]
-The terms are obtained by projections from this set of declarations
-and are written
-\[\kw{fix}~f_1 (\Gamma_1) :A_1:=t_1~\kw{with} \ldots \kw{with}~ f_n
-(\Gamma_n) :A_n:=t_n~\kw{for}~f_i\]
-In the inference rules, we represent such a
-term by
-\[\Fix{f_i}{f_1:A_1':=t_1' \ldots f_n:A_n':=t_n'}\]
-with $t_i'$ (resp. $A_i'$) representing the term $t_i$ abstracted
-(resp. generalized) with
-respect to the bindings in the context $\Gamma_i$, namely
-$t_i'=\lb \Gamma_i \mto t_i$ and $A_i'=\forall \Gamma_i, A_i$.
-
-\subsubsection{Typing rule}
-The typing rule is the expected one for a fixpoint.
-
-\begin{description}
-\item[Fix] \index{Typing rules!Fix}
-\inference{\frac{(\WTEG{A_i}{s_i})_{i=1\ldots n}~~~~
- (\WTE{\Gamma,f_1:A_1,\ldots,f_n:A_n}{t_i}{A_i})_{i=1\ldots n}}
- {\WTEG{\Fix{f_i}{f_1:A_1:=t_1 \ldots f_n:A_n:=t_n}}{A_i}}}
-\end{description}
-
-Any fixpoint definition cannot be accepted because non-normalizing terms
-will lead to proofs of absurdity.
-
-The basic scheme of recursion that should be allowed is the one needed for
-defining primitive
-recursive functionals. In that case the fixpoint enjoys a special
-syntactic restriction, namely one of the arguments belongs to an
-inductive type, the function starts with a case analysis and recursive
-calls are done on variables coming from patterns and representing subterms.
-
-For instance in the case of natural numbers, a proof of the induction
-principle of type
-\[\forall P:\nat\ra\Prop, (P~\nO)\ra(\forall n:\nat, (P~n)\ra(P~(\nS~n)))\ra
-\forall n:\nat, (P~n)\]
-can be represented by the term:
-\[\begin{array}{l}
-\lb P:\nat\ra\Prop\mto\lb f:(P~\nO)\mto \lb g:(\forall n:\nat,
-(P~n)\ra(P~(\nS~n))) \mto\\
-\Fix{h}{h:\forall n:\nat, (P~n):=\lb n:\nat\mto \Case{P}{n}{f~|~\lb
- p:\nat\mto (g~p~(h~p))}}
-\end{array}
-\]
-
-Before accepting a fixpoint definition as being correctly typed, we
-check that the definition is ``guarded''. A precise analysis of this
-notion can be found in~\cite{Gim94}.
-
-The first stage is to precise on which argument the fixpoint will be
-decreasing. The type of this argument should be an inductive
-definition.
-
-For doing this the syntax of fixpoints is extended and becomes
- \[\Fix{f_i}{f_1/k_1:A_1:=t_1 \ldots f_n/k_n:A_n:=t_n}\]
-where $k_i$ are positive integers.
-Each $A_i$ should be a type (reducible to a term) starting with at least
-$k_i$ products $\forall y_1:B_1,\ldots \forall y_{k_i}:B_{k_i}, A'_i$
-and $B_{k_i}$
-being an instance of an inductive definition.
-
-Now in the definition $t_i$, if $f_j$ occurs then it should be applied
-to at least $k_j$ arguments and the $k_j$-th argument should be
-syntactically recognized as structurally smaller than $y_{k_i}$
-
-
-The definition of being structurally smaller is a bit technical.
-One needs first to define the notion of
-{\em recursive arguments of a constructor}\index{Recursive arguments}.
-For an inductive definition \Ind{\Gamma}{r}{\Gamma_I}{\Gamma_C},
-the type of a constructor $c$ has the form
-$\forall p_1:P_1,\ldots \forall p_r:P_r,
-\forall x_1:T_1, \ldots \forall x_r:T_r, (I_j~p_1\ldots
-p_r~t_1\ldots t_s)$ the recursive arguments will correspond to $T_i$ in
-which one of the $I_l$ occurs.
-
-
-The main rules for being structurally smaller are the following:\\
-Given a variable $y$ of type an inductive
-definition in a declaration
-\Ind{\Gamma}{r}{\Gamma_I}{\Gamma_C}
-where $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is
- $[c_1:C_1;\ldots;c_n:C_n]$.
-The terms structurally smaller than $y$ are:
-\begin{itemize}
-\item $(t~u), \lb x:u \mto t$ when $t$ is structurally smaller than $y$ .
-\item \Case{P}{c}{f_1\ldots f_n} when each $f_i$ is structurally
- smaller than $y$. \\
- If $c$ is $y$ or is structurally smaller than $y$, its type is an inductive
- definition $I_p$ part of the inductive
- declaration corresponding to $y$.
- Each $f_i$ corresponds to a type of constructor $C_q \equiv
- \forall p_1:P_1,\ldots,\forall p_r:P_r, \forall y_1:B_1, \ldots \forall y_k:B_k, (I~a_1\ldots a_k)$
- and can consequently be
- written $\lb y_1:B'_1\mto \ldots \lb y_k:B'_k\mto g_i$.
- ($B'_i$ is obtained from $B_i$ by substituting parameters variables)
- the variables $y_j$ occurring
- in $g_i$ corresponding to recursive arguments $B_i$ (the ones in
- which one of the $I_l$ occurs) are structurally smaller than $y$.
-\end{itemize}
-The following definitions are correct, we enter them using the
-{\tt Fixpoint} command as described in Section~\ref{Fixpoint} and show
-the internal representation.
-\begin{coq_example}
-Fixpoint plus (n m:nat) {struct n} : nat :=
- match n with
- | O => m
- | S p => S (plus p m)
- end.
-Print plus.
-Fixpoint lgth (A:Set) (l:list A) {struct l} : nat :=
- match l with
- | nil => O
- | cons a l' => S (lgth A l')
- end.
-Print lgth.
-Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
- with sizef (f:forest) : nat :=
- match f with
- | emptyf => O
- | consf t f => plus (sizet t) (sizef f)
- end.
-Print sizet.
-\end{coq_example}
-
-
-\subsubsection[Reduction rule]{Reduction rule\index{iota-reduction@$\iota$-reduction}}
-Let $F$ be the set of declarations: $f_1/k_1:A_1:=t_1 \ldots
-f_n/k_n:A_n:=t_n$.
-The reduction for fixpoints is:
-\[ (\Fix{f_i}{F}~a_1\ldots
-a_{k_i}) \triangleright_{\iota} \substs{t_i}{f_k}{\Fix{f_k}{F}}{k=1\ldots n}
-~a_1\ldots a_{k_i}\]
-when $a_{k_i}$ starts with a constructor.
-This last restriction is needed in order to keep strong normalization
-and corresponds to the reduction for primitive recursive operators.
-
-We can illustrate this behavior on examples.
-\begin{coq_example}
-Goal forall n m:nat, plus (S n) m = S (plus n m).
-reflexivity.
-Abort.
-Goal forall f:forest, sizet (node f) = S (sizef f).
-reflexivity.
-Abort.
-\end{coq_example}
-But assuming the definition of a son function from \tree\ to \forest:
-\begin{coq_example}
-Definition sont (t:tree) : forest
- := let (f) := t in f.
-\end{coq_example}
-The following is not a conversion but can be proved after a case analysis.
-\begin{coq_eval}
-(******************************************************************)
-(** Error: Impossible to unify .... **)
-\end{coq_eval}
-\begin{coq_example}
-Goal forall t:tree, sizet t = S (sizef (sont t)).
-reflexivity. (** this one fails **)
-destruct t.
-reflexivity.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-% La disparition de Program devrait rendre la construction Match obsolete
-% \subsubsection{The {\tt Match \ldots with \ldots end} expression}
-% \label{Matchexpr}
-% %\paragraph{A unary {\tt Match\ldots with \ldots end}.}
-% \index{Match...with...end@{\tt Match \ldots with \ldots end}}
-% The {\tt Match} operator which was a primitive notion in older
-% presentations of the Calculus of Inductive Constructions is now just a
-% macro definition which generates the good combination of {\tt Case}
-% and {\tt Fix} operators in order to generate an operator for primitive
-% recursive definitions. It always considers an inductive definition as
-% a single inductive definition.
-
-% The following examples illustrates this feature.
-% \begin{coq_example}
-% Definition nat_pr : (C:Set)C->(nat->C->C)->nat->C
-% :=[C,x,g,n]Match n with x g end.
-% Print nat_pr.
-% \end{coq_example}
-% \begin{coq_example}
-% Definition forest_pr
-% : (C:Set)C->(tree->forest->C->C)->forest->C
-% := [C,x,g,n]Match n with x g end.
-% \end{coq_example}
-
-% Cet exemple faisait error (HH le 12/12/96), j'ai change pour une
-% version plus simple
-%\begin{coq_example}
-%Definition forest_pr
-% : (P:forest->Set)(P emptyf)->((t:tree)(f:forest)(P f)->(P (consf t f)))
-% ->(f:forest)(P f)
-% := [C,x,g,n]Match n with x g end.
-%\end{coq_example}
-
-\subsubsection{Mutual induction}
-
-The principles of mutual induction can be automatically generated
-using the {\tt Scheme} command described in Section~\ref{Scheme}.
-
-\section{Coinductive types}
-The implementation contains also coinductive definitions, which are
-types inhabited by infinite objects.
-More information on coinductive definitions can be found
-in~\cite{Gimenez95b,Gim98,GimCas05}.
-%They are described in Chapter~\ref{Coinductives}.
-
-\section[\iCIC : the Calculus of Inductive Construction with
- impredicative \Set]{\iCIC : the Calculus of Inductive Construction with
- impredicative \Set\label{impredicativity}}
-
-\Coq{} can be used as a type-checker for \iCIC{}, the original
-Calculus of Inductive Constructions with an impredicative sort \Set{}
-by using the compiler option \texttt{-impredicative-set}.
-
-For example, using the ordinary \texttt{coqtop} command, the following
-is rejected.
-\begin{coq_eval}
-(** This example should fail *******************************
- Error: The term forall X:Set, X -> X has type Type
- while it is expected to have type Set
-***)
-\end{coq_eval}
-\begin{coq_example}
-Definition id: Set := forall X:Set,X->X.
-\end{coq_example}
-while it will type-check, if one use instead the \texttt{coqtop
- -impredicative-set} command.
-
-The major change in the theory concerns the rule for product formation
-in the sort \Set, which is extended to a domain in any sort~:
-\begin{description}
-\item [Prod] \index{Typing rules!Prod (impredicative Set)}
-\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~~~
- \WTE{\Gamma::(x:T)}{U}{\Set}}
- { \WTEG{\forall~x:T,U}{\Set}}}
-\end{description}
-This extension has consequences on the inductive definitions which are
-allowed.
-In the impredicative system, one can build so-called {\em large inductive
- definitions} like the example of second-order existential
-quantifier (\texttt{exSet}).
-
-There should be restrictions on the eliminations which can be
-performed on such definitions. The eliminations rules in the
-impredicative system for sort \Set{} become~:
-\begin{description}
-\item[\Set] \inference{\frac{s \in
- \{\Prop, \Set\}}{\compat{I:\Set}{I\ra s}}
-~~~~\frac{I \mbox{~is a small inductive definition}~~~~s \in
- \{\Type(i)\}}
- {\compat{I:\Set}{I\ra s}}}
-\end{description}
-
-
-
-% $Id: RefMan-cic.tex 13029 2010-05-28 11:49:12Z herbelin $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
-
-
diff --git a/doc/refman/RefMan-coi.tex b/doc/refman/RefMan-coi.tex
deleted file mode 100644
index b0f0212e..00000000
--- a/doc/refman/RefMan-coi.tex
+++ /dev/null
@@ -1,406 +0,0 @@
-%\documentstyle[11pt,../tools/coq-tex/coq]{article}
-%\input{title}
-
-%\include{macros}
-%\begin{document}
-
-%\coverpage{Co-inductive types in Coq}{Eduardo Gim\'enez}
-\chapter[Co-inductive types in Coq]{Co-inductive types in Coq\label{Coinductives}}
-
-%\begin{abstract}
-{\it Co-inductive} types are types whose elements may not be well-founded.
-A formal study of the Calculus of Constructions extended by
-co-inductive types has been presented
-in \cite{Gim94}. It is based on the notion of
-{\it guarded definitions} introduced by Th. Coquand
-in \cite{Coquand93}. The implementation is by E. Gim\'enez.
-%\end{abstract}
-
-\section{A short introduction to co-inductive types}
-
-We assume that the reader is rather familiar with inductive types.
-These types are characterized by their {\it constructors}, which can be
-regarded as the basic methods from which the elements
-of the type can be built up. It is implicit in the definition
-of an inductive type that
-its elements are the result of a {\it finite} number of
-applications of its constructors. Co-inductive types arise from
-relaxing this implicit condition and admitting that an element of
-the type can also be introduced by a non-ending (but effective) process
-of construction defined in terms of the basic methods which characterize the
-type. So we could think in the wider notion of types defined by
-constructors (let us call them {\it recursive types}) and classify
-them into inductive and co-inductive ones, depending on whether or not
-we consider non-ending methods as admissible for constructing elements
-of the type. Note that in both cases we obtain a ``closed type'', all whose
-elements are pre-determined in advance (by the constructors). When we
-know that $a$ is an element of a recursive type (no matter if it is
-inductive or co-inductive) what we know is that it is the result of applying
-one of the basic forms of construction allowed for the type.
-So the more primitive way of eliminating an element of a recursive type is
-by case analysis, i.e. by considering through which constructor it could have
-been introduced. In the case of inductive sets, the additional knowledge that
-constructors can be applied only a finite number of times provide
-us with a more powerful way of eliminating their elements, say,
-the principle of
-induction. This principle is obviously not valid for co-inductive types,
-since it is just the expression of this extra knowledge attached to inductive
-types.
-
-
-An example of a co-inductive type is the type of infinite sequences formed with
-elements of type $A$, or streams for shorter. In Coq,
-it can be introduced using the \verb!CoInductive! command~:
-\begin{coq_example}
-CoInductive Stream (A:Set) : Set :=
- cons : A -> Stream A -> Stream A.
-\end{coq_example}
-
-The syntax of this command is the same as the
-command \verb!Inductive! (cf. section
-\ref{gal_Inductive_Definitions}).
-Definition of mutually coinductive types are possible.
-
-As was already said, there are not principles of
-induction for co-inductive sets, the only way of eliminating these
-elements is by case analysis.
-In the example of streams, this elimination principle can be
-used for instance to define the well known
-destructors on streams $\hd : (\Str\;A)\rightarrow A$
-and $\tl: (\Str\;A)\rightarrow (\Str\;A)$ :
-\begin{coq_example}
-Section Destructors.
-Variable A : Set.
-Definition hd (x:Stream A) := match x with
- | cons a s => a
- end.
-Definition tl (x:Stream A) := match x with
- | cons a s => s
- end.
-\end{coq_example}
-\begin{coq_example*}
-End Destructors.
-\end{coq_example*}
-
-\subsection{Non-ending methods of construction}
-
-At this point the reader should have realized that we have left unexplained
-what is a ``non-ending but effective process of
-construction'' of a stream. In the widest sense, a
-method is a non-ending process of construction if we can eliminate the
-stream that it introduces, in other words, if we can reduce
-any case analysis on it. In this sense, the following ways of
-introducing a stream are not acceptable.
-\begin{center}
-$\zeros = (\cons\;\nat\;\nO\;(\tl\;\zeros))\;\;:\;\;(\Str\;\nat)$\\[12pt]
-$\filter\;(\cons\;A\;a\;s) = \si\;\;(P\;a)\;\;\alors\;\;(\cons\;A\;a\;(\filter\;s))\;\;\sinon\;\;(\filter\;s) )\;\;:\;\;(\Str\;A)$
-\end{center}
-\noindent The former it is not valid since the stream can not be eliminated
-to obtain its tail. In the latter, a stream is naively defined as
-the result of erasing from another (arbitrary) stream
-all the elements which does not verify a certain property $P$. This
-does not always makes sense, for example it does not when all the elements
-of the stream verify $P$, in which case we can not eliminate it to
-obtain its head\footnote{Note that there is no notion of ``the empty
-stream'', a stream is always infinite and build by a \texttt{cons}.}.
-On the contrary, the following definitions are acceptable methods for
-constructing a stream~:
-\begin{center}
-$\zeros = (\cons\;\nat\;\nO\;\zeros)\;\;:\;\;(\Str\;\nat)\;\;\;(*)$\\[12pt]
-$(\from\;n) = (\cons\;\nat\;n\;(\from\;(\nS\;n)))\;:\;(\Str\;\nat)$\\[12pt]
-$\alter = (\cons\;\bool\;\true\;(\cons\;\bool\;\false\;\alter))\;:\;(\Str\;\bool)$.
-\end{center}
-\noindent The first one introduces a stream containing all the natural numbers
-greater than a given one, and the second the stream which infinitely
-alternates the booleans true and false.
-
-In general it is not evident to realise when a definition can
-be accepted or not. However, there is a class of definitions that
-can be easily recognised as being valid : those
-where (1) all the recursive calls of the method are done
-after having explicitly mentioned which is (at least) the first constructor
-to start building the element, and (2) no other
-functions apart from constructors are applied to recursive calls.
-This class of definitions is usually
-referred as {\it guarded-by-constructors}
-definitions \cite{Coquand93,Gim94}.
-The methods $\from$
-and $\alter$ are examples of definitions which are guarded by constructors.
-The definition of function $\filter$ is not, because there is no
-constructor to guard
-the recursive call in the {\it else} branch. Neither is the one of
-$\zeros$, since there is function applied to the recursive call
-which is not a constructor. However, there is a difference between
-the definition of $\zeros$ and $\filter$. The former may be seen as a
-wrong way of characterising an object which makes sense, and it can
-be reformulated in an admissible way using the equation (*). On the contrary,
-the definition of
-$\filter$ can not be patched, since is the idea itself
-of traversing an infinite
-construction searching for an element whose existence is not ensured
-which does not make sense.
-
-
-
-Guarded definitions are exactly the kind of non-ending process of
-construction which are allowed in Coq. The way of introducing
-a guarded definition in Coq is using the special command
-{\tt CoFixpoint}. This command verifies that the definition introduces an
-element of a co-inductive type, and checks if it is guarded by constructors.
-If we try to
-introduce the definitions above, $\from$ and $\alter$ will be accepted,
-while $\zeros$ and $\filter$ will be rejected giving some explanation
-about why.
-\begin{coq_example}
-CoFixpoint zeros : Stream nat := cons nat 0%N (tl nat zeros).
-CoFixpoint zeros : Stream nat := cons nat 0%N zeros.
-CoFixpoint from (n:nat) : Stream nat := cons nat n (from (S n)).
-\end{coq_example}
-
-As in the \verb!Fixpoint! command (see Section~\ref{Fixpoint}), it is possible
-to introduce a block of mutually dependent methods. The general syntax
-for this case is :
-
-{\tt CoFixpoint {\ident$_1$} :{\term$_1$} := {\term$_1'$}\\
- with\\
- \mbox{}\hspace{0.1cm} $\ldots$ \\
- with {\ident$_m$} : {\term$_m$} := {\term$_m'$}}
-
-
-\subsection{Non-ending methods and reduction}
-
-The elimination of a stream introduced by a \verb!CoFixpoint! definition
-is done lazily, i.e. its definition can be expanded only when it occurs
-at the head of an application which is the argument of a case expression.
-Isolately it is considered as a canonical expression which
-is completely evaluated. We can test this using the command \verb!compute!
-to calculate the normal forms of some terms~:
-\begin{coq_example}
-Eval compute in (from 0).
-Eval compute in (hd nat (from 0)).
-Eval compute in (tl nat (from 0)).
-\end{coq_example}
-\noindent Thus, the equality
-$(\from\;n)\equiv(\cons\;\nat\;n\;(\from \; (\S\;n)))$
-does not hold as definitional one. Nevertheless, it can be proved
-as a propositional equality, in the sense of Leibniz's equality.
-The version {\it à la Leibniz} of the equality above follows from
-a general lemma stating that eliminating and then re-introducing a stream
-yields the same stream.
-\begin{coq_example}
-Lemma unfold_Stream :
- forall x:Stream nat, x = match x with
- | cons a s => cons nat a s
- end.
-\end{coq_example}
-
-\noindent The proof is immediate from the analysis of
-the possible cases for $x$, which transforms
-the equality in a trivial one.
-
-\begin{coq_example}
-olddestruct x.
-trivial.
-\end{coq_example}
-\begin{coq_eval}
-Qed.
-\end{coq_eval}
-The application of this lemma to $(\from\;n)$ puts this
-constant at the head of an application which is an argument
-of a case analysis, forcing its expansion.
-We can test the type of this application using Coq's command \verb!Check!,
-which infers the type of a given term.
-\begin{coq_example}
-Check (fun n:nat => unfold_Stream (from n)).
-\end{coq_example}
- \noindent Actually, The elimination of $(\from\;n)$ has actually
-no effect, because it is followed by a re-introduction,
-so the type of this application is in fact
-definitionally equal to the
-desired proposition. We can test this computing
-the normal form of the application above to see its type.
-\begin{coq_example}
-Transparent unfold_Stream.
-Eval compute in (fun n:nat => unfold_Stream (from n)).
-\end{coq_example}
-
-
-\section{Reasoning about infinite objects}
-
-At a first sight, it might seem that
-case analysis does not provide a very powerful way
-of reasoning about infinite objects. In fact, what we can prove about
-an infinite object using
-only case analysis is just what we can prove unfolding its method
-of construction a finite number of times, which is not always
-enough. Consider for example the following method for appending
-two streams~:
-\begin{coq_example}
-Variable A : Set.
-CoFixpoint conc (s1 s2:Stream A) : Stream A :=
- cons A (hd A s1) (conc (tl A s1) s2).
-\end{coq_example}
-
-Informally speaking, we expect that for all pair of streams $s_1$ and $s_2$,
-$(\conc\;s_1\;s_2)$
-defines the ``the same'' stream as $s_1$,
-in the sense that if we would be able to unfold the definition
-``up to the infinite'', we would obtain definitionally equal normal forms.
-However, no finite unfolding of the definitions gives definitionally
-equal terms. Their equality can not be proved just using case analysis.
-
-
-The weakness of the elimination principle proposed for infinite objects
-contrast with the power provided by the inductive
-elimination principles, but it is not actually surprising. It just means
-that we can not expect to prove very interesting things about infinite
-objects doing finite proofs. To take advantage of infinite objects we
-have to consider infinite proofs as well. For example,
-if we want to catch up the equality between $(\conc\;s_1\;s_2)$ and
-$s_1$ we have to introduce first the type of the infinite proofs
-of equality between streams. This is a
-co-inductive type, whose elements are build up from a
-unique constructor, requiring a proof of the equality of the
-heads of the streams, and an (infinite) proof of the equality
-of their tails.
-
-\begin{coq_example}
-CoInductive EqSt : Stream A -> Stream A -> Prop :=
- eqst :
- forall s1 s2:Stream A,
- hd A s1 = hd A s2 -> EqSt (tl A s1) (tl A s2) -> EqSt s1 s2.
-\end{coq_example}
-\noindent Now the equality of both streams can be proved introducing
-an infinite object of type
-
-\noindent $(\EqSt\;s_1\;(\conc\;s_1\;s_2))$ by a \verb!CoFixpoint!
-definition.
-\begin{coq_example}
-CoFixpoint eqproof (s1 s2:Stream A) : EqSt s1 (conc s1 s2) :=
- eqst s1 (conc s1 s2) (refl_equal (hd A (conc s1 s2)))
- (eqproof (tl A s1) s2).
-\end{coq_example}
-\begin{coq_eval}
-Reset eqproof.
-\end{coq_eval}
-\noindent Instead of giving an explicit definition,
-we can use the proof editor of Coq to help us in
-the construction of the proof.
-A tactic \verb!Cofix! allows to place a \verb!CoFixpoint! definition
-inside a proof.
-This tactic introduces a variable in the context which has
-the same type as the current goal, and its application stands
-for a recursive call in the construction of the proof. If no name is
-specified for this variable, the name of the lemma is chosen by
-default.
-%\pagebreak
-
-\begin{coq_example}
-Lemma eqproof : forall s1 s2:Stream A, EqSt s1 (conc s1 s2).
-cofix.
-\end{coq_example}
-
-\noindent An easy (and wrong!) way of finishing the proof is just to apply the
-variable \verb!eqproof!, which has the same type as the goal.
-
-\begin{coq_example}
-intros.
-apply eqproof.
-\end{coq_example}
-
-\noindent The ``proof'' constructed in this way
-would correspond to the \verb!CoFixpoint! definition
-\begin{coq_example*}
-CoFixpoint eqproof : forall s1 s2:Stream A, EqSt s1 (conc s1 s2) :=
- eqproof.
-\end{coq_example*}
-
-\noindent which is obviously non-guarded. This means that
-we can use the proof editor to
-define a method of construction which does not make sense. However,
-the system will never accept to include it as part of the theory,
-because the guard condition is always verified before saving the proof.
-
-\begin{coq_example}
-Qed.
-\end{coq_example}
-
-\noindent Thus, the user must be careful in the
-construction of infinite proofs
-with the tactic \verb!Cofix!. Remark that once it has been used
-the application of tactics performing automatic proof search in
-the environment (like for example \verb!Auto!)
-could introduce unguarded recursive calls in the proof.
-The command \verb!Guarded! allows to verify
-if the guarded condition has been violated
-during the construction of the proof. This command can be
-applied even if the proof term is not complete.
-
-
-
-\begin{coq_example}
-Restart.
-cofix.
-auto.
-Guarded.
-Undo.
-Guarded.
-\end{coq_example}
-
-\noindent To finish with this example, let us restart from the
-beginning and show how to construct an admissible proof~:
-
-\begin{coq_example}
-Restart.
- cofix.
-\end{coq_example}
-
-%\pagebreak
-
-\begin{coq_example}
-intros.
-apply eqst.
-trivial.
-simpl.
-apply eqproof.
-Qed.
-\end{coq_example}
-
-
-\section{Experiments with co-inductive types}
-
-Some examples involving co-inductive types are available with
-the distributed system, in the theories library and in the contributions
-of the Lyon site. Here we present a short description of their contents~:
-\begin{itemize}
-\item Directory \verb!theories/LISTS! :
- \begin{itemize}
- \item File \verb!Streams.v! : The type of streams and the
-extensional equality between streams.
- \end{itemize}
-
-\item Directory \verb!contrib/Lyon/COINDUCTIVES! :
- \begin{itemize}
- \item Directory \verb!ARITH! : An arithmetic where $\infty$
-is an explicit constant of the language instead of a metatheoretical notion.
- \item Directory \verb!STREAM! :
- \begin{itemize}
- \item File \verb!Examples! :
-Several examples of guarded definitions, as well as
-of frequent errors in the introduction of a stream. A different
-way of defining the extensional equality of two streams,
-and the proofs showing that it is equivalent to the one in \verb!theories!.
- \item File \verb!Alter.v! : An example showing how
-an infinite proof introduced by a guarded definition can be also described
-using an operator of co-recursion \cite{Gimenez95b}.
- \end{itemize}
-\item Directory \verb!PROCESSES! : A proof of the alternating
-bit protocol based on Pra\-sad's Calculus of Broadcasting Systems \cite{Prasad93},
-and the verification of an interpreter for this calculus.
-See \cite{Gimenez95b} for a complete description about this development.
- \end{itemize}
-\end{itemize}
-
-%\end{document}
-
-% $Id: RefMan-coi.tex 10421 2008-01-05 14:06:51Z herbelin $
diff --git a/doc/refman/RefMan-com.tex b/doc/refman/RefMan-com.tex
deleted file mode 100644
index 13a4219a..00000000
--- a/doc/refman/RefMan-com.tex
+++ /dev/null
@@ -1,384 +0,0 @@
-\chapter[The \Coq~commands]{The \Coq~commands\label{Addoc-coqc}
-\ttindex{coqtop}
-\ttindex{coqc}}
-
-There are three \Coq~commands:
-\begin{itemize}
-\item {\tt coqtop}: The \Coq\ toplevel (interactive mode) ;
-\item {\tt coqc} : The \Coq\ compiler (batch compilation).
-\item {\tt coqchk} : The \Coq\ checker (validation of compiled libraries)
-\end{itemize}
-The options are (basically) the same for the first two commands, and
-roughly described below. You can also look at the \verb!man! pages of
-\verb!coqtop! and \verb!coqc! for more details.
-
-
-\section{Interactive use ({\tt coqtop})}
-
-In the interactive mode, also known as the \Coq~toplevel, the user can
-develop his theories and proofs step by step. The \Coq~toplevel is
-run by the command {\tt coqtop}.
-
-\index{byte-code}
-\index{native code}
-\label{binary-images}
-They are two different binary images of \Coq: the byte-code one and
-the native-code one (if Objective Caml provides a native-code compiler
-for your platform, which is supposed in the following). When invoking
-\verb!coqtop! or \verb!coqc!, the native-code version of the system is
-used. The command-line options \verb!-byte! and \verb!-opt! explicitly
-select the byte-code and the native-code versions, respectively.
-
-The byte-code toplevel is based on a Caml
-toplevel (to allow the dynamic link of tactics). You can switch to
-the Caml toplevel with the command \verb!Drop.!, and come back to the
-\Coq~toplevel with the command \verb!Toplevel.loop();;!.
-
-% The command \verb!coqtop -searchisos! runs the search tool {\sf
-% Coq\_SearchIsos} (see Section~\ref{coqsearchisos},
-% page~\pageref{coqsearchisos}) and, as the \Coq~system, can be combined
-% with the option \verb!-opt!.
-
-\section{Batch compilation ({\tt coqc})}
-The {\tt coqc} command takes a name {\em file} as argument. Then it
-looks for a vernacular file named {\em file}{\tt .v}, and tries to
-compile it into a {\em file}{\tt .vo} file (See ~\ref{compiled}).
-
-\Warning The name {\em file} must be a regular {\Coq} identifier, as
-defined in the Section~\ref{lexical}. It
-must only contain letters, digits or underscores
-(\_). Thus it can be \verb+/bar/foo/toto.v+ but cannot be
-\verb+/bar/foo/to-to.v+ .
-
-Notice that the \verb!-byte! and \verb!-opt! options are still
-available with \verb!coqc! and allow you to select the byte-code or
-native-code versions of the system.
-
-
-\section[Resource file]{Resource file\index{Resource file}}
-
-When \Coq\ is launched, with either {\tt coqtop} or {\tt coqc}, the
-resource file \verb:$HOME/.coqrc.7.0: is loaded, where \verb:$HOME: is
-the home directory of the user. If this file is not found, then the
-file \verb:$HOME/.coqrc: is searched. You can also specify an
-arbitrary name for the resource file (see option \verb:-init-file:
-below), or the name of another user to load the resource file of
-someone else (see option \verb:-user:).
-
-This file may contain, for instance, \verb:Add LoadPath: commands to add
-directories to the load path of \Coq.
-It is possible to skip the loading of the resource file with the
-option \verb:-q:.
-
-\section[Environment variables]{Environment variables\label{EnvVariables}
-\index{Environment variables}}
-
-There are three environment variables used by the \Coq\ system.
-\verb:$COQBIN: for the directory where the binaries are,
-\verb:$COQLIB: for the directory where the standard library is, and
-\verb:$COQTOP: for the directory of the sources. The latter is useful
-only for developers that are writing their own tactics and are using
-\texttt{coq\_makefile} (see \ref{Makefile}). If \verb:$COQBIN: or
-\verb:$COQLIB: are not defined, \Coq\ will use the default values
-(defined at installation time). So these variables are useful only if
-you move the \Coq\ binaries and library after installation.
-
-\section[Options]{Options\index{Options of the command line}
-\label{vmoption}
-\label{coqoptions}}
-
-The following command-line options are recognized by the commands {\tt
- coqc} and {\tt coqtop}, unless stated otherwise:
-
-\begin{description}
-\item[{\tt -byte}]\
-
- Run the byte-code version of \Coq{}.
-
-\item[{\tt -opt}]\
-
- Run the native-code version of \Coq{}.
-
-\item[{\tt -I} {\em directory}, {\tt -include} {\em directory}]\
-
- Add physical path {\em directory} to the list of directories where to
- look for a file and bind it to the empty logical directory. The
- subdirectory structure of {\em directory} is recursively available
- from {\Coq} using absolute names (see Section~\ref{LongNames}).
-
-\item[{\tt -I} {\em directory} {\tt -as} {\em dirpath}]\
-
- Add physical path {\em directory} to the list of directories where to
- look for a file and bind it to the logical directory {\dirpath}. The
- subdirectory structure of {\em directory} is recursively available
- from {\Coq} using absolute names extending the {\dirpath} prefix.
-
- \SeeAlso {\tt Add LoadPath} in Section~\ref{AddLoadPath} and logical
- paths in Section~\ref{Libraries}.
-
-\item[{\tt -R} {\em directory} {\dirpath}, {\tt -R} {\em directory} {\tt -as} {\dirpath}]\
-
- Do as {\tt -I} {\em directory} {\tt -as} {\dirpath} but make the
- subdirectory structure of {\em directory} recursively visible so
- that the recursive contents of physical {\em directory} is available
- from {\Coq} using short or partially qualified names.
-
- \SeeAlso {\tt Add Rec LoadPath} in Section~\ref{AddRecLoadPath} and logical
- paths in Section~\ref{Libraries}.
-
-\item[{\tt -top} {\dirpath}]\
-
- This sets the toplevel module name to {\dirpath} instead of {\tt
- Top}. Not valid for {\tt coqc}.
-
-\item[{\tt -notop} {\dirpath}]\
-
- This sets the toplevel module name to the empty logical dirpath. Not
- valid for {\tt coqc}.
-
-\item[{\tt -exclude-dir} {\em subdirectory}]\
-
- This tells to exclude any subdirectory named {\em subdirectory}
- while processing option {\tt -R}. Without this option only the
- conventional version control management subdirectories named {\tt
- CVS} and {\tt \_darcs} are excluded.
-
-\item[{\tt -is} {\em file}, {\tt -inputstate} {\em file}]\
-
- Cause \Coq~to use the state put in the file {\em file} as its input
- state. The default state is {\em initial.coq}.
- Mainly useful to build the standard input state.
-
-\item[{\tt -outputstate} {\em file}]\
-
- Cause \Coq~to dump its state to file {\em file}.coq just after finishing
- parsing and evaluating all the arguments from the command line.
-
-\item[{\tt -nois}]\
-
- Cause \Coq~to begin with an empty state. Mainly useful to build the
- standard input state.
-
-%Obsolete?
-%
-%\item[{\tt -notactics}]\
-%
-% Forbid the dynamic loading of tactics in the bytecode version of {\Coq}.
-
-\item[{\tt -init-file} {\em file}]\
-
- Take {\em file} as the resource file.
-
-\item[{\tt -q}]\
-
- Cause \Coq~not to load the resource file.
-
-\item[{\tt -user} {\em username}]\
-
- Take resource file of user {\em username} (that is
- \verb+~+{\em username}{\tt /.coqrc.7.0}) instead of yours.
-
-\item[{\tt -load-ml-source} {\em file}]\
-
- Load the Caml source file {\em file}.
-
-\item[{\tt -load-ml-object} {\em file}]\
-
- Load the Caml object file {\em file}.
-
-\item[{\tt -l} {\em file}, {\tt -load-vernac-source} {\em file}]\
-
- Load \Coq~file {\em file}{\tt .v}
-
-\item[{\tt -lv} {\em file}, {\tt -load-vernac-source-verbose} {\em file}]\
-
- Load \Coq~file {\em file}{\tt .v} with
- a copy of the contents of the file on standard input.
-
-\item[{\tt -load-vernac-object} {\em file}]\
-
- Load \Coq~compiled file {\em file}{\tt .vo}
-
-%\item[{\tt -preload} {\em file}]\ \\
-%Add {\em file}{\tt .vo} to the files to be loaded and opened
-%before making the initial state.
-%
-\item[{\tt -require} {\em file}]\
-
- Load \Coq~compiled file {\em file}{\tt .vo} and import it ({\tt
- Require} {\em file}).
-
-\item[{\tt -compile} {\em file}]\
-
- This compiles file {\em file}{\tt .v} into {\em file}{\tt .vo}.
- This option implies options {\tt -batch} and {\tt -silent}. It is
- only available for {\tt coqtop}.
-
-\item[{\tt -compile-verbose} {\em file}]\
-
- This compiles file {\em file}{\tt .v} into {\em file}{\tt .vo} with
- a copy of the contents of the file on standard input.
- This option implies options {\tt -batch} and {\tt -silent}. It is
- only available for {\tt coqtop}.
-
-\item[{\tt -verbose}]\
-
- This option is only for {\tt coqc}. It tells to compile the file with
- a copy of its contents on standard input.
-
-\item[{\tt -batch}]\
-
- Batch mode : exit just after arguments parsing. This option is only
- used by {\tt coqc}.
-
-%Mostly unused in the code
-%\item[{\tt -debug}]\
-%
-% Switch on the debug flag.
-
-\item[{\tt -xml}]\
-
- This option is for use with {\tt coqc}. It tells \Coq\ to export on
- the standard output the content of the compiled file into XML format.
-
-\item[{\tt -quality}]
-
- Improve the legibility of the proof terms produced by some tactics.
-
-\item[{\tt -emacs}]\
-
- Tells \Coq\ it is executed under Emacs.
-
-\item[{\tt -impredicative-set}]\
-
- Change the logical theory of {\Coq} by declaring the sort {\tt Set}
- impredicative; warning: this is known to be inconsistent with
- some standard axioms of classical mathematics such as the functional
- axiom of choice or the principle of description
-
-\item[{\tt -dump-glob} {\em file}]\
-
- This dumps references for global names in file {\em file}
- (to be used by coqdoc, see~\ref{coqdoc})
-
-\item[{\tt -dont-load-proofs}]\
-
- This avoids loading in memory the proofs of opaque theorems
- resulting in a smaller memory requirement and faster compilation;
- warning: this invalidates some features such as the extraction tool.
-
-\item[{\tt -vm}]\
-
- This activates the use of the bytecode-based conversion algorithm
- for the current session (see Section~\ref{SetVirtualMachine}).
-
-\item[{\tt -image} {\em file}]\
-
- This option sets the binary image to be used to be {\em file}
- instead of the standard one. Not of general use.
-
-\item[{\tt -bindir} {\em directory}]\
-
- Set for {\tt coqc} the directory containing \Coq\ binaries.
- It is equivalent to do \texttt{export COQBIN=}{\em directory}
- before lauching {\tt coqc}.
-
-\item[{\tt -where}]\
-
- Print the \Coq's standard library location and exit.
-
-\item[{\tt -v}]\
-
- Print the \Coq's version and exit.
-
-\item[{\tt -h}, {\tt --help}]\
-
- Print a short usage and exit.
-
-\end{description}
-
-
-\section{Compiled libraries checker ({\tt coqchk})}
-
-The {\tt coqchk} command takes a list of library paths as argument.
-The corresponding compiled libraries (.vo files) are searched in the
-path, recursively processing the libraries they depend on. The content
-of all these libraries is then type-checked. The effect of {\tt
- coqchk} is only to return with normal exit code in case of success,
-and with positive exit code if an error has been found. Error messages
-are not deemed to help the user understand what is wrong. In the
-current version, it does not modify the compiled libraries to mark
-them as successfully checked.
-
-Note that non-logical information is not checked. By logical
-information, we mean the type and optional body associated to names.
-It excludes for instance anything related to the concrete syntax of
-objects (customized syntax rules, association between short and long
-names), implicit arguments, etc.
-
-This tool can be used for several purposes. One is to check that a
-compiled library provided by a third-party has not been forged and
-that loading it cannot introduce inconsistencies.\footnote{Ill-formed
- non-logical information might for instance bind {\tt
- Coq.Init.Logic.True} to short name {\tt False}, so apparently {\tt
- False} is inhabited, but using fully qualified names, {\tt
- Coq.Init.Logic.False} will always refer to the absurd proposition,
- what we guarantee is that there is no proof of this latter
- constant.}
-Another point is to get an even higher level of security. Since {\tt
- coqtop} can be extended with custom tactics, possibly ill-typed
-code, it cannot be guaranteed that the produced compiled libraries are
-correct. {\tt coqchk} is a standalone verifier, and thus it cannot be
-tainted by such malicious code.
-
-Command-line options {\tt -I}, {\tt -R}, {\tt -where} and
-{\tt -impredicative-set} are supported by {\tt coqchk} and have the
-same meaning as for {\tt coqtop}. Extra options are:
-\begin{description}
-\item[{\tt -norec} $module$]\
-
- Check $module$ but do not force check of its dependencies.
-\item[{\tt -admit} $module$] \
-
- Do not check $module$ and any of its dependencies, unless
- explicitly required.
-\item[{\tt -o}]\
-
- At exit, print a summary about the context. List the names of all
- assumptions and variables (constants without body).
-\item[{\tt -silent}]\
-
- Do not write progress information in standard output.
-\end{description}
-
-Environment variable \verb:$COQLIB: can be set to override the
-location of the standard library.
-
-The algorithm for deciding which modules are checked or admitted is
-the following: assuming that {\tt coqchk} is called with argument $M$,
-option {\tt -norec} $N$, and {\tt -admit} $A$. Let us write
-$\overline{S}$ the set of reflexive transitive dependencies of set
-$S$. Then:
-\begin{itemize}
-\item Modules $C=\overline{M}\backslash\overline{A}\cup M\cup N$ are
- loaded and type-checked before being added to the context.
-\item And $\overline{M}\cup\overline{N}\backslash C$ is the set of
- modules that are loaded and added to the context without
- type-checking. Basic integrity checks (checksums) are nonetheless
- performed.
-\end{itemize}
-
-As a rule of thumb, the {\tt -admit} can be used to tell that some
-libraries have already been checked. So {\tt coqchk A B} can be split
-in {\tt coqchk A \&\& coqchk B -admit A} without type-checking any
-definition twice. Of course, the latter is slightly slower since it
-makes more disk access. It is also less secure since an attacker might
-have replaced the compiled library $A$ after it has been read by the
-first command, but before it has been read by the second command.
-
-% $Id: RefMan-com.tex 12443 2009-10-29 16:17:29Z gmelquio $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-decl.tex b/doc/refman/RefMan-decl.tex
deleted file mode 100644
index ba8a5ac6..00000000
--- a/doc/refman/RefMan-decl.tex
+++ /dev/null
@@ -1,808 +0,0 @@
-\newcommand{\DPL}{Mathematical Proof Language}
-
-\chapter{The \DPL\label{DPL}\index{DPL}}
-
-\section{Introduction}
-
-\subsection{Foreword}
-
-In this chapter, we describe an alternative language that may be used
-to do proofs using the Coq proof assistant. The language described
-here uses the same objects (proof-terms) as Coq, but it differs in the
-way proofs are described. This language was created by Pierre
-Corbineau at the Radboud University of Nijmegen, The Netherlands.
-
-The intent is to provide language where proofs are less formalism-{}
-and implementation-{}sensitive, and in the process to ease a bit the
-learning of computer-{}aided proof verification.
-
-\subsection{What is a declarative proof ?{}}
-In vanilla Coq, proofs are written in the imperative style: the user
-issues commands that transform a so called proof state until it
-reaches a state where the proof is completed. In the process, the user
-mostly described the transitions of this system rather than the
-intermediate states it goes through.
-
-The purpose of a declarative proof language is to take the opposite
-approach where intermediate states are always given by the user, but
-the transitions of the system are automated as much as possible.
-
-\subsection{Well-formedness and Completeness}
-
-The \DPL{} introduces a notion of well-formed
-proofs which are weaker than correct (and complete)
-proofs. Well-formed proofs are actually proof script where only the
-reasoning is incomplete. All the other aspects of the proof are
-correct:
-\begin{itemize}
-\item All objects referred to exist where they are used
-\item Conclusion steps actually prove something related to the
- conclusion of the theorem (the {\tt thesis}.
-\item Hypothesis introduction steps are done when the goal is an
- implication with a corresponding assumption.
-\item Sub-objects in the elimination steps for tuples are correct
- sub-objects of the tuple being decomposed.
-\item Patterns in case analysis are type-correct, and induction is well guarded.
-\end{itemize}
-
-\subsection{Note for tactics users}
-
-This section explain what differences the casual Coq user will
-experience using the \DPL .
-\begin{enumerate}
-\item The focusing mechanism is constrained so that only one goal at
- a time is visible.
-\item Giving a statement that Coq cannot prove does not produce an
- error, only a warning: this allows to go on with the proof and fill
- the gap later.
-\item Tactics can still be used for justifications and after
-{\texttt{escape}}.
-\end{enumerate}
-
-\subsection{Compatibility}
-
-The \DPL{} is available for all Coq interfaces that use
-text-based interaction, including:
-\begin{itemize}
-\item the command-{}line toplevel {\texttt{coqtop}}
-\item the native GUI {\texttt{coqide}}
-\item the Proof-{}General emacs mode
-\item Cezary Kaliszyk'{}s Web interface
-\item L.E. Mamane'{}s tmEgg TeXmacs plugin
-\end{itemize}
-
-However it is not supported by structured editors such as PCoq.
-
-
-
-\section{Syntax}
-
-Here is a complete formal description of the syntax for DPL commands.
-
-\begin{figure}[htbp]
-\begin{centerframe}
-\begin{tabular}{lcl@{\qquad}r}
- instruction & ::= & {\tt proof} \\
- & $|$ & {\tt assume } \nelist{statement}{\tt and}
- \zeroone{[{\tt and } \{{\tt we have}\}-clause]} \\
- & $|$ & \{{\tt let},{\tt be}\}-clause \\
- & $|$ & \{{\tt given}\}-clause \\
- & $|$ & \{{\tt consider}\}-clause {\tt from} term \\
- & $|$ & ({\tt have} $|$ {\tt then} $|$ {\tt thus} $|$ {\tt hence}]) statement
- justification \\
- & $|$ & \zeroone{\tt thus} ($\sim${\tt =}|{\tt =}$\sim$) \zeroone{\ident{\tt :}}\term\relax justification \\ & $|$ & {\tt suffices} (\{{\tt to have}\}-clause $|$
- \nelist{statement}{\tt and } \zeroone{{\tt and} \{{\tt to have}\}-clause})\\
- & & {\tt to show} statement justification \\
- & $|$ & ({\tt claim} $|$ {\tt focus on}) statement \\
- & $|$ & {\tt take} \term \\
- & $|$ & {\tt define} \ident \sequence{var}{,} {\tt as} \term\\
- & $|$ & {\tt reconsider} (\ident $|$ {\tt thesis}) {\tt as} type\\
- & $|$ &
- {\tt per} ({\tt cases}$|${\tt induction}) {\tt on} \term \\
- & $|$ & {\tt per cases of} type justification \\
- & $|$ & {\tt suppose} \zeroone{\nelist{ident}{,} {\tt and}}~
- {\tt it is }pattern\\
- & & \zeroone{{\tt such that} \nelist{statement} {\tt and} \zeroone{{\tt and} \{{\tt we have}\}-clause}} \\
- & $|$ & {\tt end}
- ({\tt proof} $|$ {\tt claim} $|$ {\tt focus} $|$ {\tt cases} $|$ {\tt induction}) \\
- & $|$ & {\tt escape} \\
- & $|$ & {\tt return} \medskip \\
- \{$\alpha,\beta$\}-clause & ::=& $\alpha$ \nelist{var}{,}~
- $\beta$ {\tt such that} \nelist{statement}{\tt and } \\
- & & \zeroone{{\tt and } \{$\alpha,\beta$\}-clause} \medskip\\
- statement & ::= & \zeroone{\ident {\tt :}} type \\
- & $|$ & {\tt thesis} \\
- & $|$ & {\tt thesis for} \ident \medskip \\
- var & ::= & \ident \zeroone{{\tt :} type} \medskip \\
- justification & ::= &
- \zeroone{{\tt by} ({\tt *} | \nelist{\term}{,})}
- ~\zeroone{{\tt using} tactic} \\
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of mathematical proof commands}
-\end{figure}
-
-The lexical conventions used here follows those of section \ref{lexical}.
-
-
-Conventions:\begin{itemize}
-
- \item {\texttt{<{}tactic>{}}} stands for an Coq tactic.
-
- \end{itemize}
-
-\subsection{Temporary names}
-
-In proof commands where an optional name is asked for, omitting the
-name will trigger the creation of a fresh temporary name (e.g. for a
-hypothesis). Temporary names always start with an undescore '\_'
-character (e.g. {\tt \_hyp0}). Temporary names have a lifespan of one
-command: they get erased after the next command. They can however be safely in the step after their creation.
-
-\section{Language description}
-
-\subsection{Starting and Ending a mathematical proof}
-
- The standard way to use the \DPL is to first state a {\texttt{Lemma/Theorem/Definition}} and then use the {\texttt{proof}} command to switch the current subgoal to mathematical mode. After the proof is completed, the {\texttt{end proof}} command will close the mathematical proof. If any subgoal remains to be proved, they will be displayed using the usual Coq display.
-
-\begin{coq_example}
-Theorem this_is_trivial: True.
-proof.
- thus thesis.
-end proof.
-Qed.
-\end{coq_example}
-
-The {\texttt{proof}} command only applies to \emph{one subgoal}, thus
-if several sub-goals are already present, the {\texttt{proof .. end
- proof}} sequence has to be used several times.
-
-\begin{coq_eval}
-Theorem T: (True /\ True) /\ True.
- split. split.
-\end{coq_eval}
-\begin{coq_example}
- Show.
- proof. (* first subgoal *)
- thus thesis.
- end proof.
- trivial. (* second subgoal *)
- proof. (* third subgoal *)
- thus thesis.
- end proof.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-As with all other block structures, the {\texttt{end proof}} command
-assumes that your proof is complete. If not, executing it will be
-equivalent to admitting that the statement is proved: A warning will
-be issued and you will not be able to run the {\texttt{Qed}}
-command. Instead, you can run {\texttt{Admitted}} if you wish to start
-another theorem and come back
-later.
-
-\begin{coq_example}
-Theorem this_is_not_so_trivial: False.
-proof.
-end proof. (* here a warning is issued *)
-Qed. (* fails : the proof in incomplete *)
-Admitted. (* Oops! *)
-\end{coq_example}
-\begin{coq_eval}
-Reset this_is_not_so_trivial.
-\end{coq_eval}
-
-\subsection{Switching modes}
-
-When writing a mathematical proof, you may wish to use procedural
-tactics at some point. One way to do so is to write a using-{}phrase
-in a deduction step (see section~\ref{justifications}). The other way
-is to use an {\texttt{escape...return}} block.
-
-\begin{coq_eval}
-Theorem T: True.
-proof.
-\end{coq_eval}
-\begin{coq_example}
- Show.
- escape.
- auto.
- return.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-The return statement expects all subgoals to be closed, otherwise a
-warning is issued and the proof cannot be saved anymore.
-
-It is possible to use the {\texttt{proof}} command inside an
-{\texttt{escape...return}} block, thus nesting a mathematical proof
-inside a procedural proof inside a mathematical proof ...
-
-\subsection{Computation steps}
-
-The {\tt reconsider ... as} command allows to change the type of a hypothesis or of {\tt thesis} to a convertible one.
-
-\begin{coq_eval}
-Theorem T: let a:=false in let b:= true in ( if a then True else False -> if b then True else False).
-intros a b.
-proof.
-assume H:(if a then True else False).
-\end{coq_eval}
-\begin{coq_example}
- Show.
- reconsider H as False.
- reconsider thesis as True.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-
-\subsection{Deduction steps}
-
-The most common instruction in a mathematical proof is the deduction step:
- it asserts a new statement (a formula/type of the \CIC) and tries to prove it using a user-provided indication : the justification. The asserted statement is then added as a hypothesis to the proof context.
-
-\begin{coq_eval}
-Theorem T: forall x, x=2 -> 2+x=4.
-proof.
-let x be such that H:(x=2).
-\end{coq_eval}
-\begin{coq_example}
- Show.
- have H':(2+x=2+2) by H.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-It is very often the case that the justifications uses the last hypothesis introduced in the context, so the {\tt then} keyword can be used as a shortcut, e.g. if we want to do the same as the last example :
-
-\begin{coq_eval}
-Theorem T: forall x, x=2 -> 2+x=4.
-proof.
-let x be such that H:(x=2).
-\end{coq_eval}
-\begin{coq_example}
- Show.
- then (2+x=2+2).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-In this example, you can also see the creation of a temporary name {\tt \_fact}.
-
-\subsection{Iterated equalities}
-
-A common proof pattern when doing a chain of deductions, is to do
-multiple rewriting steps over the same term, thus proving the
-corresponding equalities. The iterated equalities are a syntactic
-support for this kind of reasoning:
-
-\begin{coq_eval}
-Theorem T: forall x, x=2 -> x + x = x * x.
-proof.
-let x be such that H:(x=2).
-\end{coq_eval}
-\begin{coq_example}
- Show.
- have (4 = 4).
- ~= (2 * 2).
- ~= (x * x) by H.
- =~ (2 + 2).
- =~ H':(x + x) by H.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Notice that here we use temporary names heavily.
-
-\subsection{Subproofs}
-
-When an intermediate step in a proof gets too complicated or involves a well contained set of intermediate deductions, it can be useful to insert its proof as a subproof of the current proof. this is done by using the {\tt claim ... end claim} pair of commands.
-
-\begin{coq_eval}
-Theorem T: forall x, x + x = x * x -> x = 0 \/ x = 2.
-proof.
-let x be such that H:(x + x = x * x).
-\end{coq_eval}
-\begin{coq_example}
-Show.
-claim H':((x - 2) * x = 0).
-\end{coq_example}
-
-A few steps later ...
-
-\begin{coq_example}
-thus thesis.
-end claim.
-\end{coq_example}
-
-Now the rest of the proof can happen.
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Conclusion steps}
-
-The commands described above have a conclusion counterpart, where the
-new hypothesis is used to refine the conclusion.
-
-\begin{figure}[b]
- \centering
-\begin{tabular}{c|c|c|c|c|}
- X & \,simple\, & \,with previous step\, &
- \,opens sub-proof\, & \,iterated equality\, \\
-\hline
-intermediate step & {\tt have} & {\tt then} &
- {\tt claim} & {\tt $\sim$=/=$\sim$}\\
-conclusion step & {\tt thus} & {\tt hence} &
- {\tt focus on} & {\tt thus $\sim$=/=$\sim$}\\
-\hline
-\end{tabular}
-\caption{Correspondence between basic forward steps and conclusion steps}
-\end{figure}
-
-Let us begin with simple examples :
-
-\begin{coq_eval}
-Theorem T: forall (A B:Prop), A -> B -> A /\ B.
-intros A B HA HB.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-hence B.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-In the next example, we have to use {\tt thus} because {\tt HB} is no longer
-the last hypothesis.
-
-\begin{coq_eval}
-Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B /\ C.
-intros A B C HA HB HC.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-thus B by HB.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-The command fails the refinement process cannot find a place to fit
-the object in a proof of the conclusion.
-
-
-\begin{coq_eval}
-Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B.
-intros A B C HA HB HC.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-hence C. (* fails *)
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-The refinement process may induce non
-reversible choices, e.g. when proving a disjunction it may {\it
- choose} one side of the disjunction.
-
-\begin{coq_eval}
-Theorem T: forall (A B:Prop), B -> A \/ B.
-intros A B HB.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-hence B.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-In this example you can see that the right branch was chosen since {\tt D} remains to be proved.
-
-\begin{coq_eval}
-Theorem T: forall (A B C D:Prop), C -> D -> (A /\ B) \/ (C /\ D).
-intros A B C D HC HD.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-thus C by HC.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Now for existential statements, we can use the {\tt take} command to
-choose {\tt 2} as an explicit witness of existence.
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x.
-intros P HP.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-take 2.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-It is also possible to prove the existence directly.
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x.
-intros P HP.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-hence (P 2).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Here a more involved example where the choice of {\tt P 2} propagates
-the choice of {\tt 2} to another part of the formula.
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop) (R:nat -> nat -> Prop), P 2 -> R 0 2 -> exists x, exists y, P y /\ R x y.
-intros P R HP HR.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-thus (P 2) by HP.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Now, an example with the {\tt suffices} command. {\tt suffices}
-is a sort of dual for {\tt have}: it allows to replace the conclusion
-(or part of it) by a sufficient condition.
-
-\begin{coq_eval}
-Theorem T: forall (A B:Prop) (P:nat -> Prop), (forall x, P x -> B) -> A -> A /\ B.
-intros A B P HP HA.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-suffices to have x such that HP':(P x) to show B by HP,HP'.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Finally, an example where {\tt focus} is handy : local assumptions.
-
-\begin{coq_eval}
-Theorem T: forall (A:Prop) (P:nat -> Prop), P 2 -> A -> A /\ (forall x, x = 2 -> P x).
-intros A P HP HA.
-proof.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-focus on (forall x, x = 2 -> P x).
-let x be such that (x = 2).
-hence thesis by HP.
-end focus.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Declaring an Abbreviation}
-
-In order to shorten long expressions, it is possible to use the {\tt
- define ... as ...} command to give a name to recurring expressions.
-
-\begin{coq_eval}
-Theorem T: forall x, x = 0 -> x + x = x * x .
-proof.
-let x be such that H:(x = 0).
-\end{coq_eval}
-\begin{coq_example}
-Show.
-define sqr x as (x * x).
-reconsider thesis as (x + x = sqr x).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Introduction steps}
-
-When the {\tt thesis} consists of a hypothetical formula (implication
-or universal quantification (e.g. \verb+A -> B+) , it is possible to
-assume the hypothetical part {\tt A} and then prove {\tt B}. In the
-\DPL{}, this comes in two syntactic flavors that are semantically
-equivalent : {\tt let} and {\tt assume}. Their syntax is designed so that {\tt let} works better for universal quantifiers and {\tt assume} for implications.
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x.
-proof.
-let P:(nat -> Prop).
-\end{coq_eval}
-\begin{coq_example}
-Show.
-let x:nat.
-assume HP:(P x).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-In the {\tt let} variant, the type of the assumed object is optional
-provided it can be deduced from the command. The objects introduced by
-let can be followed by assumptions using {\tt such that}.
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x.
-proof.
-let P:(nat -> Prop).
-\end{coq_eval}
-\begin{coq_example}
-Show.
-let x. (* fails because x's type is not clear *)
-let x be such that HP:(P x). (* here x's type is inferred from (P x) *)
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-In the {\tt assume } variant, the type of the assumed object is mandatory but the name is optional :
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x -> P x.
-proof.
-let P:(nat -> Prop).
-let x:nat.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-assume (P x). (* temporary name created *)
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-After {\tt such that}, it is also the case :
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x.
-proof.
-let P:(nat -> Prop).
-\end{coq_eval}
-\begin{coq_example}
-Show.
-let x be such that (P x). (* temporary name created *)
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Tuple elimination steps}
-
-In the \CIC, many objects dealt with in simple proofs are tuples :
-pairs , records, existentially quantified formulas. These are so
-common that the \DPL{} provides a mechanism to extract members of
-those tuples, and also objects in tuples within tuples within
-tuples...
-
-\begin{coq_eval}
-Theorem T: forall (P:nat -> Prop) (A:Prop), (exists x, (P x /\ A)) -> A.
-proof.
-let P:(nat -> Prop),A:Prop be such that H:(exists x, P x /\ A) .
-\end{coq_eval}
-\begin{coq_example}
-Show.
-consider x such that HP:(P x) and HA:A from H.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Here is an example with pairs:
-
-\begin{coq_eval}
-Theorem T: forall p:(nat * nat)%type, (fst p >= snd p) \/ (fst p < snd p).
-proof.
-let p:(nat * nat)%type.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-consider x:nat,y:nat from p.
-reconsider thesis as (x >= y \/ x < y).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-It is sometimes desirable to combine assumption and tuple
-decomposition. This can be done using the {\tt given} command.
-
-\begin{coq_eval}
-Theorem T: forall P:(nat -> Prop), (forall n , P n -> P (n - 1)) ->
-(exists m, P m) -> P 0.
-proof.
-let P:(nat -> Prop) be such that HP:(forall n , P n -> P (n - 1)).
-\end{coq_eval}
-\begin{coq_example}
-Show.
-given m such that Hm:(P m).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Disjunctive reasoning}
-
-In some proofs (most of them usually) one has to consider several
-cases and prove that the {\tt thesis} holds in all the cases. This is
-done by first specifying which object will be subject to case
-distinction (usually a disjunction) using {\tt per cases}, and then specifying which case is being proved by using {\tt suppose}.
-
-
-\begin{coq_eval}
-Theorem T: forall (A B C:Prop), (A -> C) -> (B -> C) -> (A \/ B) -> C.
-proof.
-let A:Prop,B:Prop,C:Prop be such that HAC:(A -> C) and HBC:(B -> C).
-assume HAB:(A \/ B).
-\end{coq_eval}
-\begin{coq_example}
-per cases on HAB.
-suppose A.
- hence thesis by HAC.
-suppose HB:B.
- thus thesis by HB,HBC.
-end cases.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-The proof is well formed (but incomplete) even if you type {\tt end
- cases} or the next {\tt suppose} before the previous case is proved.
-
-If the disjunction is derived from a more general principle, e.g. the
-excluded middle axiom), it is desirable to just specify which instance
-of it is being used :
-
-\begin{coq_eval}
-Section Coq.
-\end{coq_eval}
-\begin{coq_example}
-Hypothesis EM : forall P:Prop, P \/ ~ P.
-\end{coq_example}
-\begin{coq_eval}
-Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C.
-proof.
-let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C).
-\end{coq_eval}
-\begin{coq_example}
-per cases of (A \/ ~A) by EM.
-suppose (~A).
- hence thesis by HNAC.
-suppose A.
- hence thesis by HAC.
-end cases.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Proofs per cases}
-
-If the case analysis is to be made on a particular object, the script
-is very similar: it starts with {\tt per cases on }\emph{object} instead.
-
-\begin{coq_eval}
-Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C.
-proof.
-let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C).
-\end{coq_eval}
-\begin{coq_example}
-per cases on (EM A).
-suppose (~A).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-End Coq.
-\end{coq_eval}
-
-If the object on which a case analysis occurs in the statement to be
-proved, the command {\tt suppose it is }\emph{pattern} is better
-suited than {\tt suppose}. \emph{pattern} may contain nested patterns
-with {\tt as} clauses. A detailed description of patterns is to be
-found in figure \ref{term-syntax-aux}. here is an example.
-
-\begin{coq_eval}
-Theorem T: forall (A B:Prop) (x:bool), (if x then A else B) -> A \/ B.
-proof.
-let A:Prop,B:Prop,x:bool.
-\end{coq_eval}
-\begin{coq_example}
-per cases on x.
-suppose it is true.
- assume A.
- hence A.
-suppose it is false.
- assume B.
- hence B.
-end cases.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Proofs by induction}
-
-Proofs by induction are very similar to proofs per cases: they start
-with {\tt per induction on }{\tt object} and proceed with {\tt suppose
- it is }\emph{pattern}{\tt and }\emph{induction hypothesis}. The
-induction hypothesis can be given explicitly or identified by the
-sub-object $m$ it refers to using {\tt thesis for }\emph{m}.
-
-\begin{coq_eval}
-Theorem T: forall (n:nat), n + 0 = n.
-proof.
-let n:nat.
-\end{coq_eval}
-\begin{coq_example}
-per induction on n.
-suppose it is 0.
- thus (0 + 0 = 0).
-suppose it is (S m) and H:thesis for m.
- then (S (m + 0) = S m).
- thus =~ (S m + 0).
-end induction.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection{Justifications}\label{justifications}
-
-
-Intuitively, justifications are hints for the system to understand how
-to prove the statements the user types in. In the case of this
-language justifications are made of two components:
-
-Justification objects : {\texttt{by}} followed by a comma-{}separated
-list of objects that will be used by a selected tactic to prove the
-statement. This defaults to the empty list (the statement should then
-be tautological). The * wildcard provides the usual tactics behavior:
-use all statements in local context. However, this wildcard should be
-avoided since it reduces the robustness of the script.
-
-Justification tactic : {\texttt{using}} followed by a Coq tactic that
-is executed to prove the statement. The default is a solver for
-(intuitionistic) first-{}order with equality.
-
-\section{More details and Formal Semantics}
-
-I suggest the users looking for more information have a look at the
-paper \cite{corbineau08types}. They will find in that paper a formal
-semantics of the proof state transition induces by mathematical
-commands.
diff --git a/doc/refman/RefMan-ext.tex b/doc/refman/RefMan-ext.tex
deleted file mode 100644
index 9efa7048..00000000
--- a/doc/refman/RefMan-ext.tex
+++ /dev/null
@@ -1,1756 +0,0 @@
-\chapter[Extensions of \Gallina{}]{Extensions of \Gallina{}\label{Gallina-extension}\index{Gallina}}
-
-{\gallina} is the kernel language of {\Coq}. We describe here extensions of
-the Gallina's syntax.
-
-\section{Record types
-\comindex{Record}
-\label{Record}}
-
-The \verb+Record+ construction is a macro allowing the definition of
-records as is done in many programming languages. Its syntax is
-described on Figure~\ref{record-syntax}. In fact, the \verb+Record+
-macro is more general than the usual record types, since it allows
-also for ``manifest'' expressions. In this sense, the \verb+Record+
-construction allows to define ``signatures''.
-
-\begin{figure}[h]
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\sentence} & ++= & {\record}\\
- & & \\
-{\record} & ::= &
- {\tt Record} {\ident} \zeroone{\binders} \zeroone{{\tt :} {\sort}} \verb.:=. \\
-&& ~~~~\zeroone{\ident}
- \verb!{! \zeroone{\nelist{\field}{;}} \verb!}! \verb:.:\\
- & & \\
-{\field} & ::= & {\name} : {\type} [ {\tt where} {\it notation} ] \\
- & $|$ & {\name} {\typecstr} := {\term}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax for the definition of {\tt Record}}
-\label{record-syntax}
-\end{figure}
-
-\noindent In the expression
-
-\smallskip
-{\tt Record} {\ident} {\params} \texttt{:}
- {\sort} := {\ident$_0$} \verb+{+
- {\ident$_1$} \texttt{:} {\term$_1$};
- \dots
- {\ident$_n$} \texttt{:} {\term$_n$} \verb+}+.
-\smallskip
-
-\noindent the identifier {\ident} is the name of the defined record
-and {\sort} is its type. The identifier {\ident$_0$} is the name of
-its constructor. If {\ident$_0$} is omitted, the default name {\tt
-Build\_{\ident}} is used. If {\sort} is omitted, the default sort is ``{\Type}''.
-The identifiers {\ident$_1$}, ..,
-{\ident$_n$} are the names of fields and {\term$_1$}, .., {\term$_n$}
-their respective types. Remark that the type of {\ident$_i$} may
-depend on the previous {\ident$_j$} (for $j<i$). Thus the order of the
-fields is important. Finally, {\params} are the parameters of the
-record.
-
-More generally, a record may have explicitly defined (a.k.a.
-manifest) fields. For instance, {\tt Record} {\ident} {\tt [}
-{\params} {\tt ]} \texttt{:} {\sort} := \verb+{+ {\ident$_1$}
-\texttt{:} {\type$_1$} \verb+;+ {\ident$_2$} \texttt{:=} {\term$_2$}
-\verb+;+ {\ident$_3$} \texttt{:} {\type$_3$} \verb+}+ in which case
-the correctness of {\type$_3$} may rely on the instance {\term$_2$} of
-{\ident$_2$} and {\term$_2$} in turn may depend on {\ident$_1$}.
-
-
-\Example
-The set of rational numbers may be defined as:
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Record Rat : Set := mkRat
- {sign : bool;
- top : nat;
- bottom : nat;
- Rat_bottom_cond : 0 <> bottom;
- Rat_irred_cond :
- forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}.
-\end{coq_example}
-
-Remark here that the field
-\verb+Rat_cond+ depends on the field \verb+bottom+.
-
-%Let us now see the work done by the {\tt Record} macro.
-%First the macro generates an inductive definition
-%with just one constructor:
-%
-%\medskip
-%\noindent
-%{\tt Inductive {\ident} \zeroone{\binders} : {\sort} := \\
-%\mbox{}\hspace{0.4cm} {\ident$_0$} : forall ({\ident$_1$}:{\term$_1$}) ..
-%({\ident$_n$}:{\term$_n$}), {\ident} {\rm\sl params}.}
-%\medskip
-
-Let us now see the work done by the {\tt Record} macro. First the
-macro generates an inductive definition with just one constructor:
-\begin{quote}
-{\tt Inductive {\ident} {\params} :{\sort} :=} \\
-\qquad {\tt
- {\ident$_0$} ({\ident$_1$}:{\term$_1$}) .. ({\ident$_n$}:{\term$_n$}).}
-\end{quote}
-To build an object of type {\ident}, one should provide the
-constructor {\ident$_0$} with $n$ terms filling the fields of
-the record.
-
-As an example, let us define the rational $1/2$:
-\begin{coq_example*}
-Require Import Arith.
-Theorem one_two_irred :
- forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
-\end{coq_example*}
-\begin{coq_eval}
-Lemma mult_m_n_eq_m_1 : forall m n:nat, m * n = 1 -> m = 1.
-destruct m; trivial.
-intros; apply f_equal with (f := S).
-destruct m; trivial.
-destruct n; simpl in H.
- rewrite <- mult_n_O in H.
- discriminate.
- rewrite <- plus_n_Sm in H.
- discriminate.
-Qed.
-
-intros x y z [H1 H2].
- apply mult_m_n_eq_m_1 with (n := y); trivial.
-\end{coq_eval}
-\ldots
-\begin{coq_example*}
-Qed.
-\end{coq_example*}
-\begin{coq_example}
-Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
-\end{coq_example}
-\begin{coq_example}
-Check half.
-\end{coq_example}
-
-The macro generates also, when it is possible, the projection
-functions for destructuring an object of type {\ident}. These
-projection functions have the same name that the corresponding
-fields. If a field is named ``\verb=_='' then no projection is built
-for it. In our example:
-
-\begin{coq_example}
-Eval compute in half.(top).
-Eval compute in half.(bottom).
-Eval compute in half.(Rat_bottom_cond).
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Warnings}
-\item {\tt Warning: {\ident$_i$} cannot be defined.}
-
- It can happen that the definition of a projection is impossible.
- This message is followed by an explanation of this impossibility.
- There may be three reasons:
- \begin{enumerate}
- \item The name {\ident$_i$} already exists in the environment (see
- Section~\ref{Axiom}).
- \item The body of {\ident$_i$} uses an incorrect elimination for
- {\ident} (see Sections~\ref{Fixpoint} and~\ref{Caseexpr}).
- \item The type of the projections {\ident$_i$} depends on previous
- projections which themselves could not be defined.
- \end{enumerate}
-\end{Warnings}
-
-\begin{ErrMsgs}
-
-\item \errindex{A record cannot be recursive}
-
- The record name {\ident} appears in the type of its fields.
-
-\item During the definition of the one-constructor inductive
- definition, all the errors of inductive definitions, as described in
- Section~\ref{gal_Inductive_Definitions}, may also occur.
-
-\end{ErrMsgs}
-
-\SeeAlso Coercions and records in Section~\ref{Coercions-and-records}
-of the chapter devoted to coercions.
-
-\Rem {\tt Structure} is a synonym of the keyword {\tt Record}.
-
-\Rem Creation of an object of record type can be done by calling {\ident$_0$}
-and passing arguments in the correct order.
-
-\begin{coq_example}
-Record point := { x : nat; y : nat }.
-Definition a := Build_point 5 3.
-\end{coq_example}
-
-The following syntax allows to create objects by using named fields. The
-fields do not have to be in any particular order, nor do they have to be all
-present if the missing ones can be inferred or prompted for (see
-Section~\ref{Program}).
-
-\begin{coq_example}
-Definition b := {| x := 5; y := 3 |}.
-Definition c := {| y := 3; x := 5 |}.
-\end{coq_example}
-
-This syntax can also be used for pattern matching.
-
-\begin{coq_example}
-Eval compute in (
- match b with
- | {| y := S n |} => n
- | _ => 0
- end).
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\Rem An experimental syntax for projections based on a dot notation is
-available. The command to activate it is
-\begin{quote}
-{\tt Set Printing Projections.}
-\end{quote}
-
-\begin{figure}[t]
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\term} & ++= & {\term} {\tt .(} {\qualid} {\tt )}\\
- & $|$ & {\term} {\tt .(} {\qualid} \nelist{\termarg}{} {\tt )}\\
- & $|$ & {\term} {\tt .(} {@}{\qualid} \nelist{\term}{} {\tt )}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of \texttt{Record} projections}
-\label{fig:projsyntax}
-\end{figure}
-
-The corresponding grammar rules are given Figure~\ref{fig:projsyntax}.
-When {\qualid} denotes a projection, the syntax {\tt
- {\term}.({\qualid})} is equivalent to {\qualid~\term}, the syntax
-{\tt {\term}.({\qualid}~{\termarg}$_1$~ \ldots~ {\termarg}$_n$)} to
-{\qualid~{\termarg}$_1$ \ldots {\termarg}$_n$~\term}, and the syntax
-{\tt {\term}.(@{\qualid}~{\term}$_1$~\ldots~{\term}$_n$)} to
-{@\qualid~{\term}$_1$ \ldots {\term}$_n$~\term}. In each case, {\term}
-is the object projected and the other arguments are the parameters of
-the inductive type.
-
-To deactivate the printing of projections, use
-{\tt Unset Printing Projections}.
-
-
-\section{Variants and extensions of {\mbox{\tt match}}
-\label{Extensions-of-match}
-\index{match@{\tt match\ldots with\ldots end}}}
-
-\subsection{Multiple and nested pattern-matching
-\index{ML-like patterns}
-\label{Mult-match}}
-
-The basic version of \verb+match+ allows pattern-matching on simple
-patterns. As an extension, multiple nested patterns or disjunction of
-patterns are allowed, as in ML-like languages.
-
-The extension just acts as a macro that is expanded during parsing
-into a sequence of {\tt match} on simple patterns. Especially, a
-construction defined using the extended {\tt match} is generally
-printed under its expanded form (see~\texttt{Set Printing Matching} in
-section~\ref{SetPrintingMatching}).
-
-\SeeAlso Chapter~\ref{Mult-match-full}.
-
-\subsection{Pattern-matching on boolean values: the {\tt if} expression
-\label{if-then-else}
-\index{if@{\tt if ... then ... else}}}
-
-For inductive types with exactly two constructors and for
-pattern-matchings expressions which do not depend on the arguments of
-the constructors, it is possible to use a {\tt if ... then ... else}
-notation. For instance, the definition
-
-\begin{coq_example}
-Definition not (b:bool) :=
- match b with
- | true => false
- | false => true
- end.
-\end{coq_example}
-
-\noindent can be alternatively written
-
-\begin{coq_eval}
-Reset not.
-\end{coq_eval}
-\begin{coq_example}
-Definition not (b:bool) := if b then false else true.
-\end{coq_example}
-
-More generally, for an inductive type with constructors {\tt C$_1$}
-and {\tt C$_2$}, we have the following equivalence
-
-\smallskip
-
-{\tt if {\term} \zeroone{\ifitem} then {\term}$_1$ else {\term}$_2$} $\equiv$
-\begin{tabular}[c]{l}
-{\tt match {\term} \zeroone{\ifitem} with}\\
-{\tt \verb!|! C$_1$ \_ {\ldots} \_ \verb!=>! {\term}$_1$} \\
-{\tt \verb!|! C$_2$ \_ {\ldots} \_ \verb!=>! {\term}$_2$} \\
-{\tt end}
-\end{tabular}
-
-Here is an example.
-
-\begin{coq_example}
-Check (fun x (H:{x=0}+{x<>0}) =>
- match H with
- | left _ => true
- | right _ => false
- end).
-\end{coq_example}
-
-Notice that the printing uses the {\tt if} syntax because {\tt sumbool} is
-declared as such (see Section~\ref{printing-options}).
-
-\subsection{Irrefutable patterns: the destructuring {\tt let} variants
-\index{let in@{\tt let ... in}}
-\label{Letin}}
-
-Pattern-matching on terms inhabiting inductive type having only one
-constructor can be alternatively written using {\tt let ... in ...}
-constructions. There are two variants of them.
-
-\subsubsection{First destructuring {\tt let} syntax}
-The expression {\tt let
-(}~{\ident$_1$},\ldots,{\ident$_n$}~{\tt ) :=}~{\term$_0$}~{\tt
-in}~{\term$_1$} performs case analysis on a {\term$_0$} which must be in
-an inductive type with one constructor having itself $n$ arguments. Variables
-{\ident$_1$}\ldots{\ident$_n$} are bound to the $n$ arguments of the
-constructor in expression {\term$_1$}. For instance, the definition
-
-\begin{coq_example}
-Definition fst (A B:Set) (H:A * B) := match H with
- | pair x y => x
- end.
-\end{coq_example}
-
-can be alternatively written
-
-\begin{coq_eval}
-Reset fst.
-\end{coq_eval}
-\begin{coq_example}
-Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
-\end{coq_example}
-Notice that reduction is different from regular {\tt let ... in ...}
-construction since it happens only if {\term$_0$} is in constructor
-form. Otherwise, the reduction is blocked.
-
-The pretty-printing of a definition by matching on a
-irrefutable pattern can either be done using {\tt match} or the {\tt
-let} construction (see Section~\ref{printing-options}).
-
-If {\term} inhabits an inductive type with one constructor {\tt C},
-we have an equivalence between
-
-{\tt let ({\ident}$_1$,\ldots,{\ident}$_n$) \zeroone{\ifitem} := {\term} in {\term}'}
-
-\noindent and
-
-{\tt match {\term} \zeroone{\ifitem} with C {\ident}$_1$ {\ldots} {\ident}$_n$ \verb!=>! {\term}' end}
-
-
-\subsubsection{Second destructuring {\tt let} syntax\index{let '... in}}
-
-Another destructuring {\tt let} syntax is available for inductive types with
-one constructor by giving an arbitrary pattern instead of just a tuple
-for all the arguments. For example, the preceding example can be written:
-\begin{coq_eval}
-Reset fst.
-\end{coq_eval}
-\begin{coq_example}
-Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
-\end{coq_example}
-
-This is useful to match deeper inside tuples and also to use notations
-for the pattern, as the syntax {\tt let 'p := t in b} allows arbitrary
-patterns to do the deconstruction. For example:
-
-\begin{coq_example}
-Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A :=
- let '((a,b), (c, d)) := x in (a,b,c,d).
-Notation " x 'with' p " := (exist _ x p) (at level 20).
-Definition proj1_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
- let 'x with p := t in x.
-\end{coq_example}
-
-When printing definitions which are written using this construct it
-takes precedence over {\tt let} printing directives for the datatype
-under consideration (see Section~\ref{printing-options}).
-
-\subsection{Controlling pretty-printing of {\tt match} expressions
-\label{printing-options}}
-
-The following commands give some control over the pretty-printing of
-{\tt match} expressions.
-
-\subsubsection{Printing nested patterns
-\label{SetPrintingMatching}
-\comindex{Set Printing Matching}
-\comindex{Unset Printing Matching}
-\comindex{Test Printing Matching}}
-
-The Calculus of Inductive Constructions knows pattern-matching only
-over simple patterns. It is however convenient to re-factorize nested
-pattern-matching into a single pattern-matching over a nested pattern.
-{\Coq}'s printer try to do such limited re-factorization.
-
-\begin{quote}
-{\tt Set Printing Matching.}
-\end{quote}
-This tells {\Coq} to try to use nested patterns. This is the default
-behavior.
-
-\begin{quote}
-{\tt Unset Printing Matching.}
-\end{quote}
-This tells {\Coq} to print only simple pattern-matching problems in
-the same way as the {\Coq} kernel handles them.
-
-\begin{quote}
-{\tt Test Printing Matching.}
-\end{quote}
-This tells if the printing matching mode is on or off. The default is
-on.
-
-\subsubsection{Printing of wildcard pattern
-\comindex{Set Printing Wildcard}
-\comindex{Unset Printing Wildcard}
-\comindex{Test Printing Wildcard}}
-
-Some variables in a pattern may not occur in the right-hand side of
-the pattern-matching clause. There are options to control the
-display of these variables.
-
-\begin{quote}
-{\tt Set Printing Wildcard.}
-\end{quote}
-The variables having no occurrences in the right-hand side of the
-pattern-matching clause are just printed using the wildcard symbol
-``{\tt \_}''.
-
-\begin{quote}
-{\tt Unset Printing Wildcard.}
-\end{quote}
-The variables, even useless, are printed using their usual name. But some
-non dependent variables have no name. These ones are still printed
-using a ``{\tt \_}''.
-
-\begin{quote}
-{\tt Test Printing Wildcard.}
-\end{quote}
-This tells if the wildcard printing mode is on or off. The default is
-to print wildcard for useless variables.
-
-\subsubsection{Printing of the elimination predicate
-\comindex{Set Printing Synth}
-\comindex{Unset Printing Synth}
-\comindex{Test Printing Synth}}
-
-In most of the cases, the type of the result of a matched term is
-mechanically synthesizable. Especially, if the result type does not
-depend of the matched term.
-
-\begin{quote}
-{\tt Set Printing Synth.}
-\end{quote}
-The result type is not printed when {\Coq} knows that it can
-re-synthesize it.
-
-\begin{quote}
-{\tt Unset Printing Synth.}
-\end{quote}
-This forces the result type to be always printed.
-
-\begin{quote}
-{\tt Test Printing Synth.}
-\end{quote}
-This tells if the non-printing of synthesizable types is on or off.
-The default is to not print synthesizable types.
-
-\subsubsection{Printing matching on irrefutable pattern
-\comindex{Add Printing Let {\ident}}
-\comindex{Remove Printing Let {\ident}}
-\comindex{Test Printing Let for {\ident}}
-\comindex{Print Table Printing Let}}
-
-If an inductive type has just one constructor,
-pattern-matching can be written using {\tt let} ... {\tt :=}
-... {\tt in}~...
-
-\begin{quote}
-{\tt Add Printing Let {\ident}.}
-\end{quote}
-This adds {\ident} to the list of inductive types for which
-pattern-matching is written using a {\tt let} expression.
-
-\begin{quote}
-{\tt Remove Printing Let {\ident}.}
-\end{quote}
-This removes {\ident} from this list.
-
-\begin{quote}
-{\tt Test Printing Let for {\ident}.}
-\end{quote}
-This tells if {\ident} belongs to the list.
-
-\begin{quote}
-{\tt Print Table Printing Let.}
-\end{quote}
-This prints the list of inductive types for which pattern-matching is
-written using a {\tt let} expression.
-
-The list of inductive types for which pattern-matching is written
-using a {\tt let} expression is managed synchronously. This means that
-it is sensible to the command {\tt Reset}.
-
-\subsubsection{Printing matching on booleans
-\comindex{Add Printing If {\ident}}
-\comindex{Remove Printing If {\ident}}
-\comindex{Test Printing If for {\ident}}
-\comindex{Print Table Printing If}}
-
-If an inductive type is isomorphic to the boolean type,
-pattern-matching can be written using {\tt if} ... {\tt then} ... {\tt
- else} ...
-
-\begin{quote}
-{\tt Add Printing If {\ident}.}
-\end{quote}
-This adds {\ident} to the list of inductive types for which
-pattern-matching is written using an {\tt if} expression.
-
-\begin{quote}
-{\tt Remove Printing If {\ident}.}
-\end{quote}
-This removes {\ident} from this list.
-
-\begin{quote}
-{\tt Test Printing If for {\ident}.}
-\end{quote}
-This tells if {\ident} belongs to the list.
-
-\begin{quote}
-{\tt Print Table Printing If.}
-\end{quote}
-This prints the list of inductive types for which pattern-matching is
-written using an {\tt if} expression.
-
-The list of inductive types for which pattern-matching is written
-using an {\tt if} expression is managed synchronously. This means that
-it is sensible to the command {\tt Reset}.
-
-\subsubsection{Example}
-
-This example emphasizes what the printing options offer.
-
-\begin{coq_example}
-Test Printing Let for prod.
-Print fst.
-Remove Printing Let prod.
-Unset Printing Synth.
-Unset Printing Wildcard.
-Print fst.
-\end{coq_example}
-
-% \subsection{Still not dead old notations}
-
-% The following variant of {\tt match} is inherited from older version
-% of {\Coq}.
-
-% \medskip
-% \begin{tabular}{lcl}
-% {\term} & ::= & {\annotation} {\tt Match} {\term} {\tt with} {\terms} {\tt end}\\
-% \end{tabular}
-% \medskip
-
-% This syntax is a macro generating a combination of {\tt match} with {\tt
-% Fix} implementing a combinator for primitive recursion equivalent to
-% the {\tt Match} construction of \Coq\ V5.8. It is provided only for
-% sake of compatibility with \Coq\ V5.8. It is recommended to avoid it.
-% (see Section~\ref{Matchexpr}).
-
-% There is also a notation \texttt{Case} that is the
-% ancestor of \texttt{match}. Again, it is still in the code for
-% compatibility with old versions but the user should not use it.
-
-% Explained in RefMan-gal.tex
-%% \section{Forced type}
-
-%% In some cases, one may wish to assign a particular type to a term. The
-%% syntax to force the type of a term is the following:
-
-%% \medskip
-%% \begin{tabular}{lcl}
-%% {\term} & ++= & {\term} {\tt :} {\term}\\
-%% \end{tabular}
-%% \medskip
-
-%% It forces the first term to be of type the second term. The
-%% type must be compatible with
-%% the term. More precisely it must be either a type convertible to
-%% the automatically inferred type (see Chapter~\ref{Cic}) or a type
-%% coercible to it, (see \ref{Coercions}). When the type of a
-%% whole expression is forced, it is usually not necessary to give the types of
-%% the variables involved in the term.
-
-%% Example:
-
-%% \begin{coq_example}
-%% Definition ID := forall X:Set, X -> X.
-%% Definition id := (fun X x => x):ID.
-%% Check id.
-%% \end{coq_example}
-
-\section{Advanced recursive functions}
-
-The \emph{experimental} command
-\begin{center}
- \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
- \{decrease\_annot\} : type$_0$ := \term$_0$}
- \comindex{Function}
- \label{Function}
-\end{center}
-can be seen as a generalization of {\tt Fixpoint}. It is actually a
-wrapper for several ways of defining a function \emph{and other useful
- related objects}, namely: an induction principle that reflects the
-recursive structure of the function (see \ref{FunInduction}), and its
-fixpoint equality. The meaning of this
-declaration is to define a function {\it ident}, similarly to {\tt
- Fixpoint}. Like in {\tt Fixpoint}, the decreasing argument must be
-given (unless the function is not recursive), but it must not
-necessary be \emph{structurally} decreasing. The point of the {\tt
- \{\}} annotation is to name the decreasing argument \emph{and} to
-describe which kind of decreasing criteria must be used to ensure
-termination of recursive calls.
-
-The {\tt Function} construction enjoys also the {\tt with} extension
-to define mutually recursive definitions. However, this feature does
-not work for non structural recursive functions. % VRAI??
-
-See the documentation of {\tt functional induction}
-(see Section~\ref{FunInduction}) and {\tt Functional Scheme}
-(see Section~\ref{FunScheme} and \ref{FunScheme-examples}) for how to use the
-induction principle to easily reason about the function.
-
-\noindent {\bf Remark: } To obtain the right principle, it is better
-to put rigid parameters of the function as first arguments. For
-example it is better to define plus like this:
-
-\begin{coq_example*}
-Function plus (m n : nat) {struct n} : nat :=
- match n with
- | 0 => m
- | S p => S (plus m p)
- end.
-\end{coq_example*}
-\noindent than like this:
-\begin{coq_eval}
-Reset plus.
-\end{coq_eval}
-\begin{coq_example*}
-Function plus (n m : nat) {struct n} : nat :=
- match n with
- | 0 => m
- | S p => S (plus p m)
- end.
-\end{coq_example*}
-
-\paragraph[Limitations]{Limitations\label{sec:Function-limitations}}
-\term$_0$ must be build as a \emph{pure pattern-matching tree}
-(\texttt{match...with}) with applications only \emph{at the end} of
-each branch. For now dependent cases are not treated.
-
-
-
-\begin{ErrMsgs}
-\item \errindex{The recursive argument must be specified}
-\item \errindex{No argument name \ident}
-\item \errindex{Cannot use mutual definition with well-founded
- recursion or measure}
-
-\item \errindex{Cannot define graph for \ident\dots} (warning)
-
- The generation of the graph relation \texttt{(R\_\ident)} used to
- compute the induction scheme of \ident\ raised a typing error. Only
- the ident is defined, the induction scheme will not be generated.
-
- This error happens generally when:
-
- \begin{itemize}
- \item the definition uses pattern matching on dependent types, which
- \texttt{Function} cannot deal with yet.
- \item the definition is not a \emph{pattern-matching tree} as
- explained above.
- \end{itemize}
-
-\item \errindex{Cannot define principle(s) for \ident\dots} (warning)
-
- The generation of the graph relation \texttt{(R\_\ident)} succeeded
- but the induction principle could not be built. Only the ident is
- defined. Please report.
-
-\item \errindex{Cannot build functional inversion principle} (warning)
-
- \texttt{functional inversion} will not be available for the
- function.
-\end{ErrMsgs}
-
-
-\SeeAlso{\ref{FunScheme}, \ref{FunScheme-examples}, \ref{FunInduction}}
-
-Depending on the {\tt \{$\ldots$\}} annotation, different definition
-mechanisms are used by {\tt Function}. More precise description
-given below.
-
-\begin{Variants}
-\item \texttt{ Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
- : type$_0$ := \term$_0$}
-
- Defines the not recursive function \ident\ as if declared with
- \texttt{Definition}. Moreover the following are defined:
-
- \begin{itemize}
- \item {\tt\ident\_rect}, {\tt\ident\_rec} and {\tt\ident\_ind},
- which reflect the pattern matching structure of \term$_0$ (see the
- documentation of {\tt Inductive} \ref{Inductive});
- \item The inductive \texttt{R\_\ident} corresponding to the graph of
- \ident\ (silently);
- \item \texttt{\ident\_complete} and \texttt{\ident\_correct} which are
- inversion information linking the function and its graph.
- \end{itemize}
-\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt \{}{\tt struct} \ident$_0${\tt\}} : type$_0$ := \term$_0$}
-
- Defines the structural recursive function \ident\ as if declared
- with \texttt{Fixpoint}. Moreover the following are defined:
-
- \begin{itemize}
- \item The same objects as above;
- \item The fixpoint equation of \ident: \texttt{\ident\_equation}.
- \end{itemize}
-
-\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$} {\tt
- \{}{\tt measure \term$_1$} \ident$_0${\tt\}} : type$_0$ :=
- \term$_0$}
-\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt \{}{\tt wf \term$_1$} \ident$_0${\tt\}} : type$_0$ := \term$_0$}
-
-Defines a recursive function by well founded recursion. \textbf{The
-module \texttt{Recdef} of the standard library must be loaded for this
-feature}. The {\tt \{\}} annotation is mandatory and must be one of
-the following:
-\begin{itemize}
-\item {\tt \{measure} \term$_1$ \ident$_0${\tt\}} with \ident$_0$
- being the decreasing argument and \term$_1$ being a function
- from type of \ident$_0$ to \texttt{nat} for which value on the
- decreasing argument decreases (for the {\tt lt} order on {\tt
- nat}) at each recursive call of \term$_0$, parameters of the
- function are bound in \term$_0$;
-\item {\tt \{wf} \term$_1$ \ident$_0${\tt\}} with \ident$_0$ being
- the decreasing argument and \term$_1$ an ordering relation on
- the type of \ident$_0$ (i.e. of type T$_{\ident_0}$
- $\to$ T$_{\ident_0}$ $\to$ {\tt Prop}) for which
- the decreasing argument decreases at each recursive call of
- \term$_0$. The order must be well founded. parameters of the
- function are bound in \term$_0$.
-\end{itemize}
-
-Depending on the annotation, the user is left with some proof
-obligations that will be used to define the function. These proofs
-are: proofs that each recursive call is actually decreasing with
-respect to the given criteria, and (if the criteria is \texttt{wf}) a
-proof that the ordering relation is well founded.
-
-%Completer sur measure et wf
-
-Once proof obligations are discharged, the following objects are
-defined:
-
-\begin{itemize}
-\item The same objects as with the \texttt{struct};
-\item The lemma \texttt{\ident\_tcc} which collects all proof
- obligations in one property;
-\item The lemmas \texttt{\ident\_terminate} and \texttt{\ident\_F}
- which is needed to be inlined during extraction of \ident.
-\end{itemize}
-
-
-
-%Complete!!
-The way this recursive function is defined is the subject of several
-papers by Yves Bertot and Antonia Balaa on the one hand, and Gilles Barthe,
-Julien Forest, David Pichardie, and Vlad Rusu on the other hand.
-
-%Exemples ok ici
-
-\bigskip
-
-\noindent {\bf Remark: } Proof obligations are presented as several
-subgoals belonging to a Lemma {\ident}{\tt\_tcc}. % These subgoals are independent which means that in order to
-% abort them you will have to abort each separately.
-
-
-
-%The decreasing argument cannot be dependent of another??
-
-%Exemples faux ici
-\end{Variants}
-
-
-\section{Section mechanism
-\index{Sections}
-\label{Section}}
-
-The sectioning mechanism allows to organize a proof in structured
-sections. Then local declarations become available (see
-Section~\ref{Basic-definitions}).
-
-\subsection{\tt Section {\ident}\comindex{Section}}
-
-This command is used to open a section named {\ident}.
-
-%% Discontinued ?
-%% \begin{Variants}
-%% \comindex{Chapter}
-%% \item{\tt Chapter {\ident}}\\
-%% Same as {\tt Section {\ident}}
-%% \end{Variants}
-
-\subsection{\tt End {\ident}
-\comindex{End}}
-
-This command closes the section named {\ident}. After closing of the
-section, the local declarations (variables and local definitions) get
-{\em discharged}, meaning that they stop being visible and that all
-global objects defined in the section are generalized with respect to
-the variables and local definitions they each depended on in the
-section.
-
-
-Here is an example :
-\begin{coq_example}
-Section s1.
-Variables x y : nat.
-Let y' := y.
-Definition x' := S x.
-Definition x'' := x' + y'.
-Print x'.
-End s1.
-Print x'.
-Print x''.
-\end{coq_example}
-Notice the difference between the value of {\tt x'} and {\tt x''}
-inside section {\tt s1} and outside.
-
-\begin{ErrMsgs}
-\item \errindex{This is not the last opened section}
-\end{ErrMsgs}
-
-\begin{Remarks}
-\item Most commands, like {\tt Hint}, {\tt Notation}, option management, ...
-which appear inside a section are canceled when the
-section is closed.
-% see Section~\ref{LongNames}
-%\item Usually all identifiers must be distinct.
-%However, a name already used in a closed section (see \ref{Section})
-%can be reused. In this case, the old name is no longer accessible.
-
-% Obsolète
-%\item A module implicitly open a section. Be careful not to name a
-%module with an identifier already used in the module (see \ref{compiled}).
-\end{Remarks}
-
-\input{RefMan-mod.v}
-
-\section{Libraries and qualified names}
-
-\subsection{Names of libraries and files
-\label{Libraries}
-\index{Libraries}
-\index{Physical paths}
-\index{Logical paths}}
-
-\paragraph{Libraries}
-
-The theories developed in {\Coq} are stored in {\em library files}
-which are hierarchically classified into {\em libraries} and {\em
-sublibraries}. To express this hierarchy, library names are
-represented by qualified identifiers {\qualid}, i.e. as list of
-identifiers separated by dots (see Section~\ref{qualid}). For
-instance, the library file {\tt Mult} of the standard {\Coq} library
-{\tt Arith} has name {\tt Coq.Arith.Mult}. The identifier
-that starts the name of a library is called a {\em library root}.
-All library files of the standard library of {\Coq} have reserved root
-{\tt Coq} but library file names based on other roots can be obtained
-by using {\tt coqc} options {\tt -I} or {\tt -R} (see
-Section~\ref{coqoptions}). Also, when an interactive {\Coq} session
-starts, a library of root {\tt Top} is started, unless option {\tt
--top} or {\tt -notop} is set (see Section~\ref{coqoptions}).
-
-As library files are stored on the file system of the underlying
-operating system, a translation from file-system names to {\Coq} names
-is needed. In this translation, names in the file system are called
-{\em physical} paths while {\Coq} names are contrastingly called {\em
-logical} names. Logical names are mapped to physical paths using the
-commands {\tt Add LoadPath} or {\tt Add Rec LoadPath} (see
-Sections~\ref{AddLoadPath} and~\ref{AddRecLoadPath}).
-
-\subsection{Qualified names
-\label{LongNames}
-\index{Qualified identifiers}
-\index{Absolute names}}
-
-Library files are modules which possibly contain submodules which
-eventually contain constructions (axioms, parameters, definitions,
-lemmas, theorems, remarks or facts). The {\em absolute name}, or {\em
-full name}, of a construction in some library file is a qualified
-identifier starting with the logical name of the library file,
-followed by the sequence of submodules names encapsulating the
-construction and ended by the proper name of the construction.
-Typically, the absolute name {\tt Coq.Init.Logic.eq} denotes Leibniz'
-equality defined in the module {\tt Logic} in the sublibrary {\tt
-Init} of the standard library of \Coq.
-
-The proper name that ends the name of a construction is the {\it short
-name} (or sometimes {\it base name}) of the construction (for
-instance, the short name of {\tt Coq.Init.Logic.eq} is {\tt eq}). Any
-partial suffix of the absolute name is a {\em partially qualified name}
-(e.g. {\tt Logic.eq} is a partially qualified name for {\tt
-Coq.Init.Logic.eq}). Especially, the short name of a construction is
-its shortest partially qualified name.
-
-{\Coq} does not accept two constructions (definition, theorem, ...)
-with the same absolute name but different constructions can have the
-same short name (or even same partially qualified names as soon as the
-full names are different).
-
-Notice that the notion of absolute, partially qualified and
-short names also applies to library file names.
-
-\paragraph{Visibility}
-
-{\Coq} maintains a table called {\it name table} which maps partially
-qualified names of constructions to absolute names. This table is
-updated by the commands {\tt Require} (see \ref{Require}), {\tt
-Import} and {\tt Export} (see \ref{Import}) and also each time a new
-declaration is added to the context. An absolute name is called {\it
-visible} from a given short or partially qualified name when this
-latter name is enough to denote it. This means that the short or
-partially qualified name is mapped to the absolute name in {\Coq} name
-table.
-
-A similar table exists for library file names. It is updated by the
-vernacular commands {\tt Add LoadPath} and {\tt Add Rec LoadPath} (or
-their equivalent as options of the {\Coq} executables, {\tt -I} and
-{\tt -R}).
-
-It may happen that a visible name is hidden by the short name or a
-qualified name of another construction. In this case, the name that
-has been hidden must be referred to using one more level of
-qualification. To ensure that a construction always remains
-accessible, absolute names can never be hidden.
-
-Examples:
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Check 0.
-Definition nat := bool.
-Check 0.
-Check Datatypes.nat.
-Locate nat.
-\end{coq_example}
-
-\SeeAlso Command {\tt Locate} in Section~\ref{Locate} and {\tt Locate
-Library} in Section~\ref{Locate Library}.
-
-%% \paragraph{The special case of remarks and facts}
-%%
-%% In contrast with definitions, lemmas, theorems, axioms and parameters,
-%% the absolute name of remarks includes the segment of sections in which
-%% it is defined. Concretely, if a remark {\tt R} is defined in
-%% subsection {\tt S2} of section {\tt S1} in module {\tt M}, then its
-%% absolute name is {\tt M.S1.S2.R}. The same for facts, except that the
-%% name of the innermost section is dropped from the full name. Then, if
-%% a fact {\tt F} is defined in subsection {\tt S2} of section {\tt S1}
-%% in module {\tt M}, then its absolute name is {\tt M.S1.F}.
-
-\section{Implicit arguments
-\index{Implicit arguments}
-\label{Implicit Arguments}}
-
-An implicit argument of a function is an argument which can be
-inferred from contextual knowledge. There are different kinds of
-implicit arguments that can be considered implicit in different
-ways. There are also various commands to control the setting or the
-inference of implicit arguments.
-
-\subsection{The different kinds of implicit arguments}
-
-\subsubsection{Implicit arguments inferable from the knowledge of other
-arguments of a function}
-
-The first kind of implicit arguments covers the arguments that are
-inferable from the knowledge of the type of other arguments of the
-function, or of the type of the surrounding context of the
-application. Especially, such implicit arguments correspond to
-parameters dependent in the type of the function. Typical implicit
-arguments are the type arguments in polymorphic functions.
-There are several kinds of such implicit arguments.
-
-\paragraph{Strict Implicit Arguments.}
-An implicit argument can be either strict or non strict. An implicit
-argument is said {\em strict} if, whatever the other arguments of the
-function are, it is still inferable from the type of some other
-argument. Technically, an implicit argument is strict if it
-corresponds to a parameter which is not applied to a variable which
-itself is another parameter of the function (since this parameter
-may erase its arguments), not in the body of a {\tt match}, and not
-itself applied or matched against patterns (since the original
-form of the argument can be lost by reduction).
-
-For instance, the first argument of
-\begin{quote}
-\verb|cons: forall A:Set, A -> list A -> list A|
-\end{quote}
-in module {\tt List.v} is strict because {\tt list} is an inductive
-type and {\tt A} will always be inferable from the type {\tt
-list A} of the third argument of {\tt cons}.
-On the contrary, the second argument of a term of type
-\begin{quote}
-\verb|forall P:nat->Prop, forall n:nat, P n -> ex nat P|
-\end{quote}
-is implicit but not strict, since it can only be inferred from the
-type {\tt P n} of the third argument and if {\tt P} is, e.g., {\tt
-fun \_ => True}, it reduces to an expression where {\tt n} does not
-occur any longer. The first argument {\tt P} is implicit but not
-strict either because it can only be inferred from {\tt P n} and {\tt
-P} is not canonically inferable from an arbitrary {\tt n} and the
-normal form of {\tt P n} (consider e.g. that {\tt n} is {\tt 0} and
-the third argument has type {\tt True}, then any {\tt P} of the form
-{\tt fun n => match n with 0 => True | \_ => \mbox{\em anything} end} would
-be a solution of the inference problem).
-
-\paragraph{Contextual Implicit Arguments.}
-An implicit argument can be {\em contextual} or not. An implicit
-argument is said {\em contextual} if it can be inferred only from the
-knowledge of the type of the context of the current expression. For
-instance, the only argument of
-\begin{quote}
-\verb|nil : forall A:Set, list A|
-\end{quote}
-is contextual. Similarly, both arguments of a term of type
-\begin{quote}
-\verb|forall P:nat->Prop, forall n:nat, P n \/ n = 0|
-\end{quote}
-are contextual (moreover, {\tt n} is strict and {\tt P} is not).
-
-\paragraph{Reversible-Pattern Implicit Arguments.}
-There is another class of implicit arguments that can be reinferred
-unambiguously if all the types of the remaining arguments are
-known. This is the class of implicit arguments occurring in the type
-of another argument in position of reversible pattern, which means it
-is at the head of an application but applied only to uninstantiated
-distinct variables. Such an implicit argument is called {\em
-reversible-pattern implicit argument}. A typical example is the
-argument {\tt P} of {\tt nat\_rec} in
-\begin{quote}
-{\tt nat\_rec : forall P : nat -> Set,
- P 0 -> (forall n : nat, P n -> P (S n)) -> forall x : nat, P x}.
-\end{quote}
-({\tt P} is reinferable by abstracting over {\tt n} in the type {\tt P n}).
-
-See Section~\ref{SetReversiblePatternImplicit} for the automatic declaration
-of reversible-pattern implicit arguments.
-
-\subsubsection{Implicit arguments inferable by resolution}
-
-This corresponds to a class of non dependent implicit arguments that
-are solved based on the structure of their type only.
-
-\subsection{Maximal or non maximal insertion of implicit arguments}
-
-In case a function is partially applied, and the next argument to be
-applied is an implicit argument, two disciplines are applicable. In the
-first case, the function is considered to have no arguments furtherly:
-one says that the implicit argument is not maximally inserted. In
-the second case, the function is considered to be implicitly applied
-to the implicit arguments it is waiting for: one says that the
-implicit argument is maximally inserted.
-
-Each implicit argument can be declared to have to be inserted
-maximally or non maximally. This can be governed argument per argument
-by the command {\tt Implicit Arguments} (see~\ref{ImplicitArguments})
-or globally by the command {\tt Set Maximal Implicit Insertion}
-(see~\ref{SetMaximalImplicitInsertion}). See also
-Section~\ref{PrintImplicit}.
-
-\subsection{Casual use of implicit arguments}
-
-In a given expression, if it is clear that some argument of a function
-can be inferred from the type of the other arguments, the user can
-force the given argument to be guessed by replacing it by ``{\tt \_}''. If
-possible, the correct argument will be automatically generated.
-
-\begin{ErrMsgs}
-
-\item \errindex{Cannot infer a term for this placeholder}
-
- {\Coq} was not able to deduce an instantiation of a ``{\tt \_}''.
-
-\end{ErrMsgs}
-
-\subsection{Declaration of implicit arguments for a constant
-\comindex{Implicit Arguments}}
-\label{ImplicitArguments}
-
-In case one wants that some arguments of a given object (constant,
-inductive types, constructors, assumptions, local or not) are always
-inferred by Coq, one may declare once and for all which are the expected
-implicit arguments of this object. There are two ways to do this,
-a-priori and a-posteriori.
-
-\subsubsection{Implicit Argument Binders}
-
-In the first setting, one wants to explicitly give the implicit
-arguments of a constant as part of its definition. To do this, one has
-to surround the bindings of implicit arguments by curly braces:
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Definition id {A : Type} (x : A) : A := x.
-\end{coq_example}
-
-This automatically declares the argument {\tt A} of {\tt id} as a
-maximally inserted implicit argument. One can then do as-if the argument
-was absent in every situation but still be able to specify it if needed:
-\begin{coq_example}
-Definition compose {A B C} (g : B -> C) (f : A -> B) :=
- fun x => g (f x).
-Goal forall A, compose id id = id (A:=A).
-\end{coq_example}
-
-The syntax is supported in all top-level definitions: {\tt Definition},
-{\tt Fixpoint}, {\tt Lemma} and so on. For (co-)inductive datatype
-declarations, the semantics are the following: an inductive parameter
-declared as an implicit argument need not be repeated in the inductive
-definition but will become implicit for the constructors of the
-inductive only, not the inductive type itself. For example:
-
-\begin{coq_example}
-Inductive list {A : Type} : Type :=
-| nil : list
-| cons : A -> list -> list.
-Print list.
-\end{coq_example}
-
-One can always specify the parameter if it is not uniform using the
-usual implicit arguments disambiguation syntax.
-
-\subsubsection{The Implicit Arguments Vernacular Command}
-
-To set implicit arguments for a constant a-posteriori, one can use the
-command:
-\begin{quote}
-\tt Implicit Arguments {\qualid} [ \nelist{\possiblybracketedident}{} ]
-\end{quote}
-where the list of {\possiblybracketedident} is the list of parameters
-to be declared implicit, each of the identifier of the list being
-optionally surrounded by square brackets, then meaning that this
-parameter has to be maximally inserted.
-
-After the above declaration is issued, implicit arguments can just (and
-have to) be skipped in any expression involving an application of
-{\qualid}.
-
-\begin{Variants}
-\item {\tt Global Implicit Arguments {\qualid} [ \nelist{\possiblybracketedident}{} ]
-\comindex{Global Implicit Arguments}}
-
-Tells to recompute the implicit arguments of {\qualid} after ending of
-the current section if any, enforcing the implicit arguments known
-from inside the section to be the ones declared by the command.
-
-\item {\tt Local Implicit Arguments {\qualid} [ \nelist{\possiblybracketedident}{} ]
-\comindex{Local Implicit Arguments}}
-
-When in a module, tells not to activate the implicit arguments of
-{\qualid} declared by this commands to contexts that requires the
-module.
-
-\item {\tt \zeroone{Global {\sl |} Local} Implicit Arguments {\qualid} \sequence{[ \nelist{\possiblybracketedident}{} ]}{}}
-
-For names of constants, inductive types, constructors, lemmas which
-can only be applied to a fixed number of arguments (this excludes for
-instance constants whose type is polymorphic), multiple lists
-of implicit arguments can be given. These lists must be of different
-length, and, depending on the number of arguments {\qualid} is applied
-to in practice, the longest applicable list of implicit arguments is
-used to select which implicit arguments are inserted.
-
-For printing, the omitted arguments are the ones of the longest list
-of implicit arguments of the sequence.
-
-\end{Variants}
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Inductive list (A:Type) : Type :=
- | nil : list A
- | cons : A -> list A -> list A.
-\end{coq_example*}
-\begin{coq_example}
-Check (cons nat 3 (nil nat)).
-Implicit Arguments cons [A].
-Implicit Arguments nil [A].
-Check (cons 3 nil).
-Fixpoint map (A B:Type) (f:A->B) (l:list A) : list B :=
- match l with nil => nil | cons a t => cons (f a) (map A B f t) end.
-Fixpoint length (A:Type) (l:list A) : nat :=
- match l with nil => 0 | cons _ m => S (length A m) end.
-Implicit Arguments map [A B].
-Implicit Arguments length [[A]]. (* A has to be maximally inserted *)
-Check (fun l:list (list nat) => map length l).
-Implicit Arguments map [A B] [A] [].
-Check (fun l => map length l = map (list nat) nat length l).
-\end{coq_example}
-
-\Rem To know which are the implicit arguments of an object, use the command
-{\tt Print Implicit} (see \ref{PrintImplicit}).
-
-\Rem If the list of arguments is empty, the command removes the
-implicit arguments of {\qualid}.
-
-\subsection{Automatic declaration of implicit arguments for a constant}
-
-{\Coq} can also automatically detect what are the implicit arguments
-of a defined object. The command is just
-\begin{quote}
-{\tt Implicit Arguments {\qualid}
-\comindex{Implicit Arguments}}
-\end{quote}
-The auto-detection is governed by options telling if strict,
-contextual, or reversible-pattern implicit arguments must be
-considered or not (see
-Sections~\ref{SetStrictImplicit},~\ref{SetContextualImplicit},~\ref{SetReversiblePatternImplicit}
-and also~\ref{SetMaximalImplicitInsertion}).
-
-\begin{Variants}
-\item {\tt Global Implicit Arguments {\qualid}
-\comindex{Global Implicit Arguments}}
-
-Tells to recompute the implicit arguments of {\qualid} after ending of
-the current section if any.
-
-\item {\tt Local Implicit Arguments {\qualid}
-\comindex{Local Implicit Arguments}}
-
-When in a module, tells not to activate the implicit arguments of
-{\qualid} computed by this declaration to contexts that requires the
-module.
-
-\end{Variants}
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Inductive list (A:Set) : Set :=
- | nil : list A
- | cons : A -> list A -> list A.
-\end{coq_example*}
-\begin{coq_example}
-Implicit Arguments cons.
-Print Implicit cons.
-Implicit Arguments nil.
-Print Implicit nil.
-Set Contextual Implicit.
-Implicit Arguments nil.
-Print Implicit nil.
-\end{coq_example}
-
-The computation of implicit arguments takes account of the
-unfolding of constants. For instance, the variable {\tt p} below has
-type {\tt (Transitivity R)} which is reducible to {\tt forall x,y:U, R x
-y -> forall z:U, R y z -> R x z}. As the variables {\tt x}, {\tt y} and
-{\tt z} appear strictly in body of the type, they are implicit.
-
-\begin{coq_example*}
-Variable X : Type.
-Definition Relation := X -> X -> Prop.
-Definition Transitivity (R:Relation) :=
- forall x y:X, R x y -> forall z:X, R y z -> R x z.
-Variables (R : Relation) (p : Transitivity R).
-Implicit Arguments p.
-\end{coq_example*}
-\begin{coq_example}
-Print p.
-Print Implicit p.
-\end{coq_example}
-\begin{coq_example*}
-Variables (a b c : X) (r1 : R a b) (r2 : R b c).
-\end{coq_example*}
-\begin{coq_example}
-Check (p r1 r2).
-\end{coq_example}
-
-\subsection{Mode for automatic declaration of implicit arguments
-\label{Auto-implicit}
-\comindex{Set Implicit Arguments}
-\comindex{Unset Implicit Arguments}}
-
-In case one wants to systematically declare implicit the arguments
-detectable as such, one may switch to the automatic declaration of
-implicit arguments mode by using the command
-\begin{quote}
-\tt Set Implicit Arguments.
-\end{quote}
-Conversely, one may unset the mode by using {\tt Unset Implicit
-Arguments}. The mode is off by default. Auto-detection of implicit
-arguments is governed by options controlling whether strict and
-contextual implicit arguments have to be considered or not.
-
-\subsection{Controlling strict implicit arguments
-\comindex{Set Strict Implicit}
-\comindex{Unset Strict Implicit}
-\label{SetStrictImplicit}}
-
-When the mode for automatic declaration of implicit arguments is on,
-the default is to automatically set implicit only the strict implicit
-arguments plus, for historical reasons, a small subset of the non
-strict implicit arguments. To relax this constraint and to
-set implicit all non strict implicit arguments by default, use the command
-\begin{quote}
-\tt Unset Strict Implicit.
-\end{quote}
-Conversely, use the command {\tt Set Strict Implicit} to
-restore the original mode that declares implicit only the strict implicit arguments plus a small subset of the non strict implicit arguments.
-
-In the other way round, to capture exactly the strict implicit arguments and no more than the strict implicit arguments, use the command:
-\comindex{Set Strongly Strict Implicit}
-\comindex{Unset Strongly Strict Implicit}
-\begin{quote}
-\tt Set Strongly Strict Implicit.
-\end{quote}
-Conversely, use the command {\tt Unset Strongly Strict Implicit} to
-let the option ``{\tt Strict Implicit}'' decide what to do.
-
-\Rem In versions of {\Coq} prior to version 8.0, the default was to
-declare the strict implicit arguments as implicit.
-
-\subsection{Controlling contextual implicit arguments
-\comindex{Set Contextual Implicit}
-\comindex{Unset Contextual Implicit}
-\label{SetContextualImplicit}}
-
-By default, {\Coq} does not automatically set implicit the contextual
-implicit arguments. To tell {\Coq} to infer also contextual implicit
-argument, use command
-\begin{quote}
-\tt Set Contextual Implicit.
-\end{quote}
-Conversely, use command {\tt Unset Contextual Implicit} to
-unset the contextual implicit mode.
-
-\subsection{Controlling reversible-pattern implicit arguments
-\comindex{Set Reversible Pattern Implicit}
-\comindex{Unset Reversible Pattern Implicit}
-\label{SetReversiblePatternImplicit}}
-
-By default, {\Coq} does not automatically set implicit the reversible-pattern
-implicit arguments. To tell {\Coq} to infer also reversible-pattern implicit
-argument, use command
-\begin{quote}
-\tt Set Reversible Pattern Implicit.
-\end{quote}
-Conversely, use command {\tt Unset Reversible Pattern Implicit} to
-unset the reversible-pattern implicit mode.
-
-\subsection{Controlling the insertion of implicit arguments not followed by explicit arguments
-\comindex{Set Maximal Implicit Insertion}
-\comindex{Unset Maximal Implicit Insertion}
-\label{SetMaximalImplicitInsertion}}
-
-Implicit arguments can be declared to be automatically inserted when a
-function is partially applied and the next argument of the function is
-an implicit one. In case the implicit arguments are automatically
-declared (with the command {\tt Set Implicit Arguments}), the command
-\begin{quote}
-\tt Set Maximal Implicit Insertion.
-\end{quote}
-is used to tell to declare the implicit arguments with a maximal
-insertion status. By default, automatically declared implicit
-arguments are not declared to be insertable maximally. To restore the
-default mode for maximal insertion, use command {\tt Unset Maximal
-Implicit Insertion}.
-
-\subsection{Explicit applications
-\index{Explicitly given implicit arguments}
-\label{Implicits-explicitation}
-\index{qualid@{\qualid}}}
-
-In presence of non strict or contextual argument, or in presence of
-partial applications, the synthesis of implicit arguments may fail, so
-one may have to give explicitly certain implicit arguments of an
-application. The syntax for this is {\tt (\ident:=\term)} where {\ident}
-is the name of the implicit argument and {\term} is its corresponding
-explicit term. Alternatively, one can locally deactivate the hiding of
-implicit arguments of a function by using the notation
-{\tt @{\qualid}~{\term}$_1$..{\term}$_n$}. This syntax extension is
-given Figure~\ref{fig:explicitations}.
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\term} & ++= & @ {\qualid} \nelist{\term}{}\\
-& $|$ & @ {\qualid}\\
-& $|$ & {\qualid} \nelist{\textrm{\textsl{argument}}}{}\\
-\\
-{\textrm{\textsl{argument}}} & ::= & {\term} \\
-& $|$ & {\tt ({\ident}:={\term})}\\
-\end{tabular}
-\end{centerframe}
-\caption{Syntax for explicitly giving implicit arguments}
-\label{fig:explicitations}
-\end{figure}
-
-\noindent {\bf Example (continued): }
-\begin{coq_example}
-Check (p r1 (z:=c)).
-Check (p (x:=a) (y:=b) r1 (z:=c) r2).
-\end{coq_example}
-
-\subsection{Displaying what the implicit arguments are
-\comindex{Print Implicit}
-\label{PrintImplicit}}
-
-To display the implicit arguments associated to an object, and to know
-if each of them is to be used maximally or not, use the command
-\begin{quote}
-\tt Print Implicit {\qualid}.
-\end{quote}
-
-\subsection{Explicit displaying of implicit arguments for pretty-printing
-\comindex{Set Printing Implicit}
-\comindex{Unset Printing Implicit}
-\comindex{Set Printing Implicit Defensive}
-\comindex{Unset Printing Implicit Defensive}}
-
-By default the basic pretty-printing rules hide the inferable implicit
-arguments of an application. To force printing all implicit arguments,
-use command
-\begin{quote}
-{\tt Set Printing Implicit.}
-\end{quote}
-Conversely, to restore the hiding of implicit arguments, use command
-\begin{quote}
-{\tt Unset Printing Implicit.}
-\end{quote}
-
-By default the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit arguments. This ``defensive'' mode can quickly make the display cumbersome so this can be deactivated by using the command
-\begin{quote}
-{\tt Unset Printing Implicit Defensive.}
-\end{quote}
-Conversely, to force the display of non strict arguments, use command
-\begin{quote}
-{\tt Set Printing Implicit Defensive.}
-\end{quote}
-
-\SeeAlso {\tt Set Printing All} in Section~\ref{SetPrintingAll}.
-
-\subsection{Interaction with subtyping}
-
-When an implicit argument can be inferred from the type of more than
-one of the other arguments, then only the type of the first of these
-arguments is taken into account, and not an upper type of all of
-them. As a consequence, the inference of the implicit argument of
-``='' fails in
-
-\begin{coq_example*}
-Check nat = Prop.
-\end{coq_example*}
-
-but succeeds in
-
-\begin{coq_example*}
-Check Prop = nat.
-\end{coq_example*}
-
-
-
-
-\subsection{Canonical structures
-\comindex{Canonical Structure}}
-
-A canonical structure is an instance of a record/structure type that
-can be used to solve equations involving implicit arguments. Assume
-that {\qualid} denotes an object $(Build\_struc~ c_1~ \ldots~ c_n)$ in the
-structure {\em struct} of which the fields are $x_1$, ...,
-$x_n$. Assume that {\qualid} is declared as a canonical structure
-using the command
-\begin{quote}
-{\tt Canonical Structure {\qualid}.}
-\end{quote}
-Then, each time an equation of the form $(x_i~
-\_)=_{\beta\delta\iota\zeta}c_i$ has to be solved during the
-type-checking process, {\qualid} is used as a solution. Otherwise
-said, {\qualid} is canonically used to extend the field $c_i$ into a
-complete structure built on $c_i$.
-
-Canonical structures are particularly useful when mixed with
-coercions and strict implicit arguments. Here is an example.
-\begin{coq_example*}
-Require Import Relations.
-Require Import EqNat.
-Set Implicit Arguments.
-Unset Strict Implicit.
-Structure Setoid : Type :=
- {Carrier :> Set;
- Equal : relation Carrier;
- Prf_equiv : equivalence Carrier Equal}.
-Definition is_law (A B:Setoid) (f:A -> B) :=
- forall x y:A, Equal x y -> Equal (f x) (f y).
-Axiom eq_nat_equiv : equivalence nat eq_nat.
-Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
-Canonical Structure nat_setoid.
-\end{coq_example*}
-
-Thanks to \texttt{nat\_setoid} declared as canonical, the implicit
-arguments {\tt A} and {\tt B} can be synthesized in the next statement.
-\begin{coq_example}
-Lemma is_law_S : is_law S.
-\end{coq_example}
-
-\Rem If a same field occurs in several canonical structure, then
-only the structure declared first as canonical is considered.
-
-\begin{Variants}
-\item {\tt Canonical Structure {\ident} := {\term} : {\type}.}\\
- {\tt Canonical Structure {\ident} := {\term}.}\\
- {\tt Canonical Structure {\ident} : {\type} := {\term}.}
-
-These are equivalent to a regular definition of {\ident} followed by
-the declaration
-
-{\tt Canonical Structure {\ident}}.
-\end{Variants}
-
-\SeeAlso more examples in user contribution \texttt{category}
-(\texttt{Rocq/ALGEBRA}).
-
-\subsubsection{Print Canonical Projections.
-\comindex{Print Canonical Projections}}
-
-This displays the list of global names that are components of some
-canonical structure. For each of them, the canonical structure of
-which it is a projection is indicated. For instance, the above example
-gives the following output:
-
-\begin{coq_example}
-Print Canonical Projections.
-\end{coq_example}
-
-\subsection{Implicit types of variables}
-\comindex{Implicit Types}
-
-It is possible to bind variable names to a given type (e.g. in a
-development using arithmetic, it may be convenient to bind the names
-{\tt n} or {\tt m} to the type {\tt nat} of natural numbers). The
-command for that is
-\begin{quote}
-\tt Implicit Types \nelist{\ident}{} : {\type}
-\end{quote}
-The effect of the command is to automatically set the type of bound
-variables starting with {\ident} (either {\ident} itself or
-{\ident} followed by one or more single quotes, underscore or digits)
-to be {\type} (unless the bound variable is already declared with an
-explicit type in which case, this latter type is considered).
-
-\Example
-\begin{coq_example}
-Require Import List.
-Implicit Types m n : nat.
-Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.
-intros m n.
-Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.
-\end{coq_example}
-
-\begin{Variants}
-\item {\tt Implicit Type {\ident} : {\type}}\\
-This is useful for declaring the implicit type of a single variable.
-\item
- {\tt Implicit Types\,%
-(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,%
-\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,%
-{\term$_n$} {\tt )}.}\\
- Adds $n$ blocks of implicit types with different specifications.
-\end{Variants}
-
-
-\subsection{Implicit generalization
-\label{implicit-generalization}
-\comindex{Generalizable Variables}}
-
-Implicit generalization is an automatic elaboration of a statement with
-free variables into a closed statement where these variables are
-quantified explicitly. Implicit generalization is done inside binders
-starting with a \verb|`| and terms delimited by \verb|`{ }| and
-\verb|`( )|, always introducing maximally inserted implicit arguments for
-the generalized variables. Inside implicit generalization
-delimiters, free variables in the current context are automatically
-quantified using a product or a lambda abstraction to generate a closed
-term. In the following statement for example, the variables \texttt{n}
-and \texttt{m} are autamatically generalized and become explicit
-arguments of the lemma as we are using \verb|`( )|:
-
-\begin{coq_example}
-Generalizable All Variables.
-Lemma nat_comm : `(n = n + 0).
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-One can control the set of generalizable identifiers with the
-\texttt{Generalizable} vernacular command to avoid unexpected
-generalizations when mistyping identifiers. There are three variants of
-the command:
-
-\begin{quote}
-{\tt Generalizable (All|No) Variable(s)? ({\ident$_1$ \ident$_n$})?.}
-\end{quote}
-
-\begin{Variants}
-\item {\tt Generalizable All Variables.} All variables are candidate for
- generalization if they appear free in the context under a
- generalization delimiter. This may result in confusing errors in
- case of typos. In such cases, the context will probably contain some
- unexpected generalized variable.
-
-\item {\tt Generalizable No Variables.} Disable implicit generalization
- entirely. This is the default behavior.
-
-\item {\tt Generalizable Variable(s)? {\ident$_1$ \ident$_n$}.}
- Allow generalization of the given identifiers only. Calling this
- command multiple times adds to the allowed identifiers.
-
-\item {\tt Global Generalizable} Allows to export the choice of
- generalizable variables.
-\end{Variants}
-
-One can also use implicit generalization for binders, in which case the
-generalized variables are added as binders and set maximally implicit.
-\begin{coq_example*}
-Definition id `(x : A) : A := x.
-\end{coq_example*}
-\begin{coq_example}
-Print id.
-\end{coq_example}
-
-The generalizing binders \verb|`{ }| and \verb|`( )| work similarly to
-their explicit counterparts, only binding the generalized variables
-implicitly, as maximally-inserted arguments. In these binders, the
-binding name for the bound object is optional, whereas the type is
-mandatory, dually to regular binders.
-
-\section{Coercions
-\label{Coercions}
-\index{Coercions}}
-
-Coercions can be used to implicitly inject terms from one {\em class} in
-which they reside into another one. A {\em class} is either a sort
-(denoted by the keyword {\tt Sortclass}), a product type (denoted by the
-keyword {\tt Funclass}), or a type constructor (denoted by its name),
-e.g. an inductive type or any constant with a type of the form
-\texttt{forall} $(x_1:A_1) .. (x_n:A_n),~s$ where $s$ is a sort.
-
-Then the user is able to apply an
-object that is not a function, but can be coerced to a function, and
-more generally to consider that a term of type A is of type B provided
-that there is a declared coercion between A and B. The main command is
-\comindex{Coercion}
-\begin{quote}
-\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.
-\end{quote}
-which declares the construction denoted by {\qualid} as a
-coercion between {\class$_1$} and {\class$_2$}.
-
-More details and examples, and a description of the commands related
-to coercions are provided in Chapter~\ref{Coercions-full}.
-
-\section[Printing constructions in full]{Printing constructions in full\label{SetPrintingAll}
-\comindex{Set Printing All}
-\comindex{Unset Printing All}}
-
-Coercions, implicit arguments, the type of pattern-matching, but also
-notations (see Chapter~\ref{Addoc-syntax}) can obfuscate the behavior
-of some tactics (typically the tactics applying to occurrences of
-subterms are sensitive to the implicit arguments). The command
-\begin{quote}
-{\tt Set Printing All.}
-\end{quote}
-deactivates all high-level printing features such as coercions,
-implicit arguments, returned type of pattern-matching, notations and
-various syntactic sugar for pattern-matching or record projections.
-Otherwise said, {\tt Set Printing All} includes the effects
-of the commands {\tt Set Printing Implicit}, {\tt Set Printing
-Coercions}, {\tt Set Printing Synth}, {\tt Unset Printing Projections}
-and {\tt Unset Printing Notations}. To reactivate the high-level
-printing features, use the command
-\begin{quote}
-{\tt Unset Printing All.}
-\end{quote}
-
-\section[Printing universes]{Printing universes\label{PrintingUniverses}
-\comindex{Set Printing Universes}
-\comindex{Unset Printing Universes}}
-
-The following command:
-\begin{quote}
-{\tt Set Printing Universes}
-\end{quote}
-activates the display of the actual level of each occurrence of
-{\Type}. See Section~\ref{Sorts} for details. This wizard option, in
-combination with \texttt{Set Printing All} (see
-section~\ref{SetPrintingAll}) can help to diagnose failures to unify
-terms apparently identical but internally different in the Calculus of
-Inductive Constructions. To reactivate the display of the actual level
-of the occurrences of {\Type}, use
-\begin{quote}
-{\tt Unset Printing Universes.}
-\end{quote}
-
-\comindex{Print Universes}
-
-The constraints on the internal level of the occurrences of {\Type}
-(see Section~\ref{Sorts}) can be printed using the command
-\begin{quote}
-{\tt Print Universes.}
-\end{quote}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-gal.tex b/doc/refman/RefMan-gal.tex
deleted file mode 100644
index d1489591..00000000
--- a/doc/refman/RefMan-gal.tex
+++ /dev/null
@@ -1,1696 +0,0 @@
-\chapter{The \gallina{} specification language
-\label{Gallina}\index{Gallina}}
-\label{BNF-syntax} % Used referred to as a chapter label
-
-This chapter describes \gallina, the specification language of {\Coq}.
-It allows to develop mathematical theories and to prove specifications
-of programs. The theories are built from axioms, hypotheses,
-parameters, lemmas, theorems and definitions of constants, functions,
-predicates and sets. The syntax of logical objects involved in
-theories is described in Section~\ref{term}. The language of
-commands, called {\em The Vernacular} is described in section
-\ref{Vernacular}.
-
-In {\Coq}, logical objects are typed to ensure their logical
-correctness. The rules implemented by the typing algorithm are described in
-Chapter \ref{Cic}.
-
-\subsection*{About the grammars in the manual
-\index{BNF metasyntax}}
-
-Grammars are presented in Backus-Naur form (BNF). Terminal symbols are
-set in {\tt typewriter font}. In addition, there are special
-notations for regular expressions.
-
-An expression enclosed in square brackets \zeroone{\ldots} means at
-most one occurrence of this expression (this corresponds to an
-optional component).
-
-The notation ``\nelist{\entry}{sep}'' stands for a non empty
-sequence of expressions parsed by {\entry} and
-separated by the literal ``{\tt sep}''\footnote{This is similar to the
-expression ``{\entry} $\{$ {\tt sep} {\entry} $\}$'' in
-standard BNF, or ``{\entry}~{$($} {\tt sep} {\entry} {$)$*}'' in
-the syntax of regular expressions.}.
-
-Similarly, the notation ``\nelist{\entry}{}'' stands for a non
-empty sequence of expressions parsed by the ``{\entry}'' entry,
-without any separator between.
-
-At the end, the notation ``\sequence{\entry}{\tt sep}'' stands for a
-possibly empty sequence of expressions parsed by the ``{\entry}'' entry,
-separated by the literal ``{\tt sep}''.
-
-\section{Lexical conventions
-\label{lexical}\index{Lexical conventions}}
-
-\paragraph{Blanks}
-Space, newline and horizontal tabulation are considered as blanks.
-Blanks are ignored but they separate tokens.
-
-\paragraph{Comments}
-
-Comments in {\Coq} are enclosed between {\tt (*} and {\tt
- *)}\index{Comments}, and can be nested. They can contain any
-character. However, string literals must be correctly closed. Comments
-are treated as blanks.
-
-\paragraph{Identifiers and access identifiers}
-
-Identifiers, written {\ident}, are sequences of letters, digits,
-\verb!_! and \verb!'!, that do not start with a digit or \verb!'!.
-That is, they are recognized by the following lexical class:
-
-\index{ident@\ident}
-\begin{center}
-\begin{tabular}{rcl}
-{\firstletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt \_}
-$\mid$ {\tt unicode-letter}
-\\
-{\subsequentletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt 0..9}
-$\mid$ {\tt \_} % $\mid$ {\tt \$}
-$\mid$ {\tt '}
-$\mid$ {\tt unicode-letter}
-$\mid$ {\tt unicode-id-part} \\
-{\ident} & ::= & {\firstletter} \sequencewithoutblank{\subsequentletter}{}
-\end{tabular}
-\end{center}
-All characters are meaningful. In particular, identifiers are
-case-sensitive. The entry {\tt unicode-letter} non-exhaustively
-includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian,
-Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical
-letter-like symbols, hyphens, non-breaking space, {\ldots} The entry
-{\tt unicode-id-part} non-exhaustively includes symbols for prime
-letters and subscripts.
-
-Access identifiers, written {\accessident}, are identifiers prefixed
-by \verb!.! (dot) without blank. They are used in the syntax of qualified
-identifiers.
-
-\paragraph{Natural numbers and integers}
-Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign.
-
-\index{num@{\num}}
-\index{integer@{\integer}}
-\begin{center}
-\begin{tabular}{r@{\quad::=\quad}l}
-{\digit} & {\tt 0..9} \\
-{\num} & \nelistwithoutblank{\digit}{} \\
-{\integer} & \zeroone{\tt -}{\num} \\
-\end{tabular}
-\end{center}
-
-\paragraph[Strings]{Strings\label{strings}
-\index{string@{\qstring}}}
-Strings are delimited by \verb!"! (double quote), and enclose a
-sequence of any characters different from \verb!"! or the sequence
-\verb!""! to denote the double quote character. In grammars, the
-entry for quoted strings is {\qstring}.
-
-\paragraph{Keywords}
-The following identifiers are reserved keywords, and cannot be
-employed otherwise:
-\begin{center}
-\begin{tabular}{llllll}
-\verb!_! &
-\verb!as! &
-\verb!at! &
-\verb!cofix! &
-\verb!else! &
-\verb!end! \\
-%
-\verb!exists! &
-\verb!exists2! &
-\verb!fix! &
-\verb!for! &
-\verb!forall! &
-\verb!fun! \\
-%
-\verb!if! &
-\verb!IF! &
-\verb!in! &
-\verb!let! &
-\verb!match! &
-\verb!mod! \\
-%
-\verb!Prop! &
-\verb!return! &
-\verb!Set! &
-\verb!then! &
-\verb!Type! &
-\verb!using! \\
-%
-\verb!where! &
-\verb!with! &
-\end{tabular}
-\end{center}
-
-
-\paragraph{Special tokens}
-The following sequences of characters are special tokens:
-\begin{center}
-\begin{tabular}{lllllll}
-\verb/!/ &
-\verb!%! &
-\verb!&! &
-\verb!&&! &
-\verb!(! &
-\verb!()! &
-\verb!)! \\
-%
-\verb!*! &
-\verb!+! &
-\verb!++! &
-\verb!,! &
-\verb!-! &
-\verb!->! &
-\verb!.! \\
-%
-\verb!.(! &
-\verb!..! &
-\verb!/! &
-\verb!/\! &
-\verb!:! &
-\verb!::! &
-\verb!:<! \\
-%
-\verb!:=! &
-\verb!:>! &
-\verb!;! &
-\verb!<! &
-\verb!<-! &
-\verb!<->! &
-\verb!<:! \\
-%
-\verb!<=! &
-\verb!<>! &
-\verb!=! &
-\verb!=>! &
-\verb!=_D! &
-\verb!>! &
-\verb!>->! \\
-%
-\verb!>=! &
-\verb!?! &
-\verb!?=! &
-\verb!@! &
-\verb![! &
-\verb!\/! &
-\verb!]! \\
-%
-\verb!^! &
-\verb!{! &
-\verb!|! &
-\verb!|-! &
-\verb!||! &
-\verb!}! &
-\verb!~! \\
-\end{tabular}
-\end{center}
-
-Lexical ambiguities are resolved according to the ``longest match''
-rule: when a sequence of non alphanumerical characters can be decomposed
-into several different ways, then the first token is the longest
-possible one (among all tokens defined at this moment), and so on.
-
-\section{Terms \label{term}\index{Terms}}
-
-\subsection{Syntax of terms}
-
-Figures \ref{term-syntax} and \ref{term-syntax-aux} describe the basic
-set of terms which form the {\em Calculus of Inductive Constructions}
-(also called \CIC). The formal presentation of {\CIC} is given in
-Chapter \ref{Cic}. Extensions of this syntax are given in chapter
-\ref{Gallina-extension}. How to customize the syntax is described in
-Chapter \ref{Addoc-syntax}.
-
-\begin{figure}[htbp]
-\begin{centerframe}
-\begin{tabular}{lcl@{\quad~}r} % warning: page width exceeded with \qquad
-{\term} & ::= &
- {\tt forall} {\binders} {\tt ,} {\term} &(\ref{products})\\
- & $|$ & {\tt fun} {\binders} {\tt =>} {\term} &(\ref{abstractions})\\
- & $|$ & {\tt fix} {\fixpointbodies} &(\ref{fixpoints})\\
- & $|$ & {\tt cofix} {\cofixpointbodies} &(\ref{fixpoints})\\
- & $|$ & {\tt let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term}
- {\tt in} {\term} &(\ref{let-in})\\
- & $|$ & {\tt let fix} {\fixpointbody} {\tt in} {\term} &(\ref{fixpoints})\\
- & $|$ & {\tt let cofix} {\cofixpointbody}
- {\tt in} {\term} &(\ref{fixpoints})\\
- & $|$ & {\tt let} {\tt (} \sequence{\name}{,} {\tt )} \zeroone{\ifitem}
- {\tt :=} {\term}
- {\tt in} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\
- & $|$ & {\tt if} {\term} \zeroone{\ifitem} {\tt then} {\term}
- {\tt else} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\
- & $|$ & {\term} {\tt :} {\term} &(\ref{typecast})\\
- & $|$ & {\term} {\tt ->} {\term} &(\ref{products})\\
- & $|$ & {\term} \nelist{\termarg}{}&(\ref{applications})\\
- & $|$ & {\tt @} {\qualid} \sequence{\term}{}
- &(\ref{Implicits-explicitation})\\
- & $|$ & {\term} {\tt \%} {\ident} &(\ref{scopechange})\\
- & $|$ & {\tt match} \nelist{\caseitem}{\tt ,}
- \zeroone{\returntype} {\tt with} &\\
- && ~~~\zeroone{\zeroone{\tt |} \nelist{\eqn}{|}} {\tt end}
- &(\ref{caseanalysis})\\
- & $|$ & {\qualid} &(\ref{qualid})\\
- & $|$ & {\sort} &(\ref{Gallina-sorts})\\
- & $|$ & {\num} &(\ref{numerals})\\
- & $|$ & {\_} &(\ref{hole})\\
- & & &\\
-{\termarg} & ::= & {\term} &\\
- & $|$ & {\tt (} {\ident} {\tt :=} {\term} {\tt )}
- &(\ref{Implicits-explicitation})\\
-%% & $|$ & {\tt (} {\num} {\tt :=} {\term} {\tt )}
-%% &(\ref{Implicits-explicitation})\\
-&&&\\
-{\binders} & ::= & \nelist{\binder}{} \\
-&&&\\
-{\binder} & ::= & {\name} & (\ref{Binders}) \\
- & $|$ & {\tt (} \nelist{\name}{} {\tt :} {\term} {\tt )} &\\
- & $|$ & {\tt (} {\name} {\typecstr} {\tt :=} {\term} {\tt )} &\\
-& & &\\
-{\name} & ::= & {\ident} &\\
- & $|$ & {\tt \_} &\\
-&&&\\
-{\qualid} & ::= & {\ident} & \\
- & $|$ & {\qualid} {\accessident} &\\
- & & &\\
-{\sort} & ::= & {\tt Prop} ~$|$~ {\tt Set} ~$|$~ {\tt Type} &
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of terms}
-\label{term-syntax}
-\index{term@{\term}}
-\index{sort@{\sort}}
-\end{figure}
-
-
-
-\begin{figure}[htb]
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\fixpointbodies} & ::= &
- {\fixpointbody} \\
- & $|$ & {\fixpointbody} {\tt with} \nelist{\fixpointbody}{{\tt with}}
- {\tt for} {\ident} \\
-{\cofixpointbodies} & ::= &
- {\cofixpointbody} \\
- & $|$ & {\cofixpointbody} {\tt with} \nelist{\cofixpointbody}{{\tt with}}
- {\tt for} {\ident} \\
-&&\\
-{\fixpointbody} & ::= &
- {\ident} {\binders} \zeroone{\annotation} {\typecstr}
- {\tt :=} {\term} \\
-{\cofixpointbody} & ::= & {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} \\
- & &\\
-{\annotation} & ::= & {\tt \{ struct} {\ident} {\tt \}} \\
-&&\\
-{\caseitem} & ::= & {\term} \zeroone{{\tt as} \name}
- \zeroone{{\tt in} \term} \\
-&&\\
-{\ifitem} & ::= & \zeroone{{\tt as} {\name}} {\returntype} \\
-&&\\
-{\returntype} & ::= & {\tt return} {\term} \\
-&&\\
-{\eqn} & ::= & \nelist{\multpattern}{\tt |} {\tt =>} {\term}\\
-&&\\
-{\multpattern} & ::= & \nelist{\pattern}{\tt ,}\\
-&&\\
-{\pattern} & ::= & {\qualid} \nelist{\pattern}{} \\
- & $|$ & {\pattern} {\tt as} {\ident} \\
- & $|$ & {\pattern} {\tt \%} {\ident} \\
- & $|$ & {\qualid} \\
- & $|$ & {\tt \_} \\
- & $|$ & {\num} \\
- & $|$ & {\tt (} \nelist{\orpattern}{,} {\tt )} \\
-\\
-{\orpattern} & ::= & \nelist{\pattern}{\tt |}\\
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of terms (continued)}
-\label{term-syntax-aux}
-\end{figure}
-
-
-%%%%%%%
-
-\subsection{Types}
-
-{\Coq} terms are typed. {\Coq} types are recognized by the same
-syntactic class as {\term}. We denote by {\type} the semantic subclass
-of types inside the syntactic class {\term}.
-\index{type@{\type}}
-
-
-\subsection{Qualified identifiers and simple identifiers
-\label{qualid}
-\label{ident}}
-
-{\em Qualified identifiers} ({\qualid}) denote {\em global constants}
-(definitions, lemmas, theorems, remarks or facts), {\em global
-variables} (parameters or axioms), {\em inductive
-types} or {\em constructors of inductive types}.
-{\em Simple identifiers} (or shortly {\ident}) are a
-syntactic subset of qualified identifiers. Identifiers may also
-denote local {\em variables}, what qualified identifiers do not.
-
-\subsection{Numerals
-\label{numerals}}
-
-Numerals have no definite semantics in the calculus. They are mere
-notations that can be bound to objects through the notation mechanism
-(see Chapter~\ref{Addoc-syntax} for details). Initially, numerals are
-bound to Peano's representation of natural numbers
-(see~\ref{libnats}).
-
-Note: negative integers are not at the same level as {\num}, for this
-would make precedence unnatural.
-
-\subsection{Sorts
-\index{Sorts}
-\index{Type@{\Type}}
-\index{Set@{\Set}}
-\index{Prop@{\Prop}}
-\index{Sorts}
-\label{Gallina-sorts}}
-
-There are three sorts \Set, \Prop\ and \Type.
-\begin{itemize}
-\item \Prop\ is the universe of {\em logical propositions}.
-The logical propositions themselves are typing the proofs.
-We denote propositions by {\form}. This constitutes a semantic
-subclass of the syntactic class {\term}.
-\index{form@{\form}}
-\item \Set\ is is the universe of {\em program
-types} or {\em specifications}.
-The specifications themselves are typing the programs.
-We denote specifications by {\specif}. This constitutes a semantic
-subclass of the syntactic class {\term}.
-\index{specif@{\specif}}
-\item {\Type} is the type of {\Set} and {\Prop}
-\end{itemize}
-\noindent More on sorts can be found in Section~\ref{Sorts}.
-
-\bigskip
-
-{\Coq} terms are typed. {\Coq} types are recognized by the same
-syntactic class as {\term}. We denote by {\type} the semantic subclass
-of types inside the syntactic class {\term}.
-\index{type@{\type}}
-
-\subsection{Binders
-\label{Binders}
-\index{binders}}
-
-Various constructions such as {\tt fun}, {\tt forall}, {\tt fix} and
-{\tt cofix} {\em bind} variables. A binding is represented by an
-identifier. If the binding variable is not used in the expression, the
-identifier can be replaced by the symbol {\tt \_}. When the type of a
-bound variable cannot be synthesized by the system, it can be
-specified with the notation {\tt (}\,{\ident}\,{\tt :}\,{\type}\,{\tt
-)}. There is also a notation for a sequence of binding variables
-sharing the same type: {\tt (}\,{\ident$_1$}\ldots{\ident$_n$}\,{\tt
-:}\,{\type}\,{\tt )}.
-
-Some constructions allow the binding of a variable to value. This is
-called a ``let-binder''. The entry {\binder} of the grammar accepts
-either an assumption binder as defined above or a let-binder.
-The notation in the
-latter case is {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )}. In a
-let-binder, only one variable can be introduced at the same
-time. It is also possible to give the type of the variable as follows:
-{\tt (}\,{\ident}\,{\tt :}\,{\term}\,{\tt :=}\,{\term}\,{\tt )}.
-
-Lists of {\binder} are allowed. In the case of {\tt fun} and {\tt
- forall}, it is intended that at least one binder of the list is an
-assumption otherwise {\tt fun} and {\tt forall} gets identical. Moreover,
-parentheses can be omitted in the case of a single sequence of
-bindings sharing the same type (e.g.: {\tt fun~(x~y~z~:~A)~=>~t} can
-be shortened in {\tt fun~x~y~z~:~A~=>~t}).
-
-\subsection{Abstractions
-\label{abstractions}
-\index{abstractions}}
-
-The expression ``{\tt fun} {\ident} {\tt :} {\type} {\tt =>}~{\term}''
-defines the {\em abstraction} of the variable {\ident}, of type
-{\type}, over the term {\term}. It denotes a function of the variable
-{\ident} that evaluates to the expression {\term} (e.g. {\tt fun x:$A$
-=> x} denotes the identity function on type $A$).
-% The variable {\ident} is called the {\em parameter} of the function
-% (we sometimes say the {\em formal parameter}).
-The keyword {\tt fun} can be followed by several binders as given in
-Section~\ref{Binders}. Functions over several variables are
-equivalent to an iteration of one-variable functions. For instance the
-expression ``{\tt fun}~{\ident$_{1}$}~{\ldots}~{\ident$_{n}$}~{\tt
-:}~\type~{\tt =>}~{\term}'' denotes the same function as ``{\tt
-fun}~{\ident$_{1}$}~{\tt :}~\type~{\tt =>}~{\ldots}~{\tt
-fun}~{\ident$_{n}$}~{\tt :}~\type~{\tt =>}~{\term}''. If a let-binder
-occurs in the list of binders, it is expanded to a local definition
-(see Section~\ref{let-in}).
-
-\subsection{Products
-\label{products}
-\index{products}}
-
-The expression ``{\tt forall}~{\ident}~{\tt :}~{\type}{\tt
-,}~{\term}'' denotes the {\em product} of the variable {\ident} of
-type {\type}, over the term {\term}. As for abstractions, {\tt forall}
-is followed by a binder list, and products over several variables are
-equivalent to an iteration of one-variable products.
-Note that {\term} is intended to be a type.
-
-If the variable {\ident} occurs in {\term}, the product is called {\em
-dependent product}. The intention behind a dependent product {\tt
-forall}~$x$~{\tt :}~{$A$}{\tt ,}~{$B$} is twofold. It denotes either
-the universal quantification of the variable $x$ of type $A$ in the
-proposition $B$ or the functional dependent product from $A$ to $B$ (a
-construction usually written $\Pi_{x:A}.B$ in set theory).
-
-Non dependent product types have a special notation: ``$A$ {\tt ->}
-$B$'' stands for ``{\tt forall \_:}$A${\tt ,}~$B$''. The non dependent
-product is used both to denote the propositional implication and
-function types.
-
-\subsection{Applications
-\label{applications}
-\index{applications}}
-
-The expression \term$_0$ \term$_1$ denotes the application of
-\term$_0$ to \term$_1$.
-
-The expression {\tt }\term$_0$ \term$_1$ ... \term$_n${\tt}
-denotes the application of the term \term$_0$ to the arguments
-\term$_1$ ... then \term$_n$. It is equivalent to {\tt (} {\ldots}
-{\tt (} {\term$_0$} {\term$_1$} {\tt )} {\ldots} {\tt )} {\term$_n$} {\tt }:
-associativity is to the left.
-
-The notation {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )} for
-arguments is used for making explicit the value of implicit arguments
-(see Section~\ref{Implicits-explicitation}).
-
-\subsection{Type cast
-\label{typecast}
-\index{Cast}}
-
-The expression ``{\term}~{\tt :}~{\type}'' is a type cast
-expression. It enforces the type of {\term} to be {\type}.
-
-\subsection{Inferable subterms
-\label{hole}
-\index{\_}}
-
-Expressions often contain redundant pieces of information. Subterms that
-can be automatically inferred by {\Coq} can be replaced by the
-symbol ``\_'' and {\Coq} will guess the missing piece of information.
-
-\subsection{Local definitions (let-in)
-\label{let-in}
-\index{Local definitions}
-\index{let-in}}
-
-
-{\tt let}~{\ident}~{\tt :=}~{\term$_1$}~{\tt in}~{\term$_2$} denotes
-the local binding of \term$_1$ to the variable $\ident$ in
-\term$_2$.
-There is a syntactic sugar for local definition of functions: {\tt
-let} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} {\tt :=} {\term$_1$}
-{\tt in} {\term$_2$} stands for {\tt let} {\ident} {\tt := fun}
-{\binder$_1$} {\ldots} {\binder$_n$} {\tt =>} {\term$_2$} {\tt in}
-{\term$_2$}.
-
-\subsection{Definition by case analysis
-\label{caseanalysis}
-\index{match@{\tt match\ldots with\ldots end}}}
-
-Objects of inductive types can be destructurated by a case-analysis
-construction called {\em pattern-matching} expression. A
-pattern-matching expression is used to analyze the structure of an
-inductive objects and to apply specific treatments accordingly.
-
-This paragraph describes the basic form of pattern-matching. See
-Section~\ref{Mult-match} and Chapter~\ref{Mult-match-full} for the
-description of the general form. The basic form of pattern-matching is
-characterized by a single {\caseitem} expression, a {\multpattern}
-restricted to a single {\pattern} and {\pattern} restricted to the
-form {\qualid} \nelist{\ident}{}.
-
-The expression {\tt match} {\term$_0$} {\returntype} {\tt with}
-{\pattern$_1$} {\tt =>} {\term$_1$} {\tt $|$} {\ldots} {\tt $|$}
-{\pattern$_n$} {\tt =>} {\term$_n$} {\tt end}, denotes a {\em
-pattern-matching} over the term {\term$_0$} (expected to be of an
-inductive type $I$). The terms {\term$_1$}\ldots{\term$_n$} are the
-{\em branches} of the pattern-matching expression. Each of
-{\pattern$_i$} has a form \qualid~\nelist{\ident}{} where {\qualid}
-must denote a constructor. There should be exactly one branch for
-every constructor of $I$.
-
-The {\returntype} expresses the type returned by the whole {\tt match}
-expression. There are several cases. In the {\em non dependent} case,
-all branches have the same type, and the {\returntype} is the common
-type of branches. In this case, {\returntype} can usually be omitted
-as it can be inferred from the type of the branches\footnote{Except if
-the inductive type is empty in which case there is no equation that can be
-used to infer the return type.}.
-
-In the {\em dependent} case, there are three subcases. In the first
-subcase, the type in each branch may depend on the exact value being
-matched in the branch. In this case, the whole pattern-matching itself
-depends on the term being matched. This dependency of the term being
-matched in the return type is expressed with an ``{\tt as {\ident}}''
-clause where {\ident} is dependent in the return type.
-For instance, in the following example:
-\begin{coq_example*}
-Inductive bool : Type := true : bool | false : bool.
-Inductive eq (A:Type) (x:A) : A -> Prop := refl_equal : eq A x x.
-Inductive or (A:Prop) (B:Prop) : Prop :=
-| or_introl : A -> or A B
-| or_intror : B -> or A B.
-Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
-:= match b as x return or (eq bool x true) (eq bool x false) with
- | true => or_introl (eq bool true true) (eq bool true false)
- (refl_equal bool true)
- | false => or_intror (eq bool false true) (eq bool false false)
- (refl_equal bool false)
- end.
-\end{coq_example*}
-the branches have respective types {\tt or (eq bool true true) (eq
-bool true false)} and {\tt or (eq bool false true) (eq bool false
-false)} while the whole pattern-matching expression has type {\tt or
-(eq bool b true) (eq bool b false)}, the identifier {\tt x} being used
-to represent the dependency. Remark that when the term being matched
-is a variable, the {\tt as} clause can be omitted and the term being
-matched can serve itself as binding name in the return type. For
-instance, the following alternative definition is accepted and has the
-same meaning as the previous one.
-\begin{coq_example*}
-Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
-:= match b return or (eq bool b true) (eq bool b false) with
- | true => or_introl (eq bool true true) (eq bool true false)
- (refl_equal bool true)
- | false => or_intror (eq bool false true) (eq bool false false)
- (refl_equal bool false)
- end.
-\end{coq_example*}
-
-The second subcase is only relevant for annotated inductive types such
-as the equality predicate (see Section~\ref{Equality}), the order
-predicate on natural numbers % (see Section~\ref{le}) % undefined reference
-or the type of
-lists of a given length (see Section~\ref{listn}). In this configuration,
-the type of each branch can depend on the type dependencies specific
-to the branch and the whole pattern-matching expression has a type
-determined by the specific dependencies in the type of the term being
-matched. This dependency of the return type in the annotations of the
-inductive type is expressed using a {\tt
-``in~I~\_~$\ldots$~\_~\ident$_1$~$\ldots$~\ident$_n$}'' clause, where
-\begin{itemize}
-\item $I$ is the inductive type of the term being matched;
-
-\item the names \ident$_i$'s correspond to the arguments of the
-inductive type that carry the annotations: the return type is dependent
-on them;
-
-\item the {\_}'s denote the family parameters of the inductive type:
-the return type is not dependent on them.
-\end{itemize}
-
-For instance, in the following example:
-\begin{coq_example*}
-Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
- match H in eq _ _ z return eq A z x with
- | refl_equal => refl_equal A x
- end.
-\end{coq_example*}
-the type of the branch has type {\tt eq~A~x~x} because the third
-argument of {\tt eq} is {\tt x} in the type of the pattern {\tt
-refl\_equal}. On the contrary, the type of the whole pattern-matching
-expression has type {\tt eq~A~y~x} because the third argument of {\tt
-eq} is {\tt y} in the type of {\tt H}. This dependency of the case
-analysis in the third argument of {\tt eq} is expressed by the
-identifier {\tt z} in the return type.
-
-Finally, the third subcase is a combination of the first and second
-subcase. In particular, it only applies to pattern-matching on terms
-in a type with annotations. For this third subcase, both
-the clauses {\tt as} and {\tt in} are available.
-
-There are specific notations for case analysis on types with one or
-two constructors: ``{\tt if {\ldots} then {\ldots} else {\ldots}}''
-and ``{\tt let (}\nelist{\ldots}{,}{\tt ) := } {\ldots} {\tt in}
-{\ldots}'' (see Sections~\ref{if-then-else} and~\ref{Letin}).
-
-%\SeeAlso Section~\ref{Mult-match} for convenient extensions of pattern-matching.
-
-\subsection{Recursive functions
-\label{fixpoints}
-\index{fix@{fix \ident$_i$\{\dots\}}}}
-
-The expression ``{\tt fix} \ident$_1$ \binder$_1$ {\tt :} {\type$_1$}
-\texttt{:=} \term$_1$ {\tt with} {\ldots} {\tt with} \ident$_n$
-\binder$_n$~{\tt :} {\type$_n$} \texttt{:=} \term$_n$ {\tt for}
-{\ident$_i$}'' denotes the $i$\nth component of a block of functions
-defined by mutual well-founded recursion. It is the local counterpart
-of the {\tt Fixpoint} command. See Section~\ref{Fixpoint} for more
-details. When $n=1$, the ``{\tt for}~{\ident$_i$}'' clause is omitted.
-
-The expression ``{\tt cofix} \ident$_1$~\binder$_1$ {\tt :}
-{\type$_1$} {\tt with} {\ldots} {\tt with} \ident$_n$ \binder$_n$ {\tt
-:} {\type$_n$}~{\tt for} {\ident$_i$}'' denotes the $i$\nth component of
-a block of terms defined by a mutual guarded co-recursion. It is the
-local counterpart of the {\tt CoFixpoint} command. See
-Section~\ref{CoFixpoint} for more details. When $n=1$, the ``{\tt
-for}~{\ident$_i$}'' clause is omitted.
-
-The association of a single fixpoint and a local
-definition have a special syntax: ``{\tt let fix}~$f$~{\ldots}~{\tt
- :=}~{\ldots}~{\tt in}~{\ldots}'' stands for ``{\tt let}~$f$~{\tt :=
- fix}~$f$~\ldots~{\tt :=}~{\ldots}~{\tt in}~{\ldots}''. The same
- applies for co-fixpoints.
-
-
-\section{The Vernacular
-\label{Vernacular}}
-
-\begin{figure}[tbp]
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\sentence} & ::= & {\assumption} \\
- & $|$ & {\definition} \\
- & $|$ & {\inductive} \\
- & $|$ & {\fixpoint} \\
- & $|$ & {\assertion} {\proof} \\
-&&\\
-%% Assumptions
-{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
-&&\\
-{\assumptionkeyword} & $\!\!$ ::= & {\tt Axiom} $|$ {\tt Conjecture} \\
- & $|$ & {\tt Parameter} $|$ {\tt Parameters} \\
- & $|$ & {\tt Variable} $|$ {\tt Variables} \\
- & $|$ & {\tt Hypothesis} $|$ {\tt Hypotheses}\\
-&&\\
-{\assums} & ::= & \nelist{\ident}{} {\tt :} {\term} \\
- & $|$ & \nelist{{\tt (} \nelist{\ident}{} {\tt :} {\term} {\tt )}}{} \\
-&&\\
-%% Definitions
-{\definition} & ::= &
- {\tt Definition} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\
- & $|$ & {\tt Let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\
-&&\\
-%% Inductives
-{\inductive} & ::= &
- {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
- & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
- & & \\
-{\inductivebody} & ::= &
- {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
- && ~~\zeroone{\zeroone{\tt |} \nelist{$\!${\ident}$\!$ \zeroone{\binders} {\typecstrwithoutblank}}{|}} \\
- & & \\ %% TODO: where ...
-%% Fixpoints
-{\fixpoint} & ::= & {\tt Fixpoint} \nelist{\fixpointbody}{with} {\tt .} \\
- & $|$ & {\tt CoFixpoint} \nelist{\cofixpointbody}{with} {\tt .} \\
-&&\\
-%% Lemmas & proofs
-{\assertion} & ::= &
- {\statkwd} {\ident} \zeroone{\binders} {\tt :} {\term} {\tt .} \\
-&&\\
- {\statkwd} & ::= & {\tt Theorem} $|$ {\tt Lemma} \\
- & $|$ & {\tt Remark} $|$ {\tt Fact}\\
- & $|$ & {\tt Corollary} $|$ {\tt Proposition} \\
- & $|$ & {\tt Definition} $|$ {\tt Example} \\\\
-&&\\
-{\proof} & ::= & {\tt Proof} {\tt .} {\dots} {\tt Qed} {\tt .}\\
- & $|$ & {\tt Proof} {\tt .} {\dots} {\tt Defined} {\tt .}\\
- & $|$ & {\tt Proof} {\tt .} {\dots} {\tt Admitted} {\tt .}\\
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of sentences}
-\label{sentences-syntax}
-\end{figure}
-
-Figure \ref{sentences-syntax} describes {\em The Vernacular} which is the
-language of commands of \gallina. A sentence of the vernacular
-language, like in many natural languages, begins with a capital letter
-and ends with a dot.
-
-The different kinds of command are described hereafter. They all suppose
-that the terms occurring in the sentences are well-typed.
-
-%%
-%% Axioms and Parameters
-%%
-\subsection{Assumptions
-\index{Declarations}
-\label{Declarations}}
-
-Assumptions extend the environment\index{Environment} with axioms,
-parameters, hypotheses or variables. An assumption binds an {\ident}
-to a {\type}. It is accepted by {\Coq} if and only if this {\type} is
-a correct type in the environment preexisting the declaration and if
-{\ident} was not previously defined in the same module. This {\type}
-is considered to be the type (or specification, or statement) assumed
-by {\ident} and we say that {\ident} has type {\type}.
-
-\subsubsection{{\tt Axiom {\ident} :{\term} .}
-\comindex{Axiom}
-\label{Axiom}}
-
-This command links {\term} to the name {\ident} as its specification
-in the global context. The fact asserted by {\term} is thus assumed as
-a postulate.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item \comindex{Parameter}\comindex{Parameters}
- {\tt Parameter {\ident} :{\term}.} \\
- Is equivalent to {\tt Axiom {\ident} : {\term}}
-
-\item {\tt Parameter {\ident$_1$}\ldots{\ident$_n$} {\tt :}{\term}.}\\
- Adds $n$ parameters with specification {\term}
-
-\item
- {\tt Parameter\,%
-(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,%
-\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,%
-{\term$_n$} {\tt )}.}\\
- Adds $n$ blocks of parameters with different specifications.
-
-\item \comindex{Conjecture}
- {\tt Conjecture {\ident} :{\term}.}\\
- Is equivalent to {\tt Axiom {\ident} : {\term}}.
-\end{Variants}
-
-\noindent {\bf Remark: } It is possible to replace {\tt Parameter} by
-{\tt Parameters}.
-
-
-\subsubsection{{\tt Variable {\ident} :{\term}}.
-\comindex{Variable}
-\comindex{Variables}
-\label{Variable}}
-
-This command links {\term} to the name {\ident} in the context of the
-current section (see Section~\ref{Section} for a description of the section
-mechanism). When the current section is closed, name {\ident} will be
-unknown and every object using this variable will be explicitly
-parametrized (the variable is {\em discharged}). Using the {\tt
-Variable} command out of any section is equivalent to using {\tt Parameter}.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Variable {\ident$_1$}\ldots{\ident$_n$} {\tt :}{\term}.}\\
- Links {\term} to names {\ident$_1$}\ldots{\ident$_n$}.
-\item
- {\tt Variable\,%
-(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,%
-\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,%
-{\term$_n$} {\tt )}.}\\
- Adds $n$ blocks of variables with different specifications.
-\item \comindex{Hypothesis}
- \comindex{Hypotheses}
- {\tt Hypothesis {\ident} {\tt :}{\term}.} \\
- \texttt{Hypothesis} is a synonymous of \texttt{Variable}
-\end{Variants}
-
-\noindent {\bf Remark: } It is possible to replace {\tt Variable} by
-{\tt Variables} and {\tt Hypothesis} by {\tt Hypotheses}.
-
-It is advised to use the keywords \verb:Axiom: and \verb:Hypothesis:
-for logical postulates (i.e. when the assertion {\term} is of sort
-\verb:Prop:), and to use the keywords \verb:Parameter: and
-\verb:Variable: in other cases (corresponding to the declaration of an
-abstract mathematical entity).
-
-%%
-%% Definitions
-%%
-\subsection{Definitions
-\index{Definitions}
-\label{Basic-definitions}}
-
-Definitions extend the environment\index{Environment} with
-associations of names to terms. A definition can be seen as a way to
-give a meaning to a name or as a way to abbreviate a term. In any
-case, the name can later be replaced at any time by its definition.
-
-The operation of unfolding a name into its definition is called
-$\delta$-conversion\index{delta-reduction@$\delta$-reduction} (see
-Section~\ref{delta}). A definition is accepted by the system if and
-only if the defined term is well-typed in the current context of the
-definition and if the name is not already used. The name defined by
-the definition is called a {\em constant}\index{Constant} and the term
-it refers to is its {\em body}. A definition has a type which is the
-type of its body.
-
-A formal presentation of constants and environments is given in
-Section~\ref{Typed-terms}.
-
-\subsubsection{\tt Definition {\ident} := {\term}.
-\comindex{Definition}}
-
-This command binds {\term} to the name {\ident} in the
-environment, provided that {\term} is well-typed.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Definition {\ident} {\tt :}{\term$_1$} := {\term$_2$}.}\\
- It checks that the type of {\term$_2$} is definitionally equal to
- {\term$_1$}, and registers {\ident} as being of type {\term$_1$},
- and bound to value {\term$_2$}.
-\item {\tt Definition {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
- This is equivalent to \\
- {\tt Definition\,{\ident}\,{\tt :\,forall}\,%
- {\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}}\,%
- {\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,%
- {\tt .}
-
-\item {\tt Example {\ident} := {\term}.}\\
-{\tt Example {\ident} {\tt :}{\term$_1$} := {\term$_2$}.}\\
-{\tt Example {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
-\comindex{Example}
-These are synonyms of the {\tt Definition} forms.
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{Error: The term {\term} has type {\type} while it is expected to have type {\type}}
-\end{ErrMsgs}
-
-\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}.
-
-\subsubsection{\tt Let {\ident} := {\term}.
-\comindex{Let}}
-
-This command binds the value {\term} to the name {\ident} in the
-environment of the current section. The name {\ident} disappears
-when the current section is eventually closed, and, all
-persistent objects (such as theorems) defined within the
-section and depending on {\ident} are prefixed by the local definition
-{\tt let {\ident} := {\term} in}.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Let {\ident} : {\term$_1$} := {\term$_2$}.}
-\end{Variants}
-
-\SeeAlso Sections \ref{Section} (section mechanism), \ref{Opaque},
-\ref{Transparent} (opaque/transparent constants), \ref{unfold} (tactic
- {\tt unfold}).
-
-%%
-%% Inductive Types
-%%
-\subsection{Inductive definitions
-\index{Inductive definitions}
-\label{gal_Inductive_Definitions}
-\comindex{Inductive}
-\label{Inductive}}
-
-We gradually explain simple inductive types, simple
-annotated inductive types, simple parametric inductive types,
-mutually inductive types. We explain also co-inductive types.
-
-\subsubsection{Simple inductive types}
-
-The definition of a simple inductive type has the following form:
-
-\medskip
-{\tt
-\begin{tabular}{l}
-Inductive {\ident} : {\sort} := \\
-\begin{tabular}{clcl}
- & {\ident$_1$} &:& {\type$_1$} \\
- | & {\ldots} && \\
- | & {\ident$_n$} &:& {\type$_n$}
-\end{tabular}
-\end{tabular}
-}
-\medskip
-
-The name {\ident} is the name of the inductively defined type and
-{\sort} is the universes where it lives.
-The names {\ident$_1$}, {\ldots}, {\ident$_n$}
-are the names of its constructors and {\type$_1$}, {\ldots},
-{\type$_n$} their respective types. The types of the constructors have
-to satisfy a {\em positivity condition} (see Section~\ref{Positivity})
-for {\ident}. This condition ensures the soundness of the inductive
-definition. If this is the case, the constants {\ident},
-{\ident$_1$}, {\ldots}, {\ident$_n$} are added to the environment with
-their respective types. Accordingly to the universe where
-the inductive type lives ({\it e.g.} its type {\sort}), {\Coq} provides a
-number of destructors for {\ident}. Destructors are named
-{\ident}{\tt\_ind}, {\ident}{\tt \_rec} or {\ident}{\tt \_rect} which
-respectively correspond to elimination principles on {\tt Prop}, {\tt
-Set} and {\tt Type}. The type of the destructors expresses structural
-induction/recursion principles over objects of {\ident}. We give below
-two examples of the use of the {\tt Inductive} definitions.
-
-The set of natural numbers is defined as:
-\begin{coq_example}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-\end{coq_example}
-
-The type {\tt nat} is defined as the least \verb:Set: containing {\tt
- O} and closed by the {\tt S} constructor. The constants {\tt nat},
-{\tt O} and {\tt S} are added to the environment.
-
-Now let us have a look at the elimination principles. They are three
-of them:
-{\tt nat\_ind}, {\tt nat\_rec} and {\tt nat\_rect}. The type of {\tt
- nat\_ind} is:
-\begin{coq_example}
-Check nat_ind.
-\end{coq_example}
-
-This is the well known structural induction principle over natural
-numbers, i.e. the second-order form of Peano's induction principle.
-It allows to prove some universal property of natural numbers ({\tt
-forall n:nat, P n}) by induction on {\tt n}.
-
-The types of {\tt nat\_rec} and {\tt nat\_rect} are similar, except
-that they pertain to {\tt (P:nat->Set)} and {\tt (P:nat->Type)}
-respectively . They correspond to primitive induction principles
-(allowing dependent types) respectively over sorts \verb:Set: and
-\verb:Type:. The constant {\ident}{\tt \_ind} is always provided,
-whereas {\ident}{\tt \_rec} and {\ident}{\tt \_rect} can be impossible
-to derive (for example, when {\ident} is a proposition).
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{Variants}
-\item
-\begin{coq_example*}
-Inductive nat : Set := O | S (_:nat).
-\end{coq_example*}
-In the case where inductive types have no annotations (next section
-gives an example of such annotations),
-%the positivity condition implies that
-a constructor can be defined by only giving the type of
-its arguments.
-\end{Variants}
-
-\subsubsection{Simple annotated inductive types}
-
-In an annotated inductive types, the universe where the inductive
-type is defined is no longer a simple sort, but what is called an
-arity, which is a type whose conclusion is a sort.
-
-As an example of annotated inductive types, let us define the
-$even$ predicate:
-
-\begin{coq_example}
-Inductive even : nat -> Prop :=
- | even_0 : even O
- | even_SS : forall n:nat, even n -> even (S (S n)).
-\end{coq_example}
-
-The type {\tt nat->Prop} means that {\tt even} is a unary predicate
-(inductively defined) over natural numbers. The type of its two
-constructors are the defining clauses of the predicate {\tt even}. The
-type of {\tt even\_ind} is:
-
-\begin{coq_example}
-Check even_ind.
-\end{coq_example}
-
-From a mathematical point of view it asserts that the natural numbers
-satisfying the predicate {\tt even} are exactly in the smallest set of
-naturals satisfying the clauses {\tt even\_0} or {\tt even\_SS}. This
-is why, when we want to prove any predicate {\tt P} over elements of
-{\tt even}, it is enough to prove it for {\tt O} and to prove that if
-any natural number {\tt n} satisfies {\tt P} its double successor {\tt
- (S (S n))} satisfies also {\tt P}. This is indeed analogous to the
-structural induction principle we got for {\tt nat}.
-
-\begin{ErrMsgs}
-\item \errindex{Non strictly positive occurrence of {\ident} in {\type}}
-\item \errindex{The conclusion of {\type} is not valid; it must be
-built from {\ident}}
-\end{ErrMsgs}
-
-\subsubsection{Parametrized inductive types}
-In the previous example, each constructor introduces a
-different instance of the predicate {\tt even}. In some cases,
-all the constructors introduces the same generic instance of the
-inductive definition, in which case, instead of an annotation, we use
-a context of parameters which are binders shared by all the
-constructors of the definition.
-
-% Inductive types may be parameterized. Parameters differ from inductive
-% type annotations in the fact that recursive invokations of inductive
-% types must always be done with the same values of parameters as its
-% specification.
-
-The general scheme is:
-\begin{center}
-{\tt Inductive} {\ident} {\binder$_1$}\ldots{\binder$_k$} : {\term} :=
- {\ident$_1$}: {\term$_1$} | {\ldots} | {\ident$_n$}: \term$_n$
-{\tt .}
-\end{center}
-Parameters differ from inductive type annotations in the fact that the
-conclusion of each type of constructor {\term$_i$} invoke the inductive
-type with the same values of parameters as its specification.
-
-
-
-A typical example is the definition of polymorphic lists:
-\begin{coq_example*}
-Inductive list (A:Set) : Set :=
- | nil : list A
- | cons : A -> list A -> list A.
-\end{coq_example*}
-
-Note that in the type of {\tt nil} and {\tt cons}, we write {\tt
- (list A)} and not just {\tt list}.\\ The constants {\tt nil} and
-{\tt cons} will have respectively types:
-
-\begin{coq_example}
-Check nil.
-Check cons.
-\end{coq_example}
-
-Types of destructors are also quantified with {\tt (A:Set)}.
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{Variants}
-\item
-\begin{coq_example*}
-Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
-\end{coq_example*}
-This is an alternative definition of lists where we specify the
-arguments of the constructors rather than their full type.
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{The {\num}th argument of {\ident} must be {\ident'} in
-{\type}}
-\end{ErrMsgs}
-
-\paragraph{New from \Coq{} V8.1} The condition on parameters for
-inductive definitions has been relaxed since \Coq{} V8.1. It is now
-possible in the type of a constructor, to invoke recursively the
-inductive definition on an argument which is not the parameter itself.
-
-One can define~:
-\begin{coq_example}
-Inductive list2 (A:Set) : Set :=
- | nil2 : list2 A
- | cons2 : A -> list2 (A*A) -> list2 A.
-\end{coq_example}
-\begin{coq_eval}
-Reset list2.
-\end{coq_eval}
-that can also be written by specifying only the type of the arguments:
-\begin{coq_example*}
-Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)).
-\end{coq_example*}
-But the following definition will give an error:
-\begin{coq_example}
-Inductive listw (A:Set) : Set :=
- | nilw : listw (A*A)
- | consw : A -> listw (A*A) -> listw (A*A).
-\end{coq_example}
-Because the conclusion of the type of constructors should be {\tt
- listw A} in both cases.
-
-A parametrized inductive definition can be defined using
-annotations instead of parameters but it will sometimes give a
-different (bigger) sort for the inductive definition and will produce
-a less convenient rule for case elimination.
-
-\SeeAlso Sections~\ref{Cic-inductive-definitions} and~\ref{Tac-induction}.
-
-
-\subsubsection{Mutually defined inductive types
-\comindex{Inductive}
-\label{Mutual-Inductive}}
-
-The definition of a block of mutually inductive types has the form:
-
-\medskip
-{\tt
-\begin{tabular}{l}
-Inductive {\ident$_1$} : {\type$_1$} := \\
-\begin{tabular}{clcl}
- & {\ident$_1^1$} &:& {\type$_1^1$} \\
- | & {\ldots} && \\
- | & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$}
-\end{tabular} \\
-with\\
-~{\ldots} \\
-with {\ident$_m$} : {\type$_m$} := \\
-\begin{tabular}{clcl}
- & {\ident$_1^m$} &:& {\type$_1^m$} \\
- | & {\ldots} \\
- | & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}.
-\end{tabular}
-\end{tabular}
-}
-\medskip
-
-\noindent It has the same semantics as the above {\tt Inductive}
-definition for each \ident$_1$, {\ldots}, \ident$_m$. All names
-\ident$_1$, {\ldots}, \ident$_m$ and \ident$_1^1$, \dots,
-\ident$_{n_m}^m$ are simultaneously added to the environment. Then
-well-typing of constructors can be checked. Each one of the
-\ident$_1$, {\ldots}, \ident$_m$ can be used on its own.
-
-It is also possible to parametrize these inductive definitions.
-However, parameters correspond to a local
-context in which the whole set of inductive declarations is done. For
-this reason, the parameters must be strictly the same for each
-inductive types The extended syntax is:
-
-\medskip
-{\tt
-\begin{tabular}{l}
-Inductive {\ident$_1$} {\params} : {\type$_1$} := \\
-\begin{tabular}{clcl}
- & {\ident$_1^1$} &:& {\type$_1^1$} \\
- | & {\ldots} && \\
- | & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$}
-\end{tabular} \\
-with\\
-~{\ldots} \\
-with {\ident$_m$} {\params} : {\type$_m$} := \\
-\begin{tabular}{clcl}
- & {\ident$_1^m$} &:& {\type$_1^m$} \\
- | & {\ldots} \\
- | & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}.
-\end{tabular}
-\end{tabular}
-}
-\medskip
-
-\Example
-The typical example of a mutual inductive data type is the one for
-trees and forests. We assume given two types $A$ and $B$ as variables.
-It can be declared the following way.
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Variables A B : Set.
-Inductive tree : Set :=
- node : A -> forest -> tree
-with forest : Set :=
- | leaf : B -> forest
- | cons : tree -> forest -> forest.
-\end{coq_example*}
-
-This declaration generates automatically six induction
-principles. They are respectively
-called {\tt tree\_rec}, {\tt tree\_ind}, {\tt
- tree\_rect}, {\tt forest\_rec}, {\tt forest\_ind}, {\tt
- forest\_rect}. These ones are not the most general ones but are
-just the induction principles corresponding to each inductive part
-seen as a single inductive definition.
-
-To illustrate this point on our example, we give the types of {\tt
- tree\_rec} and {\tt forest\_rec}.
-
-\begin{coq_example}
-Check tree_rec.
-Check forest_rec.
-\end{coq_example}
-
-Assume we want to parametrize our mutual inductive definitions with
-the two type variables $A$ and $B$, the declaration should be done the
-following way:
-
-\begin{coq_eval}
-Reset tree.
-\end{coq_eval}
-\begin{coq_example*}
-Inductive tree (A B:Set) : Set :=
- node : A -> forest A B -> tree A B
-with forest (A B:Set) : Set :=
- | leaf : B -> forest A B
- | cons : tree A B -> forest A B -> forest A B.
-\end{coq_example*}
-
-Assume we define an inductive definition inside a section. When the
-section is closed, the variables declared in the section and occurring
-free in the declaration are added as parameters to the inductive
-definition.
-
-\SeeAlso Section~\ref{Section}.
-
-\subsubsection{Co-inductive types
-\label{CoInductiveTypes}
-\comindex{CoInductive}}
-
-The objects of an inductive type are well-founded with respect to the
-constructors of the type. In other words, such objects contain only a
-{\it finite} number of constructors. Co-inductive types arise from
-relaxing this condition, and admitting types whose objects contain an
-infinity of constructors. Infinite objects are introduced by a
-non-ending (but effective) process of construction, defined in terms
-of the constructors of the type.
-
-An example of a co-inductive type is the type of infinite sequences of
-natural numbers, usually called streams. It can be introduced in \Coq\
-using the \texttt{CoInductive} command:
-\begin{coq_example}
-CoInductive Stream : Set :=
- Seq : nat -> Stream -> Stream.
-\end{coq_example}
-
-The syntax of this command is the same as the command \texttt{Inductive}
-(see Section~\ref{gal_Inductive_Definitions}). Notice that no
-principle of induction is derived from the definition of a
-co-inductive type, since such principles only make sense for inductive
-ones. For co-inductive ones, the only elimination principle is case
-analysis. For example, the usual destructors on streams
-\texttt{hd:Stream->nat} and \texttt{tl:Str->Str} can be defined as
-follows:
-\begin{coq_example}
-Definition hd (x:Stream) := let (a,s) := x in a.
-Definition tl (x:Stream) := let (a,s) := x in s.
-\end{coq_example}
-
-Definition of co-inductive predicates and blocks of mutually
-co-inductive definitions are also allowed. An example of a
-co-inductive predicate is the extensional equality on streams:
-
-\begin{coq_example}
-CoInductive EqSt : Stream -> Stream -> Prop :=
- eqst :
- forall s1 s2:Stream,
- hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
-\end{coq_example}
-
-In order to prove the extensionally equality of two streams $s_1$ and
-$s_2$ we have to construct an infinite proof of equality, that is,
-an infinite object of type $(\texttt{EqSt}\;s_1\;s_2)$. We will see
-how to introduce infinite objects in Section~\ref{CoFixpoint}.
-
-%%
-%% (Co-)Fixpoints
-%%
-\subsection{Definition of recursive functions}
-
-\subsubsection{Definition of functions by recursion over inductive objects}
-
-This section describes the primitive form of definition by recursion
-over inductive objects. See Section~\ref{Function} for more advanced
-constructions. The command:
-\begin{center}
- \texttt{Fixpoint {\ident} {\params} {\tt \{struct}
- \ident$_0$ {\tt \}} : type$_0$ := \term$_0$
- \comindex{Fixpoint}\label{Fixpoint}}
-\end{center}
-allows to define functions by pattern-matching over inductive objects
-using a fixed point construction.
-The meaning of this declaration is to define {\it ident} a recursive
-function with arguments specified by the binders in {\params} such
-that {\it ident} applied to arguments corresponding to these binders
-has type \type$_0$, and is equivalent to the expression \term$_0$. The
-type of the {\ident} is consequently {\tt forall {\params} {\tt,}
- \type$_0$} and the value is equivalent to {\tt fun {\params} {\tt
- =>} \term$_0$}.
-
-To be accepted, a {\tt Fixpoint} definition has to satisfy some
-syntactical constraints on a special argument called the decreasing
-argument. They are needed to ensure that the {\tt Fixpoint} definition
-always terminates. The point of the {\tt \{struct \ident {\tt \}}}
-annotation is to let the user tell the system which argument decreases
-along the recursive calls. For instance, one can define the addition
-function as :
-
-\begin{coq_example}
-Fixpoint add (n m:nat) {struct n} : nat :=
- match n with
- | O => m
- | S p => S (add p m)
- end.
-\end{coq_example}
-
-The {\tt \{struct \ident {\tt \}}} annotation may be left implicit, in
-this case the system try successively arguments from left to right
-until it finds one that satisfies the decreasing condition. Note that
-some fixpoints may have several arguments that fit as decreasing
-arguments, and this choice influences the reduction of the
-fixpoint. Hence an explicit annotation must be used if the leftmost
-decreasing argument is not the desired one. Writing explicit
-annotations can also speed up type-checking of large mutual fixpoints.
-
-The {\tt match} operator matches a value (here \verb:n:) with the
-various constructors of its (inductive) type. The remaining arguments
-give the respective values to be returned, as functions of the
-parameters of the corresponding constructor. Thus here when \verb:n:
-equals \verb:O: we return \verb:m:, and when \verb:n: equals
-\verb:(S p): we return \verb:(S (add p m)):.
-
-The {\tt match} operator is formally described
-in detail in Section~\ref{Caseexpr}. The system recognizes that in
-the inductive call {\tt (add p m)} the first argument actually
-decreases because it is a {\em pattern variable} coming from {\tt match
- n with}.
-
-\Example The following definition is not correct and generates an
-error message:
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is not correct and should produce **********)
-(********* Error: Recursive call to wrongplus ... **********)
-\end{coq_eval}
-\begin{coq_example}
-Fixpoint wrongplus (n m:nat) {struct n} : nat :=
- match m with
- | O => n
- | S p => S (wrongplus n p)
- end.
-\end{coq_example}
-
-because the declared decreasing argument {\tt n} actually does not
-decrease in the recursive call. The function computing the addition
-over the second argument should rather be written:
-
-\begin{coq_example*}
-Fixpoint plus (n m:nat) {struct m} : nat :=
- match m with
- | O => n
- | S p => S (plus n p)
- end.
-\end{coq_example*}
-
-The ordinary match operation on natural numbers can be mimicked in the
-following way.
-\begin{coq_example*}
-Fixpoint nat_match
- (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C :=
- match n with
- | O => f0
- | S p => fS p (nat_match C f0 fS p)
- end.
-\end{coq_example*}
-The recursive call may not only be on direct subterms of the recursive
-variable {\tt n} but also on a deeper subterm and we can directly
-write the function {\tt mod2} which gives the remainder modulo 2 of a
-natural number.
-\begin{coq_example*}
-Fixpoint mod2 (n:nat) : nat :=
- match n with
- | O => O
- | S p => match p with
- | O => S O
- | S q => mod2 q
- end
- end.
-\end{coq_example*}
-In order to keep the strong normalization property, the fixed point
-reduction will only be performed when the argument in position of the
-decreasing argument (which type should be in an inductive definition)
-starts with a constructor.
-
-The {\tt Fixpoint} construction enjoys also the {\tt with} extension
-to define functions over mutually defined inductive types or more
-generally any mutually recursive definitions.
-
-\begin{Variants}
-\item {\tt Fixpoint {\ident$_1$} {\params$_1$} :{\type$_1$} := {\term$_1$}\\
- with {\ldots} \\
- with {\ident$_m$} {\params$_m$} :{\type$_m$} := {\term$_m$}}\\
- Allows to define simultaneously {\ident$_1$}, {\ldots},
- {\ident$_m$}.
-\end{Variants}
-
-\Example
-The size of trees and forests can be defined the following way:
-\begin{coq_eval}
-Reset Initial.
-Variables A B : Set.
-Inductive tree : Set :=
- node : A -> forest -> tree
-with forest : Set :=
- | leaf : B -> forest
- | cons : tree -> forest -> forest.
-\end{coq_eval}
-\begin{coq_example*}
-Fixpoint tree_size (t:tree) : nat :=
- match t with
- | node a f => S (forest_size f)
- end
- with forest_size (f:forest) : nat :=
- match f with
- | leaf b => 1
- | cons t f' => (tree_size t + forest_size f')
- end.
-\end{coq_example*}
-A generic command {\tt Scheme} is useful to build automatically various
-mutual induction principles. It is described in Section~\ref{Scheme}.
-
-\subsubsection{Definitions of recursive objects in co-inductive types}
-
-The command:
-\begin{center}
- \texttt{CoFixpoint {\ident} : \type$_0$ := \term$_0$}
- \comindex{CoFixpoint}\label{CoFixpoint}
-\end{center}
-introduces a method for constructing an infinite object of a
-coinduc\-tive type. For example, the stream containing all natural
-numbers can be introduced applying the following method to the number
-\texttt{O} (see Section~\ref{CoInductiveTypes} for the definition of
-{\tt Stream}, {\tt hd} and {\tt tl}):
-\begin{coq_eval}
-Reset Initial.
-CoInductive Stream : Set :=
- Seq : nat -> Stream -> Stream.
-Definition hd (x:Stream) := match x with
- | Seq a s => a
- end.
-Definition tl (x:Stream) := match x with
- | Seq a s => s
- end.
-\end{coq_eval}
-\begin{coq_example}
-CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
-\end{coq_example}
-
-Oppositely to recursive ones, there is no decreasing argument in a
-co-recursive definition. To be admissible, a method of construction
-must provide at least one extra constructor of the infinite object for
-each iteration. A syntactical guard condition is imposed on
-co-recursive definitions in order to ensure this: each recursive call
-in the definition must be protected by at least one constructor, and
-only by constructors. That is the case in the former definition, where
-the single recursive call of \texttt{from} is guarded by an
-application of \texttt{Seq}. On the contrary, the following recursive
-function does not satisfy the guard condition:
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is not correct and should produce **********)
-(***************** Error: Unguarded recursive call *******************)
-\end{coq_eval}
-\begin{coq_example}
-CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
- if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
-\end{coq_example}
-
-The elimination of co-recursive definition is done lazily, i.e. the
-definition is expanded only when it occurs at the head of an
-application which is the argument of a case analysis expression. In
-any other context, it is considered as a canonical expression which is
-completely evaluated. We can test this using the command
-\texttt{Eval}, which computes the normal forms of a term:
-
-\begin{coq_example}
-Eval compute in (from 0).
-Eval compute in (hd (from 0)).
-Eval compute in (tl (from 0)).
-\end{coq_example}
-
-\begin{Variants}
-\item{\tt CoFixpoint {\ident$_1$} {\params} :{\type$_1$} :=
- {\term$_1$}}\\ As for most constructions, arguments of co-fixpoints
- expressions can be introduced before the {\tt :=} sign.
-\item{\tt CoFixpoint {\ident$_1$} :{\type$_1$} := {\term$_1$}\\
- with\\
- \mbox{}\hspace{0.1cm} $\ldots$ \\
- with {\ident$_m$} : {\type$_m$} := {\term$_m$}}\\
-As in the \texttt{Fixpoint} command (see Section~\ref{Fixpoint}), it
-is possible to introduce a block of mutually dependent methods.
-\end{Variants}
-
-%%
-%% Theorems & Lemmas
-%%
-\subsection{Assertions and proofs}
-\label{Assertions}
-
-An assertion states a proposition (or a type) of which the proof (or
-an inhabitant of the type) is interactively built using tactics. The
-interactive proof mode is described in
-Chapter~\ref{Proof-handling} and the tactics in Chapter~\ref{Tactics}.
-The basic assertion command is:
-
-\subsubsection{\tt Theorem {\ident} \zeroone{\binders} : {\type}.
-\comindex{Theorem}}
-
-After the statement is asserted, {\Coq} needs a proof. Once a proof of
-{\type} under the assumptions represented by {\binders} is given and
-validated, the proof is generalized into a proof of {\tt forall
- \zeroone{\binders}, {\type}} and the theorem is bound to the name
-{\ident} in the environment.
-
-\begin{ErrMsgs}
-
-\item \errindex{The term {\form} has type {\ldots} which should be Set,
- Prop or Type}
-
-\item \errindexbis{{\ident} already exists}{already exists}
-
- The name you provided is already defined. You have then to choose
- another name.
-
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Lemma {\ident} \zeroone{\binders} : {\type}.}\comindex{Lemma}\\
- {\tt Remark {\ident} \zeroone{\binders} : {\type}.}\comindex{Remark}\\
- {\tt Fact {\ident} \zeroone{\binders} : {\type}.}\comindex{Fact}\\
- {\tt Corollary {\ident} \zeroone{\binders} : {\type}.}\comindex{Corollary}\\
- {\tt Proposition {\ident} \zeroone{\binders} : {\type}.}\comindex{Proposition}
-
-These commands are synonyms of \texttt{Theorem {\ident} \zeroone{\binders} : {\type}}.
-
-\item {\tt Theorem \nelist{{\ident} \zeroone{\binders}: {\type}}{with}.}
-
-This command is useful for theorems that are proved by simultaneous
-induction over a mutually inductive assumption, or that assert mutually
-dependent statements in some mutual coinductive type. It is equivalent
-to {\tt Fixpoint} or {\tt CoFixpoint}
-(see Section~\ref{CoFixpoint}) but using tactics to build the proof of
-the statements (or the body of the specification, depending on the
-point of view). The inductive or coinductive types on which the
-induction or coinduction has to be done is assumed to be non ambiguous
-and is guessed by the system.
-
-Like in a {\tt Fixpoint} or {\tt CoFixpoint} definition, the induction
-hypotheses have to be used on {\em structurally smaller} arguments
-(for a {\tt Fixpoint}) or be {\em guarded by a constructor} (for a {\tt
- CoFixpoint}). The verification that recursive proof arguments are
-correct is done only at the time of registering the lemma in the
-environment. To know if the use of induction hypotheses is correct at
-some time of the interactive development of a proof, use the command
-{\tt Guarded} (see Section~\ref{Guarded}).
-
-The command can be used also with {\tt Lemma},
-{\tt Remark}, etc. instead of {\tt Theorem}.
-
-\item {\tt Definition {\ident} \zeroone{\binders} : {\type}.}
-
-This allows to define a term of type {\type} using the proof editing mode. It
-behaves as {\tt Theorem} but is intended to be used in conjunction with
- {\tt Defined} (see \ref{Defined}) in order to define a
- constant of which the computational behavior is relevant.
-
-The command can be used also with {\tt Example} instead
-of {\tt Definition}.
-
-\SeeAlso Sections~\ref{Opaque} and~\ref{Transparent} ({\tt Opaque}
-and {\tt Transparent}) and~\ref{unfold} (tactic {\tt unfold}).
-
-\item {\tt Let {\ident} \zeroone{\binders} : {\type}.}
-
-Like {\tt Definition {\ident} \zeroone{\binders} : {\type}.} except
-that the definition is turned into a local definition generalized over
-the declarations depending on it after closing the current section.
-
-\item {\tt Fixpoint \nelist{{\ident} {\binders} \zeroone{\annotation} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.}
-\comindex{Fixpoint}
-
-This generalizes the syntax of {\tt Fixpoint} so that one or more
-bodies can be defined interactively using the proof editing mode (when
-a body is omitted, its type is mandatory in the syntax). When the
-block of proofs is completed, it is intended to be ended by {\tt
- Defined}.
-
-\item {\tt CoFixpoint \nelist{{\ident} \zeroone{\binders} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.}
-\comindex{CoFixpoint}
-
-This generalizes the syntax of {\tt CoFixpoint} so that one or more bodies
-can be defined interactively using the proof editing mode.
-
-\end{Variants}
-
-\subsubsection{{\tt Proof.} {\dots} {\tt Qed.}
-\comindex{Proof}
-\comindex{Qed}}
-
-A proof starts by the keyword {\tt Proof}. Then {\Coq} enters the
-proof editing mode until the proof is completed. The proof editing
-mode essentially contains tactics that are described in chapter
-\ref{Tactics}. Besides tactics, there are commands to manage the proof
-editing mode. They are described in Chapter~\ref{Proof-handling}. When
-the proof is completed it should be validated and put in the
-environment using the keyword {\tt Qed}.
-\medskip
-
-\ErrMsg
-\begin{enumerate}
-\item \errindex{{\ident} already exists}
-\end{enumerate}
-
-\begin{Remarks}
-\item Several statements can be simultaneously asserted.
-\item Not only other assertions but any vernacular command can be given
-while in the process of proving a given assertion. In this case, the command is
-understood as if it would have been given before the statements still to be
-proved.
-\item {\tt Proof} is recommended but can currently be omitted. On the
-opposite side, {\tt Qed} (or {\tt Defined}, see below) is mandatory to
-validate a proof.
-\item Proofs ended by {\tt Qed} are declared opaque. Their content
- cannot be unfolded (see \ref{Conversion-tactics}), thus realizing
- some form of {\em proof-irrelevance}. To be able to unfold a proof,
- the proof should be ended by {\tt Defined} (see below).
-\end{Remarks}
-
-\begin{Variants}
-\item \comindex{Defined}
- {\tt Proof.} {\dots} {\tt Defined.}\\
- Same as {\tt Proof.} {\dots} {\tt Qed.} but the proof is
- then declared transparent, which means that its
- content can be explicitly used for type-checking and that it
- can be unfolded in conversion tactics (see
- \ref{Conversion-tactics}, \ref{Opaque}, \ref{Transparent}).
-%Not claimed to be part of Gallina...
-%\item {\tt Proof.} {\dots} {\tt Save.}\\
-% Same as {\tt Proof.} {\dots} {\tt Qed.}
-%\item {\tt Goal} \type {\dots} {\tt Save} \ident \\
-% Same as {\tt Lemma} \ident {\tt :} \type \dots {\tt Save.}
-% This is intended to be used in the interactive mode.
-\item \comindex{Admitted}
- {\tt Proof.} {\dots} {\tt Admitted.}\\
- Turns the current asserted statement into an axiom and exits the
- proof mode.
-\end{Variants}
-
-% Local Variables:
-% mode: LaTeX
-% TeX-master: "Reference-Manual"
-% End:
-
diff --git a/doc/refman/RefMan-ide.tex b/doc/refman/RefMan-ide.tex
deleted file mode 100644
index 04830531..00000000
--- a/doc/refman/RefMan-ide.tex
+++ /dev/null
@@ -1,322 +0,0 @@
-\chapter[\Coq{} Integrated Development Environment]{\Coq{} Integrated Development Environment\label{Addoc-coqide}
-\ttindex{coqide}}
-
-The \Coq{} Integrated Development Environment is a graphical tool, to
-be used as a user-friendly replacement to \texttt{coqtop}. Its main
-purpose is to allow the user to navigate forward and backward into a
-\Coq{} vernacular file, executing corresponding commands or undoing
-them respectively. % CREDITS ? Proof general, lablgtk, ...
-
-\CoqIDE{} is run by typing the command \verb|coqide| on the command
-line. Without argument, the main screen is displayed with an ``unnamed
-buffer'', and with a file name as argument, another buffer displaying
-the contents of that file. Additionally, \verb|coqide| accepts the same
-options as \verb|coqtop|, given in Chapter~\ref{Addoc-coqc}, the ones having
-obviously no meaning for \CoqIDE{} being ignored. Additionally, \verb|coqide| accepts the option \verb|-enable-geoproof| to enable the support for \emph{GeoProof} \footnote{\emph{GeoProof} is dynamic geometry software which can be used in conjunction with \CoqIDE{} to interactively build a Coq statement corresponding to a geometric figure. More information about \emph{GeoProof} can be found here: \url{http://home.gna.org/geoproof/} }.
-
-
-\begin{figure}[t]
-\begin{center}
-%HEVEA\imgsrc{coqide.png}
-%BEGIN LATEX
-\ifpdf % si on est en pdflatex
-\includegraphics[width=1.0\textwidth]{coqide.png}
-\else
-\includegraphics[width=1.0\textwidth]{coqide.eps}
-\fi
-%END LATEX
-\end{center}
-\caption{\CoqIDE{} main screen}
-\label{fig:coqide}
-\end{figure}
-
-A sample \CoqIDE{} main screen, while navigating into a file
-\verb|Fermat.v|, is shown on Figure~\ref{fig:coqide}. At
-the top is a menu bar, and a tool bar below it. The large window on
-the left is displaying the various \emph{script buffers}. The upper right
-window is the \emph{goal window}, where goals to
-prove are displayed. The lower right window is the \emph{message window},
-where various messages resulting from commands are displayed. At the
-bottom is the status bar.
-
-\section{Managing files and buffers, basic edition}
-
-In the script window, you may open arbitrarily many buffers to
-edit. The \emph{File} menu allows you to open files or create some,
-save them, print or export them into various formats. Among all these
-buffers, there is always one which is the current \emph{running
- buffer}, whose name is displayed on a green background, which is the
-one where Coq commands are currently executed.
-
-Buffers may be edited as in any text editor, and classical basic
-editing commands (Copy/Paste, \ldots) are available in the \emph{Edit}
-menu. \CoqIDE{} offers only basic editing commands, so if you need
-more complex editing commands, you may launch your favorite text
-editor on the current buffer, using the \emph{Edit/External Editor}
-menu.
-
-\section{Interactive navigation into \Coq{} scripts}
-
-The running buffer is the one where navigation takes place. The
-toolbar proposes five basic commands for this. The first one,
-represented by a down arrow icon, is for going forward executing one
-command. If that command is successful, the part of the script that
-has been executed is displayed on a green background. If that command
-fails, the error message is displayed in the message window, and the
-location of the error is emphasized by a red underline.
-
-On Figure~\ref{fig:coqide}, the running buffer is \verb|Fermat.v|, all
-commands until the \verb|Theorem| have been already executed, and the
-user tried to go forward executing \verb|Induction n|. That command
-failed because no such tactic exist (tactics are now in
-lowercase\ldots), and the wrong word is underlined.
-
-Notice that the green part of the running buffer is not editable. If
-you ever want to modify something you have to go backward using the up
-arrow tool, or even better, put the cursor where you want to go back
-and use the \textsf{goto} button. Unlike with \verb|coqtop|, you
-should never use \verb|Undo| to go backward.
-
-Two additional tool buttons exist, one to go directly to the end and
-one to go back to the beginning. If you try to go to the end, or in
-general to run several commands using the \textsf{goto} button, the
- execution will stop whenever an error is found.
-
-If you ever try to execute a command which happens to run during a
-long time, and would like to abort it before its
-termination, you may use the interrupt button (the white cross on a red circle).
-
-Finally, notice that these navigation buttons are also available in
-the menu, where their keyboard shortcuts are given.
-
-\section[Try tactics automatically]{Try tactics automatically\label{sec:trytactics}}
-
-The menu \texttt{Try Tactics} provides some features for automatically
-trying to solve the current goal using simple tactics. If such a
-tactic succeeds in solving the goal, then its text is automatically
-inserted into the script. There is finally a combination of these
-tactics, called the \emph{proof wizard} which will try each of them in
-turn. This wizard is also available as a tool button (the light
-bulb). The set of tactics tried by the wizard is customizable in
-the preferences.
-
-These tactics are general ones, in particular they do not refer to
-particular hypotheses. You may also try specific tactics related to
-the goal or one of the hypotheses, by clicking with the right mouse
-button on the goal or the considered hypothesis. This is the
-``contextual menu on goals'' feature, that may be disabled in the
-preferences if undesirable.
-
-\section{Proof folding}
-
-As your script grows bigger and bigger, it might be useful to hide the proofs
-of your theorems and lemmas.
-
-This feature is toggled via the \texttt{Hide} entry of the \texttt{Navigation}
-menu. The proof shall be enclosed between \texttt{Proof.} and \texttt{Qed.},
-both with their final dots. The proof that shall be hidden or revealed is the
-first one whose beginning statement (such as \texttt{Theorem}) precedes the
-insertion cursor.
-
-\section{Vernacular commands, templates}
-
-The \texttt{Templates} menu allows to use shortcuts to insert
-vernacular commands. This is a nice way to proceed if you are not sure
-of the spelling of the command you want.
-
-Moreover, this menu offers some \emph{templates} which will automatic
-insert a complex command like Fixpoint with a convenient shape for its
-arguments.
-
-\section{Queries}
-
-\begin{figure}[t]
-\begin{center}
-%HEVEA\imgsrc{coqide-queries.png}
-%BEGIN LATEX
-\ifpdf % si on est en pdflatex
-\includegraphics[width=1.0\textwidth]{coqide-queries.png}
-\else
-\includegraphics[width=1.0\textwidth]{coqide-queries.eps}
-\fi
-%END LATEX
-\end{center}
-\caption{\CoqIDE{}: the query window}
-\label{fig:querywindow}
-\end{figure}
-
-
-We call \emph{query} any vernacular command that do not change the
-current state, such as \verb|Check|, \verb|SearchAbout|, etc. Those
-commands are of course useless during compilation of a file, hence
-should not be included in scripts. To run such commands without
-writing them in the script, \CoqIDE{} offers another input window
-called the \emph{query window}. This window can be displayed on
-demand, either by using the \texttt{Window} menu, or directly using
-shortcuts given in the \texttt{Queries} menu. Indeed, with \CoqIDE{}
-the simplest way to perform a \texttt{SearchAbout} on some identifier
-is to select it using the mouse, and pressing \verb|F2|. This will
-both make appear the query window and run the \texttt{SearchAbout} in
-it, displaying the result. Shortcuts \verb|F3| and \verb|F4| are for
-\verb|Check| and \verb|Print| respectively.
-Figure~\ref{fig:querywindow} displays the query window after selection
-of the word ``mult'' in the script windows, and pressing \verb|F4| to
-print its definition.
-
-\section{Compilation}
-
-The \verb|Compile| menu offers direct commands to:
-\begin{itemize}
-\item compile the current buffer
-\item run a compilation using \verb|make|
-\item go to the last compilation error
-\item create a \verb|makefile| using \verb|coq_makefile|.
-\end{itemize}
-
-\section{Customizations}
-
-You may customize your environment using menu
-\texttt{Edit/Preferences}. A new window will be displayed, with
-several customization sections presented as a notebook.
-
-The first section is for selecting the text font used for scripts, goal
-and message windows.
-
-The second section is devoted to file management: you may
-configure automatic saving of files, by periodically saving the
-contents into files named \verb|#f#| for each opened file
-\verb|f|. You may also activate the \emph{revert} feature: in case a
-opened file is modified on the disk by a third party, \CoqIDE{} may read
-it again for you. Note that in the case you edited that same file, you
-will be prompt to choose to either discard your changes or not. The
-\texttt{File charset encoding} choice is described below in
-Section~\ref{sec:coqidecharencoding}
-
-
-The \verb|Externals| section allows to customize the external commands
-for compilation, printing, web browsing. In the browser command, you
-may use \verb|%s| to denote the URL to open, for example: %
-\verb|mozilla -remote "OpenURL(%s)"|.
-
-The \verb|Tactics Wizard| section allows to defined the set of tactics
-that should be tried, in sequence, to solve the current goal.
-
-The last section is for miscellaneous boolean settings, such as the
-``contextual menu on goals'' feature presented in
-Section~\ref{sec:trytactics}.
-
-Notice that these settings are saved in the file \verb|.coqiderc| of
-your home directory.
-
-A gtk2 accelerator keymap is saved under the name \verb|.coqide.keys|.
-This file should not be edited manually: to modify a given menu
-shortcut, go to the corresponding menu item without releasing the
-mouse button, press the key you want for the new shortcut, and release
-the mouse button afterwards.
-
-For experts: it is also possible to set up a specific gtk resource
-file, under the name \verb|.coqide-gtk2rc|, following the gtk2
-resources syntax
-\url{http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html}.
-Such a default resource file can be found in the subdirectory
-\verb=lib/coq/ide= of the root installation directory of \Coq{}
-(alternatively, it can be found in the subdirectory \verb=ide= of the
-source archive of \Coq{}). You may
-copy this file into your home directory, and edit it using any text
-editor, \CoqIDE{} itself for example.
-
-\section{Using unicode symbols}
-
-\CoqIDE{} supports unicode character encoding in its text windows,
-consequently a large set of symbols is available for notations.
-
-\subsection{Displaying unicode symbols}
-
-You just need to define suitable notations as described in
-Chapter~\ref{Addoc-syntax}. For example, to use the mathematical symbols
-$\forall$ and $\exists$, you may define
-\begin{quote}\tt
-Notation "$\forall$ x : t, P" := \\
-\qquad (forall x:t, P) (at level 200, x ident).\\
-Notation "$\exists$ x : t, P" := \\
-\qquad (exists x:t, P) (at level 200, x ident).
-\end{quote}
-There exists a small set of such notations already defined, in the
-file \verb|utf8.v| of \Coq{} library, so you may enable them just by
-\verb|Require utf8| inside \CoqIDE{}, or equivalently, by starting
-\CoqIDE{} with \verb|coqide -l utf8|.
-
-However, there are some issues when using such unicode symbols: you of
-course need to use a character font which supports them. In the Fonts
-section of the preferences, the Preview line displays some unicode symbols, so
-you could figure out if the selected font is OK. Related to this, one
-thing you may need to do is choose whether Gtk should use antialiased
-fonts or not, by setting the environment variable \verb|GDK_USE_XFT|
-to 1 or 0 respectively.
-
-\subsection{Defining an input method for non ASCII symbols}
-
-To input an Unicode symbol, a general method is to press both the
-CONTROL and the SHIFT keys, and type the hexadecimal code of the
-symbol required, for example \verb|2200| for the $\forall$ symbol.
-A list of symbol codes is available at \url{http://www.unicode.org}.
-
-This method obviously doesn't scale, that's why the preferred alternative is to
-use an Input Method Editor. On POSIX systems (Linux distros, BSD variants and
-MacOS X), you can use \texttt{uim} version 1.6 or later which provides a \LaTeX{}-style
-input method.
-
-To configure \texttt{uim}, execute \texttt{uim-pref-gtk} as your regular user.
-In the "Global Settings" group set the default Input Method to "ELatin" (don't
-forget to tick the checkbox "Specify default IM"). In the "ELatin" group set the
-layout to "TeX", and remember the content of the "[ELatin] on" field (by default
-"<Control>\"). You can now execute CoqIDE with the following commands (assuming
-you use a Bourne-style shell):
-
-\begin{verbatim}
-$ export GTK_IM_MODULE=uim
-$ coqide
-\end{verbatim}
-
-Activate the ELatin Input Method with Ctrl-\textbackslash, then type the
-sequence "\verb=\Gamma=". You will see the sequence being
-replaced by $\Gamma$ as soon as you type the second "a".
-
-\subsection[Character encoding for saved files]{Character encoding for saved files\label{sec:coqidecharencoding}}
-
-In the \texttt{Files} section of the preferences, the encoding option
-is related to the way files are saved.
-
-If you have no need to exchange files with non UTF-8 aware
-applications, it is better to choose the UTF-8 encoding, since it
-guarantees that your files will be read again without problems. (This
-is because when \CoqIDE{} reads a file, it tries to automatically
-detect its character encoding.)
-
-If you choose something else than UTF-8, then missing characters will
-be written encoded by \verb|\x{....}| or \verb|\x{........}| where
-each dot is an hexadecimal digit: the number between braces is the
-hexadecimal UNICODE index for the missing character.
-
-
-\section{Building a custom \CoqIDE{} with user \textsc{ML} code}
-
-You can do this as described in Section~\ref{Coqmktop} for a
-custom coq text toplevel, simply by adding
-option \verb|-ide| to \verb|coqmktop|, that is something like
-\begin{quote}
-\texttt{coqmktop -ide -byte $m_1$.cmo \ldots{} $m_n$.cmo}
-\end{quote}
-or
-\begin{quote}
-\texttt{coqmktop -ide -opt $m_1$.cmx \ldots{} $m_n$.cmx}
-\end{quote}
-
-
-
-% $Id: RefMan-ide.tex 13477 2010-09-30 16:50:00Z vgross $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-ind.tex b/doc/refman/RefMan-ind.tex
deleted file mode 100644
index af4257ca..00000000
--- a/doc/refman/RefMan-ind.tex
+++ /dev/null
@@ -1,511 +0,0 @@
-
-%\documentstyle[11pt]{article}
-%\input{title}
-
-%\include{macros}
-%\makeindex
-
-%\begin{document}
-%\coverpage{The module {\tt Equality}}{Cristina CORNES}
-
-%\tableofcontents
-
-\chapter[Tactics for inductive types and families]{Tactics for inductive types and families\label{Addoc-equality}}
-
-This chapter details a few special tactics useful for inferring facts
-from inductive hypotheses. They can be considered as tools that
-macro-generate complicated uses of the basic elimination tactics for
-inductive types.
-
-Sections \ref{inversion_introduction} to \ref{inversion_using} present
-inversion tactics and Section~\ref{scheme} describes
-a command {\tt Scheme} for automatic generation of induction schemes
-for mutual inductive types.
-
-%\end{document}
-%\documentstyle[11pt]{article}
-%\input{title}
-
-%\begin{document}
-%\coverpage{Module Inv: Inversion Tactics}{Cristina CORNES}
-
-\section[Generalities about inversion]{Generalities about inversion\label{inversion_introduction}}
-When working with (co)inductive predicates, we are very often faced to
-some of these situations:
-\begin{itemize}
-\item we have an inconsistent instance of an inductive predicate in the
- local context of hypotheses. Thus, the current goal can be trivially
- proved by absurdity.
-
-\item we have a hypothesis that is an instance of an inductive
- predicate, and the instance has some variables whose constraints we
- would like to derive.
-\end{itemize}
-
-The inversion tactics are very useful to simplify the work in these
-cases. Inversion tools can be classified in three groups:
-\begin{enumerate}
-\item tactics for inverting an instance without stocking the inversion
- lemma in the context:
- (\texttt{Dependent}) \texttt{Inversion} and
- (\texttt{Dependent}) \texttt{Inversion\_clear}.
-\item commands for generating and stocking in the context the inversion
- lemma corresponding to an instance: \texttt{Derive}
- (\texttt{Dependent}) \texttt{Inversion}, \texttt{Derive}
- (\texttt{Dependent}) \texttt{Inversion\_clear}.
-\item tactics for inverting an instance using an already defined
- inversion lemma: \texttt{Inversion \ldots using}.
-\end{enumerate}
-
-These tactics work for inductive types of arity $(\vec{x}:\vec{T})s$
-where $s \in \{Prop,Set,Type\}$. Sections \ref{inversion_primitive},
-\ref{inversion_derivation} and \ref{inversion_using}
-describe respectively each group of tools.
-
-As inversion proofs may be large in size, we recommend the user to
-stock the lemmas whenever the same instance needs to be inverted
-several times.\\
-
-Let's consider the relation \texttt{Le} over natural numbers and the
-following variables:
-
-\begin{coq_eval}
-Restore State "Initial".
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive Le : nat -> nat -> Set :=
- | LeO : forall n:nat, Le 0%N n
- | LeS : forall n m:nat, Le n m -> Le (S n) (S m).
-Variable P : nat -> nat -> Prop.
-Variable Q : forall n m:nat, Le n m -> Prop.
-\end{coq_example*}
-
-For example purposes we defined \verb+Le: nat->nat->Set+
- but we may have defined
-it \texttt{Le} of type \verb+nat->nat->Prop+ or \verb+nat->nat->Type+.
-
-
-\section[Inverting an instance]{Inverting an instance\label{inversion_primitive}}
-\subsection{The non dependent case}
-\begin{itemize}
-
-\item \texttt{Inversion\_clear} \ident~\\
-\index{Inversion-clear@{\tt Inversion\_clear}}
- Let the type of \ident~ in the local context be $(I~\vec{t})$,
- where $I$ is a (co)inductive predicate. Then,
- \texttt{Inversion} applied to \ident~ derives for each possible
- constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary
- conditions that should hold for the instance $(I~\vec{t})$ to be
- proved by $c_i$. Finally it erases \ident~ from the context.
-
-
-
-For example, consider the goal:
-\begin{coq_eval}
-Lemma ex : forall n m:nat, Le (S n) m -> P n m.
-intros.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-To prove the goal we may need to reason by cases on \texttt{H} and to
- derive that \texttt{m} is necessarily of
-the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.
-Deriving these conditions corresponds to prove that the
-only possible constructor of \texttt{(Le (S n) m)} is
-\texttt{LeS} and that we can invert the
-\texttt{->} in the type of \texttt{LeS}.
-This inversion is possible because \texttt{Le} is the smallest set closed by
-the constructors \texttt{LeO} and \texttt{LeS}.
-
-
-\begin{coq_example}
-inversion_clear H.
-\end{coq_example}
-
-Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
-and that the hypothesis \texttt{(Le n m0)} has been added to the
-context.
-
-\item \texttt{Inversion} \ident~\\
-\index{Inversion@{\tt Inversion}}
- This tactic differs from {\tt Inversion\_clear} in the fact that
- it adds the equality constraints in the context and
- it does not erase the hypothesis \ident.
-
-
-In the previous example, {\tt Inversion\_clear}
-has substituted \texttt{m} by \texttt{(S m0)}. Sometimes it is
-interesting to have the equality \texttt{m=(S m0)} in the
-context to use it after. In that case we can use \texttt{Inversion} that
-does not clear the equalities:
-
-\begin{coq_example*}
-Undo.
-\end{coq_example*}
-\begin{coq_example}
-inversion H.
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-Note that the hypothesis \texttt{(S m0)=m} has been deduced and
-\texttt{H} has not been cleared from the context.
-
-\end{itemize}
-
-\begin{Variants}
-
-\item \texttt{Inversion\_clear } \ident~ \texttt{in} \ident$_1$ \ldots
- \ident$_n$\\
-\index{Inversion_clear...in@{\tt Inversion\_clear...in}}
- Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This
- tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing
- {\tt Inversion\_clear}.
-
-\item \texttt{Inversion } \ident~ \texttt{in} \ident$_1$ \ldots \ident$_n$\\
-\index{Inversion ... in@{\tt Inversion ... in}}
- Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This
- tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing
- \texttt{Inversion}.
-
-
-\item \texttt{Simple Inversion} \ident~ \\
-\index{Simple Inversion@{\tt Simple Inversion}}
- It is a very primitive inversion tactic that derives all the necessary
- equalities but it does not simplify
- the constraints as \texttt{Inversion} and
- {\tt Inversion\_clear} do.
-
-\end{Variants}
-
-
-\subsection{The dependent case}
-\begin{itemize}
-\item \texttt{Dependent Inversion\_clear} \ident~\\
-\index{Dependent Inversion-clear@{\tt Dependent Inversion\_clear}}
- Let the type of \ident~ in the local context be $(I~\vec{t})$,
- where $I$ is a (co)inductive predicate, and let the goal depend both on
- $\vec{t}$ and \ident. Then,
- \texttt{Dependent Inversion\_clear} applied to \ident~ derives
- for each possible constructor $c_i$ of $(I~\vec{t})$, {\bf all} the
- necessary conditions that should hold for the instance $(I~\vec{t})$ to be
- proved by $c_i$. It also substitutes \ident~ for the corresponding
- term in the goal and it erases \ident~ from the context.
-
-
-For example, consider the goal:
-\begin{coq_eval}
-Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H.
-intros.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-As \texttt{H} occurs in the goal, we may want to reason by cases on its
-structure and so, we would like inversion tactics to
-substitute \texttt{H} by the corresponding term in constructor form.
-Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a
-substitution. To have such a behavior we use the dependent inversion tactics:
-
-\begin{coq_example}
-dependent inversion_clear H.
-\end{coq_example}
-
-Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
-\texttt{m} by \texttt{(S m0)}.
-
-
-\end{itemize}
-
-\begin{Variants}
-
-\item \texttt{Dependent Inversion\_clear } \ident~ \texttt{ with } \term\\
-\index{Dependent Inversion_clear...with@{\tt Dependent Inversion\_clear...with}}
- \noindent Behaves as \texttt{Dependent Inversion\_clear} but allows to give
- explicitly the good generalization of the goal. It is useful when
- the system fails to generalize the goal automatically. If
- \ident~ has type $(I~\vec{t})$ and $I$ has type
- $(\vec{x}:\vec{T})s$, then \term~ must be of type
- $I:(\vec{x}:\vec{T})(I~\vec{x})\rightarrow s'$ where $s'$ is the
- type of the goal.
-
-
-
-\item \texttt{Dependent Inversion} \ident~\\
-\index{Dependent Inversion@{\tt Dependent Inversion}}
- This tactic differs from \texttt{Dependent Inversion\_clear} in the fact that
- it also adds the equality constraints in the context and
- it does not erase the hypothesis \ident~.
-
-\item \texttt{Dependent Inversion } \ident~ \texttt{ with } \term \\
-\index{Dependent Inversion...with@{\tt Dependent Inversion...with}}
- Analogous to \texttt{Dependent Inversion\_clear .. with..} above.
-\end{Variants}
-
-
-
-\section[Deriving the inversion lemmas]{Deriving the inversion lemmas\label{inversion_derivation}}
-\subsection{The non dependent case}
-
-The tactics (\texttt{Dependent}) \texttt{Inversion} and (\texttt{Dependent})
-{\tt Inversion\_clear} work on a
-certain instance $(I~\vec{t})$ of an inductive predicate. At each
-application, they inspect the given instance and derive the
-corresponding inversion lemma. If we have to invert the same
-instance several times it is recommended to stock the lemma in the
-context and to reuse it whenever we need it.
-
-The families of commands \texttt{Derive Inversion}, \texttt{Derive
-Dependent Inversion}, \texttt{Derive} \\ {\tt Inversion\_clear} and \texttt{Derive Dependent Inversion\_clear}
-allow to generate inversion lemmas for given instances and sorts. Next
-section describes the tactic \texttt{Inversion}$\ldots$\texttt{using} that refines the
-goal with a specified inversion lemma.
-
-\begin{itemize}
-
-\item \texttt{Derive Inversion\_clear} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
-\index{Derive Inversion_clear...with@{\tt Derive Inversion\_clear...with}}
- Let $I$ be an inductive predicate and $\vec{x}$ the variables
- occurring in $\vec{t}$. This command generates and stocks
- the inversion lemma for the sort \sort~ corresponding to the instance
- $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf
- global} environment. When applied it is equivalent to have
- inverted the instance with the tactic {\tt Inversion\_clear}.
-
-
- For example, to generate the inversion lemma for the instance
- \texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:
-\begin{coq_example}
-Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
- Prop.
-\end{coq_example}
-
-Let us inspect the type of the generated lemma:
-\begin{coq_example}
-Check leminv.
-\end{coq_example}
-
-
-
-\end{itemize}
-
-%\variants
-%\begin{enumerate}
-%\item \verb+Derive Inversion_clear+ \ident$_1$ \ident$_2$ \\
-%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}}
-% Let \ident$_1$ have type $(I~\vec{t})$ in the local context ($I$
-% an inductive predicate). Then, this command has the same semantics
-% as \verb+Derive Inversion_clear+ \ident$_2$~ \verb+with+
-% $(\vec{x}:\vec{T})(I~\vec{t})$ \verb+Sort Prop+ where $\vec{x}$ are the free
-% variables of $(I~\vec{t})$ declared in the local context (variables
-% of the global context are considered as constants).
-%\item \verb+Derive Inversion+ \ident$_1$~ \ident$_2$~\\
-%\index{Derive Inversion@{\tt Derive Inversion}}
-% Analogous to the previous command.
-%\item \verb+Derive Inversion+ $num$ \ident~ \ident~ \\
-%\index{Derive Inversion@{\tt Derive Inversion}}
-% This command behaves as \verb+Derive Inversion+ \ident~ {\it
-% namehyp} performed on the goal number $num$.
-%
-%\item \verb+Derive Inversion_clear+ $num$ \ident~ \ident~ \\
-%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}}
-% This command behaves as \verb+Derive Inversion_clear+ \ident~
-% \ident~ performed on the goal number $num$.
-%\end{enumerate}
-
-
-
-A derived inversion lemma is adequate for inverting the instance
-with which it was generated, \texttt{Derive} applied to
-different instances yields different lemmas. In general, if we generate
-the inversion lemma with
-an instance $(\vec{x}:\vec{T})(I~\vec{t})$ and a sort $s$, the inversion lemma will
-expect a predicate of type $(\vec{x}:\vec{T})s$ as first argument. \\
-
-\begin{Variant}
-\item \texttt{Derive Inversion} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort\\
-\index{Derive Inversion...with@{\tt Derive Inversion...with}}
- Analogous of \texttt{Derive Inversion\_clear .. with ..} but
- when applied it is equivalent to having
- inverted the instance with the tactic \texttt{Inversion}.
-\end{Variant}
-
-\subsection{The dependent case}
-\begin{itemize}
-\item \texttt{Derive Dependent Inversion\_clear} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
-\index{Derive Dependent Inversion\_clear...with@{\tt Derive Dependent Inversion\_clear...with}}
- Let $I$ be an inductive predicate. This command generates and stocks
- the dependent inversion lemma for the sort \sort~ corresponding to the instance
- $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf
- global} environment. When applied it is equivalent to having
- inverted the instance with the tactic \texttt{Dependent Inversion\_clear}.
-\end{itemize}
-
-\begin{coq_example}
-Derive Dependent Inversion_clear leminv_dep with
- (forall n m:nat, Le (S n) m) Sort Prop.
-\end{coq_example}
-
-\begin{coq_example}
-Check leminv_dep.
-\end{coq_example}
-
-\begin{Variants}
-\item \texttt{Derive Dependent Inversion} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
-\index{Derive Dependent Inversion...with@{\tt Derive Dependent Inversion...with}}
- Analogous to \texttt{Derive Dependent Inversion\_clear}, but when
- applied it is equivalent to having
- inverted the instance with the tactic \texttt{Dependent Inversion}.
-
-\end{Variants}
-
-\section[Using already defined inversion lemmas]{Using already defined inversion lemmas\label{inversion_using}}
-\begin{itemize}
-\item \texttt{Inversion} \ident \texttt{ using} \ident$'$ \\
-\index{Inversion...using@{\tt Inversion...using}}
- Let \ident~ have type $(I~\vec{t})$ ($I$ an inductive
- predicate) in the local context, and \ident$'$ be a (dependent) inversion
- lemma. Then, this tactic refines the current goal with the specified
- lemma.
-
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-\begin{coq_example}
-inversion H using leminv.
-\end{coq_example}
-
-
-\end{itemize}
-\variant
-\begin{enumerate}
-\item \texttt{Inversion} \ident~ \texttt{using} \ident$'$ \texttt{in} \ident$_1$\ldots \ident$_n$\\
-\index{Inversion...using...in@{\tt Inversion...using...in}}
-This tactic behaves as generalizing \ident$_1$\ldots \ident$_n$,
-then doing \texttt{Use Inversion} \ident~\ident$'$.
-\end{enumerate}
-
-\section[\tt Scheme ...]{\tt Scheme ...\index{Scheme@{\tt Scheme}}\label{Scheme}
-\label{scheme}}
-The {\tt Scheme} command is a high-level tool for generating
-automatically (possibly mutual) induction principles for given types
-and sorts. Its syntax follows the schema :
-
-\noindent
-{\tt Scheme {\ident$_1$} := Induction for \term$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} .. \\
- with {\ident$_m$} := Induction for {\term$_m$} Sort
- {\sort$_m$}}\\
-\term$_1$ \ldots \term$_m$ are different inductive types belonging to
-the same package of mutual inductive definitions. This command
-generates {\ident$_1$}\ldots{\ident$_m$} to be mutually recursive
-definitions. Each term {\ident$_i$} proves a general principle
-of mutual induction for objects in type {\term$_i$}.
-
-\Example
-The definition of principle of mutual induction for {\tt tree} and
-{\tt forest} over the sort {\tt Set} is defined by the command:
-\begin{coq_eval}
-Restore State "Initial".
-Variables A B : Set.
-Inductive tree : Set :=
- node : A -> forest -> tree
-with forest : Set :=
- | leaf : B -> forest
- | cons : tree -> forest -> forest.
-\end{coq_eval}
-\begin{coq_example*}
-Scheme tree_forest_rec := Induction for tree
- Sort Set
- with forest_tree_rec := Induction for forest Sort Set.
-\end{coq_example*}
-You may now look at the type of {\tt tree\_forest\_rec} :
-\begin{coq_example}
-Check tree_forest_rec.
-\end{coq_example}
-This principle involves two different predicates for {\tt trees} and
-{\tt forests}; it also has three premises each one corresponding to a
-constructor of one of the inductive definitions.
-
-The principle {\tt tree\_forest\_rec} shares exactly the same
-premises, only the conclusion now refers to the property of forests.
-\begin{coq_example}
-Check forest_tree_rec.
-\end{coq_example}
-
-\begin{Variant}
-\item {\tt Scheme {\ident$_1$} := Minimality for \term$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} .. \\
- with {\ident$_m$} := Minimality for {\term$_m$} Sort
- {\sort$_m$}}\\
-Same as before but defines a non-dependent elimination principle more
-natural in case of inductively defined relations.
-\end{Variant}
-
-\Example
-With the predicates {\tt odd} and {\tt even} inductively defined as:
-% \begin{coq_eval}
-% Restore State "Initial".
-% \end{coq_eval}
-\begin{coq_example*}
-Inductive odd : nat -> Prop :=
- oddS : forall n:nat, even n -> odd (S n)
-with even : nat -> Prop :=
- | evenO : even 0%N
- | evenS : forall n:nat, odd n -> even (S n).
-\end{coq_example*}
-The following command generates a powerful elimination
-principle:
-\begin{coq_example*}
-Scheme odd_even := Minimality for odd Sort Prop
- with even_odd := Minimality for even Sort Prop.
-\end{coq_example*}
-The type of {\tt odd\_even} for instance will be:
-\begin{coq_example}
-Check odd_even.
-\end{coq_example}
-The type of {\tt even\_odd} shares the same premises but the
-conclusion is {\tt (n:nat)(even n)->(Q n)}.
-
-\subsection[\tt Combined Scheme ...]{\tt Combined Scheme ...\index{CombinedScheme@{\tt Combined Scheme}}\label{CombinedScheme}
-\label{combinedscheme}}
-The {\tt Combined Scheme} command is a tool for combining
-induction principles generated by the {\tt Scheme} command.
-Its syntax follows the schema :
-
-\noindent
-{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}\\
-\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to
-the same package of mutual inductive principle definitions. This command
-generates {\ident$_0$} to be the conjunction of the principles: it is
-build from the common premises of the principles and concluded by the
-conjunction of their conclusions. For exemple, we can combine the
-induction principles for trees and forests:
-
-\begin{coq_example*}
-Combined Scheme tree_forest_mutind from tree_ind, forest_ind.
-Check tree_forest_mutind.
-\end{coq_example*}
-
-%\end{document}
-
-% $Id: RefMan-ind.tex 10421 2008-01-05 14:06:51Z herbelin $
diff --git a/doc/refman/RefMan-int.tex b/doc/refman/RefMan-int.tex
deleted file mode 100644
index 7b531409..00000000
--- a/doc/refman/RefMan-int.tex
+++ /dev/null
@@ -1,148 +0,0 @@
-%BEGIN LATEX
-\setheaders{Introduction}
-%END LATEX
-\chapter*{Introduction}
-
-This document is the Reference Manual of version \coqversion{} of the \Coq\
-proof assistant. A companion volume, the \Coq\ Tutorial, is provided
-for the beginners. It is advised to read the Tutorial first.
-A book~\cite{CoqArt} on practical uses of the \Coq{} system was published in 2004 and is a good support for both the beginner and
-the advanced user.
-
-%The system \Coq\ is designed to develop mathematical proofs. It can be
-%used by mathematicians to develop mathematical theories and by
-%computer scientists to write formal specifications,
-The \Coq{} system is designed to develop mathematical proofs, and
-especially to write formal specifications, programs and to verify that
-programs are correct with respect to their specification. It provides
-a specification language named \gallina. Terms of \gallina\ can
-represent programs as well as properties of these programs and proofs
-of these properties. Using the so-called \textit{Curry-Howard
- isomorphism}, programs, properties and proofs are formalized in the
-same language called \textit{Calculus of Inductive Constructions},
-that is a $\lambda$-calculus with a rich type system. All logical
-judgments in \Coq\ are typing judgments. The very heart of the Coq
-system is the type-checking algorithm that checks the correctness of
-proofs, in other words that checks that a program complies to its
-specification. \Coq\ also provides an interactive proof assistant to
-build proofs using specific programs called \textit{tactics}.
-
-All services of the \Coq\ proof assistant are accessible by
-interpretation of a command language called \textit{the vernacular}.
-
-\Coq\ has an interactive mode in which commands are interpreted as the
-user types them in from the keyboard and a compiled mode where
-commands are processed from a file.
-
-\begin{itemize}
-\item The interactive mode may be used as a debugging mode in which
- the user can develop his theories and proofs step by step,
- backtracking if needed and so on. The interactive mode is run with
- the {\tt coqtop} command from the operating system (which we shall
- assume to be some variety of UNIX in the rest of this document).
-\item The compiled mode acts as a proof checker taking a file
- containing a whole development in order to ensure its correctness.
- Moreover, \Coq's compiler provides an output file containing a
- compact representation of its input. The compiled mode is run with
- the {\tt coqc} command from the operating system.
-
-\end{itemize}
-These two modes are documented in Chapter~\ref{Addoc-coqc}.
-
-Other modes of interaction with \Coq{} are possible: through an emacs
-shell window, an emacs generic user-interface for proof assistant
-(ProofGeneral~\cite{ProofGeneral}) or through a customized interface
-(PCoq~\cite{Pcoq}). These facilities are not documented here. There
-is also a \Coq{} Integrated Development Environment described in
-Chapter~\ref{Addoc-coqide}.
-
-\section*{How to read this book}
-
-This is a Reference Manual, not a User Manual, then it is not made for a
-continuous reading. However, it has some structure that is explained
-below.
-
-\begin{itemize}
-\item The first part describes the specification language,
- Gallina. Chapters~\ref{Gallina} and~\ref{Gallina-extension}
- describe the concrete syntax as well as the meaning of programs,
- theorems and proofs in the Calculus of Inductive
- Constructions. Chapter~\ref{Theories} describes the standard library
- of \Coq. Chapter~\ref{Cic} is a mathematical description of the
- formalism. Chapter~\ref{chapter:Modules} describes the module system.
-
-\item The second part describes the proof engine. It is divided in
- five chapters. Chapter~\ref{Vernacular-commands} presents all
- commands (we call them \emph{vernacular commands}) that are not
- directly related to interactive proving: requests to the
- environment, complete or partial evaluation, loading and compiling
- files. How to start and stop proofs, do multiple proofs in parallel
- is explained in Chapter~\ref{Proof-handling}. In
- Chapter~\ref{Tactics}, all commands that realize one or more steps
- of the proof are presented: we call them \emph{tactics}. The
- language to combine these tactics into complex proof strategies is
- given in Chapter~\ref{TacticLanguage}. Examples of tactics are
- described in Chapter~\ref{Tactics-examples}.
-
-%\item The third part describes how to extend the system in two ways:
-% adding parsing and pretty-printing rules
-% (Chapter~\ref{Addoc-syntax}) and writing new tactics
-% (Chapter~\ref{TacticLanguage}).
-
-\item The third part describes how to extend the syntax of \Coq. It
-corresponds to the Chapter~\ref{Addoc-syntax}.
-
-\item In the fourth part more practical tools are documented. First in
- Chapter~\ref{Addoc-coqc}, the usage of \texttt{coqc} (batch mode)
- and \texttt{coqtop} (interactive mode) with their options is
- described. Then, in Chapter~\ref{Utilities},
- various utilities that come with the \Coq\ distribution are
- presented.
- Finally, Chapter~\ref{Addoc-coqide} describes the \Coq{} integrated
- development environment.
-\end{itemize}
-
-At the end of the document, after the global index, the user can find
-specific indexes for tactics, vernacular commands, and error
-messages.
-
-\section*{List of additional documentation}
-
-This manual does not contain all the documentation the user may need
-about \Coq{}. Various informations can be found in the following
-documents:
-\begin{description}
-
-\item[Tutorial]
- A companion volume to this reference manual, the \Coq{} Tutorial, is
- aimed at gently introducing new users to developing proofs in \Coq{}
- without assuming prior knowledge of type theory. In a second step, the
- user can read also the tutorial on recursive types (document {\tt
- RecTutorial.ps}).
-
-\item[Addendum] The fifth part (the Addendum) of the Reference Manual
- is distributed as a separate document. It contains more
- detailed documentation and examples about some specific aspects of the
- system that may interest only certain users. It shares the indexes,
- the page numbers and
- the bibliography with the Reference Manual. If you see in one of the
- indexes a page number that is outside the Reference Manual, it refers
- to the Addendum.
-
-\item[Installation] A text file INSTALL that comes with the sources
- explains how to install \Coq{}.
-
-\item[The \Coq{} standard library]
-A commented version of sources of the \Coq{} standard library
-(including only the specifications, the proofs are removed)
-is given in the additional document {\tt Library.ps}.
-
-\end{description}
-
-
-% $Id: RefMan-int.tex 11307 2008-08-06 08:38:57Z jnarboux $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-lib.tex b/doc/refman/RefMan-lib.tex
deleted file mode 100644
index 2c8abc88..00000000
--- a/doc/refman/RefMan-lib.tex
+++ /dev/null
@@ -1,1102 +0,0 @@
-\chapter[The {\Coq} library]{The {\Coq} library\index{Theories}\label{Theories}}
-
-The \Coq\ library is structured into two parts:
-
-\begin{description}
-\item[The initial library:] it contains
- elementary logical notions and data-types. It constitutes the
- basic state of the system directly available when running
- \Coq;
-
-\item[The standard library:] general-purpose libraries containing
- various developments of \Coq\ axiomatizations about sets, lists,
- sorting, arithmetic, etc. This library comes with the system and its
- modules are directly accessible through the \verb!Require! command
- (see Section~\ref{Require});
-\end{description}
-
-In addition, user-provided libraries or developments are provided by
-\Coq\ users' community. These libraries and developments are available
-for download at \texttt{http://coq.inria.fr} (see
-Section~\ref{Contributions}).
-
-The chapter briefly reviews the \Coq\ libraries.
-
-\section[The basic library]{The basic library\label{Prelude}}
-
-This section lists the basic notions and results which are directly
-available in the standard \Coq\ system\footnote{Most
-of these constructions are defined in the
-{\tt Prelude} module in directory {\tt theories/Init} at the {\Coq}
-root directory; this includes the modules
-{\tt Notations},
-{\tt Logic},
-{\tt Datatypes},
-{\tt Specif},
-{\tt Peano},
-{\tt Wf} and
-{\tt Tactics}.
-Module {\tt Logic\_Type} also makes it in the initial state}.
-
-\subsection[Notations]{Notations\label{Notations}}
-
-This module defines the parsing and pretty-printing of many symbols
-(infixes, prefixes, etc.). However, it does not assign a meaning to
-these notations. The purpose of this is to define and fix once for all
-the precedence and associativity of very common notations. The main
-notations fixed in the initial state are listed on
-Figure~\ref{init-notations}.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{|cll|}
-\hline
-Notation & Precedence & Associativity \\
-\hline
-\verb!_ <-> _! & 95 & no \\
-\verb!_ \/ _! & 85 & right \\
-\verb!_ /\ _! & 80 & right \\
-\verb!~ _! & 75 & right \\
-\verb!_ = _! & 70 & no \\
-\verb!_ = _ = _! & 70 & no \\
-\verb!_ = _ :> _! & 70 & no \\
-\verb!_ <> _! & 70 & no \\
-\verb!_ <> _ :> _! & 70 & no \\
-\verb!_ < _! & 70 & no \\
-\verb!_ > _! & 70 & no \\
-\verb!_ <= _! & 70 & no \\
-\verb!_ >= _! & 70 & no \\
-\verb!_ < _ < _! & 70 & no \\
-\verb!_ < _ <= _! & 70 & no \\
-\verb!_ <= _ < _! & 70 & no \\
-\verb!_ <= _ <= _! & 70 & no \\
-\verb!_ + _! & 50 & left \\
-\verb!_ || _! & 50 & left \\
-\verb!_ - _! & 50 & left \\
-\verb!_ * _! & 40 & left \\
-\verb!_ && _! & 40 & left \\
-\verb!_ / _! & 40 & left \\
-\verb!- _! & 35 & right \\
-\verb!/ _! & 35 & right \\
-\verb!_ ^ _! & 30 & right \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Notations in the initial state}
-\label{init-notations}
-\end{figure}
-
-\subsection[Logic]{Logic\label{Logic}}
-
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{lclr}
-{\form} & ::= & {\tt True} & ({\tt True})\\
- & $|$ & {\tt False} & ({\tt False})\\
- & $|$ & {\tt\char'176} {\form} & ({\tt not})\\
- & $|$ & {\form} {\tt /$\backslash$} {\form} & ({\tt and})\\
- & $|$ & {\form} {\tt $\backslash$/} {\form} & ({\tt or})\\
- & $|$ & {\form} {\tt ->} {\form} & (\em{primitive implication})\\
- & $|$ & {\form} {\tt <->} {\form} & ({\tt iff})\\
- & $|$ & {\tt forall} {\ident} {\tt :} {\type} {\tt ,}
- {\form} & (\em{primitive for all})\\
- & $|$ & {\tt exists} {\ident} \zeroone{{\tt :} {\specif}} {\tt
- ,} {\form} & ({\tt ex})\\
- & $|$ & {\tt exists2} {\ident} \zeroone{{\tt :} {\specif}} {\tt
- ,} {\form} {\tt \&} {\form} & ({\tt ex2})\\
- & $|$ & {\term} {\tt =} {\term} & ({\tt eq})\\
- & $|$ & {\term} {\tt =} {\term} {\tt :>} {\specif} & ({\tt eq})
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of formulas}
-\label{formulas-syntax}
-\end{figure}
-
-The basic library of {\Coq} comes with the definitions of standard
-(intuitionistic) logical connectives (they are defined as inductive
-constructions). They are equipped with an appealing syntax enriching the
-(subclass {\form}) of the syntactic class {\term}. The syntax
-extension is shown on Figure~\ref{formulas-syntax}.
-
-% The basic library of {\Coq} comes with the definitions of standard
-% (intuitionistic) logical connectives (they are defined as inductive
-% constructions). They are equipped with an appealing syntax enriching
-% the (subclass {\form}) of the syntactic class {\term}. The syntax
-% extension \footnote{This syntax is defined in module {\tt
-% LogicSyntax}} is shown on Figure~\ref{formulas-syntax}.
-
-\Rem Implication is not defined but primitive (it is a non-dependent
-product of a proposition over another proposition). There is also a
-primitive universal quantification (it is a dependent product over a
-proposition). The primitive universal quantification allows both
-first-order and higher-order quantification.
-
-\subsubsection[Propositional Connectives]{Propositional Connectives\label{Connectives}
-\index{Connectives}}
-
-First, we find propositional calculus connectives:
-\ttindex{True}
-\ttindex{I}
-\ttindex{False}
-\ttindex{not}
-\ttindex{and}
-\ttindex{conj}
-\ttindex{proj1}
-\ttindex{proj2}
-
-\begin{coq_eval}
-Set Printing Depth 50.
-\end{coq_eval}
-\begin{coq_example*}
-Inductive True : Prop := I.
-Inductive False : Prop := .
-Definition not (A: Prop) := A -> False.
-Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
-Section Projections.
-Variables A B : Prop.
-Theorem proj1 : A /\ B -> A.
-Theorem proj2 : A /\ B -> B.
-End Projections.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-\ttindex{or}
-\ttindex{or\_introl}
-\ttindex{or\_intror}
-\ttindex{iff}
-\ttindex{IF\_then\_else}
-\begin{coq_example*}
-Inductive or (A B:Prop) : Prop :=
- | or_introl (_:A)
- | or_intror (_:B).
-Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).
-Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.
-\end{coq_example*}
-
-\subsubsection[Quantifiers]{Quantifiers\label{Quantifiers}
-\index{Quantifiers}}
-
-Then we find first-order quantifiers:
-\ttindex{all}
-\ttindex{ex}
-\ttindex{exists}
-\ttindex{ex\_intro}
-\ttindex{ex2}
-\ttindex{exists2}
-\ttindex{ex\_intro2}
-
-\begin{coq_example*}
-Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
-Inductive ex (A: Set) (P:A -> Prop) : Prop :=
- ex_intro (x:A) (_:P x).
-Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
- ex_intro2 (x:A) (_:P x) (_:Q x).
-\end{coq_example*}
-
-The following abbreviations are allowed:
-\begin{center}
- \begin{tabular}[h]{|l|l|}
- \hline
- \verb+exists x:A, P+ & \verb+ex A (fun x:A => P)+ \\
- \verb+exists x, P+ & \verb+ex _ (fun x => P)+ \\
- \verb+exists2 x:A, P & Q+ & \verb+ex2 A (fun x:A => P) (fun x:A => Q)+ \\
- \verb+exists2 x, P & Q+ & \verb+ex2 _ (fun x => P) (fun x => Q)+ \\
- \hline
- \end{tabular}
-\end{center}
-
-The type annotation ``\texttt{:A}'' can be omitted when \texttt{A} can be
-synthesized by the system.
-
-\subsubsection[Equality]{Equality\label{Equality}
-\index{Equality}}
-
-Then, we find equality, defined as an inductive relation. That is,
-given a type \verb:A: and an \verb:x: of type \verb:A:, the
-predicate \verb:(eq A x): is the smallest one which contains \verb:x:.
-This definition, due to Christine Paulin-Mohring, is equivalent to
-define \verb:eq: as the smallest reflexive relation, and it is also
-equivalent to Leibniz' equality.
-
-\ttindex{eq}
-\ttindex{refl\_equal}
-
-\begin{coq_example*}
-Inductive eq (A:Type) (x:A) : A -> Prop :=
- refl_equal : eq A x x.
-\end{coq_example*}
-
-\subsubsection[Lemmas]{Lemmas\label{PreludeLemmas}}
-
-Finally, a few easy lemmas are provided.
-
-\ttindex{absurd}
-
-\begin{coq_example*}
-Theorem absurd : forall A C:Prop, A -> ~ A -> C.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\ttindex{sym\_eq}
-\ttindex{trans\_eq}
-\ttindex{f\_equal}
-\ttindex{sym\_not\_eq}
-\begin{coq_example*}
-Section equality.
-Variables A B : Type.
-Variable f : A -> B.
-Variables x y z : A.
-Theorem sym_eq : x = y -> y = x.
-Theorem trans_eq : x = y -> y = z -> x = z.
-Theorem f_equal : x = y -> f x = f y.
-Theorem sym_not_eq : x <> y -> y <> x.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-Abort.
-Abort.
-Abort.
-\end{coq_eval}
-\ttindex{eq\_ind\_r}
-\ttindex{eq\_rec\_r}
-\ttindex{eq\_rect}
-\ttindex{eq\_rect\_r}
-%Definition eq_rect: (A:Set)(x:A)(P:A->Type)(P x)->(y:A)(x=y)->(P y).
-\begin{coq_example*}
-End equality.
-Definition eq_ind_r :
- forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y.
-Definition eq_rec_r :
- forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y.
-Definition eq_rect_r :
- forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-Abort.
-Abort.
-\end{coq_eval}
-%Abort (for now predefined eq_rect)
-\begin{coq_example*}
-Hint Immediate sym_eq sym_not_eq : core.
-\end{coq_example*}
-\ttindex{f\_equal$i$}
-
-The theorem {\tt f\_equal} is extended to functions with two to five
-arguments. The theorem are names {\tt f\_equal2}, {\tt f\_equal3},
-{\tt f\_equal4} and {\tt f\_equal5}.
-For instance {\tt f\_equal3} is defined the following way.
-\begin{coq_example*}
-Theorem f_equal3 :
- forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B)
- (x1 y1:A1) (x2 y2:A2) (x3 y3:A3),
- x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\subsection[Datatypes]{Datatypes\label{Datatypes}
-\index{Datatypes}}
-
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{rclr}
-{\specif} & ::= & {\specif} {\tt *} {\specif} & ({\tt prod})\\
- & $|$ & {\specif} {\tt +} {\specif} & ({\tt sum})\\
- & $|$ & {\specif} {\tt + \{} {\specif} {\tt \}} & ({\tt sumor})\\
- & $|$ & {\tt \{} {\specif} {\tt \} + \{} {\specif} {\tt \}} &
- ({\tt sumbool})\\
- & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt |} {\form} {\tt \}}
- & ({\tt sig})\\
- & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt |} {\form} {\tt \&}
- {\form} {\tt \}} & ({\tt sig2})\\
- & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt \&} {\specif} {\tt
- \}} & ({\tt sigT})\\
- & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt \&} {\specif} {\tt
- \&} {\specif} {\tt \}} & ({\tt sigT2})\\
- & & & \\
-{\term} & ::= & {\tt (} {\term} {\tt ,} {\term} {\tt )} & ({\tt pair})
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of data-types and specifications}
-\label{specif-syntax}
-\end{figure}
-
-
-In the basic library, we find the definition\footnote{They are in {\tt
- Datatypes.v}} of the basic data-types of programming, again
-defined as inductive constructions over the sort \verb:Set:. Some of
-them come with a special syntax shown on Figure~\ref{specif-syntax}.
-
-\subsubsection[Programming]{Programming\label{Programming}
-\index{Programming}
-\label{libnats}
-\ttindex{unit}
-\ttindex{tt}
-\ttindex{bool}
-\ttindex{true}
-\ttindex{false}
-\ttindex{nat}
-\ttindex{O}
-\ttindex{S}
-\ttindex{option}
-\ttindex{Some}
-\ttindex{None}
-\ttindex{identity}
-\ttindex{refl\_identity}}
-
-\begin{coq_example*}
-Inductive unit : Set := tt.
-Inductive bool : Set := true | false.
-Inductive nat : Set := O | S (n:nat).
-Inductive option (A:Set) : Set := Some (_:A) | None.
-Inductive identity (A:Type) (a:A) : A -> Type :=
- refl_identity : identity A a a.
-\end{coq_example*}
-
-Note that zero is the letter \verb:O:, and {\sl not} the numeral
-\verb:0:.
-
-The predicate {\tt identity} is logically
-equivalent to equality but it lives in sort {\tt
- Type}. It is mainly maintained for compatibility.
-
-We then define the disjoint sum of \verb:A+B: of two sets \verb:A: and
-\verb:B:, and their product \verb:A*B:.
-\ttindex{sum}
-\ttindex{A+B}
-\ttindex{+}
-\ttindex{inl}
-\ttindex{inr}
-\ttindex{prod}
-\ttindex{A*B}
-\ttindex{*}
-\ttindex{pair}
-\ttindex{fst}
-\ttindex{snd}
-
-\begin{coq_example*}
-Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
-Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
-Section projections.
-Variables A B : Set.
-Definition fst (H: prod A B) := match H with
- | pair x y => x
- end.
-Definition snd (H: prod A B) := match H with
- | pair x y => y
- end.
-End projections.
-\end{coq_example*}
-
-Some operations on {\tt bool} are also provided: {\tt andb} (with
-infix notation {\tt \&\&}), {\tt orb} (with
-infix notation {\tt ||}), {\tt xorb}, {\tt implb} and {\tt negb}.
-
-\subsection{Specification}
-
-The following notions\footnote{They are defined in module {\tt
-Specif.v}} allow to build new data-types and specifications.
-They are available with the syntax shown on
-Figure~\ref{specif-syntax}.
-
-For instance, given \verb|A:Type| and \verb|P:A->Prop|, the construct
-\verb+{x:A | P x}+ (in abstract syntax \verb+(sig A P)+) is a
-\verb:Type:. We may build elements of this set as \verb:(exist x p):
-whenever we have a witness \verb|x:A| with its justification
-\verb|p:P x|.
-
-From such a \verb:(exist x p): we may in turn extract its witness
-\verb|x:A| (using an elimination construct such as \verb:match:) but
-{\sl not} its justification, which stays hidden, like in an abstract
-data-type. In technical terms, one says that \verb:sig: is a ``weak
-(dependent) sum''. A variant \verb:sig2: with two predicates is also
-provided.
-
-\ttindex{\{x:A $\mid$ (P x)\}}
-\ttindex{sig}
-\ttindex{exist}
-\ttindex{sig2}
-\ttindex{exist2}
-
-\begin{coq_example*}
-Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
-Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
- exist2 (x:A) (_:P x) (_:Q x).
-\end{coq_example*}
-
-A ``strong (dependent) sum'' \verb+{x:A & P x}+ may be also defined,
-when the predicate \verb:P: is now defined as a
-constructor of types in \verb:Type:.
-
-\ttindex{\{x:A \& (P x)\}}
-\ttindex{\&}
-\ttindex{sigT}
-\ttindex{existT}
-\ttindex{projT1}
-\ttindex{projT2}
-\ttindex{sigT2}
-\ttindex{existT2}
-
-\begin{coq_example*}
-Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x).
-Section Projections.
-Variable A : Type.
-Variable P : A -> Type.
-Definition projT1 (H:sigT A P) := let (x, h) := H in x.
-Definition projT2 (H:sigT A P) :=
- match H return P (projT1 H) with
- existT x h => h
- end.
-End Projections.
-Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
- existT2 (x:A) (_:P x) (_:Q x).
-\end{coq_example*}
-
-A related non-dependent construct is the constructive sum
-\verb"{A}+{B}" of two propositions \verb:A: and \verb:B:.
-\label{sumbool}
-\ttindex{sumbool}
-\ttindex{left}
-\ttindex{right}
-\ttindex{\{A\}+\{B\}}
-
-\begin{coq_example*}
-Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).
-\end{coq_example*}
-
-This \verb"sumbool" construct may be used as a kind of indexed boolean
-data-type. An intermediate between \verb"sumbool" and \verb"sum" is
-the mixed \verb"sumor" which combines \verb"A:Set" and \verb"B:Prop"
-in the \verb"Set" \verb"A+{B}".
-\ttindex{sumor}
-\ttindex{inleft}
-\ttindex{inright}
-\ttindex{A+\{B\}}
-
-\begin{coq_example*}
-Inductive sumor (A:Set) (B:Prop) : Set :=
-| inleft (_:A)
-| inright (_:B).
-\end{coq_example*}
-
-We may define variants of the axiom of choice, like in Martin-Löf's
-Intuitionistic Type Theory.
-\ttindex{Choice}
-\ttindex{Choice2}
-\ttindex{bool\_choice}
-
-\begin{coq_example*}
-Lemma Choice :
- forall (S S':Set) (R:S -> S' -> Prop),
- (forall x:S, {y : S' | R x y}) ->
- {f : S -> S' | forall z:S, R z (f z)}.
-Lemma Choice2 :
- forall (S S':Set) (R:S -> S' -> Set),
- (forall x:S, {y : S' & R x y}) ->
- {f : S -> S' & forall z:S, R z (f z)}.
-Lemma bool_choice :
- forall (S:Set) (R1 R2:S -> Prop),
- (forall x:S, {R1 x} + {R2 x}) ->
- {f : S -> bool |
- forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-Abort.
-Abort.
-\end{coq_eval}
-
-The next construct builds a sum between a data-type \verb|A:Type| and
-an exceptional value encoding errors:
-
-\ttindex{Exc}
-\ttindex{value}
-\ttindex{error}
-
-\begin{coq_example*}
-Definition Exc := option.
-Definition value := Some.
-Definition error := None.
-\end{coq_example*}
-
-
-This module ends with theorems,
-relating the sorts \verb:Set: or \verb:Type: and
-\verb:Prop: in a way which is consistent with the realizability
-interpretation.
-\ttindex{False\_rect}
-\ttindex{False\_rec}
-\ttindex{eq\_rect}
-\ttindex{absurd\_set}
-\ttindex{and\_rect}
-
-\begin{coq_example*}
-Definition except := False_rec.
-Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
-Theorem and_rect :
- forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.
-\end{coq_example*}
-%\begin{coq_eval}
-%Abort.
-%Abort.
-%\end{coq_eval}
-
-\subsection{Basic Arithmetics}
-
-The basic library includes a few elementary properties of natural
-numbers, together with the definitions of predecessor, addition and
-multiplication\footnote{This is in module {\tt Peano.v}}. It also
-provides a scope {\tt nat\_scope} gathering standard notations for
-common operations (+, *) and a decimal notation for numbers. That is he
-can write \texttt{3} for \texttt{(S (S (S O)))}. This also works on
-the left hand side of a \texttt{match} expression (see for example
-section~\ref{refine-example}). This scope is opened by default.
-
-%Remove the redefinition of nat
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-The following example is not part of the standard library, but it
-shows the usage of the notations:
-
-\begin{coq_example*}
-Fixpoint even (n:nat) : bool :=
- match n with
- | 0 => true
- | 1 => false
- | S (S n) => even n
- end.
-\end{coq_example*}
-
-
-\ttindex{eq\_S}
-\ttindex{pred}
-\ttindex{pred\_Sn}
-\ttindex{eq\_add\_S}
-\ttindex{not\_eq\_S}
-\ttindex{IsSucc}
-\ttindex{O\_S}
-\ttindex{n\_Sn}
-\ttindex{plus}
-\ttindex{plus\_n\_O}
-\ttindex{plus\_n\_Sm}
-\ttindex{mult}
-\ttindex{mult\_n\_O}
-\ttindex{mult\_n\_Sm}
-
-\begin{coq_example*}
-Theorem eq_S : forall x y:nat, x = y -> S x = S y.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example*}
-Definition pred (n:nat) : nat :=
- match n with
- | 0 => 0
- | S u => u
- end.
-Theorem pred_Sn : forall m:nat, m = pred (S m).
-Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
-Hint Immediate eq_add_S : core.
-Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-\begin{coq_example*}
-Definition IsSucc (n:nat) : Prop :=
- match n with
- | 0 => False
- | S p => True
- end.
-Theorem O_S : forall n:nat, 0 <> S n.
-Theorem n_Sn : forall n:nat, n <> S n.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-\begin{coq_example*}
-Fixpoint plus (n m:nat) {struct n} : nat :=
- match n with
- | 0 => m
- | S p => S (p + m)
- end.
-where "n + m" := (plus n m) : nat_scope.
-Lemma plus_n_O : forall n:nat, n = n + 0.
-Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-\begin{coq_example*}
-Fixpoint mult (n m:nat) {struct n} : nat :=
- match n with
- | 0 => 0
- | S p => m + p * m
- end.
-where "n * m" := (mult n m) : nat_scope.
-Lemma mult_n_O : forall n:nat, 0 = n * 0.
-Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-
-Finally, it gives the definition of the usual orderings \verb:le:,
-\verb:lt:, \verb:ge:, and \verb:gt:.
-\ttindex{le}
-\ttindex{le\_n}
-\ttindex{le\_S}
-\ttindex{lt}
-\ttindex{ge}
-\ttindex{gt}
-
-\begin{coq_example*}
-Inductive le (n:nat) : nat -> Prop :=
- | le_n : le n n
- | le_S : forall m:nat, n <= m -> n <= (S m).
-where "n <= m" := (le n m) : nat_scope.
-Definition lt (n m:nat) := S n <= m.
-Definition ge (n m:nat) := m <= n.
-Definition gt (n m:nat) := m < n.
-\end{coq_example*}
-
-Properties of these relations are not initially known, but may be
-required by the user from modules \verb:Le: and \verb:Lt:. Finally,
-\verb:Peano: gives some lemmas allowing pattern-matching, and a double
-induction principle.
-
-\ttindex{nat\_case}
-\ttindex{nat\_double\_ind}
-
-\begin{coq_example*}
-Theorem nat_case :
- forall (n:nat) (P:nat -> Prop),
- P 0 -> (forall m:nat, P (S m)) -> P n.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-\begin{coq_example*}
-Theorem nat_double_ind :
- forall R:nat -> nat -> Prop,
- (forall n:nat, R 0 n) ->
- (forall n:nat, R (S n) 0) ->
- (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-
-\subsection{Well-founded recursion}
-
-The basic library contains the basics of well-founded recursion and
-well-founded induction\footnote{This is defined in module {\tt Wf.v}}.
-\index{Well foundedness}
-\index{Recursion}
-\index{Well founded induction}
-\ttindex{Acc}
-\ttindex{Acc\_inv}
-\ttindex{Acc\_rect}
-\ttindex{well\_founded}
-
-\begin{coq_example*}
-Section Well_founded.
-Variable A : Type.
-Variable R : A -> A -> Prop.
-Inductive Acc (x:A) : Prop :=
- Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
-Lemma Acc_inv : Acc x -> forall y:A, R y x -> Acc y.
-\end{coq_example*}
-\begin{coq_eval}
-destruct 1; trivial.
-Defined.
-\end{coq_eval}
-%% Acc_rect now primitively defined
-%% Section AccRec.
-%% Variable P : A -> Set.
-%% Variable F :
-%% forall x:A,
-%% (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
-%% Fixpoint Acc_rec (x:A) (a:Acc x) {struct a} : P x :=
-%% F x (Acc_inv x a)
-%% (fun (y:A) (h:R y x) => Acc_rec y (Acc_inv x a y h)).
-%% End AccRec.
-\begin{coq_example*}
-Definition well_founded := forall a:A, Acc a.
-Hypothesis Rwf : well_founded.
-Theorem well_founded_induction :
- forall P:A -> Set,
- (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
-Theorem well_founded_ind :
- forall P:A -> Prop,
- (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-The automatically generated scheme {\tt Acc\_rect}
-can be used to define functions by fixpoints using
-well-founded relations to justify termination. Assuming
-extensionality of the functional used for the recursive call, the
-fixpoint equation can be proved.
-\ttindex{Fix\_F}
-\ttindex{fix\_eq}
-\ttindex{Fix\_F\_inv}
-\ttindex{Fix\_F\_eq}
-\begin{coq_example*}
-Section FixPoint.
-Variable P : A -> Type.
-Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
-Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
- F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).
-Definition Fix (x:A) := Fix_F x (Rwf x).
-Hypothesis F_ext :
- forall (x:A) (f g:forall y:A, R y x -> P y),
- (forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.
-Lemma Fix_F_eq :
- forall (x:A) (r:Acc x),
- F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.
-Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
-Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).
-\end{coq_example*}
-\begin{coq_eval}
-Abort All.
-\end{coq_eval}
-\begin{coq_example*}
-End FixPoint.
-End Well_founded.
-\end{coq_example*}
-
-\subsection{Accessing the {\Type} level}
-
-The basic library includes the definitions\footnote{This is in module
-{\tt Logic\_Type.v}} of the counterparts of some data-types and logical
-quantifiers at the \verb:Type: level: negation, pair, and properties
-of {\tt identity}.
-
-\ttindex{notT}
-\ttindex{prodT}
-\ttindex{pairT}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Definition notT (A:Type) := A -> False.
-Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B).
-\end{coq_example*}
-
-At the end, it defines data-types at the {\Type} level.
-
-\subsection{Tactics}
-
-A few tactics defined at the user level are provided in the initial
-state\footnote{This is in module {\tt Tactics.v}}.
-
-\section{The standard library}
-
-\subsection{Survey}
-
-The rest of the standard library is structured into the following
-subdirectories:
-
-\begin{tabular}{lp{12cm}}
- {\bf Logic} & Classical logic and dependent equality \\
- {\bf Arith} & Basic Peano arithmetic \\
- {\bf NArith} & Basic positive integer arithmetic \\
- {\bf ZArith} & Basic relative integer arithmetic \\
- {\bf Numbers} & Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2$^{31}$ binary words) \\
- {\bf Bool} & Booleans (basic functions and results) \\
- {\bf Lists} & Monomorphic and polymorphic lists (basic functions and
- results), Streams (infinite sequences defined with co-inductive
- types) \\
- {\bf Sets} & Sets (classical, constructive, finite, infinite, power set,
- etc.) \\
- {\bf FSets} & Specification and implementations of finite sets and finite
- maps (by lists and by AVL trees)\\
- {\bf Reals} & Axiomatization of real numbers (classical, basic functions,
- integer part, fractional part, limit, derivative, Cauchy
- series, power series and results,...)\\
- {\bf Relations} & Relations (definitions and basic results) \\
- {\bf Sorting} & Sorted list (basic definitions and heapsort correctness) \\
- {\bf Strings} & 8-bits characters and strings\\
- {\bf Wellfounded} & Well-founded relations (basic results) \\
-
-\end{tabular}
-\medskip
-
-These directories belong to the initial load path of the system, and
-the modules they provide are compiled at installation time. So they
-are directly accessible with the command \verb!Require! (see
-Chapter~\ref{Other-commands}).
-
-The different modules of the \Coq\ standard library are described in the
-additional document \verb!Library.dvi!. They are also accessible on the WWW
-through the \Coq\ homepage
-\footnote{\texttt{http://coq.inria.fr}}.
-
-\subsection[Notations for integer arithmetics]{Notations for integer arithmetics\index{Arithmetical notations}}
-
-On Figure~\ref{zarith-syntax} is described the syntax of expressions
-for integer arithmetics. It is provided by requiring and opening the
-module {\tt ZArith} and opening scope {\tt Z\_scope}.
-
-\ttindex{+}
-\ttindex{*}
-\ttindex{-}
-\ttindex{/}
-\ttindex{<=}
-\ttindex{>=}
-\ttindex{<}
-\ttindex{>}
-\ttindex{?=}
-\ttindex{mod}
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{l|l|l|l}
-Notation & Interpretation & Precedence & Associativity\\
-\hline
-\verb!_ < _! & {\tt Zlt} &&\\
-\verb!x <= y! & {\tt Zle} &&\\
-\verb!_ > _! & {\tt Zgt} &&\\
-\verb!x >= y! & {\tt Zge} &&\\
-\verb!x < y < z! & {\tt x < y \verb!/\! y < z} &&\\
-\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} &&\\
-\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} &&\\
-\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} &&\\
-\verb!_ ?= _! & {\tt Zcompare} & 70 & no\\
-\verb!_ + _! & {\tt Zplus} &&\\
-\verb!_ - _! & {\tt Zminus} &&\\
-\verb!_ * _! & {\tt Zmult} &&\\
-\verb!_ / _! & {\tt Zdiv} &&\\
-\verb!_ mod _! & {\tt Zmod} & 40 & no \\
-\verb!- _! & {\tt Zopp} &&\\
-\verb!_ ^ _! & {\tt Zpower} &&\\
-\end{tabular}
-\end{center}
-\caption{Definition of the scope for integer arithmetics ({\tt Z\_scope})}
-\label{zarith-syntax}
-\end{figure}
-
-Figure~\ref{zarith-syntax} shows the notations provided by {\tt
-Z\_scope}. It specifies how notations are interpreted and, when not
-already reserved, the precedence and associativity.
-
-\begin{coq_example}
-Require Import ZArith.
-Check (2 + 3)%Z.
-Open Scope Z_scope.
-Check 2 + 3.
-\end{coq_example}
-
-\subsection[Peano's arithmetic (\texttt{nat})]{Peano's arithmetic (\texttt{nat})\index{Peano's arithmetic}
-\ttindex{nat\_scope}}
-
-While in the initial state, many operations and predicates of Peano's
-arithmetic are defined, further operations and results belong to other
-modules. For instance, the decidability of the basic predicates are
-defined here. This is provided by requiring the module {\tt Arith}.
-
-Figure~\ref{nat-syntax} describes notation available in scope {\tt
-nat\_scope}.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{l|l}
-Notation & Interpretation \\
-\hline
-\verb!_ < _! & {\tt lt} \\
-\verb!x <= y! & {\tt le} \\
-\verb!_ > _! & {\tt gt} \\
-\verb!x >= y! & {\tt ge} \\
-\verb!x < y < z! & {\tt x < y \verb!/\! y < z} \\
-\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} \\
-\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} \\
-\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} \\
-\verb!_ + _! & {\tt plus} \\
-\verb!_ - _! & {\tt minus} \\
-\verb!_ * _! & {\tt mult} \\
-\end{tabular}
-\end{center}
-\caption{Definition of the scope for natural numbers ({\tt nat\_scope})}
-\label{nat-syntax}
-\end{figure}
-
-\subsection{Real numbers library}
-
-\subsubsection[Notations for real numbers]{Notations for real numbers\index{Notations for real numbers}}
-
-This is provided by requiring and opening the module {\tt Reals} and
-opening scope {\tt R\_scope}. This set of notations is very similar to
-the notation for integer arithmetics. The inverse function was added.
-\begin{figure}
-\begin{center}
-\begin{tabular}{l|l}
-Notation & Interpretation \\
-\hline
-\verb!_ < _! & {\tt Rlt} \\
-\verb!x <= y! & {\tt Rle} \\
-\verb!_ > _! & {\tt Rgt} \\
-\verb!x >= y! & {\tt Rge} \\
-\verb!x < y < z! & {\tt x < y \verb!/\! y < z} \\
-\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} \\
-\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} \\
-\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} \\
-\verb!_ + _! & {\tt Rplus} \\
-\verb!_ - _! & {\tt Rminus} \\
-\verb!_ * _! & {\tt Rmult} \\
-\verb!_ / _! & {\tt Rdiv} \\
-\verb!- _! & {\tt Ropp} \\
-\verb!/ _! & {\tt Rinv} \\
-\verb!_ ^ _! & {\tt pow} \\
-\end{tabular}
-\end{center}
-\label{reals-syntax}
-\caption{Definition of the scope for real arithmetics ({\tt R\_scope})}
-\end{figure}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Import Reals.
-Check (2 + 3)%R.
-Open Scope R_scope.
-Check 2 + 3.
-\end{coq_example}
-
-\subsubsection{Some tactics}
-
-In addition to the \verb|ring|, \verb|field| and \verb|fourier|
-tactics (see Chapter~\ref{Tactics}) there are:
-\begin{itemize}
-\item {\tt discrR} \tacindex{discrR}
-
- Proves that a real integer constant $c_1$ is different from another
- real integer constant $c_2$.
-
-\begin{coq_example*}
-Require Import DiscrR.
-Goal 5 <> 0.
-\end{coq_example*}
-
-\begin{coq_example}
-discrR.
-\end{coq_example}
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\item {\tt split\_Rabs} allows to unfold {\tt Rabs} constant and splits
-corresponding conjonctions.
-\tacindex{split\_Rabs}
-
-\begin{coq_example*}
-Require Import SplitAbsolu.
-Goal forall x:R, x <= Rabs x.
-\end{coq_example*}
-
-\begin{coq_example}
-intro; split_Rabs.
-\end{coq_example}
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\item {\tt split\_Rmult} allows to split a condition that a product is
- non null into subgoals corresponding to the condition on each
- operand of the product.
-\tacindex{split\_Rmult}
-
-\begin{coq_example*}
-Require Import SplitRmult.
-Goal forall x y z:R, x * y * z <> 0.
-\end{coq_example*}
-
-\begin{coq_example}
-intros; split_Rmult.
-\end{coq_example}
-
-\end{itemize}
-
-All this tactics has been written with the tactic language Ltac
-described in Chapter~\ref{TacticLanguage}.
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\subsection[List library]{List library\index{Notations for lists}
-\ttindex{length}
-\ttindex{head}
-\ttindex{tail}
-\ttindex{app}
-\ttindex{rev}
-\ttindex{nth}
-\ttindex{map}
-\ttindex{flat\_map}
-\ttindex{fold\_left}
-\ttindex{fold\_right}}
-
-Some elementary operations on polymorphic lists are defined here. They
-can be accessed by requiring module {\tt List}.
-
-It defines the following notions:
-\begin{center}
-\begin{tabular}{l|l}
-\hline
-{\tt length} & length \\
-{\tt head} & first element (with default) \\
-{\tt tail} & all but first element \\
-{\tt app} & concatenation \\
-{\tt rev} & reverse \\
-{\tt nth} & accessing $n$-th element (with default) \\
-{\tt map} & applying a function \\
-{\tt flat\_map} & applying a function returning lists \\
-{\tt fold\_left} & iterator (from head to tail) \\
-{\tt fold\_right} & iterator (from tail to head) \\
-\hline
-\end{tabular}
-\end{center}
-
-Table show notations available when opening scope {\tt list\_scope}.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{l|l|l|l}
-Notation & Interpretation & Precedence & Associativity\\
-\hline
-\verb!_ ++ _! & {\tt app} & 60 & right \\
-\verb!_ :: _! & {\tt cons} & 60 & right \\
-\end{tabular}
-\end{center}
-\label{list-syntax}
-\caption{Definition of the scope for lists ({\tt list\_scope})}
-\end{figure}
-
-
-\section[Users' contributions]{Users' contributions\index{Contributions}
-\label{Contributions}}
-
-Numerous users' contributions have been collected and are available at
-URL \url{http://coq.inria.fr/contribs/}. On this web page, you have a list
-of all contributions with informations (author, institution, quick
-description, etc.) and the possibility to download them one by one.
-You will also find informations on how to submit a new
-contribution.
-
-% $Id: RefMan-lib.tex 13091 2010-06-08 13:56:19Z herbelin $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-ltac.tex b/doc/refman/RefMan-ltac.tex
deleted file mode 100644
index ec9776de..00000000
--- a/doc/refman/RefMan-ltac.tex
+++ /dev/null
@@ -1,1288 +0,0 @@
-\chapter[The tactic language]{The tactic language\label{TacticLanguage}}
-
-%\geometry{a4paper,body={5in,8in}}
-
-This chapter gives a compact documentation of Ltac, the tactic
-language available in {\Coq}. We start by giving the syntax, and next,
-we present the informal semantics. If you want to know more regarding
-this language and especially about its foundations, you can refer
-to~\cite{Del00}. Chapter~\ref{Tactics-examples} is devoted to giving
-examples of use of this language on small but also with non-trivial
-problems.
-
-
-\section{Syntax}
-
-\def\tacexpr{\textrm{\textsl{expr}}}
-\def\tacexprlow{\textrm{\textsl{tacexpr$_1$}}}
-\def\tacexprinf{\textrm{\textsl{tacexpr$_2$}}}
-\def\tacexprpref{\textrm{\textsl{tacexpr$_3$}}}
-\def\atom{\textrm{\textsl{atom}}}
-%%\def\recclause{\textrm{\textsl{rec\_clause}}}
-\def\letclause{\textrm{\textsl{let\_clause}}}
-\def\matchrule{\textrm{\textsl{match\_rule}}}
-\def\contextrule{\textrm{\textsl{context\_rule}}}
-\def\contexthyp{\textrm{\textsl{context\_hyp}}}
-\def\tacarg{\nterm{tacarg}}
-\def\cpattern{\nterm{cpattern}}
-
-The syntax of the tactic language is given Figures~\ref{ltac}
-and~\ref{ltac_aux}. See Chapter~\ref{BNF-syntax} for a description of
-the BNF metasyntax used in these grammar rules. Various already
-defined entries will be used in this chapter: entries
-{\naturalnumber}, {\integer}, {\ident}, {\qualid}, {\term},
-{\cpattern} and {\atomictac} represent respectively the natural and
-integer numbers, the authorized identificators and qualified names,
-{\Coq}'s terms and patterns and all the atomic tactics described in
-Chapter~\ref{Tactics}. The syntax of {\cpattern} is the same as that
-of terms, but it is extended with pattern matching metavariables. In
-{\cpattern}, a pattern-matching metavariable is represented with the
-syntax {\tt ?id} where {\tt id} is an {\ident}. The notation {\tt \_}
-can also be used to denote metavariable whose instance is
-irrelevant. In the notation {\tt ?id}, the identifier allows us to
-keep instantiations and to make constraints whereas {\tt \_} shows
-that we are not interested in what will be matched. On the right hand
-side of pattern-matching clauses, the named metavariable are used
-without the question mark prefix. There is also a special notation for
-second-order pattern-matching problems: in an applicative pattern of
-the form {\tt @?id id$_1$ \ldots id$_n$}, the variable {\tt id}
-matches any complex expression with (possible) dependencies in the
-variables {\tt id$_1$ \ldots id$_n$} and returns a functional term of
-the form {\tt fun id$_1$ \ldots id$_n$ => {\term}}.
-
-
-The main entry of the grammar is {\tacexpr}. This language is used in
-proof mode but it can also be used in toplevel definitions as shown in
-Figure~\ref{ltactop}.
-
-\begin{Remarks}
-\item The infix tacticals ``\dots\ {\tt ||} \dots'' and ``\dots\ {\tt
- ;} \dots'' are associative.
-
-\item In {\tacarg}, there is an overlap between {\qualid} as a
-direct tactic argument and {\qualid} as a particular case of
-{\term}. The resolution is done by first looking for a reference of
-the tactic language and if it fails, for a reference to a term. To
-force the resolution as a reference of the tactic language, use the
-form {\tt ltac :} {\qualid}. To force the resolution as a reference to
-a term, use the syntax {\tt ({\qualid})}.
-
-\item As shown by the figure, tactical {\tt ||} binds more than the
-prefix tacticals {\tt try}, {\tt repeat}, {\tt do}, {\tt info} and
-{\tt abstract} which themselves bind more than the postfix tactical
-``{\tt \dots\ ;[ \dots\ ]}'' which binds more than ``\dots\ {\tt ;}
-\dots''.
-
-For instance
-\begin{quote}
-{\tt try repeat \tac$_1$ ||
- \tac$_2$;\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$];\tac$_4$.}
-\end{quote}
-is understood as
-\begin{quote}
-{\tt (try (repeat (\tac$_1$ || \tac$_2$)));} \\
-{\tt ((\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$]);\tac$_4$).}
-\end{quote}
-\end{Remarks}
-
-
-\begin{figure}[htbp]
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\tacexpr} & ::= &
- {\tacexpr} {\tt ;} {\tacexpr}\\
-& | & {\tacexpr} {\tt ; [} \nelist{\tacexpr}{|} {\tt ]}\\
-& | & {\tacexprpref}\\
-\\
-{\tacexprpref} & ::= &
- {\tt do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\
-& | & {\tt info} {\tacexprpref}\\
-& | & {\tt progress} {\tacexprpref}\\
-& | & {\tt repeat} {\tacexprpref}\\
-& | & {\tt try} {\tacexprpref}\\
-& | & {\tacexprinf} \\
-\\
-{\tacexprinf} & ::= &
- {\tacexprlow} {\tt ||} {\tacexprpref}\\
-& | & {\tacexprlow}\\
-\\
-{\tacexprlow} & ::= &
-{\tt fun} \nelist{\name}{} {\tt =>} {\atom}\\
-& | &
-{\tt let} \zeroone{\tt rec} \nelist{\letclause}{\tt with} {\tt in}
-{\atom}\\
-& | &
-{\tt match goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
-& | &
-{\tt match reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
-& | &
-{\tt match} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\
-& | &
-{\tt lazymatch goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
-& | &
-{\tt lazymatch reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
-& | &
-{\tt lazymatch} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\
-& | & {\tt abstract} {\atom}\\
-& | & {\tt abstract} {\atom} {\tt using} {\ident} \\
-& | & {\tt first [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
-& | & {\tt solve [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
-& | & {\tt idtac} \sequence{\messagetoken}{}\\
-& | & {\tt fail} \zeroone{\naturalnumber} \sequence{\messagetoken}{}\\
-& | & {\tt fresh} ~|~ {\tt fresh} {\qstring}\\
-& | & {\tt context} {\ident} {\tt [} {\term} {\tt ]}\\
-& | & {\tt eval} {\nterm{redexpr}} {\tt in} {\term}\\
-& | & {\tt type of} {\term}\\
-& | & {\tt external} {\qstring} {\qstring} \nelist{\tacarg}{}\\
-& | & {\tt constr :} {\term}\\
-& | & \atomictac\\
-& | & {\qualid} \nelist{\tacarg}{}\\
-& | & {\atom}\\
-\\
-{\atom} & ::= &
- {\qualid} \\
-& | & ()\\
-& | & {\integer}\\
-& | & {\tt (} {\tacexpr} {\tt )}\\
-\\
-{\messagetoken}\!\!\!\!\!\! & ::= & {\qstring} ~|~ {\ident} ~|~ {\integer} \\
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of the tactic language}
-\label{ltac}
-\end{figure}
-
-
-
-\begin{figure}[htbp]
-\begin{centerframe}
-\begin{tabular}{lcl}
-\tacarg & ::= &
- {\qualid}\\
-& $|$ & {\tt ()} \\
-& $|$ & {\tt ltac :} {\atom}\\
-& $|$ & {\term}\\
-\\
-\letclause & ::= & {\ident} \sequence{\name}{} {\tt :=} {\tacexpr}\\
-\\
-\contextrule & ::= &
- \nelist{\contexthyp}{\tt ,} {\tt |-}{\cpattern} {\tt =>} {\tacexpr}\\
-& $|$ & {\tt |-} {\cpattern} {\tt =>} {\tacexpr}\\
-& $|$ & {\tt \_ =>} {\tacexpr}\\
-\\
-\contexthyp & ::= & {\name} {\tt :} {\cpattern}\\
- & $|$ & {\name} {\tt :=} {\cpattern} \zeroone{{\tt :} {\cpattern}}\\
-\\
-\matchrule & ::= &
- {\cpattern} {\tt =>} {\tacexpr}\\
-& $|$ & {\tt context} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]} {\tt =>} {\tacexpr}\\
-& $|$ & {\tt \_ =>} {\tacexpr}\\
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of the tactic language (continued)}
-\label{ltac_aux}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{centerframe}
-\begin{tabular}{lcl}
-\nterm{top} & ::= & \zeroone{\tt Local} {\tt Ltac} \nelist{\nterm{ltac\_def}} {\tt with} \\
-\\
-\nterm{ltac\_def} & ::= & {\ident} \sequence{\ident}{} {\tt :=}
-{\tacexpr}\\
-& $|$ &{\qualid} \sequence{\ident}{} {\tt ::=}{\tacexpr}
-\end{tabular}
-\end{centerframe}
-\caption{Tactic toplevel definitions}
-\label{ltactop}
-\end{figure}
-
-
-%%
-%% Semantics
-%%
-\section{Semantics}
-%\index[tactic]{Tacticals}
-\index{Tacticals}
-%\label{Tacticals}
-
-Tactic expressions can only be applied in the context of a goal. The
-evaluation yields either a term, an integer or a tactic. Intermediary
-results can be terms or integers but the final result must be a tactic
-which is then applied to the current goal.
-
-There is a special case for {\tt match goal} expressions of which
-the clauses evaluate to tactics. Such expressions can only be used as
-end result of a tactic expression (never as argument of a non recursive local
-definition or of an application).
-
-The rest of this section explains the semantics of every construction
-of Ltac.
-
-
-%% \subsection{Values}
-
-%% Values are given by Figure~\ref{ltacval}. All these values are tactic values,
-%% i.e. to be applied to a goal, except {\tt Fun}, {\tt Rec} and $arg$ values.
-
-%% \begin{figure}[ht]
-%% \noindent{}\framebox[6in][l]
-%% {\parbox{6in}
-%% {\begin{center}
-%% \begin{tabular}{lp{0.1in}l}
-%% $vexpr$ & ::= & $vexpr$ {\tt ;} $vexpr$\\
-%% & | & $vexpr$ {\tt ; [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt
-%% ]}\\
-%% & | & $vatom$\\
-%% \\
-%% $vatom$ & ::= & {\tt Fun} \nelist{\inputfun}{} {\tt ->} {\tacexpr}\\
-%% %& | & {\tt Rec} \recclause\\
-%% & | &
-%% {\tt Rec} \nelist{\recclause}{\tt And} {\tt In}
-%% {\tacexpr}\\
-%% & | &
-%% {\tt Match Context With} {\it (}$context\_rule$ {\tt |}{\it )}$^*$
-%% $context\_rule$\\
-%% & | & {\tt (} $vexpr$ {\tt )}\\
-%% & | & $vatom$ {\tt Orelse} $vatom$\\
-%% & | & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} $vatom$\\
-%% & | & {\tt Repeat} $vatom$\\
-%% & | & {\tt Try} $vatom$\\
-%% & | & {\tt First [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
-%% & | & {\tt Solve [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
-%% & | & {\tt Idtac}\\
-%% & | & {\tt Fail}\\
-%% & | & {\primitivetactic}\\
-%% & | & $arg$
-%% \end{tabular}
-%% \end{center}}}
-%% \caption{Values of ${\cal L}_{tac}$}
-%% \label{ltacval}
-%% \end{figure}
-
-%% \subsection{Evaluation}
-
-\subsubsection[Sequence]{Sequence\tacindex{;}
-\index{Tacticals!;@{\tt {\tac$_1$};\tac$_2$}}}
-
-A sequence is an expression of the following form:
-\begin{quote}
-{\tacexpr}$_1$ {\tt ;} {\tacexpr}$_2$
-\end{quote}
-The expressions {\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated
-to $v_1$ and $v_2$ which have to be tactic values. The tactic $v_1$ is
-then applied and $v_2$ is applied to every subgoal generated by the
-application of $v_1$. Sequence is left-associative.
-
-\subsubsection[General sequence]{General sequence\tacindex{;[\ldots$\mid$\ldots$\mid$\ldots]}}
-%\tacindex{; [ | ]}
-%\index{; [ | ]@{\tt ;[\ldots$\mid$\ldots$\mid$\ldots]}}
-\index{Tacticals!; [ \mid ]@{\tt {\tac$_0$};[{\tac$_1$}$\mid$\ldots$\mid$\tac$_n$]}}
-
-A general sequence has the following form:
-\begin{quote}
-{\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
-{\tacexpr}$_n$ {\tt ]}
-\end{quote}
-The expressions {\tacexpr}$_i$ are evaluated to $v_i$, for $i=0,...,n$
-and all have to be tactics. The tactic $v_0$ is applied and $v_i$ is
-applied to the $i$-th generated subgoal by the application of $v_0$,
-for $=1,...,n$. It fails if the application of $v_0$ does not generate
-exactly $n$ subgoals.
-
-\begin{Variants}
- \item If no tactic is given for the $i$-th generated subgoal, it
-behaves as if the tactic {\tt idtac} were given. For instance, {\tt
-split ; [ | auto ]} is a shortcut for
-{\tt split ; [ idtac | auto ]}.
-
- \item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
- {\tacexpr}$_i$ {\tt |} {\tt ..} {\tt |} {\tacexpr}$_{i+1+j}$ {\tt |}
- $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
-
- In this variant, {\tt idtac} is used for the subgoals numbered from
- $i+1$ to $i+j$ (assuming $n$ is the number of subgoals).
-
- Note that {\tt ..} is part of the syntax, while $...$ is the meta-symbol used
- to describe a list of {\tacexpr} of arbitrary length.
-
- \item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
- {\tacexpr}$_i$ {\tt |} {\tacexpr} {\tt ..} {\tt |}
- {\tacexpr}$_{i+1+j}$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
-
- In this variant, {\tacexpr} is used instead of {\tt idtac} for the
- subgoals numbered from $i+1$ to $i+j$.
-
-\end{Variants}
-
-
-
-\subsubsection[For loop]{For loop\tacindex{do}
-\index{Tacticals!do@{\tt do}}}
-
-There is a for loop that repeats a tactic {\num} times:
-\begin{quote}
-{\tt do} {\num} {\tacexpr}
-\end{quote}
-{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
-applied {\num} times. Supposing ${\num}>1$, after the first
-application of $v$, $v$ is applied, at least once, to the generated
-subgoals and so on. It fails if the application of $v$ fails before
-the {\num} applications have been completed.
-
-\subsubsection[Repeat loop]{Repeat loop\tacindex{repeat}
-\index{Tacticals!repeat@{\tt repeat}}}
-
-We have a repeat loop with:
-\begin{quote}
-{\tt repeat} {\tacexpr}
-\end{quote}
-{\tacexpr} is evaluated to $v$. If $v$ denotes a tactic, this tactic
-is applied to the goal. If the application fails, the tactic is
-applied recursively to all the generated subgoals until it eventually
-fails. The recursion stops in a subgoal when the tactic has failed.
-The tactic {\tt repeat {\tacexpr}} itself never fails.
-
-\subsubsection[Error catching]{Error catching\tacindex{try}
-\index{Tacticals!try@{\tt try}}}
-
-We can catch the tactic errors with:
-\begin{quote}
-{\tt try} {\tacexpr}
-\end{quote}
-{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
-applied. If the application of $v$ fails, it catches the error and
-leaves the goal unchanged. If the level of the exception is positive,
-then the exception is re-raised with its level decremented.
-
-\subsubsection[Detecting progress]{Detecting progress\tacindex{progress}}
-
-We can check if a tactic made progress with:
-\begin{quote}
-{\tt progress} {\tacexpr}
-\end{quote}
-{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
-applied. If the application of $v$ produced one subgoal equal to the
-initial goal (up to syntactical equality), then an error of level 0 is
-raised.
-
-\ErrMsg \errindex{Failed to progress}
-
-\subsubsection[Branching]{Branching\tacindex{$\mid\mid$}
-\index{Tacticals!orelse@{\tt $\mid\mid$}}}
-
-We can easily branch with the following structure:
-\begin{quote}
-{\tacexpr}$_1$ {\tt ||} {\tacexpr}$_2$
-\end{quote}
-{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and
-$v_2$. $v_1$ and $v_2$ must be tactic values. $v_1$ is applied and if
-it fails to progress then $v_2$ is applied. Branching is left-associative.
-
-\subsubsection[First tactic to work]{First tactic to work\tacindex{first}
-\index{Tacticals!first@{\tt first}}}
-
-We may consider the first tactic to work (i.e. which does not fail) among a
-panel of tactics:
-\begin{quote}
-{\tt first [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
-\end{quote}
-{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for
-$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it works, it stops else it
-tries to apply $v_2$ and so on. It fails when there is no applicable tactic.
-
-\ErrMsg \errindex{No applicable tactic}
-
-\subsubsection[Solving]{Solving\tacindex{solve}
-\index{Tacticals!solve@{\tt solve}}}
-
-We may consider the first to solve (i.e. which generates no subgoal) among a
-panel of tactics:
-\begin{quote}
-{\tt solve [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
-\end{quote}
-{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for
-$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it solves, it stops else it
-tries to apply $v_2$ and so on. It fails if there is no solving tactic.
-
-\ErrMsg \errindex{Cannot solve the goal}
-
-\subsubsection[Identity]{Identity\tacindex{idtac}
-\index{Tacticals!idtac@{\tt idtac}}}
-
-The constant {\tt idtac} is the identity tactic: it leaves any goal
-unchanged but it appears in the proof script.
-
-\variant {\tt idtac \nelist{\messagetoken}{}}
-
-This prints the given tokens. Strings and integers are printed
-literally. If a (term) variable is given, its contents are printed.
-
-
-\subsubsection[Failing]{Failing\tacindex{fail}
-\index{Tacticals!fail@{\tt fail}}}
-
-The tactic {\tt fail} is the always-failing tactic: it does not solve
-any goal. It is useful for defining other tacticals since it can be
-catched by {\tt try} or {\tt match goal}.
-
-\begin{Variants}
-\item {\tt fail $n$}\\
-The number $n$ is the failure level. If no level is specified, it
-defaults to $0$. The level is used by {\tt try} and {\tt match goal}.
-If $0$, it makes {\tt match goal} considering the next clause
-(backtracking). If non zero, the current {\tt match goal} block or
-{\tt try} command is aborted and the level is decremented.
-
-\item {\tt fail \nelist{\messagetoken}{}}\\
-The given tokens are used for printing the failure message.
-
-\item {\tt fail $n$ \nelist{\messagetoken}{}}\\
-This is a combination of the previous variants.
-\end{Variants}
-
-\ErrMsg \errindex{Tactic Failure {\it message} (level $n$)}.
-
-\subsubsection[Local definitions]{Local definitions\index{Ltac!let}
-\index{Ltac!let rec}
-\index{let!in Ltac}
-\index{let rec!in Ltac}}
-
-Local definitions can be done as follows:
-\begin{quote}
-{\tt let} {\ident}$_1$ {\tt :=} {\tacexpr}$_1$\\
-{\tt with} {\ident}$_2$ {\tt :=} {\tacexpr}$_2$\\
-...\\
-{\tt with} {\ident}$_n$ {\tt :=} {\tacexpr}$_n$ {\tt in}\\
-{\tacexpr}
-\end{quote}
-each {\tacexpr}$_i$ is evaluated to $v_i$, then, {\tacexpr} is
-evaluated by substituting $v_i$ to each occurrence of {\ident}$_i$,
-for $i=1,...,n$. There is no dependencies between the {\tacexpr}$_i$
-and the {\ident}$_i$.
-
-Local definitions can be recursive by using {\tt let rec} instead of
-{\tt let}. In this latter case, the definitions are evaluated lazily
-so that the {\tt rec} keyword can be used also in non recursive cases
-so as to avoid the eager evaluation of local definitions.
-
-\subsubsection{Application}
-
-An application is an expression of the following form:
-\begin{quote}
-{\qualid} {\tacarg}$_1$ ... {\tacarg}$_n$
-\end{quote}
-The reference {\qualid} must be bound to some defined tactic
-definition expecting at least $n$ arguments. The expressions
-{\tacexpr}$_i$ are evaluated to $v_i$, for $i=1,...,n$.
-%If {\tacexpr} is a {\tt Fun} or {\tt Rec} value then the body is evaluated by
-%substituting $v_i$ to the formal parameters, for $i=1,...,n$. For recursive
-%clauses, the bodies are lazily substituted (when an identifier to be evaluated
-%is the name of a recursive clause).
-
-%\subsection{Application of tactic values}
-
-\subsubsection[Function construction]{Function construction\index{fun!in Ltac}
-\index{Ltac!fun}}
-
-A parameterized tactic can be built anonymously (without resorting to
-local definitions) with:
-\begin{quote}
-{\tt fun} {\ident${}_1$} ... {\ident${}_n$} {\tt =>} {\tacexpr}
-\end{quote}
-Indeed, local definitions of functions are a syntactic sugar for
-binding a {\tt fun} tactic to an identifier.
-
-\subsubsection[Pattern matching on terms]{Pattern matching on terms\index{Ltac!match}
-\index{match!in Ltac}}
-
-We can carry out pattern matching on terms with:
-\begin{quote}
-{\tt match} {\tacexpr} {\tt with}\\
-~~~{\cpattern}$_1$ {\tt =>} {\tacexpr}$_1$\\
-~{\tt |} {\cpattern}$_2$ {\tt =>} {\tacexpr}$_2$\\
-~...\\
-~{\tt |} {\cpattern}$_n$ {\tt =>} {\tacexpr}$_n$\\
-~{\tt |} {\tt \_} {\tt =>} {\tacexpr}$_{n+1}$\\
-{\tt end}
-\end{quote}
-The expression {\tacexpr} is evaluated and should yield a term which
-is matched against {\cpattern}$_1$. The matching is non-linear: if a
-metavariable occurs more than once, it should match the same
-expression every time. It is first-order except on the
-variables of the form {\tt @?id} that occur in head position of an
-application. For these variables, the matching is second-order and
-returns a functional term.
-
-If the matching with {\cpattern}$_1$ succeeds, then {\tacexpr}$_1$ is
-evaluated into some value by substituting the pattern matching
-instantiations to the metavariables. If {\tacexpr}$_1$ evaluates to a
-tactic and the {\tt match} expression is in position to be applied to
-a goal (e.g. it is not bound to a variable by a {\tt let in}), then
-this tactic is applied. If the tactic succeeds, the list of resulting
-subgoals is the result of the {\tt match} expression. If
-{\tacexpr}$_1$ does not evaluate to a tactic or if the {\tt match}
-expression is not in position to be applied to a goal, then the result
-of the evaluation of {\tacexpr}$_1$ is the result of the {\tt match}
-expression.
-
-If the matching with {\cpattern}$_1$ fails, or if it succeeds but the
-evaluation of {\tacexpr}$_1$ fails, or if the evaluation of
-{\tacexpr}$_1$ succeeds but returns a tactic in execution position
-whose execution fails, then {\cpattern}$_2$ is used and so on. The
-pattern {\_} matches any term and shunts all remaining patterns if
-any. If all clauses fail (in particular, there is no pattern {\_})
-then a no-matching-clause error is raised.
-
-\begin{ErrMsgs}
-
-\item \errindex{No matching clauses for match}
-
- No pattern can be used and, in particular, there is no {\tt \_} pattern.
-
-\item \errindex{Argument of match does not evaluate to a term}
-
- This happens when {\tacexpr} does not denote a term.
-
-\end{ErrMsgs}
-
-\begin{Variants}
-\item \index{context!in pattern}
-There is a special form of patterns to match a subterm against the
-pattern:
-\begin{quote}
-{\tt context} {\ident} {\tt [} {\cpattern} {\tt ]}
-\end{quote}
-It matches any term which one subterm matches {\cpattern}. If there is
-a match, the optional {\ident} is assign the ``matched context'', that
-is the initial term where the matched subterm is replaced by a
-hole. The definition of {\tt context} in expressions below will show
-how to use such term contexts.
-
-If the evaluation of the right-hand-side of a valid match fails, the
-next matching subterm is tried. If no further subterm matches, the
-next clause is tried. Matching subterms are considered top-bottom and
-from left to right (with respect to the raw printing obtained by
-setting option {\tt Printing All}, see Section~\ref{SetPrintingAll}).
-
-\begin{coq_example}
-Ltac f x :=
- match x with
- context f [S ?X] =>
- idtac X; (* To display the evaluation order *)
- assert (p := refl_equal 1 : X=1); (* To filter the case X=1 *)
- let x:= context f[O] in assert (x=O) (* To observe the context *)
- end.
-Goal True.
-f (3+4).
-\end{coq_example}
-
-\item \index{lazymatch!in Ltac}
-\index{Ltac!lazymatch}
-Using {\tt lazymatch} instead of {\tt match} has an effect if the
-right-hand-side of a clause returns a tactic. With {\tt match}, the
-tactic is applied to the current goal (and the next clause is tried if
-it fails). With {\tt lazymatch}, the tactic is directly returned as
-the result of the whole {\tt lazymatch} block without being first
-tried to be applied to the goal. Typically, if the {\tt lazymatch}
-block is bound to some variable $x$ in a {\tt let in}, then tactic
-expression gets bound to the variable $x$.
-
-\end{Variants}
-
-\subsubsection[Pattern matching on goals]{Pattern matching on goals\index{Ltac!match goal}
-\index{Ltac!match reverse goal}
-\index{match goal!in Ltac}
-\index{match reverse goal!in Ltac}}
-
-We can make pattern matching on goals using the following expression:
-\begin{quote}
-\begin{tabbing}
-{\tt match goal with}\\
-~~\={\tt |} $hyp_{1,1}${\tt ,}...{\tt ,}$hyp_{1,m_1}$
- ~~{\tt |-}{\cpattern}$_1${\tt =>} {\tacexpr}$_1$\\
- \>{\tt |} $hyp_{2,1}${\tt ,}...{\tt ,}$hyp_{2,m_2}$
- ~~{\tt |-}{\cpattern}$_2${\tt =>} {\tacexpr}$_2$\\
-~~...\\
- \>{\tt |} $hyp_{n,1}${\tt ,}...{\tt ,}$hyp_{n,m_n}$
- ~~{\tt |-}{\cpattern}$_n${\tt =>} {\tacexpr}$_n$\\
- \>{\tt |\_}~~~~{\tt =>} {\tacexpr}$_{n+1}$\\
-{\tt end}
-\end{tabbing}
-\end{quote}
-
-If each hypothesis pattern $hyp_{1,i}$, with $i=1,...,m_1$
-is matched (non-linear first-order unification) by an hypothesis of
-the goal and if {\cpattern}$_1$ is matched by the conclusion of the
-goal, then {\tacexpr}$_1$ is evaluated to $v_1$ by substituting the
-pattern matching to the metavariables and the real hypothesis names
-bound to the possible hypothesis names occurring in the hypothesis
-patterns. If $v_1$ is a tactic value, then it is applied to the
-goal. If this application fails, then another combination of
-hypotheses is tried with the same proof context pattern. If there is
-no other combination of hypotheses then the second proof context
-pattern is tried and so on. If the next to last proof context pattern
-fails then {\tacexpr}$_{n+1}$ is evaluated to $v_{n+1}$ and $v_{n+1}$
-is applied. Note also that matching against subterms (using the {\tt
-context} {\ident} {\tt [} {\cpattern} {\tt ]}) is available and may
-itself induce extra backtrackings.
-
-\ErrMsg \errindex{No matching clauses for match goal}
-
-No clause succeeds, i.e. all matching patterns, if any,
-fail at the application of the right-hand-side.
-
-\medskip
-
-It is important to know that each hypothesis of the goal can be
-matched by at most one hypothesis pattern. The order of matching is
-the following: hypothesis patterns are examined from the right to the
-left (i.e. $hyp_{i,m_i}$ before $hyp_{i,1}$). For each hypothesis
-pattern, the goal hypothesis are matched in order (fresher hypothesis
-first), but it possible to reverse this order (older first) with
-the {\tt match reverse goal with} variant.
-
-\variant
-\index{lazymatch goal!in Ltac}
-\index{Ltac!lazymatch goal}
-\index{lazymatch reverse goal!in Ltac}
-\index{Ltac!lazymatch reverse goal}
-Using {\tt lazymatch} instead of {\tt match} has an effect if the
-right-hand-side of a clause returns a tactic. With {\tt match}, the
-tactic is applied to the current goal (and the next clause is tried if
-it fails). With {\tt lazymatch}, the tactic is directly returned as
-the result of the whole {\tt lazymatch} block without being first
-tried to be applied to the goal. Typically, if the {\tt lazymatch}
-block is bound to some variable $x$ in a {\tt let in}, then tactic
-expression gets bound to the variable $x$.
-
-\begin{coq_example}
-Ltac test_lazy :=
- lazymatch goal with
- | _ => idtac "here"; fail
- | _ => idtac "wasn't lazy"; trivial
- end.
-Ltac test_eager :=
- match goal with
- | _ => idtac "here"; fail
- | _ => idtac "wasn't lazy"; trivial
- end.
-Goal True.
-test_lazy || idtac "was lazy".
-test_eager || idtac "was lazy".
-\end{coq_example}
-
-\subsubsection[Filling a term context]{Filling a term context\index{context!in expression}}
-
-The following expression is not a tactic in the sense that it does not
-produce subgoals but generates a term to be used in tactic
-expressions:
-\begin{quote}
-{\tt context} {\ident} {\tt [} {\tacexpr} {\tt ]}
-\end{quote}
-{\ident} must denote a context variable bound by a {\tt context}
-pattern of a {\tt match} expression. This expression evaluates
-replaces the hole of the value of {\ident} by the value of
-{\tacexpr}.
-
-\ErrMsg \errindex{not a context variable}
-
-
-\subsubsection[Generating fresh hypothesis names]{Generating fresh hypothesis names\index{Ltac!fresh}
-\index{fresh!in Ltac}}
-
-Tactics sometimes have to generate new names for hypothesis. Letting
-the system decide a name with the {\tt intro} tactic is not so good
-since it is very awkward to retrieve the name the system gave.
-The following expression returns an identifier:
-\begin{quote}
-{\tt fresh} \nelist{\textrm{\textsl{component}}}{}
-\end{quote}
-It evaluates to an identifier unbound in the goal. This fresh
-identifier is obtained by concatenating the value of the
-\textrm{\textsl{component}}'s (each of them is, either an {\ident} which
-has to refer to a name, or directly a name denoted by a
-{\qstring}). If the resulting name is already used, it is padded
-with a number so that it becomes fresh. If no component is
-given, the name is a fresh derivative of the name {\tt H}.
-
-\subsubsection[Computing in a constr]{Computing in a constr\index{Ltac!eval}
-\index{eval!in Ltac}}
-
-Evaluation of a term can be performed with:
-\begin{quote}
-{\tt eval} {\nterm{redexpr}} {\tt in} {\term}
-\end{quote}
-where \nterm{redexpr} is a reduction tactic among {\tt red}, {\tt
-hnf}, {\tt compute}, {\tt simpl}, {\tt cbv}, {\tt lazy}, {\tt unfold},
-{\tt fold}, {\tt pattern}.
-
-\subsubsection{Type-checking a term}
-%\tacindex{type of}
-\index{Ltac!type of}
-\index{type of!in Ltac}
-
-The following returns the type of {\term}:
-
-\begin{quote}
-{\tt type of} {\term}
-\end{quote}
-
-\subsubsection[Accessing tactic decomposition]{Accessing tactic decomposition\tacindex{info}
-\index{Tacticals!info@{\tt info}}}
-
-Tactical ``{\tt info} {\tacexpr}'' is not really a tactical. For
-elementary tactics, this is equivalent to \tacexpr. For complex tactic
-like \texttt{auto}, it displays the operations performed by the
-tactic.
-
-\subsubsection[Proving a subgoal as a separate lemma]{Proving a subgoal as a separate lemma\tacindex{abstract}
-\index{Tacticals!abstract@{\tt abstract}}}
-
-From the outside ``\texttt{abstract \tacexpr}'' is the same as
-{\tt solve \tacexpr}. Internally it saves an auxiliary lemma called
-{\ident}\texttt{\_subproof}\textit{n} where {\ident} is the name of the
-current goal and \textit{n} is chosen so that this is a fresh name.
-
-This tactical is useful with tactics such as \texttt{omega} or
-\texttt{discriminate} that generate huge proof terms. With that tool
-the user can avoid the explosion at time of the \texttt{Save} command
-without having to cut manually the proof in smaller lemmas.
-
-\begin{Variants}
-\item \texttt{abstract {\tacexpr} using {\ident}}.\\
- Give explicitly the name of the auxiliary lemma.
-\end{Variants}
-
-\ErrMsg \errindex{Proof is not complete}
-
-\subsubsection[Calling an external tactic]{Calling an external tactic\index{Ltac!external}}
-
-The tactic {\tt external} allows to run an executable outside the
-{\Coq} executable. The communication is done via an XML encoding of
-constructions. The syntax of the command is
-
-\begin{quote}
-{\tt external} "\textsl{command}" "\textsl{request}" \nelist{\tacarg}{}
-\end{quote}
-
-The string \textsl{command}, to be interpreted in the default
-execution path of the operating system, is the name of the external
-command. The string \textsl{request} is the name of a request to be
-sent to the external command. Finally the list of tactic arguments
-have to evaluate to terms. An XML tree of the following form is sent
-to the standard input of the external command.
-\medskip
-
-\begin{tabular}{l}
-\texttt{<REQUEST req="}\textsl{request}\texttt{">}\\
-the XML tree of the first argument\\
-{\ldots}\\
-the XML tree of the last argument\\
-\texttt{</REQUEST>}\\
-\end{tabular}
-\medskip
-
-Conversely, the external command must send on its standard output an
-XML tree of the following forms:
-
-\medskip
-\begin{tabular}{l}
-\texttt{<TERM>}\\
-the XML tree of a term\\
-\texttt{</TERM>}\\
-\end{tabular}
-\medskip
-
-\noindent or
-
-\medskip
-\begin{tabular}{l}
-\texttt{<CALL uri="}\textsl{ltac\_qualified\_ident}\texttt{">}\\
-the XML tree of a first argument\\
-{\ldots}\\
-the XML tree of a last argument\\
-\texttt{</CALL>}\\
-\end{tabular}
-
-\medskip
-\noindent where \textsl{ltac\_qualified\_ident} is the name of a
-defined {\ltac} function and each subsequent XML tree is recursively a
-\texttt{CALL} or a \texttt{TERM} node.
-
-The Document Type Definition (DTD) for terms of the Calculus of
-Inductive Constructions is the one developed as part of the MoWGLI
-European project. It can be found in the file {\tt dev/doc/cic.dtd} of
-the {\Coq} source archive.
-
-An example of parser for this DTD, written in the Objective Caml -
-Camlp4 language, can be found in the file {\tt parsing/g\_xml.ml4} of
-the {\Coq} source archive.
-
-\section[Tactic toplevel definitions]{Tactic toplevel definitions\comindex{Ltac}}
-
-\subsection{Defining {\ltac} functions}
-
-Basically, {\ltac} toplevel definitions are made as follows:
-%{\tt Tactic Definition} {\ident} {\tt :=} {\tacexpr}\\
-%
-%{\tacexpr} is evaluated to $v$ and $v$ is associated to {\ident}. Next, every
-%script is evaluated by substituting $v$ to {\ident}.
-%
-%We can define functional definitions by:\\
-\begin{quote}
-{\tt Ltac} {\ident} {\ident}$_1$ ... {\ident}$_n$ {\tt :=}
-{\tacexpr}
-\end{quote}
-This defines a new {\ltac} function that can be used in any tactic
-script or new {\ltac} toplevel definition.
-
-\Rem The preceding definition can equivalently be written:
-\begin{quote}
-{\tt Ltac} {\ident} {\tt := fun} {\ident}$_1$ ... {\ident}$_n$
-{\tt =>} {\tacexpr}
-\end{quote}
-Recursive and mutual recursive function definitions are also
-possible with the syntax:
-\begin{quote}
-{\tt Ltac} {\ident}$_1$ {\ident}$_{1,1}$ ...
-{\ident}$_{1,m_1}$~~{\tt :=} {\tacexpr}$_1$\\
-{\tt with} {\ident}$_2$ {\ident}$_{2,1}$ ... {\ident}$_{2,m_2}$~~{\tt :=}
-{\tacexpr}$_2$\\
-...\\
-{\tt with} {\ident}$_n$ {\ident}$_{n,1}$ ... {\ident}$_{n,m_n}$~~{\tt :=}
-{\tacexpr}$_n$
-\end{quote}
-\medskip
-It is also possible to \emph{redefine} an existing user-defined tactic
-using the syntax:
-\begin{quote}
-{\tt Ltac} {\qualid} {\ident}$_1$ ... {\ident}$_n$ {\tt ::=}
-{\tacexpr}
-\end{quote}
-A previous definition of \qualid must exist in the environment.
-The new definition will always be used instead of the old one and
-it goes accross module boundaries.
-
-If preceded by the keyword {\tt Local} the tactic definition will not
-be exported outside the current module.
-
-\subsection[Printing {\ltac} tactics]{Printing {\ltac} tactics\comindex{Print Ltac}}
-
-Defined {\ltac} functions can be displayed using the command
-
-\begin{quote}
-{\tt Print Ltac {\qualid}.}
-\end{quote}
-
-\section[Debugging {\ltac} tactics]{Debugging {\ltac} tactics\comindex{Set Ltac Debug}
-\comindex{Unset Ltac Debug}
-\comindex{Test Ltac Debug}}
-
-The {\ltac} interpreter comes with a step-by-step debugger. The
-debugger can be activated using the command
-
-\begin{quote}
-{\tt Set Ltac Debug.}
-\end{quote}
-
-\noindent and deactivated using the command
-
-\begin{quote}
-{\tt Unset Ltac Debug.}
-\end{quote}
-
-To know if the debugger is on, use the command \texttt{Test Ltac Debug}.
-When the debugger is activated, it stops at every step of the
-evaluation of the current {\ltac} expression and it prints information
-on what it is doing. The debugger stops, prompting for a command which
-can be one of the following:
-
-\medskip
-\begin{tabular}{ll}
-simple newline: & go to the next step\\
-h: & get help\\
-x: & exit current evaluation\\
-s: & continue current evaluation without stopping\\
-r$n$: & advance $n$ steps further\\
-\end{tabular}
-\endinput
-
-\subsection{Permutation on closed lists}
-
-\begin{figure}[b]
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example*}
-Require Import List.
-Section Sort.
-Variable A : Set.
-Inductive permut : list A -> list A -> Prop :=
- | permut_refl : forall l, permut l l
- | permut_cons :
- forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
- | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
- | permut_trans :
- forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.
-End Sort.
-\end{coq_example*}
-\end{center}
-\caption{Definition of the permutation predicate}
-\label{permutpred}
-\end{figure}
-
-
-Another more complex example is the problem of permutation on closed
-lists. The aim is to show that a closed list is a permutation of
-another one. First, we define the permutation predicate as shown on
-Figure~\ref{permutpred}.
-
-\begin{figure}[p]
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example}
-Ltac Permut n :=
- match goal with
- | |- (permut _ ?l ?l) => apply permut_refl
- | |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
- let newn := eval compute in (length l1) in
- (apply permut_cons; Permut newn)
- | |- (permut ?A (?a :: ?l1) ?l2) =>
- match eval compute in n with
- | 1 => fail
- | _ =>
- let l1' := constr:(l1 ++ a :: nil) in
- (apply (permut_trans A (a :: l1) l1' l2);
- [ apply permut_append | compute; Permut (pred n) ])
- end
- end.
-Ltac PermutProve :=
- match goal with
- | |- (permut _ ?l1 ?l2) =>
- match eval compute in (length l1 = length l2) with
- | (?n = ?n) => Permut n
- end
- end.
-\end{coq_example}
-\end{minipage}}
-\end{center}
-\caption{Permutation tactic}
-\label{permutltac}
-\end{figure}
-
-\begin{figure}[p]
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example*}
-Lemma permut_ex1 :
- permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
-Proof.
-PermutProve.
-Qed.
-
-Lemma permut_ex2 :
- permut nat
- (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
- (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
-Proof.
-PermutProve.
-Qed.
-\end{coq_example*}
-\end{minipage}}
-\end{center}
-\caption{Examples of {\tt PermutProve} use}
-\label{permutlem}
-\end{figure}
-
-Next, we can write naturally the tactic and the result can be seen on
-Figure~\ref{permutltac}. We can notice that we use two toplevel
-definitions {\tt PermutProve} and {\tt Permut}. The function to be
-called is {\tt PermutProve} which computes the lengths of the two
-lists and calls {\tt Permut} with the length if the two lists have the
-same length. {\tt Permut} works as expected. If the two lists are
-equal, it concludes. Otherwise, if the lists have identical first
-elements, it applies {\tt Permut} on the tail of the lists. Finally,
-if the lists have different first elements, it puts the first element
-of one of the lists (here the second one which appears in the {\tt
- permut} predicate) at the end if that is possible, i.e., if the new
-first element has been at this place previously. To verify that all
-rotations have been done for a list, we use the length of the list as
-an argument for {\tt Permut} and this length is decremented for each
-rotation down to, but not including, 1 because for a list of length
-$n$, we can make exactly $n-1$ rotations to generate at most $n$
-distinct lists. Here, it must be noticed that we use the natural
-numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we
-can see that it is possible to use usual natural numbers but they are
-only used as arguments for primitive tactics and they cannot be
-handled, in particular, we cannot make computations with them. So, a
-natural choice is to use {\Coq} data structures so that {\Coq} makes
-the computations (reductions) by {\tt eval compute in} and we can get
-the terms back by {\tt match}.
-
-With {\tt PermutProve}, we can now prove lemmas such those shown on
-Figure~\ref{permutlem}.
-
-
-\subsection{Deciding intuitionistic propositional logic}
-
-\begin{figure}[tbp]
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example}
-Ltac Axioms :=
- match goal with
- | |- True => trivial
- | _:False |- _ => elimtype False; assumption
- | _:?A |- ?A => auto
- end.
-Ltac DSimplif :=
- repeat
- (intros;
- match goal with
- | id:(~ _) |- _ => red in id
- | id:(_ /\ _) |- _ =>
- elim id; do 2 intro; clear id
- | id:(_ \/ _) |- _ =>
- elim id; intro; clear id
- | id:(?A /\ ?B -> ?C) |- _ =>
- cut (A -> B -> C);
- [ intro | intros; apply id; split; assumption ]
- | id:(?A \/ ?B -> ?C) |- _ =>
- cut (B -> C);
- [ cut (A -> C);
- [ intros; clear id
- | intro; apply id; left; assumption ]
- | intro; apply id; right; assumption ]
- | id0:(?A -> ?B),id1:?A |- _ =>
- cut B; [ intro; clear id0 | apply id0; assumption ]
- | |- (_ /\ _) => split
- | |- (~ _) => red
- end).
-\end{coq_example}
-\end{minipage}}
-\end{center}
-\caption{Deciding intuitionistic propositions (1)}
-\label{tautoltaca}
-\end{figure}
-
-\begin{figure}
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example}
-Ltac TautoProp :=
- DSimplif;
- Axioms ||
- match goal with
- | id:((?A -> ?B) -> ?C) |- _ =>
- cut (B -> C);
- [ intro; cut (A -> B);
- [ intro; cut C;
- [ intro; clear id | apply id; assumption ]
- | clear id ]
- | intro; apply id; intro; assumption ]; TautoProp
- | id:(~ ?A -> ?B) |- _ =>
- cut (False -> B);
- [ intro; cut (A -> False);
- [ intro; cut B;
- [ intro; clear id | apply id; assumption ]
- | clear id ]
- | intro; apply id; red; intro; assumption ]; TautoProp
- | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
- end.
-\end{coq_example}
-\end{minipage}}
-\end{center}
-\caption{Deciding intuitionistic propositions (2)}
-\label{tautoltacb}
-\end{figure}
-
-The pattern matching on goals allows a complete and so a powerful
-backtracking when returning tactic values. An interesting application
-is the problem of deciding intuitionistic propositional logic.
-Considering the contraction-free sequent calculi {\tt LJT*} of
-Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic
-using the tactic language. On Figure~\ref{tautoltaca}, the tactic {\tt
- Axioms} tries to conclude using usual axioms. The {\tt DSimplif}
-tactic applies all the reversible rules of Dyckhoff's system.
-Finally, on Figure~\ref{tautoltacb}, the {\tt TautoProp} tactic (the
-main tactic to be called) simplifies with {\tt DSimplif}, tries to
-conclude with {\tt Axioms} and tries several paths using the
-backtracking rules (one of the four Dyckhoff's rules for the left
-implication to get rid of the contraction and the right or).
-
-\begin{figure}[tb]
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example*}
-Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
-Proof.
-TautoProp.
-Qed.
-
-Lemma tauto_ex2 :
- forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
-Proof.
-TautoProp.
-Qed.
-\end{coq_example*}
-\end{minipage}}
-\end{center}
-\caption{Proofs of tautologies with {\tt TautoProp}}
-\label{tautolem}
-\end{figure}
-
-For example, with {\tt TautoProp}, we can prove tautologies like those of
-Figure~\ref{tautolem}.
-
-
-\subsection{Deciding type isomorphisms}
-
-A more tricky problem is to decide equalities between types and modulo
-isomorphisms. Here, we choose to use the isomorphisms of the simply typed
-$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
-\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
-Figure~\ref{isosax}.
-
-\begin{figure}
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Open Scope type_scope.
-Section Iso_axioms.
-Variables A B C : Set.
-Axiom Com : A * B = B * A.
-Axiom Ass : A * (B * C) = A * B * C.
-Axiom Cur : (A * B -> C) = (A -> B -> C).
-Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
-Axiom P_unit : A * unit = A.
-Axiom AR_unit : (A -> unit) = unit.
-Axiom AL_unit : (unit -> A) = A.
-Lemma Cons : B = C -> A * B = A * C.
-Proof.
-intro Heq; rewrite Heq; apply refl_equal.
-Qed.
-End Iso_axioms.
-\end{coq_example*}
-\end{minipage}}
-\end{center}
-\caption{Type isomorphism axioms}
-\label{isosax}
-\end{figure}
-
-The tactic to judge equalities modulo this axiomatization can be written as
-shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
-simple. Types are reduced using axioms that can be oriented (this done by {\tt
-MainSimplif}). The normal forms are sequences of Cartesian
-products without Cartesian product in the left component. These normal forms
-are then compared modulo permutation of the components (this is done by {\tt
-CompareStruct}). The main tactic to be called and realizing this algorithm is
-{\tt IsoProve}.
-
-\begin{figure}
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example}
-Ltac DSimplif trm :=
- match trm with
- | (?A * ?B * ?C) =>
- rewrite <- (Ass A B C); try MainSimplif
- | (?A * ?B -> ?C) =>
- rewrite (Cur A B C); try MainSimplif
- | (?A -> ?B * ?C) =>
- rewrite (Dis A B C); try MainSimplif
- | (?A * unit) =>
- rewrite (P_unit A); try MainSimplif
- | (unit * ?B) =>
- rewrite (Com unit B); try MainSimplif
- | (?A -> unit) =>
- rewrite (AR_unit A); try MainSimplif
- | (unit -> ?B) =>
- rewrite (AL_unit B); try MainSimplif
- | (?A * ?B) =>
- (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
- | (?A -> ?B) =>
- (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
- end
- with MainSimplif :=
- match goal with
- | |- (?A = ?B) => try DSimplif A; try DSimplif B
- end.
-Ltac Length trm :=
- match trm with
- | (_ * ?B) => let succ := Length B in constr:(S succ)
- | _ => constr:1
- end.
-Ltac assoc := repeat rewrite <- Ass.
-\end{coq_example}
-\end{minipage}}
-\end{center}
-\caption{Type isomorphism tactic (1)}
-\label{isosltac1}
-\end{figure}
-
-\begin{figure}
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example}
-Ltac DoCompare n :=
- match goal with
- | [ |- (?A = ?A) ] => apply refl_equal
- | [ |- (?A * ?B = ?A * ?C) ] =>
- apply Cons; let newn := Length B in DoCompare newn
- | [ |- (?A * ?B = ?C) ] =>
- match eval compute in n with
- | 1 => fail
- | _ =>
- pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
- end
- end.
-Ltac CompareStruct :=
- match goal with
- | [ |- (?A = ?B) ] =>
- let l1 := Length A
- with l2 := Length B in
- match eval compute in (l1 = l2) with
- | (?n = ?n) => DoCompare n
- end
- end.
-Ltac IsoProve := MainSimplif; CompareStruct.
-\end{coq_example}
-\end{minipage}}
-\end{center}
-\caption{Type isomorphism tactic (2)}
-\label{isosltac2}
-\end{figure}
-
-Figure~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}.
-
-\begin{figure}
-\begin{center}
-\fbox{\begin{minipage}{0.95\textwidth}
-\begin{coq_example*}
-Lemma isos_ex1 :
- forall A B:Set, A * unit * B = B * (unit * A).
-Proof.
-intros; IsoProve.
-Qed.
-
-Lemma isos_ex2 :
- forall A B C:Set,
- (A * unit -> B * (C * unit)) =
- (A * unit -> (C -> unit) * C) * (unit -> A -> B).
-Proof.
-intros; IsoProve.
-Qed.
-\end{coq_example*}
-\end{minipage}}
-\end{center}
-\caption{Type equalities solved by {\tt IsoProve}}
-\label{isoslem}
-\end{figure}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-mod.tex b/doc/refman/RefMan-mod.tex
deleted file mode 100644
index 68d57226..00000000
--- a/doc/refman/RefMan-mod.tex
+++ /dev/null
@@ -1,411 +0,0 @@
-\section{Module system
-\index{Modules}
-\label{section:Modules}}
-
-The module system provides a way of packaging related elements
-together, as well as a mean of massive abstraction.
-
-\begin{figure}[t]
-\begin{centerframe}
-\begin{tabular}{rcl}
-{\modtype} & ::= & {\qualid} \\
- & $|$ & {\modtype} \texttt{ with Definition }{\qualid} := {\term} \\
- & $|$ & {\modtype} \texttt{ with Module }{\qualid} := {\qualid} \\
- & $|$ & {\qualid} \nelist{\qualid}{}\\
- & $|$ & $!${\qualid} \nelist{\qualid}{}\\
- &&\\
-
-{\onemodbinding} & ::= & {\tt ( [Import|Export] \nelist{\ident}{} : {\modtype} )}\\
- &&\\
-
-{\modbindings} & ::= & \nelist{\onemodbinding}{}\\
- &&\\
-
-{\modexpr} & ::= & \nelist{\qualid}{} \\
- & $|$ & $!$\nelist{\qualid}{}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of modules}
-\end{figure}
-
-In the syntax of module application, the $!$ prefix indicates that
-any {\tt Inline} directive in the type of the functor arguments
-will be ignored (see \ref{Inline} below).
-
-\subsection{\tt Module {\ident}
-\comindex{Module}}
-
-This command is used to start an interactive module named {\ident}.
-
-\begin{Variants}
-
-\item{\tt Module {\ident} {\modbindings}}
-
- Starts an interactive functor with parameters given by {\modbindings}.
-
-\item{\tt Module {\ident} \verb.:. {\modtype}}
-
- Starts an interactive module specifying its module type.
-
-\item{\tt Module {\ident} {\modbindings} \verb.:. {\modtype}}
-
- Starts an interactive functor with parameters given by
- {\modbindings}, and output module type {\modtype}.
-
-\item{\tt Module {\ident} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:.{ \modtype$_n$}}
-
- Starts an interactive module satisfying each {\modtype$_i$}.
-
-\item{\tt Module {\ident} {\modbindings} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:. {\modtype$_n$}}
-
- Starts an interactive functor with parameters given by
- {\modbindings}. The output module type is verified against each
- module type {\modtype$_i$}.
-
-\item\texttt{Module [Import|Export]}
-
- Behaves like \texttt{Module}, but automatically imports or exports
- the module.
-
-\end{Variants}
-\subsubsection{Reserved commands inside an interactive module:
-\comindex{Include}}
-\begin{enumerate}
-\item {\tt Include {\module}}
-
- Includes the content of {\module} in the current interactive
- module. Here {\module} can be a module expresssion or a module type
- expression. If {\module} is a high-order module or module type
- expression then the system tries to instanciate {\module}
- by the current interactive module.
-
-\item {\tt Include {\module$_1$} \verb.<+. $\ldots$ \verb.<+. {\module$_n$}}
-
-is a shortcut for {\tt Include {\module$_1$}} $\ldots$ {\tt Include {\module$_n$}}
-\end{enumerate}
-\subsection{\tt End {\ident}
-\comindex{End}}
-
-This command closes the interactive module {\ident}. If the module type
-was given the content of the module is matched against it and an error
-is signaled if the matching fails. If the module is basic (is not a
-functor) its components (constants, inductive types, submodules etc) are
-now available through the dot notation.
-
-\begin{ErrMsgs}
-\item \errindex{No such label {\ident}}
-\item \errindex{Signature components for label {\ident} do not match}
-\item \errindex{This is not the last opened module}
-\end{ErrMsgs}
-
-
-\subsection{\tt Module {\ident} := {\modexpr}
-\comindex{Module}}
-
-This command defines the module identifier {\ident} to be equal to
-{\modexpr}.
-
-\begin{Variants}
-\item{\tt Module {\ident} {\modbindings} := {\modexpr}}
-
- Defines a functor with parameters given by {\modbindings} and body {\modexpr}.
-
-% Particular cases of the next 2 items
-%\item{\tt Module {\ident} \verb.:. {\modtype} := {\modexpr}}
-%
-% Defines a module with body {\modexpr} and interface {\modtype}.
-%\item{\tt Module {\ident} \verb.<:. {\modtype} := {\modexpr}}
-%
-% Defines a module with body {\modexpr}, satisfying {\modtype}.
-
-\item{\tt Module {\ident} {\modbindings} \verb.:. {\modtype} :=
- {\modexpr}}
-
- Defines a functor with parameters given by {\modbindings} (possibly none),
- and output module type {\modtype}, with body {\modexpr}.
-
-\item{\tt Module {\ident} {\modbindings} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:. {\modtype$_n$}:=
- {\modexpr}}
-
- Defines a functor with parameters given by {\modbindings} (possibly none)
- with body {\modexpr}. The body is checked against each {\modtype$_i$}.
-
-\item{\tt Module {\ident} {\modbindings} := {\modexpr$_1$} \verb.<+. $\ldots$ \verb.<+. {\modexpr$_n$}}
-
- is equivalent to an interactive module where each {\modexpr$_i$} are included.
-
-\end{Variants}
-
-\subsection{\tt Module Type {\ident}
-\comindex{Module Type}}
-
-This command is used to start an interactive module type {\ident}.
-
-\begin{Variants}
-
-\item{\tt Module Type {\ident} {\modbindings}}
-
- Starts an interactive functor type with parameters given by {\modbindings}.
-
-\end{Variants}
-\subsubsection{Reserved commands inside an interactive module type:
-\comindex{Include}\comindex{Inline}}
-\label{Inline}
-\begin{enumerate}
-\item {\tt Include {\module}}
-
- Same as {\tt Include} inside a module.
-
-\item {\tt Include {\module$_1$} \verb.<+. $\ldots$ \verb.<+. {\module$_n$}}
-
-is a shortcut for {\tt Include {\module$_1$}} $\ldots$ {\tt Include {\module$_n$}}
-
-\item {\tt {\assumptionkeyword} Inline {\assums} }
-
- The instance of this assumption will be automatically expanded at functor
- application, except when this functor application is prefixed by a $!$ annotation.
-\end{enumerate}
-\subsection{\tt End {\ident}
-\comindex{End}}
-
-This command closes the interactive module type {\ident}.
-
-\begin{ErrMsgs}
-\item \errindex{This is not the last opened module type}
-\end{ErrMsgs}
-
-\subsection{\tt Module Type {\ident} := {\modtype}}
-
-Defines a module type {\ident} equal to {\modtype}.
-
-\begin{Variants}
-\item {\tt Module Type {\ident} {\modbindings} := {\modtype}}
-
- Defines a functor type {\ident} specifying functors taking arguments
- {\modbindings} and returning {\modtype}.
-
-\item{\tt Module Type {\ident} {\modbindings} := {\modtype$_1$} \verb.<+. $\ldots$ \verb.<+. {\modtype$_n$}}
-
- is equivalent to an interactive module type were each {\modtype$_i$} are included.
-
-\end{Variants}
-
-\subsection{\tt Declare Module {\ident} : {\modtype}}
-
-Declares a module {\ident} of type {\modtype}.
-
-\begin{Variants}
-
-\item{\tt Declare Module {\ident} {\modbindings} \verb.:. {\modtype}}
-
- Declares a functor with parameters {\modbindings} and output module
- type {\modtype}.
-
-
-\end{Variants}
-
-
-\subsubsection{Example}
-
-Let us define a simple module.
-\begin{coq_example}
-Module M.
- Definition T := nat.
- Definition x := 0.
- Definition y : bool.
- exact true.
- Defined.
-End M.
-\end{coq_example}
-Inside a module one can define constants, prove theorems and do any
-other things that can be done in the toplevel. Components of a closed
-module can be accessed using the dot notation:
-\begin{coq_example}
-Print M.x.
-\end{coq_example}
-A simple module type:
-\begin{coq_example}
-Module Type SIG.
- Parameter T : Set.
- Parameter x : T.
-End SIG.
-\end{coq_example}
-
-Now we can create a new module from \texttt{M}, giving it a less
-precise specification: the \texttt{y} component is dropped as well
-as the body of \texttt{x}.
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is not correct and should produce **********)
-(***************** Error: N.y not a defined object *******************)
-\end{coq_eval}
-\begin{coq_example}
-Module N : SIG with Definition T := nat := M.
-Print N.T.
-Print N.x.
-Print N.y.
-\end{coq_example}
-\begin{coq_eval}
-Reset N.
-\end{coq_eval}
-
-\noindent
-The definition of \texttt{N} using the module type expression
-\texttt{SIG with Definition T:=nat} is equivalent to the following
-one:
-
-\begin{coq_example*}
-Module Type SIG'.
- Definition T : Set := nat.
- Parameter x : T.
-End SIG'.
-Module N : SIG' := M.
-\end{coq_example*}
-If we just want to be sure that the our implementation satisfies a
-given module type without restricting the interface, we can use a
-transparent constraint
-\begin{coq_example}
-Module P <: SIG := M.
-Print P.y.
-\end{coq_example}
-Now let us create a functor, i.e. a parametric module
-\begin{coq_example}
-Module Two (X Y: SIG).
-\end{coq_example}
-\begin{coq_example*}
- Definition T := (X.T * Y.T)%type.
- Definition x := (X.x, Y.x).
-\end{coq_example*}
-\begin{coq_example}
-End Two.
-\end{coq_example}
-and apply it to our modules and do some computations
-\begin{coq_example}
-Module Q := Two M N.
-Eval compute in (fst Q.x + snd Q.x).
-\end{coq_example}
-In the end, let us define a module type with two sub-modules, sharing
-some of the fields and give one of its possible implementations:
-\begin{coq_example}
-Module Type SIG2.
- Declare Module M1 : SIG.
- Module M2 <: SIG.
- Definition T := M1.T.
- Parameter x : T.
- End M2.
-End SIG2.
-\end{coq_example}
-\begin{coq_example*}
-Module Mod <: SIG2.
- Module M1.
- Definition T := nat.
- Definition x := 1.
- End M1.
- Module M2 := M.
-\end{coq_example*}
-\begin{coq_example}
-End Mod.
-\end{coq_example}
-Notice that \texttt{M} is a correct body for the component \texttt{M2}
-since its \texttt{T} component is equal \texttt{nat} and hence
-\texttt{M1.T} as specified.
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Remarks}
-\item Modules and module types can be nested components of each other.
-\item One can have sections inside a module or a module type, but
- not a module or a module type inside a section.
-\item Commands like \texttt{Hint} or \texttt{Notation} can
- also appear inside modules and module types. Note that in case of a
- module definition like:
-
- \smallskip
- \noindent
- {\tt Module N : SIG := M.}
- \smallskip
-
- or
-
- \smallskip
- {\tt Module N : SIG.\\
- \ \ \dots\\
- End N.}
- \smallskip
-
- hints and the like valid for \texttt{N} are not those defined in
- \texttt{M} (or the module body) but the ones defined in
- \texttt{SIG}.
-
-\end{Remarks}
-
-\subsection{\tt Import {\qualid}
-\comindex{Import}
-\label{Import}}
-
-If {\qualid} denotes a valid basic module (i.e. its module type is a
-signature), makes its components available by their short names.
-
-Example:
-
-\begin{coq_example}
-Module Mod.
-\end{coq_example}
-\begin{coq_example}
- Definition T:=nat.
- Check T.
-\end{coq_example}
-\begin{coq_example}
-End Mod.
-Check Mod.T.
-Check T. (* Incorrect ! *)
-Import Mod.
-Check T. (* Now correct *)
-\end{coq_example}
-\begin{coq_eval}
-Reset Mod.
-\end{coq_eval}
-
-Some features defined in modules are activated only when a module is
-imported. This is for instance the case of notations (see
-Section~\ref{Notation}).
-
-\begin{Variants}
-\item{\tt Export {\qualid}}\comindex{Export}
-
- When the module containing the command {\tt Export {\qualid}} is
- imported, {\qualid} is imported as well.
-\end{Variants}
-
-\begin{ErrMsgs}
- \item \errindexbis{{\qualid} is not a module}{is not a module}
-% this error is impossible in the import command
-% \item \errindex{Cannot mask the absolute name {\qualid} !}
-\end{ErrMsgs}
-
-\begin{Warnings}
- \item Warning: Trying to mask the absolute name {\qualid} !
-\end{Warnings}
-
-\subsection{\tt Print Module {\ident}
-\comindex{Print Module}}
-
-Prints the module type and (optionally) the body of the module {\ident}.
-
-\subsection{\tt Print Module Type {\ident}
-\comindex{Print Module Type}}
-
-Prints the module type corresponding to {\ident}.
-
-\subsection{\tt Locate Module {\qualid}
-\comindex{Locate Module}}
-
-Prints the full name of the module {\qualid}.
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-modr.tex b/doc/refman/RefMan-modr.tex
deleted file mode 100644
index b2ea232c..00000000
--- a/doc/refman/RefMan-modr.tex
+++ /dev/null
@@ -1,565 +0,0 @@
-\chapter[The Module System]{The Module System\label{chapter:Modules}}
-
-The module system extends the Calculus of Inductive Constructions
-providing a convenient way to structure large developments as well as
-a mean of massive abstraction.
-%It is described in details in Judicael's thesis and Jacek's thesis
-
-\section{Modules and module types}
-
-\paragraph{Access path.} It is denoted by $p$, it can be either a module
-variable $X$ or, if $p'$ is an access path and $id$ an identifier, then
-$p'.id$ is an access path.
-
-\paragraph{Structure element.} It is denoted by \elem\ and is either a
-definition of a constant, an assumption, a definition of an inductive,
- a definition of a module, an alias of module or a module type abbreviation.
-
-\paragraph{Structure expression.} It is denoted by $S$ and can be:
-\begin{itemize}
-\item an access path $p$
-\item a plain structure $\struct{\nelist{\elem}{;}}$
-\item a functor $\functor{X}{S}{S'}$, where $X$ is a module variable,
- $S$ and $S'$ are structure expression
-\item an application $S\,p$, where $S$ is a structure expression and $p$
-an access path
-\item a refined structure $\with{S}{p}{p'}$ or $\with{S}{p}{t:T}$ where $S$
-is a structure expression, $p$ and $p'$ are access paths, $t$ is a term
-and $T$ is the type of $t$.
-\end{itemize}
-
-\paragraph{Module definition,} is written $\Mod{X}{S}{S'}$ and
- consists of a module variable $X$, a module type
-$S$ which can be any structure expression and optionally a module implementation $S'$
- which can be any structure expression except a refined structure.
-
-\paragraph{Module alias,} is written $\ModA{X}{p}$ and
- consists of a module variable $X$ and a module path $p$.
-
-\paragraph{Module type abbreviation,} is written $\ModType{Y}{S}$, where
-$Y$ is an identifier and $S$ is any structure expression .
-
-
-\section{Typing Modules}
-
-In order to introduce the typing system we first slightly extend
-the syntactic class of terms and environments given in
-section~\ref{Terms}. The environments, apart from definitions of
-constants and inductive types now also hold any other structure elements.
-Terms, apart from variables, constants and complex terms,
-include also access paths.
-
-We also need additional typing judgments:
-\begin{itemize}
-\item \WFT{E}{S}, denoting that a structure $S$ is well-formed,
-
-\item \WTM{E}{p}{S}, denoting that the module pointed by $p$ has type $S$ in
-environment $E$.
-
-\item \WEV{E}{S}{\overline{S}}, denoting that a structure $S$ is evaluated to
-a structure $\overline{S}$ in weak head normal form.
-
-\item \WS{E}{S_1}{S_2}, denoting that a structure $S_1$ is a subtype of a
-structure $S_2$.
-
-\item \WS{E}{\elem_1}{\elem_2}, denoting that a structure element
- $\elem_1$ is more precise that a structure element $\elem_2$.
-\end{itemize}
-The rules for forming structures are the following:
-\begin{description}
-\item[WF-STR]
-\inference{%
- \frac{
- \WF{E;E'}{}
- }{%%%%%%%%%%%%%%%%%%%%%
- \WFT{E}{\struct{E'}}
- }
-}
-\item[WF-FUN]
-\inference{%
- \frac{
- \WFT{E;\ModS{X}{S}}{\overline{S'}}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WFT{E}{\functor{X}{S}{S'}}
- }
-}
-\end{description}
-Evaluation of structures to weak head normal form:
-\begin{description}
-\item[WEVAL-APP]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{S}{\functor{X}{S_1}{S_2}}~~~~~\WEV{E}{S_1}{\overline{S_1}}\\
- \WTM{E}{p}{S_3}\qquad \WS{E}{S_3}{\overline{S_1}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{S\,p}{S_2\{p/X,t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}}
- }
-}
-\end{description}
-In the last rule, $\{t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}$ is the resulting
- substitution from the inlining mechanism. We substitute in $S$ the
- inlined fields $p_i.c_i$ form $\ModS{X}{S_1}$ by the corresponding delta-reduced term $t_i$ in $p$.
-\begin{description}
-\item[WEVAL-WITH-MOD]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{S}{\structe{\ModS{X}{S_1}}}~~~~~\WEV{E;\elem_1;\ldots;\elem_i}{S_1}{\overline{S_1}}\\
- \WTM{E}{p}{S_2}\qquad \WS{E;\elem_1;\ldots;\elem_i}{S_2}{\overline{S_1}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{array}{c}
- \WEVT{E}{\with{S}{x}{p}}{\structes{\ModA{X}{p}}{p/X}}
- \end{array}
- }
-}
-\item[WEVAL-WITH-MOD-REC]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{S}{\structe{\ModS{X_1}{S_1}}}\\
- \WEV{E;\elem_1;\ldots;\elem_i}{\with{S_1}{p}{p_1}}{\overline{S_2}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{array}{c}
- \WEVT{E}{\with{S}{X_1.p}{p_1}}{\structes{\ModS{X}{\overline{S_2}}}{p_1/X_1.p}}
- \end{array}
- }
-}
-\item[WEVAL-WITH-DEF]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{S}{\structe{\Assum{}{c}{T_1}}}\\
- \WS{E;\elem_1;\ldots;\elem_i}{\Def{}{c}{t}{T}}{\Assum{}{c}{T_1}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{array}{c}
- \WEVT{E}{\with{S}{c}{t:T}}{\structe{\Def{}{c}{t}{T}}}
- \end{array}
- }
-}
-\item[WEVAL-WITH-DEF-REC]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{S}{\structe{\ModS{X_1}{S_1}}}\\
- \WEV{E;\elem_1;\ldots;\elem_i}{\with{S_1}{p}{p_1}}{\overline{S_2}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{array}{c}
- \WEVT{E}{\with{S}{X_1.p}{t:T}}{\structe{\ModS{X}{\overline{S_2}}}}
- \end{array}
- }
-}
-
-\item[WEVAL-PATH-MOD]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{p}{\structe{ \Mod{X}{S}{S_1}}}\\
- \WEV{E;\elem_1;\ldots;\elem_i}{S}{\overline{S}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{p.X}{\overline{S}}
- }
-}
-\inference{%
- \frac{
- \begin{array}{c}
- \WF{E}{}~~~~~~\Mod{X}{S}{S_1}\in E\\
- \WEV{E}{S}{\overline{S}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{X}{\overline{S}}
- }
-}
-\item[WEVAL-PATH-ALIAS]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{p}{\structe{\ModA{X}{p_1}}}\\
- \WEV{E;\elem_1;\ldots;\elem_i}{p_1}{\overline{S}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{p.X}{\overline{S}}
- }
-}
-\inference{%
- \frac{
- \begin{array}{c}
- \WF{E}{}~~~~~~~\ModA{X}{p_1}\in E\\
- \WEV{E}{p_1}{\overline{S}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{X}{\overline{S}}
- }
-}
-\item[WEVAL-PATH-TYPE]
-\inference{%
- \frac{
- \begin{array}{c}
- \WEV{E}{p}{\structe{\ModType{Y}{S}}}\\
- \WEV{E;\elem_1;\ldots;\elem_i}{S}{\overline{S}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{p.Y}{\overline{S}}
- }
-}
-\item[WEVAL-PATH-TYPE]
-\inference{%
- \frac{
- \begin{array}{c}
- \WF{E}{}~~~~~~~\ModType{Y}{S}\in E\\
- \WEV{E}{S}{\overline{S}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WEV{E}{Y}{\overline{S}}
- }
-}
-\end{description}
- Rules for typing module:
-\begin{description}
-\item[MT-EVAL]
-\inference{%
- \frac{
- \WEV{E}{p}{\overline{S}}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WTM{E}{p}{\overline{S}}
- }
-}
-\item[MT-STR]
-\inference{%
- \frac{
- \WTM{E}{p}{S}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WTM{E}{p}{S/p}
- }
-}
-\end{description}
-The last rule, called strengthening is used to make all module fields
-manifestly equal to themselves. The notation $S/p$ has the following
-meaning:
-\begin{itemize}
-\item if $S\lra\struct{\elem_1;\dots;\elem_n}$ then
- $S/p=\struct{\elem_1/p;\dots;\elem_n/p}$ where $\elem/p$ is defined as
- follows:
- \begin{itemize}
- \item $\Def{}{c}{t}{T}/p\footnote{Opaque definitions are processed as assumptions.} ~=~ \Def{}{c}{t}{T}$
- \item $\Assum{}{c}{U}/p ~=~ \Def{}{c}{p.c}{U}$
- \item $\ModS{X}{S}/p ~=~ \ModA{X}{p.X}$
- \item $\ModA{X}{p'}/p ~=~ \ModA{X}{p'}$
- \item $\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}/p ~=~ \Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$
- \item $\Indpstr{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'}{p} ~=~ \Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'}$
- \end{itemize}
-\item if $S\lra\functor{X}{S'}{S''}$ then $S/p=S$
-\end{itemize}
-The notation $\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ denotes an
-inductive definition that is definitionally equal to the inductive
-definition in the module denoted by the path $p$. All rules which have
-$\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}$ as premises are also valid for
-$\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$. We give the formation rule
-for $\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ below as well as
-the equality rules on inductive types and constructors. \\
-
-The module subtyping rules:
-\begin{description}
-\item[MSUB-STR]
-\inference{%
- \frac{
- \begin{array}{c}
- \WS{E;\elem_1;\dots;\elem_n}{\elem_{\sigma(i)}}{\elem'_i}
- \textrm{ \ for } i=1..m \\
- \sigma : \{1\dots m\} \ra \{1\dots n\} \textrm{ \ injective}
- \end{array}
- }{
- \WS{E}{\struct{\elem_1;\dots;\elem_n}}{\struct{\elem'_1;\dots;\elem'_m}}
- }
-}
-\item[MSUB-FUN]
-\inference{% T_1 -> T_2 <: T_1' -> T_2'
- \frac{
- \WS{E}{\overline{S_1'}}{\overline{S_1}}~~~~~~~~~~\WS{E;\ModS{X}{S_1'}}{\overline{S_2}}{\overline{S_2'}}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WS{E}{\functor{X}{S_1}{S_2}}{\functor{X}{S_1'}{S_2'}}
- }
-}
-% these are derived rules
-% \item[MSUB-EQ]
-% \inference{%
-% \frac{
-% \WS{E}{T_1}{T_2}~~~~~~~~~~\WTERED{}{T_1}{=}{T_1'}~~~~~~~~~~\WTERED{}{T_2}{=}{T_2'}
-% }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% \WS{E}{T_1'}{T_2'}
-% }
-% }
-% \item[MSUB-REFL]
-% \inference{%
-% \frac{
-% \WFT{E}{T}
-% }{
-% \WS{E}{T}{T}
-% }
-% }
-\end{description}
-Structure element subtyping rules:
-\begin{description}
-\item[ASSUM-ASSUM]
-\inference{%
- \frac{
- \WTELECONV{}{T_1}{T_2}
- }{
- \WSE{\Assum{}{c}{T_1}}{\Assum{}{c}{T_2}}
- }
-}
-\item[DEF-ASSUM]
-\inference{%
- \frac{
- \WTELECONV{}{T_1}{T_2}
- }{
- \WSE{\Def{}{c}{t}{T_1}}{\Assum{}{c}{T_2}}
- }
-}
-\item[ASSUM-DEF]
-\inference{%
- \frac{
- \WTELECONV{}{T_1}{T_2}~~~~~~~~\WTECONV{}{c}{t_2}
- }{
- \WSE{\Assum{}{c}{T_1}}{\Def{}{c}{t_2}{T_2}}
- }
-}
-\item[DEF-DEF]
-\inference{%
- \frac{
- \WTELECONV{}{T_1}{T_2}~~~~~~~~\WTECONV{}{t_1}{t_2}
- }{
- \WSE{\Def{}{c}{t_1}{T_1}}{\Def{}{c}{t_2}{T_2}}
- }
-}
-\item[IND-IND]
-\inference{%
- \frac{
- \WTECONV{}{\Gamma_P}{\Gamma_P'}%
- ~~~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}%
- ~~~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}%
- }{
- \WSE{\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}%
- {\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}
- }
-}
-\item[INDP-IND]
-\inference{%
- \frac{
- \WTECONV{}{\Gamma_P}{\Gamma_P'}%
- ~~~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}%
- ~~~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}%
- }{
- \WSE{\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}%
- {\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}
- }
-}
-\item[INDP-INDP]
-\inference{%
- \frac{
- \WTECONV{}{\Gamma_P}{\Gamma_P'}%
- ~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}%
- ~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}%
- ~~~~~~\WTECONV{}{p}{p'}
- }{
- \WSE{\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}%
- {\Indp{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}{p'}}
- }
-}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\item[MOD-MOD]
-\inference{%
- \frac{
- \WSE{S_1}{S_2}
- }{
- \WSE{\ModS{X}{S_1}}{\ModS{X}{S_2}}
- }
-}
-\item[ALIAS-MOD]
-\inference{%
- \frac{
- \WTM{E}{p}{S_1}~~~~~~~~\WSE{S_1}{S_2}
- }{
- \WSE{\ModA{X}{p}}{\ModS{X}{S_2}}
- }
-}
-\item[MOD-ALIAS]
-\inference{%
- \frac{
- \WTM{E}{p}{S_2}~~~~~~~~
- \WSE{S_1}{S_2}~~~~~~~~\WTECONV{}{X}{p}
- }{
- \WSE{\ModS{X}{S_1}}{\ModA{X}{p}}
- }
-}
-\item[ALIAS-ALIAS]
-\inference{%
- \frac{
- \WTECONV{}{p_1}{p_2}
- }{
- \WSE{\ModA{X}{p_1}}{\ModA{X}{p_2}}
- }
-}
-\item[MODTYPE-MODTYPE]
-\inference{%
- \frac{
- \WSE{S_1}{S_2}~~~~~~~~\WSE{S_2}{S_1}
- }{
- \WSE{\ModType{Y}{S_1}}{\ModType{Y}{S_2}}
- }
-}
-\end{description}
-New environment formation rules
-\begin{description}
-\item[WF-MOD]
-\inference{%
- \frac{
- \WF{E}{}~~~~~~~~\WFT{E}{S}
- }{
- \WF{E;\ModS{X}{S}}{}
- }
-}
-\item[WF-MOD]
-\inference{%
- \frac{
-\begin{array}{c}
- \WS{E}{S_2}{S_1}\\
- \WF{E}{}~~~~~\WFT{E}{S_1}~~~~~\WFT{E}{S_2}
-\end{array}
- }{
- \WF{E;\Mod{X}{S_1}{S_2}}{}
- }
-}
-
-\item[WF-ALIAS]
-\inference{%
- \frac{
- \WF{E}{}~~~~~~~~~~~\WTE{}{p}{S}
- }{
- \WF{E,\ModA{X}{p}}{}
- }
-}
-\item[WF-MODTYPE]
-\inference{%
- \frac{
- \WF{E}{}~~~~~~~~~~~\WFT{E}{S}
- }{
- \WF{E,\ModType{Y}{S}}{}
- }
-}
-\item[WF-IND]
-\inference{%
- \frac{
- \begin{array}{c}
- \WF{E;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}{}\\
- \WT{E}{}{p:\struct{\elem_1;\dots;\elem_n;\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'};\dots}}\\
- \WS{E}{\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}{\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}
- \end{array}
- }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \WF{E;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}{}
- }
-}
-\end{description}
-Component access rules
-\begin{description}
-\item[ACC-TYPE]
-\inference{%
- \frac{
- \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Assum{}{c}{T};\dots}}
- }{
- \WTEG{p.c}{T}
- }
-}
-\\
-\inference{%
- \frac{
- \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Def{}{c}{t}{T};\dots}}
- }{
- \WTEG{p.c}{T}
- }
-}
-\item[ACC-DELTA]
-Notice that the following rule extends the delta rule defined in
-section~\ref{delta}
-\inference{%
- \frac{
- \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Def{}{c}{t}{U};\dots}}
- }{
- \WTEGRED{p.c}{\triangleright_\delta}{t}
- }
-}
-\\
-In the rules below we assume $\Gamma_P$ is $[p_1:P_1;\ldots;p_r:P_r]$,
- $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is
- $[c_1:C_1;\ldots;c_n:C_n]$
-\item[ACC-IND]
-\inference{%
- \frac{
- \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I};\dots}}
- }{
- \WTEG{p.I_j}{(p_1:P_1)\ldots(p_r:P_r)A_j}
- }
-}
-\inference{%
- \frac{
- \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I};\dots}}
- }{
- \WTEG{p.c_m}{(p_1:P_1)\ldots(p_r:P_r){C_m}{I_j}{(I_j~p_1\ldots
- p_r)}_{j=1\ldots k}}
- }
-}
-\item[ACC-INDP]
-\inference{%
- \frac{
- \WT{E}{}{p}{\struct{\elem_1;\dots;\elem_i;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'};\dots}}
- }{
- \WTRED{E}{}{p.I_i}{\triangleright_\delta}{p'.I_i}
- }
-}
-\inference{%
- \frac{
- \WT{E}{}{p}{\struct{\elem_1;\dots;\elem_i;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'};\dots}}
- }{
- \WTRED{E}{}{p.c_i}{\triangleright_\delta}{p'.c_i}
- }
-}
-
-\end{description}
-
-% %%% replaced by \triangle_\delta
-% Module path equality is a transitive and reflexive closure of the
-% relation generated by ACC-MODEQ and ENV-MODEQ.
-% \begin{itemize}
-% \item []MP-EQ-REFL
-% \inference{%
-% \frac{
-% \WTEG{p}{T}
-% }{
-% \WTEG{p}{p}
-% }
-% }
-% \item []MP-EQ-TRANS
-% \inference{%
-% \frac{
-% \WTEGRED{p}{=}{p'}~~~~~~\WTEGRED{p'}{=}{p''}
-% }{
-% \WTEGRED{p'}{=}{p''}
-% }
-% }
-
-% \end{itemize}
-
-
-% $Id: RefMan-modr.tex 11197 2008-07-01 13:05:41Z soubiran $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
-
diff --git a/doc/refman/RefMan-oth.tex b/doc/refman/RefMan-oth.tex
deleted file mode 100644
index 920e86de..00000000
--- a/doc/refman/RefMan-oth.tex
+++ /dev/null
@@ -1,1181 +0,0 @@
-\chapter[Vernacular commands]{Vernacular commands\label{Vernacular-commands}
-\label{Other-commands}}
-
-\section{Displaying}
-
-\subsection[\tt Print {\qualid}.]{\tt Print {\qualid}.\comindex{Print}}
-This command displays on the screen informations about the declared or
-defined object referred by {\qualid}.
-
-\begin{ErrMsgs}
-\item {\qualid} \errindex{not a defined object}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Print Term {\qualid}.}
-\comindex{Print Term}\\
-This is a synonym to {\tt Print {\qualid}} when {\qualid} denotes a
-global constant.
-
-\item {\tt About {\qualid}.}
-\label{About}
-\comindex{About}\\
-This displays various informations about the object denoted by {\qualid}:
-its kind (module, constant, assumption, inductive,
-constructor, abbreviation\ldots), long name, type, implicit
-arguments and argument scopes. It does not print the body of
-definitions or proofs.
-
-%\item {\tt Print Proof {\qualid}.}\comindex{Print Proof}\\
-%In case \qualid\ denotes an opaque theorem defined in a section,
-%it is stored on a special unprintable form and displayed as
-%{\tt <recipe>}. {\tt Print Proof} forces the printable form of \qualid\
-%to be computed and displays it.
-\end{Variants}
-
-\subsection[\tt Print All.]{\tt Print All.\comindex{Print All}}
-This command displays informations about the current state of the
-environment, including sections and modules.
-
-\begin{Variants}
-\item {\tt Inspect \num.}\comindex{Inspect}\\
-This command displays the {\num} last objects of the current
-environment, including sections and modules.
-\item {\tt Print Section {\ident}.}\comindex{Print Section}\\
-should correspond to a currently open section, this command
-displays the objects defined since the beginning of this section.
-% Discontinued
-%% \item {\tt Print.}\comindex{Print}\\
-%% This command displays the axioms and variables declarations in the
-%% environment as well as the constants defined since the last variable
-%% was introduced.
-\end{Variants}
-
-\section{Options and Flags}
-\subsection[\tt Set {\rm\sl option} {\rm\sl value}.]{\tt Set {\rm\sl option} {\rm\sl value}.\comindex{Set}}
-This command sets {\rm\sl option} to {\rm\sl value}. The original value of
-{\rm\sl option} is restored when the current module ends.
-
-\begin{Variants}
-\item {\tt Set {\rm\sl flag}.}\\
-This command switches {\rm\sl flag} on. The original state of
-{\rm\sl flag} is restored when the current module ends.
-\item {\tt Local Set {\rm\sl option} {\rm\sl value}.\comindex{Local Set}}
-This command sets {\rm\sl option} to {\rm\sl value}. The original value of
-{\rm\sl option} is restored when the current \emph{section} ends.
-\item {\tt Local Set {\rm\sl flag}.}\\
-This command switches {\rm\sl flag} on. The original state of
-{\rm\sl flag} is restored when the current \emph{section} ends.
-\item {\tt Global Set {\rm\sl option} {\rm\sl value}.\comindex{Global Set}}
-This command sets {\rm\sl option} to {\rm\sl value}. The original value of
-{\rm\sl option} is \emph{not} restored at the end of the module. Additionally,
-if set in a file, {\rm\sl option} is set to {\rm\sl value} when the file is
-{\tt Require}-d.
-\item {\tt Global Set {\rm\sl flag}.}\\
-This command switches {\rm\sl flag} on. The original state of
-{\rm\sl flag} is \emph{not} restored at the end of the module. Additionally,
-if set in a file, {\rm\sl flag} is switched on when the file is
-{\tt Require}-d.
-\end{Variants}
-
-\subsection[\tt Unset {\rm\sl flag}.]{\tt Unset {\rm\sl flag}.\comindex{Unset}}
-This command switches {\rm\sl flag} off. The original state of {\rm\sl flag}
-is restored when the current module ends.
-
-\begin{Variants}
-\item {\tt Local Unset {\rm\sl flag}.\comindex{Local Unset}}\\
-This command switches {\rm\sl flag} off. The original state of {\rm\sl flag}
-is restored when the current \emph{section} ends.
-\item {\tt Global Unset {\rm\sl flag}.\comindex{Global Unset}}\\
-This command switches {\rm\sl flag} off. The original state of
-{\rm\sl flag} is \emph{not} restored at the end of the module. Additionally,
-if set in a file, {\rm\sl flag} is switched on when the file is
-{\tt Require}-d.
-\end{Variants}
-
-\subsection[\tt Test {\rm\sl option}.]{\tt Test {\rm\sl option}.\comindex{Test}}
-This command prints the current value of {\rm\sl option}.
-
-\begin{Variants}
-\item {\tt Test {\rm\sl flag}.}\\
-This command prints whether {\rm\sl flag} is on or off.
-\end{Variants}
-
-\section{Requests to the environment}
-
-\subsection[\tt Check {\term}.]{\tt Check {\term}.\label{Check}
-\comindex{Check}}
-This command displays the type of {\term}. When called in proof mode,
-the term is checked in the local context of the current subgoal.
-
-\subsection[\tt Eval {\rm\sl convtactic} in {\term}.]{\tt Eval {\rm\sl convtactic} in {\term}.\comindex{Eval}}
-
-This command performs the specified reduction on {\term}, and displays
-the resulting term with its type. The term to be reduced may depend on
-hypothesis introduced in the first subgoal (if a proof is in
-progress).
-
-\SeeAlso Section~\ref{Conversion-tactics}.
-
-\subsection[\tt Compute {\term}.]{\tt Compute {\term}.\comindex{Compute}}
-
-This command performs a call-by-value evaluation of {\term} by using
-the bytecode-based virtual machine. It is a shortcut for
-{\tt Eval vm\_compute in {\term}}.
-
-\SeeAlso Section~\ref{Conversion-tactics}.
-
-\subsection[\tt Extraction \term.]{\tt Extraction \term.\label{ExtractionTerm}
-\comindex{Extraction}}
-This command displays the extracted term from
-{\term}. The extraction is processed according to the distinction
-between {\Set} and {\Prop}; that is to say, between logical and
-computational content (see Section~\ref{Sorts}). The extracted term is
-displayed in Objective Caml syntax, where global identifiers are still
-displayed as in \Coq\ terms.
-
-\begin{Variants}
-\item \texttt{Recursive Extraction {\qualid$_1$} \ldots{} {\qualid$_n$}.}\\
- Recursively extracts all the material needed for the extraction of
- globals {\qualid$_1$} \ldots{} {\qualid$_n$}.
-\end{Variants}
-
-\SeeAlso Chapter~\ref{Extraction}.
-
-\subsection[\tt Print Assumptions {\qualid}.]{\tt Print Assumptions {\qualid}.\comindex{Print Assumptions}}
-\label{PrintAssumptions}
-
-This commands display all the assumptions (axioms, parameters and
-variables) a theorem or definition depends on. Especially, it informs
-on the assumptions with respect to which the validity of a theorem
-relies.
-
-\begin{Variants}
-\item \texttt{\tt Print Opaque Dependencies {\qualid}.
- \comindex{Print Opaque Dependencies}}\\
- Displays the set of opaque constants {\qualid} relies on in addition
- to the assumptions.
-\end{Variants}
-
-\subsection[\tt Search {\term}.]{\tt Search {\term}.\comindex{Search}}
-This command displays the name and type of all theorems of the current
-context whose statement's conclusion has the form {\tt ({\term} t1 ..
- tn)}. This command is useful to remind the user of the name of
-library lemmas.
-
-\begin{coq_example}
-Search le.
-Search (@eq bool).
-\end{coq_example}
-
-\begin{Variants}
-\item
-{\tt Search {\term} inside {\module$_1$} \ldots{} {\module$_n$}.}
-
-This restricts the search to constructions defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\item {\tt Search {\term} outside {\module$_1$} \ldots{} {\module$_n$}.}
-
-This restricts the search to constructions not defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\begin{ErrMsgs}
-\item \errindex{Module/section \module{} not found}
-No module \module{} has been required (see Section~\ref{Require}).
-\end{ErrMsgs}
-
-\end{Variants}
-
-\subsection[\tt SearchAbout {\qualid}.]{\tt SearchAbout {\qualid}.\comindex{SearchAbout}}
-This command displays the name and type of all objects (theorems,
-axioms, etc) of the current context whose statement contains \qualid.
-This command is useful to remind the user of the name of library
-lemmas.
-
-\begin{ErrMsgs}
-\item \errindex{The reference \qualid\ was not found in the current
-environment}\\
- There is no constant in the environment named \qualid.
-\end{ErrMsgs}
-
-\newcommand{\termpatternorstr}{{\termpattern}\textrm{\textsl{-}}{\str}}
-
-\begin{Variants}
-\item {\tt SearchAbout {\str}.}
-
-If {\str} is a valid identifier, this command displays the name and type
-of all objects (theorems, axioms, etc) of the current context whose
-name contains {\str}. If {\str} is a notation's string denoting some
-reference {\qualid} (referred to by its main symbol as in \verb="+"=
-or by its notation's string as in \verb="_ + _"= or \verb="_ 'U' _"=, see
-Section~\ref{Notation}), the command works like {\tt SearchAbout
-{\qualid}}.
-
-\item {\tt SearchAbout {\str}\%{\delimkey}.}
-
-The string {\str} must be a notation or the main symbol of a notation
-which is then interpreted in the scope bound to the delimiting key
-{\delimkey} (see Section~\ref{scopechange}).
-
-\item {\tt SearchAbout {\termpattern}.}
-
-This searches for all statements or types of definition that contains
-a subterm that matches the pattern {\termpattern} (holes of the
-pattern are either denoted by ``{\texttt \_}'' or
-by ``{\texttt ?{\ident}}'' when non linear patterns are expected).
-
-\item {\tt SearchAbout [ \nelist{\zeroone{-}{\termpatternorstr}}{}
-].}\\
-
-\noindent where {\termpatternorstr} is a
-{\termpattern} or a {\str}, or a {\str} followed by a scope
-delimiting key {\tt \%{\delimkey}}.
-
-This generalization of {\tt SearchAbout} searches for all objects
-whose statement or type contains a subterm matching {\termpattern} (or
-{\qualid} if {\str} is the notation for a reference {\qualid}) and
-whose name contains all {\str} of the request that correspond to valid
-identifiers. If a {\termpattern} or a {\str} is prefixed by ``-'', the
-search excludes the objects that mention that {\termpattern} or that
-{\str}.
-
-\item
-\begin{tabular}[t]{@{}l}
- {\tt SearchAbout {\termpatternorstr} inside {\module$_1$} \ldots{} {\module$_n$}.} \\
- {\tt SearchAbout [ \nelist{{\termpatternorstr}}{} ]
- inside {\module$_1$} \ldots{} {\module$_n$}.}
-\end{tabular}
-
-This restricts the search to constructions defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\item
-\begin{tabular}[t]{@{}l}
- {\tt SearchAbout {\termpatternorstr} outside {\module$_1$}...{\module$_n$}.} \\
- {\tt SearchAbout [ \nelist{{\termpatternorstr}}{} ]
- outside {\module$_1$}...{\module$_n$}.}
-\end{tabular}
-
-This restricts the search to constructions not defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\end{Variants}
-
-\examples
-
-\begin{coq_example*}
-Require Import ZArith.
-\end{coq_example*}
-\begin{coq_example}
-SearchAbout [ Zmult Zplus "distr" ].
-SearchAbout [ "+"%Z "*"%Z "distr" -positive -Prop].
-SearchAbout (?x * _ + ?x * _)%Z outside OmegaLemmas.
-\end{coq_example}
-
-\subsection[\tt SearchPattern {\termpattern}.]{\tt SearchPattern {\term}.\comindex{SearchPattern}}
-
-This command displays the name and type of all theorems of the current
-context whose statement's conclusion or last hypothesis and conclusion
-matches the expression {\term} where holes in the latter are denoted
-by ``{\texttt \_}''. It is a variant of {\tt SearchAbout
- {\termpattern}} that does not look for subterms but searches for
-statements whose conclusion has exactly the expected form, or whose
-statement finishes by the given series of hypothesis/conclusion.
-
-\begin{coq_example}
-Require Import Arith.
-SearchPattern (_ + _ = _ + _).
-SearchPattern (nat -> bool).
-SearchPattern (forall l : list _, _ l l).
-\end{coq_example}
-
-Patterns need not be linear: you can express that the same expression
-must occur in two places by using pattern variables `{\texttt
-?{\ident}}''.
-
-\begin{coq_example}
-Require Import Arith.
-SearchPattern (?X1 + _ = _ + ?X1).
-\end{coq_example}
-
-\begin{Variants}
-\item {\tt SearchPattern {\term} inside
-{\module$_1$} \ldots{} {\module$_n$}.}
-
-This restricts the search to constructions defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\item {\tt SearchPattern {\term} outside {\module$_1$} \ldots{} {\module$_n$}.}
-
-This restricts the search to constructions not defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\end{Variants}
-
-\subsection[\tt SearchRewrite {\term}.]{\tt SearchRewrite {\term}.\comindex{SearchRewrite}}
-
-This command displays the name and type of all theorems of the current
-context whose statement's conclusion is an equality of which one side matches
-the expression {\term}. Holes in {\term} are denoted by ``{\texttt \_}''.
-
-\begin{coq_example}
-Require Import Arith.
-SearchRewrite (_ + _ + _).
-\end{coq_example}
-
-\begin{Variants}
-\item {\tt SearchRewrite {\term} inside
-{\module$_1$} \ldots{} {\module$_n$}.}
-
-This restricts the search to constructions defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\item {\tt SearchRewrite {\term} outside {\module$_1$} \ldots{} {\module$_n$}.}
-
-This restricts the search to constructions not defined in modules
-{\module$_1$} \ldots{} {\module$_n$}.
-
-\end{Variants}
-
-% \subsection[\tt SearchIsos {\term}.]{\tt SearchIsos {\term}.\comindex{SearchIsos}}
-% \label{searchisos}
-% \texttt{SearchIsos} searches terms by their type modulo isomorphism.
-% This command displays the full name of all constants, variables,
-% inductive types, and inductive constructors of the current
-% context whose type is isomorphic to {\term} modulo the contextual part of the
-% following axiomatization (the mutual inductive types with one constructor,
-% without implicit arguments, and for which projections exist, are regarded as a
-% sequence of $\sa{}$):
-
-
-% \begin{tabbing}
-% \ \ \ \ \=11.\ \=\kill
-% \>1.\>$A=B\mx{ if }A\stackrel{\bt{}\io{}}{\lra{}}B$\\
-% \>2.\>$\sa{}x:A.B=\sa{}y:A.B[x\la{}y]\mx{ if }y\not\in{}FV(\sa{}x:A.B)$\\
-% \>3.\>$\Pi{}x:A.B=\Pi{}y:A.B[x\la{}y]\mx{ if }y\not\in{}FV(\Pi{}x:A.B)$\\
-% \>4.\>$\sa{}x:A.B=\sa{}x:B.A\mx{ if }x\not\in{}FV(A,B)$\\
-% \>5.\>$\sa{}x:(\sa{}y:A.B).C=\sa{}x:A.\sa{}y:B[y\la{}x].C[x\la{}(x,y)]$\\
-% \>6.\>$\Pi{}x:(\sa{}y:A.B).C=\Pi{}x:A.\Pi{}y:B[y\la{}x].C[x\la{}(x,y)]$\\
-% \>7.\>$\Pi{}x:A.\sa{}y:B.C=\sa{}y:(\Pi{}x:A.B).(\Pi{}x:A.C[y\la{}(y\sm{}x)]$\\
-% \>8.\>$\sa{}x:A.unit=A$\\
-% \>9.\>$\sa{}x:unit.A=A[x\la{}tt]$\\
-% \>10.\>$\Pi{}x:A.unit=unit$\\
-% \>11.\>$\Pi{}x:unit.A=A[x\la{}tt]$
-% \end{tabbing}
-
-% For more informations about the exact working of this command, see
-% \cite{Del97}.
-
-\subsection[\tt Locate {\qualid}.]{\tt Locate {\qualid}.\comindex{Locate}
-\label{Locate}}
-This command displays the full name of the qualified identifier {\qualid}
-and consequently the \Coq\ module in which it is defined.
-
-\begin{coq_eval}
-(*************** The last line should produce **************************)
-(*********** Error: I.Dont.Exist not a defined object ******************)
-\end{coq_eval}
-\begin{coq_eval}
-Set Printing Depth 50.
-\end{coq_eval}
-\begin{coq_example}
-Locate nat.
-Locate Datatypes.O.
-Locate Init.Datatypes.O.
-Locate Coq.Init.Datatypes.O.
-Locate I.Dont.Exist.
-\end{coq_example}
-
-\SeeAlso Section \ref{LocateSymbol}
-
-\subsection{The {\sc Whelp} searching tool
-\label{Whelp}}
-
-{\sc Whelp} is an experimental searching and browsing tool for the
-whole {\Coq} library and the whole set of {\Coq} user contributions.
-{\sc Whelp} requires a browser to work. {\sc Whelp} has been developed
-at the University of Bologna as part of the HELM\footnote{Hypertextual
-Electronic Library of Mathematics} and MoWGLI\footnote{Mathematics on
-the Web, Get it by Logics and Interfaces} projects. It can be invoked
-directly from the {\Coq} toplevel or from {\CoqIDE}, assuming a
-graphical environment is also running. The browser to use can be
-selected by setting the environment variable {\tt
-COQREMOTEBROWSER}. If not explicitly set, it defaults to
-\verb!firefox -remote \"OpenURL(%s,new-tab)\" || firefox %s &"! or
-\verb!C:\\PROGRA~1\\INTERN~1\\IEXPLORE %s!, depending on the
-underlying operating system (in the command, the string \verb!%s!
-serves as metavariable for the url to open).
-The Whelp tool relies on a dedicated Whelp server and on another server
-called Getter that retrieves formal documents. The default Whelp server name
-can be obtained using the command {\tt Test Whelp Server}
-\comindex{Test Whelp Server} and the default Getter can be obtained
-using the command: {\tt Test Whelp Getter} \comindex{Test Whelp
-Getter}. The Whelp server name can be changed using the command:
-
-\smallskip
-\noindent {\tt Set Whelp Server {\str}}.\\
-where {\str} is a URL (e.g. {\tt http://mowgli.cs.unibo.it:58080}).
-\comindex{Set Whelp Server}
-\smallskip
-
-\noindent The Getter can be changed using the command:
-\smallskip
-
-\noindent {\tt Set Whelp Getter {\str}}.\\
-where {\str} is a URL (e.g. {\tt http://mowgli.cs.unibo.it:58081}).
-\comindex{Set Whelp Getter}
-
-\bigskip
-
-The {\sc Whelp} commands are:
-
-\subsubsection{\tt Whelp Locate "{\sl reg\_expr}".
-\comindex{Whelp Locate}}
-
-This command opens a browser window and displays the result of seeking
-for all names that match the regular expression {\sl reg\_expr} in the
-{\Coq} library and user contributions. The regular expression can
-contain the special operators are * and ? that respectively stand for
-an arbitrary substring and for exactly one character.
-
-\variant {\tt Whelp Locate {\ident}.}\\
-This is equivalent to {\tt Whelp Locate "{\ident}"}.
-
-\subsubsection{\tt Whelp Match {\pattern}.
-\comindex{Whelp Match}}
-
-This command opens a browser window and displays the result of seeking
-for all statements that match the pattern {\pattern}. Holes in the
-pattern are represented by the wildcard character ``\_''.
-
-\subsubsection[\tt Whelp Instance {\pattern}.]{\tt Whelp Instance {\pattern}.\comindex{Whelp Instance}}
-
-This command opens a browser window and displays the result of seeking
-for all statements that are instances of the pattern {\pattern}. The
-pattern is here assumed to be an universally quantified expression.
-
-\subsubsection[\tt Whelp Elim {\qualid}.]{\tt Whelp Elim {\qualid}.\comindex{Whelp Elim}}
-
-This command opens a browser window and displays the result of seeking
-for all statements that have the ``form'' of an elimination scheme
-over the type denoted by {\qualid}.
-
-\subsubsection[\tt Whelp Hint {\term}.]{\tt Whelp Hint {\term}.\comindex{Whelp Hint}}
-
-This command opens a browser window and displays the result of seeking
-for all statements that can be instantiated so that to prove the
-statement {\term}.
-
-\variant {\tt Whelp Hint.}\\ This is equivalent to {\tt Whelp Hint
-{\sl goal}} where {\sl goal} is the current goal to prove. Notice that
-{\Coq} does not send the local environment of definitions to the {\sc
-Whelp} tool so that it only works on requests strictly based on, only,
-definitions of the standard library and user contributions.
-
-\section{Loading files}
-
-\Coq\ offers the possibility of loading different
-parts of a whole development stored in separate files. Their contents
-will be loaded as if they were entered from the keyboard. This means
-that the loaded files are ASCII files containing sequences of commands
-for \Coq's toplevel. This kind of file is called a {\em script} for
-\Coq\index{Script file}. The standard (and default) extension of
-\Coq's script files is {\tt .v}.
-
-\subsection[\tt Load {\ident}.]{\tt Load {\ident}.\comindex{Load}\label{Load}}
-This command loads the file named {\ident}{\tt .v}, searching
-successively in each of the directories specified in the {\em
- loadpath}. (see Section~\ref{loadpath})
-
-\begin{Variants}
-\item {\tt Load {\str}.}\label{Load-str}\\
- Loads the file denoted by the string {\str}, where {\str} is any
- complete filename. Then the \verb.~. and {\tt ..}
- abbreviations are allowed as well as shell variables. If no
- extension is specified, \Coq\ will use the default extension {\tt
- .v}
-\item {\tt Load Verbose {\ident}.},
- {\tt Load Verbose {\str}}\\
- \comindex{Load Verbose}
- Display, while loading, the answers of \Coq\ to each command
- (including tactics) contained in the loaded file
- \SeeAlso Section~\ref{Begin-Silent}
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{Can't find file {\ident} on loadpath}
-\end{ErrMsgs}
-
-\section[Compiled files]{Compiled files\label{compiled}\index{Compiled files}}
-
-This section describes the commands used to load compiled files (see
-Chapter~\ref{Addoc-coqc} for documentation on how to compile a file).
-A compiled file is a particular case of module called {\em library file}.
-
-%%%%%%%%%%%%
-% Import and Export described in RefMan-mod.tex
-% the minor difference (to avoid multiple Exporting of libraries) in
-% the treatment of normal modules and libraries by Export omitted
-
-\subsection[\tt Require {\qualid}.]{\tt Require {\qualid}.\label{Require}
-\comindex{Require}}
-
-This command looks in the loadpath for a file containing
-module {\qualid} and adds the corresponding module to the environment
-of {\Coq}. As library files have dependencies in other library files,
-the command {\tt Require {\qualid}} recursively requires all library
-files the module {\qualid} depends on and adds the corresponding modules to the
-environment of {\Coq} too. {\Coq} assumes that the compiled files have
-been produced by a valid {\Coq} compiler and their contents are then not
-replayed nor rechecked.
-
-To locate the file in the file system, {\qualid} is decomposed under
-the form {\dirpath}{\tt .}{\textsl{ident}} and the file {\ident}{\tt
-.vo} is searched in the physical directory of the file system that is
-mapped in {\Coq} loadpath to the logical path {\dirpath} (see
-Section~\ref{loadpath}). The mapping between physical directories and
-logical names at the time of requiring the file must be consistent
-with the mapping used to compile the file.
-
-\begin{Variants}
-\item {\tt Require Import {\qualid}.} \comindex{Require}
-
- This loads and declares the module {\qualid} and its dependencies
- then imports the contents of {\qualid} as described in
- Section~\ref{Import}.
-
- It does not import the modules on which {\qualid} depends unless
- these modules were itself required in module {\qualid} using {\tt
- Require Export}, as described below, or recursively required through
- a sequence of {\tt Require Export}.
-
- If the module required has already been loaded, {\tt Require Import
- {\qualid}} simply imports it, as {\tt Import {\qualid}} would.
-
-\item {\tt Require Export {\qualid}.}
- \comindex{Require Export}
-
- This command acts as {\tt Require Import} {\qualid}, but if a
- further module, say {\it A}, contains a command {\tt Require
- Export} {\it B}, then the command {\tt Require Import} {\it A}
- also imports the module {\it B}.
-
-\item {\tt Require \zeroone{Import {\sl |} Export} {\qualid}$_1$ \ldots {\qualid}$_n$.}
-
- This loads the modules {\qualid}$_1$, \ldots, {\qualid}$_n$ and
- their recursive dependencies. If {\tt Import} or {\tt Export} is
- given, it also imports {\qualid}$_1$, \ldots, {\qualid}$_n$ and all
- the recursive dependencies that were marked or transitively marked
- as {\tt Export}.
-
-\item {\tt Require \zeroone{Import {\sl |} Export} {\str}.}
-
- This shortcuts the resolution of the qualified name into a library
- file name by directly requiring the module to be found in file
- {\str}.vo.
-\end{Variants}
-
-\begin{ErrMsgs}
-
-\item \errindex{Cannot load {\qualid}: no physical path bound to {\dirpath}}
-
-\item \errindex{Cannot find library foo in loadpath}
-
- The command did not find the file {\tt foo.vo}. Either {\tt
- foo.v} exists but is not compiled or {\tt foo.vo} is in a directory
- which is not in your {\tt LoadPath} (see Section~\ref{loadpath}).
-
-\item \errindex{Compiled library {\ident}.vo makes inconsistent assumptions over library {\qualid}}
-
- The command tried to load library file {\ident}.vo that depends on
- some specific version of library {\qualid} which is not the one
- already loaded in the current {\Coq} session. Probably {\ident}.v
- was not properly recompiled with the last version of the file
- containing module {\qualid}.
-
-\item \errindex{Bad magic number}
-
- \index{Bad-magic-number@{\tt Bad Magic Number}}
- The file {\tt{\ident}.vo} was found but either it is not a \Coq\
- compiled module, or it was compiled with an older and incompatible
- version of \Coq.
-
-\item \errindex{The file {\ident}.vo contains library {\dirpath} and not
- library {\dirpath'}}
-
- The library file {\dirpath'} is indirectly required by the {\tt
- Require} command but it is bound in the current loadpath to the file
- {\ident}.vo which was bound to a different library name {\dirpath}
- at the time it was compiled.
-
-\end{ErrMsgs}
-
-\SeeAlso Chapter~\ref{Addoc-coqc}
-
-\subsection[\tt Print Libraries.]{\tt Print Libraries.\comindex{Print Libraries}}
-
-This command displays the list of library files loaded in the current
-{\Coq} session. For each of these libraries, it also tells if it is
-imported.
-
-\subsection[\tt Declare ML Module {\str$_1$} .. {\str$_n$}.]{\tt Declare ML Module {\str$_1$} .. {\str$_n$}.\comindex{Declare ML Module}}
-This commands loads the Objective Caml compiled files {\str$_1$} {\dots}
-{\str$_n$} (dynamic link). It is mainly used to load tactics
-dynamically.
-% (see Chapter~\ref{WritingTactics}).
- The files are
-searched into the current Objective Caml loadpath (see the command {\tt
-Add ML Path} in the Section~\ref{loadpath}). Loading of Objective Caml
-files is only possible under the bytecode version of {\tt coqtop}
-(i.e. {\tt coqtop} called with options {\tt -byte}, see chapter
-\ref{Addoc-coqc}), or when Coq has been compiled with a version of
-Objective Caml that supports native {\tt Dynlink} ($\ge$ 3.11).
-
-\begin{ErrMsgs}
-\item \errindex{File not found on loadpath : \str}
-\item \errindex{Loading of ML object file forbidden in a native Coq}
-\end{ErrMsgs}
-
-\subsection[\tt Print ML Modules.]{\tt Print ML Modules.\comindex{Print ML Modules}}
-This print the name of all \ocaml{} modules loaded with \texttt{Declare
- ML Module}. To know from where these module were loaded, the user
-should use the command \texttt{Locate File} (see Section~\ref{Locate File})
-
-\section[Loadpath]{Loadpath\label{loadpath}\index{Loadpath}}
-
-There are currently two loadpaths in \Coq. A loadpath where seeking
-{\Coq} files (extensions {\tt .v} or {\tt .vo} or {\tt .vi}) and one where
-seeking Objective Caml files. The default loadpath contains the
-directory ``\texttt{.}'' denoting the current directory and mapped to the empty logical path (see Section~\ref{LongNames}).
-
-\subsection[\tt Pwd.]{\tt Pwd.\comindex{Pwd}\label{Pwd}}
-This command displays the current working directory.
-
-\subsection[\tt Cd {\str}.]{\tt Cd {\str}.\comindex{Cd}}
-This command changes the current directory according to {\str}
-which can be any valid path.
-
-\begin{Variants}
-\item {\tt Cd.}\\
- Is equivalent to {\tt Pwd.}
-\end{Variants}
-
-\subsection[\tt Add LoadPath {\str} as {\dirpath}.]{\tt Add LoadPath {\str} as {\dirpath}.\comindex{Add LoadPath}\label{AddLoadPath}}
-
-This command adds the physical directory {\str} to the current {\Coq}
-loadpath and maps it to the logical directory {\dirpath}, which means
-that every file \textrm{\textsl{dirname}}/\textrm{\textsl{basename.v}}
-physically lying in subdirectory {\str}/\textrm{\textsl{dirname}}
-becomes accessible in {\Coq} through absolute logical name
-{\dirpath}{\tt .}\textrm{\textsl{dirname}}{\tt
-.}\textrm{\textsl{basename}}.
-
-\Rem {\tt Add LoadPath} also adds {\str} to the current ML loadpath.
-
-\begin{Variants}
-\item {\tt Add LoadPath {\str}.}\\
-Performs as {\tt Add LoadPath {\str} as {\dirpath}} but for the empty directory path.
-\end{Variants}
-
-\subsection[\tt Add Rec LoadPath {\str} as {\dirpath}.]{\tt Add Rec LoadPath {\str} as {\dirpath}.\comindex{Add Rec LoadPath}\label{AddRecLoadPath}}
-This command adds the physical directory {\str} and all its subdirectories to
-the current \Coq\ loadpath. The top directory {\str} is mapped to the
-logical directory {\dirpath} and any subdirectory {\textsl{pdir}} of it is
-mapped to logical name {\dirpath}{\tt .}\textsl{pdir} and
-recursively. Subdirectories corresponding to invalid {\Coq}
-identifiers are skipped, and, by convention, subdirectories named {\tt
-CVS} or {\tt \_darcs} are skipped too.
-
-Otherwise, said, {\tt Add Rec LoadPath {\str} as {\dirpath}} behaves
-as {\tt Add LoadPath {\str} as {\dirpath}} excepts that files lying in
-validly named subdirectories of {\str} need not be qualified to be
-found.
-
-In case of files with identical base name, files lying in most recently
-declared {\dirpath} are found first and explicit qualification is
-required to refer to the other files of same base name.
-
-If several files with identical base name are present in different
-subdirectories of a recursive loadpath declared via a single instance of
-{\tt Add Rec LoadPath}, which of these files is found first is
-system-dependent and explicit qualification is recommended.
-
-\Rem {\tt Add Rec LoadPath} also recursively adds {\str} to the current ML loadpath.
-
-\begin{Variants}
-\item {\tt Add Rec LoadPath {\str}.}\\
-Works as {\tt Add Rec LoadPath {\str} as {\dirpath}} but for the empty logical directory path.
-\end{Variants}
-
-\subsection[\tt Remove LoadPath {\str}.]{\tt Remove LoadPath {\str}.\comindex{Remove LoadPath}}
-This command removes the path {\str} from the current \Coq\ loadpath.
-
-\subsection[\tt Print LoadPath.]{\tt Print LoadPath.\comindex{Print LoadPath}}
-This command displays the current \Coq\ loadpath.
-
-\begin{Variants}
-\item {\tt Print LoadPath {\dirpath}.}\\
-Works as {\tt Print LoadPath} but displays only the paths that extend the {\dirpath} prefix.
-\end{Variants}
-
-\subsection[\tt Add ML Path {\str}.]{\tt Add ML Path {\str}.\comindex{Add ML Path}}
-This command adds the path {\str} to the current Objective Caml loadpath (see
-the command {\tt Declare ML Module} in the Section~\ref{compiled}).
-
-\Rem This command is implied by {\tt Add LoadPath {\str} as {\dirpath}}.
-
-\subsection[\tt Add Rec ML Path {\str}.]{\tt Add Rec ML Path {\str}.\comindex{Add Rec ML Path}}
-This command adds the directory {\str} and all its subdirectories
-to the current Objective Caml loadpath (see
-the command {\tt Declare ML Module} in the Section~\ref{compiled}).
-
-\Rem This command is implied by {\tt Add Rec LoadPath {\str} as {\dirpath}}.
-
-\subsection[\tt Print ML Path {\str}.]{\tt Print ML Path {\str}.\comindex{Print ML Path}}
-This command displays the current Objective Caml loadpath.
-This command makes sense only under the bytecode version of {\tt
-coqtop}, i.e. using option {\tt -byte} (see the
-command {\tt Declare ML Module} in the section
-\ref{compiled}).
-
-\subsection[\tt Locate File {\str}.]{\tt Locate File {\str}.\comindex{Locate
- File}\label{Locate File}}
-This command displays the location of file {\str} in the current loadpath.
-Typically, {\str} is a \texttt{.cmo} or \texttt{.vo} or \texttt{.v} file.
-
-\subsection[\tt Locate Library {\dirpath}.]{\tt Locate Library {\dirpath}.\comindex{Locate Library}\label{Locate Library}}
-This command gives the status of the \Coq\ module {\dirpath}. It tells if the
-module is loaded and if not searches in the load path for a module
-of logical name {\dirpath}.
-
-\section{States and Reset}
-
-\subsection[\tt Reset \ident.]{\tt Reset \ident.\comindex{Reset}}
-This command removes all the objects in the environment since \ident\
-was introduced, including \ident. \ident\ may be the name of a defined
-or declared object as well as the name of a section. One cannot reset
-over the name of a module or of an object inside a module.
-
-\begin{ErrMsgs}
-\item \ident: \errindex{no such entry}
-\end{ErrMsgs}
-
-\subsection[\tt Back.]{\tt Back.\comindex{Back}}
-
-This commands undoes all the effects of the last vernacular
-command. This does not include commands that only access to the
-environment like those described in the previous sections of this
-chapter (for instance {\tt Require} and {\tt Load} can be undone, but
-not {\tt Check} and {\tt Locate}). Commands read from a vernacular
-file are considered as a single command.
-
-\begin{Variants}
-\item {\tt Back $n$} \\
- Undoes $n$ vernacular commands.
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{Reached begin of command history} \\
- Happens when there is vernacular command to undo.
-\end{ErrMsgs}
-
-\subsection[\tt Backtrack $\num_1$ $\num_2$ $\num_3$.]{\tt Backtrack $\num_1$ $\num_2$ $\num_3$.\comindex{Backtrack}}
-
-This command is dedicated for the use in graphical interfaces. It
-allows to backtrack to a particular \emph{global} state, i.e.
-typically a state corresponding to a previous line in a script. A
-global state includes declaration environment but also proof
-environment (see Chapter~\ref{Proof-handling}). The three numbers
-$\num_1$, $\num_2$ and $\num_3$ represent the following:
-\begin{itemize}
-\item $\num_3$: Number of \texttt{Abort} to perform, i.e. the number
- of currently opened nested proofs that must be canceled (see
- Chapter~\ref{Proof-handling}).
-\item $\num_2$: \emph{Proof state number} to unbury once aborts have
- been done. Coq will compute the number of \texttt{Undo} to perform
- (see Chapter~\ref{Proof-handling}).
-\item $\num_1$: Environment state number to unbury, Coq will compute
- the number of \texttt{Back} to perform.
-\end{itemize}
-
-
-\subsubsection{How to get state numbers?}
-\label{sec:statenums}
-
-
-Notice that when in \texttt{-emacs} mode, \Coq\ displays the current
-proof and environment state numbers in the prompt. More precisely the
-prompt in \texttt{-emacs} mode is the following:
-
-\verb!<prompt>! \emph{$id_i$} \verb!<! $\num_1$
-\verb!|! $id_1$\verb!|!$id_2$\verb!|!\dots\verb!|!$id_n$
-\verb!|! $\num_2$ \verb!< </prompt>!
-
-Where:
-
-\begin{itemize}
-\item \emph{$id_i$} is the name of the current proof (if there is
- one, otherwise \texttt{Coq} is displayed, see
-Chapter~\ref{Proof-handling}).
-\item $\num_1$ is the environment state number after the last
- command.
-\item $\num_2$ is the proof state number after the last
- command.
-\item $id_1$ $id_2$ {\dots} $id_n$ are the currently opened proof names
- (order not significant).
-\end{itemize}
-
-It is then possible to compute the \texttt{Backtrack} command to
-unbury the state corresponding to a particular prompt. For example,
-suppose the current prompt is:
-
-\verb!<! goal4 \verb!<! 35
-\verb!|!goal1\verb!|!goal4\verb!|!goal3\verb!|!goal2\verb!|!
-\verb!|!8 \verb!< </prompt>!
-
-and we want to backtrack to a state labeled by:
-
-\verb!<! goal2 \verb!<! 32
-\verb!|!goal1\verb!|!goal2
-\verb!|!12 \verb!< </prompt>!
-
-We have to perform \verb!Backtrack 32 12 2! , i.e. perform 2
-\texttt{Abort}s (to cancel goal4 and goal3), then rewind proof until
-state 12 and finally go back to environment state 32. Notice that this
-supposes that proofs are nested in a regular way (no \texttt{Resume} or
-\texttt{Suspend} commands).
-
-\begin{Variants}
-\item {\tt BackTo n}. \comindex{BackTo}\\
- Is a more basic form of \texttt{Backtrack} where only the first
- argument (global environment number) is given, no \texttt{abort} and
- no \texttt{Undo} is performed.
-\end{Variants}
-
-\subsection[\tt Restore State \str.]{\tt Restore State \str.\comindex{Restore State}}
- Restores the state contained in the file \str.
-
-\begin{Variants}
-\item {\tt Restore State \ident}\\
- Equivalent to {\tt Restore State "}{\ident}{\tt .coq"}.
-\item {\tt Reset Initial.}\comindex{Reset Initial}\\
- Goes back to the initial state (like after the command {\tt coqtop},
- when the interactive session began). This command is only available
- interactively.
-\end{Variants}
-
-\subsection[\tt Write State \str.]{\tt Write State \str.\comindex{Write State}}
-Writes the current state into a file \str{} for
-use in a further session. This file can be given as the {\tt
- inputstate} argument of the commands {\tt coqtop} and {\tt coqc}.
-
-\begin{Variants}
-\item {\tt Write State \ident}\\
- Equivalent to {\tt Write State "}{\ident}{\tt .coq"}.
- The state is saved in the current directory (see Section~\ref{Pwd}).
-\end{Variants}
-
-\section{Quitting and debugging}
-
-\subsection[\tt Quit.]{\tt Quit.\comindex{Quit}}
-This command permits to quit \Coq.
-
-\subsection[\tt Drop.]{\tt Drop.\comindex{Drop}\label{Drop}}
-
-This is used mostly as a debug facility by \Coq's implementors
-and does not concern the casual user.
-This command permits to leave {\Coq} temporarily and enter the
-Objective Caml toplevel. The Objective Caml command:
-
-\begin{flushleft}
-\begin{verbatim}
-#use "include";;
-\end{verbatim}
-\end{flushleft}
-
-\noindent add the right loadpaths and loads some toplevel printers for
-all abstract types of \Coq - section\_path, identifiers, terms, judgments,
-\dots. You can also use the file \texttt{base\_include} instead,
-that loads only the pretty-printers for section\_paths and
-identifiers.
-% See Section~\ref{test-and-debug} more information on the
-% usage of the toplevel.
-You can return back to \Coq{} with the command:
-
-\begin{flushleft}
-\begin{verbatim}
-go();;
-\end{verbatim}
-\end{flushleft}
-
-\begin{Warnings}
-\item It only works with the bytecode version of {\Coq} (i.e. {\tt coqtop} called with option {\tt -byte}, see the contents of Section~\ref{binary-images}).
-\item You must have compiled {\Coq} from the source package and set the
- environment variable \texttt{COQTOP} to the root of your copy of the sources (see Section~\ref{EnvVariables}).
-\end{Warnings}
-
-\subsection[\tt Time \textrm{\textsl{command}}.]{\tt Time \textrm{\textsl{command}}.\comindex{Time}
-\label{time}}
-This command executes the vernacular command \textrm{\textsl{command}}
-and display the time needed to execute it.
-
-
-\subsection[\tt Timeout \textrm{\textsl{int}} \textrm{\textsl{command}}.]{\tt Timeout \textrm{\textsl{int}} \textrm{\textsl{command}}.\comindex{Timeout}
-\label{timeout}}
-
-This command executes the vernacular command \textrm{\textsl{command}}. If
-the command has not terminated after the time specified by the integer
-(time expressed in seconds), then it is interrupted and an error message
-is displayed.
-
-\section{Controlling display}
-
-\subsection[\tt Set Silent.]{\tt Set Silent.\comindex{Set Silent}
-\label{Begin-Silent}
-\index{Silent mode}}
-This command turns off the normal displaying.
-
-\subsection[\tt Unset Silent.]{\tt Unset Silent.\comindex{Unset Silent}}
-This command turns the normal display on.
-
-\subsection[\tt Set Printing Width {\integer}.]{\tt Set Printing Width {\integer}.\comindex{Set Printing Width}}
-This command sets which left-aligned part of the width of the screen
-is used for display.
-
-\subsection[\tt Unset Printing Width.]{\tt Unset Printing Width.\comindex{Unset Printing Width}}
-This command resets the width of the screen used for display to its
-default value (which is 78 at the time of writing this documentation).
-
-\subsection[\tt Test Printing Width.]{\tt Test Printing Width.\comindex{Test Printing Width}}
-This command displays the current screen width used for display.
-
-\subsection[\tt Set Printing Depth {\integer}.]{\tt Set Printing Depth {\integer}.\comindex{Set Printing Depth}}
-This command sets the nesting depth of the formatter used for
-pretty-printing. Beyond this depth, display of subterms is replaced by
-dots.
-
-\subsection[\tt Unset Printing Depth.]{\tt Unset Printing Depth.\comindex{Unset Printing Depth}}
-This command resets the nesting depth of the formatter used for
-pretty-printing to its default value (at the
-time of writing this documentation, the default value is 50).
-
-\subsection[\tt Test Printing Depth.]{\tt Test Printing Depth.\comindex{Test Printing Depth}}
-This command displays the current nesting depth used for display.
-
-%\subsection{\tt Explain ...}
-%Not yet documented.
-
-%\subsection{\tt Go ...}
-%Not yet documented.
-
-%\subsection{\tt Abstraction ...}
-%Not yet documented.
-
-\section{Controlling the reduction strategies and the conversion algorithm}
-\label{Controlling reduction strategy}
-
-{\Coq} provides reduction strategies that the tactics can invoke and
-two different algorithms to check the convertibility of types.
-The first conversion algorithm lazily
-compares applicative terms while the other is a brute-force but efficient
-algorithm that first normalizes the terms before comparing them. The
-second algorithm is based on a bytecode representation of terms
-similar to the bytecode representation used in the ZINC virtual
-machine~\cite{Leroy90}. It is specially useful for intensive
-computation of algebraic values, such as numbers, and for reflexion-based
-tactics. The commands to fine-tune the reduction strategies and the
-lazy conversion algorithm are described first.
-
-\subsection[\tt Opaque \qualid$_1$ {\dots} \qualid$_n$.]{\tt Opaque \qualid$_1$ {\dots} \qualid$_n$.\comindex{Opaque}\label{Opaque}}
-This command has an effect on unfoldable constants, i.e.
-on constants defined by {\tt Definition} or {\tt Let} (with an explicit
-body), or by a command assimilated to a definition such as {\tt
-Fixpoint}, {\tt Program Definition}, etc, or by a proof ended by {\tt
-Defined}. The command tells not to unfold
-the constants {\qualid$_1$} {\dots} {\qualid$_n$} in tactics using
-$\delta$-conversion (unfolding a constant is replacing it by its
-definition).
-
-{\tt Opaque} has also on effect on the conversion algorithm of {\Coq},
-telling to delay the unfolding of a constant as later as possible in
-case {\Coq} has to check the conversion (see Section~\ref{conv-rules})
-of two distinct applied constants.
-
-The scope of {\tt Opaque} is limited to the current section, or
-current file, unless the variant {\tt Global Opaque \qualid$_1$ {\dots}
-\qualid$_n$} is used.
-
-\SeeAlso sections \ref{Conversion-tactics}, \ref{Automatizing},
-\ref{Theorem}
-
-\begin{ErrMsgs}
-\item \errindex{The reference \qualid\ was not found in the current
-environment}\\
- There is no constant referred by {\qualid} in the environment.
- Nevertheless, if you asked \texttt{Opaque foo bar}
- and if \texttt{bar} does not exist, \texttt{foo} is set opaque.
-\end{ErrMsgs}
-
-\subsection[\tt Transparent \qualid$_1$ {\dots} \qualid$_n$.]{\tt Transparent \qualid$_1$ {\dots} \qualid$_n$.\comindex{Transparent}\label{Transparent}}
-This command is the converse of {\tt Opaque} and it applies on
-unfoldable constants to restore their unfoldability after an {\tt
-Opaque} command.
-
-Note in particular that constants defined by a proof ended by {\tt
-Qed} are not unfoldable and {\tt Transparent} has no effect on
-them. This is to keep with the usual mathematical practice of {\em
-proof irrelevance}: what matters in a mathematical development is the
-sequence of lemma statements, not their actual proofs. This
-distinguishes lemmas from the usual defined constants, whose actual
-values are of course relevant in general.
-
-The scope of {\tt Transparent} is limited to the current section, or
-current file, unless the variant {\tt Global Transparent \qualid$_1$
-\dots \qualid$_n$} is used.
-
-\begin{ErrMsgs}
-% \item \errindex{Can not set transparent.}\\
-% It is a constant from a required module or a parameter.
-\item \errindex{The reference \qualid\ was not found in the current
-environment}\\
- There is no constant referred by {\qualid} in the environment.
-\end{ErrMsgs}
-
-\SeeAlso sections \ref{Conversion-tactics}, \ref{Automatizing},
-\ref{Theorem}
-
-\subsection{\tt Strategy {\it level} [ \qualid$_1$ {\dots} \qualid$_n$
- ].\comindex{Strategy}\comindex{Local Strategy}\label{Strategy}}
-This command generalizes the behavior of {\tt Opaque} and {\tt
- Transparent} commands. It is used to fine-tune the strategy for
-unfolding constants, both at the tactic level and at the kernel
-level. This command associates a level to \qualid$_1$ {\dots}
-\qualid$_n$. Whenever two expressions with two distinct head
-constants are compared (for instance, this comparison can be triggered
-by a type cast), the one with lower level is expanded first. In case
-of a tie, the second one (appearing in the cast type) is expanded.
-
-Levels can be one of the following (higher to lower):
-\begin{description}
-\item[opaque]: level of opaque constants. They cannot be expanded by
- tactics (behaves like $+\infty$, see next item).
-\item[\num]: levels indexed by an integer. Level $0$ corresponds
- to the default behavior, which corresponds to transparent
- constants. This level can also be referred to as {\bf transparent}.
- Negative levels correspond to constants to be expanded before normal
- transparent constants, while positive levels correspond to constants
- to be expanded after normal transparent constants.
-\item[expand]: level of constants that should be expanded first
- (behaves like $-\infty$)
-\end{description}
-
-These directives survive section and module closure, unless the
-command is prefixed by {\tt Local}. In the latter case, the behavior
-regarding sections and modules is the same as for the {\tt
- Transparent} and {\tt Opaque} commands.
-
-\subsection{\tt Declare Reduction \ident\ := {\rm\sl convtactic}.}
-
-This command allows to give a short name to a reduction expression,
-for instance {\tt lazy beta delta [foo bar]}. This short name can
-then be used in {\tt Eval \ident\ in ...} or {\tt eval} directives.
-This command accepts the {\tt Local} modifier, for discarding
-this reduction name at the end of the file or module. For the moment
-the name cannot be qualified. In particular declaring the same name
-in several modules or in several functor applications will be refused
-if these declarations are not local. The name \ident\ cannot be used
-directly as an Ltac tactic, but nothing prevent the user to also
-perform a {\tt Ltac \ident\ := {\rm\sl convtactic}}.
-
-\SeeAlso sections \ref{Conversion-tactics}
-
-\subsection{\tt Set Virtual Machine
-\label{SetVirtualMachine}
-\comindex{Set Virtual Machine}}
-
-This activates the bytecode-based conversion algorithm.
-
-\subsection{\tt Unset Virtual Machine
-\comindex{Unset Virtual Machine}}
-
-This deactivates the bytecode-based conversion algorithm.
-
-\subsection{\tt Test Virtual Machine
-\comindex{Test Virtual Machine}}
-
-This tells if the bytecode-based conversion algorithm is
-activated. The default behavior is to have the bytecode-based
-conversion algorithm deactivated.
-
-\SeeAlso sections~\ref{vmcompute} and~\ref{vmoption}.
-
-\section{Controlling the locality of commands}
-
-\subsection{{\tt Local}, {\tt Global}
-\comindex{Local}
-\comindex{Global}
-}
-
-Some commands support a {\tt Local} or {\tt Global} prefix modifier to
-control the scope of their effect. There are four kinds of commands:
-
-\begin{itemize}
-\item Commands whose default is to extend their effect both outside the
- section and the module or library file they occur in.
-
- For these commands, the {\tt Local} modifier limits the effect of
- the command to the current section or module it occurs in.
-
- As an example, the {\tt Coercion} (see Section~\ref{Coercions})
- and {\tt Strategy} (see Section~\ref{Strategy})
- commands belong to this category.
-
-\item Commands whose default behavior is to stop their effect at the
- end of the section they occur in but to extent their effect outside
- the module or library file they occur in.
-
- For these commands, the {\tt Local} modifier limits the effect of
- the command to the current module if the command does not occur in a
- section and the {\tt Global} modifier extends the effect outside the
- current sections and current module if the command occurs in a
- section.
-
- As an example, the {\tt Implicit Arguments} (see
- Section~\ref{Implicit Arguments}), {\tt Ltac} (see
- Chapter~\ref{TacticLanguage}) or {\tt Notation} (see
- Section~\ref{Notation}) commands belong to this category.
-
- Notice that a subclass of these commands do not support extension of
- their scope outside sections at all and the {\tt Global} is not
- applicable to them.
-
-\item Commands whose default behavior is to stop their effect at the
- end of the section or module they occur in.
-
- For these commands, the {\tt Global} modifier extends their effect
- outside the sections and modules they occurs in.
-
- The {\tt Transparent} and {\tt Opaque} (see
- Section~\ref{Controlling reduction strategy}) commands belong to
- this category.
-
-\item Commands whose default behavior is to extend their effect
- outside sections but not outside modules when they occur in a
- section and to extend their effect outside the module or library
- file they occur in when no section contains them.
-
- For these commands, the {\tt Local} modifier limits the effect to
- the current section or module while the {\tt Global} modifier extends
- the effect outside the module even when the command occurs in a section.
-
- The {\tt Set} and {\tt Unset} commands belong to this category.
-\end{itemize}
-
-
-% $Id: RefMan-oth.tex 13454 2010-09-23 17:00:29Z aspiwack $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-pre.tex b/doc/refman/RefMan-pre.tex
deleted file mode 100644
index a2cdb5ec..00000000
--- a/doc/refman/RefMan-pre.tex
+++ /dev/null
@@ -1,783 +0,0 @@
-%BEGIN LATEX
-\setheaders{Credits}
-%END LATEX
-\chapter*{Credits}
-%\addcontentsline{toc}{section}{Credits}
-
-\Coq{}~ is a proof assistant for higher-order logic, allowing the
-development of computer programs consistent with their formal
-specification. It is the result of about ten years of research of the
-Coq project. We shall briefly survey here three main aspects: the
-\emph{logical language} in which we write our axiomatizations and
-specifications, the \emph{proof assistant} which allows the development
-of verified mathematical proofs, and the \emph{program extractor} which
-synthesizes computer programs obeying their formal specifications,
-written as logical assertions in the language.
-
-The logical language used by {\Coq} is a variety of type theory,
-called the \emph{Calculus of Inductive Constructions}. Without going
-back to Leibniz and Boole, we can date the creation of what is now
-called mathematical logic to the work of Frege and Peano at the turn
-of the century. The discovery of antinomies in the free use of
-predicates or comprehension principles prompted Russell to restrict
-predicate calculus with a stratification of \emph{types}. This effort
-culminated with \emph{Principia Mathematica}, the first systematic
-attempt at a formal foundation of mathematics. A simplification of
-this system along the lines of simply typed $\lambda$-calculus
-occurred with Church's \emph{Simple Theory of Types}. The
-$\lambda$-calculus notation, originally used for expressing
-functionality, could also be used as an encoding of natural deduction
-proofs. This Curry-Howard isomorphism was used by N. de Bruijn in the
-\emph{Automath} project, the first full-scale attempt to develop and
-mechanically verify mathematical proofs. This effort culminated with
-Jutting's verification of Landau's \emph{Grundlagen} in the 1970's.
-Exploiting this Curry-Howard isomorphism, notable achievements in
-proof theory saw the emergence of two type-theoretic frameworks; the
-first one, Martin-L\"of's \emph{Intuitionistic Theory of Types},
-attempts a new foundation of mathematics on constructive principles.
-The second one, Girard's polymorphic $\lambda$-calculus $F_\omega$, is
-a very strong functional system in which we may represent higher-order
-logic proof structures. Combining both systems in a higher-order
-extension of the Automath languages, T. Coquand presented in 1985 the
-first version of the \emph{Calculus of Constructions}, CoC. This strong
-logical system allowed powerful axiomatizations, but direct inductive
-definitions were not possible, and inductive notions had to be defined
-indirectly through functional encodings, which introduced
-inefficiencies and awkwardness. The formalism was extended in 1989 by
-T. Coquand and C. Paulin with primitive inductive definitions, leading
-to the current \emph{Calculus of Inductive Constructions}. This
-extended formalism is not rigorously defined here. Rather, numerous
-concrete examples are discussed. We refer the interested reader to
-relevant research papers for more information about the formalism, its
-meta-theoretic properties, and semantics. However, it should not be
-necessary to understand this theoretical material in order to write
-specifications. It is possible to understand the Calculus of Inductive
-Constructions at a higher level, as a mixture of predicate calculus,
-inductive predicate definitions presented as typed PROLOG, and
-recursive function definitions close to the language ML.
-
-Automated theorem-proving was pioneered in the 1960's by Davis and
-Putnam in propositional calculus. A complete mechanization (in the
-sense of a semi-decision procedure) of classical first-order logic was
-proposed in 1965 by J.A. Robinson, with a single uniform inference
-rule called \emph{resolution}. Resolution relies on solving equations
-in free algebras (i.e. term structures), using the \emph{unification
- algorithm}. Many refinements of resolution were studied in the
-1970's, but few convincing implementations were realized, except of
-course that PROLOG is in some sense issued from this effort. A less
-ambitious approach to proof development is computer-aided
-proof-checking. The most notable proof-checkers developed in the
-1970's were LCF, designed by R. Milner and his colleagues at U.
-Edinburgh, specialized in proving properties about denotational
-semantics recursion equations, and the Boyer and Moore theorem-prover,
-an automation of primitive recursion over inductive data types. While
-the Boyer-Moore theorem-prover attempted to synthesize proofs by a
-combination of automated methods, LCF constructed its proofs through
-the programming of \emph{tactics}, written in a high-level functional
-meta-language, ML.
-
-The salient feature which clearly distinguishes our proof assistant
-from say LCF or Boyer and Moore's, is its possibility to extract
-programs from the constructive contents of proofs. This computational
-interpretation of proof objects, in the tradition of Bishop's
-constructive mathematics, is based on a realizability interpretation,
-in the sense of Kleene, due to C. Paulin. The user must just mark his
-intention by separating in the logical statements the assertions
-stating the existence of a computational object from the logical
-assertions which specify its properties, but which may be considered
-as just comments in the corresponding program. Given this information,
-the system automatically extracts a functional term from a consistency
-proof of its specifications. This functional term may be in turn
-compiled into an actual computer program. This methodology of
-extracting programs from proofs is a revolutionary paradigm for
-software engineering. Program synthesis has long been a theme of
-research in artificial intelligence, pioneered by R. Waldinger. The
-Tablog system of Z. Manna and R. Waldinger allows the deductive
-synthesis of functional programs from proofs in tableau form of their
-specifications, written in a variety of first-order logic. Development
-of a systematic \emph{programming logic}, based on extensions of
-Martin-L\"of's type theory, was undertaken at Cornell U. by the Nuprl
-team, headed by R. Constable. The first actual program extractor, PX,
-was designed and implemented around 1985 by S. Hayashi from Kyoto
-University. It allows the extraction of a LISP program from a proof
-in a logical system inspired by the logical formalisms of S. Feferman.
-Interest in this methodology is growing in the theoretical computer
-science community. We can foresee the day when actual computer systems
-used in applications will contain certified modules, automatically
-generated from a consistency proof of their formal specifications. We
-are however still far from being able to use this methodology in a
-smooth interaction with the standard tools from software engineering,
-i.e. compilers, linkers, run-time systems taking advantage of special
-hardware, debuggers, and the like. We hope that {\Coq} can be of use
-to researchers interested in experimenting with this new methodology.
-
-A first implementation of CoC was started in 1984 by G. Huet and T.
-Coquand. Its implementation language was CAML, a functional
-programming language from the ML family designed at INRIA in
-Rocquencourt. The core of this system was a proof-checker for CoC seen
-as a typed $\lambda$-calculus, called the \emph{Constructive Engine}.
-This engine was operated through a high-level notation permitting the
-declaration of axioms and parameters, the definition of mathematical
-types and objects, and the explicit construction of proof objects
-encoded as $\lambda$-terms. A section mechanism, designed and
-implemented by G. Dowek, allowed hierarchical developments of
-mathematical theories. This high-level language was called the
-\emph{Mathematical Vernacular}. Furthermore, an interactive
-\emph{Theorem Prover} permitted the incremental construction of proof
-trees in a top-down manner, subgoaling recursively and backtracking
-from dead-alleys. The theorem prover executed tactics written in CAML,
-in the LCF fashion. A basic set of tactics was predefined, which the
-user could extend by his own specific tactics. This system (Version
-4.10) was released in 1989. Then, the system was extended to deal
-with the new calculus with inductive types by C. Paulin, with
-corresponding new tactics for proofs by induction. A new standard set
-of tactics was streamlined, and the vernacular extended for tactics
-execution. A package to compile programs extracted from proofs to
-actual computer programs in CAML or some other functional language was
-designed and implemented by B. Werner. A new user-interface, relying
-on a CAML-X interface by D. de Rauglaudre, was designed and
-implemented by A. Felty. It allowed operation of the theorem-prover
-through the manipulation of windows, menus, mouse-sensitive buttons,
-and other widgets. This system (Version 5.6) was released in 1991.
-
-\Coq{} was ported to the new implementation Caml-light of X. Leroy and
-D. Doligez by D. de Rauglaudre (Version 5.7) in 1992. A new version
-of \Coq{} was then coordinated by C. Murthy, with new tools designed
-by C. Parent to prove properties of ML programs (this methodology is
-dual to program extraction) and a new user-interaction loop. This
-system (Version 5.8) was released in May 1993. A Centaur interface
-\textsc{CTCoq} was then developed by Y. Bertot from the Croap project
-from INRIA-Sophia-Antipolis.
-
-In parallel, G. Dowek and H. Herbelin developed a new proof engine,
-allowing the general manipulation of existential variables
-consistently with dependent types in an experimental version of \Coq{}
-(V5.9).
-
-The version V5.10 of \Coq{} is based on a generic system for
-manipulating terms with binding operators due to Chet Murthy. A new
-proof engine allows the parallel development of partial proofs for
-independent subgoals. The structure of these proof trees is a mixed
-representation of derivation trees for the Calculus of Inductive
-Constructions with abstract syntax trees for the tactics scripts,
-allowing the navigation in a proof at various levels of details. The
-proof engine allows generic environment items managed in an
-object-oriented way. This new architecture, due to C. Murthy,
-supports several new facilities which make the system easier to extend
-and to scale up:
-
-\begin{itemize}
-\item User-programmable tactics are allowed
-\item It is possible to separately verify development modules, and to
- load their compiled images without verifying them again - a quick
- relocation process allows their fast loading
-\item A generic parsing scheme allows user-definable notations, with a
- symmetric table-driven pretty-printer
-\item Syntactic definitions allow convenient abbreviations
-\item A limited facility of meta-variables allows the automatic
- synthesis of certain type expressions, allowing generic notations
- for e.g. equality, pairing, and existential quantification.
-\end{itemize}
-
-In the Fall of 1994, C. Paulin-Mohring replaced the structure of
-inductively defined types and families by a new structure, allowing
-the mutually recursive definitions. P. Manoury implemented a
-translation of recursive definitions into the primitive recursive
-style imposed by the internal recursion operators, in the style of the
-ProPre system. C. Mu{\~n}oz implemented a decision procedure for
-intuitionistic propositional logic, based on results of R. Dyckhoff.
-J.C. Filli{\^a}tre implemented a decision procedure for first-order
-logic without contraction, based on results of J. Ketonen and R.
-Weyhrauch. Finally C. Murthy implemented a library of inversion
-tactics, relieving the user from tedious definitions of ``inversion
-predicates''.
-
-\begin{flushright}
-Rocquencourt, Feb. 1st 1995\\
-Gérard Huet
-\end{flushright}
-
-\section*{Credits: addendum for version 6.1}
-%\addcontentsline{toc}{section}{Credits: addendum for version V6.1}
-
-The present version 6.1 of \Coq{} is based on the V5.10 architecture. It
-was ported to the new language Objective Caml by Bruno Barras. The
-underlying framework has slightly changed and allows more conversions
-between sorts.
-
-The new version provides powerful tools for easier developments.
-
-Cristina Cornes designed an extension of the \Coq{} syntax to allow
-definition of terms using a powerful pattern-matching analysis in the
-style of ML programs.
-
-Amokrane Saïbi wrote a mechanism to simulate
-inheritance between types families extending a proposal by Peter
-Aczel. He also developed a mechanism to automatically compute which
-arguments of a constant may be inferred by the system and consequently
-do not need to be explicitly written.
-
-Yann Coscoy designed a command which explains a proof term using
-natural language. Pierre Cr{\'e}gut built a new tactic which solves
-problems in quantifier-free Presburger Arithmetic. Both
-functionalities have been integrated to the \Coq{} system by Hugo
-Herbelin.
-
-Samuel Boutin designed a tactic for simplification of commutative
-rings using a canonical set of rewriting rules and equality modulo
-associativity and commutativity.
-
-Finally the organisation of the \Coq{} distribution has been supervised
-by Jean-Christophe Filliâtre with the help of Judicaël Courant
-and Bruno Barras.
-
-\begin{flushright}
-Lyon, Nov. 18th 1996\\
-Christine Paulin
-\end{flushright}
-
-\section*{Credits: addendum for version 6.2}
-%\addcontentsline{toc}{section}{Credits: addendum for version V6.2}
-
-In version 6.2 of \Coq{}, the parsing is done using camlp4, a
-preprocessor and pretty-printer for CAML designed by Daniel de
-Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation
-of \Coq{} for camlp4, this work was continued by Bruno Barras who also
-changed the structure of \Coq{} abstract syntax trees and the primitives
-to manipulate them. The result of
-these changes is a faster parsing procedure with greatly improved
-syntax-error messages. The user-interface to introduce grammar or
-pretty-printing rules has also changed.
-
-Eduardo Giménez redesigned the internal
-tactic libraries, giving uniform names
-to Caml functions corresponding to \Coq{} tactic names.
-
-Bruno Barras wrote new more efficient reductions functions.
-
-Hugo Herbelin introduced more uniform notations in the \Coq{}
-specification language: the definitions by fixpoints and
-pattern-matching have a more readable syntax. Patrick Loiseleur
-introduced user-friendly notations for arithmetic expressions.
-
-New tactics were introduced: Eduardo Giménez improved a mechanism to
-introduce macros for tactics, and designed special tactics for
-(co)inductive definitions; Patrick Loiseleur designed a tactic to
-simplify polynomial expressions in an arbitrary commutative ring which
-generalizes the previous tactic implemented by Samuel Boutin.
-Jean-Christophe Filli\^atre introduced a tactic for refining a goal,
-using a proof term with holes as a proof scheme.
-
-David Delahaye designed the \textsf{SearchIsos} tool to search an
-object in the library given its type (up to isomorphism).
-
-Henri Laulhère produced the \Coq{} distribution for the Windows environment.
-
-Finally, Hugo Herbelin was the main coordinator of the \Coq{}
-documentation with principal contributions by Bruno Barras, David Delahaye,
-Jean-Christophe Filli\^atre, Eduardo
-Giménez, Hugo Herbelin and Patrick Loiseleur.
-
-\begin{flushright}
-Orsay, May 4th 1998\\
-Christine Paulin
-\end{flushright}
-
-\section*{Credits: addendum for version 6.3}
-The main changes in version V6.3 was the introduction of a few new tactics
-and the extension of the guard condition for fixpoint definitions.
-
-
-B. Barras extended the unification algorithm to complete partial terms
-and solved various tricky bugs related to universes.\\
-D. Delahaye developed the \texttt{AutoRewrite} tactic. He also designed the new
-behavior of \texttt{Intro} and provided the tacticals \texttt{First} and
-\texttt{Solve}.\\
-J.-C. Filli\^atre developed the \texttt{Correctness} tactic.\\
-E. Gim\'enez extended the guard condition in fixpoints.\\
-H. Herbelin designed the new syntax for definitions and extended the
-\texttt{Induction} tactic.\\
-P. Loiseleur developed the \texttt{Quote} tactic and
-the new design of the \texttt{Auto}
-tactic, he also introduced the index of
-errors in the documentation.\\
-C. Paulin wrote the \texttt{Focus} command and introduced
-the reduction functions in definitions, this last feature
-was proposed by J.-F. Monin from CNET Lannion.
-
-\begin{flushright}
-Orsay, Dec. 1999\\
-Christine Paulin
-\end{flushright}
-
-%\newpage
-
-\section*{Credits: versions 7}
-
-The version V7 is a new implementation started in September 1999 by
-Jean-Christophe Filliâtre. This is a major revision with respect to
-the internal architecture of the system. The \Coq{} version 7.0 was
-distributed in March 2001, version 7.1 in September 2001, version
-7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in
-February 2003.
-
-Jean-Christophe Filliâtre designed the architecture of the new system, he
-introduced a new representation for environments and wrote a new kernel
-for type-checking terms. His approach was to use functional
-data-structures in order to get more sharing, to prepare the addition
-of modules and also to get closer to a certified kernel.
-
-Hugo Herbelin introduced a new structure of terms with local
-definitions. He introduced ``qualified'' names, wrote a new
-pattern-matching compilation algorithm and designed a more compact
-algorithm for checking the logical consistency of universes. He
-contributed to the simplification of {\Coq} internal structures and the
-optimisation of the system. He added basic tactics for forward
-reasoning and coercions in patterns.
-
-David Delahaye introduced a new language for tactics. General tactics
-using pattern-matching on goals and context can directly be written
-from the {\Coq} toplevel. He also provided primitives for the design
-of user-defined tactics in \textsc{Caml}.
-
-Micaela Mayero contributed the library on real numbers.
-Olivier Desmettre extended this library with axiomatic
-trigonometric functions, square, square roots, finite sums, Chasles
-property and basic plane geometry.
-
-Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new
-extraction procedure from \Coq{} terms to \textsc{Caml} or
-\textsc{Haskell} programs. This new
-extraction procedure, unlike the one implemented in previous version
-of \Coq{} is able to handle all terms in the Calculus of Inductive
-Constructions, even involving universes and strong elimination. P.
-Letouzey adapted user contributions to extract ML programs when it was
-sensible.
-Jean-Christophe Filliâtre wrote \verb=coqdoc=, a documentation
-tool for {\Coq} libraries usable from version 7.2.
-
-Bruno Barras improved the reduction algorithms efficiency and
-the confidence level in the correctness of {\Coq} critical type-checking
-algorithm.
-
-Yves Bertot designed the \texttt{SearchPattern} and
-\texttt{SearchRewrite} tools and the support for the \textsc{pcoq} interface
-(\url{http://www-sop.inria.fr/lemme/pcoq/}).
-
-Micaela Mayero and David Delahaye introduced {\tt Field}, a decision tactic for commutative fields.
-
-Christine Paulin changed the elimination rules for empty and singleton
-propositional inductive types.
-
-Loïc Pottier developed {\tt Fourier}, a tactic solving linear inequalities on real numbers.
-
-Pierre Crégut developed a new version based on reflexion of the {\tt Omega}
-decision tactic.
-
-Claudio Sacerdoti Coen designed an XML output for the {\Coq}
-modules to be used in the Hypertextual Electronic Library of
-Mathematics (HELM cf \url{http://www.cs.unibo.it/helm}).
-
-A library for efficient representation of finite maps using binary trees
-contributed by Jean Goubault was integrated in the basic theories.
-
-Pierre Courtieu developed a command and a tactic to reason on the
-inductive structure of recursively defined functions.
-
-Jacek Chrz\k{a}szcz designed and implemented the module system of
-{\Coq} whose foundations are in Judicaël Courant's PhD thesis.
-
-\bigskip
-
-The development was coordinated by C. Paulin.
-
-Many discussions within the Démons team and the LogiCal project
-influenced significantly the design of {\Coq} especially with
-%J. Chrz\k{a}szcz, P. Courtieu,
-J. Courant, J. Duprat, J. Goubault, A. Miquel,
-C. Marché, B. Monate and B. Werner.
-
-Intensive users suggested improvements of the system :
-Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA,
-C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R \& D.
-\begin{flushright}
-Orsay, May. 2002\\
-Hugo Herbelin \& Christine Paulin
-\end{flushright}
-
-\section*{Credits: version 8.0}
-
-{\Coq} version 8 is a major revision of the {\Coq} proof assistant.
-First, the underlying logic is slightly different. The so-called {\em
-impredicativity} of the sort {\tt Set} has been dropped. The main
-reason is that it is inconsistent with the principle of description
-which is quite a useful principle for formalizing %classical
-mathematics within classical logic. Moreover, even in an constructive
-setting, the impredicativity of {\tt Set} does not add so much in
-practice and is even subject of criticism from a large part of the
-intuitionistic mathematician community. Nevertheless, the
-impredicativity of {\tt Set} remains optional for users interested in
-investigating mathematical developments which rely on it.
-
-Secondly, the concrete syntax of terms has been completely
-revised. The main motivations were
-
-\begin{itemize}
-\item a more uniform, purified style: all constructions are now lowercase,
- with a functional programming perfume (e.g. abstraction is now
- written {\tt fun}), and more directly accessible to the novice
- (e.g. dependent product is now written {\tt forall} and allows
- omission of types). Also, parentheses and are no longer mandatory
- for function application.
-\item extensibility: some standard notations (e.g. ``<'' and ``>'') were
- incompatible with the previous syntax. Now all standard arithmetic
- notations (=, +, *, /, <, <=, ... and more) are directly part of the
- syntax.
-\end{itemize}
-
-Together with the revision of the concrete syntax, a new mechanism of
-{\em interpretation scopes} permits to reuse the same symbols
-(typically +, -, *, /, <, <=) in various mathematical theories without
-any ambiguities for {\Coq}, leading to a largely improved readability of
-{\Coq} scripts. New commands to easily add new symbols are also
-provided.
-
-Coming with the new syntax of terms, a slight reform of the tactic
-language and of the language of commands has been carried out. The
-purpose here is a better uniformity making the tactics and commands
-easier to use and to remember.
-
-Thirdly, a restructuration and uniformisation of the standard library
-of {\Coq} has been performed. There is now just one Leibniz' equality
-usable for all the different kinds of {\Coq} objects. Also, the set of
-real numbers now lies at the same level as the sets of natural and
-integer numbers. Finally, the names of the standard properties of
-numbers now follow a standard pattern and the symbolic
-notations for the standard definitions as well.
-
-The fourth point is the release of \CoqIDE{}, a new graphical
-gtk2-based interface fully integrated to {\Coq}. Close in style from
-the Proof General Emacs interface, it is faster and its integration
-with {\Coq} makes interactive developments more friendly. All
-mathematical Unicode symbols are usable within \CoqIDE{}.
-
-Finally, the module system of {\Coq} completes the picture of {\Coq}
-version 8.0. Though released with an experimental status in the previous
-version 7.4, it should be considered as a salient feature of the new
-version.
-
-Besides, {\Coq} comes with its load of novelties and improvements: new
-or improved tactics (including a new tactic for solving first-order
-statements), new management commands, extended libraries.
-
-\bigskip
-
-Bruno Barras and Hugo Herbelin have been the main contributors of the
-reflexion and the implementation of the new syntax. The smart
-automatic translator from old to new syntax released with {\Coq} is also
-their work with contributions by Olivier Desmettre.
-
-Hugo Herbelin is the main designer and implementor of the notion of
-interpretation scopes and of the commands for easily adding new notations.
-
-Hugo Herbelin is the main implementor of the restructuration of the
-standard library.
-
-Pierre Corbineau is the main designer and implementor of the new
-tactic for solving first-order statements in presence of inductive
-types. He is also the maintainer of the non-domain specific automation
-tactics.
-
-Benjamin Monate is the developer of the \CoqIDE{} graphical
-interface with contributions by Jean-Christophe Filliâtre, Pierre
-Letouzey, Claude Marché and Bruno Barras.
-
-Claude Marché coordinated the edition of the Reference Manual for
- \Coq{} V8.0.
-
-Pierre Letouzey and Jacek Chrz\k{a}szcz respectively maintained the
-extraction tool and module system of {\Coq}.
-
-Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and
-contributors from Sophia-Antipolis and Nijmegen participated to the
-extension of the library.
-
-Julien Narboux built a NSIS-based automatic {\Coq} installation tool for
-the Windows platform.
-
-Hugo Herbelin and Christine Paulin coordinated the development which
-was under the responsability of Christine Paulin.
-
-\begin{flushright}
-Palaiseau \& Orsay, Apr. 2004\\
-Hugo Herbelin \& Christine Paulin\\
-(updated Apr. 2006)
-\end{flushright}
-
-\section*{Credits: version 8.1}
-
-{\Coq} version 8.1 adds various new functionalities.
-
-Benjamin Grégoire implemented an alternative algorithm to check the
-convertibility of terms in the {\Coq} type-checker. This alternative
-algorithm works by compilation to an efficient bytecode that is
-interpreted in an abstract machine similar to Xavier Leroy's ZINC
-machine. Convertibility is performed by comparing the normal
-forms. This alternative algorithm is specifically interesting for
-proofs by reflection. More generally, it is convenient in case of
-intensive computations.
-
-Christine Paulin implemented an extension of inductive types allowing
-recursively non uniform parameters. Hugo Herbelin implemented
-sort-polymorphism for inductive types.
-
-Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary
-compatible equivalence relations. He also generalized rewriting to
-arbitrary transition systems.
-
-Claudio Sacerdoti Coen added new features to the module system.
-
-Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new
-more efficient and more general simplification algorithm on rings and
-semi-rings.
-
-Laurent Théry and Bruno Barras developed a new significantly more efficient
-simplification algorithm on fields.
-
-Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and
-Claudio Sacerdoti Coen added new tactic features.
-
-Hugo Herbelin implemented matching on disjunctive patterns.
-
-New mechanisms made easier the communication between {\Coq} and external
-provers. Nicolas Ayache and Jean-Christophe Filliâtre implemented
-connections with the provers {\sc cvcl}, {\sc Simplify} and {\sc
-zenon}. Hugo Herbelin implemented an experimental protocol for calling
-external tools from the tactic language.
-
-Matthieu Sozeau developed \textsc{Russell}, an experimental language
-to specify the behavior of programs with subtypes.
-
-A mechanism to automatically use some specific tactic to solve
-unresolved implicit has been implemented by Hugo Herbelin.
-
-Laurent Théry's contribution on strings and Pierre Letouzey and
-Jean-Christophe Filliâtre's contribution on finite maps have been
-integrated to the {\Coq} standard library. Pierre Letouzey developed a
-library about finite sets ``à la Objective Caml''. With Jean-Marc
-Notin, he extended the library on lists. Pierre Letouzey's
-contribution on rational numbers has been integrated and extended..
-
-Pierre Corbineau extended his tactic for solving first-order
-statements. He wrote a reflection-based intuitionistic tautology
-solver.
-
-Pierre Courtieu, Julien Forest and Yves Bertot added extra support to
-reason on the inductive structure of recursively defined functions.
-
-Jean-Marc Notin significantly contributed to the general maintenance
-of the system. He also took care of {\textsf{coqdoc}}.
-
-Pierre Castéran contributed to the documentation of (co-)inductive
-types and suggested improvements to the libraries.
-
-Pierre Corbineau implemented a declarative mathematical proof
-language, usable in combination with the tactic-based style of proof.
-
-Finally, many users suggested improvements of the system through the
-Coq-Club mailing list and bug-tracker systems, especially user groups
-from INRIA Rocquencourt, Radbout University, University of
-Pennsylvania and Yale University.
-
-\enlargethispage{\baselineskip}
-\begin{flushright}
-Palaiseau, July 2006\\
-Hugo Herbelin
-\end{flushright}
-
-\section*{Credits: version 8.2}
-
-{\Coq} version 8.2 adds new features, new libraries and
-improves on many various aspects.
-
-Regarding the language of Coq, the main novelty is the introduction by
-Matthieu Sozeau of a package of commands providing Haskell-style
-type classes. Type classes, that come with a few convenient features
-such as type-based resolution of implicit arguments, plays a new role
-of landmark in the architecture of Coq with respect to automatization.
-For instance, thanks to type classes support, Matthieu Sozeau could
-implement a new resolution-based version of the tactics dedicated to
-rewriting on arbitrary transitive relations.
-
-Another major improvement of Coq 8.2 is the evolution of the
-arithmetic libraries and of the tools associated to them. Benjamin
-Grégoire and Laurent Théry contributed a modular library for building
-arbitrarily large integers from bounded integers while Evgeny Makarov
-contributed a modular library of abstract natural and integer
-arithmetics together with a few convenient tactics. On his side,
-Pierre Letouzey made numerous extensions to the arithmetic libraries on
-$\mathbb{Z}$ and $\mathbb{Q}$, including extra support for
-automatization in presence of various number-theory concepts.
-
-Frédéric Besson contributed a reflexive tactic based on
-Krivine-Stengle Positivstellensatz (the easy way) for validating
-provability of systems of inequalities. The platform is flexible enough
-to support the validation of any algorithm able to produce a
-``certificate'' for the Positivstellensatz and this covers the case of
-Fourier-Motzkin (for linear systems in $\mathbb{Q}$ and $\mathbb{R}$),
-Fourier-Motzkin with cutting planes (for linear systems in
-$\mathbb{Z}$) and sum-of-squares (for non-linear systems). Evgeny
-Makarov made the platform generic over arbitrary ordered rings.
-
-Arnaud Spiwack developed a library of 31-bits machine integers and,
-relying on Benjamin Grégoire and Laurent Théry's library, delivered a
-library of unbounded integers in base $2^{31}$. As importantly, he
-developed a notion of ``retro-knowledge'' so as to safely extend the
-kernel-located bytecode-based efficient evaluation algorithm of Coq
-version 8.1 to use 31-bits machine arithmetics for efficiently
-computing with the library of integers he developed.
-
-Beside the libraries, various improvements contributed to provide a
-more comfortable end-user language and more expressive tactic
-language. Hugo Herbelin and Matthieu Sozeau improved the
-pattern-matching compilation algorithm (detection of impossible
-clauses in pattern-matching, automatic inference of the return
-type). Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau contributed
-various new convenient syntactic constructs and new tactics or tactic
-features: more inference of redundant information, better unification,
-better support for proof or definition by fixpoint, more expressive
-rewriting tactics, better support for meta-variables, more convenient
-notations, ...
-
-Élie Soubiran improved the module system, adding new features (such as
-an ``include'' command) and making it more flexible and more
-general. He and Pierre Letouzey improved the support for modules in
-the extraction mechanism.
-
-Matthieu Sozeau extended the \textsc{Russell} language, ending in an
-convenient way to write programs of given specifications, Pierre
-Corbineau extended the Mathematical Proof Language and the
-automatization tools that accompany it, Pierre Letouzey supervised and
-extended various parts the standard library, Stéphane Glondu
-contributed a few tactics and improvements, Jean-Marc Notin provided
-help in debugging, general maintenance and {\tt coqdoc} support,
-Vincent Siles contributed extensions of the {\tt Scheme} command and
-of {\tt injection}.
-
-Bruno Barras implemented the {\tt coqchk} tool: this is a stand-alone
-type-checker that can be used to certify {\tt .vo} files. Especially,
-as this verifier runs in a separate process, it is granted not to be
-``hijacked'' by virtually malicious extensions added to {\Coq}.
-
-Yves Bertot, Jean-Christophe Filliâtre, Pierre Courtieu and
-Julien Forest acted as maintainers of features they implemented in
-previous versions of Coq.
-
-Julien Narboux contributed to CoqIDE.
-Nicolas Tabareau made the adaptation of the interface of the old
-``setoid rewrite'' tactic to the new version. Lionel Mamane worked on
-the interaction between Coq and its external interfaces. With Samuel
-Mimram, he also helped making Coq compatible with recent software
-tools. Russell O'Connor, Cezary Kaliscyk, Milad Niqui contributed to
-improved the libraries of integers, rational, and real numbers. We
-also thank many users and partners for suggestions and feedback, in
-particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle
-team, Georges Gonthier and the INRIA-Microsoft Mathematical Components team,
-the Foundations group at Radbout university in Nijmegen, reporters of bugs
-and participants to the Coq-Club mailing list.
-
-\begin{flushright}
-Palaiseau, June 2008\\
-Hugo Herbelin\\
-\end{flushright}
-
-\section*{Credits: version 8.3}
-
-{\Coq} version 8.3 is before all a transition version with refinements
-or extensions of the existing features and libraries and a new tactic
-{\tt nsatz} based on Hilbert's Nullstellensatz for deciding systems of
-equations over rings.
-
-With respect to libraries, the main evolutions are due to Pierre
-Letouzey with a rewriting of the library of finite sets {\tt FSets}
-and a new round of evolutions in the modular development of arithmetic
-(library {\tt Numbers}). The reason for making {\tt FSets} evolve is
-that the computational and logical contents were quite intertwined in
-the original implementation, leading in some cases to longer
-computations than expected and this problem is solved in the new {\tt
- MSets} implementation. As for the modular arithmetic library, it was
-only dealing with the basic arithmetic operators in the former version
-and its current extension adds the standard theory of the division,
-min and max functions, all made available for free to any
-implementation of $\mathbb{N}$, $\mathbb{Z}$ or
-$\mathbb{Z}/n\mathbb{Z}$.
-
-The main other evolutions of the library are due to Hugo Herbelin who
-made a revision of the sorting library (includingh a certified
-merge-sort) and to Guillaume Melquiond who slightly revised and
-cleaned up the library of reals.
-
-The module system evolved significantly. Besides the resolution of
-some efficiency issues and a more flexible construction of module
-types, Élie Soubiran brought a new model of name equivalence, the
-$\Delta$-equivalence, which respects as much as possible the names
-given by the users. He also designed with Pierre Letouzey a new
-convenient operator \verb!<+! for nesting functor application, what
-provides a light notation for inheriting the properties of cascading
-modules.
-
-The new tactic {\tt nsatz} is due to Loïc Pottier. It works by
-computing Gr\"obner bases. Regarding the existing tactics, various
-improvements have been done by Matthieu Sozeau, Hugo Herbelin and
-Pierre Letouzey.
-
-Matthieu Sozeau extended and refined the type classes and {\tt
- Program} features (the {\sc Russell} language). Pierre Letouzey
-maintained and improved the extraction mechanism. Bruno Barras and
-\'Elie Soubiran maintained the Coq checker, Julien Forest maintained
-the {\tt Function} mechanism for reasoning over recursively defined
-functions. Matthieu Sozeau, Hugo Herbelin and Jean-Marc Notin
-maintained {\tt coqdoc}. Frédéric Besson maintained the {\sc
- Micromega} plateform for deciding systems of inequalities. Pierre
-Courtieu maintained the support for the Proof General Emacs
-interface. Claude Marché maintained the plugin for calling external
-provers ({\tt dp}). Yves Bertot made some improvements to the
-libraries of lists and integers. Matthias Puech improved the search
-functions. Guillaume Melquiond usefully contributed here and
-there. Yann Régis-Gianas grounded the support for Unicode on a more
-standard and more robust basis.
-
-Though invisible from outside, Arnaud Spiwack improved the general
-process of management of existential variables. Pierre Letouzey and
-Stéphane Glondu improved the compilation scheme of the Coq archive.
-Vincent Gross provided support to CoqIDE. Jean-Marc Notin provided
-support for benchmarking and archiving.
-
-Many users helped by reporting problems, providing patches, suggesting
-improvements or making useful comments, either on the bug tracker or
-on the Coq-club mailing list. This includes but not exhaustively
-Cédric Auger, Arthur Charguéraud, François Garillot, Georges Gonthier,
-Robin Green, Stéphane Lescuyer, Eelis van der Weegen,~...
-
-Though not directly related to the implementation, special thanks are
-going to Yves Bertot, Pierre Castéran, Adam Chlipala, and Benjamin
-Pierce for the excellent teaching materials they provided.
-
-\begin{flushright}
-Paris, April 2010\\
-Hugo Herbelin\\
-\end{flushright}
-
-%new Makefile
-
-%\newpage
-
-% Integration of ZArith lemmas from Sophia and Nijmegen.
-
-
-% $Id: RefMan-pre.tex 13271 2010-07-08 18:10:54Z herbelin $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-pro.tex b/doc/refman/RefMan-pro.tex
deleted file mode 100644
index 3a8936eb..00000000
--- a/doc/refman/RefMan-pro.tex
+++ /dev/null
@@ -1,385 +0,0 @@
-\chapter[Proof handling]{Proof handling\index{Proof editing}
-\label{Proof-handling}}
-
-In \Coq's proof editing mode all top-level commands documented in
-Chapter~\ref{Vernacular-commands} remain available
-and the user has access to specialized commands dealing with proof
-development pragmas documented in this section. He can also use some
-other specialized commands called {\em tactics}. They are the very
-tools allowing the user to deal with logical reasoning. They are
-documented in Chapter~\ref{Tactics}.\\
-When switching in editing proof mode, the prompt
-\index{Prompt}
-{\tt Coq <} is changed into {\tt {\ident} <} where {\ident} is the
-declared name of the theorem currently edited.
-
-At each stage of a proof development, one has a list of goals to
-prove. Initially, the list consists only in the theorem itself. After
-having applied some tactics, the list of goals contains the subgoals
-generated by the tactics.
-
-To each subgoal is associated a number of
-hypotheses called the {\em \index*{local context}} of the goal.
-Initially, the local context contains the local variables and
-hypotheses of the current section (see Section~\ref{Variable}) and the
-local variables and hypotheses of the theorem statement. It is
-enriched by the use of certain tactics (see e.g. {\tt intro} in
-Section~\ref{intro}).
-
-When a proof is completed, the message {\tt Proof completed} is
-displayed. One can then register this proof as a defined constant in the
-environment. Because there exists a correspondence between proofs and
-terms of $\lambda$-calculus, known as the {\em Curry-Howard
-isomorphism} \cite{How80,Bar91,Gir89,Hue89}, \Coq~ stores proofs as
-terms of {\sc Cic}. Those terms are called {\em proof
- terms}\index{Proof term}.
-
-It is possible to edit several proofs in parallel: see Section
-\ref{Resume}.
-
-\ErrMsg When one attempts to use a proof editing command out of the
-proof editing mode, \Coq~ raises the error message : \errindex{No focused
- proof}.
-
-\section{Switching on/off the proof editing mode}
-
-The proof editing mode is entered by asserting a statement, which
-typically is the assertion of a theorem:
-
-\begin{quote}
-{\tt Theorem {\ident} \zeroone{\binders} : {\form}.\comindex{Theorem}
-\label{Theorem}}
-\end{quote}
-
-The list of assertion commands is given in
-Section~\ref{Assertions}. The command {\tt Goal} can also be used.
-
-\subsection[Goal {\form}.]{\tt Goal {\form}.\comindex{Goal}\label{Goal}}
-
-This is intended for quick assertion of statements, without knowing in
-advance which name to give to the assertion, typically for quick
-testing of the provability of a statement. If the proof of the
-statement is eventually completed and validated, the statement is then
-bound to the name {\tt Unnamed\_thm} (or a variant of this name not
-already used for another statement).
-
-\subsection[\tt Qed.]{\tt Qed.\comindex{Qed}\label{Qed}}
-This command is available in interactive editing proof mode when the
-proof is completed. Then {\tt Qed} extracts a proof term from the
-proof script, switches back to {\Coq} top-level and attaches the
-extracted proof term to the declared name of the original goal. This
-name is added to the environment as an {\tt Opaque} constant.
-
-\begin{ErrMsgs}
-\item \errindex{Attempt to save an incomplete proof}
-%\item \ident\ \errindex{already exists}\\
-% The implicit name is already defined. You have then to provide
-% explicitly a new name (see variant 3 below).
-\item Sometimes an error occurs when building the proof term,
-because tactics do not enforce completely the term construction
-constraints.
-
-The user should also be aware of the fact that since the proof term is
-completely rechecked at this point, one may have to wait a while when
-the proof is large. In some exceptional cases one may even incur a
-memory overflow.
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item {\tt Defined.}
-\comindex{Defined}
-\label{Defined}
-
- Defines the proved term as a transparent constant.
-
-\item {\tt Save.}
-\comindex{Save}
-
- This is a deprecated equivalent to {\tt Qed}.
-
-\item {\tt Save {\ident}.}
-
- Forces the name of the original goal to be {\ident}. This command
- (and the following ones) can only be used if the original goal has
- been opened using the {\tt Goal} command.
-
-\item {\tt Save Theorem {\ident}.} \\
- {\tt Save Lemma {\ident}.} \\
- {\tt Save Remark {\ident}.}\\
- {\tt Save Fact {\ident}.}
- {\tt Save Corollary {\ident}.}
- {\tt Save Proposition {\ident}.}
-
- Are equivalent to {\tt Save {\ident}.}
-\end{Variants}
-
-\subsection[\tt Admitted.]{\tt Admitted.\comindex{Admitted}\label{Admitted}}
-This command is available in interactive editing proof mode to give up
-the current proof and declare the initial goal as an axiom.
-
-\subsection[\tt Proof {\term}.]{\tt Proof {\term}.\comindex{Proof}
-\label{BeginProof}}
-This command applies in proof editing mode. It is equivalent to {\tt
- exact {\term}; Save.} That is, you have to give the full proof in
-one gulp, as a proof term (see Section~\ref{exact}).
-
-\variant {\tt Proof.}
-
- Is a noop which is useful to delimit the sequence of tactic commands
- which start a proof, after a {\tt Theorem} command. It is a good
- practice to use {\tt Proof.} as an opening parenthesis, closed in
- the script with a closing {\tt Qed.}
-
-\SeeAlso {\tt Proof with {\tac}.} in Section~\ref{ProofWith}.
-
-\subsection[\tt Abort.]{\tt Abort.\comindex{Abort}}
-
-This command cancels the current proof development, switching back to
-the previous proof development, or to the \Coq\ toplevel if no other
-proof was edited.
-
-\begin{ErrMsgs}
-\item \errindex{No focused proof (No proof-editing in progress)}
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item {\tt Abort {\ident}.}
-
- Aborts the editing of the proof named {\ident}.
-
-\item {\tt Abort All.}
-
- Aborts all current goals, switching back to the \Coq\ toplevel.
-
-\end{Variants}
-
-%%%%
-\subsection[\tt Suspend.]{\tt Suspend.\comindex{Suspend}}
-
-This command applies in proof editing mode. It switches back to the
-\Coq\ toplevel, but without canceling the current proofs.
-
-%%%%
-\subsection[\tt Resume.]{\tt Resume.\comindex{Resume}\label{Resume}}
-
-This commands switches back to the editing of the last edited proof.
-
-\begin{ErrMsgs}
-\item \errindex{No proof-editing in progress}
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item {\tt Resume {\ident}.}
-
- Restarts the editing of the proof named {\ident}. This can be used
- to navigate between currently edited proofs.
-
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{No such proof}
-\end{ErrMsgs}
-
-
-%%%%
-\subsection[\tt Existential {\num} := {\term}.]{\tt Existential {\num} := {\term}.\comindex{Existential}
-\label{Existential}}
-
-This command allows to instantiate an existential variable. {\tt \num}
-is an index in the list of uninstantiated existential variables
-displayed by {\tt Show Existentials.} (described in Section~\ref{Show})
-
-This command is intended to be used to instantiate existential
-variables when the proof is completed but some uninstantiated
-existential variables remain. To instantiate existential variables
-during proof edition, you should use the tactic {\tt instantiate}.
-
-\SeeAlso {\tt instantiate (\num:= \term).} in Section~\ref{instantiate}.
-
-
-%%%%%%%%
-\section{Navigation in the proof tree}
-%%%%%%%%
-
-\subsection[\tt Undo.]{\tt Undo.\comindex{Undo}}
-
-This command cancels the effect of the last tactic command. Thus, it
-backtracks one step.
-
-\begin{ErrMsgs}
-\item \errindex{No focused proof (No proof-editing in progress)}
-\item \errindex{Undo stack would be exhausted}
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item {\tt Undo {\num}.}
-
- Repeats {\tt Undo} {\num} times.
-
-\end{Variants}
-
-\subsection[\tt Set Undo {\num}.]{\tt Set Undo {\num}.\comindex{Set Undo}}
-
-This command changes the maximum number of {\tt Undo}'s that will be
-possible when doing a proof. It only affects proofs started after
-this command, such that if you want to change the current undo limit
-inside a proof, you should first restart this proof.
-
-\subsection[\tt Unset Undo.]{\tt Unset Undo.\comindex{Unset Undo}}
-
-This command resets the default number of possible {\tt Undo} commands
-(which is currently 12).
-
-\subsection[\tt Restart.]{\tt Restart.\comindex{Restart}}
-This command restores the proof editing process to the original goal.
-
-\begin{ErrMsgs}
-\item \errindex{No focused proof to restart}
-\end{ErrMsgs}
-
-\subsection[\tt Focus.]{\tt Focus.\comindex{Focus}}
-This focuses the attention on the first subgoal to prove and the printing
-of the other subgoals is suspended until the focused subgoal is
-solved or unfocused. This is useful when there are many current
-subgoals which clutter your screen.
-
-\begin{Variant}
-\item {\tt Focus {\num}.}\\
-This focuses the attention on the $\num^{th}$ subgoal to prove.
-
-\end{Variant}
-
-\subsection[\tt Unfocus.]{\tt Unfocus.\comindex{Unfocus}}
-Turns off the focus mode.
-
-
-\section{Requesting information}
-
-\subsection[\tt Show.]{\tt Show.\comindex{Show}\label{Show}}
-This command displays the current goals.
-
-\begin{Variants}
-\item {\tt Show {\num}.}\\
- Displays only the {\num}-th subgoal.\\
-\begin{ErrMsgs}
-\item \errindex{No such goal}
-\item \errindex{No focused proof}
-\end{ErrMsgs}
-
-\item {\tt Show Implicits.}\comindex{Show Implicits}\\
- Displays the current goals, printing the implicit arguments of
- constants.
-
-\item {\tt Show Implicits {\num}.}\\
- Same as above, only displaying the {\num}-th subgoal.
-
-\item {\tt Show Script.}\comindex{Show Script}\\
- Displays the whole list of tactics applied from the beginning
- of the current proof.
- This tactics script may contain some holes (subgoals not yet proved).
- They are printed under the form \verb!<Your Tactic Text here>!.
-
-\item {\tt Show Tree.}\comindex{Show Tree}\\
-This command can be seen as a more structured way of
-displaying the state of the proof than that
-provided by {\tt Show Script}. Instead of just giving
-the list of tactics that have been applied, it
-shows the derivation tree constructed by then.
-Each node of the tree contains the conclusion
-of the corresponding sub-derivation (i.e. a
-goal with its corresponding local context) and
-the tactic that has generated all the
-sub-derivations. The leaves of this tree are
-the goals which still remain to be proved.
-
-%\item {\tt Show Node}\comindex{Show Node}\\
-% Not yet documented
-
-\item {\tt Show Proof.}\comindex{Show Proof}\\
-It displays the proof term generated by the
-tactics that have been applied.
-If the proof is not completed, this term contain holes,
-which correspond to the sub-terms which are still to be
-constructed. These holes appear as a question mark indexed
-by an integer, and applied to the list of variables in
-the context, since it may depend on them.
-The types obtained by abstracting away the context from the
-type of each hole-placer are also printed.
-
-\item {\tt Show Conjectures.}\comindex{Show Conjectures}\\
-It prints the list of the names of all the theorems that
-are currently being proved.
-As it is possible to start proving a previous lemma during
-the proof of a theorem, this list may contain several
-names.
-
-\item{\tt Show Intro.}\comindex{Show Intro}\\
-If the current goal begins by at least one product, this command
-prints the name of the first product, as it would be generated by
-an anonymous {\tt Intro}. The aim of this command is to ease the
-writing of more robust scripts. For example, with an appropriate
-Proof General macro, it is possible to transform any anonymous {\tt
- Intro} into a qualified one such as {\tt Intro y13}.
-In the case of a non-product goal, it prints nothing.
-
-\item{\tt Show Intros.}\comindex{Show Intros}\\
-This command is similar to the previous one, it simulates the naming
-process of an {\tt Intros}.
-
-\item{\tt Show Existentials}\comindex{Show Existentials}\\ It displays
-the set of all uninstantiated existential variables in the current proof tree,
-along with the type and the context of each variable.
-
-\end{Variants}
-
-
-\subsection[\tt Guarded.]{\tt Guarded.\comindex{Guarded}\label{Guarded}}
-
-Some tactics (e.g. refine \ref{refine}) allow to build proofs using
-fixpoint or co-fixpoint constructions. Due to the incremental nature
-of interactive proof construction, the check of the termination (or
-guardedness) of the recursive calls in the fixpoint or cofixpoint
-constructions is postponed to the time of the completion of the proof.
-
-The command \verb!Guarded! allows to verify if the guard condition for
-fixpoint and cofixpoint is violated at some time of the construction
-of the proof without having to wait the completion of the proof."
-
-
-\section{Controlling the effect of proof editing commands}
-
-\subsection[\tt Set Hyps Limit {\num}.]{\tt Set Hyps Limit {\num}.\comindex{Set Hyps Limit}}
-This command sets the maximum number of hypotheses displayed in
-goals after the application of a tactic.
-All the hypotheses remains usable in the proof development.
-
-
-\subsection[\tt Unset Hyps Limit.]{\tt Unset Hyps Limit.\comindex{Unset Hyps Limit}}
-This command goes back to the default mode which is to print all
-available hypotheses.
-
-% $Id: RefMan-pro.tex 13091 2010-06-08 13:56:19Z herbelin $
-
-
-\subsection[\tt Set Automatic Introduction.]{\tt Set Automatic Introduction.\comindex{Set Automatic Introduction}\comindex{Unset Automatic Introduction}\label{Set Automatic Introduction}}
-
-The option {\tt Automatic Introduction} controls the way binders are
-handled in assertion commands such as {\tt Theorem {\ident}
- \zeroone{\binders} : {\form}}. When the option is set, which is the
-default, {\binders} are automatically put in the local context of the
-goal to prove.
-
-The option can be unset by issuing {\tt Unset Automatic Introduction}.
-When the option is unset, {\binders} are discharged on the statement
-to be proved and a tactic such as {\tt intro} (see
-Section~\ref{intro}) has to be used to move the assumptions to the
-local context.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-syn.tex b/doc/refman/RefMan-syn.tex
deleted file mode 100644
index 2b0d636e..00000000
--- a/doc/refman/RefMan-syn.tex
+++ /dev/null
@@ -1,1148 +0,0 @@
-\chapter[Syntax extensions and interpretation scopes]{Syntax extensions and interpretation scopes\label{Addoc-syntax}}
-
-In this chapter, we introduce advanced commands to modify the way
-{\Coq} parses and prints objects, i.e. the translations between the
-concrete and internal representations of terms and commands. The main
-commands are {\tt Notation} and {\tt Infix} which are described in
-section \ref{Notation}. It also happens that the same symbolic
-notation is expected in different contexts. To achieve this form of
-overloading, {\Coq} offers a notion of interpretation scope. This is
-described in Section~\ref{scopes}.
-
-\Rem The commands {\tt Grammar}, {\tt Syntax} and {\tt Distfix} which
-were present for a while in {\Coq} are no longer available from {\Coq}
-version 8.0. The underlying AST structure is also no longer available.
-The functionalities of the command {\tt Syntactic Definition} are
-still available, see Section~\ref{Abbreviations}.
-
-\section[Notations]{Notations\label{Notation}
-\comindex{Notation}}
-
-\subsection{Basic notations}
-
-A {\em notation} is a symbolic abbreviation denoting some term
-or term pattern.
-
-A typical notation is the use of the infix symbol \verb=/\= to denote
-the logical conjunction (\texttt{and}). Such a notation is declared
-by
-
-\begin{coq_example*}
-Notation "A /\ B" := (and A B).
-\end{coq_example*}
-
-The expression \texttt{(and A B)} is the abbreviated term and the
-string \verb="A /\ B"= (called a {\em notation}) tells how it is
-symbolically written.
-
-A notation is always surrounded by double quotes (excepted when the
-abbreviation is a single identifier, see \ref{Abbreviations}). The
-notation is composed of {\em tokens} separated by spaces. Identifiers
-in the string (such as \texttt{A} and \texttt{B}) are the {\em
-parameters} of the notation. They must occur at least once each in the
-denoted term. The other elements of the string (such as \verb=/\=) are
-the {\em symbols}.
-
-An identifier can be used as a symbol but it must be surrounded by
-simple quotes to avoid the confusion with a parameter. Similarly,
-every symbol of at least 3 characters and starting with a simple quote
-must be quoted (then it starts by two single quotes). Here is an example.
-
-\begin{coq_example*}
-Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3).
-\end{coq_example*}
-
-%TODO quote the identifier when not in front, not a keyword, as in "x 'U' y" ?
-
-A notation binds a syntactic expression to a term. Unless the parser
-and pretty-printer of {\Coq} already know how to deal with the
-syntactic expression (see \ref{ReservedNotation}), explicit precedences and
-associativity rules have to be given.
-
-\subsection[Precedences and associativity]{Precedences and associativity\index{Precedences}
-\index{Associativity}}
-
-Mixing different symbolic notations in a same text may cause serious
-parsing ambiguity. To deal with the ambiguity of notations, {\Coq}
-uses precedence levels ranging from 0 to 100 (plus one extra level
-numbered 200) and associativity rules.
-
-Consider for example the new notation
-
-\begin{coq_example*}
-Notation "A \/ B" := (or A B).
-\end{coq_example*}
-
-Clearly, an expression such as {\tt forall A:Prop, True \verb=/\= A \verb=\/=
-A \verb=\/= False} is ambiguous. To tell the {\Coq} parser how to
-interpret the expression, a priority between the symbols \verb=/\= and
-\verb=\/= has to be given. Assume for instance that we want conjunction
-to bind more than disjunction. This is expressed by assigning a
-precedence level to each notation, knowing that a lower level binds
-more than a higher level. Hence the level for disjunction must be
-higher than the level for conjunction.
-
-Since connectives are the less tight articulation points of a text, it
-is reasonable to choose levels not so far from the higher level which
-is 100, for example 85 for disjunction and 80 for
-conjunction\footnote{which are the levels effectively chosen in the
-current implementation of {\Coq}}.
-
-Similarly, an associativity is needed to decide whether {\tt True \verb=/\=
-False \verb=/\= False} defaults to {\tt True \verb=/\= (False
-\verb=/\= False)} (right associativity) or to {\tt (True
-\verb=/\= False) \verb=/\= False} (left associativity). We may
-even consider that the expression is not well-formed and that
-parentheses are mandatory (this is a ``no associativity'')\footnote{
-{\Coq} accepts notations declared as no associative but the parser on
-which {\Coq} is built, namely {\camlpppp}, currently does not implement the
-no-associativity and replace it by a left associativity; hence it is
-the same for {\Coq}: no-associativity is in fact left associativity}.
-We don't know of a special convention of the associativity of
-disjunction and conjunction, let's apply for instance a right
-associativity (which is the choice of {\Coq}).
-
-Precedence levels and associativity rules of notations have to be
-given between parentheses in a list of modifiers that the
-\texttt{Notation} command understands. Here is how the previous
-examples refine.
-
-\begin{coq_example*}
-Notation "A /\ B" := (and A B) (at level 80, right associativity).
-Notation "A \/ B" := (or A B) (at level 85, right associativity).
-\end{coq_example*}
-
-By default, a notation is considered non associative, but the
-precedence level is mandatory (except for special cases whose level is
-canonical). The level is either a number or the mention {\tt next
-level} whose meaning is obvious. The list of levels already assigned
-is on Figure~\ref{init-notations}.
-
-\subsection{Complex notations}
-
-Notations can be made from arbitraly complex symbols. One can for
-instance define prefix notations.
-
-\begin{coq_example*}
-Notation "~ x" := (not x) (at level 75, right associativity).
-\end{coq_example*}
-
-One can also define notations for incomplete terms, with the hole
-expected to be inferred at typing time.
-
-\begin{coq_example*}
-Notation "x = y" := (@eq _ x y) (at level 70, no associativity).
-\end{coq_example*}
-
-One can define {\em closed} notations whose both sides are symbols. In
-this case, the default precedence level for inner subexpression is 200.
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is correct but produces **********)
-(**** an incompatibility with the reserved notation ********)
-\end{coq_eval}
-\begin{coq_example*}
-Notation "( x , y )" := (@pair _ _ x y) (at level 0).
-\end{coq_example*}
-
-One can also define notations for binders.
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is correct but produces **********)
-(**** an incompatibility with the reserved notation ********)
-\end{coq_eval}
-\begin{coq_example*}
-Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0).
-\end{coq_example*}
-
-In the last case though, there is a conflict with the notation for
-type casts. This last notation, as shown by the command {\tt Print Grammar
-constr} is at level 100. To avoid \verb=x : A= being parsed as a type cast,
-it is necessary to put {\tt x} at a level below 100, typically 99. Hence, a
-correct definition is
-
-\begin{coq_example*}
-Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0, x at level 99).
-\end{coq_example*}
-
-%This change has retrospectively an effect on the notation for notation
-%{\tt "{ A } + { B }"}. For the sake of factorization, {\tt A} must be
-%put at level 99 too, which gives
-%
-%\begin{coq_example*}
-%Notation "{ A } + { B }" := (sumbool A B) (at level 0, A at level 99).
-%\end{coq_example*}
-
-See the next section for more about factorization.
-
-\subsection{Simple factorization rules}
-
-{\Coq} extensible parsing is performed by Camlp5 which is essentially a
-LL1 parser. Hence, some care has to be taken not to hide already
-existing rules by new rules. Some simple left factorization work has
-to be done. Here is an example.
-
-\begin{coq_eval}
-(********** The next rule for notation _ < _ < _ produces **********)
-(*** Error: Notation _ < _ < _ is already defined at level 70 ... ***)
-\end{coq_eval}
-\begin{coq_example*}
-Notation "x < y" := (lt x y) (at level 70).
-Notation "x < y < z" := (x < y /\ y < z) (at level 70).
-\end{coq_example*}
-
-In order to factorize the left part of the rules, the subexpression
-referred by {\tt y} has to be at the same level in both rules. However
-the default behavior puts {\tt y} at the next level below 70
-in the first rule (no associativity is the default), and at the level
-200 in the second rule (level 200 is the default for inner expressions).
-To fix this, we need to force the parsing level of {\tt y},
-as follows.
-
-\begin{coq_example*}
-Notation "x < y" := (lt x y) (at level 70).
-Notation "x < y < z" := (x < y /\ y < z) (at level 70, y at next level).
-\end{coq_example*}
-
-For the sake of factorization with {\Coq} predefined rules, simple
-rules have to be observed for notations starting with a symbol:
-e.g. rules starting with ``\{'' or ``('' should be put at level 0. The
-list of {\Coq} predefined notations can be found in Chapter~\ref{Theories}.
-
-The command to display the current state of the {\Coq} term parser is
-\comindex{Print Grammar constr}
-
-\begin{quote}
-\tt Print Grammar constr.
-\end{quote}
-
-\variant
-
-\comindex{Print Grammar pattern}
-{\tt Print Grammar pattern.}\\
-
-This displays the state of the subparser of patterns (the parser
-used in the grammar of the {\tt match} {\tt with} constructions).
-
-\subsection{Displaying symbolic notations}
-
-The command \texttt{Notation} has an effect both on the {\Coq} parser and
-on the {\Coq} printer. For example:
-
-\begin{coq_example}
-Check (and True True).
-\end{coq_example}
-
-However, printing, especially pretty-printing, requires
-more care than parsing. We may want specific indentations,
-line breaks, alignment if on several lines, etc.
-
-The default printing of notations is very rudimentary. For printing a
-notation, a {\em formatting box} is opened in such a way that if the
-notation and its arguments cannot fit on a single line, a line break
-is inserted before the symbols of the notation and the arguments on
-the next lines are aligned with the argument on the first line.
-
-A first, simple control that a user can have on the printing of a
-notation is the insertion of spaces at some places of the
-notation. This is performed by adding extra spaces between the symbols
-and parameters: each extra space (other than the single space needed
-to separate the components) is interpreted as a space to be inserted
-by the printer. Here is an example showing how to add spaces around
-the bar of the notation.
-
-\begin{coq_example}
-Notation "{{ x : A | P }}" := (sig (fun x : A => P))
- (at level 0, x at level 99).
-Check (sig (fun x : nat => x=x)).
-\end{coq_example}
-
-The second, more powerful control on printing is by using the {\tt
-format} modifier. Here is an example
-
-\begin{small}
-\begin{coq_example}
-Notation "'If' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
-(at level 200, right associativity, format
-"'[v ' 'If' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'").
-\end{coq_example}
-\end{small}
-
-A {\em format} is an extension of the string denoting the notation with
-the possible following elements delimited by single quotes:
-
-\begin{itemize}
-\item extra spaces are translated into simple spaces
-\item tokens of the form \verb='/ '= are translated into breaking point,
- in case a line break occurs, an indentation of the number of spaces
- after the ``\verb=/='' is applied (2 spaces in the given example)
-\item token of the form \verb='//'= force writing on a new line
-\item well-bracketed pairs of tokens of the form \verb='[ '= and \verb=']'=
- are translated into printing boxes; in case a line break occurs,
- an extra indentation of the number of spaces given after the ``\verb=[=''
- is applied (4 spaces in the example)
-\item well-bracketed pairs of tokens of the form \verb='[hv '= and \verb=']'=
- are translated into horizontal-orelse-vertical printing boxes;
- if the content of the box does not fit on a single line, then every breaking
- point forces a newline and an extra indentation of the number of spaces
- given after the ``\verb=[='' is applied at the beginning of each newline
- (3 spaces in the example)
-\item well-bracketed pairs of tokens of the form \verb='[v '= and
- \verb=']'= are translated into vertical printing boxes; every
- breaking point forces a newline, even if the line is large enough to
- display the whole content of the box, and an extra indentation of the
- number of spaces given after the ``\verb=[='' is applied at the beginning
- of each newline
-\end{itemize}
-
-Thus, for the previous example, we get
-%\footnote{The ``@'' is here to shunt
-%the notation "'IF' A 'then' B 'else' C" which is defined in {\Coq}
-%initial state}:
-
-Notations do not survive the end of sections. No typing of the denoted
-expression is performed at definition time. Type-checking is done only
-at the time of use of the notation.
-
-\begin{coq_example}
-Check
- (IF_then_else (IF_then_else True False True)
- (IF_then_else True False True)
- (IF_then_else True False True)).
-\end{coq_example}
-
-\Rem
-Sometimes, a notation is expected only for the parser.
-%(e.g. because
-%the underlying parser of {\Coq}, namely {\camlpppp}, is LL1 and some extra
-%rules are needed to circumvent the absence of factorization).
-To do so, the option {\em only parsing} is allowed in the list of modifiers of
-\texttt{Notation}.
-
-\subsection{The \texttt{Infix} command
-\comindex{Infix}}
-
-The \texttt{Infix} command is a shortening for declaring notations of
-infix symbols. Its syntax is
-
-\begin{quote}
-\noindent\texttt{Infix "{\symbolentry}" :=} {\qualid} {\tt (} \nelist{\em modifier}{,} {\tt )}.
-\end{quote}
-
-and it is equivalent to
-
-\begin{quote}
-\noindent\texttt{Notation "x {\symbolentry} y" := ({\qualid} x y) (} \nelist{\em modifier}{,} {\tt )}.
-\end{quote}
-
-where {\tt x} and {\tt y} are fresh names distinct from {\qualid}. Here is an example.
-
-\begin{coq_example*}
-Infix "/\" := and (at level 80, right associativity).
-\end{coq_example*}
-
-\subsection{Reserving notations
-\label{ReservedNotation}
-\comindex{ReservedNotation}}
-
-A given notation may be used in different contexts. {\Coq} expects all
-uses of the notation to be defined at the same precedence and with the
-same associativity. To avoid giving the precedence and associativity
-every time, it is possible to declare a parsing rule in advance
-without giving its interpretation. Here is an example from the initial
-state of {\Coq}.
-
-\begin{coq_example}
-Reserved Notation "x = y" (at level 70, no associativity).
-\end{coq_example}
-
-Reserving a notation is also useful for simultaneously defined an
-inductive type or a recursive constant and a notation for it.
-
-\Rem The notations mentioned on Figure~\ref{init-notations} are
-reserved. Hence their precedence and associativity cannot be changed.
-
-\subsection{Simultaneous definition of terms and notations
-\comindex{Fixpoint {\ldots} where {\ldots}}
-\comindex{CoFixpoint {\ldots} where {\ldots}}
-\comindex{Inductive {\ldots} where {\ldots}}}
-
-Thanks to reserved notations, the inductive, coinductive, recursive
-and corecursive definitions can benefit of customized notations. To do
-this, insert a {\tt where} notation clause after the definition of the
-(co)inductive type or (co)recursive term (or after the definition of
-each of them in case of mutual definitions). The exact syntax is given
-on Figure~\ref{notation-syntax}. Here are examples:
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is correct but produces an error **********)
-(********** because the symbol /\ is already bound **********)
-(**** Error: The conclusion of A -> B -> A /\ B is not valid *****)
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B
-where "A /\ B" := (and A B).
-\end{coq_example*}
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is correct but produces an error **********)
-(********** because the symbol + is already bound **********)
-(**** Error: no recursive definition *****)
-\end{coq_eval}
-
-\begin{coq_example*}
-Fixpoint plus (n m:nat) {struct n} : nat :=
- match n with
- | O => m
- | S p => S (p+m)
- end
-where "n + m" := (plus n m).
-\end{coq_example*}
-
-\subsection{Displaying informations about notations
-\comindex{Set Printing Notations}
-\comindex{Unset Printing Notations}}
-
-To deactivate the printing of all notations, use the command
-\begin{quote}
-\tt Unset Printing Notations.
-\end{quote}
-To reactivate it, use the command
-\begin{quote}
-\tt Set Printing Notations.
-\end{quote}
-The default is to use notations for printing terms wherever possible.
-
-\SeeAlso {\tt Set Printing All} in Section~\ref{SetPrintingAll}.
-
-\subsection{Locating notations
-\comindex{Locate}
-\label{LocateSymbol}}
-
-To know to which notations a given symbol belongs to, use the command
-\begin{quote}
-\tt Locate {\symbolentry}
-\end{quote}
-where symbol is any (composite) symbol surrounded by quotes. To locate
-a particular notation, use a string where the variables of the
-notation are replaced by ``\_''.
-
-\Example
-\begin{coq_example}
-Locate "exists".
-Locate "'exists' _ , _".
-\end{coq_example}
-
-\SeeAlso Section \ref{Locate}.
-
-\begin{figure}
-\begin{small}
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\sentence} & ::= &
- \zeroone{\tt Local} \texttt{Notation} {\str} \texttt{:=} {\term}
- \zeroone{\modifiers} \zeroone{:{\scope}} .\\
- & $|$ &
- \zeroone{\tt Local} \texttt{Infix} {\str} \texttt{:=} {\qualid}
- \zeroone{\modifiers} \zeroone{:{\scope}} .\\
- & $|$ &
- \zeroone{\tt Local} \texttt{Reserved Notation} {\str}
- \zeroone{\modifiers} .\\
- & $|$ & {\tt Inductive}
- \nelist{{\inductivebody} \zeroone{\declnotation}}{with}{\tt .}\\
- & $|$ & {\tt CoInductive}
- \nelist{{\inductivebody} \zeroone{\declnotation}}{with}{\tt .}\\
- & $|$ & {\tt Fixpoint}
- \nelist{{\fixpointbody} \zeroone{\declnotation}}{with} {\tt .} \\
- & $|$ & {\tt CoFixpoint}
- \nelist{{\cofixpointbody} \zeroone{\declnotation}}{with} {\tt .} \\
-\\
-{\declnotation} & ::= &
- \zeroone{{\tt where} \nelist{{\str} {\tt :=} {\term} \zeroone{:{\scope}}}{\tt and}}.
-\\
-\\
-{\modifiers}
- & ::= & \nelist{\ident}{,} {\tt at level} {\naturalnumber} \\
- & $|$ & \nelist{\ident}{,} {\tt at next level} \\
- & $|$ & {\tt at level} {\naturalnumber} \\
- & $|$ & {\tt left associativity} \\
- & $|$ & {\tt right associativity} \\
- & $|$ & {\tt no associativity} \\
- & $|$ & {\ident} {\tt ident} \\
- & $|$ & {\ident} {\tt binder} \\
- & $|$ & {\ident} {\tt closed binder} \\
- & $|$ & {\ident} {\tt global} \\
- & $|$ & {\ident} {\tt bigint} \\
- & $|$ & {\tt only parsing} \\
- & $|$ & {\tt format} {\str}
-\end{tabular}
-\end{centerframe}
-\end{small}
-\caption{Syntax of the variants of {\tt Notation}}
-\label{notation-syntax}
-\end{figure}
-
-\subsection{Notations and simple binders}
-
-Notations can be defined for binders as in the example:
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is correct but produces **********)
-(**** an incompatibility with the reserved notation ********)
-\end{coq_eval}
-\begin{coq_example*}
-Notation "{ x : A | P }" := (sig (fun x : A => P)) (at level 0).
-\end{coq_example*}
-
-The binding variables in the left-hand-side that occur as a parameter
-of the notation naturally bind all their occurrences appearing in
-their respective scope after instantiation of the parameters of the
-notation.
-
-Contrastingly, the binding variables that are not a parameter of the
-notation do not capture the variables of same name that
-could appear in their scope after instantiation of the
-notation. E.g., for the notation
-
-\begin{coq_example*}
-Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).
-\end{coq_example*}
-the next command fails because {\tt p} does not bind in
-the instance of {\tt n}.
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following produces **********)
-(**** The reference p was not found in the current environment ********)
-\end{coq_eval}
-\begin{coq_example}
-Check (exists_different p).
-\end{coq_example}
-
-\Rem Binding variables must not necessarily be parsed using the
-{\tt ident} entry. For factorization purposes, they can be said to be
-parsed at another level (e.g. {\tt x} in \verb="{ x : A | P }"= must be
-parsed at level 99 to be factorized with the notation
-\verb="{ A } + { B }"= for which {\tt A} can be any term).
-However, even if parsed as a term, this term must at the end be effectively
-a single identifier.
-
-\subsection{Notations with recursive patterns}
-\label{RecursiveNotations}
-
-A mechanism is provided for declaring elementary notations with
-recursive patterns. The basic example is:
-
-\begin{coq_example*}
-Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).
-\end{coq_example*}
-
-On the right-hand side, an extra construction of the form {\tt ..} $t$
-{\tt ..} can be used. Notice that {\tt ..} is part of the {\Coq}
-syntax and it must not be confused with the three-dots notation
-$\ldots$ used in this manual to denote a sequence of arbitrary size.
-
-On the left-hand side, the part ``$x$ $s$ {\tt ..} $s$ $y$'' of the
-notation parses any number of time (but at least one time) a sequence
-of expressions separated by the sequence of tokens $s$ (in the
-example, $s$ is just ``{\tt ;}'').
-
-In the right-hand side, the term enclosed within {\tt ..} must be a
-pattern with two holes of the form $\phi([~]_E,[~]_I)$ where the first
-hole is occupied either by $x$ or by $y$ and the second hole is
-occupied by an arbitrary term $t$ called the {\it terminating}
-expression of the recursive notation. The subterm {\tt ..} $\phi(x,t)$
-{\tt ..} (or {\tt ..} $\phi(y,t)$ {\tt ..}) must itself occur at
-second position of the same pattern where the first hole is occupied
-by the other variable, $y$ or $x$. Otherwise said, the right-hand side
-must contain a subterm of the form either $\phi(x,${\tt ..}
-$\phi(y,t)$ {\tt ..}$)$ or $\phi(y,${\tt ..} $\phi(x,t)$ {\tt ..}$)$.
-The pattern $\phi$ is the {\em iterator} of the recursive notation
-and, of course, the name $x$ and $y$ can be chosen arbitrarily.
-
-The parsing phase produces a list of expressions which are used to
-fill in order the first hole of the iterating pattern which is
-repeatedly nested as many times as the length of the list, the second
-hole being the nesting point. In the innermost occurrence of the
-nested iterating pattern, the second hole is finally filled with the
-terminating expression.
-
-In the example above, the iterator $\phi([~]_E,[~]_I)$ is {\tt cons
- $[~]_E$ $[~]_I$} and the terminating expression is {\tt nil}. Here are
-other examples:
-\begin{coq_example*}
-Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) (at level 0).
-Notation "[| t * ( x , y , .. , z ) ; ( a , b , .. , c ) * u |]" :=
- (pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z))
- (pair .. (pair (pair a u) (pair b u)) .. (pair c u)))
- (t at level 39).
-\end{coq_example*}
-
-Notations with recursive patterns can be reserved like standard
-notations, they can also be declared within interpretation scopes (see
-section \ref{scopes}).
-
-\subsection{Notations with recursive patterns involving binders}
-
-Recursive notations can also be used with binders. The basic example is:
-
-\begin{coq_example*}
-Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..))
- (at level 200, x binder, y binder, right associativity).
-\end{coq_example*}
-
-The principle is the same as in Section~\ref{RecursiveNotations}
-except that in the iterator $\phi([~]_E,[~]_I)$, the first hole is a
-placeholder occurring at the position of the binding variable of a {\tt
- fun} or a {\tt forall}.
-
-To specify that the part ``$x$ {\tt ..} $y$'' of the notation
-parses a sequence of binders, $x$ and $y$ must be marked as {\tt
- binder} in the list of modifiers of the notation. Then, the list of
-binders produced at the parsing phase are used to fill in the first
-hole of the iterating pattern which is repeatedly nested as many times
-as the number of binders generated. If ever the generalization
-operator {\tt `} (see Section~\ref{implicit-generalization}) is used
-in the binding list, the added binders are taken into account too.
-
-Binders parsing exist in two flavors. If $x$ and $y$ are marked as
-{\tt binder}, then a sequence such as {\tt a b c : T} will be accepted
-and interpreted as the sequence of binders {\tt (a:T) (b:T)
- (c:T)}. For instance, in the notation above, the syntax {\tt exists
- a b : nat, a = b} is provided.
-
-The variables $x$ and $y$ can also be marked as {\tt closed binder} in
-which case only well-bracketed binders of the form {\tt (a b c:T)} or
-{\tt \{a b c:T\}} etc. are accepted.
-
-With closed binders, the recursive sequence in the left-hand side can
-be of the general form $x$ $s$ {\tt ..} $s$ $y$ where $s$ is an
-arbitrary sequence of tokens. With open binders though, $s$ has to be
-empty. Here is an example of recursive notation with closed binders:
-
-\begin{coq_example*}
-Notation "'mylet' f x .. y := t 'in' u":=
- (let f := fun x => .. (fun y => t) .. in u)
- (x closed binder, y closed binder, at level 200, right associativity).
-\end{coq_example*}
-
-\subsection{Summary}
-
-\paragraph{Syntax of notations}
-
-The different syntactic variants of the command \texttt{Notation} are
-given on Figure~\ref{notation-syntax}. The optional {\tt :{\scope}} is
-described in the Section~\ref{scopes}.
-
-\Rem No typing of the denoted expression is performed at definition
-time. Type-checking is done only at the time of use of the notation.
-
-\Rem Many examples of {\tt Notation} may be found in the files
-composing the initial state of {\Coq} (see directory {\tt
-\$COQLIB/theories/Init}).
-
-\Rem The notation \verb="{ x }"= has a special status in such a way
-that complex notations of the form \verb="x + { y }"= or
-\verb="x * { y }"= can be nested with correct precedences. Especially,
-every notation involving a pattern of the form \verb="{ x }"= is
-parsed as a notation where the pattern \verb="{ x }"= has been simply
-replaced by \verb="x"= and the curly brackets are parsed separately.
-E.g. \verb="y + { z }"= is not parsed as a term of the given form but
-as a term of the form \verb="y + z"= where \verb=z= has been parsed
-using the rule parsing \verb="{ x }"=. Especially, level and
-precedences for a rule including patterns of the form \verb="{ x }"=
-are relative not to the textual notation but to the notation where the
-curly brackets have been removed (e.g. the level and the associativity
-given to some notation, say \verb="{ y } & { z }"= in fact applies to
-the underlying \verb="{ x }"=-free rule which is \verb="y & z"=).
-
-\paragraph{Persistence of notations}
-
-Notations do not survive the end of sections. They survive modules
-unless the command {\tt Local Notation} is used instead of {\tt
-Notation}.
-
-\section[Interpretation scopes]{Interpretation scopes\index{Interpretation scopes}
-\label{scopes}}
-% Introduction
-
-An {\em interpretation scope} is a set of notations for terms with
-their interpretation. Interpretation scopes provides with a weak,
-purely syntactical form of notations overloading: a same notation, for
-instance the infix symbol \verb=+= can be used to denote distinct
-definitions of an additive operator. Depending on which interpretation
-scopes is currently open, the interpretation is different.
-Interpretation scopes can include an interpretation for
-numerals and strings. However, this is only made possible at the
-{\ocaml} level.
-
-See Figure \ref{notation-syntax} for the syntax of notations including
-the possibility to declare them in a given scope. Here is a typical
-example which declares the notation for conjunction in the scope {\tt
-type\_scope}.
-
-\begin{verbatim}
-Notation "A /\ B" := (and A B) : type_scope.
-\end{verbatim}
-
-\Rem A notation not defined in a scope is called a {\em lonely} notation.
-
-\subsection{Global interpretation rules for notations}
-
-At any time, the interpretation of a notation for term is done within
-a {\em stack} of interpretation scopes and lonely notations. In case a
-notation has several interpretations, the actual interpretation is the
-one defined by (or in) the more recently declared (or open) lonely
-notation (or interpretation scope) which defines this notation.
-Typically if a given notation is defined in some scope {\scope} but
-has also an interpretation not assigned to a scope, then, if {\scope}
-is open before the lonely interpretation is declared, then the lonely
-interpretation is used (and this is the case even if the
-interpretation of the notation in {\scope} is given after the lonely
-interpretation: otherwise said, only the order of lonely
-interpretations and opening of scopes matters, and not the declaration
-of interpretations within a scope).
-
-The initial state of {\Coq} declares three interpretation scopes and
-no lonely notations. These scopes, in opening order, are {\tt
-core\_scope}, {\tt type\_scope} and {\tt nat\_scope}.
-
-The command to add a scope to the interpretation scope stack is
-\comindex{Open Scope}
-\comindex{Close Scope}
-\begin{quote}
-{\tt Open Scope} {\scope}.
-\end{quote}
-It is also possible to remove a scope from the interpretation scope
-stack by using the command
-\begin{quote}
-{\tt Close Scope} {\scope}.
-\end{quote}
-Notice that this command does not only cancel the last {\tt Open Scope
-{\scope}} but all the invocation of it.
-
-\Rem {\tt Open Scope} and {\tt Close Scope} do not survive the end of
-sections where they occur. When defined outside of a section, they are
-exported to the modules that import the module where they occur.
-
-\begin{Variants}
-
-\item {\tt Local Open Scope} {\scope}.
-
-\item {\tt Local Close Scope} {\scope}.
-
-These variants are not exported to the modules that import the module
-where they occur, even if outside a section.
-
-\item {\tt Global Open Scope} {\scope}.
-
-\item {\tt Global Close Scope} {\scope}.
-
-These variants survive sections. They behave as if {\tt Global} were
-absent when not inside a section.
-
-\end{Variants}
-
-\subsection{Local interpretation rules for notations}
-
-In addition to the global rules of interpretation of notations, some
-ways to change the interpretation of subterms are available.
-
-\subsubsection{Local opening of an interpretation scope
-\label{scopechange}
-\index{\%}
-\comindex{Delimit Scope}}
-
-It is possible to locally extend the interpretation scope stack using
-the syntax ({\term})\%{\delimkey} (or simply {\term}\%{\delimkey}
-for atomic terms), where {\delimkey} is a special identifier called
-{\em delimiting key} and bound to a given scope.
-
-In such a situation, the term {\term}, and all its subterms, are
-interpreted in the scope stack extended with the scope bound to
-{\delimkey}.
-
-To bind a delimiting key to a scope, use the command
-
-\begin{quote}
-\texttt{Delimit Scope} {\scope} \texttt{with} {\ident}
-\end{quote}
-
-\subsubsection{Binding arguments of a constant to an interpretation scope
-\comindex{Arguments Scope}}
-
-It is possible to set in advance that some arguments of a given
-constant have to be interpreted in a given scope. The command is
-\begin{quote}
-{\tt Arguments Scope} {\qualid} {\tt [ \nelist{\optscope}{} ]}
-\end{quote}
-where the list is a list made either of {\tt \_} or of a scope name.
-Each scope in the list is bound to the corresponding parameter of
-{\qualid} in order. When interpreting a term, if some of the
-arguments of {\qualid} are built from a notation, then this notation
-is interpreted in the scope stack extended by the scopes bound (if any)
-to these arguments.
-
-\begin{Variants}
-\item {\tt Global Arguments Scope} {\qualid} {\tt [ \nelist{\optscope}{} ]}
-
-This behaves like {\tt Arguments Scope} {\qualid} {\tt [
-\nelist{\optscope}{} ]} but survives when a section is closed instead
-of stopping working at section closing. Without the {\tt Global} modifier,
-the effect of the command stops when the section it belongs to ends.
-
-\item {\tt Local Arguments Scope} {\qualid} {\tt [ \nelist{\optscope}{} ]}
-
-This behaves like {\tt Arguments Scope} {\qualid} {\tt [
- \nelist{\optscope}{} ]} but does not survive modules and files.
-Without the {\tt Local} modifier, the effect of the command is
-visible from within other modules or files.
-
-\end{Variants}
-
-
-\SeeAlso The command to show the scopes bound to the arguments of a
-function is described in Section~\ref{About}.
-
-\subsubsection{Binding types of arguments to an interpretation scope}
-
-When an interpretation scope is naturally associated to a type
-(e.g. the scope of operations on the natural numbers), it may be
-convenient to bind it to this type. The effect of this is that any
-argument of a function that syntactically expects a parameter of this
-type is interpreted using scope. More precisely, it applies only if
-this argument is built from a notation, and if so, this notation is
-interpreted in the scope stack extended by this particular scope. It
-does not apply to the subterms of this notation (unless the
-interpretation of the notation itself expects arguments of the same
-type that would trigger the same scope).
-
-\comindex{Bind Scope}
-More generally, any {\class} (see Chapter~\ref{Coercions-full}) can be
-bound to an interpretation scope. The command to do it is
-\begin{quote}
-{\tt Bind Scope} {\scope} \texttt{with} {\class}
-\end{quote}
-
-\Example
-\begin{coq_example}
-Parameter U : Set.
-Bind Scope U_scope with U.
-Parameter Uplus : U -> U -> U.
-Parameter P : forall T:Set, T -> U -> Prop.
-Parameter f : forall T:Set, T -> U.
-Infix "+" := Uplus : U_scope.
-Unset Printing Notations.
-Open Scope nat_scope. (* Define + on the nat as the default for + *)
-Check (fun x y1 y2 z t => P _ (x + t) ((f _ (y1 + y2) + z))).
-\end{coq_example}
-
-\Rem The scope {\tt type\_scope} has also a local effect on
-interpretation. See the next section.
-
-\SeeAlso The command to show the scopes bound to the arguments of a
-function is described in Section~\ref{About}.
-
-\subsection[The {\tt type\_scope} interpretation scope]{The {\tt type\_scope} interpretation scope\index{type\_scope}}
-
-The scope {\tt type\_scope} has a special status. It is a primitive
-interpretation scope which is temporarily activated each time a
-subterm of an expression is expected to be a type. This includes goals
-and statements, types of binders, domain and codomain of implication,
-codomain of products, and more generally any type argument of a
-declared or defined constant.
-
-\subsection{Interpretation scopes used in the standard library of {\Coq}}
-
-We give an overview of the scopes used in the standard library of
-{\Coq}. For a complete list of notations in each scope, use the
-commands {\tt Print Scopes} or {\tt Print Scopes {\scope}}.
-
-\subsubsection{\tt type\_scope}
-
-This includes infix {\tt *} for product types and infix {\tt +} for
-sum types. It is delimited by key {\tt type}.
-
-\subsubsection{\tt nat\_scope}
-
-This includes the standard arithmetical operators and relations on
-type {\tt nat}. Positive numerals in this scope are mapped to their
-canonical representent built from {\tt O} and {\tt S}. The scope is
-delimited by key {\tt nat}.
-
-\subsubsection{\tt N\_scope}
-
-This includes the standard arithmetical operators and relations on
-type {\tt N} (binary natural numbers). It is delimited by key {\tt N}
-and comes with an interpretation for numerals as closed term of type {\tt Z}.
-
-\subsubsection{\tt Z\_scope}
-
-This includes the standard arithmetical operators and relations on
-type {\tt Z} (binary integer numbers). It is delimited by key {\tt Z}
-and comes with an interpretation for numerals as closed term of type {\tt Z}.
-
-\subsubsection{\tt positive\_scope}
-
-This includes the standard arithmetical operators and relations on
-type {\tt positive} (binary strictly positive numbers). It is
-delimited by key {\tt positive} and comes with an interpretation for
-numerals as closed term of type {\tt positive}.
-
-\subsubsection{\tt Q\_scope}
-
-This includes the standard arithmetical operators and relations on
-type {\tt Q} (rational numbers defined as fractions of an integer and
-a strictly positive integer modulo the equality of the
-numerator-denominator cross-product). As for numerals, only $0$ and
-$1$ have an interpretation in scope {\tt Q\_scope} (their
-interpretations are $\frac{0}{1}$ and $\frac{1}{1}$ respectively).
-
-\subsubsection{\tt Qc\_scope}
-
-This includes the standard arithmetical operators and relations on the
-type {\tt Qc} of rational numbers defined as the type of irreducible
-fractions of an integer and a strictly positive integer.
-
-\subsubsection{\tt real\_scope}
-
-This includes the standard arithmetical operators and relations on
-type {\tt R} (axiomatic real numbers). It is delimited by key {\tt R}
-and comes with an interpretation for numerals as term of type {\tt
-R}. The interpretation is based on the binary decomposition. The
-numeral 2 is represented by $1+1$. The interpretation $\phi(n)$ of an
-odd positive numerals greater $n$ than 3 is {\tt 1+(1+1)*$\phi((n-1)/2)$}.
-The interpretation $\phi(n)$ of an even positive numerals greater $n$
-than 4 is {\tt (1+1)*$\phi(n/2)$}. Negative numerals are represented as the
-opposite of the interpretation of their absolute value. E.g. the
-syntactic object {\tt -11} is interpreted as {\tt
--(1+(1+1)*((1+1)*(1+(1+1))))} where the unit $1$ and all the operations are
-those of {\tt R}.
-
-\subsubsection{\tt bool\_scope}
-
-This includes notations for the boolean operators. It is
-delimited by key {\tt bool}.
-
-\subsubsection{\tt list\_scope}
-
-This includes notations for the list operators. It is
-delimited by key {\tt list}.
-
-\subsubsection{\tt core\_scope}
-
-This includes the notation for pairs. It is delimited by key {\tt core}.
-
-\subsubsection{\tt string\_scope}
-
-This includes notation for strings as elements of the type {\tt
-string}. Special characters and escaping follow {\Coq} conventions
-on strings (see Section~\ref{strings}). Especially, there is no
-convention to visualize non printable characters of a string. The
-file {\tt String.v} shows an example that contains quotes, a newline
-and a beep (i.e. the ascii character of code 7).
-
-\subsubsection{\tt char\_scope}
-
-This includes interpretation for all strings of the form
-\verb!"!$c$\verb!"! where $c$ is an ascii character, or of the form
-\verb!"!$nnn$\verb!"! where $nnn$ is a three-digits number (possibly
-with leading 0's), or of the form \verb!""""!. Their respective
-denotations are the ascii code of $c$, the decimal ascii code $nnn$,
-or the ascii code of the character \verb!"! (i.e. the ascii code
-34), all of them being represented in the type {\tt ascii}.
-
-\subsection{Displaying informations about scopes}
-
-\subsubsection{\tt Print Visibility\comindex{Print Visibility}}
-
-This displays the current stack of notations in scopes and lonely
-notations that is used to interpret a notation. The top of the stack
-is displayed last. Notations in scopes whose interpretation is hidden
-by the same notation in a more recently open scope are not
-displayed. Hence each notation is displayed only once.
-
-\variant
-
-{\tt Print Visibility {\scope}}\\
-
-This displays the current stack of notations in scopes and lonely
-notations assuming that {\scope} is pushed on top of the stack. This
-is useful to know how a subterm locally occurring in the scope of
-{\scope} is interpreted.
-
-\subsubsection{\tt Print Scope {\scope}\comindex{Print Scope}}
-
-This displays all the notations defined in interpretation scope
-{\scope}. It also displays the delimiting key if any and the class to
-which the scope is bound, if any.
-
-\subsubsection{\tt Print Scopes\comindex{Print Scopes}}
-
-This displays all the notations, delimiting keys and corresponding
-class of all the existing interpretation scopes.
-It also displays the lonely notations.
-
-\section[Abbreviations]{Abbreviations\index{Abbreviations}
-\label{Abbreviations}
-\comindex{Notation}}
-
-An {\em abbreviation} is a name, possibly applied to arguments, that
-denotes a (presumably) more complex expression. Here are examples:
-
-\begin{coq_eval}
-Require Import List.
-Require Import Relations.
-Set Printing Notations.
-\end{coq_eval}
-\begin{coq_example}
-Notation Nlist := (list nat).
-Check 1 :: 2 :: 3 :: nil.
-Notation reflexive R := (forall x, R x x).
-Check forall A:Prop, A <-> A.
-Check reflexive iff.
-\end{coq_example}
-
-An abbreviation expects no precedence nor associativity, since it
-follows the usual syntax of application. Abbreviations are used as
-much as possible by the {\Coq} printers unless the modifier
-\verb=(only parsing)= is given.
-
-Abbreviations are bound to an absolute name as an ordinary
-definition is, and they can be referred by qualified names too.
-
-Abbreviations are syntactic in the sense that they are bound to
-expressions which are not typed at the time of the definition of the
-abbreviation but at the time it is used. Especially, abbreviations can
-be bound to terms with holes (i.e. with ``\_''). The general syntax
-for abbreviations is
-\begin{quote}
-\zeroone{{\tt Local}} \texttt{Notation} {\ident} \sequence{\ident} {\ident} \texttt{:=} {\term}
- \zeroone{{\tt (only parsing)}}~\verb=.=
-\end{quote}
-
-\Example
-\begin{coq_eval}
-Set Strict Implicit.
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Definition explicit_id (A:Set) (a:A) := a.
-Notation id := (explicit_id _).
-Check (id 0).
-\end{coq_example}
-
-Abbreviations do not survive the end of sections. No typing of the denoted
-expression is performed at definition time. Type-checking is done only
-at the time of use of the abbreviation.
-
-%\Rem \index{Syntactic Definition} %
-%Abbreviations are similar to the {\em syntactic
-%definitions} available in versions of {\Coq} prior to version 8.0,
-%except that abbreviations are used for printing (unless the modifier
-%\verb=(only parsing)= is given) while syntactic definitions were not.
-
-\section{Tactic Notations}
-
-Tactic notations allow to customize the syntax of the tactics of the
-tactic language\footnote{Tactic notations are just a simplification of
-the {\tt Grammar tactic simple\_tactic} command that existed in
-versions prior to version 8.0.}. Tactic notations obey the following
-syntax
-\medskip
-
-\noindent
-\begin{tabular}{lcl}
-{\sentence} & ::= & \texttt{Tactic Notation} \zeroone{\taclevel} \nelist{\proditem}{} \\
-& & \texttt{:= {\tac} .}\\
-{\proditem} & ::= & {\str} $|$ {\tacargtype}{\tt ({\ident})} \\
-{\taclevel} & ::= & {\tt (at level} {\naturalnumber}{\tt )} \\
-{\tacargtype} & ::= &
-%{\tt preident} $|$
-{\tt ident} $|$
-{\tt simple\_intropattern} $|$
-{\tt reference} \\ & $|$ &
-{\tt hyp} $|$
-{\tt hyp\_list} $|$
-{\tt ne\_hyp\_list} \\ & $|$ &
-% {\tt quantified\_hypothesis} \\ & $|$ &
-{\tt constr} $|$
-{\tt constr\_list} $|$
-{\tt ne\_constr\_list} \\ & $|$ &
-%{\tt castedopenconstr} $|$
-{\tt integer} $|$
-{\tt integer\_list} $|$
-{\tt ne\_integer\_list} \\ & $|$ &
-{\tt int\_or\_var} $|$
-{\tt int\_or\_var\_list} $|$
-{\tt ne\_int\_or\_var\_list} \\ & $|$ &
-{\tt tactic} $|$ {\tt tactic$n$} \qquad\mbox{(for $0\leq n\leq 5$)}
-
-\end{tabular}
-\medskip
-
-A tactic notation {\tt Tactic Notation {\taclevel}
-{\sequence{\proditem}{}} := {\tac}} extends the parser and
-pretty-printer of tactics with a new rule made of the list of
-production items. It then evaluates into the tactic expression
-{\tac}. For simple tactics, it is recommended to use a terminal
-symbol, i.e. a {\str}, for the first production item. The tactic
-level indicates the parsing precedence of the tactic notation. This
-information is particularly relevant for notations of tacticals.
-Levels 0 to 5 are available (default is 0).
-To know the parsing precedences of the
-existing tacticals, use the command {\tt Print Grammar tactic.}
-
-Each type of tactic argument has a specific semantic regarding how it
-is parsed and how it is interpreted. The semantic is described in the
-following table. The last command gives examples of tactics which
-use the corresponding kind of argument.
-
-\medskip
-\noindent
-\begin{tabular}{l|l|l|l}
-Tactic argument type & parsed as & interpreted as & as in tactic \\
-\hline & & & \\
-{\tt\small ident} & identifier & a user-given name & {\tt intro} \\
-{\tt\small simple\_intropattern} & intro\_pattern & an intro\_pattern & {\tt intros}\\
-{\tt\small hyp} & identifier & an hypothesis defined in context & {\tt clear}\\
-%% quantified_hypothesis actually not supported
-%%{\tt\small quantified\_hypothesis} & identifier or integer & a named or non dep. hyp. of the goal & {\tt intros until}\\
-{\tt\small reference} & qualified identifier & a global reference of term & {\tt unfold}\\
-{\tt\small constr} & term & a term & {\tt exact} \\
-%% castedopenconstr actually not supported
-%%{\tt\small castedopenconstr} & term & a term with its sign. of exist. var. & {\tt refine}\\
-{\tt\small integer} & integer & an integer & \\
-{\tt\small int\_or\_var} & identifier or integer & an integer & {\tt do} \\
-{\tt\small tactic} & tactic at level 5 & a tactic & \\
-{\tt\small tactic$n$} & tactic at level $n$ & a tactic & \\
-{\tt\small {\nterm{entry}}\_list} & list of {\nterm{entry}} & a list of how {\nterm{entry}} is interpreted & \\
-{\tt\small ne\_{\nterm{entry}}\_list} & non-empty list of {\nterm{entry}} & a list of how {\nterm{entry}} is interpreted& \\
-\end{tabular}
-
-\Rem In order to be bound in tactic definitions, each syntactic entry
-for argument type must include the case of simple {\ltac} identifier
-as part of what it parses. This is naturally the case for {\tt ident},
-{\tt simple\_intropattern}, {\tt reference}, {\tt constr}, ... but not
-for {\tt integer}. This is the reason for introducing a special entry
-{\tt int\_or\_var} which evaluates to integers only but which
-syntactically includes identifiers in order to be usable in tactic
-definitions.
-
-\Rem The {\tt {\nterm{entry}}\_list} and {\tt ne\_{\nterm{entry}}\_list}
-entries can be used in primitive tactics or in other notations at
-places where a list of the underlying entry can be used: {\nterm{entry}} is
-either {\tt\small constr}, {\tt\small hyp}, {\tt\small integer} or
-{\tt\small int\_or\_var}.
-
-% $Id: RefMan-syn.tex 13329 2010-07-26 11:05:39Z herbelin $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-tac.tex b/doc/refman/RefMan-tac.tex
deleted file mode 100644
index b82cdc2d..00000000
--- a/doc/refman/RefMan-tac.tex
+++ /dev/null
@@ -1,4303 +0,0 @@
-% TODO: unify the use of \form and \type to mean a type
-% or use \form specifically for a type of type Prop
-\chapter{Tactics
-\index{Tactics}
-\label{Tactics}}
-
-A deduction rule is a link between some (unique) formula, that we call
-the {\em conclusion} and (several) formulas that we call the {\em
-premises}. Indeed, a deduction rule can be read in two ways. The first
-one has the shape: {\it ``if I know this and this then I can deduce
-this''}. For instance, if I have a proof of $A$ and a proof of $B$
-then I have a proof of $A \land B$. This is forward reasoning from
-premises to conclusion. The other way says: {\it ``to prove this I
-have to prove this and this''}. For instance, to prove $A \land B$, I
-have to prove $A$ and I have to prove $B$. This is backward reasoning
-which proceeds from conclusion to premises. We say that the conclusion
-is {\em the goal}\index{goal} to prove and premises are {\em the
-subgoals}\index{subgoal}. The tactics implement {\em backward
-reasoning}. When applied to a goal, a tactic replaces this goal with
-the subgoals it generates. We say that a tactic reduces a goal to its
-subgoal(s).
-
-Each (sub)goal is denoted with a number. The current goal is numbered
-1. By default, a tactic is applied to the current goal, but one can
-address a particular goal in the list by writing {\sl n:\tac} which
-means {\it ``apply tactic {\tac} to goal number {\sl n}''}.
-We can show the list of subgoals by typing {\tt Show} (see
-Section~\ref{Show}).
-
-Since not every rule applies to a given statement, every tactic cannot be
-used to reduce any goal. In other words, before applying a tactic to a
-given goal, the system checks that some {\em preconditions} are
-satisfied. If it is not the case, the tactic raises an error message.
-
-Tactics are build from atomic tactics and tactic expressions (which
-extends the folklore notion of tactical) to combine those atomic
-tactics. This chapter is devoted to atomic tactics. The tactic
-language will be described in Chapter~\ref{TacticLanguage}.
-
-There are, at least, three levels of atomic tactics. The simplest one
-implements basic rules of the logical framework. The second level is
-the one of {\em derived rules} which are built by combination of other
-tactics. The third one implements heuristics or decision procedures to
-build a complete proof of a goal.
-
-\section{Invocation of tactics
-\label{tactic-syntax}
-\index{tactic@{\tac}}}
-
-A tactic is applied as an ordinary command. If the tactic does not
-address the first subgoal, the command may be preceded by the wished
-subgoal number as shown below:
-
-\begin{tabular}{lcl}
-{\commandtac} & ::= & {\num} {\tt :} {\tac} {\tt .}\\
- & $|$ & {\tac} {\tt .}
-\end{tabular}
-
-\section{Explicit proof as a term}
-
-\subsection{\tt exact \term
-\tacindex{exact}
-\label{exact}}
-
-This tactic applies to any goal. It gives directly the exact proof
-term of the goal. Let {\T} be our goal, let {\tt p} be a term of type
-{\tt U} then {\tt exact p} succeeds iff {\tt T} and {\tt U} are
-convertible (see Section~\ref{conv-rules}).
-
-\begin{ErrMsgs}
-\item \errindex{Not an exact proof}
-\end{ErrMsgs}
-
-\begin{Variants}
- \item \texttt{eexact \term}\tacindex{eexact}
-
- This tactic behaves like \texttt{exact} but is able to handle terms with meta-variables.
-
-\end{Variants}
-
-
-\subsection{\tt refine \term
-\tacindex{refine}
-\label{refine}
-\index{?@{\texttt{?}}}}
-
-This tactic allows to give an exact proof but still with some
-holes. The holes are noted ``\texttt{\_}''.
-
-\begin{ErrMsgs}
-\item \errindex{invalid argument}:
- the tactic \texttt{refine} doesn't know what to do
- with the term you gave.
-\item \texttt{Refine passed ill-formed term}: the term you gave is not
- a valid proof (not easy to debug in general).
- This message may also occur in higher-level tactics, which call
- \texttt{refine} internally.
-\item \errindex{Cannot infer a term for this placeholder}
- there is a hole in the term you gave
- which type cannot be inferred. Put a cast around it.
-\end{ErrMsgs}
-
-An example of use is given in Section~\ref{refine-example}.
-
-\section{Basics
-\index{Typing rules}}
-
-Tactics presented in this section implement the basic typing rules of
-{\CIC} given in Chapter~\ref{Cic}.
-
-\subsection{{\tt assumption}
-\tacindex{assumption}}
-
-This tactic applies to any goal. It implements the
-``Var''\index{Typing rules!Var} rule given in
-Section~\ref{Typed-terms}. It looks in the local context for an
-hypothesis which type is equal to the goal. If it is the case, the
-subgoal is proved. Otherwise, it fails.
-
-\begin{ErrMsgs}
-\item \errindex{No such assumption}
-\end{ErrMsgs}
-
-\begin{Variants}
-\tacindex{eassumption}
- \item \texttt{eassumption}
-
- This tactic behaves like \texttt{assumption} but is able to handle
- goals with meta-variables.
-
-\end{Variants}
-
-
-\subsection{\tt clear {\ident}
-\tacindex{clear}
-\label{clear}}
-
-This tactic erases the hypothesis named {\ident} in the local context
-of the current goal. Then {\ident} is no more displayed and no more
-usable in the proof development.
-
-\begin{Variants}
-
-\item {\tt clear {\ident$_1$} {\ldots} {\ident$_n$}}
-
- This is equivalent to {\tt clear {\ident$_1$}. {\ldots} clear
- {\ident$_n$}.}
-
-\item {\tt clearbody {\ident}}\tacindex{clearbody}
-
- This tactic expects {\ident} to be a local definition then clears
- its body. Otherwise said, this tactic turns a definition into an
- assumption.
-
-\item \texttt{clear - {\ident$_1$} {\ldots} {\ident$_n$}}
-
- This tactic clears all hypotheses except the ones depending in
- the hypotheses named {\ident$_1$} {\ldots} {\ident$_n$} and in the
- goal.
-
-\item \texttt{clear}
-
- This tactic clears all hypotheses except the ones depending in
- goal.
-
-\item {\tt clear dependent \ident \tacindex{clear dependent}}
-
- This clears the hypothesis \ident\ and all hypotheses
- which depend on it.
-
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} not found}
-\item \errindexbis{{\ident} is used in the conclusion}{is used in the
- conclusion}
-\item \errindexbis{{\ident} is used in the hypothesis {\ident'}}{is
- used in the hypothesis}
-\end{ErrMsgs}
-
-\subsection{\tt move {\ident$_1$} after {\ident$_2$}
-\tacindex{move}
-\label{move}}
-
-This moves the hypothesis named {\ident$_1$} in the local context
-after the hypothesis named {\ident$_2$}.
-
-If {\ident$_1$} comes before {\ident$_2$} in the order of dependences,
-then all hypotheses between {\ident$_1$} and {\ident$_2$} which
-(possibly indirectly) depend on {\ident$_1$} are moved also.
-
-If {\ident$_1$} comes after {\ident$_2$} in the order of dependences,
-then all hypotheses between {\ident$_1$} and {\ident$_2$} which
-(possibly indirectly) occur in {\ident$_1$} are moved also.
-
-\begin{Variants}
-
-\item {\tt move {\ident$_1$} before {\ident$_2$}}
-
-This moves {\ident$_1$} towards and just before the hypothesis named {\ident$_2$}.
-
-\item {\tt move {\ident} at top}
-
-This moves {\ident} at the top of the local context (at the beginning of the context).
-
-\item {\tt move {\ident} at bottom}
-
-This moves {\ident} at the bottom of the local context (at the end of the context).
-
-\end{Variants}
-
-\begin{ErrMsgs}
-
-\item \errindex{{\ident$_i$} not found}
-
-\item \errindex{Cannot move {\ident$_1$} after {\ident$_2$}:
- it occurs in {\ident$_2$}}
-
-\item \errindex{Cannot move {\ident$_1$} after {\ident$_2$}:
- it depends on {\ident$_2$}}
-
-\end{ErrMsgs}
-
-\subsection{\tt rename {\ident$_1$} into {\ident$_2$}
-\tacindex{rename}}
-
-This renames hypothesis {\ident$_1$} into {\ident$_2$} in the current
-context\footnote{but it does not rename the hypothesis in the
- proof-term...}
-
-\begin{Variants}
-
-\item {\tt rename {\ident$_1$} into {\ident$_2$}, \ldots,
- {\ident$_{2k-1}$} into {\ident$_{2k}$}}
-
- Is equivalent to the sequence of the corresponding atomic {\tt rename}.
-
-\end{Variants}
-
-\begin{ErrMsgs}
-
-\item \errindex{{\ident$_1$} not found}
-
-\item \errindexbis{{\ident$_2$} is already used}{is already used}
-
-\end{ErrMsgs}
-
-\subsection{\tt intro
-\tacindex{intro}
-\label{intro}}
-
-This tactic applies to a goal which is either a product or starts with
-a let binder. If the goal is a product, the tactic implements the
-``Lam''\index{Typing rules!Lam} rule given in
-Section~\ref{Typed-terms}\footnote{Actually, only the second subgoal will be
-generated since the other one can be automatically checked.}. If the
-goal starts with a let binder then the tactic implements a mix of the
-``Let''\index{Typing rules!Let} and ``Conv''\index{Typing rules!Conv}.
-
-If the current goal is a dependent product {\tt forall $x$:$T$, $U$} (resp {\tt
-let $x$:=$t$ in $U$}) then {\tt intro} puts {\tt $x$:$T$} (resp {\tt $x$:=$t$})
- in the local context.
-% Obsolete (quantified names already avoid hypotheses names):
-% Otherwise, it puts
-% {\tt x}{\it n}{\tt :T} where {\it n} is such that {\tt x}{\it n} is a
-%fresh name.
-The new subgoal is $U$.
-% If the {\tt x} has been renamed {\tt x}{\it n} then it is replaced
-% by {\tt x}{\it n} in {\tt U}.
-
-If the goal is a non dependent product {\tt $T$ -> $U$}, then it puts
-in the local context either {\tt H}{\it n}{\tt :$T$} (if $T$ is of
-type {\tt Set} or {\tt Prop}) or {\tt X}{\it n}{\tt :$T$} (if the type
-of $T$ is {\tt Type}). The optional index {\it n} is such that {\tt
-H}{\it n} or {\tt X}{\it n} is a fresh identifier.
-In both cases the new subgoal is $U$.
-
-If the goal is neither a product nor starting with a let definition,
-the tactic {\tt intro} applies the tactic {\tt red} until the tactic
-{\tt intro} can be applied or the goal is not reducible.
-
-\begin{ErrMsgs}
-\item \errindex{No product even after head-reduction}
-\item \errindexbis{{\ident} is already used}{is already used}
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item {\tt intros}\tacindex{intros}
-
- Repeats {\tt intro} until it meets the head-constant. It never reduces
- head-constants and it never fails.
-
-\item {\tt intro {\ident}}
-
- Applies {\tt intro} but forces {\ident} to be the name of the
- introduced hypothesis.
-
- \ErrMsg \errindex{name {\ident} is already used}
-
- \Rem If a name used by {\tt intro} hides the base name of a global
- constant then the latter can still be referred to by a qualified name
- (see \ref{LongNames}).
-
-\item {\tt intros \ident$_1$ \dots\ \ident$_n$}
-
- Is equivalent to the composed tactic {\tt intro \ident$_1$; \dots\ ;
- intro \ident$_n$}.
-
- More generally, the \texttt{intros} tactic takes a pattern as
- argument in order to introduce names for components of an inductive
- definition or to clear introduced hypotheses; This is explained
- in~\ref{intros-pattern}.
-
-\item {\tt intros until {\ident}} \tacindex{intros until}
-
- Repeats {\tt intro} until it meets a premise of the goal having form
- {\tt (} {\ident}~{\tt :}~{\term} {\tt )} and discharges the variable
- named {\ident} of the current goal.
-
- \ErrMsg \errindex{No such hypothesis in current goal}
-
-\item {\tt intros until {\num}} \tacindex{intros until}
-
- Repeats {\tt intro} until the {\num}-th non-dependent product. For
- instance, on the subgoal %
- \verb+forall x y:nat, x=y -> y=x+ the tactic \texttt{intros until 1}
- is equivalent to \texttt{intros x y H}, as \verb+x=y -> y=x+ is the
- first non-dependent product. And on the subgoal %
- \verb+forall x y z:nat, x=y -> y=x+ the tactic \texttt{intros until 1}
- is equivalent to \texttt{intros x y z} as the product on \texttt{z}
- can be rewritten as a non-dependent product: %
- \verb+forall x y:nat, nat -> x=y -> y=x+
-
-
- \ErrMsg \errindex{No such hypothesis in current goal}
-
- Happens when {\num} is 0 or is greater than the number of non-dependent
- products of the goal.
-
-\item {\tt intro after \ident} \tacindex{intro after}\\
- {\tt intro before \ident} \tacindex{intro before}\\
- {\tt intro at top} \tacindex{intro at top}\\
- {\tt intro at bottom} \tacindex{intro at bottom}
-
- Applies {\tt intro} and moves the freshly introduced hypothesis
- respectively after the hypothesis \ident{}, before the hypothesis
- \ident{}, at the top of the local context, or at the bottom of the
- local context. All hypotheses on which the new hypothesis depends
- are moved too so as to respect the order of dependencies between
- hypotheses. Note that {\tt intro at bottom} is a synonym for {\tt
- intro} with no argument.
-
-\begin{ErrMsgs}
-\item \errindex{No product even after head-reduction}
-\item \errindex{No such hypothesis} : {\ident}
-\end{ErrMsgs}
-
-\item {\tt intro \ident$_1$ after \ident$_2$}\\
- {\tt intro \ident$_1$ before \ident$_2$}\\
- {\tt intro \ident$_1$ at top}\\
- {\tt intro \ident$_1$ at bottom}
-
- Behaves as previously but naming the introduced hypothesis
- \ident$_1$. It is equivalent to {\tt intro \ident$_1$} followed by
- the appropriate call to {\tt move}~(see Section~\ref{move}).
-
-\begin{ErrMsgs}
-\item \errindex{No product even after head-reduction}
-\item \errindex{No such hypothesis} : {\ident}
-\end{ErrMsgs}
-
-\end{Variants}
-
-\subsection{\tt apply \term
-\tacindex{apply}
-\label{apply}}
-
-This tactic applies to any goal. The argument {\term} is a term
-well-formed in the local context. The tactic {\tt apply} tries to
-match the current goal against the conclusion of the type of {\term}.
-If it succeeds, then the tactic returns as many subgoals as the number
-of non dependent premises of the type of {\term}. If the conclusion of
-the type of {\term} does not match the goal {\em and} the conclusion
-is an inductive type isomorphic to a tuple type, then each component
-of the tuple is recursively matched to the goal in the left-to-right
-order.
-
-The tactic {\tt apply} relies on first-order unification with
-dependent types unless the conclusion of the type of {\term} is of the
-form {\tt ($P$~ $t_1$~\ldots ~$t_n$)} with $P$ to be instantiated. In
-the latter case, the behavior depends on the form of the goal. If the
-goal is of the form {\tt (fun $x$ => $Q$)~$u_1$~\ldots~$u_n$} and the
-$t_i$ and $u_i$ unifies, then $P$ is taken to be (fun $x$ => $Q$).
-Otherwise, {\tt apply} tries to define $P$ by abstracting over
-$t_1$~\ldots ~$t_n$ in the goal. See {\tt pattern} in
-Section~\ref{pattern} to transform the goal so that it gets the form
-{\tt (fun $x$ => $Q$)~$u_1$~\ldots~$u_n$}.
-
-\begin{ErrMsgs}
-\item \errindex{Impossible to unify \dots\ with \dots}
-
- The {\tt apply}
- tactic failed to match the conclusion of {\term} and the current goal.
- You can help the {\tt apply} tactic by transforming your
- goal with the {\tt change} or {\tt pattern} tactics (see
- sections~\ref{pattern},~\ref{change}).
-
-\item \errindex{Unable to find an instance for the variables
-{\ident} \ldots {\ident}}
-
- This occurs when some instantiations of the premises of {\term} are not
- deducible from the unification. This is the case, for instance, when
- you want to apply a transitivity property. In this case, you have to
- use one of the variants below:
-
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item{\tt apply {\term} with {\term$_1$} \dots\ {\term$_n$}}
- \tacindex{apply \dots\ with}
-
- Provides {\tt apply} with explicit instantiations for all dependent
- premises of the type of {\term} which do not occur in the conclusion
- and consequently cannot be found by unification. Notice that
- {\term$_1$} \dots\ {\term$_n$} must be given according to the order
- of these dependent premises of the type of {\term}.
-
- \ErrMsg \errindex{Not the right number of missing arguments}
-
-\item{\tt apply {\term} with ({\vref$_1$} := {\term$_1$}) \dots\ ({\vref$_n$}
- := {\term$_n$})}
-
- This also provides {\tt apply} with values for instantiating
- premises. Here, variables are referred by names and non-dependent
- products by increasing numbers (see syntax in Section~\ref{Binding-list}).
-
-\item {\tt apply} {\term$_1$} {\tt ,} \ldots {\tt ,} {\term$_n$}
-
- This is a shortcut for {\tt apply} {\term$_1$} {\tt ; [ ..~|}
- \ldots~{\tt ; [ ..~| {\tt apply} {\term$_n$} ]} \ldots~{\tt ]}, i.e. for the
- successive applications of {\term$_{i+1}$} on the last subgoal
- generated by {\tt apply} {\term$_i$}, starting from the application
- of {\term$_1$}.
-
-\item {\tt eapply \term}\tacindex{eapply}\label{eapply}
-
- The tactic {\tt eapply} behaves as {\tt apply} but does not fail
- when no instantiation are deducible for some variables in the
- premises. Rather, it turns these variables into so-called
- existential variables which are variables still to instantiate. An
- existential variable is identified by a name of the form {\tt ?$n$}
- where $n$ is a number. The instantiation is intended to be found
- later in the proof.
-
- An example of use of {\tt eapply} is given in
- Section~\ref{eapply-example}.
-
-\item {\tt simple apply {\term}} \tacindex{simple apply}
-
- This behaves like {\tt apply} but it reasons modulo conversion only
- on subterms that contain no variables to instantiate. For instance,
- if {\tt id := fun x:nat => x} and {\tt H : forall y, id y = y} then
- {\tt simple apply H} on goal {\tt O = O} does not succeed because it
- would require the conversion of {\tt f ?y} and {\tt O} where {\tt
- ?y} is a variable to instantiate. Tactic {\tt simple apply} does not
- either traverse tuples as {\tt apply} does.
-
- Because it reasons modulo a limited amount of conversion, {\tt
- simple apply} fails quicker than {\tt apply} and it is then
- well-suited for uses in used-defined tactics that backtrack often.
-
-\item \zeroone{{\tt simple}} {\tt apply} {\term$_1$} \zeroone{{\tt with}
- {\bindinglist$_1$}} {\tt ,} \ldots {\tt ,} {\term$_n$} \zeroone{{\tt with}
- {\bindinglist$_n$}}\\
- \zeroone{{\tt simple}} {\tt eapply} {\term$_1$} \zeroone{{\tt with}
- {\bindinglist$_1$}} {\tt ,} \ldots {\tt ,} {\term$_n$} \zeroone{{\tt with}
- {\bindinglist$_n$}}
-
- This summarizes the different syntaxes for {\tt apply}.
-
-\item {\tt lapply {\term}} \tacindex{lapply}
-
- This tactic applies to any goal, say {\tt G}. The argument {\term}
- has to be well-formed in the current context, its type being
- reducible to a non-dependent product {\tt A -> B} with {\tt B}
- possibly containing products. Then it generates two subgoals {\tt
- B->G} and {\tt A}. Applying {\tt lapply H} (where {\tt H} has type
- {\tt A->B} and {\tt B} does not start with a product) does the same
- as giving the sequence {\tt cut B. 2:apply H.} where {\tt cut} is
- described below.
-
- \Warning When {\term} contains more than one non
- dependent product the tactic {\tt lapply} only takes into account the
- first product.
-
-\end{Variants}
-
-\subsection{{\tt set ( {\ident} {\tt :=} {\term} \tt )}
-\label{tactic:set}
-\tacindex{set}
-\tacindex{pose}
-\tacindex{remember}}
-
-This replaces {\term} by {\ident} in the conclusion or in the
-hypotheses of the current goal and adds the new definition {\ident
-{\tt :=} \term} to the local context. The default is to make this
-replacement only in the conclusion.
-
-\begin{Variants}
-
-\item {\tt set (} {\ident} {\tt :=} {\term} {\tt ) in {\occgoalset}}
-
-This notation allows to specify which occurrences of {\term} have to
-be substituted in the context. The {\tt in {\occgoalset}} clause is an
-occurrence clause whose syntax and behavior is described in
-Section~\ref{Occurrences clauses}.
-
-\item {\tt set (} {\ident} \nelist{\binder}{} {\tt :=} {\term} {\tt )}
-
- This is equivalent to {\tt set (} {\ident} {\tt :=} {\tt fun}
- \nelist{\binder}{} {\tt =>} {\term} {\tt )}.
-
-\item {\tt set } {\term}
-
- This behaves as {\tt set (} {\ident} := {\term} {\tt )} but {\ident}
- is generated by {\Coq}. This variant also supports an occurrence clause.
-
-\item {\tt set (} {\ident$_0$} \nelist{\binder}{} {\tt :=} {\term}
- {\tt ) in {\occgoalset}}\\
- {\tt set {\term} in {\occgoalset}}
-
- These are the general forms which combine the previous possibilities.
-
-\item {\tt remember {\term} {\tt as} {\ident}}
-
- This behaves as {\tt set (} {\ident} := {\term} {\tt ) in *} and using a
- logical (Leibniz's) equality instead of a local definition.
-
-\item {\tt remember {\term} {\tt as} {\ident} in {\occgoalset}}
-
- This is a more general form of {\tt remember} that remembers the
- occurrences of {\term} specified by an occurrences set.
-
-\item {\tt pose ( {\ident} {\tt :=} {\term} {\tt )}}
-
- This adds the local definition {\ident} := {\term} to the current
- context without performing any replacement in the goal or in the
- hypotheses. It is equivalent to {\tt set ( {\ident} {\tt :=}
- {\term} {\tt ) in |-}}.
-
-\item {\tt pose (} {\ident} \nelist{\binder}{} {\tt :=} {\term} {\tt )}
-
- This is equivalent to {\tt pose (} {\ident} {\tt :=} {\tt fun}
- \nelist{\binder}{} {\tt =>} {\term} {\tt )}.
-
-\item{\tt pose {\term}}
-
- This behaves as {\tt pose (} {\ident} := {\term} {\tt )} but
- {\ident} is generated by {\Coq}.
-
-\end{Variants}
-
-\subsection{{\tt assert ( {\ident} : {\form} \tt )}
-\tacindex{assert}}
-
-This tactic applies to any goal. {\tt assert (H : U)} adds a new
-hypothesis of name \texttt{H} asserting \texttt{U} to the current goal
-and opens a new subgoal \texttt{U}\footnote{This corresponds to the
- cut rule of sequent calculus.}. The subgoal {\texttt U} comes first
-in the list of subgoals remaining to prove.
-
-\begin{ErrMsgs}
-\item \errindex{Not a proposition or a type}
-
- Arises when the argument {\form} is neither of type {\tt Prop}, {\tt
- Set} nor {\tt Type}.
-
-\end{ErrMsgs}
-
-\begin{Variants}
-
-\item{\tt assert {\form}}
-
- This behaves as {\tt assert (} {\ident} : {\form} {\tt )} but
- {\ident} is generated by {\Coq}.
-
-\item{\tt assert (} {\ident} := {\term} {\tt )}
-
- This behaves as {\tt assert ({\ident} : {\type});[exact
- {\term}|idtac]} where {\type} is the type of {\term}.
-
-\item {\tt cut {\form}}\tacindex{cut}
-
- This tactic applies to any goal. It implements the non dependent
- case of the ``App''\index{Typing rules!App} rule given in
- Section~\ref{Typed-terms}. (This is Modus Ponens inference rule.)
- {\tt cut U} transforms the current goal \texttt{T} into the two
- following subgoals: {\tt U -> T} and \texttt{U}. The subgoal {\tt U
- -> T} comes first in the list of remaining subgoal to prove.
-
-\item \texttt{assert {\form} by {\tac}}\tacindex{assert by}
-
- This tactic behaves like \texttt{assert} but applies {\tac}
- to solve the subgoals generated by \texttt{assert}.
-
-\item \texttt{assert {\form} as {\intropattern}\tacindex{assert as}}
-
- If {\intropattern} is a naming introduction pattern (see
- Section~\ref{intros-pattern}), the hypothesis is named after this
- introduction pattern (in particular, if {\intropattern} is {\ident},
- the tactic behaves like \texttt{assert ({\ident} : {\form})}).
-
- If {\intropattern} is a disjunctive/conjunctive introduction
- pattern, the tactic behaves like \texttt{assert {\form}} then destructing the
- resulting hypothesis using the given introduction pattern.
-
-\item \texttt{assert {\form} as {\intropattern} by {\tac}}
-
- This combines the two previous variants of {\tt assert}.
-
-\item \texttt{pose proof {\term} as {\intropattern}\tacindex{pose proof}}
-
- This tactic behaves like \texttt{assert T as {\intropattern} by
- exact {\term}} where \texttt{T} is the type of {\term}.
-
- In particular, \texttt{pose proof {\term} as {\ident}} behaves as
- \texttt{assert ({\ident}:T) by exact {\term}} (where \texttt{T} is
- the type of {\term}) and \texttt{pose proof {\term} as
- {\disjconjintropattern}\tacindex{pose proof}} behaves
- like \texttt{destruct {\term} as {\disjconjintropattern}}.
-
-\item {\tt specialize ({\ident} \term$_1$ {\ldots} \term$_n$)\tacindex{specialize}} \\
- {\tt specialize {\ident} with \bindinglist}
-
- The tactic {\tt specialize} works on local hypothesis \ident.
- The premises of this hypothesis (either universal
- quantifications or non-dependent implications) are instantiated
- by concrete terms coming either from arguments \term$_1$
- $\ldots$ \term$_n$ or from a bindings list (see
- Section~\ref{Binding-list} for more about bindings lists). In the
- second form, all instantiation elements must be given, whereas
- in the first form the application to \term$_1$ {\ldots}
- \term$_n$ can be partial. The first form is equivalent to
- {\tt assert (\ident':=\ident \term$_1$ {\ldots} \term$_n$);
- clear \ident; rename \ident' into \ident}.
-
- The name {\ident} can also refer to a global lemma or
- hypothesis. In this case, for compatibility reasons, the
- behavior of {\tt specialize} is close to that of {\tt
- generalize}: the instantiated statement becomes an additional
- premise of the goal.
-
-%% Moreover, the old syntax allows the use of a number after {\tt specialize}
-%% for controlling the number of premises to instantiate. Giving this
-%% number should not be mandatory anymore (automatic detection of how
-%% many premises can be eaten without leaving meta-variables). Hence
-%% no documentation for this integer optional argument of specialize
-
-\end{Variants}
-
-\subsection{{\tt apply {\term} in {\ident}}
-\tacindex{apply \ldots\ in}}
-
-This tactic applies to any goal. The argument {\term} is a term
-well-formed in the local context and the argument {\ident} is an
-hypothesis of the context. The tactic {\tt apply {\term} in {\ident}}
-tries to match the conclusion of the type of {\ident} against a non
-dependent premise of the type of {\term}, trying them from right to
-left. If it succeeds, the statement of hypothesis {\ident} is
-replaced by the conclusion of the type of {\term}. The tactic also
-returns as many subgoals as the number of other non dependent premises
-in the type of {\term} and of the non dependent premises of the type
-of {\ident}. If the conclusion of the type of {\term} does not match
-the goal {\em and} the conclusion is an inductive type isomorphic to a
-tuple type, then the tuple is (recursively) decomposed and the first
-component of the tuple of which a non dependent premise matches the
-conclusion of the type of {\ident}. Tuples are decomposed in a
-width-first left-to-right order (for instance if the type of {\tt H1}
-is a \verb=A <-> B= statement, and the type of {\tt H2} is \verb=A=
-then {\tt apply H1 in H2} transforms the type of {\tt H2} into {\tt
- B}). The tactic {\tt apply} relies on first-order pattern-matching
-with dependent types.
-
-\begin{ErrMsgs}
-\item \errindex{Statement without assumptions}
-
-This happens if the type of {\term} has no non dependent premise.
-
-\item \errindex{Unable to apply}
-
-This happens if the conclusion of {\ident} does not match any of the
-non dependent premises of the type of {\term}.
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt apply \nelist{\term}{,} in {\ident}}
-
-This applies each of {\term} in sequence in {\ident}.
-
-\item {\tt apply \nelist{{\term} {\bindinglist}}{,} in {\ident}}
-
-This does the same but uses the bindings in each {\bindinglist} to
-instantiate the parameters of the corresponding type of {\term}
-(see syntax of bindings in Section~\ref{Binding-list}).
-
-\item {\tt eapply \nelist{{\term} {\bindinglist}}{,} in {\ident}}
-\tacindex{eapply {\ldots} in}
-
-This works as {\tt apply \nelist{{\term} {\bindinglist}}{,} in
-{\ident}} but turns unresolved bindings into existential variables, if
-any, instead of failing.
-
-\item {\tt apply \nelist{{\term}{,} {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}}
-
-This works as {\tt apply \nelist{{\term}{,} {\bindinglist}}{,} in
-{\ident}} then destructs the hypothesis {\ident} along
-{\disjconjintropattern} as {\tt destruct {\ident} as
-{\disjconjintropattern}} would.
-
-\item {\tt eapply \nelist{{\term}{,} {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}}
-
-This works as {\tt apply \nelist{{\term}{,} {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}} but using {\tt eapply}.
-
-\item {\tt simple apply {\term} in {\ident}}
-\tacindex{simple apply {\ldots} in}
-\tacindex{simple eapply {\ldots} in}
-
-This behaves like {\tt apply {\term} in {\ident}} but it reasons
-modulo conversion only on subterms that contain no variables to
-instantiate. For instance, if {\tt id := fun x:nat => x} and {\tt H :
- forall y, id y = y -> True} and {\tt H0 : O = O} then {\tt simple
- apply H in H0} does not succeed because it would require the
-conversion of {\tt f ?y} and {\tt O} where {\tt ?y} is a variable to
-instantiate. Tactic {\tt simple apply {\term} in {\ident}} does not
-either traverse tuples as {\tt apply {\term} in {\ident}} does.
-
-\item {\tt simple apply \nelist{{\term}{,} {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}}\\
-{\tt simple eapply \nelist{{\term}{,} {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}}
-
-This are the general forms of {\tt simple apply {\term} in {\ident}} and
-{\tt simple eapply {\term} in {\ident}}.
-\end{Variants}
-
-\subsection{\tt generalize \term
-\tacindex{generalize}
-\label{generalize}}
-
-This tactic applies to any goal. It generalizes the conclusion w.r.t.
-one subterm of it. For example:
-
-\begin{coq_eval}
-Goal forall x y:nat, (0 <= x + y + y).
-intros.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-generalize (x + y + y).
-\end{coq_example}
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-If the goal is $G$ and $t$ is a subterm of type $T$ in the goal, then
-{\tt generalize} \textit{t} replaces the goal by {\tt forall (x:$T$), $G'$}
-where $G'$ is obtained from $G$ by replacing all occurrences of $t$ by
-{\tt x}. The name of the variable (here {\tt n}) is chosen based on $T$.
-
-\begin{Variants}
-\item {\tt generalize {\term$_1$ , \dots\ , \term$_n$}}
-
- Is equivalent to {\tt generalize \term$_n$; \dots\ ; generalize
- \term$_1$}. Note that the sequence of \term$_i$'s are processed
- from $n$ to $1$.
-
-\item {\tt generalize {\term} at {\num$_1$ \dots\ \num$_i$}}
-
- Is equivalent to {\tt generalize \term} but generalizing only over
- the specified occurrences of {\term} (counting from left to right on the
- expression printed using option {\tt Set Printing All}).
-
-\item {\tt generalize {\term} as {\ident}}
-
- Is equivalent to {\tt generalize \term} but use {\ident} to name the
- generalized hypothesis.
-
-\item {\tt generalize {\term$_1$} at {\num$_{11}$ \dots\ \num$_{1i_1}$}
- as {\ident$_1$}
- , {\ldots} ,
- {\term$_n$} at {\num$_{n1}$ \dots\ \num$_{ni_n}$}
- as {\ident$_2$}}
-
- This is the most general form of {\tt generalize} that combines the
- previous behaviors.
-
-\item {\tt generalize dependent \term} \tacindex{generalize dependent}
-
- This generalizes {\term} but also {\em all} hypotheses which depend
- on {\term}. It clears the generalized hypotheses.
-
-\end{Variants}
-
-
-\subsection{\tt revert \ident$_1$ \dots\ \ident$_n$
-\tacindex{revert}
-\label{revert}}
-
-This applies to any goal with variables \ident$_1$ \dots\ \ident$_n$.
-It moves the hypotheses (possibly defined) to the goal, if this respects
-dependencies. This tactic is the inverse of {\tt intro}.
-
-\begin{ErrMsgs}
-\item \errindexbis{{\ident} is used in the hypothesis {\ident'}}{is
- used in the hypothesis}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt revert dependent \ident \tacindex{revert dependent}}
-
- This moves to the goal the hypothesis \ident\ and all hypotheses
- which depend on it.
-
-\end{Variants}
-
-\subsection{\tt change \term
-\tacindex{change}
-\label{change}}
-
-This tactic applies to any goal. It implements the rule
-``Conv''\index{Typing rules!Conv} given in Section~\ref{Conv}. {\tt
- change U} replaces the current goal \T\ with \U\ providing that
-\U\ is well-formed and that \T\ and \U\ are convertible.
-
-\begin{ErrMsgs}
-\item \errindex{Not convertible}
-\end{ErrMsgs}
-
-\tacindex{change \dots\ in}
-\begin{Variants}
-\item {\tt change \term$_1$ with \term$_2$}
-
- This replaces the occurrences of \term$_1$ by \term$_2$ in the
- current goal. The terms \term$_1$ and \term$_2$ must be
- convertible.
-
-\item {\tt change \term$_1$ at \num$_1$ \dots\ \num$_i$ with \term$_2$}
-
- This replaces the occurrences numbered \num$_1$ \dots\ \num$_i$ of
- \term$_1$ by \term$_2$ in the current goal.
- The terms \term$_1$ and \term$_2$ must be convertible.
-
- \ErrMsg {\tt Too few occurrences}
-
-\item {\tt change {\term} in {\ident}}
-
-\item {\tt change \term$_1$ with \term$_2$ in {\ident}}
-
-\item {\tt change \term$_1$ at \num$_1$ \dots\ \num$_i$ with \term$_2$ in
- {\ident}}
-
- This applies the {\tt change} tactic not to the goal but to the
- hypothesis {\ident}.
-
-\end{Variants}
-
-\SeeAlso \ref{Conversion-tactics}
-
-\subsection{\tt fix {\ident} {\num}
-\tacindex{fix}
-\label{tactic:fix}}
-
-This tactic is a primitive tactic to start a proof by induction. In
-general, it is easier to rely on higher-level induction tactics such
-as the ones described in Section~\ref{Tac-induction}.
-
-In the syntax of the tactic, the identifier {\ident} is the name given
-to the induction hypothesis. The natural number {\num} tells on which
-premise of the current goal the induction acts, starting
-from 1 and counting both dependent and non dependent
-products. Especially, the current lemma must be composed of at least
-{\num} products.
-
-Like in a {\tt fix} expression, the induction
-hypotheses have to be used on structurally smaller arguments.
-The verification that inductive proof arguments are correct is done
-only at the time of registering the lemma in the environment. To know
-if the use of induction hypotheses is correct at some
-time of the interactive development of a proof, use the command {\tt
- Guarded} (see Section~\ref{Guarded}).
-
-\begin{Variants}
- \item {\tt fix} {\ident}$_1$ {\num} {\tt with (} {\ident}$_2$
- \nelist{{\binder}$_{2}$}{} \zeroone{{\tt \{ struct {\ident$'_2$}
- \}}} {\tt :} {\type}$_2$ {\tt )} {\ldots} {\tt (} {\ident}$_1$
- \nelist{{\binder}$_n$}{} \zeroone{{\tt \{ struct {\ident$'_n$} \}}}
- {\tt :} {\type}$_n$ {\tt )}
-
-This starts a proof by mutual induction. The statements to be
-simultaneously proved are respectively {\tt forall}
- \nelist{{\binder}$_2$}{}{\tt ,} {\type}$_2$, {\ldots}, {\tt forall}
- \nelist{{\binder}$_n$}{}{\tt ,} {\type}$_n$. The identifiers
-{\ident}$_1$ {\ldots} {\ident}$_n$ are the names of the induction
-hypotheses. The identifiers {\ident}$'_2$ {\ldots} {\ident}$'_n$ are the
-respective names of the premises on which the induction is performed
-in the statements to be simultaneously proved (if not given, the
-system tries to guess itself what they are).
-
-\end{Variants}
-
-\subsection{\tt cofix {\ident}
-\tacindex{cofix}
-\label{tactic:cofix}}
-
-This tactic starts a proof by coinduction. The identifier {\ident} is
-the name given to the coinduction hypothesis. Like in a {\tt cofix}
-expression, the use of induction hypotheses have to guarded by a
-constructor. The verification that the use of coinductive hypotheses
-is correct is done only at the time of registering the lemma in the
-environment. To know if the use of coinduction hypotheses is correct
-at some time of the interactive development of a proof, use the
-command {\tt Guarded} (see Section~\ref{Guarded}).
-
-
-\begin{Variants}
- \item {\tt cofix} {\ident}$_1$ {\tt with (} {\ident}$_2$
- \nelist{{\binder}$_2$}{} {\tt :} {\type}$_2$ {\tt )} {\ldots} {\tt
- (} {\ident}$_1$ \nelist{{\binder}$_1$}{} {\tt :} {\type}$_n$
- {\tt )}
-
-This starts a proof by mutual coinduction. The statements to be
-simultaneously proved are respectively {\tt forall}
-\nelist{{\binder}$_2$}{}{\tt ,} {\type}$_2$, {\ldots}, {\tt forall}
- \nelist{{\binder}$_n$}{}{\tt ,} {\type}$_n$. The identifiers
- {\ident}$_1$ {\ldots} {\ident}$_n$ are the names of the
- coinduction hypotheses.
-
-\end{Variants}
-
-\subsection{\tt evar (\ident:\term)
-\tacindex{evar}
-\label{evar}}
-
-The {\tt evar} tactic creates a new local definition named \ident\ with
-type \term\ in the context. The body of this binding is a fresh
-existential variable.
-
-\subsection{\tt instantiate (\num:= \term)
-\tacindex{instantiate}
-\label{instantiate}}
-
-The {\tt instantiate} tactic allows to solve an existential variable
-with the term \term. The \num\ argument is the position of the
-existential variable from right to left in the conclusion. This cannot be
-the number of the existential variable since this number is different
-in every session.
-
-\begin{Variants}
- \item {\tt instantiate (\num:=\term) in \ident}
-
- \item {\tt instantiate (\num:=\term) in (Value of \ident)}
-
- \item {\tt instantiate (\num:=\term) in (Type of \ident)}
-
-These allow to refer respectively to existential variables occurring in
-a hypothesis or in the body or the type of a local definition.
-
- \item {\tt instantiate}
-
- Without argument, the {\tt instantiate} tactic tries to solve as
- many existential variables as possible, using information gathered
- from other tactics in the same tactical. This is automatically
- done after each complete tactic (i.e. after a dot in proof mode),
- but not, for example, between each tactic when they are sequenced
- by semicolons.
-
-\end{Variants}
-
-\subsection{\tt admit
-\tacindex{admit}
-\label{admit}}
-
-The {\tt admit} tactic ``solves'' the current subgoal by an
-axiom. This typically allows to temporarily skip a subgoal so as to
-progress further in the rest of the proof. To know if some proof still
-relies on unproved subgoals, one can use the command {\tt Print
-Assumptions} (see Section~\ref{PrintAssumptions}). Admitted subgoals
-have names of the form {\ident}\texttt{\_admitted} possibly followed
-by a number.
-
-\subsection{Bindings list
-\index{Binding list}
-\label{Binding-list}}
-
-Tactics that take a term as argument may also support a bindings list, so
-as to instantiate some parameters of the term by name or position.
-The general form of a term equipped with a bindings list is {\tt
-{\term} with {\bindinglist}} where {\bindinglist} may be of two
-different forms:
-
-\begin{itemize}
-\item In a bindings list of the form {\tt (\vref$_1$ := \term$_1$)
- \dots\ (\vref$_n$ := \term$_n$)}, {\vref} is either an {\ident} or a
- {\num}. The references are determined according to the type of
- {\term}. If \vref$_i$ is an identifier, this identifier has to be
- bound in the type of {\term} and the binding provides the tactic
- with an instance for the parameter of this name. If \vref$_i$ is
- some number $n$, this number denotes the $n$-th non dependent
- premise of the {\term}, as determined by the type of {\term}.
-
- \ErrMsg \errindex{No such binder}
-
-\item A bindings list can also be a simple list of terms {\tt
- \term$_1$ \dots\term$_n$}. In that case the references to
- which these terms correspond are determined by the tactic. In case
- of {\tt induction}, {\tt destruct}, {\tt elim} and {\tt case} (see
- Section~\ref{elim}) the terms have to provide instances for all the
- dependent products in the type of \term\ while in the case of {\tt
- apply}, or of {\tt constructor} and its variants, only instances for
- the dependent products which are not bound in the conclusion of the
- type are required.
-
- \ErrMsg \errindex{Not the right number of missing arguments}
-
-\end{itemize}
-
-\subsection{Occurrences sets and occurrences clauses}
-\label{Occurrences clauses}
-\index{Occurrences clauses}
-
-An occurrences clause is a modifier to some tactics that obeys the
-following syntax:
-
-$\!\!\!$\begin{tabular}{lcl}
-{\occclause} & ::= & {\tt in} {\occgoalset} \\
-{\occgoalset} & ::= &
- \zeroone{{\ident$_1$} \zeroone{\atoccurrences} {\tt ,} \\
-& & {\dots} {\tt ,}\\
-& & {\ident$_m$} \zeroone{\atoccurrences}}\\
-& & \zeroone{{\tt |-} \zeroone{{\tt *} \zeroone{\atoccurrences}}}\\
-& | &
- {\tt *} {\tt |-} \zeroone{{\tt *} \zeroone{\atoccurrences}}\\
-& | &
- {\tt *}\\
-{\atoccurrences} & ::= & {\tt at} {\occlist}\\
-{\occlist} & ::= & \zeroone{{\tt -}} {\num$_1$} \dots\ {\num$_n$}
-\end{tabular}
-
-The role of an occurrence clause is to select a set of occurrences of
-a {\term} in a goal. In the first case, the {{\ident$_i$}
-\zeroone{{\tt at} {\num$_1^i$} \dots\ {\num$_{n_i}^i$}}} parts
-indicate that occurrences have to be selected in the hypotheses named
-{\ident$_i$}. If no numbers are given for hypothesis {\ident$_i$},
-then all occurrences of {\term} in the hypothesis are selected. If
-numbers are given, they refer to occurrences of {\term} when the term
-is printed using option {\tt Set Printing All} (see
-Section~\ref{SetPrintingAll}), counting from left to right. In
-particular, occurrences of {\term} in implicit arguments (see
-Section~\ref{Implicit Arguments}) or coercions (see
-Section~\ref{Coercions}) are counted.
-
-If a minus sign is given between {\tt at} and the list of occurrences,
-it negates the condition so that the clause denotes all the occurrences except
-the ones explicitly mentioned after the minus sign.
-
-As an exception to the left-to-right order, the occurrences in the
-{\tt return} subexpression of a {\tt match} are considered {\em
-before} the occurrences in the matched term.
-
-In the second case, the {\tt *} on the left of {\tt |-} means that
-all occurrences of {\term} are selected in every hypothesis.
-
-In the first and second case, if {\tt *} is mentioned on the right of
-{\tt |-}, the occurrences of the conclusion of the goal have to be
-selected. If some numbers are given, then only the occurrences denoted
-by these numbers are selected. In no numbers are given, all
-occurrences of {\term} in the goal are selected.
-
-Finally, the last notation is an abbreviation for {\tt * |- *}. Note
-also that {\tt |-} is optional in the first case when no {\tt *} is
-given.
-
-Here are some tactics that understand occurrences clauses:
-{\tt set}, {\tt remember}, {\tt induction}, {\tt destruct}.
-
-\SeeAlso~Sections~\ref{tactic:set}, \ref{Tac-induction}, \ref{SetPrintingAll}.
-
-
-\section{Negation and contradiction}
-
-\subsection{\tt absurd \term
-\tacindex{absurd}
-\label{absurd}}
-
-This tactic applies to any goal. The argument {\term} is any
-proposition {\tt P} of type {\tt Prop}. This tactic applies {\tt
- False} elimination, that is it deduces the current goal from {\tt
- False}, and generates as subgoals {\tt $\sim$P} and {\tt P}. It is
-very useful in proofs by cases, where some cases are impossible. In
-most cases, \texttt{P} or $\sim$\texttt{P} is one of the hypotheses of
-the local context.
-
-\subsection{\tt contradiction
-\label{contradiction}
-\tacindex{contradiction}}
-
-This tactic applies to any goal. The {\tt contradiction} tactic
-attempts to find in the current context (after all {\tt intros}) one
-hypothesis which is equivalent to {\tt False}. It permits to prune
-irrelevant cases. This tactic is a macro for the tactics sequence
-{\tt intros; elimtype False; assumption}.
-
-\begin{ErrMsgs}
-\item \errindex{No such assumption}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt contradiction \ident}
-
-The proof of {\tt False} is searched in the hypothesis named \ident.
-\end{Variants}
-
-\subsection {\tt contradict \ident}
-\label{contradict}
-\tacindex{contradict}
-
-This tactic allows to manipulate negated hypothesis and goals. The
-name \ident\ should correspond to a hypothesis. With
-{\tt contradict H}, the current goal and context is transformed in
-the following way:
-\begin{itemize}
-\item {\tt H:$\neg$A $\vd$ B} \ becomes \ {\tt $\vd$ A}
-\item {\tt H:$\neg$A $\vd$ $\neg$B} \ becomes \ {\tt H: B $\vd$ A }
-\item {\tt H: A $\vd$ B} \ becomes \ {\tt $\vd$ $\neg$A}
-\item {\tt H: A $\vd$ $\neg$B} \ becomes \ {\tt H: B $\vd$ $\neg$A}
-\end{itemize}
-
-\subsection{\tt exfalso}
-\label{exfalso}
-\tacindex{exfalso}
-
-This tactic implements the ``ex falso quodlibet'' logical principle:
-an elimination of {\tt False} is performed on the current goal, and the
-user is then required to prove that {\tt False} is indeed provable in
-the current context. This tactic is a macro for {\tt elimtype False}.
-
-\section{Conversion tactics
-\index{Conversion tactics}
-\label{Conversion-tactics}}
-
-This set of tactics implements different specialized usages of the
-tactic \texttt{change}.
-
-All conversion tactics (including \texttt{change}) can be
-parameterized by the parts of the goal where the conversion can
-occur. This is done using \emph{goal clauses} which consists in a list
-of hypotheses and, optionally, of a reference to the conclusion of the
-goal. For defined hypothesis it is possible to specify if the
-conversion should occur on the type part, the body part or both
-(default).
-
-\index{Clauses}
-\index{Goal clauses}
-Goal clauses are written after a conversion tactic (tactics
-\texttt{set}~\ref{tactic:set}, \texttt{rewrite}~\ref{rewrite},
-\texttt{replace}~\ref{tactic:replace} and
-\texttt{autorewrite}~\ref{tactic:autorewrite} also use goal clauses) and
-are introduced by the keyword \texttt{in}. If no goal clause is provided,
-the default is to perform the conversion only in the conclusion.
-
-The syntax and description of the various goal clauses is the following:
-\begin{description}
-\item[]\texttt{in {\ident}$_1$ $\ldots$ {\ident}$_n$ |- } only in hypotheses {\ident}$_1$
- \ldots {\ident}$_n$
-\item[]\texttt{in {\ident}$_1$ $\ldots$ {\ident}$_n$ |- *} in hypotheses {\ident}$_1$ \ldots
- {\ident}$_n$ and in the conclusion
-\item[]\texttt{in * |-} in every hypothesis
-\item[]\texttt{in *} (equivalent to \texttt{in * |- *}) everywhere
-\item[]\texttt{in (type of {\ident}$_1$) (value of {\ident}$_2$) $\ldots$ |-} in
- type part of {\ident}$_1$, in the value part of {\ident}$_2$, etc.
-\end{description}
-
-For backward compatibility, the notation \texttt{in}~{\ident}$_1$\ldots {\ident}$_n$
-performs the conversion in hypotheses {\ident}$_1$\ldots {\ident}$_n$.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%voir reduction__conv_x : histoires d'univers.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\subsection[{\tt cbv \flag$_1$ \dots\ \flag$_n$}, {\tt lazy \flag$_1$
-\dots\ \flag$_n$} and {\tt compute}]
-{{\tt cbv \flag$_1$ \dots\ \flag$_n$}, {\tt lazy \flag$_1$
-\dots\ \flag$_n$} and {\tt compute}
-\tacindex{cbv}
-\tacindex{lazy}
-\tacindex{compute}
-\tacindex{vm\_compute}\label{vmcompute}}
-
-These parameterized reduction tactics apply to any goal and perform
-the normalization of the goal according to the specified flags. In
-correspondence with the kinds of reduction considered in \Coq\, namely
-$\beta$ (reduction of functional application), $\delta$ (unfolding of
-transparent constants, see \ref{Transparent}), $\iota$ (reduction of
-pattern-matching over a constructed term, and unfolding of {\tt fix}
-and {\tt cofix} expressions) and $\zeta$ (contraction of local
-definitions), the flag are either {\tt beta}, {\tt delta}, {\tt iota}
-or {\tt zeta}. The {\tt delta} flag itself can be refined into {\tt
-delta [\qualid$_1$\ldots\qualid$_k$]} or {\tt delta
--[\qualid$_1$\ldots\qualid$_k$]}, restricting in the first case the
-constants to unfold to the constants listed, and restricting in the
-second case the constant to unfold to all but the ones explicitly
-mentioned. Notice that the {\tt delta} flag does not apply to
-variables bound by a let-in construction inside the term itself (use
-here the {\tt zeta} flag). In any cases, opaque constants are not
-unfolded (see Section~\ref{Opaque}).
-
-The goal may be normalized with two strategies: {\em lazy} ({\tt lazy}
-tactic), or {\em call-by-value} ({\tt cbv} tactic). The lazy strategy
-is a call-by-need strategy, with sharing of reductions: the arguments of a
-function call are partially evaluated only when necessary, and if an
-argument is used several times then it is computed only once. This
-reduction is efficient for reducing expressions with dead code. For
-instance, the proofs of a proposition {\tt exists~$x$. $P(x)$} reduce to a
-pair of a witness $t$, and a proof that $t$ satisfies the predicate
-$P$. Most of the time, $t$ may be computed without computing the proof
-of $P(t)$, thanks to the lazy strategy.
-
-The call-by-value strategy is the one used in ML languages: the
-arguments of a function call are evaluated first, using a weak
-reduction (no reduction under the $\lambda$-abstractions). Despite the
-lazy strategy always performs fewer reductions than the call-by-value
-strategy, the latter is generally more efficient for evaluating purely
-computational expressions (i.e. with few dead code).
-
-\begin{Variants}
-\item {\tt compute} \tacindex{compute}\\
- {\tt cbv}
-
- These are synonyms for {\tt cbv beta delta iota zeta}.
-
-\item {\tt lazy}
-
- This is a synonym for {\tt lazy beta delta iota zeta}.
-
-\item {\tt compute [\qualid$_1$\ldots\qualid$_k$]}\\
- {\tt cbv [\qualid$_1$\ldots\qualid$_k$]}
-
- These are synonyms of {\tt cbv beta delta
- [\qualid$_1$\ldots\qualid$_k$] iota zeta}.
-
-\item {\tt compute -[\qualid$_1$\ldots\qualid$_k$]}\\
- {\tt cbv -[\qualid$_1$\ldots\qualid$_k$]}
-
- These are synonyms of {\tt cbv beta delta
- -[\qualid$_1$\ldots\qualid$_k$] iota zeta}.
-
-\item {\tt lazy [\qualid$_1$\ldots\qualid$_k$]}\\
- {\tt lazy -[\qualid$_1$\ldots\qualid$_k$]}
-
- These are respectively synonyms of {\tt cbv beta delta
- [\qualid$_1$\ldots\qualid$_k$] iota zeta} and {\tt cbv beta delta
- -[\qualid$_1$\ldots\qualid$_k$] iota zeta}.
-
-\item {\tt vm\_compute} \tacindex{vm\_compute}
-
- This tactic evaluates the goal using the optimized call-by-value
- evaluation bytecode-based virtual machine. This algorithm is
- dramatically more efficient than the algorithm used for the {\tt
- cbv} tactic, but it cannot be fine-tuned. It is specially
- interesting for full evaluation of algebraic objects. This includes
- the case of reflexion-based tactics.
-
-\end{Variants}
-
-% Obsolete? Anyway not very important message
-%\begin{ErrMsgs}
-%\item \errindex{Delta must be specified before}
-%
-% A list of constants appeared before the {\tt delta} flag.
-%\end{ErrMsgs}
-
-
-\subsection{{\tt red}
-\tacindex{red}}
-
-This tactic applies to a goal which has the form {\tt
- forall (x:T1)\dots(xk:Tk), c t1 \dots\ tn} where {\tt c} is a constant. If
-{\tt c} is transparent then it replaces {\tt c} with its definition
-(say {\tt t}) and then reduces {\tt (t t1 \dots\ tn)} according to
-$\beta\iota\zeta$-reduction rules.
-
-\begin{ErrMsgs}
-\item \errindex{Not reducible}
-\end{ErrMsgs}
-
-\subsection{{\tt hnf}
-\tacindex{hnf}}
-
-This tactic applies to any goal. It replaces the current goal with its
-head normal form according to the $\beta\delta\iota\zeta$-reduction
-rules, i.e. it reduces the head of the goal until it becomes a
-product or an irreducible term.
-
-\Example
-The term \verb+forall n:nat, (plus (S n) (S n))+ is not reduced by {\tt hnf}.
-
-\Rem The $\delta$ rule only applies to transparent constants
-(see Section~\ref{Opaque} on transparency and opacity).
-
-\subsection{\tt simpl
-\tacindex{simpl}}
-
-This tactic applies to any goal. The tactic {\tt simpl} first applies
-$\beta\iota$-reduction rule. Then it expands transparent constants
-and tries to reduce {\tt T'} according, once more, to $\beta\iota$
-rules. But when the $\iota$ rule is not applicable then possible
-$\delta$-reductions are not applied. For instance trying to use {\tt
-simpl} on {\tt (plus n O)=n} changes nothing. Notice that only
-transparent constants whose name can be reused as such in the
-recursive calls are possibly unfolded. For instance a constant defined
-by {\tt plus' := plus} is possibly unfolded and reused in the
-recursive calls, but a constant such as {\tt succ := plus (S O)} is
-never unfolded.
-
-\tacindex{simpl \dots\ in}
-\begin{Variants}
-\item {\tt simpl {\term}}
-
- This applies {\tt simpl} only to the occurrences of {\term} in the
- current goal.
-
-\item {\tt simpl {\term} at \num$_1$ \dots\ \num$_i$}
-
- This applies {\tt simpl} only to the \num$_1$, \dots, \num$_i$
- occurrences of {\term} in the current goal.
-
- \ErrMsg {\tt Too few occurrences}
-
-\item {\tt simpl {\ident}}
-
- This applies {\tt simpl} only to the applicative subterms whose head
- occurrence is {\ident}.
-
-\item {\tt simpl {\ident} at \num$_1$ \dots\ \num$_i$}
-
- This applies {\tt simpl} only to the \num$_1$, \dots, \num$_i$
-applicative subterms whose head occurrence is {\ident}.
-
-\end{Variants}
-
-\subsection{\tt unfold \qualid
-\tacindex{unfold}
-\label{unfold}}
-
-This tactic applies to any goal. The argument {\qualid} must denote a
-defined transparent constant or local definition (see Sections~\ref{Basic-definitions} and~\ref{Transparent}). The tactic {\tt
- unfold} applies the $\delta$ rule to each occurrence of the constant
-to which {\qualid} refers in the current goal and then replaces it
-with its $\beta\iota$-normal form.
-
-\begin{ErrMsgs}
-\item {\qualid} \errindex{does not denote an evaluable constant}
-
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt unfold {\qualid}$_1$, \dots, \qualid$_n$}
- \tacindex{unfold \dots\ in}
-
- Replaces {\em simultaneously} {\qualid}$_1$, \dots, {\qualid}$_n$
- with their definitions and replaces the current goal with its
- $\beta\iota$ normal form.
-
-\item {\tt unfold {\qualid}$_1$ at \num$_1^1$, \dots, \num$_i^1$,
-\dots,\ \qualid$_n$ at \num$_1^n$ \dots\ \num$_j^n$}
-
- The lists \num$_1^1$, \dots, \num$_i^1$ and \num$_1^n$, \dots,
- \num$_j^n$ specify the occurrences of {\qualid}$_1$, \dots,
- \qualid$_n$ to be unfolded. Occurrences are located from left to
- right.
-
- \ErrMsg {\tt bad occurrence number of {\qualid}$_i$}
-
- \ErrMsg {\qualid}$_i$ {\tt does not occur}
-
-\item {\tt unfold {\qstring}}
-
- If {\qstring} denotes the discriminating symbol of a notation (e.g. {\tt
- "+"}) or an expression defining a notation (e.g. \verb!"_ + _"!), and
- this notation refers to an unfoldable constant, then the tactic
- unfolds it.
-
-\item {\tt unfold {\qstring}\%{\delimkey}}
-
- This is variant of {\tt unfold {\qstring}} where {\qstring} gets its
- interpretation from the scope bound to the delimiting key
- {\delimkey} instead of its default interpretation (see
- Section~\ref{scopechange}).
-
-\item {\tt unfold \qualidorstring$_1$ at \num$_1^1$, \dots, \num$_i^1$,
-\dots,\ \qualidorstring$_n$ at \num$_1^n$ \dots\ \num$_j^n$}
-
- This is the most general form, where {\qualidorstring} is either a
- {\qualid} or a {\qstring} referring to a notation.
-
-\end{Variants}
-
-\subsection{{\tt fold} \term
-\tacindex{fold}}
-
-This tactic applies to any goal. The term \term\ is reduced using the {\tt red}
-tactic. Every occurrence of the resulting term in the goal is then
-replaced by \term.
-
-\begin{Variants}
-\item {\tt fold} \term$_1$ \dots\ \term$_n$
-
- Equivalent to {\tt fold} \term$_1${\tt;}\ldots{\tt; fold} \term$_n$.
-\end{Variants}
-
-\subsection{{\tt pattern {\term}}
-\tacindex{pattern}
-\label{pattern}}
-
-This command applies to any goal. The argument {\term} must be a free
-subterm of the current goal. The command {\tt pattern} performs
-$\beta$-expansion (the inverse of $\bt$-reduction) of the current goal
-(say \T) by
-\begin{enumerate}
-\item replacing all occurrences of {\term} in {\T} with a fresh variable
-\item abstracting this variable
-\item applying the abstracted goal to {\term}
-\end{enumerate}
-
-For instance, if the current goal $T$ is expressible has $\phi(t)$
-where the notation captures all the instances of $t$ in $\phi(t)$,
-then {\tt pattern $t$} transforms it into {\tt (fun x:$A$ => $\phi(${\tt
-x}$)$) $t$}. This command can be used, for instance, when the tactic
-{\tt apply} fails on matching.
-
-\begin{Variants}
-\item {\tt pattern {\term} at {\num$_1$} \dots\ {\num$_n$}}
-
- Only the occurrences {\num$_1$} \dots\ {\num$_n$} of {\term} are
- considered for $\beta$-expansion. Occurrences are located from left
- to right.
-
-\item {\tt pattern {\term} at - {\num$_1$} \dots\ {\num$_n$}}
-
- All occurrences except the occurrences of indexes {\num$_1$} \dots\
- {\num$_n$} of {\term} are considered for
- $\beta$-expansion. Occurrences are located from left to right.
-
-\item {\tt pattern {\term$_1$}, \dots, {\term$_m$}}
-
- Starting from a goal $\phi(t_1 \dots\ t_m)$, the tactic
- {\tt pattern $t_1$, \dots,\ $t_m$} generates the equivalent goal {\tt
- (fun (x$_1$:$A_1$) \dots\ (x$_m$:$A_m$) => $\phi(${\tt x$_1$\dots\
- x$_m$}$)$) $t_1$ \dots\ $t_m$}.\\ If $t_i$ occurs in one of the
- generated types $A_j$ these occurrences will also be considered and
- possibly abstracted.
-
-\item {\tt pattern {\term$_1$} at {\num$_1^1$} \dots\ {\num$_{n_1}^1$}, \dots,
- {\term$_m$} at {\num$_1^m$} \dots\ {\num$_{n_m}^m$}}
-
- This behaves as above but processing only the occurrences \num$_1^1$,
- \dots, \num$_i^1$ of \term$_1$, \dots, \num$_1^m$, \dots, \num$_j^m$
- of \term$_m$ starting from \term$_m$.
-
-\item {\tt pattern} {\term$_1$} \zeroone{{\tt at \zeroone{-}} {\num$_1^1$} \dots\ {\num$_{n_1}^1$}} {\tt ,} \dots {\tt ,}
- {\term$_m$} \zeroone{{\tt at \zeroone{-}} {\num$_1^m$} \dots\ {\num$_{n_m}^m$}}
-
- This is the most general syntax that combines the different variants.
-
-\end{Variants}
-
-\subsection{Conversion tactics applied to hypotheses}
-
-{\convtactic} {\tt in} \ident$_1$ \dots\ \ident$_n$
-
-Applies the conversion tactic {\convtactic} to the
-hypotheses \ident$_1$, \ldots, \ident$_n$. The tactic {\convtactic} is
-any of the conversion tactics listed in this section.
-
-If \ident$_i$ is a local definition, then \ident$_i$ can be replaced
-by (Type of \ident$_i$) to address not the body but the type of the
-local definition. Example: {\tt unfold not in (Type of H1) (Type of H3).}
-
-\begin{ErrMsgs}
-\item \errindex{No such hypothesis} : {\ident}.
-\end{ErrMsgs}
-
-
-\section{Introductions}
-
-Introduction tactics address goals which are inductive constants.
-They are used when one guesses that the goal can be obtained with one
-of its constructors' type.
-
-\subsection{\tt constructor \num
-\label{constructor}
-\tacindex{constructor}}
-
-This tactic applies to a goal such that the head of its conclusion is
-an inductive constant (say {\tt I}). The argument {\num} must be less
-or equal to the numbers of constructor(s) of {\tt I}. Let {\tt ci} be
-the {\tt i}-th constructor of {\tt I}, then {\tt constructor i} is
-equivalent to {\tt intros; apply ci}.
-
-\begin{ErrMsgs}
-\item \errindex{Not an inductive product}
-\item \errindex{Not enough constructors}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item \texttt{constructor}
-
- This tries \texttt{constructor 1} then \texttt{constructor 2},
- \dots\ , then \texttt{constructor} \textit{n} where \textit{n} if
- the number of constructors of the head of the goal.
-
-\item {\tt constructor \num~with} {\bindinglist}
-
- Let {\tt ci} be the {\tt i}-th constructor of {\tt I}, then {\tt
- constructor i with \bindinglist} is equivalent to {\tt intros;
- apply ci with \bindinglist}.
-
- \Warning the terms in the \bindinglist\ are checked
- in the context where {\tt constructor} is executed and not in the
- context where {\tt apply} is executed (the introductions are not
- taken into account).
-
-% To document?
-% \item {\tt constructor {\tactic}}
-
-\item {\tt split}\tacindex{split}
-
- Applies if {\tt I} has only one constructor, typically in the case
- of conjunction $A\land B$. Then, it is equivalent to {\tt constructor 1}.
-
-\item {\tt exists {\bindinglist}}\tacindex{exists}
-
- Applies if {\tt I} has only one constructor, for instance in the
- case of existential quantification $\exists x\cdot P(x)$.
- Then, it is equivalent to {\tt intros; constructor 1 with \bindinglist}.
-
-\item {\tt exists \nelist{\bindinglist}{,}}
-
- This iteratively applies {\tt exists {\bindinglist}}.
-
-\item {\tt left}\tacindex{left}\\
- {\tt right}\tacindex{right}
-
- Apply if {\tt I} has two constructors, for instance in the case of
- disjunction $A\lor B$. Then, they are respectively equivalent to {\tt
- constructor 1} and {\tt constructor 2}.
-
-\item {\tt left \bindinglist}\\
- {\tt right \bindinglist}\\
- {\tt split \bindinglist}
-
- As soon as the inductive type has the right number of constructors,
- these expressions are equivalent to the corresponding {\tt
- constructor $i$ with \bindinglist}.
-
-\item \texttt{econstructor}\tacindex{econstructor}\\
- \texttt{eexists}\tacindex{eexists}\\
- \texttt{esplit}\tacindex{esplit}\\
- \texttt{eleft}\tacindex{eleft}\\
- \texttt{eright}\tacindex{eright}\\
-
- These tactics and their variants behave like \texttt{constructor},
- \texttt{exists}, \texttt{split}, \texttt{left}, \texttt{right} and
- their variants but they introduce existential variables instead of
- failing when the instantiation of a variable cannot be found (cf
- \texttt{eapply} and Section~\ref{eapply-example}).
-
-\end{Variants}
-
-\section[Induction and Case Analysis]{Induction and Case Analysis
-\label{Tac-induction}}
-
-The tactics presented in this section implement induction or case
-analysis on inductive or coinductive objects (see
-Section~\ref{Cic-inductive-definitions}).
-
-\subsection{\tt induction \term
-\tacindex{induction}}
-
-This tactic applies to any goal. The type of the argument {\term} must
-be an inductive constant. Then, the tactic {\tt induction}
-generates subgoals, one for each possible form of {\term}, i.e. one
-for each constructor of the inductive type.
-
-The tactic {\tt induction} automatically replaces every occurrences
-of {\term} in the conclusion and the hypotheses of the goal. It
-automatically adds induction hypotheses (using names of the form {\tt
- IHn1}) to the local context. If some hypothesis must not be taken
-into account in the induction hypothesis, then it needs to be removed
-first (you can also use the tactics {\tt elim} or {\tt simple induction},
-see below).
-
-There are particular cases:
-
-\begin{itemize}
-
-\item If {\term} is an identifier {\ident} denoting a quantified
-variable of the conclusion of the goal, then {\tt induction {\ident}}
-behaves as {\tt intros until {\ident}; induction {\ident}}.
-
-\item If {\term} is a {\num}, then {\tt induction {\num}} behaves as
-{\tt intros until {\num}} followed by {\tt induction} applied to the
-last introduced hypothesis.
-
-\Rem For simple induction on a numeral, use syntax {\tt induction
-({\num})} (not very interesting anyway).
-
-\end{itemize}
-
-\Example
-
-\begin{coq_example}
-Lemma induction_test : forall n:nat, n = n -> n <= n.
-intros n H.
-induction n.
-\end{coq_example}
-
-\begin{ErrMsgs}
-\item \errindex{Not an inductive product}
-\item \errindex{Unable to find an instance for the variables
-{\ident} \ldots {\ident}}
-
- Use in this case
- the variant {\tt elim \dots\ with \dots} below.
-\end{ErrMsgs}
-
-\begin{Variants}
-\item{\tt induction {\term} as {\disjconjintropattern}}
-
- This behaves as {\tt induction {\term}} but uses the names in
- {\disjconjintropattern} to name the variables introduced in the context.
- The {\disjconjintropattern} must typically be of the form
- {\tt [} $p_{11}$ \ldots
- $p_{1n_1}$ {\tt |} {\ldots} {\tt |} $p_{m1}$ \ldots $p_{mn_m}$ {\tt
- ]} with $m$ being the number of constructors of the type of
- {\term}. Each variable introduced by {\tt induction} in the context
- of the $i^{th}$ goal gets its name from the list $p_{i1}$ \ldots
- $p_{in_i}$ in order. If there are not enough names, {\tt induction}
- invents names for the remaining variables to introduce. More
- generally, the $p_{ij}$ can be any disjunctive/conjunctive
- introduction pattern (see Section~\ref{intros-pattern}). For instance,
- for an inductive type with one constructor, the pattern notation
- {\tt ($p_{1}$,\ldots,$p_{n}$)} can be used instead of
- {\tt [} $p_{1}$ \ldots $p_{n}$ {\tt ]}.
-
-\item{\tt induction {\term} as {\namingintropattern}}
-
- This behaves as {\tt induction {\term}} but adds an equation between
- {\term} and the value that {\term} takes in each of the induction
- case. The name of the equation is built according to
- {\namingintropattern} which can be an identifier, a ``?'', etc, as
- indicated in Section~\ref{intros-pattern}.
-
-\item{\tt induction {\term} as {\namingintropattern} {\disjconjintropattern}}
-
- This combines the two previous forms.
-
-\item{\tt induction {\term} with \bindinglist}
-
- This behaves like \texttt{induction {\term}} providing explicit
- instances for the premises of the type of {\term} (see the syntax of
- bindings in Section~\ref{Binding-list}).
-
-\item{\tt einduction {\term}\tacindex{einduction}}
-
- This tactic behaves like \texttt{induction {\term}} excepts that it
- does not fail if some dependent premise of the type of {\term} is
- not inferable. Instead, the unresolved premises are posed as
- existential variables to be inferred later, in the same way as {\tt
- eapply} does (see Section~\ref{eapply-example}).
-
-\item {\tt induction {\term$_1$} using {\term$_2$}}
-
- This behaves as {\tt induction {\term$_1$}} but using {\term$_2$} as
- induction scheme. It does not expect the conclusion of the type of
- {\term$_1$} to be inductive.
-
-\item {\tt induction {\term$_1$} using {\term$_2$} with {\bindinglist}}
-
- This behaves as {\tt induction {\term$_1$} using {\term$_2$}} but
- also providing instances for the premises of the type of {\term$_2$}.
-
-\item \texttt{induction {\term}$_1$ $\ldots$ {\term}$_n$ using {\qualid}}
-
- This syntax is used for the case {\qualid} denotes an induction principle
- with complex predicates as the induction principles generated by
- {\tt Function} or {\tt Functional Scheme} may be.
-
-\item \texttt{induction {\term} in {\occgoalset}}
-
- This syntax is used for selecting which occurrences of {\term} the
- induction has to be carried on. The {\tt in {\atoccurrences}} clause is an
- occurrence clause whose syntax and behavior is described in
- Section~\ref{Occurrences clauses}.
-
- When an occurrence clause is given, an equation between {\term} and
- the value it gets in each case of the induction is added to the
- context of the subgoals corresponding to the induction cases (even
- if no clause {\tt as {\namingintropattern}} is given).
-
-\item {\tt induction {\term$_1$} with {\bindinglist$_1$} as {\namingintropattern} {\disjconjintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}}\\
- {\tt einduction {\term$_1$} with {\bindinglist$_1$} as {\namingintropattern} {\disjconjintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}}
-
- These are the most general forms of {\tt induction} and {\tt
- einduction}. It combines the effects of the {\tt with}, {\tt as},
- {\tt using}, and {\tt in} clauses.
-
-\item {\tt elim \term}\label{elim}
-
- This is a more basic induction tactic. Again, the type of the
- argument {\term} must be an inductive type. Then, according to
- the type of the goal, the tactic {\tt elim} chooses the appropriate
- destructor and applies it as the tactic {\tt apply}
- would do. For instance, if the proof context contains {\tt
- n:nat} and the current goal is {\tt T} of type {\tt
- Prop}, then {\tt elim n} is equivalent to {\tt apply nat\_ind with
- (n:=n)}. The tactic {\tt elim} does not modify the context of
- the goal, neither introduces the induction loading into the context
- of hypotheses.
-
- More generally, {\tt elim \term} also works when the type of {\term}
- is a statement with premises and whose conclusion is inductive. In
- that case the tactic performs induction on the conclusion of the
- type of {\term} and leaves the non-dependent premises of the type as
- subgoals. In the case of dependent products, the tactic tries to
- find an instance for which the elimination lemma applies and fails
- otherwise.
-
-\item {\tt elim {\term} with {\bindinglist}}
-
- Allows to give explicit instances to the premises of the type
- of {\term} (see Section~\ref{Binding-list}).
-
-\item{\tt eelim {\term}\tacindex{eelim}}
-
- In case the type of {\term} has dependent premises, this turns them into
- existential variables to be resolved later on.
-
-\item{\tt elim {\term$_1$} using {\term$_2$}}\\
- {\tt elim {\term$_1$} using {\term$_2$} with {\bindinglist}\tacindex{elim \dots\ using}}
-
-Allows the user to give explicitly an elimination predicate
-{\term$_2$} which is not the standard one for the underlying inductive
-type of {\term$_1$}. The {\bindinglist} clause allows to
-instantiate premises of the type of {\term$_2$}.
-
-\item{\tt elim {\term$_1$} with {\bindinglist$_1$} using {\term$_2$} with {\bindinglist$_2$}}\\
- {\tt eelim {\term$_1$} with {\bindinglist$_1$} using {\term$_2$} with {\bindinglist$_2$}}
-
- These are the most general forms of {\tt elim} and {\tt eelim}. It
- combines the effects of the {\tt using} clause and of the two uses
- of the {\tt with} clause.
-
-\item {\tt elimtype \form}\tacindex{elimtype}
-
- The argument {\form} must be inductively defined. {\tt elimtype I}
- is equivalent to {\tt cut I. intro H{\rm\sl n}; elim H{\rm\sl n};
- clear H{\rm\sl n}}. Therefore the hypothesis {\tt H{\rm\sl n}} will
- not appear in the context(s) of the subgoal(s). Conversely, if {\tt
- t} is a term of (inductive) type {\tt I} and which does not occur
- in the goal then {\tt elim t} is equivalent to {\tt elimtype I; 2:
- exact t.}
-
-\item {\tt simple induction \ident}\tacindex{simple induction}
-
- This tactic behaves as {\tt intros until
- {\ident}; elim {\tt {\ident}}} when {\ident} is a quantified
- variable of the goal.
-
-\item {\tt simple induction {\num}}
-
- This tactic behaves as {\tt intros until
- {\num}; elim {\tt {\ident}}} where {\ident} is the name given by
- {\tt intros until {\num}} to the {\num}-th non-dependent premise of
- the goal.
-
-%% \item {\tt simple induction {\term}}\tacindex{simple induction}
-
-%% If {\term} is an {\ident} corresponding to a quantified variable of
-%% the goal then the tactic behaves as {\tt intros until {\ident}; elim
-%% {\tt {\ident}}}. If {\term} is a {\num} then the tactic behaves as
-%% {\tt intros until {\ident}; elim {\tt {\ident}}}. Otherwise, it is
-%% a synonym for {\tt elim {\term}}.
-
-%% \Rem For simple induction on a numeral, use syntax {\tt simple
-%% induction ({\num})}.
-
-\end{Variants}
-
-\subsection{\tt destruct \term
-\tacindex{destruct}}
-\label{destruct}
-
-The tactic {\tt destruct} is used to perform case analysis without
-recursion. Its behavior is similar to {\tt induction} except
-that no induction hypothesis is generated. It applies to any goal and
-the type of {\term} must be inductively defined. There are particular cases:
-
-\begin{itemize}
-
-\item If {\term} is an identifier {\ident} denoting a quantified
-variable of the conclusion of the goal, then {\tt destruct {\ident}}
-behaves as {\tt intros until {\ident}; destruct {\ident}}.
-
-\item If {\term} is a {\num}, then {\tt destruct {\num}} behaves as
-{\tt intros until {\num}} followed by {\tt destruct} applied to the
-last introduced hypothesis.
-
-\Rem For destruction of a numeral, use syntax {\tt destruct
-({\num})} (not very interesting anyway).
-
-\end{itemize}
-
-\begin{Variants}
-\item{\tt destruct {\term} as {\disjconjintropattern}}
-
- This behaves as {\tt destruct {\term}} but uses the names in
- {\intropattern} to name the variables introduced in the context.
- The {\intropattern} must have the form {\tt [} $p_{11}$ \ldots
- $p_{1n_1}$ {\tt |} {\ldots} {\tt |} $p_{m1}$ \ldots $p_{mn_m}$ {\tt
- ]} with $m$ being the number of constructors of the type of
- {\term}. Each variable introduced by {\tt destruct} in the context
- of the $i^{th}$ goal gets its name from the list $p_{i1}$ \ldots
- $p_{in_i}$ in order. If there are not enough names, {\tt destruct}
- invents names for the remaining variables to introduce. More
- generally, the $p_{ij}$ can be any disjunctive/conjunctive
- introduction pattern (see Section~\ref{intros-pattern}). This
- provides a concise notation for nested destruction.
-
-% It is recommended to use this variant of {\tt destruct} for
-% robust proof scripts.
-
-\item{\tt destruct {\term} as {\disjconjintropattern} \_eqn}
-
- This behaves as {\tt destruct {\term}} but adds an equation between
- {\term} and the value that {\term} takes in each of the possible
- cases. The name of the equation is chosen by Coq. If
- {\disjconjintropattern} is simply {\tt []}, it is automatically considered
- as a disjunctive pattern of the appropriate size.
-
-\item{\tt destruct {\term} as {\disjconjintropattern} \_eqn: {\namingintropattern}}
-
- This behaves as {\tt destruct {\term} as
- {\disjconjintropattern} \_eqn} but use {\namingintropattern} to
- name the equation (see Section~\ref{intros-pattern}). Note that spaces
- can generally be removed around {\tt \_eqn}.
-
-\item{\tt destruct {\term} with \bindinglist}
-
- This behaves like \texttt{destruct {\term}} providing explicit
- instances for the dependent premises of the type of {\term} (see
- syntax of bindings in Section~\ref{Binding-list}).
-
-\item{\tt edestruct {\term}\tacindex{edestruct}}
-
- This tactic behaves like \texttt{destruct {\term}} excepts that it
- does not fail if the instance of a dependent premises of the type of
- {\term} is not inferable. Instead, the unresolved instances are left
- as existential variables to be inferred later, in the same way as
- {\tt eapply} does (see Section~\ref{eapply-example}).
-
-\item{\tt destruct {\term$_1$} using {\term$_2$}}\\
- {\tt destruct {\term$_1$} using {\term$_2$} with {\bindinglist}}
-
- These are synonyms of {\tt induction {\term$_1$} using {\term$_2$}} and
- {\tt induction {\term$_1$} using {\term$_2$} with {\bindinglist}}.
-
-\item \texttt{destruct {\term} in {\occgoalset}}
-
- This syntax is used for selecting which occurrences of {\term} the
- case analysis has to be done on. The {\tt in {\occgoalset}} clause is an
- occurrence clause whose syntax and behavior is described in
- Section~\ref{Occurrences clauses}.
-
- When an occurrence clause is given, an equation between {\term} and
- the value it gets in each case of the analysis is added to the
- context of the subgoals corresponding to the cases (even
- if no clause {\tt as {\namingintropattern}} is given).
-
-\item{\tt destruct {\term$_1$} with {\bindinglist$_1$} as {\disjconjintropattern} \_eqn: {\namingintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}}\\
- {\tt edestruct {\term$_1$} with {\bindinglist$_1$} as {\disjconjintropattern} \_eqn: {\namingintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}}
-
- These are the general forms of {\tt destruct} and {\tt edestruct}.
- They combine the effects of the {\tt with}, {\tt as}, {\tt using},
- and {\tt in} clauses.
-
-\item{\tt case \term}\label{case}\tacindex{case}
-
- The tactic {\tt case} is a more basic tactic to perform case
- analysis without recursion. It behaves as {\tt elim \term} but using
- a case-analysis elimination principle and not a recursive one.
-
-\item{\tt case\_eq \term}\label{case_eq}\tacindex{case\_eq}
-
- The tactic {\tt case\_eq} is a variant of the {\tt case} tactic that
- allow to perform case analysis on a term without completely
- forgetting its original form. This is done by generating equalities
- between the original form of the term and the outcomes of the case
- analysis. The effect of this tactic is similar to the effect of {\tt
- destruct {\term} in |- *} with the exception that no new hypotheses
- are introduced in the context.
-
-\item {\tt case {\term} with {\bindinglist}}
-
- Analogous to {\tt elim {\term} with {\bindinglist}} above.
-
-\item{\tt ecase {\term}\tacindex{ecase}}\\
- {\tt ecase {\term} with {\bindinglist}}
-
- In case the type of {\term} has dependent premises, or dependent
- premises whose values are not inferable from the {\tt with
- {\bindinglist}} clause, {\tt ecase} turns them into existential
- variables to be resolved later on.
-
-\item {\tt simple destruct \ident}\tacindex{simple destruct}
-
- This tactic behaves as {\tt intros until
- {\ident}; case {\tt {\ident}}} when {\ident} is a quantified
- variable of the goal.
-
-\item {\tt simple destruct {\num}}
-
- This tactic behaves as {\tt intros until
- {\num}; case {\tt {\ident}}} where {\ident} is the name given by
- {\tt intros until {\num}} to the {\num}-th non-dependent premise of
- the goal.
-
-
-\end{Variants}
-
-\subsection{\tt intros {\intropattern} {\ldots} {\intropattern}
-\label{intros-pattern}
-\tacindex{intros \intropattern}}
-\index{Introduction patterns}
-\index{Naming introduction patterns}
-\index{Disjunctive/conjunctive introduction patterns}
-
-This extension of the tactic {\tt intros} combines introduction of
-variables or hypotheses and case analysis. An {\em introduction pattern} is
-either:
-\begin{itemize}
-\item A {\em naming introduction pattern}, i.e. either one of:
- \begin{itemize}
- \item the pattern \texttt{?}
- \item the pattern \texttt{?\ident}
- \item an identifier
- \end{itemize}
-\item A {\em disjunctive/conjunctive introduction pattern}, i.e. either one of:
- \begin{itemize}
- \item a disjunction of lists of patterns:
- {\tt [$p_{11}$ {\ldots} $p_{1m_1}$ | {\ldots} | $p_{11}$ {\ldots} $p_{nm_n}$]}
- \item a conjunction of patterns: {\tt (} $p_1$ {\tt ,} {\ldots} {\tt ,} $p_n$ {\tt )}
- \item a list of patterns {\tt (} $p_1$\ {\tt \&}\ {\ldots}\ {\tt \&}\ $p_n$ {\tt )}
- for sequence of right-associative binary constructs
- \end{itemize}
-\item the wildcard: {\tt \_}
-\item the rewriting orientations: {\tt ->} or {\tt <-}
-\end{itemize}
-
-Assuming a goal of type {\tt $Q$ -> $P$} (non dependent product), or
-of type {\tt forall $x$:$T$, $P$} (dependent product), the behavior of
-{\tt intros $p$} is defined inductively over the structure of the
-introduction pattern $p$:
-\begin{itemize}
-\item introduction on \texttt{?} performs the introduction, and lets {\Coq}
- choose a fresh name for the variable;
-\item introduction on \texttt{?\ident} performs the introduction, and
- lets {\Coq} choose a fresh name for the variable based on {\ident};
-\item introduction on \texttt{\ident} behaves as described in
- Section~\ref{intro};
-\item introduction over a disjunction of list of patterns {\tt
- [$p_{11}$ {\ldots} $p_{1m_1}$ | {\ldots} | $p_{11}$ {\ldots}
- $p_{nm_n}$]} expects the product to be over an inductive type
- whose number of constructors is $n$ (or more generally over a type
- of conclusion an inductive type built from $n$ constructors,
- e.g. {\tt C -> A$\backslash$/B if $n=2$}): it destructs the introduced
- hypothesis as {\tt destruct} (see Section~\ref{destruct}) would and
- applies on each generated subgoal the corresponding tactic;
- \texttt{intros}~$p_{i1}$ {\ldots} $p_{im_i}$; if the disjunctive
- pattern is part of a sequence of patterns and is not the last
- pattern of the sequence, then {\Coq} completes the pattern so as all
- the argument of the constructors of the inductive type are
- introduced (for instance, the list of patterns {\tt [$\;$|$\;$] H}
- applied on goal {\tt forall x:nat, x=0 -> 0=x} behaves the same as
- the list of patterns {\tt [$\,$|$\,$?$\,$] H});
-\item introduction over a conjunction of patterns {\tt ($p_1$, \ldots,
- $p_n$)} expects the goal to be a product over an inductive type $I$ with a
- single constructor that itself has at least $n$ arguments: it
- performs a case analysis over the hypothesis, as {\tt destruct}
- would, and applies the patterns $p_1$~\ldots~$p_n$ to the arguments
- of the constructor of $I$ (observe that {\tt ($p_1$, {\ldots},
- $p_n$)} is an alternative notation for {\tt [$p_1$ {\ldots}
- $p_n$]});
-\item introduction via {\tt ( $p_1$ \& \ldots \& $p_n$ )}
- is a shortcut for introduction via
- {\tt ($p_1$,(\ldots,(\dots,$p_n$)\ldots))}; it expects the
- hypothesis to be a sequence of right-associative binary inductive
- constructors such as {\tt conj} or {\tt ex\_intro}; for instance, an
- hypothesis with type {\tt A\verb|/\|exists x, B\verb|/\|C\verb|/\|D} can be
- introduced via pattern {\tt (a \& x \& b \& c \& d)};
-\item introduction on the wildcard depends on whether the product is
- dependent or not: in the non dependent case, it erases the
- corresponding hypothesis (i.e. it behaves as an {\tt intro} followed
- by a {\tt clear}, cf Section~\ref{clear}) while in the dependent
- case, it succeeds and erases the variable only if the wildcard is
- part of a more complex list of introduction patterns that also
- erases the hypotheses depending on this variable;
-\item introduction over {\tt ->} (respectively {\tt <-}) expects the
- hypothesis to be an equality and the right-hand-side (respectively
- the left-hand-side) is replaced by the left-hand-side (respectively
- the right-hand-side) in both the conclusion and the context of the goal;
- if moreover the term to substitute is a variable, the hypothesis is
- removed.
-\end{itemize}
-
-\Rem {\tt intros $p_1~\ldots~p_n$} is not equivalent to \texttt{intros
- $p_1$;\ldots; intros $p_n$} for the following reasons:
-\begin{itemize}
-\item A wildcard pattern never succeeds when applied isolated on a
- dependent product, while it succeeds as part of a list of
- introduction patterns if the hypotheses that depends on it are
- erased too.
-\item A disjunctive or conjunctive pattern followed by an introduction
- pattern forces the introduction in the context of all arguments of
- the constructors before applying the next pattern while a terminal
- disjunctive or conjunctive pattern does not. Here is an example
-
-\begin{coq_example}
-Goal forall n:nat, n = 0 -> n = 0.
-intros [ | ] H.
-Show 2.
-Undo.
-intros [ | ]; intros H.
-Show 2.
-\end{coq_example}
-
-\end{itemize}
-
-\begin{coq_example}
-Lemma intros_test : forall A B C:Prop, A \/ B /\ C -> (A -> C) -> C.
-intros A B C [a| [_ c]] f.
-apply (f a).
-exact c.
-Qed.
-\end{coq_example}
-
-%\subsection[\tt FixPoint \dots]{\tt FixPoint \dots\tacindex{Fixpoint}}
-%Not yet documented.
-
-\subsection{\tt double induction \ident$_1$ \ident$_2$}
-%\tacindex{double induction}}
-This tactic is deprecated and should be replaced by {\tt induction \ident$_1$; induction \ident$_2$} (or {\tt induction \ident$_1$; destruct \ident$_2$} depending on the exact needs).
-
-%% This tactic applies to any goal. If the variables {\ident$_1$} and
-%% {\ident$_2$} of the goal have an inductive type, then this tactic
-%% performs double induction on these variables. For instance, if the
-%% current goal is \verb+forall n m:nat, P n m+ then, {\tt double induction n
-%% m} yields the four cases with their respective inductive hypotheses.
-
-%% In particular, for proving \verb+(P (S n) (S m))+, the generated induction
-%% hypotheses are \verb+(P (S n) m)+ and \verb+(m:nat)(P n m)+ (of the latter,
-%% \verb+(P n m)+ and \verb+(P n (S m))+ are derivable).
-
-%% \Rem When the induction hypothesis \verb+(P (S n) m)+ is not
-%% needed, {\tt induction \ident$_1$; destruct \ident$_2$} produces
-%% more concise subgoals.
-
-\begin{Variant}
-
-\item {\tt double induction \num$_1$ \num$_2$}
-
-This tactic is deprecated and should be replaced by {\tt induction
- \num$_1$; induction \num$_3$} where \num$_3$ is the result of
-\num$_2$-\num$_1$.
-
-%% This tactic applies to any goal. If the variables {\ident$_1$} and
-
-%% This applies double induction on the \num$_1^{th}$ and \num$_2^{th}$ {\it
-%% non dependent} premises of the goal. More generally, any combination of an
-%% {\ident} and a {\num} is valid.
-
-\end{Variant}
-
-\subsection{\tt dependent induction \ident
- \tacindex{dependent induction}
- \label{DepInduction}}
-
-The \emph{experimental} tactic \texttt{dependent induction} performs
-induction-inversion on an instantiated inductive predicate.
-One needs to first require the {\tt Coq.Program.Equality} module to use
-this tactic. The tactic is based on the BasicElim tactic by Conor
-McBride \cite{DBLP:conf/types/McBride00} and the work of Cristina Cornes
-around inversion \cite{DBLP:conf/types/CornesT95}. From an instantiated
-inductive predicate and a goal it generates an equivalent goal where the
-hypothesis has been generalized over its indexes which are then
-constrained by equalities to be the right instances. This permits to
-state lemmas without resorting to manually adding these equalities and
-still get enough information in the proofs.
-A simple example is the following:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Lemma le_minus : forall n:nat, n < 1 -> n = 0.
-intros n H ; induction H.
-\end{coq_example}
-
-Here we didn't get any information on the indexes to help fulfill this
-proof. The problem is that when we use the \texttt{induction} tactic
-we lose information on the hypothesis instance, notably that the second
-argument is \texttt{1} here. Dependent induction solves this problem by
-adding the corresponding equality to the context.
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Import Coq.Program.Equality.
-Lemma le_minus : forall n:nat, n < 1 -> n = 0.
-intros n H ; dependent induction H.
-\end{coq_example}
-
-The subgoal is cleaned up as the tactic tries to automatically
-simplify the subgoals with respect to the generated equalities.
-In this enriched context it becomes possible to solve this subgoal.
-\begin{coq_example}
-reflexivity.
-\end{coq_example}
-
-Now we are in a contradictory context and the proof can be solved.
-\begin{coq_example}
-inversion H.
-\end{coq_example}
-
-This technique works with any inductive predicate.
-In fact, the \texttt{dependent induction} tactic is just a wrapper around
-the \texttt{induction} tactic. One can make its own variant by just
-writing a new tactic based on the definition found in
-\texttt{Coq.Program.Equality}. Common useful variants are the following,
-defined in the same file:
-
-\begin{Variants}
-\item {\tt dependent induction {\ident} generalizing {\ident$_1$} \dots
- {\ident$_n$}}\tacindex{dependent induction \dots\ generalizing}
-
- Does dependent induction on the hypothesis {\ident} but first
- generalizes the goal by the given variables so that they are
- universally quantified in the goal. This is generally what one wants
- to do with the variables that are inside some constructors in the
- induction hypothesis. The other ones need not be further generalized.
-
-\item {\tt dependent destruction {\ident}}\tacindex{dependent destruction}
-
- Does the generalization of the instance {\ident} but uses {\tt destruct}
- instead of {\tt induction} on the generalized hypothesis. This gives
- results equivalent to {\tt inversion} or {\tt dependent inversion} if
- the hypothesis is dependent.
-\end{Variants}
-
-A larger example of dependent induction and an explanation of the
-underlying technique are developed in section~\ref{dependent-induction-example}.
-
-\subsection{\tt decompose [ {\qualid$_1$} \dots\ {\qualid$_n$} ] \term
-\label{decompose}
-\tacindex{decompose}}
-
-This tactic allows to recursively decompose a
-complex proposition in order to obtain atomic ones.
-Example:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Lemma ex1 : forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C.
-intros A B C H; decompose [and or] H; assumption.
-\end{coq_example}
-\begin{coq_example*}
-Qed.
-\end{coq_example*}
-
-{\tt decompose} does not work on right-hand sides of implications or products.
-
-\begin{Variants}
-
-\item {\tt decompose sum \term}\tacindex{decompose sum}
- This decomposes sum types (like \texttt{or}).
-\item {\tt decompose record \term}\tacindex{decompose record}
- This decomposes record types (inductive types with one constructor,
- like \texttt{and} and \texttt{exists} and those defined with the
- \texttt{Record} macro, see Section~\ref{Record}).
-\end{Variants}
-
-
-\subsection{\tt functional induction (\qualid\ \term$_1$ \dots\ \term$_n$).
-\tacindex{functional induction}
-\label{FunInduction}}
-
-The \emph{experimental} tactic \texttt{functional induction} performs
-case analysis and induction following the definition of a function. It
-makes use of a principle generated by \texttt{Function}
-(see Section~\ref{Function}) or \texttt{Functional Scheme}
-(see Section~\ref{FunScheme}).
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Functional Scheme minus_ind := Induction for minus Sort Prop.
-
-Lemma le_minus : forall n m:nat, (n - m <= n).
-intros n m.
-functional induction (minus n m); simpl; auto.
-\end{coq_example}
-\begin{coq_example*}
-Qed.
-\end{coq_example*}
-
-\Rem \texttt{(\qualid\ \term$_1$ \dots\ \term$_n$)} must be a correct
-full application of \qualid. In particular, the rules for implicit
-arguments are the same as usual. For example use \texttt{@\qualid} if
-you want to write implicit arguments explicitly.
-
-\Rem Parenthesis over \qualid \dots \term$_n$ are mandatory.
-
-\Rem \texttt{functional induction (f x1 x2 x3)} is actually a wrapper
-for \texttt{induction x1 x2 x3 (f x1 x2 x3) using \qualid} followed by
-a cleaning phase, where $\qualid$ is the induction principle
-registered for $f$ (by the \texttt{Function} (see Section~\ref{Function})
-or \texttt{Functional Scheme} (see Section~\ref{FunScheme}) command)
-corresponding to the sort of the goal. Therefore \texttt{functional
- induction} may fail if the induction scheme (\texttt{\qualid}) is
-not defined. See also Section~\ref{Function} for the function terms
-accepted by \texttt{Function}.
-
-\Rem There is a difference between obtaining an induction scheme for a
-function by using \texttt{Function} (see Section~\ref{Function}) and by
-using \texttt{Functional Scheme} after a normal definition using
-\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for
-details.
-
-\SeeAlso{\ref{Function},\ref{FunScheme},\ref{FunScheme-examples},
- \ref{sec:functional-inversion}}
-
-\begin{ErrMsgs}
-\item \errindex{Cannot find induction information on \qualid}
-
- ~
-
-\item \errindex{Not the right number of induction arguments}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt functional induction (\qualid\ \term$_1$ \dots\ \term$_n$)
- using \term$_{m+1}$ with {\term$_{n+1}$} \dots {\term$_m$}}
-
- Similar to \texttt{Induction} and \texttt{elim}
- (see Section~\ref{Tac-induction}), allows to give explicitly the
- induction principle and the values of dependent premises of the
- elimination scheme, including \emph{predicates} for mutual induction
- when {\qualid} is part of a mutually recursive definition.
-
-\item {\tt functional induction (\qualid\ \term$_1$ \dots\ \term$_n$)
- using \term$_{m+1}$ with {\vref$_1$} := {\term$_{n+1}$} \dots\
- {\vref$_m$} := {\term$_n$}}
-
- Similar to \texttt{induction} and \texttt{elim}
- (see Section~\ref{Tac-induction}).
-
-\item All previous variants can be extended by the usual \texttt{as
- \intropattern} construction, similar for example to
- \texttt{induction} and \texttt{elim} (see Section~\ref{Tac-induction}).
-
-\end{Variants}
-
-
-
-\section{Equality}
-
-These tactics use the equality {\tt eq:forall A:Type, A->A->Prop}
-defined in file {\tt Logic.v} (see Section~\ref{Equality}). The
-notation for {\tt eq}~$T~t~u$ is simply {\tt $t$=$u$} dropping the
-implicit type of $t$ and $u$.
-
-\subsection{\tt rewrite \term
-\label{rewrite}
-\tacindex{rewrite}}
-
-This tactic applies to any goal. The type of {\term}
-must have the form
-
-\texttt{forall (x$_1$:A$_1$) \dots\ (x$_n$:A$_n$)}\texttt{eq} \term$_1$ \term$_2$.
-
-\noindent where \texttt{eq} is the Leibniz equality or a registered
-setoid equality.
-
-\noindent Then {\tt rewrite \term} finds the first subterm matching
-\term$_1$ in the goal, resulting in instances \term$_1'$ and \term$_2'$
-and then replaces every occurrence of \term$_1'$ by \term$_2'$.
-Hence, some of the variables x$_i$ are
-solved by unification, and some of the types \texttt{A}$_1$, \dots,
-\texttt{A}$_n$ become new subgoals.
-
-% \Rem In case the type of
-% \term$_1$ contains occurrences of variables bound in the
-% type of \term, the tactic tries first to find a subterm of the goal
-% which matches this term in order to find a closed instance \term$'_1$
-% of \term$_1$, and then all instances of \term$'_1$ will be replaced.
-
-\begin{ErrMsgs}
-\item \errindex{The term provided does not end with an equation}
-
-\item \errindex{Tactic generated a subgoal identical to the original goal}\\
-This happens if \term$_1$ does not occur in the goal.
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt rewrite -> {\term}}\tacindex{rewrite ->}\\
- Is equivalent to {\tt rewrite \term}
-
-\item {\tt rewrite <- {\term}}\tacindex{rewrite <-}\\
- Uses the equality \term$_1${\tt=}\term$_2$ from right to left
-
-\item {\tt rewrite {\term} in \textit{clause}}
- \tacindex{rewrite \dots\ in}\\
- Analogous to {\tt rewrite {\term}} but rewriting is done following
- \textit{clause} (similarly to \ref{Conversion-tactics}). For
- instance:
- \begin{itemize}
- \item \texttt{rewrite H in H1} will rewrite \texttt{H} in the hypothesis
- \texttt{H1} instead of the current goal.
- \item \texttt{rewrite H in H1 at 1, H2 at - 2 |- *} means \texttt{rewrite H; rewrite H in H1 at 1;
- rewrite H in H2 at - 2}. In particular a failure will happen if any of
- these three simpler tactics fails.
- \item \texttt{rewrite H in * |- } will do \texttt{rewrite H in
- H$_i$} for all hypothesis \texttt{H$_i$ <> H}. A success will happen
- as soon as at least one of these simpler tactics succeeds.
- \item \texttt{rewrite H in *} is a combination of \texttt{rewrite H}
- and \texttt{rewrite H in * |-} that succeeds if at
- least one of these two tactics succeeds.
- \end{itemize}
- Orientation {\tt ->} or {\tt <-} can be
- inserted before the term to rewrite.
-
-\item {\tt rewrite {\term} at {\occlist}}
- \tacindex{rewrite \dots\ at}
-
- Rewrite only the given occurrences of \term$_1'$. Occurrences are
- specified from left to right as for \texttt{pattern} (\S
- \ref{pattern}). The rewrite is always performed using setoid
- rewriting, even for Leibniz's equality, so one has to
- \texttt{Import Setoid} to use this variant.
-
-\item {\tt rewrite {\term} by {\tac}}
- \tacindex{rewrite \dots\ by}
-
- Use {\tac} to completely solve the side-conditions arising from the
- rewrite.
-
-\item {\tt rewrite $\term_1$, \ldots, $\term_n$}\\
- Is equivalent to the $n$ successive tactics {\tt rewrite $\term_1$}
- up to {\tt rewrite $\term_n$}, each one working on the first subgoal
- generated by the previous one.
- Orientation {\tt ->} or {\tt <-} can be
- inserted before each term to rewrite. One unique \textit{clause}
- can be added at the end after the keyword {\tt in}; it will
- then affect all rewrite operations.
-
-\item In all forms of {\tt rewrite} described above, a term to rewrite
- can be immediately prefixed by one of the following modifiers:
- \begin{itemize}
- \item {\tt ?} : the tactic {\tt rewrite ?$\term$} performs the
- rewrite of $\term$ as many times as possible (perhaps zero time).
- This form never fails.
- \item {\tt $n$?} : works similarly, except that it will do at most
- $n$ rewrites.
- \item {\tt !} : works as {\tt ?}, except that at least one rewrite
- should succeed, otherwise the tactic fails.
- \item {\tt $n$!} (or simply {\tt $n$}) : precisely $n$ rewrites
- of $\term$ will be done, leading to failure if these $n$ rewrites are not possible.
- \end{itemize}
-
-\item {\tt erewrite {\term}\tacindex{erewrite}}
-
-This tactic works as {\tt rewrite {\term}} but turning unresolved
-bindings into existential variables, if any, instead of failing. It has
-the same variants as {\tt rewrite} has.
-
-\end{Variants}
-
-
-\subsection{\tt cutrewrite -> \term$_1$ = \term$_2$
-\label{cutrewrite}
-\tacindex{cutrewrite}}
-
-This tactic acts like {\tt replace {\term$_1$} with {\term$_2$}}
-(see below).
-
-\subsection{\tt replace {\term$_1$} with {\term$_2$}
-\label{tactic:replace}
-\tacindex{replace \dots\ with}}
-
-This tactic applies to any goal. It replaces all free occurrences of
-{\term$_1$} in the current goal with {\term$_2$} and generates the
-equality {\term$_2$}{\tt =}{\term$_1$} as a subgoal. This equality is
-automatically solved if it occurs amongst the assumption, or if its
-symmetric form occurs. It is equivalent to {\tt cut
-\term$_2$=\term$_1$; [intro H{\sl n}; rewrite <- H{\sl n}; clear H{\sl
-n}| assumption || symmetry; try assumption]}.
-
-\begin{ErrMsgs}
-\item \errindex{terms do not have convertible types}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt replace {\term$_1$} with {\term$_2$} by \tac}\\ This acts
- as {\tt replace {\term$_1$} with {\term$_2$}} but applies {\tt \tac}
- to solve the generated subgoal {\tt \term$_2$=\term$_1$}.
-\item {\tt replace {\term}}\\ Replace {\term} with {\term'} using the
- first assumption whose type has the form {\tt \term=\term'} or {\tt
- \term'=\term}
-\item {\tt replace -> {\term}}\\ Replace {\term} with {\term'} using the
- first assumption whose type has the form {\tt \term=\term'}
-\item {\tt replace <- {\term}}\\ Replace {\term} with {\term'} using the
- first assumption whose type has the form {\tt \term'=\term}
-\item {\tt replace {\term$_1$} with {\term$_2$} \textit{clause} }\\
- {\tt replace {\term$_1$} with {\term$_2$} \textit{clause} by \tac }\\
- {\tt replace {\term} \textit{clause}}\\
- {\tt replace -> {\term} \textit{clause}}\\
- {\tt replace <- {\term} \textit{clause}}\\
- Act as before but the replacements take place in
- \textit{clause}~(see Section~\ref{Conversion-tactics}) and not only
- in the conclusion of the goal.\\
- The \textit{clause} argument must not contain any \texttt{type of} nor \texttt{value of}.
-\end{Variants}
-
-\subsection{\tt reflexivity
-\label{reflexivity}
-\tacindex{reflexivity}}
-
-This tactic applies to a goal which has the form {\tt t=u}. It checks
-that {\tt t} and {\tt u} are convertible and then solves the goal.
-It is equivalent to {\tt apply refl\_equal}.
-
-\begin{ErrMsgs}
-\item \errindex{The conclusion is not a substitutive equation}
-\item \errindex{Impossible to unify \dots\ with \dots.}
-\end{ErrMsgs}
-
-\subsection{\tt symmetry
-\tacindex{symmetry}
-\tacindex{symmetry in}}
-This tactic applies to a goal which has the form {\tt t=u} and changes it
-into {\tt u=t}.
-
-\variant {\tt symmetry in {\ident}}\\
-If the statement of the hypothesis {\ident} has the form {\tt t=u},
-the tactic changes it to {\tt u=t}.
-
-\subsection{\tt transitivity \term
-\tacindex{transitivity}}
-This tactic applies to a goal which has the form {\tt t=u}
-and transforms it into the two subgoals
-{\tt t={\term}} and {\tt {\term}=u}.
-
-\subsection{\tt subst {\ident}
-\tacindex{subst}}
-
-This tactic applies to a goal which has \ident\ in its context and
-(at least) one hypothesis, say {\tt H}, of type {\tt
- \ident=t} or {\tt t=\ident}. Then it replaces
-\ident\ by {\tt t} everywhere in the goal (in the hypotheses
-and in the conclusion) and clears \ident\ and {\tt H} from the context.
-
-\Rem
-When several hypotheses have the form {\tt \ident=t} or {\tt
- t=\ident}, the first one is used.
-
-\begin{Variants}
- \item {\tt subst \ident$_1$ \dots \ident$_n$} \\
- Is equivalent to {\tt subst \ident$_1$; \dots; subst \ident$_n$}.
- \item {\tt subst} \\
- Applies {\tt subst} repeatedly to all identifiers from the context
- for which an equality exists.
-\end{Variants}
-
-\subsection[{\tt stepl {\term}}]{{\tt stepl {\term}}\tacindex{stepl}}
-
-This tactic is for chaining rewriting steps. It assumes a goal of the
-form ``$R$ {\term}$_1$ {\term}$_2$'' where $R$ is a binary relation
-and relies on a database of lemmas of the form {\tt forall} $x$ $y$
-$z$, $R$ $x$ $y$ {\tt ->} $eq$ $x$ $z$ {\tt ->} $R$ $z$ $y$ where $eq$
-is typically a setoid equality. The application of {\tt stepl {\term}}
-then replaces the goal by ``$R$ {\term} {\term}$_2$'' and adds a new
-goal stating ``$eq$ {\term} {\term}$_1$''.
-
-Lemmas are added to the database using the command
-\comindex{Declare Left Step}
-\begin{quote}
-{\tt Declare Left Step {\term}.}
-\end{quote}
-
-The tactic is especially useful for parametric setoids which are not
-accepted as regular setoids for {\tt rewrite} and {\tt
- setoid\_replace} (see Chapter~\ref{setoid_replace}).
-
-\tacindex{stepr}
-\comindex{Declare Right Step}
-\begin{Variants}
-\item{\tt stepl {\term} by {\tac}}\\
-This applies {\tt stepl {\term}} then applies {\tac} to the second goal.
-
-\item{\tt stepr {\term}}\\
- {\tt stepr {\term} by {\tac}}\\
-This behaves as {\tt stepl} but on the right-hand-side of the binary relation.
-Lemmas are expected to be of the form
-``{\tt forall} $x$ $y$
-$z$, $R$ $x$ $y$ {\tt ->} $eq$ $y$ $z$ {\tt ->} $R$ $x$ $z$''
-and are registered using the command
-\begin{quote}
-{\tt Declare Right Step {\term}.}
-\end{quote}
-\end{Variants}
-
-
-\subsection{\tt f\_equal
-\label{f-equal}
-\tacindex{f\_equal}}
-
-This tactic applies to a goal of the form $f\ a_1\ \ldots\ a_n = f'\
-a'_1\ \ldots\ a'_n$. Using {\tt f\_equal} on such a goal leads to
-subgoals $f=f'$ and $a_1=a'_1$ and so on up to $a_n=a'_n$. Amongst
-these subgoals, the simple ones (e.g. provable by
-reflexivity or congruence) are automatically solved by {\tt f\_equal}.
-
-
-\section{Equality and inductive sets}
-
-We describe in this section some special purpose tactics dealing with
-equality and inductive sets or types. These tactics use the equality
-{\tt eq:forall (A:Type), A->A->Prop}, simply written with the
-infix symbol {\tt =}.
-
-\subsection{\tt decide equality
-\label{decideequality}
-\tacindex{decide equality}}
-
-This tactic solves a goal of the form
-{\tt forall $x$ $y$:$R$, \{$x$=$y$\}+\{\verb|~|$x$=$y$\}}, where $R$
-is an inductive type such that its constructors do not take proofs or
-functions as arguments, nor objects in dependent types.
-
-\begin{Variants}
-\item {\tt decide equality {\term}$_1$ {\term}$_2$ }.\\
- Solves a goal of the form {\tt \{}\term$_1${\tt =}\term$_2${\tt
-\}+\{\verb|~|}\term$_1${\tt =}\term$_2${\tt \}}.
-\end{Variants}
-
-\subsection{\tt compare \term$_1$ \term$_2$
-\tacindex{compare}}
-
-This tactic compares two given objects \term$_1$ and \term$_2$
-of an inductive datatype. If $G$ is the current goal, it leaves the sub-goals
-\term$_1${\tt =}\term$_2$ {\tt ->} $G$ and \verb|~|\term$_1${\tt =}\term$_2$
-{\tt ->} $G$. The type
-of \term$_1$ and \term$_2$ must satisfy the same restrictions as in the tactic
-\texttt{decide equality}.
-
-\subsection{\tt discriminate {\term}
-\label{discriminate}
-\tacindex{discriminate}
-\tacindex{ediscriminate}}
-
-This tactic proves any goal from an assumption stating that two
-structurally different terms of an inductive set are equal. For
-example, from {\tt (S (S O))=(S O)} we can derive by absurdity any
-proposition.
-
-The argument {\term} is assumed to be a proof of a statement
-of conclusion {\tt{\term$_1$} = {\term$_2$}} with {\term$_1$} and
-{\term$_2$} being elements of an inductive set. To build the proof,
-the tactic traverses the normal forms\footnote{Reminder: opaque
- constants will not be expanded by $\delta$ reductions} of
-{\term$_1$} and {\term$_2$} looking for a couple of subterms {\tt u}
-and {\tt w} ({\tt u} subterm of the normal form of {\term$_1$} and
-{\tt w} subterm of the normal form of {\term$_2$}), placed at the same
-positions and whose head symbols are two different constructors. If
-such a couple of subterms exists, then the proof of the current goal
-is completed, otherwise the tactic fails.
-
-\Rem The syntax {\tt discriminate {\ident}} can be used to refer to a
-hypothesis quantified in the goal. In this case, the quantified
-hypothesis whose name is {\ident} is first introduced in the local
-context using \texttt{intros until \ident}.
-
-\begin{ErrMsgs}
-\item \errindex{No primitive equality found}
-\item \errindex{Not a discriminable equality}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item \texttt{discriminate} \num
-
- This does the same thing as \texttt{intros until \num} followed by
- \texttt{discriminate \ident} where {\ident} is the identifier for
- the last introduced hypothesis.
-
-\item \texttt{discriminate} {\term} {\tt with} {\bindinglist}
-
- This does the same thing as \texttt{discriminate {\term}} but using
-the given bindings to instantiate parameters or hypotheses of {\term}.
-
-\item \texttt{ediscriminate} \num\\
- \texttt{ediscriminate} {\term} \zeroone{{\tt with} {\bindinglist}}
-
- This works the same as {\tt discriminate} but if the type of {\term},
- or the type of the hypothesis referred to by {\num}, has uninstantiated
- parameters, these parameters are left as existential variables.
-
-\item \texttt{discriminate}
-
- This behaves like {\tt discriminate {\ident}} if {\ident} is the
- name of an hypothesis to which {\tt discriminate} is applicable; if
- the current goal is of the form {\term$_1$} {\tt <>} {\term$_2$},
- this behaves as {\tt intro {\ident}; injection {\ident}}.
-
- \begin{ErrMsgs}
- \item \errindex{No discriminable equalities} \\
- occurs when the goal does not verify the expected preconditions.
- \end{ErrMsgs}
-\end{Variants}
-
-\subsection{\tt injection {\term}
-\label{injection}
-\tacindex{injection}
-\tacindex{einjection}}
-
-The {\tt injection} tactic is based on the fact that constructors of
-inductive sets are injections. That means that if $c$ is a constructor
-of an inductive set, and if $(c~\vec{t_1})$ and $(c~\vec{t_2})$ are two
-terms that are equal then $~\vec{t_1}$ and $~\vec{t_2}$ are equal
-too.
-
-If {\term} is a proof of a statement of conclusion
- {\tt {\term$_1$} = {\term$_2$}},
-then {\tt injection} applies injectivity as deep as possible to
-derive the equality of all the subterms of {\term$_1$} and {\term$_2$}
-placed in the same positions. For example, from {\tt (S
- (S n))=(S (S (S m))} we may derive {\tt n=(S m)}. To use this
-tactic {\term$_1$} and {\term$_2$} should be elements of an inductive
-set and they should be neither explicitly equal, nor structurally
-different. We mean by this that, if {\tt n$_1$} and {\tt n$_2$} are
-their respective normal forms, then:
-\begin{itemize}
-\item {\tt n$_1$} and {\tt n$_2$} should not be syntactically equal,
-\item there must not exist any pair of subterms {\tt u} and {\tt w},
- {\tt u} subterm of {\tt n$_1$} and {\tt w} subterm of {\tt n$_2$} ,
- placed in the same positions and having different constructors as
- head symbols.
-\end{itemize}
-If these conditions are satisfied, then, the tactic derives the
-equality of all the subterms of {\term$_1$} and {\term$_2$} placed in
-the same positions and puts them as antecedents of the current goal.
-
-\Example Consider the following goal:
-
-\begin{coq_example*}
-Inductive list : Set :=
- | nil : list
- | cons : nat -> list -> list.
-Variable P : list -> Prop.
-\end{coq_example*}
-\begin{coq_eval}
-Lemma ex :
- forall (l:list) (n:nat), P nil -> cons n l = cons 0 nil -> P l.
-intros l n H H0.
-\end{coq_eval}
-\begin{coq_example}
-Show.
-injection H0.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Beware that \texttt{injection} yields always an equality in a sigma type
-whenever the injected object has a dependent type.
-
-\Rem There is a special case for dependent pairs. If we have a decidable
-equality over the type of the first argument, then it is safe to do
-the projection on the second one, and so {\tt injection} will work fine.
-To define such an equality, you have to use the {\tt Scheme} command
-(see \ref{Scheme}).
-
-\Rem If some quantified hypothesis of the goal is named {\ident}, then
-{\tt injection {\ident}} first introduces the hypothesis in the local
-context using \texttt{intros until \ident}.
-
-\begin{ErrMsgs}
-\item \errindex{Not a projectable equality but a discriminable one}
-\item \errindex{Nothing to do, it is an equality between convertible terms}
-\item \errindex{Not a primitive equality}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item \texttt{injection} \num{}
-
- This does the same thing as \texttt{intros until \num} followed by
-\texttt{injection \ident} where {\ident} is the identifier for the last
-introduced hypothesis.
-
-\item \texttt{injection} \term{} {\tt with} {\bindinglist}
-
- This does the same as \texttt{injection {\term}} but using
- the given bindings to instantiate parameters or hypotheses of {\term}.
-
-\item \texttt{einjection} \num\\
- \texttt{einjection} \term{} \zeroone{{\tt with} {\bindinglist}}
-
- This works the same as {\tt injection} but if the type of {\term},
- or the type of the hypothesis referred to by {\num}, has uninstantiated
- parameters, these parameters are left as existential variables.
-
-\item{\tt injection}
-
- If the current goal is of the form {\term$_1$} {\tt <>} {\term$_2$},
- this behaves as {\tt intro {\ident}; injection {\ident}}.
-
- \ErrMsg \errindex{goal does not satisfy the expected preconditions}
-
-\item \texttt{injection} \term{} \zeroone{{\tt with} {\bindinglist}} \texttt{as} \nelist{\intropattern}{}\\
-\texttt{injection} \num{} \texttt{as} {\intropattern} {\ldots} {\intropattern}\\
-\texttt{injection} \texttt{as} {\intropattern} {\ldots} {\intropattern}\\
-\texttt{einjection} \term{} \zeroone{{\tt with} {\bindinglist}} \texttt{as} \nelist{\intropattern}{}\\
-\texttt{einjection} \num{} \texttt{as} {\intropattern} {\ldots} {\intropattern}\\
-\texttt{einjection} \texttt{as} {\intropattern} {\ldots} {\intropattern}\\
-\tacindex{injection \ldots{} as}
-
-These variants apply \texttt{intros} \nelist{\intropattern}{} after
-the call to \texttt{injection} or \texttt{einjection}.
-
-\end{Variants}
-
-\subsection{\tt simplify\_eq {\term}
-\tacindex{simplify\_eq}
-\tacindex{esimplify\_eq}
-\label{simplify-eq}}
-
-Let {\term} be the proof of a statement of conclusion {\tt
- {\term$_1$}={\term$_2$}}. If {\term$_1$} and
-{\term$_2$} are structurally different (in the sense described for the
-tactic {\tt discriminate}), then the tactic {\tt simplify\_eq} behaves as {\tt
- discriminate {\term}}, otherwise it behaves as {\tt injection
- {\term}}.
-
-\Rem If some quantified hypothesis of the goal is named {\ident}, then
-{\tt simplify\_eq {\ident}} first introduces the hypothesis in the local
-context using \texttt{intros until \ident}.
-
-\begin{Variants}
-\item \texttt{simplify\_eq} \num
-
- This does the same thing as \texttt{intros until \num} then
-\texttt{simplify\_eq \ident} where {\ident} is the identifier for the last
-introduced hypothesis.
-
-\item \texttt{simplify\_eq} \term{} {\tt with} {\bindinglist}
-
- This does the same as \texttt{simplify\_eq {\term}} but using
- the given bindings to instantiate parameters or hypotheses of {\term}.
-
-\item \texttt{esimplify\_eq} \num\\
- \texttt{esimplify\_eq} \term{} \zeroone{{\tt with} {\bindinglist}}
-
- This works the same as {\tt simplify\_eq} but if the type of {\term},
- or the type of the hypothesis referred to by {\num}, has uninstantiated
- parameters, these parameters are left as existential variables.
-
-\item{\tt simplify\_eq}
-
-If the current goal has form $t_1\verb=<>=t_2$, it behaves as
-\texttt{intro {\ident}; simplify\_eq {\ident}}.
-\end{Variants}
-
-\subsection{\tt dependent rewrite -> {\ident}
-\tacindex{dependent rewrite ->}
-\label{dependent-rewrite}}
-
-This tactic applies to any goal. If \ident\ has type
-\verb+(existT B a b)=(existT B a' b')+
-in the local context (i.e. each term of the
-equality has a sigma type $\{ a:A~ \&~(B~a)\}$) this tactic rewrites
-\verb+a+ into \verb+a'+ and \verb+b+ into \verb+b'+ in the current
-goal. This tactic works even if $B$ is also a sigma type. This kind
-of equalities between dependent pairs may be derived by the injection
-and inversion tactics.
-
-\begin{Variants}
-\item{\tt dependent rewrite <- {\ident}}
-\tacindex{dependent rewrite <-} \\
-Analogous to {\tt dependent rewrite ->} but uses the equality from
-right to left.
-\end{Variants}
-
-\section{Inversion
-\label{inversion}}
-
-\subsection{\tt inversion {\ident}
-\tacindex{inversion}}
-
-Let the type of \ident~ in the local context be $(I~\vec{t})$,
-where $I$ is a (co)inductive predicate. Then,
-\texttt{inversion} applied to \ident~ derives for each possible
-constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary
-conditions that should hold for the instance $(I~\vec{t})$ to be
-proved by $c_i$.
-
-\Rem If {\ident} does not denote a hypothesis in the local context
-but refers to a hypothesis quantified in the goal, then the
-latter is first introduced in the local context using
-\texttt{intros until \ident}.
-
-\begin{Variants}
-\item \texttt{inversion} \num
-
- This does the same thing as \texttt{intros until \num} then
- \texttt{inversion \ident} where {\ident} is the identifier for the
- last introduced hypothesis.
-
-\item \tacindex{inversion\_clear} \texttt{inversion\_clear} \ident
-
- This behaves as \texttt{inversion} and then erases \ident~ from the
- context.
-
-\item \tacindex{inversion \dots\ as} \texttt{inversion} {\ident} \texttt{as} {\intropattern}
-
- This behaves as \texttt{inversion} but using names in
- {\intropattern} for naming hypotheses. The {\intropattern} must have
- the form {\tt [} $p_{11}$ \ldots $p_{1n_1}$ {\tt |} {\ldots} {\tt |}
- $p_{m1}$ \ldots $p_{mn_m}$ {\tt ]} with $m$ being the number of
- constructors of the type of {\ident}. Be careful that the list must
- be of length $m$ even if {\tt inversion} discards some cases (which
- is precisely one of its roles): for the discarded cases, just use an
- empty list (i.e. $n_i=0$).
-
- The arguments of the $i^{th}$ constructor and the
- equalities that {\tt inversion} introduces in the context of the
- goal corresponding to the $i^{th}$ constructor, if it exists, get
- their names from the list $p_{i1}$ \ldots $p_{in_i}$ in order. If
- there are not enough names, {\tt induction} invents names for the
- remaining variables to introduce. In case an equation splits into
- several equations (because {\tt inversion} applies {\tt injection}
- on the equalities it generates), the corresponding name $p_{ij}$ in
- the list must be replaced by a sublist of the form {\tt [$p_{ij1}$
- \ldots $p_{ijq}$]} (or, equivalently, {\tt ($p_{ij1}$,
- \ldots, $p_{ijq}$)}) where $q$ is the number of subequalities
- obtained from splitting the original equation. Here is an example.
-
-\begin{coq_eval}
-Require Import List.
-\end{coq_eval}
-
-\begin{coq_example}
-Inductive contains0 : list nat -> Prop :=
- | in_hd : forall l, contains0 (0 :: l)
- | in_tl : forall l b, contains0 l -> contains0 (b :: l).
-Goal forall l:list nat, contains0 (1 :: l) -> contains0 l.
-intros l H; inversion H as [ | l' p Hl' [Heqp Heql'] ].
-\end{coq_example}
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\item \texttt{inversion} {\num} {\tt as} {\intropattern}
-
- This allows to name the hypotheses introduced by
- \texttt{inversion} {\num} in the context.
-
-\item \tacindex{inversion\_cleardots\ as} \texttt{inversion\_clear}
- {\ident} {\tt as} {\intropattern}
-
- This allows to name the hypotheses introduced by
- \texttt{inversion\_clear} in the context.
-
-\item \tacindex{inversion \dots\ in} \texttt{inversion } {\ident}
- \texttt{in} \ident$_1$ \dots\ \ident$_n$
-
- Let \ident$_1$ \dots\ \ident$_n$, be identifiers in the local context. This
- tactic behaves as generalizing \ident$_1$ \dots\ \ident$_n$, and
- then performing \texttt{inversion}.
-
-\item \tacindex{inversion \dots\ as \dots\ in} \texttt{inversion }
- {\ident} {\tt as} {\intropattern} \texttt{in} \ident$_1$ \dots\
- \ident$_n$
-
- This allows to name the hypotheses introduced in the context by
- \texttt{inversion} {\ident} \texttt{in} \ident$_1$ \dots\
- \ident$_n$.
-
-\item \tacindex{inversion\_clear \dots\ in} \texttt{inversion\_clear}
- {\ident} \texttt{in} \ident$_1$ \ldots \ident$_n$
-
- Let \ident$_1$ \dots\ \ident$_n$, be identifiers in the local context. This
- tactic behaves as generalizing \ident$_1$ \dots\ \ident$_n$, and
- then performing {\tt inversion\_clear}.
-
-\item \tacindex{inversion\_clear \dots\ as \dots\ in}
- \texttt{inversion\_clear} {\ident} \texttt{as} {\intropattern}
- \texttt{in} \ident$_1$ \ldots \ident$_n$
-
- This allows to name the hypotheses introduced in the context by
- \texttt{inversion\_clear} {\ident} \texttt{in} \ident$_1$ \ldots
- \ident$_n$.
-
-\item \tacindex{dependent inversion} \texttt{dependent inversion}
- {\ident}
-
- That must be used when \ident\ appears in the current goal. It acts
- like \texttt{inversion} and then substitutes \ident\ for the
- corresponding term in the goal.
-
-\item \tacindex{dependent inversion \dots\ as } \texttt{dependent
- inversion} {\ident} \texttt{as} {\intropattern}
-
- This allows to name the hypotheses introduced in the context by
- \texttt{dependent inversion} {\ident}.
-
-\item \tacindex{dependent inversion\_clear} \texttt{dependent
- inversion\_clear} {\ident}
-
- Like \texttt{dependent inversion}, except that {\ident} is cleared
- from the local context.
-
-\item \tacindex{dependent inversion\_clear \dots\ as}
- \texttt{dependent inversion\_clear} {\ident}\texttt{as} {\intropattern}
-
- This allows to name the hypotheses introduced in the context by
- \texttt{dependent inversion\_clear} {\ident}.
-
-\item \tacindex{dependent inversion \dots\ with} \texttt{dependent
- inversion } {\ident} \texttt{ with } \term
-
- This variant allows you to specify the generalization of the goal. It
- is useful when the system fails to generalize the goal automatically. If
- {\ident} has type $(I~\vec{t})$ and $I$ has type
- $forall (\vec{x}:\vec{T}), s$, then \term~ must be of type
- $I:forall (\vec{x}:\vec{T}), I~\vec{x}\to s'$ where $s'$ is the
- type of the goal.
-
-\item \tacindex{dependent inversion \dots\ as \dots\ with}
- \texttt{dependent inversion } {\ident} \texttt{as} {\intropattern}
- \texttt{ with } \term
-
- This allows to name the hypotheses introduced in the context by
- \texttt{dependent inversion } {\ident} \texttt{ with } \term.
-
-\item \tacindex{dependent inversion\_clear \dots\ with}
- \texttt{dependent inversion\_clear } {\ident} \texttt{ with } \term
-
- Like \texttt{dependent inversion \dots\ with} but clears {\ident} from
- the local context.
-
-\item \tacindex{dependent inversion\_clear \dots\ as \dots\ with}
- \texttt{dependent inversion\_clear } {\ident} \texttt{as}
- {\intropattern} \texttt{ with } \term
-
- This allows to name the hypotheses introduced in the context by
- \texttt{dependent inversion\_clear } {\ident} \texttt{ with } \term.
-
-\item \tacindex{simple inversion} \texttt{simple inversion} {\ident}
-
- It is a very primitive inversion tactic that derives all the necessary
- equalities but it does not simplify the constraints as
- \texttt{inversion} does.
-
-\item \tacindex{simple inversion \dots\ as} \texttt{simple inversion}
- {\ident} \texttt{as} {\intropattern}
-
- This allows to name the hypotheses introduced in the context by
- \texttt{simple inversion}.
-
-\item \tacindex{inversion \dots\ using} \texttt{inversion} \ident
- \texttt{ using} \ident$'$
-
- Let {\ident} have type $(I~\vec{t})$ ($I$ an inductive
- predicate) in the local context, and \ident$'$ be a (dependent) inversion
- lemma. Then, this tactic refines the current goal with the specified
- lemma.
-
-\item \tacindex{inversion \dots\ using \dots\ in} \texttt{inversion}
- {\ident} \texttt{using} \ident$'$ \texttt{in} \ident$_1$\dots\ \ident$_n$
-
- This tactic behaves as generalizing \ident$_1$\dots\ \ident$_n$,
- then doing \texttt{inversion} {\ident} \texttt{using} \ident$'$.
-
-\end{Variants}
-
-\SeeAlso~\ref{inversion-examples} for detailed examples
-
-\subsection{\tt Derive Inversion {\ident} with
- ${\tt forall (}\vec{x}{\tt :}\vec{T}{\tt),} I~\vec{t}$ Sort \sort
-\label{Derive-Inversion}
-\comindex{Derive Inversion}}
-
-This command generates an inversion principle for the
-\texttt{inversion \dots\ using} tactic.
-Let $I$ be an inductive predicate and $\vec{x}$ the variables
-occurring in $\vec{t}$. This command generates and stocks the
-inversion lemma for the sort \sort~ corresponding to the instance
-$forall (\vec{x}:\vec{T}), I~\vec{t}$ with the name {\ident} in the {\bf
-global} environment. When applied it is equivalent to have inverted
-the instance with the tactic {\tt inversion}.
-
-\begin{Variants}
-\item \texttt{Derive Inversion\_clear} {\ident} \texttt{with}
- \comindex{Derive Inversion\_clear}
- $forall (\vec{x}:\vec{T}), I~\vec{t}$ \texttt{Sort} \sort~ \\
- \index{Derive Inversion\_clear \dots\ with}
- When applied it is equivalent to having
- inverted the instance with the tactic \texttt{inversion}
- replaced by the tactic \texttt{inversion\_clear}.
-\item \texttt{Derive Dependent Inversion} {\ident} \texttt{with}
- $forall (\vec{x}:\vec{T}), I~\vec{t}$ \texttt{Sort} \sort~\\
- \comindex{Derive Dependent Inversion}
- When applied it is equivalent to having
- inverted the instance with the tactic \texttt{dependent inversion}.
-\item \texttt{Derive Dependent Inversion\_clear} {\ident} \texttt{with}
- $forall (\vec{x}:\vec{T}), I~\vec{t}$ \texttt{Sort} \sort~\\
- \comindex{Derive Dependent Inversion\_clear}
- When applied it is equivalent to having
- inverted the instance with the tactic \texttt{dependent inversion\_clear}.
-\end{Variants}
-
-\SeeAlso \ref{inversion-examples} for examples
-
-
-
-\subsection[\tt functional inversion \ident]{\tt functional inversion \ident\label{sec:functional-inversion}}
-
-\texttt{functional inversion} is a \emph{highly} experimental tactic
-which performs inversion on hypothesis \ident\ of the form
-\texttt{\qualid\ \term$_1$\dots\term$_n$\ = \term} or \texttt{\term\ =
- \qualid\ \term$_1$\dots\term$_n$} where \qualid\ must have been
-defined using \texttt{Function} (see Section~\ref{Function}).
-
-\begin{ErrMsgs}
-\item \errindex{Hypothesis {\ident} must contain at least one Function}
-\item \errindex{Cannot find inversion information for hypothesis \ident}
- This error may be raised when some inversion lemma failed to be
- generated by Function.
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt functional inversion \num}
-
- This does the same thing as \texttt{intros until \num} then
- \texttt{functional inversion \ident} where {\ident} is the
- identifier for the last introduced hypothesis.
-\item {\tt functional inversion \ident\ \qualid}\\
- {\tt functional inversion \num\ \qualid}
-
- In case the hypothesis {\ident} (or {\num}) has a type of the form
- \texttt{\qualid$_1$\ \term$_1$\dots\term$_n$\ =\ \qualid$_2$\
- \term$_{n+1}$\dots\term$_{n+m}$} where \qualid$_1$ and \qualid$_2$
- are valid candidates to functional inversion, this variant allows to
- choose which must be inverted.
-\end{Variants}
-
-
-
-\subsection{\tt quote \ident
-\tacindex{quote}
-\index{2-level approach}}
-
-This kind of inversion has nothing to do with the tactic
-\texttt{inversion} above. This tactic does \texttt{change (\ident\
- t)}, where \texttt{t} is a term built in order to ensure the
-convertibility. In other words, it does inversion of the function
-\ident. This function must be a fixpoint on a simple recursive
-datatype: see~\ref{quote-examples} for the full details.
-
-\begin{ErrMsgs}
-\item \errindex{quote: not a simple fixpoint}\\
- Happens when \texttt{quote} is not able to perform inversion properly.
-\end{ErrMsgs}
-
-\begin{Variants}
-\item \texttt{quote {\ident} [ \ident$_1$ \dots \ident$_n$ ]}\\
- All terms that are built only with \ident$_1$ \dots \ident$_n$ will be
- considered by \texttt{quote} as constants rather than variables.
-\end{Variants}
-
-% En attente d'un moyen de valoriser les fichiers de demos
-% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v} in the distribution
-
-\section[Classical tactics]{Classical tactics\label{ClassicalTactics}}
-
-In order to ease the proving process, when the {\tt Classical} module is loaded. A few more tactics are available. Make sure to load the module using the \texttt{Require Import} command.
-
-\subsection{{\tt classical\_left, classical\_right} \tacindex{classical\_left} \tacindex{classical\_right}}
-
-The tactics \texttt{classical\_left} and \texttt{classical\_right} are the analog of the \texttt{left} and \texttt{right} but using classical logic. They can only be used for disjunctions.
-Use \texttt{classical\_left} to prove the left part of the disjunction with the assumption that the negation of right part holds.
-Use \texttt{classical\_right} to prove the right part of the disjunction with the assumption that the negation of left part holds.
-
-\section{Automatizing
-\label{Automatizing}}
-
-\subsection{\tt auto
-\label{auto}
-\tacindex{auto}}
-
-This tactic implements a Prolog-like resolution procedure to solve the
-current goal. It first tries to solve the goal using the {\tt
- assumption} tactic, then it reduces the goal to an atomic one using
-{\tt intros} and introducing the newly generated hypotheses as hints.
-Then it looks at the list of tactics associated to the head symbol of
-the goal and tries to apply one of them (starting from the tactics
-with lower cost). This process is recursively applied to the generated
-subgoals.
-
-By default, \texttt{auto} only uses the hypotheses of the current goal and the
-hints of the database named {\tt core}.
-
-\begin{Variants}
-
-\item {\tt auto \num}
-
- Forces the search depth to be \num. The maximal search depth is 5 by
- default.
-
-\item {\tt auto with \ident$_1$ \dots\ \ident$_n$}
-
- Uses the hint databases $\ident_1$ \dots\ $\ident_n$ in addition to
- the database {\tt core}. See Section~\ref{Hints-databases} for the
- list of pre-defined databases and the way to create or extend a
- database. This option can be combined with the previous one.
-
-\item {\tt auto with *}
-
- Uses all existing hint databases, minus the special database
- {\tt v62}. See Section~\ref{Hints-databases}
-
-\item \texttt{auto using \nterm{lemma}$_1$ , \ldots , \nterm{lemma}$_n$}
-
- Uses \nterm{lemma}$_1$, \ldots, \nterm{lemma}$_n$ in addition to
- hints (can be combined with the \texttt{with \ident} option). If
- $lemma_i$ is an inductive type, it is the collection of its
- constructors which is added as hints.
-
-\item \texttt{auto using \nterm{lemma}$_1$ , \ldots , \nterm{lemma}$_n$ with \ident$_1$ \dots\ \ident$_n$}
-
- This combines the effects of the {\tt using} and {\tt with} options.
-
-\item {\tt trivial}\tacindex{trivial}
-
- This tactic is a restriction of {\tt auto} that is not recursive and
- tries only hints which cost 0. Typically it solves trivial
- equalities like $X=X$.
-
-\item \texttt{trivial with \ident$_1$ \dots\ \ident$_n$}
-
-\item \texttt{trivial with *}
-
-\end{Variants}
-
-\Rem {\tt auto} either solves completely the goal or else leaves it
-intact. \texttt{auto} and \texttt{trivial} never fail.
-
-\SeeAlso Section~\ref{Hints-databases}
-
-\subsection{\tt eauto
-\tacindex{eauto}
-\label{eauto}}
-
-This tactic generalizes {\tt auto}. In contrast with
-the latter, {\tt eauto} uses unification of the goal
-against the hints rather than pattern-matching
-(in other words, it uses {\tt eapply} instead of
-{\tt apply}).
-As a consequence, {\tt eauto} can solve such a goal:
-
-\begin{coq_example}
-Hint Resolve ex_intro.
-Goal forall P:nat -> Prop, P 0 -> exists n, P n.
-eauto.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Note that {\tt ex\_intro} should be declared as an
-hint.
-
-\SeeAlso Section~\ref{Hints-databases}
-
-\subsection{\tt autounfold with \ident$_1$ \dots\ \ident$_n$
-\tacindex{autounfold}
-\label{autounfold}}
-
-This tactic unfolds constants that were declared through a {\tt Hint
- Unfold} in the given databases.
-
-\begin{Variants}
-\item {\tt autounfold with \ident$_1$ \dots\ \ident$_n$ in \textit{clause}}
-
- Perform the unfolding in the given clause.
-
-\item {\tt autounfold with *}
-
- Uses the unfold hints declared in all the hint databases.
-\end{Variants}
-
-
-% EXISTE ENCORE ?
-%
-% \subsection{\tt Prolog [ \term$_1$ \dots\ \term$_n$ ] \num}
-% \tacindex{Prolog}\label{Prolog}
-% This tactic, implemented by Chet Murthy, is based upon the concept of
-% existential variables of Gilles Dowek, stating that resolution is a
-% kind of unification. It tries to solve the current goal using the {\tt
-% Assumption} tactic, the {\tt intro} tactic, and applying hypotheses
-% of the local context and terms of the given list {\tt [ \term$_1$
-% \dots\ \term$_n$\ ]}. It is more powerful than {\tt auto} since it
-% may apply to any theorem, even those of the form {\tt (x:A)(P x) -> Q}
-% where {\tt x} does not appear free in {\tt Q}. The maximal search
-% depth is {\tt \num}.
-
-% \begin{ErrMsgs}
-% \item \errindex{Prolog failed}\\
-% The Prolog tactic was not able to prove the subgoal.
-% \end{ErrMsgs}
-
-\subsection{\tt tauto
-\tacindex{tauto}
-\label{tauto}}
-
-This tactic implements a decision procedure for intuitionistic propositional
-calculus based on the contraction-free sequent calculi LJT* of Roy Dyckhoff
-\cite{Dyc92}. Note that {\tt tauto} succeeds on any instance of an
-intuitionistic tautological proposition. {\tt tauto} unfolds negations
-and logical equivalence but does not unfold any other definition.
-
-The following goal can be proved by {\tt tauto} whereas {\tt auto}
-would fail:
-
-\begin{coq_example}
-Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x.
- intros.
- tauto.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Moreover, if it has nothing else to do, {\tt tauto} performs
-introductions. Therefore, the use of {\tt intros} in the previous
-proof is unnecessary. {\tt tauto} can for instance prove the
-following:
-\begin{coq_example}
-(* auto would fail *)
-Goal forall (A:Prop) (P:nat -> Prop),
- A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A -> P x.
-
- tauto.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\Rem In contrast, {\tt tauto} cannot solve the following goal
-
-\begin{coq_example*}
-Goal forall (A:Prop) (P:nat -> Prop),
- A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x).
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-because \verb=(forall x:nat, ~ A -> P x)= cannot be treated as atomic and an
-instantiation of \verb=x= is necessary.
-
-\subsection{\tt intuition {\tac}
-\tacindex{intuition}
-\label{intuition}}
-
-The tactic \texttt{intuition} takes advantage of the search-tree built
-by the decision procedure involved in the tactic {\tt tauto}. It uses
-this information to generate a set of subgoals equivalent to the
-original one (but simpler than it) and applies the tactic
-{\tac} to them \cite{Mun94}. If this tactic fails on some goals then
-{\tt intuition} fails. In fact, {\tt tauto} is simply {\tt intuition
- fail}.
-
-For instance, the tactic {\tt intuition auto} applied to the goal
-\begin{verbatim}
-(forall (x:nat), P x)/\B -> (forall (y:nat),P y)/\ P O \/B/\ P O
-\end{verbatim}
-internally replaces it by the equivalent one:
-\begin{verbatim}
-(forall (x:nat), P x), B |- P O
-\end{verbatim}
-and then uses {\tt auto} which completes the proof.
-
-Originally due to C{\'e}sar~Mu{\~n}oz, these tactics ({\tt tauto} and {\tt intuition})
-have been completely re-engineered by David~Delahaye using mainly the tactic
-language (see Chapter~\ref{TacticLanguage}). The code is now much shorter and
-a significant increase in performance has been noticed. The general behavior
-with respect to dependent types, unfolding and introductions has
-slightly changed to get clearer semantics. This may lead to some
-incompatibilities.
-
-\begin{Variants}
-\item {\tt intuition}\\
- Is equivalent to {\tt intuition auto with *}.
-\end{Variants}
-
-% En attente d'un moyen de valoriser les fichiers de demos
-%\SeeAlso file \texttt{contrib/Rocq/DEMOS/Demo\_tauto.v}
-
-
-\subsection{\tt rtauto
-\tacindex{rtauto}
-\label{rtauto}}
-
-The {\tt rtauto} tactic solves propositional tautologies similarly to what {\tt tauto} does. The main difference is that the proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure is also implemented using a different technique.
-
-Users should be aware that this difference may result in faster proof-search but slower proof-checking, and {\tt rtauto} might not solve goals that {\tt tauto} would be able to solve (e.g. goals involving universal quantifiers).
-
-\subsection{{\tt firstorder}
-\tacindex{firstorder}
-\label{firstorder}}
-
-The tactic \texttt{firstorder} is an {\it experimental} extension of
-\texttt{tauto} to
-first-order reasoning, written by Pierre Corbineau.
-It is not restricted to usual logical connectives but
-instead may reason about any first-order class inductive definition.
-
-\begin{Variants}
- \item {\tt firstorder {\tac}}
- \tacindex{firstorder {\tac}}
-
- Tries to solve the goal with {\tac} when no logical rule may apply.
-
- \item {\tt firstorder with \ident$_1$ \dots\ \ident$_n$ }
- \tacindex{firstorder with}
-
- Adds lemmas \ident$_1$ \dots\ \ident$_n$ to the proof-search
- environment.
-
- \item {\tt firstorder using {\qualid}$_1$ , \dots\ , {\qualid}$_n$ }
- \tacindex{firstorder using}
-
- Adds lemmas in {\tt auto} hints bases {\qualid}$_1$ \dots\ {\qualid}$_n$
- to the proof-search environment. If {\qualid}$_i$ refers to an inductive
- type, it is the collection of its constructors which is added as hints.
-
-\item \texttt{firstorder using {\qualid}$_1$ , \dots\ , {\qualid}$_n$ with \ident$_1$ \dots\ \ident$_n$}
-
- This combines the effects of the {\tt using} and {\tt with} options.
-
-\end{Variants}
-
-Proof-search is bounded by a depth parameter which can be set by typing the
-{\nobreak \tt Set Firstorder Depth $n$} \comindex{Set Firstorder Depth}
-vernacular command.
-
-%% \subsection{{\tt jp} {\em (Jprover)}
-%% \tacindex{jp}
-%% \label{jprover}}
-
-%% The tactic \texttt{jp}, due to Huang Guan-Shieng, is an experimental
-%% port of the {\em Jprover}\cite{SLKN01} semi-decision procedure for
-%% first-order intuitionistic logic implemented in {\em
-%% NuPRL}\cite{Kre02}.
-
-%% The tactic \texttt{jp}, due to Huang Guan-Shieng, is an {\it
-%% experimental} port of the {\em Jprover}\cite{SLKN01} semi-decision
-%% procedure for first-order intuitionistic logic implemented in {\em
-%% NuPRL}\cite{Kre02}.
-
-%% Search may optionnaly be bounded by a multiplicity parameter
-%% indicating how many (at most) copies of a formula may be used in
-%% the proof process, its absence may lead to non-termination of the tactic.
-
-%% %\begin{coq_eval}
-%% %Variable S:Set.
-%% %Variables P Q:S->Prop.
-%% %Variable f:S->S.
-%% %\end{coq_eval}
-
-%% %\begin{coq_example*}
-%% %Lemma example: (exists x |P x\/Q x)->(exists x |P x)\/(exists x |Q x).
-%% %jp.
-%% %Qed.
-
-%% %Lemma example2: (forall x ,P x->P (f x))->forall x,P x->P (f(f x)).
-%% %jp.
-%% %Qed.
-%% %\end{coq_example*}
-
-%% \begin{Variants}
-%% \item {\tt jp $n$}\\
-%% \tacindex{jp $n$}
-%% Tries the {\em Jprover} procedure with multiplicities up to $n$,
-%% starting from 1.
-%% \item {\tt jp}\\
-%% Tries the {\em Jprover} procedure without multiplicity bound,
-%% possibly running forever.
-%% \end{Variants}
-
-%% \begin{ErrMsgs}
-%% \item \errindex{multiplicity limit reached}\\
-%% The procedure tried all multiplicities below the limit and
-%% failed. Goal might be solved by increasing the multiplicity limit.
-%% \item \errindex{formula is not provable}\\
-%% The procedure determined that goal was not provable in
-%% intuitionistic first-order logic, no matter how big the
-%% multiplicity is.
-%% \end{ErrMsgs}
-
-
-% \subsection[\tt Linear]{\tt Linear\tacindex{Linear}\label{Linear}}
-% The tactic \texttt{Linear}, due to Jean-Christophe Filli{\^a}atre
-% \cite{Fil94}, implements a decision procedure for {\em Direct
-% Predicate Calculus}, that is first-order Gentzen's Sequent Calculus
-% without contraction rules \cite{KeWe84,BeKe92}. Intuitively, a
-% first-order goal is provable in Direct Predicate Calculus if it can be
-% proved using each hypothesis at most once.
-
-% Unlike the previous tactics, the \texttt{Linear} tactic does not belong
-% to the initial state of the system, and it must be loaded explicitly
-% with the command
-
-% \begin{coq_example*}
-% Require Linear.
-% \end{coq_example*}
-
-% For instance, assuming that \texttt{even} and \texttt{odd} are two
-% predicates on natural numbers, and \texttt{a} of type \texttt{nat}, the
-% tactic \texttt{Linear} solves the following goal
-
-% \begin{coq_eval}
-% Variables even,odd : nat -> Prop.
-% Variable a:nat.
-% \end{coq_eval}
-
-% \begin{coq_example*}
-% Lemma example : (even a)
-% -> ((x:nat)((even x)->(odd (S x))))
-% -> (EX y | (odd y)).
-% \end{coq_example*}
-
-% You can find examples of the use of \texttt{Linear} in
-% \texttt{theories/DEMOS/DemoLinear.v}.
-% \begin{coq_eval}
-% Abort.
-% \end{coq_eval}
-
-% \begin{Variants}
-% \item {\tt Linear with \ident$_1$ \dots\ \ident$_n$}\\
-% \tacindex{Linear with}
-% Is equivalent to apply first {\tt generalize \ident$_1$ \dots
-% \ident$_n$} (see Section~\ref{generalize}) then the \texttt{Linear}
-% tactic. So one can use axioms, lemmas or hypotheses of the local
-% context with \texttt{Linear} in this way.
-% \end{Variants}
-
-% \begin{ErrMsgs}
-% \item \errindex{Not provable in Direct Predicate Calculus}
-% \item \errindex{Found $n$ classical proof(s) but no intuitionistic one}\\
-% The decision procedure looks actually for classical proofs of the
-% goals, and then checks that they are intuitionistic. In that case,
-% classical proofs have been found, which do not correspond to
-% intuitionistic ones.
-% \end{ErrMsgs}
-
-\subsection{\tt congruence
-\tacindex{congruence}
-\label{congruence}}
-
-The tactic {\tt congruence}, by Pierre Corbineau, implements the standard Nelson and Oppen
-congruence closure algorithm, which is a decision procedure for ground
-equalities with uninterpreted symbols. It also include the constructor theory
-(see \ref{injection} and \ref{discriminate}).
-If the goal is a non-quantified equality, {\tt congruence} tries to
-prove it with non-quantified equalities in the context. Otherwise it
-tries to infer a discriminable equality from those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation of another hypothesis.
-
-{\tt congruence} is also able to take advantage of hypotheses stating quantified equalities, you have to provide a bound for the number of extra equalities generated that way. Please note that one of the members of the equality must contain all the quantified variables in order for {\tt congruence} to match against it.
-
-\begin{coq_eval}
-Reset Initial.
-Variable A:Set.
-Variables a b:A.
-Variable f:A->A.
-Variable g:A->A->A.
-\end{coq_eval}
-
-\begin{coq_example}
-Theorem T:
- a=(f a) -> (g b (f a))=(f (f a)) -> (g a b)=(f (g b a)) -> (g a b)=a.
-intros.
-congruence.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-Variable A:Set.
-Variables a c d:A.
-Variable f:A->A*A.
-\end{coq_eval}
-
-\begin{coq_example}
-Theorem inj : f = pair a -> Some (f c) = Some (f d) -> c=d.
-intros.
-congruence.
-\end{coq_example}
-
-\begin{Variants}
- \item {\tt congruence {\sl n}}\\
- Tries to add at most {\tt \sl n} instances of hypotheses stating quantified equalities to the problem in order to solve it. A bigger value of {\tt \sl n} does not make success slower, only failure. You might consider adding some lemmas as hypotheses using {\tt assert} in order for congruence to use them.
-
-\end{Variants}
-
-\begin{Variants}
-\item {\tt congruence with \term$_1$ \dots\ \term$_n$}\\
- Adds {\tt \term$_1$ \dots\ \term$_n$} to the pool of terms used by
- {\tt congruence}. This helps in case you have partially applied
- constructors in your goal.
-\end{Variants}
-
-\begin{ErrMsgs}
- \item \errindex{I don't know how to handle dependent equality} \\
- The decision procedure managed to find a proof of the goal or of
- a discriminable equality but this proof couldn't be built in {\Coq}
- because of dependently-typed functions.
- \item \errindex{I couldn't solve goal} \\
- The decision procedure didn't find any way to solve the goal.
- \item \errindex{Goal is solvable by congruence but some arguments are missing. Try "congruence with \dots", replacing metavariables by arbitrary terms.} \\
- The decision procedure could solve the goal with the provision
- that additional arguments are supplied for some partially applied
- constructors. Any term of an appropriate type will allow the
- tactic to successfully solve the goal. Those additional arguments
- can be given to {\tt congruence} by filling in the holes in the
- terms given in the error message, using the {\tt with} variant
- described above.
-\end{ErrMsgs}
-
-\subsection{\tt omega
-\tacindex{omega}
-\label{omega}}
-
-The tactic \texttt{omega}, due to Pierre Cr{\'e}gut,
-is an automatic decision procedure for Presburger
-arithmetic. It solves quantifier-free
-formulas built with \verb|~|, \verb|\/|, \verb|/\|,
-\verb|->| on top of equalities, inequalities and disequalities on
-both the type \texttt{nat} of natural numbers and \texttt{Z} of binary
-integers. This tactic must be loaded by the command \texttt{Require Import
- Omega}. See the additional documentation about \texttt{omega}
-(see Chapter~\ref{OmegaChapter}).
-
-\subsection{{\tt ring} and {\tt ring\_simplify \term$_1$ \dots\ \term$_n$}
-\tacindex{ring}
-\tacindex{ring\_simplify}
-\comindex{Add Ring}}
-
-The {\tt ring} tactic solves equations upon polynomial expressions of
-a ring (or semi-ring) structure. It proceeds by normalizing both hand
-sides of the equation (w.r.t. associativity, commutativity and
-distributivity, constant propagation) and comparing syntactically the
-results.
-
-{\tt ring\_simplify} applies the normalization procedure described
-above to the terms given. The tactic then replaces all occurrences of
-the terms given in the conclusion of the goal by their normal
-forms. If no term is given, then the conclusion should be an equation
-and both hand sides are normalized.
-
-See Chapter~\ref{ring} for more information on the tactic and how to
-declare new ring structures.
-
-\subsection{{\tt field}, {\tt field\_simplify \term$_1$\dots\ \term$_n$}
- and {\tt field\_simplify\_eq}
-\tacindex{field}
-\tacindex{field\_simplify}
-\tacindex{field\_simplify\_eq}
-\comindex{Add Field}}
-
-The {\tt field} tactic is built on the same ideas as {\tt ring}: this
-is a reflexive tactic that solves or simplifies equations in a field
-structure. The main idea is to reduce a field expression (which is an
-extension of ring expressions with the inverse and division
-operations) to a fraction made of two polynomial expressions.
-
-Tactic {\tt field} is used to solve subgoals, whereas {\tt
- field\_simplify \term$_1$\dots\term$_n$} replaces the provided terms
-by their reduced fraction. {\tt field\_simplify\_eq} applies when the
-conclusion is an equation: it simplifies both hand sides and multiplies
-so as to cancel denominators. So it produces an equation without
-division nor inverse.
-
-All of these 3 tactics may generate a subgoal in order to prove that
-denominators are different from zero.
-
-See Chapter~\ref{ring} for more information on the tactic and how to
-declare new field structures.
-
-\Example
-\begin{coq_example*}
-Require Import Reals.
-Goal forall x y:R,
- (x * y > 0)%R ->
- (x * (1 / x + x / (x + y)))%R =
- ((- 1 / y) * y * (- x * (x / (x + y)) - 1))%R.
-\end{coq_example*}
-
-\begin{coq_example}
-intros; field.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\SeeAlso file {\tt plugins/setoid\_ring/RealField.v} for an example of instantiation,\\
-\phantom{\SeeAlso}theory {\tt theories/Reals} for many examples of use of {\tt
-field}.
-
-\subsection{\tt fourier
-\tacindex{fourier}}
-
-This tactic written by Lo{\"\i}c Pottier solves linear inequalities on
-real numbers using Fourier's method~\cite{Fourier}. This tactic must
-be loaded by {\tt Require Import Fourier}.
-
-\Example
-\begin{coq_example*}
-Require Import Reals.
-Require Import Fourier.
-Goal forall x y:R, (x < y)%R -> (y + 1 >= x - 1)%R.
-\end{coq_example*}
-
-\begin{coq_example}
-intros; fourier.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\subsection{\tt autorewrite with \ident$_1$ \dots \ident$_n$.
-\label{tactic:autorewrite}
-\tacindex{autorewrite}}
-
-This tactic \footnote{The behavior of this tactic has much changed compared to
-the versions available in the previous distributions (V6). This may cause
-significant changes in your theories to obtain the same result. As a drawback
-of the re-engineering of the code, this tactic has also been completely revised
-to get a very compact and readable version.} carries out rewritings according
-the rewriting rule bases {\tt \ident$_1$ \dots \ident$_n$}.
-
-Each rewriting rule of a base \ident$_i$ is applied to the main subgoal until
-it fails. Once all the rules have been processed, if the main subgoal has
-progressed (e.g., if it is distinct from the initial main goal) then the rules
-of this base are processed again. If the main subgoal has not progressed then
-the next base is processed. For the bases, the behavior is exactly similar to
-the processing of the rewriting rules.
-
-The rewriting rule bases are built with the {\tt Hint~Rewrite} vernacular
-command.
-
-\Warning{} This tactic may loop if you build non terminating rewriting systems.
-
-\begin{Variant}
-\item {\tt autorewrite with \ident$_1$ \dots \ident$_n$ using \tac}\\
-Performs, in the same way, all the rewritings of the bases {\tt \ident$_1$ $...$
-\ident$_n$} applying {\tt \tac} to the main subgoal after each rewriting step.
-
-\item \texttt{autorewrite with {\ident$_1$} \dots \ident$_n$ in {\qualid}}
-
- Performs all the rewritings in hypothesis {\qualid}.
-\item \texttt{autorewrite with {\ident$_1$} \dots \ident$_n$ in {\qualid} using \tac}
-
- Performs all the rewritings in hypothesis {\qualid} applying {\tt
- \tac} to the main subgoal after each rewriting step.
-
-\item \texttt{autorewrite with {\ident$_1$} \dots \ident$_n$ in \textit{clause}}
- Performs all the rewritings in the clause \textit{clause}. \\
- The \textit{clause} argument must not contain any \texttt{type of} nor \texttt{value of}.
-
-\end{Variant}
-
-\SeeAlso Section~\ref{HintRewrite} for feeding the database of lemmas used by {\tt autorewrite}.
-
-\SeeAlso Section~\ref{autorewrite-example} for examples showing the use of
-this tactic.
-
-% En attente d'un moyen de valoriser les fichiers de demos
-%\SeeAlso file \texttt{contrib/Rocq/DEMOS/Demo\_AutoRewrite.v}
-
-\section{Controlling automation}
-
-\subsection{The hints databases for {\tt auto} and {\tt eauto}
-\index{Hints databases}
-\label{Hints-databases}
-\comindex{Hint}}
-
-The hints for \texttt{auto} and \texttt{eauto} are stored in
-databases. Each database maps head symbols to a list of hints. One can
-use the command \texttt{Print Hint \ident} to display the hints
-associated to the head symbol \ident{} (see \ref{PrintHint}). Each
-hint has a cost that is an nonnegative integer, and an optional pattern.
-The hints with lower cost are tried first. A hint is tried by
-\texttt{auto} when the conclusion of the current goal
-matches its pattern or when it has no pattern.
-
-\subsubsection*{Creating Hint databases
- \label{CreateHintDb}\comindex{CreateHintDb}}
-
-One can optionally declare a hint database using the command
-\texttt{Create HintDb}. If a hint is added to an unknown database, it
-will be automatically created.
-
-\medskip
-\texttt{Create HintDb} {\ident} [\texttt{discriminated}]
-\medskip
-
-This command creates a new database named \ident.
-The database is implemented by a Discrimination Tree (DT) that serves as
-an index of all the lemmas. The DT can use transparency information to decide
-if a constant should be indexed or not (c.f. \ref{HintTransparency}),
-making the retrieval more efficient.
-The legacy implementation (the default one for new databases) uses the
-DT only on goals without existentials (i.e., auto goals), for non-Immediate
-hints and do not make use of transparency hints, putting more work on the
-unification that is run after retrieval (it keeps a list of the lemmas
-in case the DT is not used). The new implementation enabled by
-the {\tt discriminated} option makes use of DTs in all cases and takes
-transparency information into account. However, the order in which hints
-are retrieved from the DT may differ from the order in which they were
-inserted, making this implementation observationaly different from the
-legacy one.
-
-\begin{Variants}
-\item\texttt{Local Hint} \textsl{hint\_definition} \texttt{:}
- \ident$_1$ \ldots\ \ident$_n$
-
- This is used to declare a hint database that must not be exported to the other
- modules that require and import the current module. Inside a
- section, the option {\tt Local} is useless since hints do not
- survive anyway to the closure of sections.
-
-\end{Variants}
-
-The general
-command to add a hint to some database \ident$_1$, \dots, \ident$_n$ is:
-\begin{tabbing}
- \texttt{Hint} \textsl{hint\_definition} \texttt{:} \ident$_1$ \ldots\ \ident$_n$
-\end{tabbing}
-where {\sl hint\_definition} is one of the following expressions:
-
-\begin{itemize}
-\item \texttt{Resolve} {\term}
- \comindex{Hint Resolve}
-
- This command adds {\tt apply {\term}} to the hint list
- with the head symbol of the type of \term. The cost of that hint is
- the number of subgoals generated by {\tt apply {\term}}.
-
- In case the inferred type of \term\ does not start with a product the
- tactic added in the hint list is {\tt exact {\term}}. In case this
- type can be reduced to a type starting with a product, the tactic {\tt
- apply {\term}} is also stored in the hints list.
-
- If the inferred type of \term\ contains a dependent
- quantification on a predicate, it is added to the hint list of {\tt
- eapply} instead of the hint list of {\tt apply}. In this case, a
- warning is printed since the hint is only used by the tactic {\tt
- eauto} (see \ref{eauto}). A typical example of a hint that is used
- only by \texttt{eauto} is a transitivity lemma.
-
- \begin{ErrMsgs}
- \item \errindex{Bound head variable}
-
- The head symbol of the type of {\term} is a bound variable such
- that this tactic cannot be associated to a constant.
-
- \item \term\ \errindex{cannot be used as a hint}
-
- The type of \term\ contains products over variables which do not
- appear in the conclusion. A typical example is a transitivity axiom.
- In that case the {\tt apply} tactic fails, and thus is useless.
-
- \end{ErrMsgs}
-
- \begin{Variants}
-
- \item \texttt{Resolve} {\term$_1$} \dots {\term$_m$}
-
- Adds each \texttt{Resolve} {\term$_i$}.
-
- \end{Variants}
-
-\item \texttt{Immediate {\term}}
-\comindex{Hint Immediate}
-
- This command adds {\tt apply {\term}; trivial} to the hint list
- associated with the head symbol of the type of {\ident} in the given
- database. This tactic will fail if all the subgoals generated by
- {\tt apply {\term}} are not solved immediately by the {\tt trivial}
- tactic (which only tries tactics with cost $0$).
-
- This command is useful for theorems such as the symmetry of equality
- or $n+1=m+1 \to n=m$ that we may like to introduce with a
- limited use in order to avoid useless proof-search.
-
- The cost of this tactic (which never generates subgoals) is always 1,
- so that it is not used by {\tt trivial} itself.
-
- \begin{ErrMsgs}
-
- \item \errindex{Bound head variable}
-
- \item \term\ \errindex{cannot be used as a hint}
-
- \end{ErrMsgs}
-
- \begin{Variants}
-
- \item \texttt{Immediate} {\term$_1$} \dots {\term$_m$}
-
- Adds each \texttt{Immediate} {\term$_i$}.
-
- \end{Variants}
-
-\item \texttt{Constructors} {\ident}
-\comindex{Hint Constructors}
-
- If {\ident} is an inductive type, this command adds all its
- constructors as hints of type \texttt{Resolve}. Then, when the
- conclusion of current goal has the form \texttt{({\ident} \dots)},
- \texttt{auto} will try to apply each constructor.
-
- \begin{ErrMsgs}
-
- \item {\ident} \errindex{is not an inductive type}
-
- \item {\ident} \errindex{not declared}
-
- \end{ErrMsgs}
-
- \begin{Variants}
-
- \item \texttt{Constructors} {\ident$_1$} \dots {\ident$_m$}
-
- Adds each \texttt{Constructors} {\ident$_i$}.
-
- \end{Variants}
-
-\item \texttt{Unfold} {\qualid}
-\comindex{Hint Unfold}
-
- This adds the tactic {\tt unfold {\qualid}} to the hint list that
- will only be used when the head constant of the goal is \ident. Its
- cost is 4.
-
- \begin{Variants}
-
- \item \texttt{Unfold} {\ident$_1$} \dots {\ident$_m$}
-
- Adds each \texttt{Unfold} {\ident$_i$}.
-
- \end{Variants}
-
-\item \texttt{Transparent}, \texttt{Opaque} {\qualid}
-\label{HintTransparency}
-\comindex{Hint Transparent}
-\comindex{Hint Opaque}
-
- This adds a transparency hint to the database, making {\tt {\qualid}}
- a transparent or opaque constant during resolution. This information
- is used during unification of the goal with any lemma in the database
- and inside the discrimination network to relax or constrain it in the
- case of \texttt{discriminated} databases.
-
- \begin{Variants}
-
- \item \texttt{Transparent}, \texttt{Opaque} {\ident$_1$} \dots {\ident$_m$}
-
- Declares each {\ident$_i$} as a transparent or opaque constant.
-
- \end{Variants}
-
-\item \texttt{Extern \num\ [\pattern]\ => }\textsl{tactic}
-\comindex{Hint Extern}
-
- This hint type is to extend \texttt{auto} with tactics other than
- \texttt{apply} and \texttt{unfold}. For that, we must specify a
- cost, an optional pattern and a tactic to execute. Here is an example:
-
-\begin{quotation}
-\begin{verbatim}
-Hint Extern 4 ~(?=?) => discriminate.
-\end{verbatim}
-\end{quotation}
-
- Now, when the head of the goal is a disequality, \texttt{auto} will
- try \texttt{discriminate} if it does not manage to solve the goal
- with hints with a cost less than 4.
-
- One can even use some sub-patterns of the pattern in the tactic
- script. A sub-pattern is a question mark followed by an ident, like
- \texttt{?X1} or \texttt{?X2}. Here is an example:
-
-% Require EqDecide.
-\begin{coq_example*}
-Require Import List.
-\end{coq_example*}
-\begin{coq_example}
-Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) =>
- generalize X1, X2; decide equality : eqdec.
-Goal
-forall a b:list (nat * nat), {a = b} + {a <> b}.
-info auto with eqdec.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\end{itemize}
-
-\Rem One can use an \texttt{Extern} hint with no pattern to do
-pattern-matching on hypotheses using \texttt{match goal with} inside
-the tactic.
-
-\begin{Variants}
-\item \texttt{Hint} \textsl{hint\_definition}
-
- No database name is given: the hint is registered in the {\tt core}
- database.
-
-\item\texttt{Hint Local} \textsl{hint\_definition} \texttt{:}
- \ident$_1$ \ldots\ \ident$_n$
-
- This is used to declare hints that must not be exported to the other
- modules that require and import the current module. Inside a
- section, the option {\tt Local} is useless since hints do not
- survive anyway to the closure of sections.
-
-\item\texttt{Hint Local} \textsl{hint\_definition}
-
- Idem for the {\tt core} database.
-
-\end{Variants}
-
-% There are shortcuts that allow to define several goal at once:
-
-% \begin{itemize}
-% \item \comindex{Hints Resolve}\texttt{Hints Resolve \ident$_1$ \dots\ \ident$_n$ : \ident.}\\
-% This command is a shortcut for the following ones:
-% \begin{quotation}
-% \noindent\texttt{Hint \ident$_1$ : \ident\ := Resolve \ident$_1$}\\
-% \dots\\
-% \texttt{Hint \ident$_1$ : \ident := Resolve \ident$_1$}
-% \end{quotation}
-% Notice that the hint name is the same that the theorem given as
-% hint.
-% \item \comindex{Hints Immediate}\texttt{Hints Immediate \ident$_1$ \dots\ \ident$_n$ : \ident.}\\
-% \item \comindex{Hints Unfold}\texttt{Hints Unfold \qualid$_1$ \dots\ \qualid$_n$ : \ident.}\\
-% \end{itemize}
-
-%\begin{Warnings}
-% \item \texttt{Overriding hint named \dots\ in database \dots}
-%\end{Warnings}
-
-
-
-\subsection{Hint databases defined in the \Coq\ standard library}
-
-Several hint databases are defined in the \Coq\ standard library. The
-actual content of a database is the collection of the hints declared
-to belong to this database in each of the various modules currently
-loaded. Especially, requiring new modules potentially extend a
-database. At {\Coq} startup, only the {\tt core} and {\tt v62}
-databases are non empty and can be used.
-
-\begin{description}
-
-\item[\tt core] This special database is automatically used by
- \texttt{auto}. It contains only basic lemmas about negation,
- conjunction, and so on from. Most of the hints in this database come
- from the \texttt{Init} and \texttt{Logic} directories.
-
-\item[\tt arith] This database contains all lemmas about Peano's
- arithmetic proved in the directories \texttt{Init} and
- \texttt{Arith}
-
-\item[\tt zarith] contains lemmas about binary signed integers from
- the directories \texttt{theories/ZArith}. When required, the module
- {\tt Omega} also extends the database {\tt zarith} with a high-cost
- hint that calls {\tt omega} on equations and inequalities in {\tt
- nat} or {\tt Z}.
-
-\item[\tt bool] contains lemmas about booleans, mostly from directory
- \texttt{theories/Bool}.
-
-\item[\tt datatypes] is for lemmas about lists, streams and so on that
- are mainly proved in the \texttt{Lists} subdirectory.
-
-\item[\tt sets] contains lemmas about sets and relations from the
- directories \texttt{Sets} and \texttt{Relations}.
-
-\item[\tt typeclass\_instances] contains all the type class instances
- declared in the environment, including those used for \texttt{setoid\_rewrite},
- from the \texttt{Classes} directory.
-\end{description}
-
-There is also a special database called {\tt v62}. It collects all
-hints that were declared in the versions of {\Coq} prior to version
-6.2.4 when the databases {\tt core}, {\tt arith}, and so on were
-introduced. The purpose of the database {\tt v62} is to ensure
-compatibility with further versions of {\Coq} for developments done in
-versions prior to 6.2.4 ({\tt auto} being replaced by {\tt auto with v62}).
-The database {\tt v62} is intended not to be extended (!). It is not
-included in the hint databases list used in the {\tt auto with *} tactic.
-
-Furthermore, you are advised not to put your own hints in the
-{\tt core} database, but use one or several databases specific to your
-development.
-
-\subsection{\tt Print Hint
-\label{PrintHint}
-\comindex{Print Hint}}
-
-This command displays all hints that apply to the current goal. It
-fails if no proof is being edited, while the two variants can be used at
-every moment.
-
-\begin{Variants}
-
-\item {\tt Print Hint {\ident} }
-
- This command displays only tactics associated with \ident\ in the
- hints list. This is independent of the goal being edited, so this
- command will not fail if no goal is being edited.
-
-\item {\tt Print Hint *}
-
- This command displays all declared hints.
-
-\item {\tt Print HintDb {\ident} }
-\label{PrintHintDb}
-\comindex{Print HintDb}
-
- This command displays all hints from database \ident.
-
-\end{Variants}
-
-\subsection{\tt Hint Rewrite \term$_1$ \dots \term$_n$ : \ident
-\label{HintRewrite}
-\comindex{Hint Rewrite}}
-
-This vernacular command adds the terms {\tt \term$_1$ \dots \term$_n$}
-(their types must be equalities) in the rewriting base {\tt \ident}
-with the default orientation (left to right). Notice that the
-rewriting bases are distinct from the {\tt auto} hint bases and that
-{\tt auto} does not take them into account.
-
-This command is synchronous with the section mechanism (see \ref{Section}):
-when closing a section, all aliases created by \texttt{Hint Rewrite} in that
-section are lost. Conversely, when loading a module, all \texttt{Hint Rewrite}
-declarations at the global level of that module are loaded.
-
-\begin{Variants}
-\item {\tt Hint Rewrite -> \term$_1$ \dots \term$_n$ : \ident}\\
-This is strictly equivalent to the command above (we only make explicit the
-orientation which otherwise defaults to {\tt ->}).
-
-\item {\tt Hint Rewrite <- \term$_1$ \dots \term$_n$ : \ident}\\
-Adds the rewriting rules {\tt \term$_1$ \dots \term$_n$} with a right-to-left
-orientation in the base {\tt \ident}.
-
-\item {\tt Hint Rewrite \term$_1$ \dots \term$_n$ using {\tac} : {\ident}}\\
-When the rewriting rules {\tt \term$_1$ \dots \term$_n$} in {\tt \ident} will
-be used, the tactic {\tt \tac} will be applied to the generated subgoals, the
-main subgoal excluded.
-
-%% \item
-%% {\tt Hint Rewrite [ \term$_1$ \dots \term$_n$ ] in \ident}\\
-%% {\tt Hint Rewrite [ \term$_1$ \dots \term$_n$ ] in {\ident} using {\tac}}\\
-%% These are deprecated syntactic variants for
-%% {\tt Hint Rewrite \term$_1$ \dots \term$_n$ : \ident} and
-%% {\tt Hint Rewrite \term$_1$ \dots \term$_n$ using {\tac} : {\ident}}.
-
-\item \texttt{Print Rewrite HintDb {\ident}}
-
- This command displays all rewrite hints contained in {\ident}.
-
-\end{Variants}
-
-\subsection{Hints and sections
-\label{Hint-and-Section}}
-
-Hints provided by the \texttt{Hint} commands are erased when closing a
-section. Conversely, all hints of a module \texttt{A} that are not
-defined inside a section (and not defined with option {\tt Local}) become
-available when the module {\tt A} is imported (using
-e.g. \texttt{Require Import A.}).
-
-\subsection{Setting implicit automation tactics}
-
-\subsubsection[\tt Proof with {\tac}.]{\tt Proof with {\tac}.\label{ProofWith}
-\comindex{Proof with}}
-
- This command may be used to start a proof. It defines a default
- tactic to be used each time a tactic command {\tac$_1$} is ended by
- ``\verb#...#''. In this case the tactic command typed by the user is
- equivalent to \tac$_1$;{\tac}.
-
-\SeeAlso {\tt Proof.} in Section~\ref{BeginProof}.
-
-\subsubsection[\tt Declare Implicit Tactic {\tac}.]{\tt Declare Implicit Tactic {\tac}.\comindex{Declare Implicit Tactic}}
-
-This command declares a tactic to be used to solve implicit arguments
-that {\Coq} does not know how to solve by unification. It is used
-every time the term argument of a tactic has one of its holes not
-fully resolved.
-
-Here is an example:
-
-\begin{coq_example}
-Parameter quo : nat -> forall n:nat, n<>0 -> nat.
-Notation "x // y" := (quo x y _) (at level 40).
-
-Declare Implicit Tactic assumption.
-Goal forall n m, m<>0 -> { q:nat & { r | q * m + r = n } }.
-intros.
-exists (n // m).
-\end{coq_example}
-
-The tactic {\tt exists (n // m)} did not fail. The hole was solved by
-{\tt assumption} so that it behaved as {\tt exists (quo n m H)}.
-
-\section{Generation of induction principles with {\tt Scheme}
-\label{Scheme}
-\index{Schemes}
-\comindex{Scheme}}
-
-The {\tt Scheme} command is a high-level tool for generating
-automatically (possibly mutual) induction principles for given types
-and sorts. Its syntax follows the schema:
-\begin{quote}
-{\tt Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} \dots\\
- with {\ident$_m$} := Induction for {\ident'$_m$} Sort
- {\sort$_m$}}
-\end{quote}
-where \ident'$_1$ \dots\ \ident'$_m$ are different inductive type
-identifiers belonging to the same package of mutual inductive
-definitions. This command generates {\ident$_1$}\dots{} {\ident$_m$}
-to be mutually recursive definitions. Each term {\ident$_i$} proves a
-general principle of mutual induction for objects in type {\term$_i$}.
-
-\begin{Variants}
-\item {\tt Scheme {\ident$_1$} := Minimality for \ident'$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} \dots\ \\
- with {\ident$_m$} := Minimality for {\ident'$_m$} Sort
- {\sort$_m$}}
-
- Same as before but defines a non-dependent elimination principle more
- natural in case of inductively defined relations.
-
-\item {\tt Scheme Equality for \ident$_1$\comindex{Scheme Equality}}
-
- Tries to generate a boolean equality and a proof of the
- decidability of the usual equality.
-
-\item {\tt Scheme Induction for \ident$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} \dots\\
- with Induction for {\ident$_m$} Sort
- {\sort$_m$}}
-
- If you do not provide the name of the schemes, they will be automatically
- computed from the sorts involved (works also with Minimality).
-
-\end{Variants}
-
-\SeeAlso Section~\ref{Scheme-examples}
-
-\subsection{Automatic declaration of schemes}
-\comindex{Set Equality Schemes}
-\comindex{Set Elimination Schemes}
-It is possible to deactivate the automatic declaration of the induction
- principles when defining a new inductive type with the
- {\tt Unset Elimination Schemes} command. It may be
-reactivated at any time with {\tt Set Elimination Schemes}.
-\\
-
-You can also activate the automatic declaration of those boolean equalities
-(see the second variant of {\tt Scheme}) with the {\tt Set Equality Schemes}
- command. However you have to be careful with this option since
-\Coq~ may now reject well-defined inductive types because it cannot compute
-a boolean equality for them.
-
-\subsection{\tt Combined Scheme\label{CombinedScheme}
-\comindex{Combined Scheme}}
-The {\tt Combined Scheme} command is a tool for combining
-induction principles generated by the {\tt Scheme} command.
-Its syntax follows the schema :
-
-\noindent
-{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}\\
-\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to
-the same package of mutual inductive principle definitions. This command
-generates {\ident$_0$} to be the conjunction of the principles: it is
-built from the common premises of the principles and concluded by the
-conjunction of their conclusions.
-
-\SeeAlso Section~\ref{CombinedScheme-examples}
-
-\section{Generation of induction principles with {\tt Functional Scheme}
-\label{FunScheme}
-\comindex{Functional Scheme}}
-
-The {\tt Functional Scheme} command is a high-level experimental
-tool for generating automatically induction principles
-corresponding to (possibly mutually recursive) functions. Its
-syntax follows the schema:
-\begin{quote}
-{\tt Functional Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} \dots\ \\
- with {\ident$_m$} := Induction for {\ident'$_m$} Sort
- {\sort$_m$}}
-\end{quote}
-where \ident'$_1$ \dots\ \ident'$_m$ are different mutually defined function
-names (they must be in the same order as when they were defined).
-This command generates the induction principles
-\ident$_1$\dots\ident$_m$, following the recursive structure and case
-analyses of the functions \ident'$_1$ \dots\ \ident'$_m$.
-
-
-\paragraph{\texttt{Functional Scheme}}
-There is a difference between obtaining an induction scheme by using
-\texttt{Functional Scheme} on a function defined by \texttt{Function}
-or not. Indeed \texttt{Function} generally produces smaller
-principles, closer to the definition written by the user.
-
-
-\SeeAlso Section~\ref{FunScheme-examples}
-
-
-\section{Simple tactic macros
-\index{Tactic macros}
-\comindex{Tactic Definition}
-\label{TacticDefinition}}
-
-A simple example has more value than a long explanation:
-
-\begin{coq_example}
-Ltac Solve := simpl; intros; auto.
-Ltac ElimBoolRewrite b H1 H2 :=
- elim b; [ intros; rewrite H1; eauto | intros; rewrite H2; eauto ].
-\end{coq_example}
-
-The tactics macros are synchronous with the \Coq\ section mechanism:
-a tactic definition is deleted from the current environment
-when you close the section (see also \ref{Section})
-where it was defined. If you want that a
-tactic macro defined in a module is usable in the modules that
-require it, you should put it outside of any section.
-
-Chapter~\ref{TacticLanguage} gives examples of more complex
-user-defined tactics.
-
-
-% $Id: RefMan-tac.tex 13344 2010-07-28 15:04:36Z msozeau $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-tacex.tex b/doc/refman/RefMan-tacex.tex
deleted file mode 100644
index 8330a434..00000000
--- a/doc/refman/RefMan-tacex.tex
+++ /dev/null
@@ -1,1505 +0,0 @@
-\chapter[Detailed examples of tactics]{Detailed examples of tactics\label{Tactics-examples}}
-
-This chapter presents detailed examples of certain tactics, to
-illustrate their behavior.
-
-\section[\tt refine]{\tt refine\tacindex{refine}
-\label{refine-example}}
-
-This tactic applies to any goal. It behaves like {\tt exact} with a
-big difference : the user can leave some holes (denoted by \texttt{\_} or
-{\tt (\_:}{\it type}{\tt )}) in the term.
-{\tt refine} will generate as many
-subgoals as they are holes in the term. The type of holes must be
-either synthesized by the system or declared by an
-explicit cast like \verb|(\_:nat->Prop)|. This low-level
-tactic can be useful to advanced users.
-
-%\firstexample
-\Example
-
-\begin{coq_example*}
-Inductive Option : Set :=
- | Fail : Option
- | Ok : bool -> Option.
-\end{coq_example}
-\begin{coq_example}
-Definition get : forall x:Option, x <> Fail -> bool.
-refine
- (fun x:Option =>
- match x return x <> Fail -> bool with
- | Fail => _
- | Ok b => fun _ => b
- end).
-intros; absurd (Fail = Fail); trivial.
-\end{coq_example}
-\begin{coq_example*}
-Defined.
-\end{coq_example*}
-
-% \example{Using Refine to build a poor-man's ``Cases'' tactic}
-
-% \texttt{Refine} is actually the only way for the user to do
-% a proof with the same structure as a {\tt Cases} definition. Actually,
-% the tactics \texttt{case} (see \ref{case}) and \texttt{Elim} (see
-% \ref{elim}) only allow one step of elementary induction.
-
-% \begin{coq_example*}
-% Require Bool.
-% Require Arith.
-% \end{coq_example*}
-% %\begin{coq_eval}
-% %Abort.
-% %\end{coq_eval}
-% \begin{coq_example}
-% Definition one_two_or_five := [x:nat]
-% Cases x of
-% (1) => true
-% | (2) => true
-% | (5) => true
-% | _ => false
-% end.
-% Goal (x:nat)(Is_true (one_two_or_five x)) -> x=(1)\/x=(2)\/x=(5).
-% \end{coq_example}
-
-% A traditional script would be the following:
-
-% \begin{coq_example*}
-% Destruct x.
-% Tauto.
-% Destruct n.
-% Auto.
-% Destruct n0.
-% Auto.
-% Destruct n1.
-% Tauto.
-% Destruct n2.
-% Tauto.
-% Destruct n3.
-% Auto.
-% Intros; Inversion H.
-% \end{coq_example*}
-
-% With the tactic \texttt{Refine}, it becomes quite shorter:
-
-% \begin{coq_example*}
-% Restart.
-% \end{coq_example*}
-% \begin{coq_example}
-% Refine [x:nat]
-% <[y:nat](Is_true (one_two_or_five y))->(y=(1)\/y=(2)\/y=(5))>
-% Cases x of
-% (1) => [H]?
-% | (2) => [H]?
-% | (5) => [H]?
-% | n => [H](False_ind ? H)
-% end; Auto.
-% \end{coq_example}
-% \begin{coq_eval}
-% Abort.
-% \end{coq_eval}
-
-\section[\tt eapply]{\tt eapply\tacindex{eapply}
-\label{eapply-example}}
-\Example
-Assume we have a relation on {\tt nat} which is transitive:
-
-\begin{coq_example*}
-Variable R : nat -> nat -> Prop.
-Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
-Variables n m p : nat.
-Hypothesis Rnm : R n m.
-Hypothesis Rmp : R m p.
-\end{coq_example*}
-
-Consider the goal {\tt (R n p)} provable using the transitivity of
-{\tt R}:
-
-\begin{coq_example*}
-Goal R n p.
-\end{coq_example*}
-
-The direct application of {\tt Rtrans} with {\tt apply} fails because
-no value for {\tt y} in {\tt Rtrans} is found by {\tt apply}:
-
-\begin{coq_eval}
-Set Printing Depth 50.
-(********** The following is not correct and should produce **********)
-(**** Error: generated subgoal (R n ?17) has metavariables in it *****)
-\end{coq_eval}
-\begin{coq_example}
-apply Rtrans.
-\end{coq_example}
-
-A solution is to rather apply {\tt (Rtrans n m p)}.
-
-\begin{coq_example}
-apply (Rtrans n m p).
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-More elegantly, {\tt apply Rtrans with (y:=m)} allows to only mention
-the unknown {\tt m}:
-
-\begin{coq_example}
-
- apply Rtrans with (y := m).
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-Another solution is to mention the proof of {\tt (R x y)} in {\tt
-Rtrans}...
-
-\begin{coq_example}
-
- apply Rtrans with (1 := Rnm).
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-... or the proof of {\tt (R y z)}:
-
-\begin{coq_example}
-
- apply Rtrans with (2 := Rmp).
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-On the opposite, one can use {\tt eapply} which postpone the problem
-of finding {\tt m}. Then one can apply the hypotheses {\tt Rnm} and {\tt
-Rmp}. This instantiates the existential variable and completes the proof.
-
-\begin{coq_example}
-eapply Rtrans.
-apply Rnm.
-apply Rmp.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset R.
-\end{coq_eval}
-
-\section[{\tt Scheme}]{{\tt Scheme}\comindex{Scheme}
-\label{Scheme-examples}}
-
-\firstexample
-\example{Induction scheme for \texttt{tree} and \texttt{forest}}
-
-The definition of principle of mutual induction for {\tt tree} and
-{\tt forest} over the sort {\tt Set} is defined by the command:
-
-\begin{coq_eval}
-Reset Initial.
-Variables A B :
- Set.
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive tree : Set :=
- node : A -> forest -> tree
-with forest : Set :=
- | leaf : B -> forest
- | cons : tree -> forest -> forest.
-
-Scheme tree_forest_rec := Induction for tree Sort Set
- with forest_tree_rec := Induction for forest Sort Set.
-\end{coq_example*}
-
-You may now look at the type of {\tt tree\_forest\_rec}:
-
-\begin{coq_example}
-Check tree_forest_rec.
-\end{coq_example}
-
-This principle involves two different predicates for {\tt trees} and
-{\tt forests}; it also has three premises each one corresponding to a
-constructor of one of the inductive definitions.
-
-The principle {\tt forest\_tree\_rec} shares exactly the same
-premises, only the conclusion now refers to the property of forests.
-
-\begin{coq_example}
-Check forest_tree_rec.
-\end{coq_example}
-
-\example{Predicates {\tt odd} and {\tt even} on naturals}
-
-Let {\tt odd} and {\tt even} be inductively defined as:
-
-% Reset Initial.
-\begin{coq_eval}
-Open Scope nat_scope.
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive odd : nat -> Prop :=
- oddS : forall n:nat, even n -> odd (S n)
-with even : nat -> Prop :=
- | evenO : even 0
- | evenS : forall n:nat, odd n -> even (S n).
-\end{coq_example*}
-
-The following command generates a powerful elimination
-principle:
-
-\begin{coq_example}
-Scheme odd_even := Minimality for odd Sort Prop
- with even_odd := Minimality for even Sort Prop.
-\end{coq_example}
-
-The type of {\tt odd\_even} for instance will be:
-
-\begin{coq_example}
-Check odd_even.
-\end{coq_example}
-
-The type of {\tt even\_odd} shares the same premises but the
-conclusion is {\tt (n:nat)(even n)->(Q n)}.
-
-\subsection[{\tt Combined Scheme}]{{\tt Combined Scheme}\comindex{Combined Scheme}
-\label{CombinedScheme-examples}}
-
-We can define the induction principles for trees and forests using:
-\begin{coq_example}
-Scheme tree_forest_ind := Induction for tree Sort Prop
- with forest_tree_ind := Induction for forest Sort Prop.
-\end{coq_example}
-
-Then we can build the combined induction principle which gives the
-conjunction of the conclusions of each individual principle:
-\begin{coq_example}
-Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
-\end{coq_example}
-
-The type of {\tt tree\_forest\_mutrec} will be:
-\begin{coq_example}
-Check tree_forest_mutind.
-\end{coq_example}
-
-\section[{\tt Functional Scheme} and {\tt functional induction}]{{\tt Functional Scheme} and {\tt functional induction}\comindex{Functional Scheme}\tacindex{functional induction}
-\label{FunScheme-examples}}
-
-\firstexample
-\example{Induction scheme for \texttt{div2}}
-
-We define the function \texttt{div2} as follows:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{coq_example*}
-Require Import Arith.
-Fixpoint div2 (n:nat) : nat :=
- match n with
- | O => 0
- | S O => 0
- | S (S n') => S (div2 n')
- end.
-\end{coq_example*}
-
-The definition of a principle of induction corresponding to the
-recursive structure of \texttt{div2} is defined by the command:
-
-\begin{coq_example}
-Functional Scheme div2_ind := Induction for div2 Sort Prop.
-\end{coq_example}
-
-You may now look at the type of {\tt div2\_ind}:
-
-\begin{coq_example}
-Check div2_ind.
-\end{coq_example}
-
-We can now prove the following lemma using this principle:
-
-
-\begin{coq_example*}
-Lemma div2_le' : forall n:nat, div2 n <= n.
-intro n.
- pattern n , (div2 n).
-\end{coq_example*}
-
-
-\begin{coq_example}
-apply div2_ind; intros.
-\end{coq_example}
-
-\begin{coq_example*}
-auto with arith.
-auto with arith.
-simpl; auto with arith.
-Qed.
-\end{coq_example*}
-
-We can use directly the \texttt{functional induction}
-(\ref{FunInduction}) tactic instead of the pattern/apply trick:
-
-\begin{coq_example*}
-Reset div2_le'.
-Lemma div2_le : forall n:nat, div2 n <= n.
-intro n.
-\end{coq_example*}
-
-\begin{coq_example}
-functional induction (div2 n).
-\end{coq_example}
-
-\begin{coq_example*}
-auto with arith.
-auto with arith.
-auto with arith.
-Qed.
-\end{coq_example*}
-
-\Rem There is a difference between obtaining an induction scheme for a
-function by using \texttt{Function} (see Section~\ref{Function}) and by
-using \texttt{Functional Scheme} after a normal definition using
-\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for
-details.
-
-
-\example{Induction scheme for \texttt{tree\_size}}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-We define trees by the following mutual inductive type:
-
-\begin{coq_example*}
-Variable A : Set.
-Inductive tree : Set :=
- node : A -> forest -> tree
-with forest : Set :=
- | empty : forest
- | cons : tree -> forest -> forest.
-\end{coq_example*}
-
-We define the function \texttt{tree\_size} that computes the size
-of a tree or a forest. Note that we use \texttt{Function} which
-generally produces better principles.
-
-\begin{coq_example*}
-Function tree_size (t:tree) : nat :=
- match t with
- | node A f => S (forest_size f)
- end
- with forest_size (f:forest) : nat :=
- match f with
- | empty => 0
- | cons t f' => (tree_size t + forest_size f')
- end.
-\end{coq_example*}
-
-Remark: \texttt{Function} generates itself non mutual induction
-principles {\tt tree\_size\_ind} and {\tt forest\_size\_ind}:
-
-\begin{coq_example}
-Check tree_size_ind.
-\end{coq_example}
-
-The definition of mutual induction principles following the recursive
-structure of \texttt{tree\_size} and \texttt{forest\_size} is defined
-by the command:
-
-\begin{coq_example*}
-Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
-with forest_size_ind2 := Induction for forest_size Sort Prop.
-\end{coq_example*}
-
-You may now look at the type of {\tt tree\_size\_ind2}:
-
-\begin{coq_example}
-Check tree_size_ind2.
-\end{coq_example}
-
-
-
-
-\section[{\tt inversion}]{{\tt inversion}\tacindex{inversion}
-\label{inversion-examples}}
-
-\subsection*{Generalities about inversion}
-
-When working with (co)inductive predicates, we are very often faced to
-some of these situations:
-\begin{itemize}
-\item we have an inconsistent instance of an inductive predicate in the
- local context of hypotheses. Thus, the current goal can be trivially
- proved by absurdity.
-\item we have a hypothesis that is an instance of an inductive
- predicate, and the instance has some variables whose constraints we
- would like to derive.
-\end{itemize}
-
-The inversion tactics are very useful to simplify the work in these
-cases. Inversion tools can be classified in three groups:
-
-\begin{enumerate}
-\item tactics for inverting an instance without stocking the inversion
- lemma in the context; this includes the tactics
- (\texttt{dependent}) \texttt{inversion} and
- (\texttt{dependent}) \texttt{inversion\_clear}.
-\item commands for generating and stocking in the context the inversion
- lemma corresponding to an instance; this includes \texttt{Derive}
- (\texttt{Dependent}) \texttt{Inversion} and \texttt{Derive}
- (\texttt{Dependent}) \texttt{Inversion\_clear}.
-\item tactics for inverting an instance using an already defined
- inversion lemma; this includes the tactic \texttt{inversion \ldots using}.
-\end{enumerate}
-
-As inversion proofs may be large in size, we recommend the user to
-stock the lemmas whenever the same instance needs to be inverted
-several times.
-
-\firstexample
-\example{Non-dependent inversion}
-
-Let's consider the relation \texttt{Le} over natural numbers and the
-following variables:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive Le : nat -> nat -> Set :=
- | LeO : forall n:nat, Le 0 n
- | LeS : forall n m:nat, Le n m -> Le (S n) (S m).
-Variable P : nat -> nat -> Prop.
-Variable Q : forall n m:nat, Le n m -> Prop.
-\end{coq_example*}
-
-For example, consider the goal:
-
-\begin{coq_eval}
-Lemma ex : forall n m:nat, Le (S n) m -> P n m.
-intros.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-To prove the goal we may need to reason by cases on \texttt{H} and to
- derive that \texttt{m} is necessarily of
-the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.
-Deriving these conditions corresponds to prove that the
-only possible constructor of \texttt{(Le (S n) m)} is
-\texttt{LeS} and that we can invert the
-\texttt{->} in the type of \texttt{LeS}.
-This inversion is possible because \texttt{Le} is the smallest set closed by
-the constructors \texttt{LeO} and \texttt{LeS}.
-
-\begin{coq_example}
-inversion_clear H.
-\end{coq_example}
-
-Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
-and that the hypothesis \texttt{(Le n m0)} has been added to the
-context.
-
-Sometimes it is
-interesting to have the equality \texttt{m=(S m0)} in the
-context to use it after. In that case we can use \texttt{inversion} that
-does not clear the equalities:
-
-\begin{coq_example*}
-Undo.
-\end{coq_example*}
-
-\begin{coq_example}
-inversion H.
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-\example{Dependent Inversion}
-
-Let us consider the following goal:
-
-\begin{coq_eval}
-Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H.
-intros.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-As \texttt{H} occurs in the goal, we may want to reason by cases on its
-structure and so, we would like inversion tactics to
-substitute \texttt{H} by the corresponding term in constructor form.
-Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a
-substitution.
-To have such a behavior we use the dependent inversion tactics:
-
-\begin{coq_example}
-dependent inversion_clear H.
-\end{coq_example}
-
-Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
-\texttt{m} by \texttt{(S m0)}.
-
-\example{using already defined inversion lemmas}
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-For example, to generate the inversion lemma for the instance
-\texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:
-
-\begin{coq_example*}
-Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
- Prop.
-\end{coq_example*}
-
-\begin{coq_example}
-Check leminv.
-\end{coq_example}
-
-Then we can use the proven inversion lemma:
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-\begin{coq_example}
-inversion H using leminv.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\section[\tt dependent induction]{\tt dependent induction\label{dependent-induction-example}}
-\def\depind{{\tt dependent induction}~}
-\def\depdestr{{\tt dependent destruction}~}
-
-The tactics \depind and \depdestr are another solution for inverting
-inductive predicate instances and potentially doing induction at the
-same time. It is based on the \texttt{BasicElim} tactic of Conor McBride which
-works by abstracting each argument of an inductive instance by a variable
-and constraining it by equalities afterwards. This way, the usual
-{\tt induction} and {\tt destruct} tactics can be applied to the
-abstracted instance and after simplification of the equalities we get
-the expected goals.
-
-The abstracting tactic is called {\tt generalize\_eqs} and it takes as
-argument an hypothesis to generalize. It uses the {\tt JMeq} datatype
-defined in {\tt Coq.Logic.JMeq}, hence we need to require it before.
-For example, revisiting the first example of the inversion documentation above:
-
-\begin{coq_example*}
-Require Import Coq.Logic.JMeq.
-\end{coq_example*}
-\begin{coq_eval}
-Require Import Coq.Program.Equality.
-\end{coq_eval}
-
-\begin{coq_eval}
-Inductive Le : nat -> nat -> Set :=
- | LeO : forall n:nat, Le 0 n
- | LeS : forall n m:nat, Le n m -> Le (S n) (S m).
-Variable P : nat -> nat -> Prop.
-Variable Q : forall n m:nat, Le n m -> Prop.
-\end{coq_eval}
-
-\begin{coq_example*}
-Goal forall n m:nat, Le (S n) m -> P n m.
-intros n m H.
-\end{coq_example*}
-\begin{coq_example}
-generalize_eqs H.
-\end{coq_example}
-
-The index {\tt S n} gets abstracted by a variable here, but a
-corresponding equality is added under the abstract instance so that no
-information is actually lost. The goal is now almost amenable to do induction
-or case analysis. One should indeed first move {\tt n} into the goal to
-strengthen it before doing induction, or {\tt n} will be fixed in
-the inductive hypotheses (this does not matter for case analysis).
-As a rule of thumb, all the variables that appear inside constructors in
-the indices of the hypothesis should be generalized. This is exactly
-what the \texttt{generalize\_eqs\_vars} variant does:
-
-\begin{coq_eval}
-Undo 1.
-\end{coq_eval}
-\begin{coq_example}
-generalize_eqs_vars H.
-induction H.
-\end{coq_example}
-
-As the hypothesis itself did not appear in the goal, we did not need to
-use an heterogeneous equality to relate the new hypothesis to the old
-one (which just disappeared here). However, the tactic works just a well
-in this case, e.g.:
-
-\begin{coq_eval}
-Admitted.
-\end{coq_eval}
-
-\begin{coq_example}
-Goal forall n m (p : Le (S n) m), Q (S n) m p.
-intros n m p ; generalize_eqs_vars p.
-\end{coq_example}
-
-One drawback of this approach is that in the branches one will have to
-substitute the equalities back into the instance to get the right
-assumptions. Sometimes injection of constructors will also be needed to
-recover the needed equalities. Also, some subgoals should be directly
-solved because of inconsistent contexts arising from the constraints on
-indexes. The nice thing is that we can make a tactic based on
-discriminate, injection and variants of substitution to automatically
-do such simplifications (which may involve the K axiom).
-This is what the {\tt simplify\_dep\_elim} tactic from
-{\tt Coq.Program.Equality} does. For example, we might simplify the
-previous goals considerably:
-% \begin{coq_eval}
-% Abort.
-% Goal forall n m:nat, Le (S n) m -> P n m.
-% intros n m H ; generalize_eqs_vars H.
-% \end{coq_eval}
-
-\begin{coq_example}
-induction p ; simplify_dep_elim.
-\end{coq_example}
-
-The higher-order tactic {\tt do\_depind} defined in {\tt
- Coq.Program.Equality} takes a tactic and combines the
-building blocks we have seen with it: generalizing by equalities
-calling the given tactic with the
-generalized induction hypothesis as argument and cleaning the subgoals
-with respect to equalities. Its most important instantiations are
-\depind and \depdestr that do induction or simply case analysis on the
-generalized hypothesis. For example we can redo what we've done manually
-with \depdestr:
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example*}
-Require Import Coq.Program.Equality.
-Lemma ex : forall n m:nat, Le (S n) m -> P n m.
-intros n m H.
-\end{coq_example*}
-\begin{coq_example}
-dependent destruction H.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-This gives essentially the same result as inversion. Now if the
-destructed hypothesis actually appeared in the goal, the tactic would
-still be able to invert it, contrary to {\tt dependent
- inversion}. Consider the following example on vectors:
-
-\begin{coq_example*}
-Require Import Coq.Program.Equality.
-Set Implicit Arguments.
-Variable A : Set.
-Inductive vector : nat -> Type :=
-| vnil : vector 0
-| vcons : A -> forall n, vector n -> vector (S n).
-Goal forall n, forall v : vector (S n),
- exists v' : vector n, exists a : A, v = vcons a v'.
- intros n v.
-\end{coq_example*}
-\begin{coq_example}
- dependent destruction v.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-In this case, the {\tt v} variable can be replaced in the goal by the
-generalized hypothesis only when it has a type of the form {\tt vector
- (S n)}, that is only in the second case of the {\tt destruct}. The
-first one is dismissed because {\tt S n <> 0}.
-
-\subsection{A larger example}
-
-Let's see how the technique works with {\tt induction} on inductive
-predicates on a real example. We will develop an example application to the
-theory of simply-typed lambda-calculus formalized in a dependently-typed style:
-
-\begin{coq_example*}
-Inductive type : Type :=
-| base : type
-| arrow : type -> type -> type.
-Notation " t --> t' " := (arrow t t') (at level 20, t' at next level).
-Inductive ctx : Type :=
-| empty : ctx
-| snoc : ctx -> type -> ctx.
-Notation " G , tau " := (snoc G tau) (at level 20, t at next level).
-Fixpoint conc (G D : ctx) : ctx :=
- match D with
- | empty => G
- | snoc D' x => snoc (conc G D') x
- end.
-Notation " G ; D " := (conc G D) (at level 20).
-Inductive term : ctx -> type -> Type :=
-| ax : forall G tau, term (G, tau) tau
-| weak : forall G tau,
- term G tau -> forall tau', term (G, tau') tau
-| abs : forall G tau tau',
- term (G , tau) tau' -> term G (tau --> tau')
-| app : forall G tau tau',
- term G (tau --> tau') -> term G tau -> term G tau'.
-\end{coq_example*}
-
-We have defined types and contexts which are snoc-lists of types. We
-also have a {\tt conc} operation that concatenates two contexts.
-The {\tt term} datatype represents in fact the possible typing
-derivations of the calculus, which are isomorphic to the well-typed
-terms, hence the name. A term is either an application of:
-\begin{itemize}
-\item the axiom rule to type a reference to the first variable in a context,
-\item the weakening rule to type an object in a larger context
-\item the abstraction or lambda rule to type a function
-\item the application to type an application of a function to an argument
-\end{itemize}
-
-Once we have this datatype we want to do proofs on it, like weakening:
-
-\begin{coq_example*}
-Lemma weakening : forall G D tau, term (G ; D) tau ->
- forall tau', term (G , tau' ; D) tau.
-\end{coq_example*}
-\begin{coq_eval}
- Abort.
-\end{coq_eval}
-
-The problem here is that we can't just use {\tt induction} on the typing
-derivation because it will forget about the {\tt G ; D} constraint
-appearing in the instance. A solution would be to rewrite the goal as:
-\begin{coq_example*}
-Lemma weakening' : forall G' tau, term G' tau ->
- forall G D, (G ; D) = G' ->
- forall tau', term (G, tau' ; D) tau.
-\end{coq_example*}
-\begin{coq_eval}
- Abort.
-\end{coq_eval}
-
-With this proper separation of the index from the instance and the right
-induction loading (putting {\tt G} and {\tt D} after the inducted-on
-hypothesis), the proof will go through, but it is a very tedious
-process. One is also forced to make a wrapper lemma to get back the
-more natural statement. The \depind tactic alleviates this trouble by
-doing all of this plumbing of generalizing and substituting back automatically.
-Indeed we can simply write:
-
-\begin{coq_example*}
-Require Import Coq.Program.Tactics.
-Lemma weakening : forall G D tau, term (G ; D) tau ->
- forall tau', term (G , tau' ; D) tau.
-Proof with simpl in * ; simpl_depind ; auto.
- intros G D tau H. dependent induction H generalizing G D ; intros.
-\end{coq_example*}
-
-This call to \depind has an additional arguments which is a list of
-variables appearing in the instance that should be generalized in the
-goal, so that they can vary in the induction hypotheses. By default, all
-variables appearing inside constructors (except in a parameter position)
-of the instantiated hypothesis will be generalized automatically but
-one can always give the list explicitly.
-
-\begin{coq_example}
- Show.
-\end{coq_example}
-
-The {\tt simpl\_depind} tactic includes an automatic tactic that tries
-to simplify equalities appearing at the beginning of induction
-hypotheses, generally using trivial applications of
-reflexivity. In cases where the equality is not between constructor
-forms though, one must help the automation by giving
-some arguments, using the {\tt specialize} tactic.
-
-\begin{coq_example*}
-destruct D... apply weak ; apply ax. apply ax.
-destruct D...
-\end{coq_example*}
-\begin{coq_example}
-Show.
-\end{coq_example}
-\begin{coq_example}
- specialize (IHterm G empty).
-\end{coq_example}
-
-Then the automation can find the needed equality {\tt G = G} to narrow
-the induction hypothesis further. This concludes our example.
-
-\begin{coq_example}
- simpl_depind.
-\end{coq_example}
-
-\SeeAlso The induction \ref{elim}, case \ref{case} and inversion \ref{inversion} tactics.
-
-\section[\tt autorewrite]{\tt autorewrite\label{autorewrite-example}}
-
-Here are two examples of {\tt autorewrite} use. The first one ({\em Ackermann
-function}) shows actually a quite basic use where there is no conditional
-rewriting. The second one ({\em Mac Carthy function}) involves conditional
-rewritings and shows how to deal with them using the optional tactic of the
-{\tt Hint~Rewrite} command.
-
-\firstexample
-\example{Ackermann function}
-%Here is a basic use of {\tt AutoRewrite} with the Ackermann function:
-
-\begin{coq_example*}
-Reset Initial.
-Require Import Arith.
-Variable Ack :
- nat -> nat -> nat.
-Axiom Ack0 :
- forall m:nat, Ack 0 m = S m.
-Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
-Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
-\end{coq_example*}
-
-\begin{coq_example}
-Hint Rewrite Ack0 Ack1 Ack2 : base0.
-Lemma ResAck0 :
- Ack 3 2 = 29.
-autorewrite with base0 using try reflexivity.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\example{Mac Carthy function}
-%The Mac Carthy function shows a more complex case:
-
-\begin{coq_example*}
-Require Import Omega.
-Variable g :
- nat -> nat -> nat.
-Axiom g0 :
- forall m:nat, g 0 m = m.
-Axiom
- g1 :
- forall n m:nat,
- (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).
-Axiom
- g2 :
- forall n m:nat,
- (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).
-\end{coq_example*}
-
-\begin{coq_example}
-Hint Rewrite g0 g1 g2 using omega : base1.
-Lemma Resg0 :
- g 1 110 = 100.
-autorewrite with base1 using reflexivity || simpl.
-\end{coq_example}
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\begin{coq_example}
-Lemma Resg1 : g 1 95 = 91.
-autorewrite with base1 using reflexivity || simpl.
-\end{coq_example}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\section[\tt quote]{\tt quote\tacindex{quote}
-\label{quote-examples}}
-
-The tactic \texttt{quote} allows to use Barendregt's so-called
-2-level approach without writing any ML code. Suppose you have a
-language \texttt{L} of
-'abstract terms' and a type \texttt{A} of 'concrete terms'
-and a function \texttt{f : L -> A}. If \texttt{L} is a simple
-inductive datatype and \texttt{f} a simple fixpoint, \texttt{quote f}
-will replace the head of current goal by a convertible term of the form
-\texttt{(f t)}. \texttt{L} must have a constructor of type: \texttt{A
- -> L}.
-
-Here is an example:
-
-\begin{coq_example}
-Require Import Quote.
-Parameters A B C : Prop.
-Inductive formula : Type :=
- | f_and : formula -> formula -> formula (* binary constructor *)
- | f_or : formula -> formula -> formula
- | f_not : formula -> formula (* unary constructor *)
- | f_true : formula (* 0-ary constructor *)
- | f_const : Prop -> formula (* constructor for constants *).
-Fixpoint interp_f (f:
- formula) : Prop :=
- match f with
- | f_and f1 f2 => interp_f f1 /\ interp_f f2
- | f_or f1 f2 => interp_f f1 \/ interp_f f2
- | f_not f1 => ~ interp_f f1
- | f_true => True
- | f_const c => c
- end.
-Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
-quote interp_f.
-\end{coq_example}
-
-The algorithm to perform this inversion is: try to match the
-term with right-hand sides expression of \texttt{f}. If there is a
-match, apply the corresponding left-hand side and call yourself
-recursively on sub-terms. If there is no match, we are at a leaf:
-return the corresponding constructor (here \texttt{f\_const}) applied
-to the term.
-
-\begin{ErrMsgs}
-\item \errindex{quote: not a simple fixpoint} \\
- Happens when \texttt{quote} is not able to perform inversion properly.
-\end{ErrMsgs}
-
-\subsection{Introducing variables map}
-
-The normal use of \texttt{quote} is to make proofs by reflection: one
-defines a function \texttt{simplify : formula -> formula} and proves a
-theorem \texttt{simplify\_ok: (f:formula)(interp\_f (simplify f)) ->
- (interp\_f f)}. Then, one can simplify formulas by doing:
-\begin{verbatim}
- quote interp_f.
- apply simplify_ok.
- compute.
-\end{verbatim}
-But there is a problem with leafs: in the example above one cannot
-write a function that implements, for example, the logical simplifications
-$A \land A \ra A$ or $A \land \lnot A \ra \texttt{False}$. This is
-because the \Prop{} is impredicative.
-
-It is better to use that type of formulas:
-
-\begin{coq_eval}
-Reset formula.
-\end{coq_eval}
-\begin{coq_example}
-Inductive formula : Set :=
- | f_and : formula -> formula -> formula
- | f_or : formula -> formula -> formula
- | f_not : formula -> formula
- | f_true : formula
- | f_atom : index -> formula.
-\end{coq_example*}
-
-\texttt{index} is defined in module \texttt{quote}. Equality on that
-type is decidable so we are able to simplify $A \land A$ into $A$ at
-the abstract level.
-
-When there are variables, there are bindings, and \texttt{quote}
-provides also a type \texttt{(varmap A)} of bindings from
-\texttt{index} to any set \texttt{A}, and a function
-\texttt{varmap\_find} to search in such maps. The interpretation
-function has now another argument, a variables map:
-
-\begin{coq_example}
-Fixpoint interp_f (vm:
- varmap Prop) (f:formula) {struct f} : Prop :=
- match f with
- | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
- | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
- | f_not f1 => ~ interp_f vm f1
- | f_true => True
- | f_atom i => varmap_find True i vm
- end.
-\end{coq_example}
-
-\noindent\texttt{quote} handles this second case properly:
-
-\begin{coq_example}
-Goal A /\ (B \/ A) /\ (A \/ ~ B).
-quote interp_f.
-\end{coq_example}
-
-It builds \texttt{vm} and \texttt{t} such that \texttt{(f vm t)} is
-convertible with the conclusion of current goal.
-
-\subsection{Combining variables and constants}
-
-One can have both variables and constants in abstracts terms; that is
-the case, for example, for the \texttt{ring} tactic (chapter
-\ref{ring}). Then one must provide to \texttt{quote} a list of
-\emph{constructors of constants}. For example, if the list is
-\texttt{[O S]} then closed natural numbers will be considered as
-constants and other terms as variables.
-
-Example:
-
-\begin{coq_eval}
-Reset formula.
-\end{coq_eval}
-\begin{coq_example*}
-Inductive formula : Type :=
- | f_and : formula -> formula -> formula
- | f_or : formula -> formula -> formula
- | f_not : formula -> formula
- | f_true : formula
- | f_const : Prop -> formula (* constructor for constants *)
- | f_atom : index -> formula.
-Fixpoint interp_f
- (vm: (* constructor for variables *)
- varmap Prop) (f:formula) {struct f} : Prop :=
- match f with
- | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
- | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
- | f_not f1 => ~ interp_f vm f1
- | f_true => True
- | f_const c => c
- | f_atom i => varmap_find True i vm
- end.
-Goal
-A /\ (A \/ True) /\ ~ B /\ (C <-> C).
-\end{coq_example*}
-
-\begin{coq_example}
-quote interp_f [ A B ].
-Undo.
- quote interp_f [ B C iff ].
-\end{coq_example}
-
-\Warning Since function inversion
-is undecidable in general case, don't expect miracles from it!
-
-\begin{Variants}
-
-\item {\tt quote {\ident} in {\term} using {\tac}}
-
- \tac\ must be a functional tactic (starting with {\tt fun x =>})
- and will be called with the quoted version of \term\ according to
- \ident.
-
-\item {\tt quote {\ident} [ \ident$_1$ \dots\ \ident$_n$ ] in {\term} using {\tac}}
-
- Same as above, but will use \ident$_1$, \dots, \ident$_n$ to
- chose which subterms are constants (see above).
-
-\end{Variants}
-
-% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v}
-
-\SeeAlso comments of source file \texttt{plugins/quote/quote.ml}
-
-\SeeAlso the \texttt{ring} tactic (Chapter~\ref{ring})
-
-
-
-\section{Using the tactical language}
-
-\subsection{About the cardinality of the set of natural numbers}
-
-A first example which shows how to use the pattern matching over the proof
-contexts is the proof that natural numbers have more than two elements. The
-proof of such a lemma can be done as %shown on Figure~\ref{cnatltac}.
-follows:
-%\begin{figure}
-%\begin{centerframe}
-\begin{coq_eval}
-Reset Initial.
-Require Import Arith.
-Require Import List.
-\end{coq_eval}
-\begin{coq_example*}
-Lemma card_nat :
- ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).
-Proof.
-red; intros (x, (y, Hy)).
-elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
- match goal with
- | [_:(?a = ?b),_:(?a = ?c) |- _ ] =>
- cut (b = c); [ discriminate | apply trans_equal with a; auto ]
- end.
-Qed.
-\end{coq_example*}
-%\end{centerframe}
-%\caption{A proof on cardinality of natural numbers}
-%\label{cnatltac}
-%\end{figure}
-
-We can notice that all the (very similar) cases coming from the three
-eliminations (with three distinct natural numbers) are successfully solved by
-a {\tt match goal} structure and, in particular, with only one pattern (use
-of non-linear matching).
-
-\subsection{Permutation on closed lists}
-
-Another more complex example is the problem of permutation on closed lists. The
-aim is to show that a closed list is a permutation of another one.
-
-First, we define the permutation predicate as shown in table~\ref{permutpred}.
-
-\begin{figure}
-\begin{centerframe}
-\begin{coq_example*}
-Section Sort.
-Variable A : Set.
-Inductive permut : list A -> list A -> Prop :=
- | permut_refl : forall l, permut l l
- | permut_cons :
- forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
- | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
- | permut_trans :
- forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.
-End Sort.
-\end{coq_example*}
-\end{centerframe}
-\caption{Definition of the permutation predicate}
-\label{permutpred}
-\end{figure}
-
-A more complex example is the problem of permutation on closed lists.
-The aim is to show that a closed list is a permutation of another one.
-First, we define the permutation predicate as shown on
-Figure~\ref{permutpred}.
-
-\begin{figure}
-\begin{centerframe}
-\begin{coq_example}
-Ltac Permut n :=
- match goal with
- | |- (permut _ ?l ?l) => apply permut_refl
- | |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
- let newn := eval compute in (length l1) in
- (apply permut_cons; Permut newn)
- | |- (permut ?A (?a :: ?l1) ?l2) =>
- match eval compute in n with
- | 1 => fail
- | _ =>
- let l1' := constr:(l1 ++ a :: nil) in
- (apply (permut_trans A (a :: l1) l1' l2);
- [ apply permut_append | compute; Permut (pred n) ])
- end
- end.
-Ltac PermutProve :=
- match goal with
- | |- (permut _ ?l1 ?l2) =>
- match eval compute in (length l1 = length l2) with
- | (?n = ?n) => Permut n
- end
- end.
-\end{coq_example}
-\end{centerframe}
-\caption{Permutation tactic}
-\label{permutltac}
-\end{figure}
-
-Next, we can write naturally the tactic and the result can be seen on
-Figure~\ref{permutltac}. We can notice that we use two toplevel
-definitions {\tt PermutProve} and {\tt Permut}. The function to be
-called is {\tt PermutProve} which computes the lengths of the two
-lists and calls {\tt Permut} with the length if the two lists have the
-same length. {\tt Permut} works as expected. If the two lists are
-equal, it concludes. Otherwise, if the lists have identical first
-elements, it applies {\tt Permut} on the tail of the lists. Finally,
-if the lists have different first elements, it puts the first element
-of one of the lists (here the second one which appears in the {\tt
- permut} predicate) at the end if that is possible, i.e., if the new
-first element has been at this place previously. To verify that all
-rotations have been done for a list, we use the length of the list as
-an argument for {\tt Permut} and this length is decremented for each
-rotation down to, but not including, 1 because for a list of length
-$n$, we can make exactly $n-1$ rotations to generate at most $n$
-distinct lists. Here, it must be noticed that we use the natural
-numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we
-can see that it is possible to use usual natural numbers but they are
-only used as arguments for primitive tactics and they cannot be
-handled, in particular, we cannot make computations with them. So, a
-natural choice is to use {\Coq} data structures so that {\Coq} makes
-the computations (reductions) by {\tt eval compute in} and we can get
-the terms back by {\tt match}.
-
-With {\tt PermutProve}, we can now prove lemmas as
-% shown on Figure~\ref{permutlem}.
-follows:
-%\begin{figure}
-%\begin{centerframe}
-
-\begin{coq_example*}
-Lemma permut_ex1 :
- permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
-Proof. PermutProve. Qed.
-Lemma permut_ex2 :
- permut nat
- (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
- (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
-Proof. PermutProve. Qed.
-\end{coq_example*}
-%\end{centerframe}
-%\caption{Examples of {\tt PermutProve} use}
-%\label{permutlem}
-%\end{figure}
-
-
-\subsection{Deciding intuitionistic propositional logic}
-
-\begin{figure}[b]
-\begin{centerframe}
-\begin{coq_example}
-Ltac Axioms :=
- match goal with
- | |- True => trivial
- | _:False |- _ => elimtype False; assumption
- | _:?A |- ?A => auto
- end.
-\end{coq_example}
-\end{centerframe}
-\caption{Deciding intuitionistic propositions (1)}
-\label{tautoltaca}
-\end{figure}
-
-
-\begin{figure}
-\begin{centerframe}
-\begin{coq_example}
-Ltac DSimplif :=
- repeat
- (intros;
- match goal with
- | id:(~ _) |- _ => red in id
- | id:(_ /\ _) |- _ =>
- elim id; do 2 intro; clear id
- | id:(_ \/ _) |- _ =>
- elim id; intro; clear id
- | id:(?A /\ ?B -> ?C) |- _ =>
- cut (A -> B -> C);
- [ intro | intros; apply id; split; assumption ]
- | id:(?A \/ ?B -> ?C) |- _ =>
- cut (B -> C);
- [ cut (A -> C);
- [ intros; clear id
- | intro; apply id; left; assumption ]
- | intro; apply id; right; assumption ]
- | id0:(?A -> ?B),id1:?A |- _ =>
- cut B; [ intro; clear id0 | apply id0; assumption ]
- | |- (_ /\ _) => split
- | |- (~ _) => red
- end).
-Ltac TautoProp :=
- DSimplif;
- Axioms ||
- match goal with
- | id:((?A -> ?B) -> ?C) |- _ =>
- cut (B -> C);
- [ intro; cut (A -> B);
- [ intro; cut C;
- [ intro; clear id | apply id; assumption ]
- | clear id ]
- | intro; apply id; intro; assumption ]; TautoProp
- | id:(~ ?A -> ?B) |- _ =>
- cut (False -> B);
- [ intro; cut (A -> False);
- [ intro; cut B;
- [ intro; clear id | apply id; assumption ]
- | clear id ]
- | intro; apply id; red; intro; assumption ]; TautoProp
- | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
- end.
-\end{coq_example}
-\end{centerframe}
-\caption{Deciding intuitionistic propositions (2)}
-\label{tautoltacb}
-\end{figure}
-
-The pattern matching on goals allows a complete and so a powerful
-backtracking when returning tactic values. An interesting application
-is the problem of deciding intuitionistic propositional logic.
-Considering the contraction-free sequent calculi {\tt LJT*} of
-Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic
-using the tactic language as shown on Figures~\ref{tautoltaca}
-and~\ref{tautoltacb}. The tactic {\tt Axioms} tries to conclude using
-usual axioms. The tactic {\tt DSimplif} applies all the reversible
-rules of Dyckhoff's system. Finally, the tactic {\tt TautoProp} (the
-main tactic to be called) simplifies with {\tt DSimplif}, tries to
-conclude with {\tt Axioms} and tries several paths using the
-backtracking rules (one of the four Dyckhoff's rules for the left
-implication to get rid of the contraction and the right or).
-
-For example, with {\tt TautoProp}, we can prove tautologies like
- those:
-% on Figure~\ref{tautolem}.
-%\begin{figure}[tbp]
-%\begin{centerframe}
-\begin{coq_example*}
-Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
-Proof. TautoProp. Qed.
-Lemma tauto_ex2 :
- forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
-Proof. TautoProp. Qed.
-\end{coq_example*}
-%\end{centerframe}
-%\caption{Proofs of tautologies with {\tt TautoProp}}
-%\label{tautolem}
-%\end{figure}
-
-\subsection{Deciding type isomorphisms}
-
-A more tricky problem is to decide equalities between types and modulo
-isomorphisms. Here, we choose to use the isomorphisms of the simply typed
-$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
-\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
-table~\ref{isosax}.
-
-\begin{figure}
-\begin{centerframe}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Open Scope type_scope.
-Section Iso_axioms.
-Variables A B C : Set.
-Axiom Com : A * B = B * A.
-Axiom Ass : A * (B * C) = A * B * C.
-Axiom Cur : (A * B -> C) = (A -> B -> C).
-Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
-Axiom P_unit : A * unit = A.
-Axiom AR_unit : (A -> unit) = unit.
-Axiom AL_unit : (unit -> A) = A.
-Lemma Cons : B = C -> A * B = A * C.
-Proof.
-intro Heq; rewrite Heq; apply refl_equal.
-Qed.
-End Iso_axioms.
-\end{coq_example*}
-\end{centerframe}
-\caption{Type isomorphism axioms}
-\label{isosax}
-\end{figure}
-
-A more tricky problem is to decide equalities between types and modulo
-isomorphisms. Here, we choose to use the isomorphisms of the simply typed
-$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
-\cite{RC95}). The axioms of this $\lb{}$-calculus are given on
-Figure~\ref{isosax}.
-
-\begin{figure}[ht]
-\begin{centerframe}
-\begin{coq_example}
-Ltac DSimplif trm :=
- match trm with
- | (?A * ?B * ?C) =>
- rewrite <- (Ass A B C); try MainSimplif
- | (?A * ?B -> ?C) =>
- rewrite (Cur A B C); try MainSimplif
- | (?A -> ?B * ?C) =>
- rewrite (Dis A B C); try MainSimplif
- | (?A * unit) =>
- rewrite (P_unit A); try MainSimplif
- | (unit * ?B) =>
- rewrite (Com unit B); try MainSimplif
- | (?A -> unit) =>
- rewrite (AR_unit A); try MainSimplif
- | (unit -> ?B) =>
- rewrite (AL_unit B); try MainSimplif
- | (?A * ?B) =>
- (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
- | (?A -> ?B) =>
- (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
- end
- with MainSimplif :=
- match goal with
- | |- (?A = ?B) => try DSimplif A; try DSimplif B
- end.
-Ltac Length trm :=
- match trm with
- | (_ * ?B) => let succ := Length B in constr:(S succ)
- | _ => constr:1
- end.
-Ltac assoc := repeat rewrite <- Ass.
-\end{coq_example}
-\end{centerframe}
-\caption{Type isomorphism tactic (1)}
-\label{isosltac1}
-\end{figure}
-
-\begin{figure}[ht]
-\begin{centerframe}
-\begin{coq_example}
-Ltac DoCompare n :=
- match goal with
- | [ |- (?A = ?A) ] => apply refl_equal
- | [ |- (?A * ?B = ?A * ?C) ] =>
- apply Cons; let newn := Length B in
- DoCompare newn
- | [ |- (?A * ?B = ?C) ] =>
- match eval compute in n with
- | 1 => fail
- | _ =>
- pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
- end
- end.
-Ltac CompareStruct :=
- match goal with
- | [ |- (?A = ?B) ] =>
- let l1 := Length A
- with l2 := Length B in
- match eval compute in (l1 = l2) with
- | (?n = ?n) => DoCompare n
- end
- end.
-Ltac IsoProve := MainSimplif; CompareStruct.
-\end{coq_example}
-\end{centerframe}
-\caption{Type isomorphism tactic (2)}
-\label{isosltac2}
-\end{figure}
-
-The tactic to judge equalities modulo this axiomatization can be written as
-shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
-simple. Types are reduced using axioms that can be oriented (this done by {\tt
-MainSimplif}). The normal forms are sequences of Cartesian
-products without Cartesian product in the left component. These normal forms
-are then compared modulo permutation of the components (this is done by {\tt
-CompareStruct}). The main tactic to be called and realizing this algorithm is
-{\tt IsoProve}.
-
-% Figure~\ref{isoslem} gives
-Here are examples of what can be solved by {\tt IsoProve}.
-%\begin{figure}[ht]
-%\begin{centerframe}
-\begin{coq_example*}
-Lemma isos_ex1 :
- forall A B:Set, A * unit * B = B * (unit * A).
-Proof.
-intros; IsoProve.
-Qed.
-
-Lemma isos_ex2 :
- forall A B C:Set,
- (A * unit -> B * (C * unit)) =
- (A * unit -> (C -> unit) * C) * (unit -> A -> B).
-Proof.
-intros; IsoProve.
-Qed.
-\end{coq_example*}
-%\end{centerframe}
-%\caption{Type equalities solved by {\tt IsoProve}}
-%\label{isoslem}
-%\end{figure}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/RefMan-tus.tex b/doc/refman/RefMan-tus.tex
deleted file mode 100644
index 3e298867..00000000
--- a/doc/refman/RefMan-tus.tex
+++ /dev/null
@@ -1,2001 +0,0 @@
-%\documentclass[11pt]{article}
-%\usepackage{fullpage,euler}
-%\usepackage[latin1]{inputenc}
-%\begin{document}
-%\title{Writing ad-hoc Tactics in Coq}
-%\author{}
-%\date{}
-%\maketitle
-%\tableofcontents
-%\clearpage
-
-\chapter[Writing ad-hoc Tactics in Coq]{Writing ad-hoc Tactics in Coq\label{WritingTactics}}
-
-\section{Introduction}
-
-\Coq\ is an open proof environment, in the sense that the collection of
-proof strategies offered by the system can be extended by the user.
-This feature has two important advantages. First, the user can develop
-his/her own ad-hoc proof procedures, customizing the system for a
-particular domain of application. Second, the repetitive and tedious
-aspects of the proofs can be abstracted away implementing new tactics
-for dealing with them. For example, this may be useful when a theorem
-needs several lemmas which are all proven in a similar but not exactly
-the same way. Let us illustrate this with an example.
-
-Consider the problem of deciding the equality of two booleans. The
-theorem establishing that this is always possible is state by
-the following theorem:
-
-\begin{coq_example*}
-Theorem decideBool : (x,y:bool){x=y}+{~x=y}.
-\end{coq_example*}
-
-The proof proceeds by case analysis on both $x$ and $y$. This yields
-four cases to solve. The cases $x=y=\textsl{true}$ and
-$x=y=\textsl{false}$ are immediate by the reflexivity of equality.
-
-The other two cases follow by discrimination. The following script
-describes the proof:
-
-\begin{coq_example*}
-Destruct x.
- Destruct y.
- Left ; Reflexivity.
- Right; Discriminate.
- Destruct y.
- Right; Discriminate.
- Left ; Reflexivity.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Now, consider the theorem stating the same property but for the
-following enumerated type:
-
-\begin{coq_example*}
-Inductive Set Color := Blue:Color | White:Color | Red:Color.
-Theorem decideColor : (c1,c2:Color){c1=c2}+{~c1=c2}.
-\end{coq_example*}
-
-This theorem can be proven in a very similar way, reasoning by case
-analysis on $c_1$ and $c_2$. Once more, each of the (now six) cases is
-solved either by reflexivity or by discrimination:
-
-\begin{coq_example*}
-Destruct c1.
- Destruct c2.
- Left ; Reflexivity.
- Right ; Discriminate.
- Right ; Discriminate.
- Destruct c2.
- Right ; Discriminate.
- Left ; Reflexivity.
- Right ; Discriminate.
- Destruct c2.
- Right ; Discriminate.
- Right ; Discriminate.
- Left ; Reflexivity.
-\end{coq_example*}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-If we face the same theorem for an enumerated datatype corresponding
-to the days of the week, it would still follow a similar pattern. In
-general, the general pattern for proving the property
-$(x,y:R)\{x=y\}+\{\neg x =y\}$ for an enumerated type $R$ proceeds as
-follow:
-\begin{enumerate}
-\item Analyze the cases for $x$.
-\item For each of the sub-goals generated by the first step, analyze
-the cases for $y$.
-\item The remaining subgoals follow either by reflexivity or
-by discrimination.
-\end{enumerate}
-
-Let us describe how this general proof procedure can be introduced in
-\Coq.
-
-\section{Tactic Macros}
-
-The simplest way to introduce it is to define it as new a
-\textsl{tactic macro}, as follows:
-
-\begin{coq_example*}
-Tactic Definition DecideEq [$a $b] :=
- [<:tactic:<Destruct $a;
- Destruct $b;
- (Left;Reflexivity) Orelse (Right;Discriminate)>>].
-\end{coq_example*}
-
-The general pattern of the proof is abstracted away using the
-tacticals ``\texttt{;}'' and \texttt{Orelse}, and introducing two
-parameters for the names of the arguments to be analyzed.
-
-Once defined, this tactic can be called like any other tactic, just
-supplying the list of terms corresponding to its real arguments. Let us
-revisit the proof of the former theorems using the new tactic
-\texttt{DecideEq}:
-
-\begin{coq_example*}
-Theorem decideBool : (x,y:bool){x=y}+{~x=y}.
-DecideEq x y.
-Defined.
-\end{coq_example*}
-\begin{coq_example*}
-Theorem decideColor : (c1,c2:Color){c1=c2}+{~c1=c2}.
-DecideEq c1 c2.
-Defined.
-\end{coq_example*}
-
-In general, the command \texttt{Tactic Definition} associates a name
-to a parameterized tactic expression, built up from the tactics and
-tacticals that are already available. The general syntax rule for this
-command is the following:
-
-\begin{tabbing}
-\texttt{Tactic Definition} \textit{tactic-name} \=
-\texttt{[}\$$id_1\ldots \$id_n$\texttt{]}\\
-\> := \texttt{[<:tactic:<} \textit{tactic-expression} \verb+>>]+
-\end{tabbing}
-
-This command provides a quick but also very primitive mechanism for
-introducing new tactics. It does not support recursive definitions,
-and the arguments of a tactic macro are restricted to term
-expressions. Moreover, there is no static checking of the definition
-other than the syntactical one. Any error in the definition of the
-tactic ---for instance, a call to an undefined tactic--- will not be
-noticed until the tactic is called.
-
-%This command provides a very primitive mechanism for introducing new
-%tactics. The arguments of a tactic macro are restricted to term
-%expressions. Hence, it is not possible to define higher order tactics
-%with this command. Also, there is no static checking of the definition
-%other than syntactical. If the tactic contain errors in its definition
-%--for instance, a call to an undefined tactic-- this will be noticed
-%during the tactic call.
-
-Let us illustrate the weakness of this way of introducing new tactics
-trying to extend our proof procedure to work on a larger class of
-inductive types. Consider for example the decidability of equality
-for pairs of booleans and colors:
-
-\begin{coq_example*}
-Theorem decideBoolXColor : (p1,p2:bool*Color){p1=p2}+{~p1=p2}.
-\end{coq_example*}
-
-The proof still proceeds by a double case analysis, but now the
-constructors of the type take two arguments. Therefore, the sub-goals
-that can not be solved by discrimination need further considerations
-about the equality of such arguments:
-
-\begin{coq_example}
- Destruct p1;
- Destruct p2; Try (Right;Discriminate);Intros.
-\end{coq_example}
-
-The half of the disjunction to be chosen depends on whether or not
-$b=b_0$ and $c=c_0$. These equalities can be decided automatically
-using the previous lemmas about booleans and colors. If both
-equalities are satisfied, then it is sufficient to rewrite $b$ into
-$b_0$ and $c$ into $c_0$, so that the left half of the goal follows by
-reflexivity. Otherwise, the right half follows by first contraposing
-the disequality, and then applying the invectiveness of the pairing
-constructor.
-
-As the cases associated to each argument of the pair are very similar,
-a tactic macro can be introduced to abstract this part of the proof:
-
-\begin{coq_example*}
-Hints Resolve decideBool decideColor.
-Tactic Definition SolveArg [$t1 $t2] :=
- [<:tactic:<
- ElimType {$t1=$t2}+{~$t1=$t2};
- [(Intro equality;Rewrite equality;Clear equality) |
- (Intro diseq; Right; Red; Intro absurd;
- Apply diseq;Injection absurd;Trivial) |
- Auto]>>].
-\end{coq_example*}
-
-This tactic is applied to each corresponding pair of arguments of the
-arguments, until the goal can be solved by reflexivity:
-
-\begin{coq_example*}
-SolveArg b b0;
- SolveArg c c0;
- Left; Reflexivity.
-Defined.
-\end{coq_example*}
-
-Therefore, a more general strategy for deciding the property
-$(x,y:R)\{x=y\}+\{\neg x =y\}$ on $R$ can be sketched as follows:
-\begin{enumerate}
-\item Eliminate $x$ and then $y$.
-\item Try discrimination to solve those goals where $x$ and $y$ has
-been introduced by different constructors.
-\item If $x$ and $y$ have been introduced by the same constructor,
-then iterate the tactic \textsl{SolveArg} for each pair of
-arguments.
-\item Finally, solve the left half of the goal by reflexivity.
-\end{enumerate}
-
-The implementation of this stronger proof strategy needs to perform a
-term decomposition, in order to extract the list of arguments of each
-constructor. It also requires the introduction of recursively defined
-tactics, so that the \textsl{SolveArg} can be iterated on the lists of
-arguments. These features are not supported by the \texttt{Tactic
-Definition} command. One possibility could be extended this command in
-order to introduce recursion, general parameter passing,
-pattern-matching, etc, but this would quickly lead us to introduce the
-whole \ocaml{} into \Coq\footnote{This is historically true. In fact,
-\ocaml{} is a direct descendent of ML, a functional programming language
-conceived language for programming the tactics of the theorem prover
-LCF.}. Instead of doing this, we prefer to give to the user the
-possibility of writing his/her own tactics directly in \ocaml{}, and then
-to link them dynamically with \Coq's code. This requires a minimal
-knowledge about \Coq's implementation. The next section provides an
-overview of \Coq's architecture.
-
-%It is important to point out that the introduction of a new tactic
-%never endangers the correction of the theorems proven in the extended
-%system. In order to understand why, let us introduce briefly the system
-%architecture.
-
-\section{An Overview of \Coq's Architecture}
-
-The implementation of \Coq\ is based on eight \textsl{logical
-modules}. By ``module'' we mean here a logical piece of code having a
-conceptual unity, that may concern several \ocaml{} files. By the sake of
-organization, all the \ocaml{} files concerning a logical module are
-grouped altogether into the same sub-directory. The eight modules
-are:
-
-\begin{tabular}{lll}
-1. & The logical framework & (directory \texttt{src/generic})\\
-2. & The language of constructions & (directory \texttt{src/constr})\\
-3. & The type-checker & (directory \texttt{src/typing})\\
-4. & The proof engine & (directory \texttt{src/proofs})\\
-5. & The language of basic tactics & (directory \texttt{src/tactics})\\
-6. & The vernacular interpreter & (directory \texttt{src/env})\\
-7. & The parser and the pretty-printer & (directory \texttt{src/parsing})\\
-8. & The standard library & (directory \texttt{src/lib})
-\end{tabular}
-
-\vspace{1em}
-
-The following sections briefly present each of the modules above.
-This presentation is not intended to be a complete description of \Coq's
-implementation, but rather a guideline to be read before taking a look
-at the sources. For each of the modules, we also present some of its
-most important functions, which are sufficient to implement a large
-class of tactics.
-
-
-\subsection[The Logical Framework]{The Logical Framework\label{LogicalFramework}}
-
-At the very heart of \Coq there is a generic untyped language for
-expressing abstractions, applications and global constants. This
-language is used as a meta-language for expressing the terms of the
-Calculus of Inductive Constructions. General operations on terms like
-collecting the free variables of an expression, substituting a term for
-a free variable, etc, are expressed in this language.
-
-The meta-language \texttt{'op term} of terms has seven main
-constructors:
-\begin{itemize}
-\item $(\texttt{VAR}\;id)$, a reference to a global identifier called $id$;
-\item $(\texttt{Rel}\;n)$, a bound variable, whose binder is the $nth$
- binder up in the term;
-\item $\texttt{DLAM}\;(x,t)$, a deBruijn's binder on the term $t$;
-\item $\texttt{DLAMV}\;(x,vt)$, a deBruijn's binder on all the terms of
- the vector $vt$;
-\item $(\texttt{DOP0}\;op)$, a unary operator $op$;
-\item $\texttt{DOP2}\;(op,t_1,t_2)$, the application of a binary
-operator $op$ to the terms $t_1$ and $t_2$;
-\item $\texttt{DOPN} (op,vt)$, the application of an n-ary operator $op$ to the
-vector of terms $vt$.
-\end{itemize}
-
-In this meta-language, bound variables are represented using the
-so-called deBrujin's indexes. In this representation, an occurrence of
-a bound variable is denoted by an integer, meaning the number of
-binders that must be traversed to reach its own
-binder\footnote{Actually, $(\texttt{Rel}\;n)$ means that $(n-1)$ binders
-have to be traversed, since indexes are represented by strictly
-positive integers.}. On the other hand, constants are referred by its
-name, as usual. For example, if $A$ is a variable of the current
-section, then the lambda abstraction $[x:A]x$ of the Calculus of
-Constructions is represented in the meta-language by the term:
-
-\begin{displaymath}
-(DOP2 (Lambda,(Var\;A),DLAM (x,(Rel\;1)))
-\end{displaymath}
-
-In this term, $Lambda$ is a binary operator. Its first argument
-correspond to the type $A$ of the bound variable, while the second is
-a body of the abstraction, where $x$ is bound. The name $x$ is just kept
-to pretty-print the occurrences of the bound variable.
-
-%Similarly, the product
-%$(A:Prop)A$ of the Calculus of Constructions is represented by the
-%term:
-%\begin{displaumath}
-%DOP2 (Prod, DOP0 (Sort (Prop Null)), DLAM (Name \#A, Rel 1))
-%\end{displaymath}
-
-The following functions perform some of the most frequent operations
-on the terms of the meta-language:
-\begin{description}
-\fun{val Generic.subst1 : 'op term -> 'op term -> 'op term}
- {$(\texttt{subst1}\;t_1\;t_2)$ substitutes $t_1$ for
- $\texttt{(Rel}\;1)$ in $t_2$.}
-\fun{val Generic.occur\_var : identifier -> 'op term -> bool}
- {Returns true when the given identifier appears in the term,
- and false otherwise.}
-\fun{val Generic.eq\_term : 'op term -> 'op term -> bool}
- {Implements $\alpha$-equality for terms.}
-\fun{val Generic.dependent : 'op term -> 'op term -> bool}
- {Returns true if the first term is a sub-term of the second.}
-%\fun{val Generic.subst\_var : identifier -> 'op term -> 'op term}
-% { $(\texttt{subst\_var}\;id\;t)$ substitutes the deBruijn's index
-% associated to $id$ to every occurrence of the term
-% $(\texttt{VAR}\;id)$ in $t$.}
-\end{description}
-
-\subsubsection{Identifiers, names and sections paths.}
-
-Three different kinds of names are used in the meta-language. They are
-all defined in the \ocaml{} file \texttt{Names}.
-
-\paragraph{Identifiers.} The simplest kind of names are
-\textsl{identifiers}. An identifier is a string possibly indexed by an
-integer. They are used to represent names that are not unique, like
-for example the name of a variable in the scope of a section. The
-following operations can be used for handling identifiers:
-
-\begin{description}
-\fun{val Names.make\_ident : string -> int -> identifier}
- {The value $(\texttt{make\_ident}\;x\;i)$ creates the
- identifier $x_i$. If $i=-1$, then the identifier has
- is created with no index at all.}
-\fun{val Names.repr\_ident : identifier -> string * int}
- {The inverse operation of \texttt{make\_ident}:
- it yields the string and the index of the identifier.}
-\fun{val Names.lift\_ident : identifier -> identifier}
- {Increases the index of the identifier by one.}
-\fun{val Names.next\_ident\_away : \\
-\qquad identifier -> identifier list -> identifier}
- {\\ Generates a new identifier with the same root string than the
- given one, but with a new index, different from all the indexes of
- a given list of identifiers.}
-\fun{val Names.id\_of\_string : string ->
- identifier}
- {Creates an identifier from a string.}
-\fun{val Names.string\_of\_id : identifier -> string}
- {The inverse operation: transforms an identifier into a string}
-\end{description}
-
-\paragraph{Names.} A \textsl{name} is either an identifier or the
-special name \texttt{Anonymous}. Names are used as arguments of
-binders, in order to pretty print bound variables.
-The following operations can be used for handling names:
-
-\begin{description}
-\fun{val Names.Name: identifier -> Name}
- {Constructs a name from an identifier.}
-\fun{val Names.Anonymous : Name}
- {Constructs a special, anonymous identifier, like the variable abstracted
- in the term $[\_:A]0$.}
-\fun{val
- Names.next\_name\_away\_with\_default : \\ \qquad
- string->name->identifier list->identifier}
-{\\ If the name is not anonymous, then this function generates a new
- identifier different from all the ones in a given list. Otherwise, it
- generates an identifier from the given string.}
-\end{description}
-
-\paragraph[Section paths.]{Section paths.\label{SectionPaths}}
-A \textsl{section-path} is a global name to refer to an object without
-ambiguity. It can be seen as a sort of filename, where open sections
-play the role of directories. Each section path is formed by three
-components: a \textsl{directory} (the list of open sections); a
-\textsl{basename} (the identifier for the object); and a \textsl{kind}
-(either CCI for the terms of the Calculus of Constructions, FW for the
-the terms of $F_\omega$, or OBJ for other objects). For example, the
-name of the following constant:
-\begin{verbatim}
- Section A.
- Section B.
- Section C.
- Definition zero := O.
-\end{verbatim}
-
-is internally represented by the section path:
-
-$$\underbrace{\mathtt{\#A\#B\#C}}_{\mbox{dirpath}}
-\underbrace{\mathtt{\tt \#zero}}_{\mbox{basename}}
-\underbrace{\mathtt{\tt .cci}_{\;}}_{\mbox{kind}}$$
-
-When one of the sections is closed, a new constant is created with an
-updated section-path,a nd the old one is no longer reachable. In our
-example, after closing the section \texttt{C}, the new section-path
-for the constant {\tt zero} becomes:
-\begin{center}
-\texttt{ \#A\#B\#zero.cci}
-\end{center}
-
-The following operations can be used to handle section paths:
-
-\begin{description}
-\fun{val Names.string\_of\_path : section\_path -> string}
- {Transforms the section path into a string.}
-\fun{val Names.path\_of\_string : string -> section\_path}
- {Parses a string an returns the corresponding section path.}
-\fun{val Names.basename : section\_path -> identifier}
- {Provides the basename of a section path}
-\fun{val Names.dirpath : section\_path -> string list}
- {Provides the directory of a section path}
-\fun{val Names.kind\_of\_path : section\_path -> path\_kind}
- {Provides the kind of a section path}
-\end{description}
-
-\subsubsection{Signatures}
-
-A \textsl{signature} is a mapping associating different informations
-to identifiers (for example, its type, its definition, etc). The
-following operations could be useful for working with signatures:
-
-\begin{description}
-\fun{val Names.ids\_of\_sign : 'a signature -> identifier list}
- {Gets the list of identifiers of the signature.}
-\fun{val Names.vals\_of\_sign : 'a signature -> 'a list}
- {Gets the list of values associated to the identifiers of the signature.}
-\fun{val Names.lookup\_glob1 : \\ \qquad
-identifier -> 'a signature -> (identifier *
- 'a)}
- {\\ Gets the value associated to a given identifier of the signature.}
-\end{description}
-
-
-\subsection{The Terms of the Calculus of Constructions}
-
-The language of the Calculus of Inductive Constructions described in
-Chapter \ref{Cic} is implemented on the top of the logical framework,
-instantiating the parameter $op$ of the meta-language with a
-particular set of operators. In the implementation this language is
-called \texttt{constr}, the language of constructions.
-
-% The only difference
-%with respect to the one described in Section \ref{} is that the terms
-%of \texttt{constr} may contain \textsl{existential variables}. An
-%existential variable is a place holder representing a part of the term
-%that is still to be constructed. Such ``open terms'' are necessary
-%when building proofs interactively.
-
-\subsubsection{Building Constructions}
-
-The user does not need to know the choices made to represent
-\texttt{constr} in the meta-language. They are abstracted away by the
-following constructor functions:
-
-\begin{description}
-\fun{val Term.mkRel : int -> constr}
- {$(\texttt{mkRel}\;n)$ represents deBrujin's index $n$.}
-
-\fun{val Term.mkVar : identifier -> constr}
- {$(\texttt{mkVar}\;id)$
- represents a global identifier named $id$, like a variable
- inside the scope of a section, or a hypothesis in a proof}.
-
-\fun{val Term.mkExistential : constr}
- {\texttt{mkExistential} represents an implicit sub-term, like the question
- marks in the term \texttt{(pair ? ? O true)}.}
-
-%\fun{val Term.mkMeta : int -> constr}
-% {$(\texttt{mkMeta}\;n)$ represents an existential variable, whose
-% name is the integer $n$.}
-
-\fun{val Term.mkProp : constr}
- {$\texttt{mkProp}$ represents the sort \textsl{Prop}.}
-
-\fun{val Term.mkSet : constr}
- {$\texttt{mkSet}$ represents the sort \textsl{Set}.}
-
-\fun{val Term.mkType : Impuniv.universe -> constr}
- {$(\texttt{mkType}\;u)$ represents the term
- $\textsl{Type}(u)$. The universe $u$ is represented as a
- section path indexed by an integer. }
-
-\fun{val Term.mkConst : section\_path -> constr array -> constr}
- {$(\texttt{mkConst}\;c\;v)$ represents a constant whose name is
- $c$. The body of the constant is stored in a global table,
- accessible through the name of the constant. The array of terms
- $v$ corresponds to the variables of the environment appearing in
- the body of the constant when it was defined. For instance, a
- constant defined in the section \textsl{Foo} containing the
- variable $A$, and whose body is $[x:Prop\ra Prop](x\;A)$ is
- represented inside the scope of the section by
- $(\texttt{mkConst}\;\texttt{\#foo\#f.cci}\;[| \texttt{mkVAR}\;A
- |])$. Once the section is closed, the constant is represented by
- the term $(\texttt{mkConst}\;\#f.cci\;[| |])$, and its body
- becomes $[A:Prop][x:Prop\ra Prop](x\;A)$}.
-
-\fun{val Term.mkMutInd : section\_path -> int -> constr array ->constr}
- {$(\texttt{mkMutInd}\;c\;i)$ represents the $ith$ type
- (starting from zero) of the block of mutually dependent
- (co)inductive types, whose first type is $c$. Similarly to the
- case of constants, the array of terms represents the current
- environment of the (co)inductive type. The definition of the type
- (its arity, its constructors, whether it is inductive or co-inductive, etc.)
- is stored in a global hash table, accessible through the name of
- the type.}
-
-\fun{val Term.mkMutConstruct : \\ \qquad section\_path -> int -> int -> constr array
- ->constr} {\\ $(\texttt{mkMutConstruct}\;c\;i\;j)$ represents the
- $jth$ constructor of the $ith$ type of the block of mutually
- dependent (co)inductive types whose first type is $c$. The array
- of terms represents the current environment of the (co)inductive
- type.}
-
-\fun{val Term.mkCast : constr -> constr -> constr}
- {$(\texttt{mkCast}\;t\;T)$ represents the annotated term $t::T$ in
- \Coq's syntax.}
-
-\fun{val Term.mkProd : name ->constr ->constr -> constr}
- {$(\texttt{mkProd}\;x\;A\;B)$ represents the product $(x:A)B$.
- The free ocurrences of $x$ in $B$ are represented by deBrujin's
- indexes.}
-
-\fun{val Term.mkNamedProd : identifier -> constr -> constr -> constr}
- {$(\texttt{produit}\;x\;A\;B)$ represents the product $(x:A)B$,
- but the bound occurrences of $x$ in $B$ are denoted by
- the identifier $(\texttt{mkVar}\;x)$. The function automatically
- changes each occurrences of this identifier into the corresponding
- deBrujin's index.}
-
-\fun{val Term.mkArrow : constr -> constr -> constr}
- {$(\texttt{arrow}\;A\;B)$ represents the type $(A\rightarrow B)$.}
-
-\fun{val Term.mkLambda : name -> constr -> constr -> constr}
- {$(\texttt{mkLambda}\;x\;A\;b)$ represents the lambda abstraction
- $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by deBrujin's
- indexes.}
-
-\fun{val Term.mkNamedLambda : identifier -> constr -> constr -> constr}
- {$(\texttt{lambda}\;x\;A\;b)$ represents the lambda abstraction
- $[x:A]b$, but the bound occurrences of $x$ in $B$ are denoted by
- the identifier $(\texttt{mkVar}\;x)$. }
-
-\fun{val Term.mkAppLA : constr array -> constr}
- {$(\texttt{mkAppLA}\;t\;[|t_1\ldots t_n|])$ represents the application
- $(t\;t_1\;\ldots t_n)$.}
-
-\fun{val Term.mkMutCaseA : \\ \qquad
- case\_info -> constr ->constr
- ->constr array -> constr}
- {\\ $(\texttt{mkMutCaseA}\;r\;P\;m\;[|f_1\ldots f_n|])$
- represents the term \Case{P}{m}{f_1\ldots f_n}. The first argument
- $r$ is either \texttt{None} or $\texttt{Some}\;(c,i)$, where the
- pair $(c,i)$ refers to the inductive type that $m$ belongs to.}
-
-\fun{val Term.mkFix : \\ \qquad
-int array->int->constr array->name
- list->constr array->constr}
- {\\ $(\texttt{mkFix}\;[|k_1\ldots k_n |]\;i\;[|A_1\ldots
- A_n|]\;[|f_1\ldots f_n|]\;[|t_1\ldots t_n|])$ represents the term
- $\Fix{f_i}{f_1/k_1:A_1:=t_1 \ldots f_n/k_n:A_n:=t_n}$}
-
-\fun{val Term.mkCoFix : \\ \qquad
- int -> constr array -> name list ->
- constr array -> constr}
- {\\ $(\texttt{mkCoFix}\;i\;[|A_1\ldots
- A_n|]\;[|f_1\ldots f_n|]\;[|t_1\ldots t_n|])$ represents the term
- $\CoFix{f_i}{f_1:A_1:=t_1 \ldots f_n:A_n:=t_n}$. There are no
- decreasing indexes in this case.}
-\end{description}
-
-\subsubsection{Decomposing Constructions}
-
-Each of the construction functions above has its corresponding
-(partial) destruction function, whose name is obtained changing the
-prefix \texttt{mk} by \texttt{dest}. In addition to these functions, a
-concrete datatype \texttt{kindOfTerm} can be used to do pattern
-matching on terms without dealing with their internal representation
-in the meta-language. This concrete datatype is described in the \ocaml{}
-file \texttt{term.mli}. The following function transforms a construction
-into an element of type \texttt{kindOfTerm}:
-
-\begin{description}
-\fun{val Term.kind\_of\_term : constr -> kindOfTerm}
- {Destructs a term of the language \texttt{constr},
-yielding the direct components of the term. Hence, in order to do
-pattern matching on an object $c$ of \texttt{constr}, it is sufficient
-to do pattern matching on the value $(\texttt{kind\_of\_term}\;c)$.}
-\end{description}
-
-Part of the information associated to the constants is stored in
-global tables. The following functions give access to such
-information:
-
-\begin{description}
-\fun{val Termenv.constant\_value : constr -> constr}
- {If the term denotes a constant, projects the body of a constant}
-\fun{Termenv.constant\_type : constr -> constr}
- {If the term denotes a constant, projects the type of the constant}
-\fun{val mind\_arity : constr -> constr}
- {If the term denotes an inductive type, projects its arity (i.e.,
- the type of the inductive type).}
-\fun{val Termenv.mis\_is\_finite : mind\_specif -> bool}
- {Determines whether a recursive type is inductive or co-inductive.}
-\fun{val Termenv.mind\_nparams : constr -> int}
- {If the term denotes an inductive type, projects the number of
- its general parameters.}
-\fun{val Termenv.mind\_is\_recursive : constr -> bool}
- {If the term denotes an inductive type,
- determines if the type has at least one recursive constructor. }
-\fun{val Termenv.mind\_recargs : constr -> recarg list array array}
- {If the term denotes an inductive type, returns an array $v$ such
- that the nth element of $v.(i).(j)$ is
- \texttt{Mrec} if the $nth$ argument of the $jth$ constructor of
- the $ith$ type is recursive, and \texttt{Norec} if it is not.}.
-\end{description}
-
-\subsection[The Type Checker]{The Type Checker\label{TypeChecker}}
-
-The third logical module is the type checker. It concentrates two main
-tasks concerning the language of constructions.
-
-On one hand, it contains the type inference and type-checking
-functions. The type inference function takes a term
-$a$ and a signature $\Gamma$, and yields a term $A$ such that
-$\Gamma \vdash a:A$. The type-checking function takes two terms $a$
-and $A$ and a signature $\Gamma$, and determines whether or not
-$\Gamma \vdash a:A$.
-
-On the other hand, this module is in charge of the compilation of
-\Coq's abstract syntax trees into the language \texttt{constr} of
-constructions. This compilation seeks to eliminate all the ambiguities
-contained in \Coq's abstract syntax, restoring the information
-necessary to type-check it. It concerns at least the following steps:
-\begin{enumerate}
-\item Compiling the pattern-matching expressions containing
-constructor patterns, wild-cards, etc, into terms that only
-use the primitive \textsl{Case} described in Chapter \ref{Cic}
-\item Restoring type coercions and synthesizing the implicit arguments
-(the one denoted by question marks in
-{\Coq} syntax: see Section~\ref{Coercions}).
-\item Transforming the named bound variables into deBrujin's indexes.
-\item Classifying the global names into the different classes of
-constants (defined constants, constructors, inductive types, etc).
-\end{enumerate}
-
-\subsection{The Proof Engine}
-
-The fourth stage of \Coq's implementation is the \textsl{proof engine}:
-the interactive machine for constructing proofs. The aim of the proof
-engine is to construct a top-down derivation or \textsl{proof tree},
-by the application of \textsl{tactics}. A proof tree has the following
-general structure:\\
-
-\begin{displaymath}
-\frac{\Gamma \vdash ? = t(?_1,\ldots?_n) : G}
- {\hspace{3ex}\frac{\displaystyle \Gamma_1 \vdash ?_1 = t_1(\ldots) : G_1}
- {\stackrel{\vdots}{\displaystyle {\Gamma_{i_1} \vdash ?_{i_1}
- : G_{i_1}}}}(tac_1)
- \;\;\;\;\;\;\;\;\;
- \frac{\displaystyle \Gamma_n \vdash ?_n = t_n(\ldots) : G_n}
- {\displaystyle \stackrel{\vdots}{\displaystyle {\Gamma_{i_m} \vdash ?_{i_m} :
- G_{i_m}}}}(tac_n)} (tac)
-\end{displaymath}
-
-
-\noindent Each node of the tree is called a \textsl{goal}. A goal
-is a record type containing the following three fields:
-\begin{enumerate}
-\item the conclusion $G$ to be proven;
-\item a typing signature $\Gamma$ for the free variables in $G$;
-\item if the goal is an internal node of the proof tree, the
-definition $t(?_1,\ldots?_n)$ of an \textsl{existential variable}
-(i.e. a possible undefined constant) $?$ of type $G$ in terms of the
-existential variables of the children sub-goals. If the node is a
-leaf, the existential variable maybe still undefined.
-\end{enumerate}
-
-Once all the existential variables have been defined the derivation is
-completed, and a construction can be generated from the proof tree,
-replacing each of the existential variables by its definition. This
-is exactly what happens when one of the commands
-\texttt{Qed}, \texttt{Save} or \texttt{Defined} is invoked
-(see Section~\ref{Qed}). The saved theorem becomes a defined constant,
-whose body is the proof object generated.
-
-\paragraph{Important:} Before being added to the
-context, the proof object is type-checked, in order to verify that it is
-actually an object of the expected type $G$. Hence, the correctness
-of the proof actually does not depend on the tactics applied to
-generate it or the machinery of the proof engine, but only on the
-type-checker. In other words, extending the system with a potentially
-bugged new tactic never endangers the consistency of the system.
-
-\subsubsection[What is a Tactic?]{What is a Tactic?\label{WhatIsATactic}}
-%Let us now explain what is a tactic, and how the user can introduce
-%new ones.
-
-From an operational point of view, the current state of the proof
-engine is given by the mapping $emap$ from existential variables into
-goals, plus a pointer to one of the leaf goals $g$. Such a pointer
-indicates where the proof tree will be refined by the application of a
-\textsl{tactic}. A tactic is a function from the current state
-$(g,emap)$ of the proof engine into a pair $(l,val)$. The first
-component of this pair is the list of children sub-goals $g_1,\ldots
-g_n$ of $g$ to be yielded by the tactic. The second one is a
-\textsl{validation function}. Once the proof trees $\pi_1,\ldots
-\pi_n$ for $g_1,\ldots g_n$ have been completed, this validation
-function must yield a proof tree $(val\;\pi_1,\ldots \pi_n)$ deriving
-$g$.
-
-Tactics can be classified into \textsl{primitive} ones and
-\textsl{defined} ones. Primitive tactics correspond to the five basic
-operations of the proof engine:
-
-\begin{enumerate}
-\item Introducing a universally quantified variable into the local
-context of the goal.
-\item Defining an undefined existential variable
-\item Changing the conclusion of the goal for another
---definitionally equal-- term.
-\item Changing the type of a variable in the local context for another
-definitionally equal term.
-\item Erasing a variable from the local context.
-\end{enumerate}
-
-\textsl{Defined} tactics are tactics constructed by combining these
-primitive operations. Defined tactics are registered in a hash table,
-so that they can be introduced dynamically. In order to define such a
-tactic table, it is necessary to fix what a \textsl{possible argument}
-of a tactic may be. The type \texttt{tactic\_arg} of the possible
-arguments for tactics is a union type including:
-\begin{itemize}
-\item quoted strings;
-\item integers;
-\item identifiers;
-\item lists of identifiers;
-\item plain terms, represented by its abstract syntax tree;
-\item well-typed terms, represented by a construction;
-\item a substitution for bound variables, like the
-substitution in the tactic \\$\texttt{Apply}\;t\;\texttt{with}\;x:=t_1\ldots
-x_n:=t_n$, (see Section~\ref{apply});
-\item a reduction expression, denoting the reduction strategy to be
-followed.
-\end{itemize}
-Therefore, for each function $tac:a \rightarrow tactic$ implementing a
-defined tactic, an associated dynamic tactic $tacargs\_tac:
-\texttt{tactic\_arg}\;list \rightarrow tactic$ calling $tac$ must be
-written. The aim of the auxiliary function $tacargs\_tac$ is to inject
-the arguments of the tactic $tac$ into the type of possible arguments
-for a tactic.
-
-The following function can be used for registering and calling a
-defined tactic:
-
-\begin{description}
-\fun{val Tacmach.add\_tactic : \\ \qquad
-string -> (tactic\_arg list ->tactic) -> unit}
- {\\ Registers a dynamic tactic with the given string as access index.}
-\fun{val Tacinterp.vernac\_tactic : string*tactic\_arg list -> tactic}
- {Interprets a defined tactic given by its entry in the
- tactics table with a particular list of possible arguments.}
-\fun{val Tacinterp.vernac\_interp : CoqAst.t -> tactic}
- {Interprets a tactic expression formed combining \Coq's tactics and
- tacticals, and described by its abstract syntax tree.}
-\end{description}
-
-When programming a new tactic that calls an already defined tactic
-$tac$, we have the choice between using the \ocaml{} function
-implementing $tac$, or calling the tactic interpreter with the name
-and arguments for interpreting $tac$. In the first case, a tactic call
-will left the trace of the whole implementation of $tac$ in the proof
-tree. In the second, the implementation of $tac$ will be hidden, and
-only an invocation of $tac$ will be recalled (cf. the example of
-Section \ref{ACompleteExample}. The following combinators can be used
-to hide the implementation of a tactic:
-
-\begin{verbatim}
-type 'a hiding_combinator = string -> ('a -> tactic) -> ('a -> tactic)
-val Tacmach.hide_atomic_tactic : string -> tactic -> tactic
-val Tacmach.hide_constr_tactic : constr hiding_combinator
-val Tacmach.hide_constrl_tactic : (constr list) hiding_combinator
-val Tacmach.hide_numarg_tactic : int hiding_combinator
-val Tacmach.hide_ident_tactic : identifier hiding_combinator
-val Tacmach.hide_identl_tactic : identifier hiding_combinator
-val Tacmach.hide_string_tactic : string hiding_combinator
-val Tacmach.hide_bindl_tactic : substitution hiding_combinator
-val Tacmach.hide_cbindl_tactic :
- (constr * substitution) hiding_combinator
-\end{verbatim}
-
-These functions first register the tactic by a side effect, and then
-yield a function calling the interpreter with the registered name and
-the right injection into the type of possible arguments.
-
-\subsection{Tactics and Tacticals Provided by \Coq}
-
-The fifth logical module is the library of tacticals and basic tactics
-provided by \Coq. This library is distributed into the directories
-\texttt{tactics} and \texttt{src/tactics}. The former contains those
-basic tactics that make use of the types contained in the basic state
-of \Coq. For example, inversion or rewriting tactics are in the
-directory \texttt{tactics}, since they make use of the propositional
-equality type. Those tactics which are independent from the context
---like for example \texttt{Cut}, \texttt{Intros}, etc-- are defined in
-the directory \texttt{src/tactics}. This latter directory also
-contains some useful tools for programming new tactics, referred in
-Section \ref{SomeUsefulToolsforWrittingTactics}.
-
-In practice, it is very unusual that the list of sub-goals and the
-validation function of the tactic must be explicitly constructed by
-the user. In most of the cases, the implementation of a new tactic
-consists in supplying the appropriate arguments to the basic tactics
-and tacticals.
-
-\subsubsection{Basic Tactics}
-
-The file \texttt{Tactics} contain the implementation of the basic
-tactics provided by \Coq. The following tactics are some of the most
-used ones:
-
-\begin{verbatim}
-val Tactics.intro : tactic
-val Tactics.assumption : tactic
-val Tactics.clear : identifier list -> tactic
-val Tactics.apply : constr -> constr substitution -> tactic
-val Tactics.one_constructor : int -> constr substitution -> tactic
-val Tactics.simplest_elim : constr -> tactic
-val Tactics.elimType : constr -> tactic
-val Tactics.simplest_case : constr -> tactic
-val Tactics.caseType : constr -> tactic
-val Tactics.cut : constr -> tactic
-val Tactics.reduce : redexpr -> tactic
-val Tactics.exact : constr -> tactic
-val Auto.auto : int option -> tactic
-val Auto.trivial : tactic
-\end{verbatim}
-
-The functions hiding the implementation of these tactics are defined
-in the module \texttt{Hiddentac}. Their names are prefixed by ``h\_''.
-
-\subsubsection[Tacticals]{Tacticals\label{OcamlTacticals}}
-
-The following tacticals can be used to combine already existing
-tactics:
-
-\begin{description}
-\fun{val Tacticals.tclIDTAC : tactic}
- {The identity tactic: it leaves the goal as it is.}
-
-\fun{val Tacticals.tclORELSE : tactic -> tactic -> tactic}
- {Tries the first tactic and in case of failure applies the second one.}
-
-\fun{val Tacticals.tclTHEN : tactic -> tactic -> tactic}
- {Applies the first tactic and then the second one to each generated subgoal.}
-
-\fun{val Tacticals.tclTHENS : tactic -> tactic list -> tactic}
- {Applies a tactic, and then applies each tactic of the tactic list to the
- corresponding generated subgoal.}
-
-\fun{val Tacticals.tclTHENL : tactic -> tactic -> tactic}
- {Applies the first tactic, and then applies the second one to the last
- generated subgoal.}
-
-\fun{val Tacticals.tclREPEAT : tactic -> tactic}
- {If the given tactic succeeds in producing a subgoal, then it
- is recursively applied to each generated subgoal,
- and so on until it fails. }
-
-\fun{val Tacticals.tclFIRST : tactic list -> tactic}
- {Tries the tactics of the given list one by one, until one of them
- succeeds.}
-
-\fun{val Tacticals.tclTRY : tactic -> tactic}
- {Tries the given tactic and in case of failure applies the {\tt
- tclIDTAC} tactical to the original goal.}
-
-\fun{val Tacticals.tclDO : int -> tactic -> tactic}
- {Applies the tactic a given number of times.}
-
-\fun{val Tacticals.tclFAIL : tactic}
- {The always failing tactic: it raises a {\tt UserError} exception.}
-
-\fun{val Tacticals.tclPROGRESS : tactic -> tactic}
- {Applies the given tactic to the current goal and fails if the
- tactic leaves the goal unchanged}
-
-\fun{val Tacticals.tclNTH\_HYP : int -> (constr -> tactic) -> tactic}
- {Applies a tactic to the nth hypothesis of the local context.
- The last hypothesis introduced correspond to the integer 1.}
-
-\fun{val Tacticals.tclLAST\_HYP : (constr -> tactic) -> tactic}
- {Applies a tactic to the last hypothesis introduced.}
-
-\fun{val Tacticals.tclCOMPLETE : tactic -> tactic}
- {Applies a tactic and fails if the tactic did not solve completely the
- goal}
-
-\fun{val Tacticals.tclMAP : ('a -> tactic) -> 'a list -> tactic}
- {Applied to the function \texttt{f} and the list \texttt{[x\_1;
- ... ; x\_n]}, this tactical applies the tactic
- \texttt{tclTHEN (f x1) (tclTHEN (f x2) ... ))))}}
-
-\fun{val Tacicals.tclIF : (goal sigma -> bool) -> tactic -> tactic -> tactic}
- {If the condition holds, apply the first tactic; otherwise,
- apply the second one}
-
-\end{description}
-
-
-\subsection{The Vernacular Interpreter}
-
-The sixth logical module of the implementation corresponds to the
-interpreter of the vernacular phrases of \Coq. These phrases may be
-expressions from the \gallina{} language (definitions), general
-directives (setting commands) or tactics to be applied by the proof
-engine.
-
-\subsection[The Parser and the Pretty-Printer]{The Parser and the Pretty-Printer\label{PrettyPrinter}}
-
-The last logical module is the parser and pretty printer of \Coq,
-which is the interface between the vernacular interpreter and the
-user. They translate the chains of characters entered at the input
-into abstract syntax trees, and vice versa. Abstract syntax trees are
-represented by labeled n-ary trees, and its type is called
-\texttt{CoqAst.t}. For instance, the abstract syntax tree associated
-to the term $[x:A]x$ is:
-
-\begin{displaymath}
-\texttt{Node}
- ((0,6), "LAMBDA",
- [\texttt{Nvar}~((3, 4),"A");~\texttt{Slam}~((0,6),~Some~"x",~\texttt{Nvar}~((5,6),"x"))])
-\end{displaymath}
-
-The numbers correspond to \textsl{locations}, used to point to some
-input line and character positions in the error messages. As it was
-already explained in Section \ref{TypeChecker}, this term is then
-translated into a construction term in order to be typed.
-
-The parser of \Coq\ is implemented using \camlpppp. The lexer and the data
-used by \camlpppp\ to generate the parser lay in the directory
-\texttt{src/parsing}. This directory also contains \Coq's
-pretty-printer. The printing rules lay in the directory
-\texttt{src/syntax}. The different entries of the grammar are
-described in the module \texttt{Pcoq.Entry}. Let us present here two
-important functions of this logical module:
-
-\begin{description}
-\fun{val Pcoq.parse\_string : 'a Grammar.Entry.e -> string -> 'a}
- {Parses a given string, trying to recognize a phrase
- corresponding to some entry in the grammar. If it succeeds,
- it yields a value associated to the grammar entry. For example,
- applied to the entry \texttt{Pcoq.Command.command}, this function
- parses a term of \Coq's language, and yields a value of type
- \texttt{CoqAst.t}. When applied to the entry
- \texttt{Pcoq.Vernac.vernac}, it parses a vernacular command and
- returns the corresponding Ast.}
-\fun{val gentermpr : \\ \qquad
-path\_kind -> constr assumptions -> constr -> std\_ppcmds}
- {\\ Pretty-prints a well-typed term of certain kind (cf. Section
- \ref{SectionPaths}) under its context of typing assumption.}
-\fun{val gentacpr : CoqAst.t -> std\_ppcmds}
- {Pretty-prints a given abstract syntax tree representing a tactic
- expression.}
-\end{description}
-
-\subsection{The General Library}
-
-In addition to the ones laying in the standard library of \ocaml{},
-several useful modules about lists, arrays, sets, mappings, balanced
-trees, and other frequently used data structures can be found in the
-directory \texttt{lib}. Before writing a new one, check if it is not
-already there!
-
-\subsubsection{The module \texttt{Std}}
-This module in the directory \texttt{src/lib/util} is opened by almost
-all modules of \Coq{}. Among other things, it contains a definition of
-the different kinds of errors used in \Coq{} :
-
-\begin{description}
-\fun{exception UserError of string * std\_ppcmds}
- {This is the class of ``users exceptions''. Such errors arise when
- the user attempts to do something illegal, for example \texttt{Intro}
- when the current goal conclusion is not a product.}
-
-\fun{val Std.error : string -> 'a}
- {For simple error messages}
-\fun{val Std.errorlabstrm : string -> std\_ppcmds -> 'a}
- {See Section~\ref{PrettyPrinter} : this can be used if the user
- want to display a term or build a complex error message}
-
-\fun{exception Anomaly of string * std\_ppcmds}
- {This for reporting bugs or things that should not
- happen. The tacticals \texttt{tclTRY} and
- \texttt{tclTRY} described in Section~\ref{OcamlTacticals} catch the
- exceptions of type \texttt{UserError}, but they don't catch the
- anomalies. So, in your code, don't raise any anomaly, unless you
- know what you are doing. We also recommend to avoid constructs
- such as \texttt{try ... with \_ -> ...} : such constructs can trap
- an anomaly and make the debugging process harder.}
-
-\fun{val Std.anomaly : string -> 'a}{}
-\fun{val Std.anomalylabstrm : string -> std\_ppcmds -> 'a}{}
-\end{description}
-
-\section{The tactic writer mini-HOWTO}
-
-\subsection{How to add a vernacular command}
-
-The command to register a vernacular command can be found
-in module \texttt{Vernacinterp}:
-
-\begin{verbatim}
-val vinterp_add : string * (vernac_arg list -> unit -> unit) -> unit;;
-\end{verbatim}
-
-The first argument is the name, the second argument is a function that
-parses the arguments and returns a function of type
-\texttt{unit}$\rightarrow$\texttt{unit} that do the job.
-
-In this section we will show how to add a vernacular command
-\texttt{CheckCheck} that print a type of a term and the type of its
-type.
-
-File \texttt{dcheck.ml}:
-
-\begin{verbatim}
-open Vernacinterp;;
-open Trad;;
-let _ =
- vinterp_add
- ("DblCheck",
- function [VARG_COMMAND com] ->
- (fun () ->
- let evmap = Evd.mt_evd ()
- and sign = Termenv.initial_sign () in
- let {vAL=c;tYP=t;kIND=k} =
- fconstruct_with_univ evmap sign com in
- Pp.mSGNL [< Printer.prterm c; 'sTR ":";
- Printer.prterm t; 'sTR ":";
- Printer.prterm k >] )
- | _ -> bad_vernac_args "DblCheck")
-;;
-\end{verbatim}
-
-Like for a new tactic, a new syntax entry must be created.
-
-File \texttt{DCheck.v}:
-
-\begin{verbatim}
-Declare ML Module "dcheck.ml".
-
-Grammar vernac vernac :=
- dblcheck [ "CheckCheck" comarg($c) ] -> [(DblCheck $c)].
-\end{verbatim}
-
-We are now able to test our new command:
-
-\begin{verbatim}
-Coq < Require DCheck.
-Coq < CheckCheck O.
-O:nat:Set
-\end{verbatim}
-
-Most Coq vernacular commands are registered in the module
- \verb+src/env/vernacentries.ml+. One can see more examples here.
-
-\subsection{How to keep a hashtable synchronous with the reset mechanism}
-
-This is far more tricky. Some vernacular commands modify some
-sort of state (for example by adding something in a hashtable). One
-wants that \texttt{Reset} has the expected behavior with this
-commands.
-
-\Coq{} provides a general mechanism to do that. \Coq{} environments
-contains objects of three kinds: CCI, FW and OBJ. CCI and FW are for
-constants of the calculus. OBJ is a dynamically extensible datatype
-that contains sections, tactic definitions, hints for auto, and so
-on.
-
-The simplest example of use of such a mechanism is in file
-\verb+src/proofs/macros.ml+ (which implements the \texttt{Tactic
- Definition} command). Tactic macros are stored in the imperative
-hashtable \texttt{mactab}. There are two functions freeze and unfreeze
-to make a copy of the table and to restore the state of table from the
-copy. Then this table is declared using \texttt{Library.declare\_summary}.
-
-What does \Coq{} with that ? \Coq{} defines synchronization points.
-At each synchronisation point, the declared tables are frozen (that
-is, a copy of this tables is stored).
-
-When \texttt{Reset }$i$ is called, \Coq{} goes back to the first
-synchronisation point that is above $i$ and ``replays'' all objects
-between that point
-and $i$. It will re-declare constants, re-open section, etc.
-
-So we need to declare a new type of objects, TACTIC-MACRO-DATA. To
-``replay'' on object of that type is to add the corresponding tactic
-macro to \texttt{mactab}
-
-So, now, we can say that \texttt{mactab} is synchronous with the Reset
-mechanism$^{\mathrm{TM}}$.
-
-Notice that this works for hash tables but also for a single integer
-(the Undo stack size, modified by the \texttt{Set Undo} command, for
-example).
-
-\subsection{The right way to access to Coq constants from your ML code}
-
-With their long names, Coq constants are stored using:
-
-\begin{itemize}
-\item a section path
-\item an identifier
-\end{itemize}
-
-The identifier is exactly the identifier that is used in \Coq{} to
-denote the constant; the section path can be known using the
-\texttt{Locate} command:
-
-\begin{coq_example}
- Locate S.
- Locate nat.
- Locate eq.
-\end{coq_example}
-
-Now it is easy to get a constant by its name and section path:
-
-
-\begin{verbatim}
-let constant sp id =
- Machops.global_reference (Names.gLOB (Termenv.initial_sign ()))
- (Names.path_of_string sp) (Names.id_of_string id);;
-\end{verbatim}
-
-
-The only issue is that if one cannot put:
-
-
-\begin{verbatim}
-let coq_S = constant "#Datatypes#nat.cci" "S";;
-\end{verbatim}
-
-
-in his tactic's code. That is because this sentence is evaluated
-\emph{before} the module \texttt{Datatypes} is loaded. The solution is
-to use the lazy evaluation of \ocaml{}:
-
-
-\begin{verbatim}
-let coq_S = lazy (constant "#Datatypes#nat.cci" "S");;
-
-... (Lazy.force coq_S) ...
-\end{verbatim}
-
-
-Be sure to call always Lazy.force behind a closure -- i.e. inside a
-function body or behind the \texttt{lazy} keyword.
-
-One can see examples of that technique in the source code of \Coq{},
-for example
-\verb+plugins/omega/coq_omega.ml+.
-
-\section[Some Useful Tools for Writing Tactics]{Some Useful Tools for Writing Tactics\label{SomeUsefulToolsforWrittingTactics}}
-When the implementation of a tactic is not a straightforward
-combination of tactics and tacticals, the module \texttt{Tacmach}
-provides several useful functions for handling goals, calling the
-type-checker, parsing terms, etc. This module is intended to be
-the interface of the proof engine for the user.
-
-\begin{description}
-\fun{val Tacmach.pf\_hyps : goal sigma -> constr signature}
- {Projects the local typing context $\Gamma$ from a given goal $\Gamma\vdash ?:G$.}
-\fun{val pf\_concl : goal sigma -> constr}
- {Projects the conclusion $G$ from a given goal $\Gamma\vdash ?:G$.}
-\fun{val Tacmach.pf\_nth\_hyp : goal sigma -> int -> identifier *
- constr}
- {Projects the $ith$ typing constraint $x_i:A_i$ from the local
- context of the given goal.}
-\fun{val Tacmach.pf\_fexecute : goal sigma -> constr -> judgement}
- {Given a goal whose local context is $\Gamma$ and a term $a$, this
- function infers a type $A$ and a kind $K$ such that the judgement
- $a:A:K$ is valid under $\Gamma$, or raises an exception if there
- is no such judgement. A judgement is just a record type containing
- the three terms $a$, $A$ and $K$.}
-\fun{val Tacmach.pf\_infexecute : \\
- \qquad
-goal sigma -> constr -> judgement * information}
- {\\ In addition to the typing judgement, this function also extracts
- the $F_{\omega}$ program underlying the term.}
-\fun{val Tacmach.pf\_type\_of : goal sigma -> constr -> constr}
- {Infers a term $A$ such that $\Gamma\vdash a:A$ for a given term
- $a$, where $\Gamma$ is the local typing context of the goal.}
-\fun{val Tacmach.pf\_check\_type : goal sigma -> constr -> constr -> bool}
- {This function yields a type $A$ if the two given terms $a$ and $A$ verify $\Gamma\vdash
- a:A$ in the local typing context $\Gamma$ of the goal. Otherwise,
- it raises an exception.}
-\fun{val Tacmach.pf\_constr\_of\_com : goal sigma -> CoqAst.t -> constr}
- {Transforms an abstract syntax tree into a well-typed term of the
- language of constructions. Raises an exception if the term cannot
- be typed.}
-\fun{val Tacmach.pf\_constr\_of\_com\_sort : goal sigma -> CoqAst.t -> constr}
- {Transforms an abstract syntax tree representing a type into
- a well-typed term of the language of constructions. Raises an
- exception if the term cannot be typed.}
-\fun{val Tacmach.pf\_parse\_const : goal sigma -> string -> constr}
- {Constructs the constant whose name is the given string.}
-\fun{val
-Tacmach.pf\_reduction\_of\_redexp : \\
- \qquad goal sigma -> red\_expr -> constr -> constr}
- {\\ Applies a certain kind of reduction function, specified by an
- element of the type red\_expr.}
-\fun{val Tacmach.pf\_conv\_x : goal sigma -> constr -> constr -> bool}
- {Test whether two given terms are definitionally equal.}
-\end{description}
-
-\subsection[Patterns]{Patterns\label{Patterns}}
-
-The \ocaml{} file \texttt{Pattern} provides a quick way for describing a
-term pattern and performing second-order, binding-preserving, matching
-on it. Patterns are described using an extension of \Coq's concrete
-syntax, where the second-order meta-variables of the pattern are
-denoted by indexed question marks.
-
-Patterns may depend on constants, and therefore only to make have
-sense when certain theories have been loaded. For this reason, they
-are stored with a \textsl{module-marker}, telling us which modules
-have to be open in order to use the pattern. The following functions
-can be used to store and retrieve patterns form the pattern table:
-
-\begin{description}
-\fun{val Pattern.make\_module\_marker : string list -> module\_mark}
- {Constructs a module marker from a list of module names.}
-\fun{val Pattern.put\_pat : module\_mark -> string -> marked\_term}
- {Constructs a pattern from a parseable string containing holes
- and a module marker.}
-\fun{val Pattern.somatches : constr -> marked\_term-> bool}
- {Tests if a term matches a pattern.}
-\fun{val dest\_somatch : constr -> marked\_term -> constr list}
- {If the term matches the pattern, yields the list of sub-terms
- matching the occurrences of the pattern variables (ordered from
- left to right). Raises a \texttt{UserError} exception if the term
- does not match the pattern.}
-\fun{val Pattern.soinstance : marked\_term -> constr list -> constr}
- {Substitutes each hole in the pattern
- by the corresponding term of the given the list.}
-\end{description}
-
-\paragraph{Warning:} Sometimes, a \Coq\ term may have invisible
-sub-terms that the matching functions are nevertheless sensible to.
-For example, the \Coq\ term $(?_1,?_2)$ is actually a shorthand for
-the expression $(\texttt{pair}\;?\;?\;?_1\;?_2)$.
-Hence, matching this term pattern
-with the term $(\texttt{true},\texttt{O})$ actually yields the list
-$[?;?;\texttt{true};\texttt{O}]$ as result (and \textbf{not}
-$[\texttt{true};\texttt{O}]$, as could be expected).
-
-\subsection{Patterns on Inductive Definitions}
-
-The module \texttt{Pattern} also includes some functions for testing
-if the definition of an inductive type satisfies certain
-properties. Such functions may be used to perform pattern matching
-independently from the name given to the inductive type and the
-universe it inhabits. They yield the value $(\texttt{Some}\;r::l)$ if
-the input term reduces into an application of an inductive type $r$ to
-a list of terms $l$, and the definition of $r$ satisfies certain
-conditions. Otherwise, they yield the value \texttt{None}.
-
-\begin{description}
-\fun{val Pattern.match\_with\_non\_recursive\_type : constr list option}
- {Tests if the inductive type $r$ has no recursive constructors}
-\fun{val Pattern.match\_with\_disjunction : constr list option}
- {Tests if the inductive type $r$ is a non-recursive type
- such that all its constructors have a single argument.}
-\fun{val Pattern.match\_with\_conjunction : constr list option}
- {Tests if the inductive type $r$ is a non-recursive type
- with a unique constructor.}
-\fun{val Pattern.match\_with\_empty\_type : constr list option}
- {Tests if the inductive type $r$ has no constructors at all}
-\fun{val Pattern.match\_with\_equation : constr list option}
- {Tests if the inductive type $r$ has a single constructor
- expressing the property of reflexivity for some type. For
- example, the types $a=b$, $A\mbox{==}B$ and $A\mbox{===}B$ satisfy
- this predicate.}
-\end{description}
-
-\subsection{Elimination Tacticals}
-
-It is frequently the case that the subgoals generated by an
-elimination can all be solved in a similar way, possibly parametrized
-on some information about each case, like for example:
-\begin{itemize}
-\item the inductive type of the object being eliminated;
-\item its arguments (if it is an inductive predicate);
-\item the branch number;
-\item the predicate to be proven;
-\item the number of assumptions to be introduced by the case
-\item the signature of the branch, i.e., for each argument of
-the branch whether it is recursive or not.
-\end{itemize}
-
-The following tacticals can be useful to deal with such situations.
-They
-
-\begin{description}
-\fun{val Elim.simple\_elimination\_then : \\ \qquad
-(branch\_args -> tactic) -> constr -> tactic}
- {\\ Performs the default elimination on the last argument, and then
- tries to solve the generated subgoals using a given parametrized
- tactic. The type branch\_args is a record type containing all
- information mentioned above.}
-\fun{val Elim.simple\_case\_then : \\ \qquad
-(branch\_args -> tactic) -> constr -> tactic}
- {\\ Similarly, but it performs case analysis instead of induction.}
-\end{description}
-
-\section[A Complete Example]{A Complete Example\label{ACompleteExample}}
-
-In order to illustrate the implementation of a new tactic, let us come
-back to the problem of deciding the equality of two elements of an
-inductive type.
-
-\subsection{Preliminaries}
-
-Let us call \texttt{newtactic} the directory that will contain the
-implementation of the new tactic. In this directory will lay two
-files: a file \texttt{eqdecide.ml}, containing the \ocaml{} sources that
-implements the tactic, and a \Coq\ file \texttt{Eqdecide.v}, containing
-its associated grammar rules and the commands to generate a module
-that can be loaded dynamically from \Coq's toplevel.
-
-To compile our project, we will create a \texttt{Makefile} with the
-command \texttt{do\_Makefile} (see Section~\ref{Makefile}) :
-
-\begin{quotation}
- \texttt{do\_Makefile eqdecide.ml EqDecide.v > Makefile}\\
- \texttt{touch .depend}\\
- \texttt{make depend}
-\end{quotation}
-
-We must have kept the sources of \Coq{} somewhere and to set an
-environment variable \texttt{COQTOP} that points to that directory.
-
-\subsection{Implementing the Tactic}
-
-The file \texttt{eqdecide.ml} contains the implementation of the
-tactic in \ocaml{}. Let us recall the main steps of the proof strategy
-for deciding the proposition $(x,y:R)\{x=y\}+\{\neg x=y\}$ on the
-inductive type $R$:
-\begin{enumerate}
-\item Eliminate $x$ and then $y$.
-\item Try discrimination to solve those goals where $x$ and $y$ has
-been introduced by different constructors.
-\item If $x$ and $y$ have been introduced by the same constructor,
- then analyze one by one the corresponding pairs of arguments.
- If they are equal, rewrite one into the other. If they are
- not, derive a contradiction from the invectiveness of the
- constructor.
-\item Once all the arguments have been rewritten, solve the left half
-of the goal by reflexivity.
-\end{enumerate}
-
-In the sequel we implement these steps one by one. We start opening
-the modules necessary for the implementation of the tactic:
-
-\begin{verbatim}
-open Names
-open Term
-open Tactics
-open Tacticals
-open Hiddentac
-open Equality
-open Auto
-open Pattern
-open Names
-open Termenv
-open Std
-open Proof_trees
-open Tacmach
-\end{verbatim}
-
-The first step of the procedure can be straightforwardly implemented as
-follows:
-
-\begin{verbatim}
-let clear_last = (tclLAST_HYP (fun c -> (clear_one (destVar c))));;
-\end{verbatim}
-
-\begin{verbatim}
-let mkBranches =
- (tclTHEN intro
- (tclTHEN (tclLAST_HYP h_simplest_elim)
- (tclTHEN clear_last
- (tclTHEN intros
- (tclTHEN (tclLAST_HYP h_simplest_case)
- (tclTHEN clear_last
- intros))))));;
-\end{verbatim}
-
-Notice the use of the tactical \texttt{tclLAST\_HYP}, which avoids to
-give a (potentially clashing) name to the quantified variables of the
-goal when they are introduced.
-
-The second step of the procedure is implemented by the following
-tactic:
-
-\begin{verbatim}
-let solveRightBranch = (tclTHEN simplest_right discrConcl);;
-\end{verbatim}
-
-In order to illustrate how the implementation of a tactic can be
-hidden, let us do it with the tactic above:
-
-\begin{verbatim}
-let h_solveRightBranch =
- hide_atomic_tactic "solveRightBranch" solveRightBranch
-;;
-\end{verbatim}
-
-As it was already mentioned in Section \ref{WhatIsATactic}, the
-combinator \texttt{hide\_atomic\_tactic} first registers the tactic
-\texttt{solveRightBranch} in the table, and returns a tactic which
-calls the interpreter with the used to register it. Hence, when the
-tactical \texttt{Info} is used, our tactic will just inform that
-\texttt{solveRightBranch} was applied, omitting all the details
-corresponding to \texttt{simplest\_right} and \texttt{discrConcl}.
-
-
-
-The third step requires some auxiliary functions for constructing the
-type $\{c_1=c_2\}+\{\neg c_1=c_2\}$ for a given inductive type $R$ and
-two constructions $c_1$ and $c_2$, and for generalizing this type over
-$c_1$ and $c_2$:
-
-\begin{verbatim}
-let mmk = make_module_marker ["#Logic.obj";"#Specif.obj"];;
-let eqpat = put_pat mmk "eq";;
-let sumboolpat = put_pat mmk "sumbool";;
-let notpat = put_pat mmk "not";;
-let eq = get_pat eqpat;;
-let sumbool = get_pat sumboolpat;;
-let not = get_pat notpat;;
-
-let mkDecideEqGoal rectype c1 c2 g =
- let equality = mkAppL [eq;rectype;c1;c2] in
- let disequality = mkAppL [not;equality]
- in mkAppL [sumbool;equality;disequality]
-;;
-let mkGenDecideEqGoal rectype g =
- let hypnames = ids_of_sign (pf_hyps g) in
- let xname = next_ident_away (id_of_string "x") hypnames
- and yname = next_ident_away (id_of_string "y") hypnames
- in (mkNamedProd xname rectype
- (mkNamedProd yname rectype
- (mkDecideEqGoal rectype (mkVar xname) (mkVar yname) g)))
-;;
-\end{verbatim}
-
-The tactic will depend on the \Coq modules \texttt{Logic} and
-\texttt{Specif}, since we use the constants corresponding to
-propositional equality (\texttt{eq}), computational disjunction
-(\texttt{sumbool}), and logical negation (\texttt{not}), defined in
-that modules. This is specified creating the module maker
-\texttt{mmk} (see Section~\ref{Patterns}).
-
-The third step of the procedure can be divided into three sub-steps.
-Assume that both $x$ and $y$ have been introduced by the same
-constructor. For each corresponding pair of arguments of that
-constructor, we have to consider whether they are equal or not. If
-they are equal, the following tactic is applied to rewrite one into
-the other:
-
-\begin{verbatim}
-let eqCase tac =
- (tclTHEN intro
- (tclTHEN (tclLAST_HYP h_rewriteLR)
- (tclTHEN clear_last
- tac)))
-;;
-\end{verbatim}
-
-
-If they are not equal, then the goal is contraposed and a
-contradiction is reached form the invectiveness of the constructor:
-
-\begin{verbatim}
-let diseqCase =
- let diseq = (id_of_string "diseq") in
- let absurd = (id_of_string "absurd")
- in (tclTHEN (intro_using diseq)
- (tclTHEN h_simplest_right
- (tclTHEN red_in_concl
- (tclTHEN (intro_using absurd)
- (tclTHEN (h_simplest_apply (mkVar diseq))
- (tclTHEN (h_injHyp absurd)
- trivial ))))))
-;;
-\end{verbatim}
-
-In the tactic above we have chosen to name the hypotheses because
-they have to be applied later on. This introduces a potential risk
-of name clashing if the context already contains other hypotheses
-also named ``diseq'' or ``absurd''.
-
-We are now ready to implement the tactic \textsl{SolveArg}. Given the
-two arguments $a_1$ and $a_2$ of the constructor, this tactic cuts the
-goal with the proposition $\{a_1=a_2\}+\{\neg a_1=a_2\}$, and then
-applies the tactics above to each of the generated cases. If the
-disjunction cannot be solved automatically, it remains as a sub-goal
-to be proven.
-
-\begin{verbatim}
-let solveArg a1 a2 tac g =
- let rectype = pf_type_of g a1 in
- let decide = mkDecideEqGoal rectype a1 a2 g
- in (tclTHENS (h_elimType decide)
- [(eqCase tac);diseqCase;default_auto]) g
-;;
-\end{verbatim}
-
-The following tactic implements the third and fourth steps of the
-proof procedure:
-
-\begin{verbatim}
-let conclpatt = put_pat mmk "{<?1>?2=?3}+{?4}"
-;;
-let solveLeftBranch rectype g =
- let (_::(lhs::(rhs::_))) =
- try (dest_somatch (pf_concl g) conclpatt)
- with UserError ("somatch",_)-> error "Unexpected conclusion!" in
- let nparams = mind_nparams rectype in
- let getargs l = snd (chop_list nparams (snd (decomp_app l))) in
- let rargs = getargs rhs
- and largs = getargs lhs
- in List.fold_right2
- solveArg largs rargs (tclTHEN h_simplest_left h_reflexivity) g
-;;
-\end{verbatim}
-
-Notice the use of a pattern to decompose the goal and obtain the
-inductive type and the left and right hand sides of the equality. A
-certain number of arguments correspond to the general parameters of
-the type, and must be skipped over. Once the corresponding list of
-arguments \texttt{rargs} and \texttt{largs} have been obtained, the
-tactic \texttt{solveArg} is iterated on them, leaving a disjunction
-whose left half can be solved by reflexivity.
-
-The following tactic joints together the three steps of the
-proof procedure:
-
-\begin{verbatim}
-let initialpatt = put_pat mmk "(x,y:?1){<?1>x=y}+{~(<?1>x=y)}"
-;;
-let decideGralEquality g =
- let (typ::_) = try (dest_somatch (pf_concl g) initialpatt)
- with UserError ("somatch",_) ->
- error "The goal does not have the expected form" in
- let headtyp = hd_app (pf_compute g typ) in
- let rectype = match (kind_of_term headtyp) with
- IsMutInd _ -> headtyp
- | _ -> error ("This decision procedure only"
- " works for inductive objects")
- in (tclTHEN mkBranches
- (tclORELSE h_solveRightBranch (solveLeftBranch rectype))) g
-;;
-;;
-\end{verbatim}
-
-The tactic above can be specialized in two different ways: either to
-decide a particular instance $\{c_1=c_2\}+\{\neg c_1=c_2\}$ of the
-universal quantification; or to eliminate this property and obtain two
-subgoals containing the hypotheses $c_1=c_2$ and $\neg c_1=c_2$
-respectively.
-
-\begin{verbatim}
-let decideGralEquality =
- (tclTHEN mkBranches (tclORELSE h_solveRightBranch solveLeftBranch))
-;;
-let decideEquality c1 c2 g =
- let rectype = pf_type_of g c1 in
- let decide = mkGenDecideEqGoal rectype g
- in (tclTHENS (cut decide) [default_auto;decideGralEquality]) g
-;;
-let compare c1 c2 g =
- let rectype = pf_type_of g c1 in
- let decide = mkDecideEqGoal rectype c1 c2 g
- in (tclTHENS (cut decide)
- [(tclTHEN intro
- (tclTHEN (tclLAST_HYP simplest_case)
- clear_last));
- decideEquality c1 c2]) g
-;;
-\end{verbatim}
-
-Next, for each of the tactics that will have an entry in the grammar
-we construct the associated dynamic one to be registered in the table
-of tactics. This function can be used to overload a tactic name with
-several similar tactics. For example, the tactic proving the general
-decidability property and the one proving a particular instance for
-two terms can be grouped together with the following convention: if
-the user provides two terms as arguments, then the specialized tactic
-is used; if no argument is provided then the general tactic is invoked.
-
-\begin{verbatim}
-let dyn_decideEquality args g =
- match args with
- [(COMMAND com1);(COMMAND com2)] ->
- let c1 = pf_constr_of_com g com1
- and c2 = pf_constr_of_com g com2
- in decideEquality c1 c2 g
- | [] -> decideGralEquality g
- | _ -> error "Invalid arguments for dynamic tactic"
-;;
-add_tactic "DecideEquality" dyn_decideEquality
-;;
-
-let dyn_compare args g =
- match args with
- [(COMMAND com1);(COMMAND com2)] ->
- let c1 = pf_constr_of_com g com1
- and c2 = pf_constr_of_com g com2
- in compare c1 c2 g
- | _ -> error "Invalid arguments for dynamic tactic"
-;;
-add_tactic "Compare" tacargs_compare
-;;
-\end{verbatim}
-
-This completes the implementation of the tactic. We turn now to the
-\Coq file \texttt{Eqdecide.v}.
-
-
-\subsection{The Grammar Rules}
-
-Associated to the implementation of the tactic there is a \Coq\ file
-containing the grammar and pretty-printing rules for the new tactic,
-and the commands to generate an object module that can be then loaded
-dynamically during a \Coq\ session. In order to generate an ML module,
-the \Coq\ file must contain a
-\texttt{Declare ML module} command for all the \ocaml{} files concerning
-the implementation of the tactic --in our case there is only one file,
-the file \texttt{eqdecide.ml}:
-
-\begin{verbatim}
-Declare ML Module "eqdecide".
-\end{verbatim}
-
-The following grammar and pretty-printing rules are
-self-explanatory. We refer the reader to the Section \ref{Grammar} for
-the details:
-
-\begin{verbatim}
-Grammar tactic simple_tactic :=
- EqDecideRuleG1
- [ "Decide" "Equality" comarg($com1) comarg($com2)] ->
- [(DecideEquality $com1 $com2)]
-| EqDecideRuleG2
- [ "Decide" "Equality" ] ->
- [(DecideEquality)]
-| CompareRule
- [ "Compare" comarg($com1) comarg($com2)] ->
- [(Compare $com1 $com2)].
-
-Syntax tactic level 0:
- EqDecideRulePP1
- [(DecideEquality)] ->
- ["Decide" "Equality"]
-| EqDecideRulePP2
- [(DecideEquality $com1 $com2)] ->
- ["Decide" "Equality" $com1 $com2]
-| ComparePP
- [(Compare $com1 $com2)] ->
- ["Compare" $com1 $com2].
-\end{verbatim}
-
-
-\paragraph{Important:} The names used to label the abstract syntax tree
-in the grammar rules ---in this case ``DecideEquality'' and
-``Compare''--- must be the same as the name used to register the
-tactic in the tactics table. This is what makes the links between the
-input entered by the user and the tactic executed by the interpreter.
-
-\subsection{Loading the Tactic}
-
-Once the module \texttt{EqDecide.v} has been compiled, the tactic can
-be dynamically loaded using the \texttt{Require} command.
-
-\begin{coq_example}
-Require EqDecide.
-Goal (x,y:nat){x=y}+{~x=y}.
-Decide Equality.
-\end{coq_example}
-
-The implementation of the tactic can be accessed through the
-tactical \texttt{Info}:
-\begin{coq_example}
-Undo.
-Info Decide Equality.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-Remark that the task performed by the tactic \texttt{solveRightBranch}
-is not displayed, since we have chosen to hide its implementation.
-
-\section[Testing and Debugging your Tactic]{Testing and Debugging your Tactic\label{test-and-debug}}
-
-When your tactic does not behave as expected, it is possible to trace
-it dynamically from \Coq. In order to do this, you have first to leave
-the toplevel of \Coq, and come back to the \ocaml{} interpreter. This can
-be done using the command \texttt{Drop} (see Section~\ref{Drop}). Once
-in the \ocaml{} toplevel, load the file \texttt{tactics/include.ml}.
-This file installs several pretty printers for proof trees, goals,
-terms, abstract syntax trees, names, etc. It also contains the
-function \texttt{go:unit -> unit} that enables to go back to \Coq's
-toplevel.
-
-The modules \texttt{Tacmach} and \texttt{Pfedit} contain some basic
-functions for extracting information from the state of the proof
-engine. Such functions can be used to debug your tactic if
-necessary. Let us mention here some of them:
-
-\begin{description}
-\fun{val get\_pftreestate : unit -> pftreestate}
- {Projects the current state of the proof engine.}
-\fun{val proof\_of\_pftreestate : pftreestate -> proof}
- {Projects the current state of the proof tree. A pretty-printer
- displays it in a readable form. }
-\fun{val top\_goal\_of\_pftreestate : pftreestate -> goal sigma}
- {Projects the goal and the existential variables mapping from
- the current state of the proof engine.}
-\fun{val nth\_goal\_of\_pftreestate : int -> pftreestate -> goal sigma}
- {Projects the goal and mapping corresponding to the $nth$ subgoal
- that remains to be proven}
-\fun{val traverse : int -> pftreestate -> pftreestate}
- {Yields the children of the node that the current state of the
- proof engine points to.}
-\fun{val solve\_nth\_pftreestate : \\ \qquad
-int -> tactic -> pftreestate -> pftreestate}
- {\\ Provides the new state of the proof engine obtained applying
- a given tactic to some unproven sub-goal.}
-\end{description}
-
-Finally, the traditional \ocaml{} debugging tools like the directives
-\texttt{trace} and \texttt{untrace} can be used to follow the
-execution of your functions. Frequently, a better solution is to use
-the \ocaml{} debugger, see Chapter \ref{Utilities}.
-
-\section[Concrete syntax for ML tactic and vernacular command]{Concrete syntax for ML tactic and vernacular command\label{Notations-for-ML-command}}
-
-\subsection{The general case}
-
-The standard way to bind an ML-written tactic or vernacular command to
-a concrete {\Coq} syntax is to use the
-\verb=TACTIC EXTEND= and \verb=VERNAC COMMAND EXTEND= macros.
-
-These macros can be used in any {\ocaml} file defining a (new) ML tactic
-or vernacular command. They are expanded into pure {\ocaml} code by
-the {\camlpppp} preprocessor of {\ocaml}. Concretely, files that use
-these macros need to be compiled by giving to {\tt ocamlc} the option
-
-\verb=-pp "camlp4o -I $(COQTOP)/parsing grammar.cma pa_extend.cmo"=
-
-\noindent which is the default for every file compiled by means of a Makefile
-generated by {\tt coq\_makefile} (see Chapter~\ref{Addoc-coqc}). So,
-just do \verb=make= in this latter case.
-
-The syntax of the macros is given on figure
-\ref{EXTEND-syntax}. They can be used at any place of an {\ocaml}
-files where an ML sentence (called \verb=str_item= in the {\tt ocamlc}
-parser) is expected. For each rule, the left-hand-side describes the
-grammar production and the right-hand-side its interpretation which
-must be an {\ocaml} expression. Each grammar production starts with
-the concrete name of the tactic or command in {\Coq} and is followed
-by arguments, possibly separated by terminal symbols or words.
-Here is an example:
-
-\begin{verbatim}
-TACTIC EXTEND Replace
- [ "replace" constr(c1) "with" constr(c2) ] -> [ replace c1 c2 ]
-END
-\end{verbatim}
-
-\newcommand{\grule}{\textrm{\textsl{rule}}}
-\newcommand{\stritem}{\textrm{\textsl{ocaml\_str\_item}}}
-\newcommand{\camlexpr}{\textrm{\textsl{ocaml\_expr}}}
-\newcommand{\arginfo}{\textrm{\textsl{argument\_infos}}}
-\newcommand{\lident}{\textrm{\textsl{lower\_ident}}}
-\newcommand{\argument}{\textrm{\textsl{argument}}}
-\newcommand{\entry}{\textrm{\textsl{entry}}}
-\newcommand{\argtype}{\textrm{\textsl{argtype}}}
-
-\begin{figure}
-\begin{tabular}{|lcll|}
-\hline
-{\stritem}
- & ::= &
-\multicolumn{2}{l|}{{\tt TACTIC EXTEND} {\ident} \nelist{\grule}{$|$} {\tt END}}\\
- & $|$ & \multicolumn{2}{l|}{{\tt VERNAC COMMAND EXTEND} {\ident} \nelist{\grule}{$|$} {\tt END}}\\
-&&\multicolumn{2}{l|}{}\\
-{\grule} & ::= &
-\multicolumn{2}{l|}{{\tt [} {\str} \sequence{\argument}{} {\tt ] -> [} {\camlexpr} {\tt ]}}\\
-&&\multicolumn{2}{l|}{}\\
-{\argument} & ::= & {\str} &\mbox{(terminal)}\\
- & $|$ & {\entry} {\tt (} {\lident} {\tt )} &\mbox{(non-terminal)}\\
-&&\multicolumn{2}{l|}{}\\
-{\entry}
- & ::= & {\tt string} & (a string)\\
- & $|$ & {\tt preident} & (an identifier typed as a {\tt string})\\
- & $|$ & {\tt ident} & (an identifier of type {\tt identifier})\\
- & $|$ & {\tt global} & (a qualified identifier)\\
- & $|$ & {\tt constr} & (a {\Coq} term)\\
- & $|$ & {\tt openconstr} & (a {\Coq} term with holes)\\
- & $|$ & {\tt sort} & (a {\Coq} sort)\\
- & $|$ & {\tt tactic} & (an ${\cal L}_{tac}$ expression)\\
- & $|$ & {\tt constr\_with\_bindings} & (a {\Coq} term with a list of bindings\footnote{as for the tactics {\tt apply} and {\tt elim}})\\
- & $|$ & {\tt int\_or\_var} & (an integer or an identifier denoting an integer)\\
- & $|$ & {\tt quantified\_hypothesis} & (a quantified hypothesis\footnote{as for the tactics {\tt intros until}})\\
- & $|$ & {\tt {\entry}\_opt} & (an optional {\entry} )\\
- & $|$ & {\tt ne\_{\entry}\_list} & (a non empty list of {\entry})\\
- & $|$ & {\tt {\entry}\_list} & (a list of {\entry})\\
- & $|$ & {\tt bool} & (a boolean: no grammar rule, just for typing)\\
- & $|$ & {\lident} & (a user-defined entry)\\
-\hline
-\end{tabular}
-\caption{Syntax of the macros binding {\ocaml} tactics or commands to a {\Coq} syntax}
-\label{EXTEND-syntax}
-\end{figure}
-
-There is a set of predefined non-terminal entries which are
-automatically translated into an {\ocaml} object of a given type. The
-type is not the same for tactics and for vernacular commands. It is
-given in the following table:
-
-\begin{small}
-\noindent \begin{tabular}{|l|l|l|}
-\hline
-{\entry} & {\it type for tactics} & {\it type for commands} \\
-{\tt string} & {\tt string} & {\tt string}\\
-{\tt preident} & {\tt string} & {\tt string}\\
-{\tt ident} & {\tt identifier} & {\tt identifier}\\
-{\tt global} & {\tt global\_reference} & {\tt qualid}\\
-{\tt constr} & {\tt constr} & {\tt constr\_expr}\\
-{\tt openconstr} & {\tt open\_constr} & {\tt constr\_expr}\\
-{\tt sort} & {\tt sorts} & {\tt rawsort}\\
-{\tt tactic} & {\tt glob\_tactic\_expr * tactic} & {\tt raw\_tactic\_expr}\\
-{\tt constr\_with\_bindings} & {\tt constr with\_bindings} & {\tt constr\_expr with\_bindings}\\\\
-{\tt int\_or\_var} & {\tt int or\_var} & {\tt int or\_var}\\
-{\tt quantified\_hypothesis} & {\tt quantified\_hypothesis} & {\tt quantified\_hypothesis}\\
-{\tt {\entry}\_opt} & {\it the type of entry} {\tt option} & {\it the type of entry} {\tt option}\\
-{\tt ne\_{\entry}\_list} & {\it the type of entry} {\tt list} & {\it the type of entry} {\tt list}\\
-{\tt {\entry}\_list} & {\it the type of entry} {\tt list} & {\it the type of entry} {\tt list}\\
-{\tt bool} & {\tt bool} & {\tt bool}\\
-{\lident} & {user-provided, cf next section} & {user-provided, cf next section}\\
-\hline
-\end{tabular}
-\end{small}
-
-\bigskip
-
-Notice that {\entry} consists in a single identifier and that the {\tt
-\_opt}, {\tt \_list}, ... modifiers are part of the identifier.
-Here is now another example of a tactic which takes either a non empty
-list of identifiers and executes the {\ocaml} function {\tt subst} or
-takes no arguments and executes the{\ocaml} function {\tt subst\_all}.
-
-\begin{verbatim}
-TACTIC EXTEND Subst
-| [ "subst" ne_ident_list(l) ] -> [ subst l ]
-| [ "subst" ] -> [ subst_all ]
-END
-\end{verbatim}
-
-\subsection{Adding grammar entries for tactic or command arguments}
-
-In case parsing the arguments of the tactic or the vernacular command
-involves grammar entries other than the predefined entries listed
-above, you have to declare a new entry using the macros
-\verb=ARGUMENT EXTEND= or \verb=VERNAC ARGUMENT EXTEND=. The syntax is
-given on Figure~\ref{ARGUMENT-EXTEND-syntax}. Notice that arguments
-declared by \verb=ARGUMENT EXTEND= can be used for arguments of both
-tactics and vernacular commands while arguments declared by
-\verb=VERNAC ARGUMENT EXTEND= can only be used by vernacular commands.
-
-For \verb=VERNAC ARGUMENT EXTEND=, the identifier is the name of the
-entry and it must be a valid {\ocaml} identifier (especially it must
-be lowercase). The grammar rules works as before except that they do
-not have to start by a terminal symbol or word. As an example, here
-is how the {\Coq} {\tt Extraction Language {\it language}} parses its
-argument:
-
-\begin{verbatim}
-VERNAC ARGUMENT EXTEND language
-| [ "Ocaml" ] -> [ Ocaml ]
-| [ "Haskell" ] -> [ Haskell ]
-| [ "Scheme" ] -> [ Scheme ]
-END
-\end{verbatim}
-
-For tactic arguments, and especially for \verb=ARGUMENT EXTEND=, the
-procedure is more subtle because tactics are objects of the {\Coq}
-environment which can be printed and interpreted. Then the syntax
-requires extra information providing a printer and a type telling how
-the argument behaves. Here is an example of entry parsing a pair of
-optional {\Coq} terms.
-
-\begin{verbatim}
-let pp_minus_div_arg pr_constr pr_tactic (omin,odiv) =
- if omin=None && odiv=None then mt() else
- spc() ++ str "with" ++
- pr_opt (fun c -> str "minus := " ++ pr_constr c) omin ++
- pr_opt (fun c -> str "div := " ++ pr_constr c) odiv
-
-ARGUMENT EXTEND minus_div_arg
- TYPED AS constr_opt * constr_opt
- PRINTED BY pp_minus_div_arg
-| [ "with" minusarg(m) divarg_opt(d) ] -> [ Some m, d ]
-| [ "with" divarg(d) minusarg_opt(m) ] -> [ m, Some d ]
-| [ ] -> [ None, None ]
-END
-\end{verbatim}
-
-Notice that the type {\tt constr\_opt * constr\_opt} tells that the
-object behaves as a pair of optional {\Coq} terms, i.e. as an object
-of {\ocaml} type {\tt constr option * constr option} if in a
-\verb=TACTIC EXTEND= macro and of type {\tt constr\_expr option *
-constr\_expr option} if in a \verb=VERNAC COMMAND EXTEND= macro.
-
-As for the printer, it must be a function expecting a printer for
-terms, a printer for tactics and returning a printer for the created
-argument. Especially, each sub-{\term} and each sub-{\tac} in the
-argument must be typed by the corresponding printers. Otherwise, the
-{\ocaml} code will not be well-typed.
-
-\Rem The entry {\tt bool} is bound to no syntax but it can be used to
-give the type of an argument as in the following example:
-
-\begin{verbatim}
-let pr_orient _prc _prt = function
- | true -> mt ()
- | false -> str " <-"
-
-ARGUMENT EXTEND orient TYPED AS bool PRINTED BY pr_orient
-| [ "->" ] -> [ true ]
-| [ "<-" ] -> [ false ]
-| [ ] -> [ true ]
-END
-\end{verbatim}
-
-\begin{figure}
-\begin{tabular}{|lcl|}
-\hline
-{\stritem} & ::= &
- {\tt ARGUMENT EXTEND} {\ident} {\arginfo} {\nelist{\grule}{$|$}} {\tt END}\\
-& $|$ & {\tt VERNAC ARGUMENT EXTEND} {\ident} {\nelist{\grule}{$|$}} {\tt END}\\
-\\
-{\arginfo} & ::= & {\tt TYPED AS} {\argtype} \\
-&& {\tt PRINTED BY} {\lident} \\
-%&& \zeroone{{\tt INTERPRETED BY} {\lident}}\\
-%&& \zeroone{{\tt GLOBALIZED BY} {\lident}}\\
-%&& \zeroone{{\tt SUBSTITUTED BY} {\lident}}\\
-%&& \zeroone{{\tt RAW\_TYPED AS} {\lident} {\tt RAW\_PRINTED BY} {\lident}}\\
-%&& \zeroone{{\tt GLOB\_TYPED AS} {\lident} {\tt GLOB\_PRINTED BY} {\lident}}\\
-\\
-{\argtype} & ::= & {\argtype} {\tt *} {\argtype} \\
-& $|$ & {\entry} \\
-\hline
-\end{tabular}
-\caption{Syntax of the macros binding {\ocaml} tactics or commands to a {\Coq} syntax}
-\label{ARGUMENT-EXTEND-syntax}
-\end{figure}
-
-%\end{document}
diff --git a/doc/refman/RefMan-uti.tex b/doc/refman/RefMan-uti.tex
deleted file mode 100644
index 5f201b67..00000000
--- a/doc/refman/RefMan-uti.tex
+++ /dev/null
@@ -1,272 +0,0 @@
-\chapter[Utilities]{Utilities\label{Utilities}}
-
-The distribution provides utilities to simplify some tedious works
-beside proof development, tactics writing or documentation.
-
-\section[Building a toplevel extended with user tactics]{Building a toplevel extended with user tactics\label{Coqmktop}\index{Coqmktop@{\tt coqmktop}}}
-
-The native-code version of \Coq\ cannot dynamically load user tactics
-using Objective Caml code. It is possible to build a toplevel of \Coq,
-with Objective Caml code statically linked, with the tool {\tt
- coqmktop}.
-
-For example, one can build a native-code \Coq\ toplevel extended with a tactic
-which source is in {\tt tactic.ml} with the command
-\begin{verbatim}
- % coqmktop -opt -o mytop.out tactic.cmx
-\end{verbatim}
-where {\tt tactic.ml} has been compiled with the native-code
-compiler {\tt ocamlopt}. This command generates an executable
-called {\tt mytop.out}. To use this executable to compile your \Coq\
-files, use {\tt coqc -image mytop.out}.
-
-A basic example is the native-code version of \Coq\ ({\tt coqtop.opt}),
-which can be generated by {\tt coqmktop -opt -o coqopt.opt}.
-
-
-\paragraph[Application: how to use the Objective Caml debugger with Coq.]{Application: how to use the Objective Caml debugger with Coq.\index{Debugger}}
-
-One useful application of \texttt{coqmktop} is to build a \Coq\ toplevel in
-order to debug your tactics with the Objective Caml debugger.
-You need to have configured and compiled \Coq\ for debugging
-(see the file \texttt{INSTALL} included in the distribution).
-Then, you must compile the Caml modules of your tactic with the
-option \texttt{-g} (with the bytecode compiler) and build a stand-alone
-bytecode toplevel with the following command:
-
-\begin{quotation}
-\texttt{\% coqmktop -g -o coq-debug}~\emph{<your \texttt{.cmo} files>}
-\end{quotation}
-
-
-To launch the \ocaml\ debugger with the image you need to execute it in
-an environment which correctly sets the \texttt{COQLIB} variable.
-Moreover, you have to indicate the directories in which
-\texttt{ocamldebug} should search for Caml modules.
-
-A possible solution is to use a wrapper around \texttt{ocamldebug}
-which detects the executables containing the word \texttt{coq}. In
-this case, the debugger is called with the required additional
-arguments. In other cases, the debugger is simply called without additional
-arguments. Such a wrapper can be found in the \texttt{dev/}
-subdirectory of the sources.
-
-\section[Modules dependencies]{Modules dependencies\label{Dependencies}\index{Dependencies}
- \index{Coqdep@{\tt coqdep}}}
-
-In order to compute modules dependencies (so to use {\tt make}),
-\Coq\ comes with an appropriate tool, {\tt coqdep}.
-
-{\tt coqdep} computes inter-module dependencies for \Coq\ and
-\ocaml\ programs, and prints the dependencies on the standard
-output in a format readable by make. When a directory is given as
-argument, it is recursively looked at.
-
-Dependencies of \Coq\ modules are computed by looking at {\tt Require}
-commands ({\tt Require}, {\tt Requi\-re Export}, {\tt Require Import},
-but also at the command {\tt Declare ML Module}.
-
-Dependencies of \ocaml\ modules are computed by looking at
-\verb!open! commands and the dot notation {\em module.value}. However,
-this is done approximatively and you are advised to use {\tt ocamldep}
-instead for the \ocaml\ modules dependencies.
-
-See the man page of {\tt coqdep} for more details and options.
-
-
-\section[Creating a {\tt Makefile} for \Coq\ modules]{Creating a {\tt Makefile} for \Coq\ modules\label{Makefile}
-\index{Makefile@{\tt Makefile}}
-\index{CoqMakefile@{\tt coq\_Makefile}}}
-
-When a proof development becomes large and is split into several files,
-it becomes crucial to use a tool like {\tt make} to compile \Coq\
-modules.
-
-The writing of a generic and complete {\tt Makefile} may be a tedious work
-and that's why \Coq\ provides a tool to automate its creation,
-{\tt coq\_makefile}. Given the files to compile, the command {\tt
-coq\_makefile} prints a
-{\tt Makefile} on the standard output. So one has just to run the
-command:
-
-\begin{quotation}
-\texttt{\% coq\_makefile} {\em file$_1$.v \dots\ file$_n$.v} \texttt{> Makefile}
-\end{quotation}
-
-The resulted {\tt Makefile} has a target {\tt depend} which computes the
-dependencies and puts them in a separate file {\tt .depend}, which is
-included by the {\tt Makefile}.
-Therefore, you should create such a file before the first invocation
-of make. You can for instance use the command
-
-\begin{quotation}
-\texttt{\% touch .depend}
-\end{quotation}
-
-Then, to initialize or update the modules dependencies, type in:
-
-\begin{quotation}
-\texttt{\% make depend}
-\end{quotation}
-
-There is a target {\tt all} to compile all the files {\em file$_1$
-\dots\ file$_n$}, and a generic target to produce a {\tt .vo} file from
-the corresponding {\tt .v} file (so you can do {\tt make} {\em file}{\tt.vo}
-to compile the file {\em file}{\tt.v}).
-
-{\tt coq\_makefile} can also handle the case of ML files and
-subdirectories. For more options type
-
-\begin{quotation}
-\texttt{\% coq\_makefile --help}
-\end{quotation}
-
-\Warning To compile a project containing \ocaml{} files you must keep
-the sources of \Coq{} somewhere and have an environment variable named
-\texttt{COQTOP} that points to that directory.
-
-% \section{{\sf Coq\_SearchIsos}: information retrieval in a \Coq\ proofs
-% library}
-% \label{coqsearchisos}
-% \index{Coq\_SearchIsos@{\sf Coq\_SearchIsos}}
-
-% In the \Coq\ distribution, there is also a separated and independent tool,
-% called {\sf Coq\_SearchIsos}, which allows the search in accordance with {\tt
-% SearchIsos}\index{SearchIsos@{\tt SearchIsos}} (see Section~\ref{searchisos})
-% in a \Coq\ proofs library. More precisely, this program begins, once launched
-% by {\tt coqtop -searchisos}\index{coqtopsearchisos@{\tt
-% coqtop -searchisos}}, loading lightly (by using specifications functions)
-% all the \Coq\ objects files ({\tt .vo}) accessible by the {\tt LoadPath} (see
-% Section~\ref{loadpath}). Next, a prompt appears and four commands are then
-% available:
-
-% \begin{description}
-% \item [{\tt SearchIsos}]\ \\
-% Scans the fixed context.
-% \item [{\tt Time}]\index{Time@{\tt Time}}\ \\
-% Turns on the Time Search Display mode (see Section~\ref{time}).
-% \item [{\tt Untime}]\index{Untime@{\tt Untime}}\ \\
-% Turns off the Time Search Display mode (see Section~\ref{time}).
-% \item [{\tt Quit}]\index{Quit@{\tt Quit}}\ \\
-% Ends the {\tt coqtop -searchisos} session.
-% \end{description}
-
-% When running {\tt coqtop -searchisos} you can use the two options:
-
-% \begin{description}
-% \item[{\tt -opt}]\ \\
-% Runs the native-code version of {\sf Coq\_SearchIsos}.
-
-% \item[{\tt -image} {\em file}]\ \\
-% This option sets the binary image to be used to be {\em file}
-% instead of the standard one. Not of general use.
-% \end{description}
-
-
-\section[Documenting \Coq\ files with coqdoc]{Documenting \Coq\ files with coqdoc\label{coqdoc}
-\index{Coqdoc@{\sf coqdoc}}}
-
-\input{./coqdoc}
-
-\section{Exporting \Coq\ theories to XML}
-
-\input{./Helm}
-
-\section[Embedded \Coq\ phrases inside \LaTeX\ documents]{Embedded \Coq\ phrases inside \LaTeX\ documents\label{Latex}
- \index{Coqtex@{\tt coq-tex}}\index{Latex@{\LaTeX}}}
-
-When writing a documentation about a proof development, one may want
-to insert \Coq\ phrases inside a \LaTeX\ document, possibly together with
-the corresponding answers of the system. We provide a
-mechanical way to process such \Coq\ phrases embedded in \LaTeX\ files: the
-{\tt coq-tex} filter. This filter extracts Coq phrases embedded in
-LaTeX files, evaluates them, and insert the outcome of the evaluation
-after each phrase.
-
-Starting with a file {\em file}{\tt.tex} containing \Coq\ phrases,
-the {\tt coq-tex} filter produces a file named {\em file}{\tt.v.tex} with
-the \Coq\ outcome.
-
-There are options to produce the \Coq\ parts in smaller font, italic,
-between horizontal rules, etc.
-See the man page of {\tt coq-tex} for more details.
-
-\medskip\noindent {\bf Remark.} This Reference Manual and the Tutorial
-have been completely produced with {\tt coq-tex}.
-
-
-\section[\Coq\ and \emacs]{\Coq\ and \emacs\label{Emacs}\index{Emacs}}
-
-\subsection{The \Coq\ Emacs mode}
-
-\Coq\ comes with a Major mode for \emacs, {\tt coq.el}. This mode provides
-syntax highlighting (assuming your \emacs\ library provides
-{\tt hilit19.el}) and also a rudimentary indentation facility
-in the style of the Caml \emacs\ mode.
-
-Add the following lines to your \verb!.emacs! file:
-
-\begin{verbatim}
- (setq auto-mode-alist (cons '("\\.v$" . coq-mode) auto-mode-alist))
- (autoload 'coq-mode "coq" "Major mode for editing Coq vernacular." t)
-\end{verbatim}
-
-The \Coq\ major mode is triggered by visiting a file with extension {\tt .v},
-or manually with the command \verb!M-x coq-mode!.
-It gives you the correct syntax table for
-the \Coq\ language, and also a rudimentary indentation facility:
-\begin{itemize}
- \item pressing {\sc Tab} at the beginning of a line indents the line like
- the line above;
-
- \item extra {\sc Tab}s increase the indentation level
- (by 2 spaces by default);
-
- \item M-{\sc Tab} decreases the indentation level.
-\end{itemize}
-
-An inferior mode to run \Coq\ under Emacs, by Marco Maggesi, is also
-included in the distribution, in file \texttt{coq-inferior.el}.
-Instructions to use it are contained in this file.
-
-\subsection[Proof General]{Proof General\index{Proof General}}
-
-Proof General is a generic interface for proof assistants based on
-Emacs (or XEmacs). The main idea is that the \Coq\ commands you are
-editing are sent to a \Coq\ toplevel running behind Emacs and the
-answers of the system automatically inserted into other Emacs buffers.
-Thus you don't need to copy-paste the \Coq\ material from your files
-to the \Coq\ toplevel or conversely from the \Coq\ toplevel to some
-files.
-
-Proof General is developped and distributed independently of the
-system \Coq. It is freely available at \verb!proofgeneral.inf.ed.ac.uk!.
-
-
-\section[Module specification]{Module specification\label{gallina}\index{Gallina@{\tt gallina}}}
-
-Given a \Coq\ vernacular file, the {\tt gallina} filter extracts its
-specification (inductive types declarations, definitions, type of
-lemmas and theorems), removing the proofs parts of the file. The \Coq\
-file {\em file}{\tt.v} gives birth to the specification file
-{\em file}{\tt.g} (where the suffix {\tt.g} stands for \gallina).
-
-See the man page of {\tt gallina} for more details and options.
-
-
-\section[Man pages]{Man pages\label{ManPages}\index{Man pages}}
-
-There are man pages for the commands {\tt coqdep}, {\tt gallina} and
-{\tt coq-tex}. Man pages are installed at installation time
-(see installation instructions in file {\tt INSTALL}, step 6).
-
-%BEGIN LATEX
-\RefManCutCommand{ENDREFMAN=\thepage}
-%END LATEX
-
-% $Id: RefMan-uti.tex 11975 2009-03-14 11:29:36Z letouzey $
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: t
-%%% End:
diff --git a/doc/refman/Reference-Manual.tex b/doc/refman/Reference-Manual.tex
deleted file mode 100644
index 94c9ae76..00000000
--- a/doc/refman/Reference-Manual.tex
+++ /dev/null
@@ -1,142 +0,0 @@
-%\RequirePackage{ifpdf}
-%\ifpdf
-% \documentclass[11pt,a4paper,pdftex]{book}
-%\else
- \documentclass[11pt,a4paper]{book}
-%\fi
-
-\usepackage[latin1]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{times}
-\usepackage{url}
-\usepackage{verbatim}
-\usepackage{amsmath}
-\usepackage{amssymb}
-\usepackage{alltt}
-\usepackage{hevea}
-\usepackage{ifpdf}
-\usepackage[headings]{fullpage}
-\usepackage{headers} % in this directory
-\usepackage{multicol}
-\usepackage{xspace}
-
-% for coqide
-\ifpdf % si on est pas en pdflatex
- \usepackage[pdftex]{graphicx}
-\else
- \usepackage[dvips]{graphicx}
-\fi
-
-
-%\includeonly{Setoid}
-
-\input{../common/version.tex}
-\input{../common/macros.tex}% extension .tex pour htmlgen
-\input{../common/title.tex}% extension .tex pour htmlgen
-%\input{headers}
-
-\usepackage[linktocpage,colorlinks,bookmarks=false]{hyperref}
-% The manual advises to load hyperref package last to be able to redefine
-% necessary commands.
-% The above should work for both latex and pdflatex. Even if PDF is produced
-% through DVI and PS using dvips and ps2pdf, hyperlinks should still work.
-% linktocpage option makes page numbers, not section names, to be links in
-% the table of contents.
-% colorlinks option colors the links instead of using boxes.
-\begin{document}
-%BEGIN LATEX
-\sloppy\hbadness=5000
-%END LATEX
-
-%BEGIN LATEX
-\coverpage{Reference Manual}
-{The Coq Development Team}
-{This material may be distributed only subject to the terms and
-conditions set forth in the Open Publication License, v1.0 or later
-(the latest version is presently available at
-\url{http://www.opencontent.org/openpub}).
-Options A and B of the licence are {\em not} elected.}
-%END LATEX
-
-%\defaultheaders
-\include{RefMan-int}% Introduction
-\include{RefMan-pre}% Credits
-
-%BEGIN LATEX
-\tableofcontents
-%END LATEX
-
-\part{The language}
-%BEGIN LATEX
-\defaultheaders
-%END LATEX
-\include{RefMan-gal.v}% Gallina
-\include{RefMan-ext.v}% Gallina extensions
-\include{RefMan-lib.v}% The coq library
-\include{RefMan-cic.v}% The Calculus of Constructions
-\include{RefMan-modr}% The module system
-
-
-\part{The proof engine}
-\include{RefMan-oth.v}% Vernacular commands
-\include{RefMan-pro}% Proof handling
-\include{RefMan-tac.v}% Tactics and tacticals
-\include{RefMan-ltac.v}% Writing tactics
-\include{RefMan-tacex.v}% Detailed Examples of tactics
-\include{RefMan-decl.v}% The mathematical proof language
-
-\part{User extensions}
-\include{RefMan-syn.v}% The Syntax and the Grammad commands
-%%SUPPRIME \include{RefMan-tus.v}% Writing tactics
-
-\part{Practical tools}
-\include{RefMan-com}% The coq commands (coqc coqtop)
-\include{RefMan-uti}% utilities (gallina, do_Makefile, etc)
-\include{RefMan-ide}% Coq IDE
-
-%BEGIN LATEX
-\RefManCutCommand{BEGINADDENDUM=\thepage}
-%END LATEX
-\part{Addendum to the Reference Manual}
-\include{AddRefMan-pre}%
-\include{Cases.v}%
-\include{Coercion.v}%
-\include{Classes.v}%
-%%SUPPRIME \include{Natural.v}%
-\include{Omega.v}%
-\include{Micromega.v}
-%%SUPPRIME \include{Correctness.v}% = preuve de pgms imperatifs
-\include{Extraction.v}%
-\include{Program.v}%
-\include{Polynom.v}% = Ring
-\include{Nsatz.v}%
-\include{Setoid.v}% Tactique pour les setoides
-%BEGIN LATEX
-\RefManCutCommand{ENDADDENDUM=\thepage}
-%END LATEX
-\nocite{*}
-\bibliographystyle{plain}
-\bibliography{biblio}
-\cutname{biblio.html}
-
-\printindex
-\cutname{general-index.html}
-
-\printindex[tactic]
-\cutname{tactic-index.html}
-
-\printindex[command]
-\cutname{command-index.html}
-
-\printindex[error]
-\cutname{error-index.html}
-
-%BEGIN LATEX
-\listoffigures
-\addcontentsline{toc}{chapter}{\listfigurename}
-%END LATEX
-
-\end{document}
-
-
-% $Id: Reference-Manual.tex 13180 2010-06-22 20:31:08Z herbelin $
diff --git a/doc/refman/Setoid.tex b/doc/refman/Setoid.tex
deleted file mode 100644
index 20c8c02b..00000000
--- a/doc/refman/Setoid.tex
+++ /dev/null
@@ -1,714 +0,0 @@
-\newtheorem{cscexample}{Example}
-
-\achapter{\protect{User defined equalities and relations}}
-\aauthor{Matthieu Sozeau}
-\tacindex{setoid\_replace}
-\label{setoid_replace}
-
-This chapter presents the extension of several equality related tactics to
-work over user-defined structures (called setoids) that are equipped with
-ad-hoc equivalence relations meant to behave as equalities.
-Actually, the tactics have also been generalized to relations weaker then
-equivalences (e.g. rewriting systems).
-
-This documentation is adapted from the previous setoid documentation by
-Claudio Sacerdoti Coen (based on previous work by Cl\'ement Renard).
-The new implementation is a drop-in replacement for the old one \footnote{Nicolas
-Tabareau helped with the gluing}, hence most of the documentation still applies.
-
-The work is a complete rewrite of the previous implementation, based on
-the type class infrastructure. It also improves on and generalizes
-the previous implementation in several ways:
-\begin{itemize}
-\item User-extensible algorithm. The algorithm is separated in two
- parts: generations of the rewriting constraints (done in ML) and
- solving of these constraints using type class resolution. As type
- class resolution is extensible using tactics, this allows users to define
- general ways to solve morphism constraints.
-\item Sub-relations. An example extension to the base algorithm is the
- ability to define one relation as a subrelation of another so that
- morphism declarations on one relation can be used automatically for
- the other. This is done purely using tactics and type class search.
-\item Rewriting under binders. It is possible to rewrite under binders
- in the new implementation, if one provides the proper
- morphisms. Again, most of the work is handled in the tactics.
-\item First-class morphisms and signatures. Signatures and morphisms are
- ordinary Coq terms, hence they can be manipulated inside Coq, put
- inside structures and lemmas about them can be proved inside the
- system. Higher-order morphisms are also allowed.
-\item Performance. The implementation is based on a depth-first search for the first
- solution to a set of constraints which can be as fast as linear in the
- size of the term, and the size of the proof term is linear
- in the size of the original term. Besides, the extensibility allows the
- user to customize the proof-search if necessary.
-\end{itemize}
-
-\asection{Relations and morphisms}
-
-A parametric \emph{relation} \texttt{R} is any term of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), relation $A$}. The
-expression $A$, which depends on $x_1$ \ldots $x_n$, is called the
-\emph{carrier} of the relation and \texttt{R} is
-said to be a relation over \texttt{A}; the list $x_1,\ldots,x_n$
-is the (possibly empty) list of parameters of the relation.
-
-\firstexample
-\begin{cscexample}[Parametric relation]
-It is possible to implement finite sets of elements of type \texttt{A}
-as unordered list of elements of type \texttt{A}. The function
-\texttt{set\_eq: forall (A: Type), relation (list A)} satisfied by two lists
-with the same elements is a parametric relation over \texttt{(list A)} with
-one parameter \texttt{A}. The type of \texttt{set\_eq} is convertible with
-\texttt{forall (A: Type), list A -> list A -> Prop}.
-\end{cscexample}
-
-An \emph{instance} of a parametric relation \texttt{R} with $n$ parameters
-is any term \texttt{(R $t_1$ \ldots $t_n$)}.
-
-Let \texttt{R} be a relation over \texttt{A} with $n$ parameters.
-A term is a parametric proof of reflexivity for \texttt{R} if it has type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$),
- reflexive (R $x_1$ \ldots $x_n$)}. Similar definitions are given for
-parametric proofs of symmetry and transitivity.
-
-\begin{cscexample}[Parametric relation (cont.)]
-The \texttt{set\_eq} relation of the previous example can be proved to be
-reflexive, symmetric and transitive.
-\end{cscexample}
-
-A parametric unary function $f$ of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$}
-covariantly respects two parametric relation instances $R_1$ and $R_2$ if,
-whenever $x, y$ satisfy $R_1~x~y$, their images $(f~x)$ and $(f~y)$
-satisfy $R_2~(f~x)~(f~y)$ . An $f$ that respects its input and output relations
-will be called a unary covariant \emph{morphism}. We can also say that $f$ is
-a monotone function with respect to $R_1$ and $R_2$.
-The sequence $x_1,\ldots x_n$ represents the parameters of the morphism.
-
-Let $R_1$ and $R_2$ be two parametric relations.
-The \emph{signature} of a parametric morphism of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$} that
-covariantly respects two instances $I_{R_1}$ and $I_{R_2}$ of $R_1$ and $R_2$ is written $I_{R_1} \texttt{++>} I_{R_2}$.
-Notice that the special arrow \texttt{++>}, which reminds the reader
-of covariance, is placed between the two relation instances, not
-between the two carriers. The signature relation instances and morphism will
-be typed in a context introducing variables for the parameters.
-
-The previous definitions are extended straightforwardly to $n$-ary morphisms,
-that are required to be simultaneously monotone on every argument.
-
-Morphisms can also be contravariant in one or more of their arguments.
-A morphism is contravariant on an argument associated to the relation instance
-$R$ if it is covariant on the same argument when the inverse relation
-$R^{-1}$ (\texttt{inverse R} in Coq) is considered.
-The special arrow \texttt{-{}->} is used in signatures
-for contravariant morphisms.
-
-Functions having arguments related by symmetric relations instances are both
-covariant and contravariant in those arguments. The special arrow
-\texttt{==>} is used in signatures for morphisms that are both covariant
-and contravariant.
-
-An instance of a parametric morphism $f$ with $n$ parameters is any term
-\texttt{f $t_1$ \ldots $t_n$}.
-
-\begin{cscexample}[Morphisms]
-Continuing the previous example, let
-\texttt{union: forall (A: Type), list A -> list A -> list A} perform the union
-of two sets by appending one list to the other. \texttt{union} is a binary
-morphism parametric over \texttt{A} that respects the relation instance
-\texttt{(set\_eq A)}. The latter condition is proved by showing
-\texttt{forall (A: Type) (S1 S1' S2 S2': list A), set\_eq A S1 S1' ->
- set\_eq A S2 S2' -> set\_eq A (union A S1 S2) (union A S1' S2')}.
-
-The signature of the function \texttt{union A} is
-\texttt{set\_eq A ==> set\_eq A ==> set\_eq A} for all \texttt{A}.
-\end{cscexample}
-
-\begin{cscexample}[Contravariant morphism]
-The division function \texttt{Rdiv: R -> R -> R} is a morphism of
-signature \texttt{le ++> le -{}-> le} where \texttt{le} is
-the usual order relation over real numbers. Notice that division is
-covariant in its first argument and contravariant in its second
-argument.
-\end{cscexample}
-
-Leibniz equality is a relation and every function is a
-morphism that respects Leibniz equality. Unfortunately, Leibniz equality
-is not always the intended equality for a given structure.
-
-In the next section we will describe the commands to register terms as
-parametric relations and morphisms. Several tactics that deal with equality
-in \Coq\ can also work with the registered relations.
-The exact list of tactic will be given in Sect.~\ref{setoidtactics}.
-For instance, the
-tactic \texttt{reflexivity} can be used to close a goal $R~n~n$ whenever
-$R$ is an instance of a registered reflexive relation. However, the tactics
-that replace in a context $C[]$ one term with another one related by $R$
-must verify that $C[]$ is a morphism that respects the intended relation.
-Currently the verification consists in checking whether $C[]$ is a syntactic
-composition of morphism instances that respects some obvious
-compatibility constraints.
-
-\begin{cscexample}[Rewriting]
-Continuing the previous examples, suppose that the user must prove
-\texttt{set\_eq int (union int (union int S1 S2) S2) (f S1 S2)} under the
-hypothesis \texttt{H: set\_eq int S2 (nil int)}. It is possible to
-use the \texttt{rewrite} tactic to replace the first two occurrences of
-\texttt{S2} with \texttt{nil int} in the goal since the context
-\texttt{set\_eq int (union int (union int S1 nil) nil) (f S1 S2)}, being
-a composition of morphisms instances, is a morphism. However the tactic
-will fail replacing the third occurrence of \texttt{S2} unless \texttt{f}
-has also been declared as a morphism.
-\end{cscexample}
-
-\asection{Adding new relations and morphisms}
-A parametric relation
-\textit{Aeq}\texttt{: forall ($y_1 : \beta_!$ \ldots $y_m : \beta_m$), relation (A $t_1$ \ldots $t_n$)} over
-\textit{(A : $\alpha_i$ -> \ldots $\alpha_n$ -> }\texttt{Type})
-can be declared with the following command:
-
-\comindex{Add Parametric Relation}
-\begin{quote}
- \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) :
- \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\
- ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\
- ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\
- ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\
- \texttt{~as} \textit{id}.
-\end{quote}
-after having required the \texttt{Setoid} module with the
-\texttt{Require Setoid} command.
-
-The identifier \textit{id} gives a unique name to the morphism and it is
-used by the command to generate fresh names for automatically provided lemmas
-used internally.
-
-Notice that the carrier and relation parameters may refer to the context
-of variables introduced at the beginning of the declaration, but the
-instances need not be made only of variables.
-Also notice that \textit{A} is \emph{not} required to be a term
-having the same parameters as \textit{Aeq}, although that is often the
-case in practice (this departs from the previous implementation).
-
-\comindex{Add Relation}
-In case the carrier and relations are not parametric, one can use the
-command \texttt{Add Relation} instead, whose syntax is the same except
-there is no local context.
-
-The proofs of reflexivity, symmetry and transitivity can be omitted if the
-relation is not an equivalence relation. The proofs must be instances of the
-corresponding relation definitions: e.g. the proof of reflexivity must
-have a type convertible to \texttt{reflexive (A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots
- $t'_n$)}. Each proof may refer to the introduced variables as well.
-
-\begin{cscexample}[Parametric relation]
-For Leibniz equality, we may declare:
-\texttt{Add Parametric Relation (A : Type) :} \texttt{A (@eq A)}\\
-~\zeroone{\texttt{reflexivity proved by} \texttt{@refl\_equal A}}\\
-\ldots
-\end{cscexample}
-
-Some tactics
-(\texttt{reflexivity}, \texttt{symmetry}, \texttt{transitivity}) work only
-on relations that respect the expected properties. The remaining tactics
-(\texttt{replace}, \texttt{rewrite} and derived tactics such as
-\texttt{autorewrite}) do not require any properties over the relation.
-However, they are able to replace terms with related ones only in contexts
-that are syntactic compositions of parametric morphism instances declared with
-the following command.
-
-\comindex{Add Parametric Morphism}
-\begin{quote}
- \texttt{Add Parametric Morphism} ($x_1 : \T_!$) \ldots ($x_k : \T_k$)\\
- (\textit{f $t_1$ \ldots $t_n$})\\
- \texttt{~with signature} \textit{sig}\\
- \texttt{~as id}.\\
- \texttt{Proof}\\
- ~\ldots\\
- \texttt{Qed}
-\end{quote}
-
-The command declares \textit{f} as a parametric morphism of signature
-\textit{sig}. The identifier \textit{id} gives a unique name to the morphism
-and it is used as the base name of the type class instance definition
-and as the name of the lemma that proves the well-definedness of the morphism.
-The parameters of the morphism as well as the signature may refer to the
-context of variables.
-The command asks the user to prove interactively that \textit{f} respects
-the relations identified from the signature.
-
-\begin{cscexample}
-We start the example by assuming a small theory over homogeneous sets and
-we declare set equality as a parametric equivalence relation and
-union of two sets as a parametric morphism.
-\begin{coq_example*}
-Require Export Setoid.
-Require Export Relation_Definitions.
-Set Implicit Arguments.
-Parameter set: Type -> Type.
-Parameter empty: forall A, set A.
-Parameter eq_set: forall A, set A -> set A -> Prop.
-Parameter union: forall A, set A -> set A -> set A.
-Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
-Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
-Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
-Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
-Axiom union_compat:
- forall (A : Type),
- forall x x' : set A, eq_set x x' ->
- forall y y' : set A, eq_set y y' ->
- eq_set (union x y) (union x' y').
-Add Parametric Relation A : (set A) (@eq_set A)
- reflexivity proved by (eq_set_refl (A:=A))
- symmetry proved by (eq_set_sym (A:=A))
- transitivity proved by (eq_set_trans (A:=A))
- as eq_set_rel.
-Add Parametric Morphism A : (@union A) with
-signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
-Proof. exact (@union_compat A). Qed.
-\end{coq_example*}
-
-\end{cscexample}
-
-Is is possible to reduce the burden of specifying parameters using
-(maximally inserted) implicit arguments. If \texttt{A} is always set as
-maximally implicit in the previous example, one can write:
-
-\begin{coq_eval}
-Reset Initial.
-Require Export Setoid.
-Require Export Relation_Definitions.
-Parameter set: Type -> Type.
-Parameter empty: forall {A}, set A.
-Parameter eq_set: forall {A}, set A -> set A -> Prop.
-Parameter union: forall {A}, set A -> set A -> set A.
-Axiom eq_set_refl: forall {A}, reflexive (set A) eq_set.
-Axiom eq_set_sym: forall {A}, symmetric (set A) eq_set.
-Axiom eq_set_trans: forall {A}, transitive (set A) eq_set.
-Axiom empty_neutral: forall A (S: set A), eq_set (union S empty) S.
-Axiom union_compat:
- forall (A : Type),
- forall x x' : set A, eq_set x x' ->
- forall y y' : set A, eq_set y y' ->
- eq_set (union x y) (union x' y').
-\end{coq_eval}
-
-\begin{coq_example*}
-Add Parametric Relation A : (set A) eq_set
- reflexivity proved by eq_set_refl
- symmetry proved by eq_set_sym
- transitivity proved by eq_set_trans
- as eq_set_rel.
-Add Parametric Morphism A : (@union A) with
- signature eq_set ==> eq_set ==> eq_set as union_mor.
-Proof. exact (@union_compat A). Qed.
-\end{coq_example*}
-
-We proceed now by proving a simple lemma performing a rewrite step
-and then applying reflexivity, as we would do working with Leibniz
-equality. Both tactic applications are accepted
-since the required properties over \texttt{eq\_set} and
-\texttt{union} can be established from the two declarations above.
-
-\begin{coq_example*}
-Goal forall (S: set nat),
- eq_set (union (union S empty) S) (union S S).
-Proof. intros. rewrite empty_neutral. reflexivity. Qed.
-\end{coq_example*}
-
-The tables of relations and morphisms are managed by the type class
-instance mechanism. The behavior on section close is to generalize
-the instances by the variables of the section (and possibly hypotheses
-used in the proofs of instance declarations) but not to export them in
-the rest of the development for proof search. One can use the
-\texttt{Existing Instance} command to do so outside the section,
-using the name of the declared morphism suffixed by \texttt{\_Morphism},
-or use the \texttt{Global} modifier for the corresponding class instance
-declaration (see \S\ref{setoid:first-class}) at definition time.
-When loading a compiled file or importing a module,
-all the declarations of this module will be loaded.
-
-\asection{Rewriting and non reflexive relations}
-To replace only one argument of an n-ary morphism it is necessary to prove
-that all the other arguments are related to themselves by the respective
-relation instances.
-
-\begin{cscexample}
-To replace \texttt{(union S empty)} with \texttt{S} in
-\texttt{(union (union S empty) S) (union S S)} the rewrite tactic must
-exploit the monotony of \texttt{union} (axiom \texttt{union\_compat} in
-the previous example). Applying \texttt{union\_compat} by hand we are left
-with the goal \texttt{eq\_set (union S S) (union S S)}.
-\end{cscexample}
-
-When the relations associated to some arguments are not reflexive, the tactic
-cannot automatically prove the reflexivity goals, that are left to the user.
-
-Setoids whose relation are partial equivalence relations (PER)
-are useful to deal with partial functions. Let \texttt{R} be a PER. We say
-that an element \texttt{x} is defined if \texttt{R x x}. A partial function
-whose domain comprises all the defined elements only is declared as a
-morphism that respects \texttt{R}. Every time a rewriting step is performed
-the user must prove that the argument of the morphism is defined.
-
-\begin{cscexample}
-Let \texttt{eqO} be \texttt{fun x y => x = y $\land$ ~x$\neq$ 0} (the smaller PER over
-non zero elements). Division can be declared as a morphism of signature
-\texttt{eq ==> eq0 ==> eq}. Replace \texttt{x} with \texttt{y} in
-\texttt{div x n = div y n} opens the additional goal \texttt{eq0 n n} that
-is equivalent to \texttt{n=n $\land$ n$\neq$0}.
-\end{cscexample}
-
-\asection{Rewriting and non symmetric relations}
-When the user works up to relations that are not symmetric, it is no longer
-the case that any covariant morphism argument is also contravariant. As a
-result it is no longer possible to replace a term with a related one in
-every context, since the obtained goal implies the previous one if and
-only if the replacement has been performed in a contravariant position.
-In a similar way, replacement in an hypothesis can be performed only if
-the replaced term occurs in a covariant position.
-
-\begin{cscexample}[Covariance and contravariance]
-Suppose that division over real numbers has been defined as a
-morphism of signature \texttt{Zdiv: Zlt ++> Zlt -{}-> Zlt} (i.e.
-\texttt{Zdiv} is increasing in its first argument, but decreasing on the
-second one). Let \texttt{<} denotes \texttt{Zlt}.
-Under the hypothesis \texttt{H: x < y} we have
-\texttt{k < x / y -> k < x / x}, but not
-\texttt{k < y / x -> k < x / x}.
-Dually, under the same hypothesis \texttt{k < x / y -> k < y / y} holds,
-but \texttt{k < y / x -> k < y / y} does not.
-Thus, if the current goal is \texttt{k < x / x}, it is possible to replace
-only the second occurrence of \texttt{x} (in contravariant position)
-with \texttt{y} since the obtained goal must imply the current one.
-On the contrary, if \texttt{k < x / x} is
-an hypothesis, it is possible to replace only the first occurrence of
-\texttt{x} (in covariant position) with \texttt{y} since
-the current hypothesis must imply the obtained one.
-\end{cscexample}
-
-Contrary to the previous implementation, no specific error message will
-be raised when trying to replace a term that occurs in the wrong
-position. It will only fail because the rewriting constraints are not
-satisfiable. However it is possible to use the \texttt{at} modifier to
-specify which occurrences should be rewritten.
-
-As expected, composing morphisms together propagates the variance annotations by
-switching the variance every time a contravariant position is traversed.
-\begin{cscexample}
-Let us continue the previous example and let us consider the goal
-\texttt{x / (x / x) < k}. The first and third occurrences of \texttt{x} are
-in a contravariant position, while the second one is in covariant position.
-More in detail, the second occurrence of \texttt{x} occurs
-covariantly in \texttt{(x / x)} (since division is covariant in its first
-argument), and thus contravariantly in \texttt{x / (x / x)} (since division
-is contravariant in its second argument), and finally covariantly in
-\texttt{x / (x / x) < k} (since \texttt{<}, as every transitive relation,
-is contravariant in its first argument with respect to the relation itself).
-\end{cscexample}
-
-\asection{Rewriting in ambiguous setoid contexts}
-One function can respect several different relations and thus it can be
-declared as a morphism having multiple signatures.
-
-\begin{cscexample}
-Union over homogeneous lists can be given all the following signatures:
-\texttt{eq ==> eq ==> eq} (\texttt{eq} being the equality over ordered lists)
-\texttt{set\_eq ==> set\_eq ==> set\_eq} (\texttt{set\_eq} being the equality
-over unordered lists up to duplicates),
-\texttt{multiset\_eq ==> multiset\_eq ==> multiset\_eq} (\texttt{multiset\_eq}
-being the equality over unordered lists).
-\end{cscexample}
-
-To declare multiple signatures for a morphism, repeat the \texttt{Add Morphism}
-command.
-
-When morphisms have multiple signatures it can be the case that a rewrite
-request is ambiguous, since it is unclear what relations should be used to
-perform the rewriting. Contrary to the previous implementation, the
-tactic will always choose the first possible solution to the set of
-constraints generated by a rewrite and will not try to find \emph{all}
-possible solutions to warn the user about.
-
-\asection{First class setoids and morphisms}
-\label{setoid:first-class}
-
-The implementation is based on a first-class representation of
-properties of relations and morphisms as type classes. That is,
-the various combinations of properties on relations and morphisms
-are represented as records and instances of theses classes are put
-in a hint database.
-For example, the declaration:
-
-\begin{quote}
- \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) :
- \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\
- ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\
- ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\
- ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\
- \texttt{~as} \textit{id}.
-\end{quote}
-
-is equivalent to an instance declaration:
-
-\begin{quote}
- \texttt{Instance} ($x_1 : T_1$) \ldots ($x_n : T_k$) \texttt{=>}
- \textit{id} : \texttt{@Equivalence} \textit{(A $t_1$ \ldots $t_n$) (Aeq
- $t'_1$ \ldots $t'_m$)} :=\\
- ~\zeroone{\texttt{Equivalence\_Reflexive :=} \textit{refl}}\\
- ~\zeroone{\texttt{Equivalence\_Symmetric :=} \textit{sym}}\\
- ~\zeroone{\texttt{Equivalence\_Transitive :=} \textit{trans}}.
-\end{quote}
-
-The declaration itself amounts to the definition of an object of the
-record type \texttt{Coq.Classes.RelationClasses.Equivalence} and a
-hint added to the \texttt{typeclass\_instances} hint database.
-Morphism declarations are also instances of a type class defined in
-\texttt{Classes.Morphisms}.
-See the documentation on type classes \ref{typeclasses} and
-the theories files in \texttt{Classes} for further explanations.
-
-One can inform the rewrite tactic about morphisms and relations just by
-using the typeclass mechanism to declare them using \texttt{Instance}
-and \texttt{Context} vernacular commands.
-Any object of type \texttt{Proper} (the type of morphism declarations)
-in the local context will also be automatically used by the rewriting
-tactic to solve constraints.
-
-Other representations of first class setoids and morphisms can also
-be handled by encoding them as records. In the following example,
-the projections of the setoid relation and of the morphism function
-can be registered as parametric relations and morphisms.
-\begin{cscexample}[First class setoids]
-
-\begin{coq_example*}
-Require Import Relation_Definitions Setoid.
-Record Setoid: Type :=
-{ car:Type;
- eq:car->car->Prop;
- refl: reflexive _ eq;
- sym: symmetric _ eq;
- trans: transitive _ eq
-}.
-Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
- reflexivity proved by (refl s)
- symmetry proved by (sym s)
- transitivity proved by (trans s) as eq_rel.
-Record Morphism (S1 S2:Setoid): Type :=
-{ f:car S1 ->car S2;
- compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2) }.
-Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
- (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
-Proof. apply (compat S1 S2 M). Qed.
-Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
- (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
-Proof. intros. rewrite H. reflexivity. Qed.
-\end{coq_example*}
-\end{cscexample}
-
-\asection{Tactics enabled on user provided relations}
-\label{setoidtactics}
-The following tactics, all prefixed by \texttt{setoid\_},
-deal with arbitrary
-registered relations and morphisms. Moreover, all the corresponding unprefixed
-tactics (i.e. \texttt{reflexivity, symmetry, transitivity, replace, rewrite})
-have been extended to fall back to their prefixed counterparts when
-the relation involved is not Leibniz equality. Notice, however, that using
-the prefixed tactics it is possible to pass additional arguments such as
-\texttt{using relation}.
-\medskip
-
-\comindex{setoid\_reflexivity}
-\texttt{setoid\_reflexivity}
-
-\comindex{setoid\_symmetry}
-\texttt{setoid\_symmetry} \zeroone{\texttt{in} \textit{ident}}
-
-\comindex{setoid\_transitivity}
-\texttt{setoid\_transitivity}
-
-\comindex{setoid\_rewrite}
-\texttt{setoid\_rewrite} \zeroone{\textit{orientation}} \textit{term}
-~\zeroone{\texttt{at} \textit{occs}} ~\zeroone{\texttt{in} \textit{ident}}
-
-\comindex{setoid\_replace}
-\texttt{setoid\_replace} \textit{term} \texttt{with} \textit{term}
-~\zeroone{\texttt{in} \textit{ident}}
-~\zeroone{\texttt{using relation} \textit{term}}
-~\zeroone{\texttt{by} \textit{tactic}}
-\medskip
-
-The \texttt{using relation}
-arguments cannot be passed to the unprefixed form. The latter argument
-tells the tactic what parametric relation should be used to replace
-the first tactic argument with the second one. If omitted, it defaults
-to the \texttt{DefaultRelation} instance on the type of the objects.
-By default, it means the most recent \texttt{Equivalence} instance in
-the environment, but it can be customized by declaring new
-\texttt{DefaultRelation} instances. As Leibniz equality is a declared
-equivalence, it will fall back to it if no other relation is declared on
-a given type.
-
-Every derived tactic that is based on the unprefixed forms of the tactics
-considered above will also work up to user defined relations. For instance,
-it is possible to register hints for \texttt{autorewrite} that are
-not proof of Leibniz equalities. In particular it is possible to exploit
-\texttt{autorewrite} to simulate normalization in a term rewriting system
-up to user defined equalities.
-
-\asection{Printing relations and morphisms}
-The \texttt{Print Instances} command can be used to show the list of
-currently registered \texttt{Reflexive} (using \texttt{Print Instances Reflexive}),
-\texttt{Symmetric} or \texttt{Transitive} relations,
-\texttt{Equivalence}s, \texttt{PreOrder}s, \texttt{PER}s, and
-Morphisms (implemented as \texttt{Proper} instances). When
- the rewriting tactics refuse to replace a term in a context
-because the latter is not a composition of morphisms, the \texttt{Print Instances}
-commands can be useful to understand what additional morphisms should be
-registered.
-
-\asection{Deprecated syntax and backward incompatibilities}
-Due to backward compatibility reasons, the following syntax for the
-declaration of setoids and morphisms is also accepted.
-
-\comindex{Add Setoid}
-\begin{quote}
- \texttt{Add Setoid} \textit{A Aeq ST} \texttt{as} \textit{ident}
-\end{quote}
-where \textit{Aeq} is a congruence relation without parameters,
-\textit{A} is its carrier and \textit{ST} is an object of type
-\texttt{(Setoid\_Theory A Aeq)} (i.e. a record packing together the reflexivity,
-symmetry and transitivity lemmas). Notice that the syntax is not completely
-backward compatible since the identifier was not required.
-
-\comindex{Add Morphism}
-\begin{quote}
- \texttt{Add Morphism} \textit{f}:\textit{ident}.\\
- Proof.\\
- \ldots\\
- Qed.
-\end{quote}
-
-The latter command also is restricted to the declaration of morphisms without
-parameters. It is not fully backward compatible since the property the user
-is asked to prove is slightly different: for $n$-ary morphisms the hypotheses
-of the property are permuted; moreover, when the morphism returns a
-proposition, the property is now stated using a bi-implication in place of
-a simple implication. In practice, porting an old development to the new
-semantics is usually quite simple.
-
-Notice that several limitations of the old implementation have been lifted.
-In particular, it is now possible to declare several relations with the
-same carrier and several signatures for the same morphism. Moreover, it is
-now also possible to declare several morphisms having the same signature.
-Finally, the replace and rewrite tactics can be used to replace terms in
-contexts that were refused by the old implementation. As discussed in
-the next section, the semantics of the new \texttt{setoid\_rewrite}
-command differs slightly from the old one and \texttt{rewrite}.
-
-\asection{Rewriting under binders}
-
-\textbf{Warning}: Due to compatibility issues, this feature is enabled only when calling
-the \texttt{setoid\_rewrite} tactics directly and not \texttt{rewrite}.
-
-To be able to rewrite under binding constructs, one must declare
-morphisms with respect to pointwise (setoid) equivalence of functions.
-Example of such morphisms are the standard \texttt{all} and \texttt{ex}
-combinators for universal and existential quantification respectively.
-They are declared as morphisms in the \texttt{Classes.Morphisms\_Prop}
-module. For example, to declare that universal quantification is a
-morphism for logical equivalence:
-
-\begin{coq_eval}
-Reset Initial.
-Require Import Setoid Morphisms.
-\end{coq_eval}
-\begin{coq_example}
-Instance all_iff_morphism (A : Type) :
- Proper (pointwise_relation A iff ==> iff) (@all A).
-Proof. simpl_relation.
-\end{coq_example}
-\begin{coq_eval}
-Admitted.
-\end{coq_eval}
-
-One then has to show that if two predicates are equivalent at every
-point, their universal quantifications are equivalent. Once we have
-declared such a morphism, it will be used by the setoid rewriting tactic
-each time we try to rewrite under an \texttt{all} application (products
-in \Prop{} are implicitly translated to such applications).
-
-Indeed, when rewriting under a lambda, binding variable $x$, say from
-$P~x$ to $Q~x$ using the relation \texttt{iff}, the tactic will generate
-a proof of \texttt{pointwise\_relation A iff (fun x => P x) (fun x => Q
-x)} from the proof of \texttt{iff (P x) (Q x)} and a constraint of the
-form \texttt{Proper (pointwise\_relation A iff ==> ?) m} will be
-generated for the surrounding morphism \texttt{m}.
-
-Hence, one can add higher-order combinators as morphisms by providing
-signatures using pointwise extension for the relations on the functional
-arguments (or whatever subrelation of the pointwise extension).
-For example, one could declare the \texttt{map} combinator on lists as
-a morphism:
-\begin{coq_eval}
-Require Import List.
-Set Implicit Arguments.
-Inductive list_equiv {A:Type} (eqA : relation A) : relation (list A) :=
-| eq_nil : list_equiv eqA nil nil
-| eq_cons : forall x y, eqA x y ->
- forall l l', list_equiv eqA l l' -> list_equiv eqA (x :: l) (y :: l').
-\end{coq_eval}
-\begin{coq_example*}
-Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
- Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB)
- (@map A B).
-\end{coq_example*}
-
-where \texttt{list\_equiv} implements an equivalence on lists
-parameterized by an equivalence on the elements.
-
-Note that when one does rewriting with a lemma under a binder
-using \texttt{setoid\_rewrite}, the application of the lemma may capture
-the bound variable, as the semantics are different from rewrite where
-the lemma is first matched on the whole term. With the new
-\texttt{setoid\_rewrite}, matching is done on each subterm separately
-and in its local environment, and all matches are rewritten
-\emph{simultaneously} by default. The semantics of the previous
-\texttt{setoid\_rewrite} implementation can almost be recovered using
-the \texttt{at 1} modifier.
-
-\asection{Sub-relations}
-
-Sub-relations can be used to specify that one relation is included in
-another, so that morphisms signatures for one can be used for the other.
-If a signature mentions a relation $R$ on the left of an arrow
-\texttt{==>}, then the signature also applies for any relation $S$ that
-is smaller than $R$, and the inverse applies on the right of an arrow.
-One can then declare only a few morphisms instances that generate the complete set
-of signatures for a particular constant. By default, the only declared
-subrelation is \texttt{iff}, which is a subrelation of \texttt{impl}
-and \texttt{inverse impl} (the dual of implication). That's why we can
-declare only two morphisms for conjunction:
-\texttt{Proper (impl ==> impl ==> impl) and} and
-\texttt{Proper (iff ==> iff ==> iff) and}. This is sufficient to satisfy
-any rewriting constraints arising from a rewrite using \texttt{iff},
-\texttt{impl} or \texttt{inverse impl} through \texttt{and}.
-
-Sub-relations are implemented in \texttt{Classes.Morphisms} and are a
-prime example of a mostly user-space extension of the algorithm.
-
-\asection{Constant unfolding}
-
-The resolution tactic is based on type classes and hence regards user-defined
-constants as transparent by default. This may slow down the resolution
-due to a lot of unifications (all the declared \texttt{Proper}
-instances are tried at each node of the search tree).
-To speed it up, declare your constant as rigid for proof search
-using the command \texttt{Typeclasses Opaque} (see \S \ref{TypeclassesTransparency}).
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% compile-command: "make -C ../.. -f Makefile.stage3 doc/refman/Reference-Manual.pdf"
-%%% End:
diff --git a/doc/refman/biblio.bib b/doc/refman/biblio.bib
deleted file mode 100644
index f93b66f9..00000000
--- a/doc/refman/biblio.bib
+++ /dev/null
@@ -1,1273 +0,0 @@
-@String{jfp = "Journal of Functional Programming"}
-@String{lncs = "Lecture Notes in Computer Science"}
-@String{lnai = "Lecture Notes in Artificial Intelligence"}
-@String{SV = "{Sprin­ger-Verlag}"}
-
-@InProceedings{Aud91,
- author = {Ph. Audebaud},
- booktitle = {Proceedings of the sixth Conf. on Logic in Computer Science.},
- publisher = {IEEE},
- title = {Partial {Objects} in the {Calculus of Constructions}},
- year = {1991}
-}
-
-@PhDThesis{Aud92,
- author = {Ph. Audebaud},
- school = {{Universit\'e} Bordeaux I},
- title = {Extension du Calcul des Constructions par Points fixes},
- year = {1992}
-}
-
-@InProceedings{Audebaud92b,
- author = {Ph. Audebaud},
- booktitle = {{Proceedings of the 1992 Workshop on Types for Proofs and Programs}},
- editor = {{B. Nordstr\"om and K. Petersson and G. Plotkin}},
- note = {Also Research Report LIP-ENS-Lyon},
- pages = {21--34},
- title = {{CC+ : an extension of the Calculus of Constructions with fixpoints}},
- year = {1992}
-}
-
-@InProceedings{Augustsson85,
- author = {L. Augustsson},
- title = {{Compiling Pattern Matching}},
- booktitle = {Conference Functional Programming and
-Computer Architecture},
- year = {1985}
-}
-
-@Article{BaCo85,
- author = {J.L. Bates and R.L. Constable},
- journal = {ACM transactions on Programming Languages and Systems},
- title = {Proofs as {Programs}},
- volume = {7},
- year = {1985}
-}
-
-@Book{Bar81,
- author = {H.P. Barendregt},
- publisher = {North-Holland},
- title = {The Lambda Calculus its Syntax and Semantics},
- year = {1981}
-}
-
-@TechReport{Bar91,
- author = {H. Barendregt},
- institution = {Catholic University Nijmegen},
- note = {In Handbook of Logic in Computer Science, Vol II},
- number = {91-19},
- title = {Lambda {Calculi with Types}},
- year = {1991}
-}
-
-@Article{BeKe92,
- author = {G. Bellin and J. Ketonen},
- journal = {Theoretical Computer Science},
- pages = {115--142},
- title = {A decision procedure revisited : Notes on direct logic, linear logic and its implementation},
- volume = {95},
- year = {1992}
-}
-
-@Book{Bee85,
- author = {M.J. Beeson},
- publisher = SV,
- title = {Foundations of Constructive Mathematics, Metamathematical Studies},
- year = {1985}
-}
-
-@Book{Bis67,
- author = {E. Bishop},
- publisher = {McGraw-Hill},
- title = {Foundations of Constructive Analysis},
- year = {1967}
-}
-
-@Book{BoMo79,
- author = {R.S. Boyer and J.S. Moore},
- key = {BoMo79},
- publisher = {Academic Press},
- series = {ACM Monograph},
- title = {A computational logic},
- year = {1979}
-}
-
-@MastersThesis{Bou92,
- author = {S. Boutin},
- month = sep,
- school = {{Universit\'e Paris 7}},
- title = {Certification d'un compilateur {ML en Coq}},
- year = {1992}
-}
-
-@InProceedings{Bou97,
- title = {Using reflection to build efficient and certified decision procedure
-s},
- author = {S. Boutin},
- booktitle = {TACS'97},
- editor = {Martin Abadi and Takahashi Ito},
- publisher = SV,
- series = lncs,
- volume = 1281,
- year = {1997}
-}
-
-@PhDThesis{Bou97These,
- author = {S. Boutin},
- title = {R\'eflexions sur les quotients},
- school = {Paris 7},
- year = 1997,
- type = {th\`ese d'Universit\'e},
- month = apr
-}
-
-@Article{Bru72,
- author = {N.J. de Bruijn},
- journal = {Indag. Math.},
- title = {{Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem}},
- volume = {34},
- year = {1972}
-}
-
-
-@InCollection{Bru80,
- author = {N.J. de Bruijn},
- booktitle = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.},
- editor = {J.P. Seldin and J.R. Hindley},
- publisher = {Academic Press},
- title = {A survey of the project {Automath}},
- year = {1980}
-}
-
-@TechReport{COQ93,
- author = {G. Dowek and A. Felty and H. Herbelin and G. Huet and C. Murthy and C. Parent and C. Paulin-Mohring and B. Werner},
- institution = {INRIA},
- month = may,
- number = {154},
- title = {{The Coq Proof Assistant User's Guide Version 5.8}},
- year = {1993}
-}
-
-@TechReport{COQ02,
- author = {The Coq Development Team},
- institution = {INRIA},
- month = Feb,
- number = {255},
- title = {{The Coq Proof Assistant Reference Manual Version 7.2}},
- year = {2002}
-}
-
-@TechReport{CPar93,
- author = {C. Parent},
- institution = {Ecole {Normale} {Sup\'erieure} de {Lyon}},
- month = oct,
- note = {Also in~\cite{Nijmegen93}},
- number = {93-29},
- title = {Developing certified programs in the system {Coq}- {The} {Program} tactic},
- year = {1993}
-}
-
-@PhDThesis{CPar95,
- author = {C. Parent},
- school = {Ecole {Normale} {Sup\'erieure} de {Lyon}},
- title = {{Synth\`ese de preuves de programmes dans le Calcul des Constructions Inductives}},
- year = {1995}
-}
-
-@Book{Caml,
- author = {P. Weis and X. Leroy},
- publisher = {InterEditions},
- title = {Le langage Caml},
- year = {1993}
-}
-
-@InProceedings{ChiPotSimp03,
- author = {Laurent Chicli and Lo\"{\i}c Pottier and Carlos Simpson},
- title = {Mathematical Quotients and Quotient Types in Coq},
- booktitle = {TYPES},
- crossref = {DBLP:conf/types/2002},
- year = {2002}
-}
-
-@TechReport{CoC89,
- author = {Projet Formel},
- institution = {INRIA},
- number = {110},
- title = {{The Calculus of Constructions. Documentation and user's guide, Version 4.10}},
- year = {1989}
-}
-
-@InProceedings{CoHu85a,
- author = {Th. Coquand and G. Huet},
- address = {Linz},
- booktitle = {EUROCAL'85},
- publisher = SV,
- series = LNCS,
- title = {{Constructions : A Higher Order Proof System for Mechanizing Mathematics}},
- volume = {203},
- year = {1985}
-}
-
-@InProceedings{CoHu85b,
- author = {Th. Coquand and G. Huet},
- booktitle = {Logic Colloquium'85},
- editor = {The Paris Logic Group},
- publisher = {North-Holland},
- title = {{Concepts Math\'ematiques et Informatiques formalis\'es dans le Calcul des Constructions}},
- year = {1987}
-}
-
-@Article{CoHu86,
- author = {Th. Coquand and G. Huet},
- journal = {Information and Computation},
- number = {2/3},
- title = {The {Calculus of Constructions}},
- volume = {76},
- year = {1988}
-}
-
-@InProceedings{CoPa89,
- author = {Th. Coquand and C. Paulin-Mohring},
- booktitle = {Proceedings of Colog'88},
- editor = {P. Martin-L\"of and G. Mints},
- publisher = SV,
- series = LNCS,
- title = {Inductively defined types},
- volume = {417},
- year = {1990}
-}
-
-@Book{Con86,
- author = {R.L. {Constable et al.}},
- publisher = {Prentice-Hall},
- title = {{Implementing Mathematics with the Nuprl Proof Development System}},
- year = {1986}
-}
-
-@PhDThesis{Coq85,
- author = {Th. Coquand},
- month = jan,
- school = {Universit\'e Paris~7},
- title = {Une Th\'eorie des Constructions},
- year = {1985}
-}
-
-@InProceedings{Coq86,
- author = {Th. Coquand},
- address = {Cambridge, MA},
- booktitle = {Symposium on Logic in Computer Science},
- publisher = {IEEE Computer Society Press},
- title = {{An Analysis of Girard's Paradox}},
- year = {1986}
-}
-
-@InProceedings{Coq90,
- author = {Th. Coquand},
- booktitle = {Logic and Computer Science},
- editor = {P. Oddifredi},
- note = {INRIA Research Report 1088, also in~\cite{CoC89}},
- publisher = {Academic Press},
- title = {{Metamathematical Investigations of a Calculus of Constructions}},
- year = {1990}
-}
-
-@InProceedings{Coq91,
- author = {Th. Coquand},
- booktitle = {Proceedings 9th Int. Congress of Logic, Methodology and Philosophy of Science},
- title = {{A New Paradox in Type Theory}},
- month = {August},
- year = {1991}
-}
-
-@InProceedings{Coq92,
- author = {Th. Coquand},
- title = {{Pattern Matching with Dependent Types}},
- year = {1992},
- crossref = {Bastad92}
-}
-
-@InProceedings{Coquand93,
- author = {Th. Coquand},
- title = {{Infinite Objects in Type Theory}},
- year = {1993},
- crossref = {Nijmegen93}
-}
-
-@inproceedings{Corbineau08types,
- author = {P. Corbineau},
- title = {A Declarative Language for the Coq Proof Assistant},
- editor = {M. Miculan and I. Scagnetto and F. Honsell},
- booktitle = {TYPES '07, Cividale del Friuli, Revised Selected Papers},
- publisher = {Springer},
- series = LNCS,
- volume = {4941},
- year = {2007},
- pages = {69-84},
- ee = {http://dx.doi.org/10.1007/978-3-540-68103-8_5},
-}
-
-@PhDThesis{Cor97,
- author = {C. Cornes},
- month = nov,
- school = {{Universit\'e Paris 7}},
- title = {Conception d'un langage de haut niveau de représentation de preuves},
- type = {Th\`ese de Doctorat},
- year = {1997}
-}
-
-@MastersThesis{Cou94a,
- author = {J. Courant},
- month = sep,
- school = {DEA d'Informatique, ENS Lyon},
- title = {Explicitation de preuves par r\'ecurrence implicite},
- year = {1994}
-}
-
-@InProceedings{Del99,
- author = {Delahaye, D.},
- title = {Information Retrieval in a Coq Proof Library using
- Type Isomorphisms},
- booktitle = {Proceedings of TYPES '99, L\"okeberg},
- publisher = SV,
- series = lncs,
- year = {1999},
- url =
- "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"#
- "{\sf TYPES99-SIsos.ps.gz}"
-}
-
-@InProceedings{Del00,
- author = {Delahaye, D.},
- title = {A {T}actic {L}anguage for the {S}ystem {{\sf Coq}}},
- booktitle = {Proceedings of Logic for Programming and Automated Reasoning
- (LPAR), Reunion Island},
- publisher = SV,
- series = LNCS,
- volume = {1955},
- pages = {85--95},
- month = {November},
- year = {2000},
- url =
- "{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"#
- "{\sf LPAR2000-ltac.ps.gz}"
-}
-
-@InProceedings{DelMay01,
- author = {Delahaye, D. and Mayero, M.},
- title = {{\tt Field}: une proc\'edure de d\'ecision pour les nombres r\'eels en {\Coq}},
- booktitle = {Journ\'ees Francophones des Langages Applicatifs, Pontarlier},
- publisher = {INRIA},
- month = {Janvier},
- year = {2001},
- url =
- "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"#
- "{\sf JFLA2000-Field.ps.gz}"
-}
-
-@TechReport{Dow90,
- author = {G. Dowek},
- institution = {INRIA},
- number = {1283},
- title = {Naming and Scoping in a Mathematical Vernacular},
- type = {Research Report},
- year = {1990}
-}
-
-@Article{Dow91a,
- author = {G. Dowek},
- journal = {Compte-Rendus de l'Acad\'emie des Sciences},
- note = {The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors},
- number = {12},
- pages = {951--956},
- title = {L'Ind\'ecidabilit\'e du Filtrage du Troisi\`eme Ordre dans les Calculs avec Types D\'ependants ou Constructeurs de Types},
- volume = {I, 312},
- year = {1991}
-}
-
-@InProceedings{Dow91b,
- author = {G. Dowek},
- booktitle = {Proceedings of Mathematical Foundation of Computer Science},
- note = {Also INRIA Research Report},
- pages = {151--160},
- publisher = SV,
- series = LNCS,
- title = {A Second Order Pattern Matching Algorithm in the Cube of Typed $\lambda$-calculi},
- volume = {520},
- year = {1991}
-}
-
-@PhDThesis{Dow91c,
- author = {G. Dowek},
- month = dec,
- school = {Universit\'e Paris 7},
- title = {D\'emonstration automatique dans le Calcul des Constructions},
- year = {1991}
-}
-
-@Article{Dow92a,
- author = {G. Dowek},
- title = {The Undecidability of Pattern Matching in Calculi where Primitive Recursive Functions are Representable},
- year = 1993,
- journal = tcs,
- volume = 107,
- number = 2,
- pages = {349-356}
-}
-
-@Article{Dow94a,
- author = {G. Dowek},
- journal = {Annals of Pure and Applied Logic},
- volume = {69},
- pages = {135--155},
- title = {Third order matching is decidable},
- year = {1994}
-}
-
-@InProceedings{Dow94b,
- author = {G. Dowek},
- booktitle = {Proceedings of the second international conference on typed lambda calculus and applications},
- title = {Lambda-calculus, Combinators and the Comprehension Schema},
- year = {1995}
-}
-
-@InProceedings{Dyb91,
- author = {P. Dybjer},
- booktitle = {Logical Frameworks},
- editor = {G. Huet and G. Plotkin},
- pages = {59--79},
- publisher = {Cambridge University Press},
- title = {Inductive sets and families in {Martin-Löf's}
- Type Theory and their set-theoretic semantics: An inversion principle for {Martin-L\"of's} type theory},
- volume = {14},
- year = {1991}
-}
-
-@Article{Dyc92,
- author = {Roy Dyckhoff},
- journal = {The Journal of Symbolic Logic},
- month = sep,
- number = {3},
- title = {Contraction-free sequent calculi for intuitionistic logic},
- volume = {57},
- year = {1992}
-}
-
-@MastersThesis{Fil94,
- author = {J.-C. Filli\^atre},
- month = sep,
- school = {DEA d'Informatique, ENS Lyon},
- title = {Une proc\'edure de d\'ecision pour le Calcul des Pr\'edicats Direct. Étude et impl\'ementation dans le syst\`eme {\Coq}},
- year = {1994}
-}
-
-@TechReport{Filliatre95,
- author = {J.-C. Filli\^atre},
- institution = {LIP-ENS-Lyon},
- title = {A decision procedure for Direct Predicate Calculus},
- type = {Research report},
- number = {96--25},
- year = {1995}
-}
-
-@Article{Filliatre03jfp,
- author = {J.-C. Filliâtre},
- title = {Verification of Non-Functional Programs
- using Interpretations in Type Theory},
- journal = jfp,
- volume = 13,
- number = 4,
- pages = {709--745},
- month = jul,
- year = 2003,
- note = {[English translation of \cite{Filliatre99}]},
- url = {http://www.lri.fr/~filliatr/ftp/publis/jphd.ps.gz},
- topics = {team, lri},
- type_publi = {irevcomlec}
-}
-
-@PhDThesis{Filliatre99,
- author = {J.-C. Filli\^atre},
- title = {Preuve de programmes imp\'eratifs en th\'eorie des types},
- type = {Thèse de Doctorat},
- school = {Universit\'e Paris-Sud},
- year = 1999,
- month = {July},
- url = {\url{http://www.lri.fr/~filliatr/ftp/publis/these.ps.gz}}
-}
-
-@Unpublished{Filliatre99c,
- author = {J.-C. Filli\^atre},
- title = {{Formal Proof of a Program: Find}},
- month = {January},
- year = 2000,
- note = {Submitted to \emph{Science of Computer Programming}},
- url = {\url{http://www.lri.fr/~filliatr/ftp/publis/find.ps.gz}}
-}
-
-@InProceedings{FilliatreMagaud99,
- author = {J.-C. Filli\^atre and N. Magaud},
- title = {Certification of sorting algorithms in the system {\Coq}},
- booktitle = {Theorem Proving in Higher Order Logics:
- Emerging Trends},
- year = 1999,
- url = {\url{http://www.lri.fr/~filliatr/ftp/publis/Filliatre-Magaud.ps.gz}}
-}
-
-@Unpublished{Fle90,
- author = {E. Fleury},
- month = jul,
- note = {Rapport de Stage},
- title = {Implantation des algorithmes de {Floyd et de Dijkstra} dans le {Calcul des Constructions}},
- year = {1990}
-}
-
-@Book{Fourier,
- author = {Jean-Baptiste-Joseph Fourier},
- publisher = {Gauthier-Villars},
- title = {Fourier's method to solve linear
- inequations/equations systems.},
- year = {1890}
-}
-
-@InProceedings{Gim94,
- author = {E. Gim\'enez},
- booktitle = {Types'94 : Types for Proofs and Programs},
- note = {Extended version in LIP research report 95-07, ENS Lyon},
- publisher = SV,
- series = LNCS,
- title = {Codifying guarded definitions with recursive schemes},
- volume = {996},
- year = {1994}
-}
-
-@TechReport{Gim98,
- author = {E. Gim\'enez},
- title = {A Tutorial on Recursive Types in Coq},
- institution = {INRIA},
- year = 1998,
- month = mar
-}
-
-@Unpublished{GimCas05,
- author = {E. Gim\'enez and P. Cast\'eran},
- title = {A Tutorial on [Co-]Inductive Types in Coq},
- institution = {INRIA},
- year = 2005,
- month = jan,
- note = {available at \url{http://coq.inria.fr/doc}}
-}
-
-@InProceedings{Gimenez95b,
- author = {E. Gim\'enez},
- booktitle = {Workshop on Types for Proofs and Programs},
- series = LNCS,
- number = {1158},
- pages = {135-152},
- title = {An application of co-Inductive types in Coq:
- verification of the Alternating Bit Protocol},
- editorS = {S. Berardi and M. Coppo},
- publisher = SV,
- year = {1995}
-}
-
-@InProceedings{Gir70,
- author = {J.-Y. Girard},
- booktitle = {Proceedings of the 2nd Scandinavian Logic Symposium},
- publisher = {North-Holland},
- title = {Une extension de l'interpr\'etation de {G\"odel} \`a l'analyse, et son application \`a l'\'elimination des coupures dans l'analyse et la th\'eorie des types},
- year = {1970}
-}
-
-@PhDThesis{Gir72,
- author = {J.-Y. Girard},
- school = {Universit\'e Paris~7},
- title = {Interpr\'etation fonctionnelle et \'elimination des coupures de l'arithm\'etique d'ordre sup\'erieur},
- year = {1972}
-}
-
-@Book{Gir89,
- author = {J.-Y. Girard and Y. Lafont and P. Taylor},
- publisher = {Cambridge University Press},
- series = {Cambridge Tracts in Theoretical Computer Science 7},
- title = {Proofs and Types},
- year = {1989}
-}
-
-@TechReport{Har95,
- author = {John Harrison},
- title = {Metatheory and Reflection in Theorem Proving: A Survey and Critique},
- institution = {SRI International Cambridge Computer Science Research Centre,},
- year = 1995,
- type = {Technical Report},
- number = {CRC-053},
- abstract = {http://www.cl.cam.ac.uk/users/jrh/papers.html}
-}
-
-@MastersThesis{Hir94,
- author = {D. Hirschkoff},
- month = sep,
- school = {DEA IARFA, Ecole des Ponts et Chauss\'ees, Paris},
- title = {Écriture d'une tactique arithm\'etique pour le syst\`eme {\Coq}},
- year = {1994}
-}
-
-@InProceedings{HofStr98,
- author = {Martin Hofmann and Thomas Streicher},
- title = {The groupoid interpretation of type theory},
- booktitle = {Proceedings of the meeting Twenty-five years of constructive type theory},
- publisher = {Oxford University Press},
- year = {1998}
-}
-
-@InCollection{How80,
- author = {W.A. Howard},
- booktitle = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.},
- editor = {J.P. Seldin and J.R. Hindley},
- note = {Unpublished 1969 Manuscript},
- publisher = {Academic Press},
- title = {The Formulae-as-Types Notion of Constructions},
- year = {1980}
-}
-
-@InProceedings{Hue87tapsoft,
- author = {G. Huet},
- title = {Programming of Future Generation Computers},
- booktitle = {Proceedings of TAPSOFT87},
- series = LNCS,
- volume = 249,
- pages = {276--286},
- year = 1987,
- publisher = SV
-}
-
-@InProceedings{Hue87,
- author = {G. Huet},
- booktitle = {Programming of Future Generation Computers},
- editor = {K. Fuchi and M. Nivat},
- note = {Also in \cite{Hue87tapsoft}},
- publisher = {Elsevier Science},
- title = {Induction Principles Formalized in the {Calculus of Constructions}},
- year = {1988}
-}
-
-@InProceedings{Hue88,
- author = {G. Huet},
- booktitle = {A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney},
- editor = {R. Narasimhan},
- note = {Also in~\cite{CoC89}},
- publisher = {World Scientific Publishing},
- title = {{The Constructive Engine}},
- year = {1989}
-}
-
-@Book{Hue89,
- editor = {G. Huet},
- publisher = {Addison-Wesley},
- series = {The UT Year of Programming Series},
- title = {Logical Foundations of Functional Programming},
- year = {1989}
-}
-
-@InProceedings{Hue92,
- author = {G. Huet},
- booktitle = {Proceedings of 12th FST/TCS Conference, New Delhi},
- pages = {229--240},
- publisher = SV,
- series = LNCS,
- title = {The Gallina Specification Language : A case study},
- volume = {652},
- year = {1992}
-}
-
-@Article{Hue94,
- author = {G. Huet},
- journal = {J. Functional Programming},
- pages = {371--394},
- publisher = {Cambridge University Press},
- title = {Residual theory in $\lambda$-calculus: a formal development},
- volume = {4,3},
- year = {1994}
-}
-
-@InCollection{HuetLevy79,
- author = {G. Huet and J.-J. L\'{e}vy},
- title = {Call by Need Computations in Non-Ambigous
-Linear Term Rewriting Systems},
- note = {Also research report 359, INRIA, 1979},
- booktitle = {Computational Logic, Essays in Honor of
-Alan Robinson},
- editor = {J.-L. Lassez and G. Plotkin},
- publisher = {The MIT press},
- year = {1991}
-}
-
-@Article{KeWe84,
- author = {J. Ketonen and R. Weyhrauch},
- journal = {Theoretical Computer Science},
- pages = {297--307},
- title = {A decidable fragment of {P}redicate {C}alculus},
- volume = {32},
- year = {1984}
-}
-
-@Book{Kle52,
- author = {S.C. Kleene},
- publisher = {North-Holland},
- series = {Bibliotheca Mathematica},
- title = {Introduction to Metamathematics},
- year = {1952}
-}
-
-@Book{Kri90,
- author = {J.-L. Krivine},
- publisher = {Masson},
- series = {Etudes et recherche en informatique},
- title = {Lambda-calcul {types et mod\`eles}},
- year = {1990}
-}
-
-@Book{LE92,
- editor = {G. Huet and G. Plotkin},
- publisher = {Cambridge University Press},
- title = {Logical Environments},
- year = {1992}
-}
-
-@Book{LF91,
- editor = {G. Huet and G. Plotkin},
- publisher = {Cambridge University Press},
- title = {Logical Frameworks},
- year = {1991}
-}
-
-@Article{Laville91,
- author = {A. Laville},
- title = {Comparison of Priority Rules in Pattern
-Matching and Term Rewriting},
- journal = {Journal of Symbolic Computation},
- volume = {11},
- pages = {321--347},
- year = {1991}
-}
-
-@InProceedings{LePa94,
- author = {F. Leclerc and C. Paulin-Mohring},
- booktitle = {{Types for Proofs and Programs, Types' 93}},
- editor = {H. Barendregt and T. Nipkow},
- publisher = SV,
- series = {LNCS},
- title = {{Programming with Streams in Coq. A case study : The Sieve of Eratosthenes}},
- volume = {806},
- year = {1994}
-}
-
-@TechReport{Leroy90,
- author = {X. Leroy},
- title = {The {ZINC} experiment: an economical implementation
-of the {ML} language},
- institution = {INRIA},
- number = {117},
- year = {1990}
-}
-
-@InProceedings{Let02,
- author = {P. Letouzey},
- title = {A New Extraction for Coq},
- booktitle = {TYPES},
- year = 2002,
- crossref = {DBLP:conf/types/2002},
- url = {draft at \url{http://www.pps.jussieu.fr/~letouzey/download/extraction2002.ps.gz}}
-}
-
-@PhDThesis{Luo90,
- author = {Z. Luo},
- title = {An Extended Calculus of Constructions},
- school = {University of Edinburgh},
- year = {1990}
-}
-
-@Book{MaL84,
- author = {{P. Martin-L\"of}},
- publisher = {Bibliopolis},
- series = {Studies in Proof Theory},
- title = {Intuitionistic Type Theory},
- year = {1984}
-}
-
-@Article{MaSi94,
- author = {P. Manoury and M. Simonot},
- title = {Automatizing Termination Proofs of Recursively Defined Functions.},
- journal = {TCS},
- volume = {135},
- number = {2},
- year = {1994},
- pages = {319-343},
-}
-
-@InProceedings{Miquel00,
- author = {A. Miquel},
- title = {A Model for Impredicative Type Systems with Universes,
-Intersection Types and Subtyping},
- booktitle = {{Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS'00)}},
- publisher = {IEEE Computer Society Press},
- year = {2000}
-}
-
-@PhDThesis{Miquel01a,
- author = {A. Miquel},
- title = {Le Calcul des Constructions implicite: syntaxe et s\'emantique},
- month = {dec},
- school = {{Universit\'e Paris 7}},
- year = {2001}
-}
-
-@InProceedings{Miquel01b,
- author = {A. Miquel},
- title = {The Implicit Calculus of Constructions: Extending Pure Type Systems with an Intersection Type Binder and Subtyping},
- booktitle = {{Proceedings of the fifth International Conference on Typed Lambda Calculi and Applications (TLCA01), Krakow, Poland}},
- publisher = SV,
- series = {LNCS},
- number = 2044,
- year = {2001}
-}
-
-@InProceedings{MiWer02,
- author = {A. Miquel and B. Werner},
- title = {The Not So Simple Proof-Irrelevant Model of CC},
- booktitle = {TYPES},
- year = {2002},
- pages = {240-258},
- ee = {http://link.springer.de/link/service/series/0558/bibs/2646/26460240.htm},
- crossref = {DBLP:conf/types/2002},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-
-@proceedings{DBLP:conf/types/2002,
- editor = {H. Geuvers and F. Wiedijk},
- title = {Types for Proofs and Programs, Second International Workshop,
- TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002,
- Selected Papers},
- booktitle = {TYPES},
- publisher = SV,
- series = LNCS,
- volume = {2646},
- year = {2003},
- isbn = {3-540-14031-X},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-
-@InProceedings{Moh89a,
- author = {C. Paulin-Mohring},
- address = {Austin},
- booktitle = {Sixteenth Annual ACM Symposium on Principles of Programming Languages},
- month = jan,
- publisher = {ACM},
- title = {Extracting ${F}_{\omega}$'s programs from proofs in the {Calculus of Constructions}},
- year = {1989}
-}
-
-@PhDThesis{Moh89b,
- author = {C. Paulin-Mohring},
- month = jan,
- school = {{Universit\'e Paris 7}},
- title = {Extraction de programmes dans le {Calcul des Constructions}},
- year = {1989}
-}
-
-@InProceedings{Moh93,
- author = {C. Paulin-Mohring},
- booktitle = {Proceedings of the conference Typed Lambda Calculi and Applications},
- editor = {M. Bezem and J.-F. Groote},
- note = {Also LIP research report 92-49, ENS Lyon},
- number = {664},
- publisher = SV,
- series = {LNCS},
- title = {{Inductive Definitions in the System Coq - Rules and Properties}},
- year = {1993}
-}
-
-@Book{Moh97,
- author = {C. Paulin-Mohring},
- month = jan,
- publisher = {{ENS Lyon}},
- title = {{Le syst\`eme Coq. \mbox{Th\`ese d'habilitation}}},
- year = {1997}
-}
-
-@MastersThesis{Mun94,
- author = {C. Muñoz},
- month = sep,
- school = {DEA d'Informatique Fondamentale, Universit\'e Paris 7},
- title = {D\'emonstration automatique dans la logique propositionnelle intuitionniste},
- year = {1994}
-}
-
-@PhDThesis{Mun97d,
- author = {C. Mu{\~{n}}oz},
- title = {Un calcul de substitutions pour la repr\'esentation
- de preuves partielles en th\'eorie de types},
- school = {Universit\'e Paris 7},
- year = {1997},
- note = {Version en anglais disponible comme rapport de
- recherche INRIA RR-3309},
- type = {Th\`ese de Doctorat}
-}
-
-@Book{NoPS90,
- author = {B. {Nordstr\"om} and K. Peterson and J. Smith},
- booktitle = {Information Processing 83},
- publisher = {Oxford Science Publications},
- series = {International Series of Monographs on Computer Science},
- title = {Programming in {Martin-L\"of's} Type Theory},
- year = {1990}
-}
-
-@Article{Nor88,
- author = {B. {Nordstr\"om}},
- journal = {BIT},
- title = {Terminating General Recursion},
- volume = {28},
- year = {1988}
-}
-
-@Book{Odi90,
- editor = {P. Odifreddi},
- publisher = {Academic Press},
- title = {Logic and Computer Science},
- year = {1990}
-}
-
-@InProceedings{PaMS92,
- author = {M. Parigot and P. Manoury and M. Simonot},
- address = {St. Petersburg, Russia},
- booktitle = {Logic Programming and automated reasoning},
- editor = {A. Voronkov},
- month = jul,
- number = {624},
- publisher = SV,
- series = {LNCS},
- title = {{ProPre : A Programming language with proofs}},
- year = {1992}
-}
-
-@Article{PaWe92,
- author = {C. Paulin-Mohring and B. Werner},
- journal = {Journal of Symbolic Computation},
- pages = {607--640},
- title = {{Synthesis of ML programs in the system Coq}},
- volume = {15},
- year = {1993}
-}
-
-@Article{Par92,
- author = {M. Parigot},
- journal = {Theoretical Computer Science},
- number = {2},
- pages = {335--356},
- title = {{Recursive Programming with Proofs}},
- volume = {94},
- year = {1992}
-}
-
-@InProceedings{Parent95b,
- author = {C. Parent},
- booktitle = {{Mathematics of Program Construction'95}},
- publisher = SV,
- series = {LNCS},
- title = {{Synthesizing proofs from programs in
-the Calculus of Inductive Constructions}},
- volume = {947},
- year = {1995}
-}
-
-@InProceedings{Prasad93,
- author = {K.V. Prasad},
- booktitle = {{Proceedings of CONCUR'93}},
- publisher = SV,
- series = {LNCS},
- title = {{Programming with broadcasts}},
- volume = {715},
- year = {1993}
-}
-
-@Book{RC95,
- author = {di~Cosmo, R.},
- title = {Isomorphisms of Types: from $\lambda$-calculus to information
- retrieval and language design},
- series = {Progress in Theoretical Computer Science},
- publisher = {Birkhauser},
- year = {1995},
- note = {ISBN-0-8176-3763-X}
-}
-
-@TechReport{Rou92,
- author = {J. Rouyer},
- institution = {INRIA},
- month = nov,
- number = {1795},
- title = {{Développement de l'Algorithme d'Unification dans le Calcul des Constructions}},
- year = {1992}
-}
-
-@Article{Rushby98,
- title = {Subtypes for Specifications: Predicate Subtyping in
- {PVS}},
- author = {John Rushby and Sam Owre and N. Shankar},
- journal = {IEEE Transactions on Software Engineering},
- pages = {709--720},
- volume = 24,
- number = 9,
- month = sep,
- year = 1998
-}
-
-@TechReport{Saibi94,
- author = {A. Sa\"{\i}bi},
- institution = {INRIA},
- month = dec,
- number = {2345},
- title = {{Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System}},
- year = {1994}
-}
-
-
-@MastersThesis{Ter92,
- author = {D. Terrasse},
- month = sep,
- school = {IARFA},
- title = {{Traduction de TYPOL en COQ. Application \`a Mini ML}},
- year = {1992}
-}
-
-@TechReport{ThBeKa92,
- author = {L. Th\'ery and Y. Bertot and G. Kahn},
- institution = {INRIA Sophia},
- month = may,
- number = {1684},
- title = {Real theorem provers deserve real user-interfaces},
- type = {Research Report},
- year = {1992}
-}
-
-@Book{TrDa89,
- author = {A.S. Troelstra and D. van Dalen},
- publisher = {North-Holland},
- series = {Studies in Logic and the foundations of Mathematics, volumes 121 and 123},
- title = {Constructivism in Mathematics, an introduction},
- year = {1988}
-}
-
-@PhDThesis{Wer94,
- author = {B. Werner},
- school = {Universit\'e Paris 7},
- title = {Une th\'eorie des constructions inductives},
- type = {Th\`ese de Doctorat},
- year = {1994}
-}
-
-@PhDThesis{Bar99,
- author = {B. Barras},
- school = {Universit\'e Paris 7},
- title = {Auto-validation d'un système de preuves avec familles inductives},
- type = {Th\`ese de Doctorat},
- year = {1999}
-}
-
-@Unpublished{ddr98,
- author = {D. de Rauglaudre},
- title = {Camlp4 version 1.07.2},
- year = {1998},
- note = {In Camlp4 distribution}
-}
-
-@Article{dowek93,
- author = {G. Dowek},
- title = {{A Complete Proof Synthesis Method for the Cube of Type Systems}},
- journal = {Journal Logic Computation},
- volume = {3},
- number = {3},
- pages = {287--315},
- month = {June},
- year = {1993}
-}
-
-@InProceedings{manoury94,
- author = {P. Manoury},
- title = {{A User's Friendly Syntax to Define
-Recursive Functions as Typed $\lambda-$Terms}},
- booktitle = {{Types for Proofs and Programs, TYPES'94}},
- series = {LNCS},
- volume = {996},
- month = jun,
- year = {1994}
-}
-
-@TechReport{maranget94,
- author = {L. Maranget},
- institution = {INRIA},
- number = {2385},
- title = {{Two Techniques for Compiling Lazy Pattern Matching}},
- year = {1994}
-}
-
-@InProceedings{puel-suarez90,
- author = {L.Puel and A. Su\'arez},
- booktitle = {{Conference Lisp and Functional Programming}},
- series = {ACM},
- publisher = SV,
- title = {{Compiling Pattern Matching by Term
-Decomposition}},
- year = {1990}
-}
-
-@MastersThesis{saidi94,
- author = {H. Saidi},
- month = sep,
- school = {DEA d'Informatique Fondamentale, Universit\'e Paris 7},
- title = {R\'esolution d'\'equations dans le syst\`eme T
- de G\"odel},
- year = {1994}
-}
-
-@inproceedings{sozeau06,
- author = {Matthieu Sozeau},
- title = {Subset Coercions in {C}oq},
- year = {2007},
- booktitle = {TYPES'06},
- pages = {237-252},
- volume = {4502},
- publisher = "Springer",
- series = {LNCS}
-}
-
-@inproceedings{sozeau08,
- Author = {Matthieu Sozeau and Nicolas Oury},
- booktitle = {TPHOLs'08},
- Pdf = {http://www.lri.fr/~sozeau/research/publications/drafts/classes.pdf},
- Title = {{F}irst-{C}lass {T}ype {C}lasses},
- Year = {2008},
-}
-
-@Misc{streicher93semantical,
- author = {T. Streicher},
- title = {Semantical Investigations into Intensional Type Theory},
- note = {Habilitationsschrift, LMU Munchen.},
- year = {1993}
-}
-
-@Misc{Pcoq,
- author = {Lemme Team},
- title = {Pcoq a graphical user-interface for {Coq}},
- note = {\url{http://www-sop.inria.fr/lemme/pcoq/}}
-}
-
-@Misc{ProofGeneral,
- author = {David Aspinall},
- title = {Proof General},
- note = {\url{http://proofgeneral.inf.ed.ac.uk/}}
-}
-
-@Book{CoqArt,
- title = {Interactive Theorem Proving and Program Development.
- Coq'Art: The Calculus of Inductive Constructions},
- author = {Yves Bertot and Pierre Castéran},
- publisher = {Springer Verlag},
- series = {Texts in Theoretical Computer Science. An EATCS series},
- year = 2004
-}
-
-@InCollection{wadler87,
- author = {P. Wadler},
- title = {Efficient Compilation of Pattern Matching},
- booktitle = {The Implementation of Functional Programming
-Languages},
- editor = {S.L. Peyton Jones},
- publisher = {Prentice-Hall},
- year = {1987}
-}
-
-@inproceedings{DBLP:conf/types/CornesT95,
- author = {Cristina Cornes and
- Delphine Terrasse},
- title = {Automating Inversion of Inductive Predicates in Coq},
- booktitle = {TYPES},
- year = {1995},
- pages = {85-104},
- crossref = {DBLP:conf/types/1995},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-@proceedings{DBLP:conf/types/1995,
- editor = {Stefano Berardi and
- Mario Coppo},
- title = {Types for Proofs and Programs, International Workshop TYPES'95,
- Torino, Italy, June 5-8, 1995, Selected Papers},
- booktitle = {TYPES},
- publisher = {Springer},
- series = {Lecture Notes in Computer Science},
- volume = {1158},
- year = {1996},
- isbn = {3-540-61780-9},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-
-@inproceedings{DBLP:conf/types/McBride00,
- author = {Conor McBride},
- title = {Elimination with a Motive},
- booktitle = {TYPES},
- year = {2000},
- pages = {197-216},
- ee = {http://link.springer.de/link/service/series/0558/bibs/2277/22770197.htm},
- crossref = {DBLP:conf/types/2000},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-
-@proceedings{DBLP:conf/types/2000,
- editor = {Paul Callaghan and
- Zhaohui Luo and
- James McKinna and
- Robert Pollack},
- title = {Types for Proofs and Programs, International Workshop, TYPES
- 2000, Durham, UK, December 8-12, 2000, Selected Papers},
- booktitle = {TYPES},
- publisher = {Springer},
- series = {Lecture Notes in Computer Science},
- volume = {2277},
- year = {2002},
- isbn = {3-540-43287-6},
- bibsource = {DBLP, http://dblp.uni-trier.de}
-}
-
-@INPROCEEDINGS{sugar,
- author = {Alessandro Giovini and Teo Mora and Gianfranco Niesi and Lorenzo Robbiano and Carlo Traverso},
- title = {"One sugar cube, please" or Selection strategies in the Buchberger algorithm},
- booktitle = { Proceedings of the ISSAC'91, ACM Press},
- year = {1991},
- pages = {5--4},
- publisher = {}
-}
-
-@Comment{cross-references, must be at end}
-
-@Book{Bastad92,
- editor = {B. Nordstr\"om and K. Petersson and G. Plotkin},
- publisher = {Available by ftp at site ftp.inria.fr},
- title = {Proceedings of the 1992 Workshop on Types for Proofs and Programs},
- year = {1992}
-}
-
-@Book{Nijmegen93,
- editor = {H. Barendregt and T. Nipkow},
- publisher = SV,
- series = LNCS,
- title = {Types for Proofs and Programs},
- volume = {806},
- year = {1994}
-}
-
-@article{ TheOmegaPaper,
- author = "W. Pugh",
- title = "The Omega test: a fast and practical integer programming algorithm for dependence analysis",
- journal = "Communication of the ACM",
- pages = "102--114",
- year = "1992",
-}
diff --git a/doc/refman/coqdoc.tex b/doc/refman/coqdoc.tex
deleted file mode 100644
index 271a13f7..00000000
--- a/doc/refman/coqdoc.tex
+++ /dev/null
@@ -1,561 +0,0 @@
-
-%\newcommand{\Coq}{\textsf{Coq}}
-\newcommand{\javadoc}{\textsf{javadoc}}
-\newcommand{\ocamldoc}{\textsf{ocamldoc}}
-\newcommand{\coqdoc}{\textsf{coqdoc}}
-\newcommand{\texmacs}{\TeX{}macs}
-\newcommand{\monurl}[1]{#1}
-%HEVEA\renewcommand{\monurl}[1]{\ahref{#1}{#1}}
-%\newcommand{\lnot}{not} % Hevea handles these symbols nicely
-%\newcommand{\lor}{or}
-%\newcommand{\land}{\&}
-%%% attention : -- dans un argument de \texttt est affiché comme un
-%%% seul - d'où l'utilisation de la macro suivante
-\newcommand{\mm}{\symbol{45}\symbol{45}}
-
-
-\coqdoc\ is a documentation tool for the proof assistant
-\Coq, similar to \javadoc\ or \ocamldoc.
-The task of \coqdoc\ is
-\begin{enumerate}
-\item to produce a nice \LaTeX\ and/or HTML document from the \Coq\
- sources, readable for a human and not only for the proof assistant;
-\item to help the user navigating in his own (or third-party) sources.
-\end{enumerate}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\subsection{Principles}
-
-Documentation is inserted into \Coq\ files as \emph{special comments}.
-Thus your files will compile as usual, whether you use \coqdoc\ or not.
-\coqdoc\ presupposes that the given \Coq\ files are well-formed (at
-least lexically). Documentation starts with
-\texttt{(**}, followed by a space, and ends with the pending \texttt{*)}.
-The documentation format is inspired
- by Todd~A.~Coram's \emph{Almost Free Text (AFT)} tool: it is mainly
-ASCII text with some syntax-light controls, described below.
-\coqdoc\ is robust: it shouldn't fail, whatever the input is. But
-remember: ``garbage in, garbage out''.
-
-\paragraph{\Coq\ material inside documentation.}
-\Coq\ material is quoted between the
-delimiters \texttt{[} and \texttt{]}. Square brackets may be nested,
-the inner ones being understood as being part of the quoted code (thus
-you can quote a term like $[x:T]u$ by writing
-\texttt{[[x:T]u]}). Inside quotations, the code is pretty-printed in
-the same way as it is in code parts.
-
-Pre-formatted vernacular is enclosed by \texttt{[[} and
-\texttt{]]}. The former must be followed by a newline and the latter
-must follow a newline.
-
-\paragraph{Pretty-printing.}
-\coqdoc\ uses different faces for identifiers and keywords.
-The pretty-printing of \Coq\ tokens (identifiers or symbols) can be
-controlled using one of the following commands:
-\begin{alltt}
-(** printing \emph{token} %...\LaTeX...% #...HTML...# *)
-\end{alltt}
-or
-\begin{alltt}
-(** printing \emph{token} $...\LaTeX\ math...$ #...HTML...# *)
-\end{alltt}
-It gives the \LaTeX\ and HTML texts to be produced for the given \Coq\
-token. One of the \LaTeX\ or HTML text may be ommitted, causing the
-default pretty-printing to be used for this token.
-
-The printing for one token can be removed with
-\begin{alltt}
-(** remove printing \emph{token} *)
-\end{alltt}
-
-Initially, the pretty-printing table contains the following mapping:
-\begin{center}
- \begin{tabular}{ll@{\qquad\qquad}ll@{\qquad\qquad}ll@{\qquad\qquad}}
- \verb!->! & $\rightarrow$ &
- \verb!<-! & $\leftarrow$ &
- \verb|*| & $\times$ \\
- \verb|<=| & $\le$ &
- \verb|>=| & $\ge$ &
- \verb|=>| & $\Rightarrow$ \\
- \verb|<>| & $\not=$ &
- \verb|<->| & $\leftrightarrow$ &
- \verb!|-! & $\vdash$ \\
- \verb|\/| & $\lor$ &
- \verb|/\| & $\land$ &
- \verb|~| & $\lnot$
- \end{tabular}
-\end{center}
-Any of these can be overwritten or suppressed using the
-\texttt{printing} commands.
-
-Important note: the recognition of tokens is done by a (ocaml)lex
-automaton and thus applies the longest-match rule. For instance,
-\verb!->~! is recognized as a single token, where \Coq\ sees two
-tokens. It is the responsability of the user to insert space between
-tokens \emph{or} to give pretty-printing rules for the possible
-combinations, e.g.
-\begin{verbatim}
-(** printing ->~ %\ensuremath{\rightarrow\lnot}% *)
-\end{verbatim}
-
-
-\paragraph{Sections.}
-Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the
-line) followed by a space. One star is a section, two stars a sub-section, etc.
-The section title is given on the remaining of the line.
-Example:
-\begin{verbatim}
- (** * Well-founded relations
-
- In this section, we introduce... *)
-\end{verbatim}
-
-
-%TODO \paragraph{Fonts.}
-
-
-\paragraph{Lists.}
-List items are introduced by a leading dash. \coqdoc\ uses whitespace
-to determine the depth of a new list item and which text belongs in
-which list items. A list ends when a line of text starts at or before
-the level of indenting of the list's dash. A list item's dash must
-always be the first non-space character on its line (so, in
-particular, a list can not begin on the first line of a comment -
-start it on the second line instead).
-
-Example:
-\begin{verbatim}
- We go by induction on [n]:
- - If [n] is 0...
- - If [n] is [S n'] we require...
-
- two paragraphs of reasoning, and two subcases:
-
- - In the first case...
- - In the second case...
-
- So the theorem holds.
-\end{verbatim}
-
-\paragraph{Rules.}
-More than 4 leading dashes produce an horizontal rule.
-
-\paragraph{Emphasis.}
-Text can be italicized by placing it in underscores. A non-identifier
-character must precede the leading underscore and follow the trailing
-underscore, so that uses of underscores in names aren't mistaken for
-emphasis. Usually, these are spaces or punctuation.
-
-\begin{verbatim}
- This sentence contains some _emphasized text_.
-\end{verbatim}
-
-\paragraph{Escapings to \LaTeX\ and HTML.}
-Pure \LaTeX\ or HTML material can be inserted using the following
-escape sequences:
-\begin{itemize}
-\item \verb+$...LaTeX stuff...$+ inserts some \LaTeX\ material in math mode.
- Simply discarded in HTML output.
-
-\item \verb+%...LaTeX stuff...%+ inserts some \LaTeX\ material.
- Simply discarded in HTML output.
-
-\item \verb+#...HTML stuff...#+ inserts some HTML material. Simply
- discarded in \LaTeX\ output.
-\end{itemize}
-
-Note: to simply output the characters \verb+$+, \verb+%+ and \verb+#+
-and escaping their escaping role, these characters must be doubled.
-
-\paragraph{Verbatim.}
-Verbatim material is introduced by a leading \verb+<<+ and closed by
-\verb+>>+ at the beginning of a line. Example:
-\begin{verbatim}
-Here is the corresponding caml code:
-<<
- let rec fact n =
- if n <= 1 then 1 else n * fact (n-1)
->>
-\end{verbatim}
-
-
-\paragraph{Hyperlinks.}
-Hyperlinks can be inserted into the HTML output, so that any
-identifier is linked to the place of its definition.
-
-\texttt{coqc \emph{file}.v} automatically dumps localization information
-in \texttt{\emph{file}.glob} or appends it to a file specified using option
-\texttt{\mm{}dump-glob \emph{file}}. Take care of erasing this global file, if
-any, when starting the whole compilation process.
-
-Then invoke \texttt{coqdoc} or \texttt{coqdoc \mm{}glob-from \emph{file}} to tell
-\coqdoc\ to look for name resolutions into the file \texttt{\emph{file}}
-(it will look in \texttt{\emph{file}.glob} by default).
-
-Identifiers from the \Coq\ standard library are linked to the \Coq\
-web site at \url{http://coq.inria.fr/library/}. This behavior can be
-changed using command line options \url{--no-externals} and
-\url{--coqlib}; see below.
-
-
-\paragraph{Hiding / Showing parts of the source.}
-Some parts of the source can be hidden using command line options
-\texttt{-g} and \texttt{-l} (see below), or using such comments:
-\begin{alltt}
-(* begin hide *)
-\emph{some Coq material}
-(* end hide *)
-\end{alltt}
-Conversely, some parts of the source which would be hidden can be
-shown using such comments:
-\begin{alltt}
-(* begin show *)
-\emph{some Coq material}
-(* end show *)
-\end{alltt}
-The latter cannot be used around some inner parts of a proof, but can
-be used around a whole proof.
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\subsection{Usage}
-
-\coqdoc\ is invoked on a shell command line as follows:
-\begin{displaymath}
- \texttt{coqdoc }<\textit{options and files}>
-\end{displaymath}
-Any command line argument which is not an option is considered to be a
-file (even if it starts with a \verb!-!). \Coq\ files are identified
-by the suffixes \verb!.v! and \verb!.g! and \LaTeX\ files by the
-suffix \verb!.tex!.
-
-\begin{description}
-\item[HTML output] ~\par
- This is the default output.
- One HTML file is created for each \Coq\ file given on the command line,
- together with a file \texttt{index.html} (unless option
- \texttt{-no-index} is passed). The HTML pages use a style sheet
- named \texttt{style.css}. Such a file is distributed with \coqdoc.
-
-\item[\LaTeX\ output] ~\par
- A single \LaTeX\ file is created, on standard output. It can be
- redirected to a file with option \texttt{-o}.
- The order of files on the command line is kept in the final
- document. \LaTeX\ files given on the command line are copied `as is'
- in the final document .
- DVI and PostScript can be produced directly with the options
- \texttt{-dvi} and \texttt{-ps} respectively.
-
-\item[\texmacs\ output] ~\par
- To translate the input files to \texmacs\ format, to be used by
- the \texmacs\ Coq interface
- (see \url{http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/}).
-\end{description}
-
-
-\subsubsection*{Command line options}
-
-
-\paragraph{Overall options}
-
-\begin{description}
-
-\item[\texttt{\mm{}html}] ~\par
-
- Select a HTML output.
-
-\item[\texttt{\mm{}latex}] ~\par
-
- Select a \LaTeX\ output.
-
-\item[\texttt{\mm{}dvi}] ~\par
-
- Select a DVI output.
-
-\item[\texttt{\mm{}ps}] ~\par
-
- Select a PostScript output.
-
-\item[\texttt{\mm{}texmacs}] ~\par
-
- Select a \texmacs\ output.
-
-\item[\texttt{--stdout}] ~\par
-
- Write output to stdout.
-
-\item[\texttt{-o }\textit{file}, \texttt{\mm{}output }\textit{file}] ~\par
-
- Redirect the output into the file `\textit{file}' (meaningless with
- \texttt{-html}).
-
-\item[\texttt{-d }\textit{dir}, \texttt{\mm{}directory }\textit{dir}] ~\par
-
- Output files into directory `\textit{dir}' instead of current
- directory (option \texttt{-d} does not change the filename specified
- with option \texttt{-o}, if any).
-
-\item[\texttt{\mm{}body-only}] ~\par
-
- Suppress the header and trailer of the final document. Thus, you can
- insert the resulting document into a larger one.
-
-\item[\texttt{-p} \textit{string}, \texttt{\mm{}preamble} \textit{string}]~\par
-
- Insert some material in the \LaTeX\ preamble, right before
- \verb!\begin{document}! (meaningless with \texttt{-html}).
-
-\item[\texttt{\mm{}vernac-file }\textit{file},
- \texttt{\mm{}tex-file }\textit{file}] ~\par
-
- Considers the file `\textit{file}' respectively as a \verb!.v!
- (or \verb!.g!) file or a \verb!.tex! file.
-
-\item[\texttt{\mm{}files-from }\textit{file}] ~\par
-
- Read file names to process in file `\textit{file}' as if they were
- given on the command line. Useful for program sources splitted in
- several directories.
-
-\item[\texttt{-q}, \texttt{\mm{}quiet}] ~\par
-
- Be quiet. Do not print anything except errors.
-
-\item[\texttt{-h}, \texttt{\mm{}help}] ~\par
-
- Give a short summary of the options and exit.
-
-\item[\texttt{-v}, \texttt{\mm{}version}] ~\par
-
- Print the version and exit.
-
-\end{description}
-
-\paragraph{Index options}
-
-Default behavior is to build an index, for the HTML output only, into
-\texttt{index.html}.
-
-\begin{description}
-
-\item[\texttt{\mm{}no-index}] ~\par
-
- Do not output the index.
-
-\item[\texttt{\mm{}multi-index}] ~\par
-
- Generate one page for each category and each letter in the index,
- together with a top page \texttt{index.html}.
-
-\item[\texttt{\mm{}index }\textit{string}] ~\par
-
- Make the filename of the index \textit{string} instead of ``index''.
- Useful since ``index.html'' is special.
-
-\end{description}
-
-\paragraph{Table of contents option}
-
-\begin{description}
-
-\item[\texttt{-toc}, \texttt{\mm{}table-of-contents}] ~\par
-
- Insert a table of contents.
- For a \LaTeX\ output, it inserts a \verb!\tableofcontents! at the
- beginning of the document. For a HTML output, it builds a table of
- contents into \texttt{toc.html}.
-
-\item[\texttt{\mm{}toc-depth }\textit{int}] ~\par
-
- Only include headers up to depth \textit{int} in the table of
- contents.
-
-\end{description}
-
-\paragraph{Hyperlinks options}
-\begin{description}
-
-\item[\texttt{\mm{}glob-from }\textit{file}] ~\par
-
- Make references using \Coq\ globalizations from file \textit{file}.
- (Such globalizations are obtained with \Coq\ option \texttt{-dump-glob}).
-
-\item[\texttt{\mm{}no-externals}] ~\par
-
- Do not insert links to the \Coq\ standard library.
-
-\item[\texttt{\mm{}external }\textit{url}~\textit{coqdir}] ~\par
-
- Use given URL for linking references whose name starts with prefix
- \textit{coqdir}.
-
-\item[\texttt{\mm{}coqlib }\textit{url}] ~\par
-
- Set base URL for the \Coq\ standard library (default is
- \url{http://coq.inria.fr/library/}). This is equivalent to
- \texttt{\mm{}external }\textit{url}~\texttt{Coq}.
-
-\item[\texttt{-R }\textit{dir }\textit{coqdir}] ~\par
-
- Map physical directory \textit{dir} to \Coq\ logical directory
- \textit{coqdir} (similarly to \Coq\ option \texttt{-R}).
-
- Note: option \texttt{-R} only has effect on the files
- \emph{following} it on the command line, so you will probably need
- to put this option first.
-
-\end{description}
-
-\paragraph{Title options}
-\begin{description}
-\item[\texttt{-s }, \texttt{\mm{}short}] ~\par
-
- Do not insert titles for the files. The default behavior is to
- insert a title like ``Library Foo'' for each file.
-
-\item[\texttt{\mm{}lib-name }\textit{string}] ~\par
-
- Print ``\textit{string} Foo'' instead of ``Library Foo'' in titles.
- For example ``Chapter'' and ``Module'' are reasonable choices.
-
-\item[\texttt{\mm{}no-lib-name}] ~\par
-
- Print just ``Foo'' instead of ``Library Foo'' in titles.
-
-\item[\texttt{\mm{}lib-subtitles}] ~\par
-
- Look for library subtitles. When enabled, the beginning of each
- file is checked for a comment of the form:
-\begin{alltt}
-(** * ModuleName : text *)
-\end{alltt}
- where \texttt{ModuleName} must be the name of the file. If it is
- present, the \texttt{text} is used as a subtitle for the module in
- appropriate places.
-
-\item[\texttt{-t }\textit{string},
- \texttt{\mm{}title }\textit{string}] ~\par
-
- Set the document title.
-
-\end{description}
-
-\paragraph{Contents options}
-\begin{description}
-
-\item[\texttt{-g}, \texttt{\mm{}gallina}] ~\par
-
- Do not print proofs.
-
-\item[\texttt{-l}, \texttt{\mm{}light}] ~\par
-
- Light mode. Suppress proofs (as with \texttt{-g}) and the following commands:
- \begin{itemize}
- \item {}[\texttt{Recursive}] \texttt{Tactic Definition}
- \item \texttt{Hint / Hints}
- \item \texttt{Require}
- \item \texttt{Transparent / Opaque}
- \item \texttt{Implicit Argument / Implicits}
- \item \texttt{Section / Variable / Hypothesis / End}
- \end{itemize}
-
-\end{description}
-The behavior of options \texttt{-g} and \texttt{-l} can be locally
-overridden using the \texttt{(* begin show *)} \dots\ \texttt{(* end
- show *)} environment (see above).
-
-There are a few options to drive the parsing of comments:
-\begin{description}
-\item[\texttt{\mm{}parse-comments}] ~\par
-
- Parses regular comments delimited by \texttt{(*} and \texttt{*)} as
- well. They are typeset inline.
-
-\item[\texttt{\mm{}plain-comments}] ~\par
-
- Do not interpret comments, simply copy them as plain-text.
-
-\item[\texttt{\mm{}interpolate}] ~\par
-
- Use the globalization information to typeset identifiers appearing in
- \Coq{} escapings inside comments.
-\end{description}
-
-
-\paragraph{Language options}
-
-Default behavior is to assume ASCII 7 bits input files.
-
-\begin{description}
-
-\item[\texttt{-latin1}, \texttt{\mm{}latin1}] ~\par
-
- Select ISO-8859-1 input files. It is equivalent to
- \texttt{--inputenc latin1 --charset iso-8859-1}.
-
-\item[\texttt{-utf8}, \texttt{\mm{}utf8}] ~\par
-
- Select UTF-8 (Unicode) input files. It is equivalent to
- \texttt{--inputenc utf8 --charset utf-8}.
- \LaTeX\ UTF-8 support can be found at
- \url{http://www.ctan.org/tex-archive/macros/latex/contrib/supported/unicode/}.
-
-\item[\texttt{\mm{}inputenc} \textit{string}] ~\par
-
- Give a \LaTeX\ input encoding, as an option to \LaTeX\ package
- \texttt{inputenc}.
-
-\item[\texttt{\mm{}charset} \textit{string}] ~\par
-
- Specify the HTML character set, to be inserted in the HTML header.
-
-\end{description}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\subsection[The coqdoc \LaTeX{} style file]{The coqdoc \LaTeX{} style file\label{section:coqdoc.sty}}
-
-In case you choose to produce a document without the default \LaTeX{}
-preamble (by using option \verb|--no-preamble|), then you must insert
-into your own preamble the command
-\begin{quote}
- \verb|\usepackage{coqdoc}|
-\end{quote}
-
-The package optionally takes the argument \verb|[color]| to typeset
-identifiers with colors (this requires the \verb|xcolor| package).
-
-Then you may alter the rendering of the document by
-redefining some macros:
-\begin{description}
-
-\item[\texttt{coqdockw}, \texttt{coqdocid}, \ldots] ~
-
- The one-argument macros for typesetting keywords and identifiers.
- Defaults are sans-serif for keywords and italic for identifiers.
-
- For example, if you would like a slanted font for keywords, you
- may insert
-\begin{verbatim}
- \renewcommand{\coqdockw}[1]{\textsl{#1}}
-\end{verbatim}
- anywhere between \verb|\usepackage{coqdoc}| and
- \verb|\begin{document}|.
-
-\item[\texttt{coqdocmodule}] ~
-
- One-argument macro for typesetting the title of a \verb|.v| file.
- Default is
-\begin{verbatim}
-\newcommand{\coqdocmodule}[1]{\section*{Module #1}}
-\end{verbatim}
- and you may redefine it using \verb|\renewcommand|.
-
-\end{description}
-
-
diff --git a/doc/refman/coqide-queries.png b/doc/refman/coqide-queries.png
deleted file mode 100644
index dea5626f..00000000
--- a/doc/refman/coqide-queries.png
+++ /dev/null
Binary files differ
diff --git a/doc/refman/coqide.png b/doc/refman/coqide.png
deleted file mode 100644
index a6a0f585..00000000
--- a/doc/refman/coqide.png
+++ /dev/null
Binary files differ
diff --git a/doc/refman/headers.hva b/doc/refman/headers.hva
deleted file mode 100644
index f65e1c10..00000000
--- a/doc/refman/headers.hva
+++ /dev/null
@@ -1,42 +0,0 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% File headers.hva
-% Hevea version of headers.sty
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Commands for indexes
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\usepackage{index}
-\makeindex
-\newindex{tactic}{tacidx}{tacind}{%
-\protect\addcontentsline{toc}{chapter}{Tactics Index}Tactics Index}
-
-\newindex{command}{comidx}{comind}{%
-\protect\addcontentsline{toc}{chapter}{Vernacular Commands Index}%
-Vernacular Commands Index}
-
-\newindex{error}{erridx}{errind}{%
-\protect\addcontentsline{toc}{chapter}{Index of Error Messages}Index of Error Messages}
-
-\renewindex{default}{idx}{ind}{%
-\protect\addcontentsline{toc}{chapter}{Global Index}%
-Global Index}
-
-\newcommand{\tacindex}[1]{%
-\index{#1@\texttt{#1}}\index[tactic]{#1@\texttt{#1}}}
-\newcommand{\comindex}[1]{%
-\index{#1@\texttt{#1}}\index[command]{#1@\texttt{#1}}}
-\newcommand{\errindex}[1]{\texttt{#1}\index[error]{#1}}
-\newcommand{\errindexbis}[2]{\texttt{#1}\index[error]{#2}}
-\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% For the Addendum table of contents
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\newcommand{\aauthor}[1]{{\LARGE \bf #1} \bigskip} % 3 \bigskip's that were here originally
- % may be good for LaTeX but too much for HTML
-\newcommand{\atableofcontents}{}
-\newcommand{\achapter}[1]{\chapter{#1}}
-\newcommand{\asection}{\section}
-\newcommand{\asubsection}{\subsection}
-\newcommand{\asubsubsection}{\subsubsection}
diff --git a/doc/refman/headers.sty b/doc/refman/headers.sty
deleted file mode 100644
index bc5f5c6c..00000000
--- a/doc/refman/headers.sty
+++ /dev/null
@@ -1,87 +0,0 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% File headers.sty
-% Commands for pretty headers, multiple indexes, and the appendix.
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\usepackage{fancyhdr}
-
-\setlength{\headheight}{14pt}
-
-\pagestyle{fancyplain}
-
-\newcommand{\coqfooter}{\tiny Coq Reference Manual, V\coqversion{}, \today}
-
-\cfoot{}
-\lfoot[{\coqfooter}]{}
-\rfoot[]{{\coqfooter}}
-
-\newcommand{\setheaders}[1]{\rhead[\fancyplain{}{\textbf{#1}}]{\fancyplain{}{\thepage}}\lhead[\fancyplain{}{\thepage}]{\fancyplain{}{\textbf{#1}}}}
-\newcommand{\defaultheaders}{\rhead[\fancyplain{}{\leftmark}]{\fancyplain{}{\thepage}}\lhead[\fancyplain{}{\thepage}]{\fancyplain{}{\rightmark}}}
-
-\renewcommand{\chaptermark}[1]{\markboth{{\bf \thechapter~#1}}{}}
-\renewcommand{\sectionmark}[1]{\markright{\thesection~#1}}
-\renewcommand{\contentsname}{%
-\protect\setheaders{Table of contents}Table of contents}
-\renewcommand{\bibname}{\protect\setheaders{Bibliography}%
-\protect\RefManCutCommand{BEGINBIBLIO=\thepage}%
-\protect\addcontentsline{toc}{chapter}{Bibliography}Bibliography}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Commands for indexes
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\usepackage{index}
-\makeindex
-\newindex{tactic}{tacidx}{tacind}{%
-\protect\setheaders{Tactics Index}%
-\protect\addcontentsline{toc}{chapter}{Tactics Index}Tactics Index}
-
-\newindex{command}{comidx}{comind}{%
-\protect\setheaders{Vernacular Commands Index}%
-\protect\addcontentsline{toc}{chapter}{Vernacular Commands Index}%
-Vernacular Commands Index}
-
-\newindex{error}{erridx}{errind}{%
-\protect\setheaders{Index of Error Messages}%
-\protect\addcontentsline{toc}{chapter}{Index of Error Messages}Index of Error Messages}
-
-\renewindex{default}{idx}{ind}{%
-\protect\addcontentsline{toc}{chapter}{Global Index}%
-\protect\setheaders{Global Index}Global Index}
-
-\newcommand{\tacindex}[1]{%
-\index{#1@\texttt{#1}}\index[tactic]{#1@\texttt{#1}}}
-\newcommand{\comindex}[1]{%
-\index{#1@\texttt{#1}}\index[command]{#1@\texttt{#1}}}
-\newcommand{\errindex}[1]{\texttt{#1}\index[error]{#1}}
-\newcommand{\errindexbis}[2]{\texttt{#1}\index[error]{#2}}
-\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% For the Addendum table of contents
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\newcommand{\aauthor}[1]{{\LARGE \bf #1} \bigskip \bigskip \bigskip}
-\newcommand{\atableofcontents}{\section*{Contents}\@starttoc{atoc}}
-\newcommand{\achapter}[1]{
- \chapter{#1}\addcontentsline{atoc}{chapter}{#1}}
-\newcommand{\asection}[1]{
- \section{#1}\addcontentsline{atoc}{section}{#1}}
-\newcommand{\asubsection}[1]{
- \subsection{#1}\addcontentsline{atoc}{subsection}{#1}}
-\newcommand{\asubsubsection}[1]{
- \subsubsection{#1}\addcontentsline{atoc}{subsubsection}{#1}}
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Reference-Manual.sh is generated to cut the Postscript
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%\@starttoc{sh}
-\newwrite\RefManCut@out%
-\immediate\openout\RefManCut@out\jobname.sh
-\newcommand{\RefManCutCommand}[1]{%
-\immediate\write\RefManCut@out{#1}}
-\newcommand{\RefManCutClose}{%
-\immediate\closeout\RefManCut@out}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/hevea.sty b/doc/refman/hevea.sty
deleted file mode 100644
index 6d49aa8c..00000000
--- a/doc/refman/hevea.sty
+++ /dev/null
@@ -1,78 +0,0 @@
-% hevea : hevea.sty
-% This is a very basic style file for latex document to be processed
-% with hevea. It contains definitions of LaTeX environment which are
-% processed in a special way by the translator.
-% Mostly :
-% - latexonly, not processed by hevea, processed by latex.
-% - htmlonly , the reverse.
-% - rawhtml, to include raw HTML in hevea output.
-% - toimage, to send text to the image file.
-% The package also provides hevea logos, html related commands (ahref
-% etc.), void cutting and image commands.
-\NeedsTeXFormat{LaTeX2e}
-\ProvidesPackage{hevea}[2002/01/11]
-\RequirePackage{comment}
-\newif\ifhevea\heveafalse
-\@ifundefined{ifimagen}{\newif\ifimagen\imagenfalse}
-\makeatletter%
-\newcommand{\heveasmup}[2]{%
-\raise #1\hbox{$\m@th$%
- \csname S@\f@size\endcsname
- \fontsize\sf@size 0%
- \math@fontsfalse\selectfont
-#2%
-}}%
-\DeclareRobustCommand{\hevea}{H\kern-.15em\heveasmup{.2ex}{E}\kern-.15emV\kern-.15em\heveasmup{.2ex}{E}\kern-.15emA}%
-\DeclareRobustCommand{\hacha}{H\kern-.15em\heveasmup{.2ex}{A}\kern-.15emC\kern-.1em\heveasmup{.2ex}{H}\kern-.15emA}%
-\DeclareRobustCommand{\html}{\protect\heveasmup{0.ex}{HTML}}
-%%%%%%%%% Hyperlinks hevea style
-\newcommand{\ahref}[2]{{#2}}
-\newcommand{\ahrefloc}[2]{{#2}}
-\newcommand{\aname}[2]{{#2}}
-\newcommand{\ahrefurl}[1]{\texttt{#1}}
-\newcommand{\footahref}[2]{#2\footnote{\texttt{#1}}}
-\newcommand{\mailto}[1]{\texttt{#1}}
-\newcommand{\imgsrc}[2][]{}
-\newcommand{\home}[1]{\protect\raisebox{-.75ex}{\char126}#1}
-\AtBeginDocument
-{\@ifundefined{url}
-{%url package is not loaded
-\let\url\ahref\let\oneurl\ahrefurl\let\footurl\footahref}
-{}}
-%% Void cutting instructions
-\newcounter{cuttingdepth}
-\newcommand{\tocnumber}{}
-\newcommand{\notocnumber}{}
-\newcommand{\cuttingunit}{}
-\newcommand{\cutdef}[2][]{}
-\newcommand{\cuthere}[2]{}
-\newcommand{\cutend}{}
-\newcommand{\htmlhead}[1]{}
-\newcommand{\htmlfoot}[1]{}
-\newcommand{\htmlprefix}[1]{}
-\newenvironment{cutflow}[1]{}{}
-\newcommand{\cutname}[1]{}
-\newcommand{\toplinks}[3]{}
-%%%% Html only
-\excludecomment{rawhtml}
-\newcommand{\rawhtmlinput}[1]{}
-\excludecomment{htmlonly}
-%%%% Latex only
-\newenvironment{latexonly}{}{}
-\newenvironment{verblatex}{}{}
-%%%% Image file stuff
-\def\toimage{\endgroup}
-\def\endtoimage{\begingroup\def\@currenvir{toimage}}
-\def\verbimage{\endgroup}
-\def\endverbimage{\begingroup\def\@currenvir{verbimage}}
-\newcommand{\imageflush}[1][]{}
-%%% Bgcolor definition
-\newsavebox{\@bgcolorbin}
-\newenvironment{bgcolor}[2][]
- {\newcommand{\@mycolor}{#2}\begin{lrbox}{\@bgcolorbin}\vbox\bgroup}
- {\egroup\end{lrbox}%
- \begin{flushleft}%
- \colorbox{\@mycolor}{\usebox{\@bgcolorbin}}%
- \end{flushleft}}
-%%% Postlude
-\makeatother
diff --git a/doc/refman/index.html b/doc/refman/index.html
deleted file mode 100644
index 9b5250ab..00000000
--- a/doc/refman/index.html
+++ /dev/null
@@ -1,14 +0,0 @@
-<HTML>
-
-<HEAD>
-
-<TITLE>The Coq Proof Assistant Reference Manual</TITLE>
-
-</HEAD>
-
-<FRAMESET ROWS=90%,*>
- <FRAME SRC="cover.html" NAME="UP">
- <FRAME SRC="menu.html">
-</FRAMESET>
-
-</HTML> \ No newline at end of file
diff --git a/doc/refman/menu.html b/doc/refman/menu.html
deleted file mode 100644
index db19678f..00000000
--- a/doc/refman/menu.html
+++ /dev/null
@@ -1,29 +0,0 @@
-<HTML>
-
-<BODY>
-
-<CENTER>
-
-<TABLE BORDER="0" CELLPADDING=10>
-<TR>
-<TD><CENTER><A HREF="cover.html" TARGET="UP"><FONT SIZE=2>Cover page</FONT></A></CENTER></TD>
-<TD><CENTER><A HREF="toc.html" TARGET="UP"><FONT SIZE=2>Table of contents</FONT></A></CENTER></TD>
-<TD><CENTER><A HREF="biblio.html" TARGET="UP"><FONT SIZE=2>
-Bibliography</FONT></A></CENTER></TD>
-<TD><CENTER><A HREF="general-index.html" TARGET="UP"><FONT SIZE=2>
-Global Index
-</FONT></A></CENTER></TD>
-<TD><CENTER><A HREF="tactic-index.html" TARGET="UP"><FONT SIZE=2>
-Tactics Index
-</FONT></A></CENTER></TD>
-<TD><CENTER><A HREF="command-index.html" TARGET="UP"><FONT SIZE=2>
-Vernacular Commands Index
-</FONT></A></CENTER></TD>
-<TD><CENTER><A HREF="error-index.html" TARGET="UP"><FONT SIZE=2>
-Index of Error Messages
-</FONT></A></CENTER></TD>
-</TABLE>
-
-</CENTER>
-
-</BODY></HTML> \ No newline at end of file
diff --git a/doc/rt/RefMan-cover.tex b/doc/rt/RefMan-cover.tex
deleted file mode 100644
index d881329a..00000000
--- a/doc/rt/RefMan-cover.tex
+++ /dev/null
@@ -1,46 +0,0 @@
-\documentstyle[RRcover]{book}
- % L'utilisation du style `french' force le résumé français à
- % apparaître en premier.
-
-\RRtitle{Manuel de r\'ef\'erence du syst\`eme Coq \\ version V7.1}
-\RRetitle{The Coq Proof Assistant \\ Reference Manual \\ Version 7.1
-\thanks
-{This research was partly supported by ESPRIT Basic Research
-Action ``Types'' and by the GDR ``Programmation'' co-financed by MRE-PRC and CNRS.}
-}
-\RRauthor{Bruno Barras, Samuel Boutin, Cristina Cornes,
-Judica\"el Courant, Jean-Christophe Filli\^atre, Eduardo Gim\'enez,
-Hugo Herbelin, G\'erard Huet, C\'esar Mu\~noz, Chetan Murthy,
-Catherine Parent, Christine Paulin-Mohring,
-Amokrane Sa{\"\i}bi, Benjamin Werner}
-\authorhead{}
-\titlehead{Coq V7.1 Reference Manual}
-\RRtheme{2}
-\RRprojet{Coq}
-\RRNo{0123456789}
-\RRdate{May 1997}
-%\RRpages{}
-\URRocq
-
-\RRresume{Coq est un syst\`eme permettant le d\'eveloppement et la
-v\'erification de preuves formelles dans une logique d'ordre
-sup\'erieure incluant un riche langage de d\'efinitions de fonctions.
-Ce document constitue le manuel de r\'ef\'erence de la version V7.1
-qui est distribu\'ee par ftp anonyme à l'adresse
-\url{ftp://ftp.inria.fr/INRIA/coq/}}
-
-\RRmotcle{Coq, Syst\`eme d'aide \`a la preuve, Preuves formelles,
-Calcul des Constructions Inductives}
-
-
-\RRabstract{Coq is a proof assistant based on a higher-order logic
-allowing powerful definitions of functions.
-Coq V7.1 is available by anonymous
-ftp at \url{ftp://ftp.inria.fr/INRIA/coq/}}
-
-\RRkeyword{Coq, Proof Assistant, Formal Proofs, Calculus of Inductives
-Constructions}
-
-\begin{document}
-\makeRT
-\end{document}
diff --git a/doc/rt/Tutorial-cover.tex b/doc/rt/Tutorial-cover.tex
deleted file mode 100644
index b747b812..00000000
--- a/doc/rt/Tutorial-cover.tex
+++ /dev/null
@@ -1,48 +0,0 @@
-\documentstyle[RRcover]{book}
- % L'utilisation du style `french' force le résumé français à
- % apparaître en premier.
-\RRetitle{
-The Coq Proof Assistant \\ A Tutorial \\ Version 7.1
-\thanks{This research was partly supported by ESPRIT Basic Research
-Action ``Types'' and by the GDR ``Programmation'' co-financed by MRE-PRC and CNRS.}
-}
-\RRtitle{Coq \\ Une introduction \\ V7.1 }
-\RRauthor{G\'erard Huet, Gilles Kahn and Christine Paulin-Mohring}
-\RRtheme{2}
-\RRprojet{{Coq
-\\[15pt]
-{INRIA Rocquencourt}
-{\hskip -5.25pt}
-~~{\bf ---}~~
- \def\thefootnote{\arabic{footnote}\hss}
-{CNRS - ENS Lyon}
-\footnote[1]{LIP URA 1398 du CNRS,
-46 All\'ee d'Italie, 69364 Lyon CEDEX 07, France.}
-{\hskip -14pt}}}
-
-%\RRNo{0123456789}
-\RRNo{0204}
-\RRdate{Ao\^ut 1997}
-
-\URRocq
-\RRresume{Coq est un syst\`eme permettant le d\'eveloppement et la
-v\'erification de preuves formelles dans une logique d'ordre
-sup\'erieure incluant un riche langage de d\'efinitions de fonctions.
-Ce document constitue une introduction pratique \`a l'utilisation de
-la version V7.1 qui est distribu\'ee par ftp anonyme à l'adresse
-\url{ftp://ftp.inria.fr/INRIA/coq/}}
-
-\RRmotcle{Coq, Syst\`eme d'aide \`a la preuve, Preuves formelles, Calcul
-des Constructions Inductives}
-
-\RRabstract{Coq is a proof assistant based on a higher-order logic
-allowing powerful definitions of functions. This document is a
-tutorial for the version V7.1 of Coq. This version is available by
-anonymous ftp at \url{ftp://ftp.inria.fr/INRIA/coq/}}
-
-\RRkeyword{Coq, Proof Assistant, Formal Proofs, Calculus of Inductives
-Constructions}
-
-\begin{document}
-\makeRT
-\end{document}
diff --git a/doc/tools/Translator.tex b/doc/tools/Translator.tex
deleted file mode 100644
index 005ca9c0..00000000
--- a/doc/tools/Translator.tex
+++ /dev/null
@@ -1,898 +0,0 @@
-\ifx\pdfoutput\undefined % si on est pas en pdflatex
-\documentclass[11pt,a4paper]{article}
-\else
-\documentclass[11pt,a4paper,pdftex]{article}
-\fi
-\usepackage[latin1]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{pslatex}
-\usepackage{url}
-\usepackage{verbatim}
-\usepackage{amsmath}
-\usepackage{amssymb}
-\usepackage{array}
-\usepackage{fullpage}
-
-\title{Translation from Coq V7 to V8}
-\author{The Coq Development Team}
-
-%% Macros etc.
-\catcode`\_=13
-\let\subscr=_
-\def_{\ifmmode\sb\else\subscr\fi}
-
-\def\NT#1{\langle\textit{#1}\rangle}
-\def\NTL#1#2{\langle\textit{#1}\rangle_{#2}}
-%\def\TERM#1{\textsf{\bf #1}}
-\def\TERM#1{\texttt{#1}}
-\newenvironment{transbox}
- {\begin{center}\tt\begin{tabular}{l|ll} \hfil\textrm{V7} & \hfil\textrm{V8} \\ \hline}
- {\end{tabular}\end{center}}
-\def\TRANS#1#2
- {\begin{tabular}[t]{@{}l@{}}#1\end{tabular} &
- \begin{tabular}[t]{@{}l@{}}#2\end{tabular} \\}
-\def\TRANSCOM#1#2#3
- {\begin{tabular}[t]{@{}l@{}}#1\end{tabular} &
- \begin{tabular}[t]{@{}l@{}}#2\end{tabular} & #3 \\}
-
-%%
-%%
-%%
-\begin{document}
-\maketitle
-
-\section{Introduction}
-
-Coq version 8.0 is a major version and carries major changes: the
-concrete syntax was redesigned almost from scratch, and many notions
-of the libraries were renamed for uniformisation purposes. We felt
-that these changes could discourage users with large theories from
-switching to the new version.
-
-The goal of this document is to introduce these changes on simple
-examples (mainly the syntactic changes), and describe the automated
-tools to help moving to V8.0. Essentially, it consists of a translator
-that takes as input a Coq source file in old syntax and produces a
-file in new syntax and adapted to the new standard library. The main
-extra features of this translator is that it keeps comments, even
-those within expressions\footnote{The position of those comment might
-differ slightly since there is no exact matching of positions between
-old and new syntax.}.
-
-The document is organised as follows: first section describes the new
-syntax on simple examples. It is very translation-oriented. This
-should give users of older versions the flavour of the new syntax, and
-allow them to make translation manually on small
-examples. Section~\ref{Translation} explains how the translation
-process can be automatised for the most part (the boring one: applying
-similar changes over thousands of lines of code). We strongly advise
-users to follow these indications, in order to avoid many potential
-complications of the translation process.
-
-
-\section{The new syntax on examples}
-
-The goal of this section is to introduce to the new syntax of Coq on
-simple examples, rather than just giving the new grammar. It is
-strongly recommended to read first the definition of the new syntax
-(in the reference manual), but this document should also be useful for
-the eager user who wants to start with the new syntax quickly.
-
-The toplevel has an option {\tt -translate} which allows to
-interactively translate commands. This toplevel translator accepts a
-command, prints the translation on standard output (after a %
-\verb+New syntax:+ balise), executes the command, and waits for another
-command. The only requirements is that they should be syntactically
-correct, but they do not have to be well-typed.
-
-This interactive translator proved to be useful in two main
-usages. First as a ``debugger'' of the translation. Before the
-translation, it may help in spotting possible conflicts between the
-new syntax and user notations. Or when the translation fails for some
-reason, it makes it easy to find the exact reason why it failed and
-make attempts in fixing the problem.
-
-The second usage of the translator is when trying to make the first
-proofs in new syntax. Well trained users will automatically think
-their scripts in old syntax and might waste much time (and the
-intuition of the proof) if they have to search the translation in a
-document. Running a translator in the background will allow the user
-to instantly have the answer.
-
-The rest of this section is a description of all the aspects of the
-syntax that changed and how they were translated. All the examples
-below can be tested by entering the V7 commands in the toplevel
-translator.
-
-
-%%
-
-\subsection{Changes in lexical conventions w.r.t. V7}
-
-\subsubsection{Identifiers}
-
-The lexical conventions changed: \TERM{_} is not a regular identifier
-anymore. It is used in terms as a placeholder for subterms to be inferred
-at type-checking, and in patterns as a non-binding variable.
-
-Furthermore, only letters (Unicode letters), digits, single quotes and
-_ are allowed after the first character.
-
-\subsubsection{Quoted string}
-
-Quoted strings are used typically to give a filename (which may not
-be a regular identifier). As before they are written between double
-quotes ("). Unlike for V7, there is no escape character: characters
-are written normally except the double quote which is doubled.
-
-\begin{transbox}
-\TRANS{"abcd$\backslash\backslash$efg"}{"abcd$\backslash$efg"}
-\TRANS{"abcd$\backslash$"efg"}{"abcd""efg"}
-\end{transbox}
-
-
-\subsection{Main changes in terms w.r.t. V7}
-
-
-\subsubsection{Precedence of application}
-
-In the new syntax, parentheses are not really part of the syntax of
-application. The precedence of application (10) is tighter than all
-prefix and infix notations. It makes it possible to remove parentheses
-in many contexts.
-
-\begin{transbox}
-\TRANS{(A x)->(f x)=(g y)}{A x -> f x = g y}
-\TRANS{(f [x]x)}{f (fun x => x)}
-\end{transbox}
-
-
-\subsubsection{Arithmetics and scopes}
-
-The specialized notation for \TERM{Z} and \TERM{R} (introduced by
-symbols \TERM{`} and \TERM{``}) have disappeared. They have been
-replaced by the general notion of scope.
-
-\begin{center}
-\begin{tabular}{l|l|l}
-type & scope name & delimiter \\
-\hline
-types & type_scope & \TERM{type} \\
-\TERM{bool} & bool_scope & \\
-\TERM{nat} & nat_scope & \TERM{nat} \\
-\TERM{Z} & Z_scope & \TERM{Z} \\
-\TERM{R} & R_scope & \TERM{R} \\
-\TERM{positive} & positive_scope & \TERM{P}
-\end{tabular}
-\end{center}
-
-In order to use notations of arithmetics on \TERM{Z}, its scope must
-be opened with command \verb+Open Scope Z_scope.+ Another possibility
-is using the scope change notation (\TERM{\%}). The latter notation is
-to be used when notations of several scopes appear in the same
-expression.
-
-In examples below, scope changes are not needed if the appropriate scope
-has been opened. Scope \verb|nat_scope| is opened in the initial state of Coq.
-\begin{transbox}
-\TRANSCOM{`0+x=x+0`}{0+x=x+0}{\textrm{Z_scope}}
-\TRANSCOM{``0 + [if b then ``1`` else ``2``]``}{0 + if b then 1 else 2}{\textrm{R_scope}}
-\TRANSCOM{(0)}{0}{\textrm{nat_scope}}
-\end{transbox}
-
-Below is a table that tells which notation is available in which
-scope. The relative precedences and associativity of operators is the
-same as in usual mathematics. See the reference manual for more
-details. However, it is important to remember that unlike V7, the type
-operators for product and sum are left-associative, in order not to
-clash with arithmetic operators.
-
-\begin{center}
-\begin{tabular}{l|l}
-scope & notations \\
-\hline
-nat_scope & \texttt{+ - * < <= > >=} \\
-Z_scope & \texttt{+ - * / mod < <= > >= ?=} \\
-R_scope & \texttt{+ - * / < <= > >=} \\
-type_scope & \texttt{* +} \\
-bool_scope & \texttt{\&\& || -} \\
-list_scope & \texttt{:: ++}
-\end{tabular}
-\end{center}
-
-
-
-\subsubsection{Notation for implicit arguments}
-
-The explicitation of arguments is closer to the \emph{bindings}
-notation in tactics. Argument positions follow the argument names of
-the head constant. The example below assumes \verb+f+ is a function
-with two implicit dependent arguments named \verb+x+ and \verb+y+.
-\begin{transbox}
-\TRANS{f 1!t1 2!t2 t3}{f (x:=t1) (y:=t2) t3}
-\TRANS{!f t1 t2}{@f t1 t2}
-\end{transbox}
-
-
-\subsubsection{Inferred subterms}
-
-Subterms that can be automatically inferred by the type-checker is now
-written {\tt _}
-
-\begin{transbox}
-\TRANS{?}{_}
-\end{transbox}
-
-\subsubsection{Universal quantification}
-
-The universal quantification and dependent product types are now
-introduced by the \texttt{forall} keyword before the binders and a
-comma after the binders.
-
-The syntax of binders also changed significantly. A binder can simply be
-a name when its type can be inferred. In other cases, the name and the type
-of the variable are put between parentheses. When several consecutive
-variables have the same type, they can be grouped. Finally, if all variables
-have the same type, parentheses can be omitted.
-
-\begin{transbox}
-\TRANS{(x:A)B}{forall (x:~A), B ~~\textrm{or}~~ forall x:~A, B}
-\TRANS{(x,y:nat)P}{forall (x y :~nat), P ~~\textrm{or}~~ forall x y :~nat, P}
-\TRANS{(x,y:nat;z:A)P}{forall (x y :~nat) (z:A), P}
-\TRANS{(x,y,z,t:?)P}{forall x y z t, P}
-\TRANS{(x,y:nat;z:?)P}{forall (x y :~nat) z, P}
-\end{transbox}
-
-\subsubsection{Abstraction}
-
-The notation for $\lambda$-abstraction follows that of universal
-quantification. The binders are surrounded by keyword \texttt{fun}
-and \verb+=>+.
-
-\begin{transbox}
-\TRANS{[x,y:nat; z](f a b c)}{fun (x y:nat) z => f a b c}
-\end{transbox}
-
-
-\subsubsection{Pattern-matching}
-
-Beside the usage of the keyword pair \TERM{match}/\TERM{with} instead of
-\TERM{Cases}/\TERM{of}, the main change is the notation for the type of
-branches and return type. It is no longer written between \TERM{$<$ $>$} before
-the \TERM{Cases} keyword, but interleaved with the destructured objects.
-
-The idea is that for each destructured object, one may specify a
-variable name (after the \TERM{as} keyword) to tell how the branches
-types depend on this destructured objects (case of a dependent
-elimination), and also how they depend on the value of the arguments
-of the inductive type of the destructured objects (after the \TERM{in}
-keyword). The type of branches is then given after the keyword
-\TERM{return}, unless it can be inferred.
-
-Moreover, when the destructured object is a variable, one may use this
-variable in the return type.
-
-\begin{transbox}
-\TRANS{Cases n of\\~~ O => O \\| (S k) => (1) end}{match n with\\~~ 0 => 0 \\| S k => 1 end}
-\TRANS{Cases m n of \\~~0 0 => t \\| ... end}{match m, n with \\~~0, 0 => t \\| ... end}
-\TRANS{<[n:nat](P n)>Cases T of ... end}{match T as n return P n with ... end}
-\TRANS{<[n:nat][p:(even n)]\~{}(odd n)>Cases p of\\~~ ... \\end}{match p in even n return \~{} odd n with\\~~ ...\\end}
-\end{transbox}
-
-The annotations of the special pattern-matching operators
-(\TERM{if}/\TERM{then}/\TERM{else}) and \TERM{let()} also changed. The
-only restriction is that the destructuring \TERM{let} does not allow
-dependent case analysis.
-
-\begin{transbox}
-\TRANS{
- \begin{tabular}{@{}l}
- <[n:nat;x:(I n)](P n x)>if t then t1 \\
- else t2
- \end{tabular}}%
-{\begin{tabular}{@{}l}
- if t as x in I n return P n x then t1 \\
- else t2
- \end{tabular}}
-\TRANS{<[n:nat](P n)>let (p,q) = t1 in t2}%
-{let (p,q) in I n return P n := t1 in t2}
-\end{transbox}
-
-
-\subsubsection{Fixpoints and cofixpoints}
-
-An simpler syntax for non-mutual fixpoints is provided, making it very close
-to the usual notation for non-recursive functions. The decreasing argument
-is now indicated by an annotation between curly braces, regardless of the
-binders grouping. The annotation can be omitted if the binders introduce only
-one variable. The type of the result can be omitted if inferable.
-
-\begin{transbox}
-\TRANS{Fix plus\{plus [n:nat] : nat -> nat :=\\~~ [m]...\}}{fix plus (n m:nat) \{struct n\}: nat := ...}
-\TRANS{Fix fact\{fact [n:nat]: nat :=\\
-~~Cases n of\\~~~~ O => (1) \\~~| (S k) => (mult n (fact k)) end\}}{fix fact
- (n:nat) :=\\
-~~match n with \\~~~~0 => 1 \\~~| (S k) => n * fact k end}
-\end{transbox}
-
-There is a syntactic sugar for single fixpoints (defining one
-variable) associated to a local definition:
-
-\begin{transbox}
-\TRANS{let f := Fix f \{f [x:A] : T := M\} in\\(g (f y))}{let fix f (x:A) : T := M in\\g (f x)}
-\end{transbox}
-
-The same applies to cofixpoints, annotations are not allowed in that case.
-
-\subsubsection{Notation for type cast}
-
-\begin{transbox}
-\TRANS{O :: nat}{0 : nat}
-\end{transbox}
-
-\subsection{Main changes in tactics w.r.t. V7}
-
-The main change is that all tactic names are lowercase. This also holds for
-Ltac keywords.
-
-\subsubsection{Renaming of induction tactics}
-
-\begin{transbox}
-\TRANS{NewDestruct}{destruct}
-\TRANS{NewInduction}{induction}
-\TRANS{Induction}{simple induction}
-\TRANS{Destruct}{simple destruct}
-\end{transbox}
-
-\subsubsection{Ltac}
-
-Definitions of macros are introduced by \TERM{Ltac} instead of
-\TERM{Tactic Definition}, \TERM{Meta Definition} or \TERM{Recursive
-Definition}. They are considered recursive by default.
-
-\begin{transbox}
-\TRANS{Meta Definition my_tac t1 t2 := t1; t2.}%
-{Ltac my_tac t1 t2 := t1; t2.}
-\end{transbox}
-
-Rules of a match command are not between square brackets anymore.
-
-Context (understand a term with a placeholder) instantiation \TERM{inst}
-became \TERM{context}. Syntax is unified with subterm matching.
-
-\begin{transbox}
-\TRANS{Match t With [C[x=y]] -> Inst C[y=x]}%
-{match t with context C[x=y] => context C[y=x] end}
-\end{transbox}
-
-Arguments of macros use the term syntax. If a general Ltac expression
-is to be passed, it must be prefixed with ``{\tt ltac :}''. In other
-cases, when a \'{} was necessary, it is replaced by ``{\tt constr :}''
-
-\begin{transbox}
-\TRANS{my_tac '(S x)}{my_tac (S x)}
-\TRANS{my_tac (Let x=tac In x)}{my_tac ltac:(let x:=tac in x)}
-\TRANS{Let x = '[x](S (S x)) In Apply x}%
-{let x := constr:(fun x => S (S x)) in apply x}
-\end{transbox}
-
-{\tt Match Context With} is now called {\tt match goal with}. Its
-argument is an Ltac expression by default.
-
-
-\subsubsection{Named arguments of theorems ({\em bindings})}
-
-\begin{transbox}
-\TRANS{Apply thm with x:=t 1:=u}{apply thm with (x:=t) (1:=u)}
-\end{transbox}
-
-
-\subsubsection{Occurrences}
-
-To avoid ambiguity between a numeric literal and the optional
-occurrence numbers of this term, the occurrence numbers are put after
-the term itself and after keyword \TERM{as}.
-\begin{transbox}
-\TRANS{Pattern 1 2 (f x) 3 4 d y z}{pattern f x at 1 2, d at 3 4, y, z}
-\end{transbox}
-
-
-\subsubsection{{\tt LetTac} and {\tt Pose}}
-
-Tactic {\tt LetTac} was renamed into {\tt set}, and tactic {\tt Pose}
-was a particular case of {\tt LetTac} where the abbreviation is folded
-in the conclusion\footnote{There is a tactic called {\tt pose} in V8,
-but its behaviour is not to fold the abbreviation at all.}.
-
-\begin{transbox}
-\TRANS{LetTac x = t in H}{set (x := t) in H}
-\TRANS{Pose x := t}{set (x := t)}
-\end{transbox}
-
-{\tt LetTac} could be followed by a specification (called a clause) of
-the places where the abbreviation had to be folded (hypothese and/or
-conclusion). Clauses are the syntactic notion to denote in which parts
-of a goal a given transformation shold occur. Its basic notation is
-either \TERM{*} (meaning everywhere), or {\tt\textrm{\em hyps} |-
-\textrm{\em concl}} where {\em hyps} is either \TERM{*} (to denote all
-the hypotheses), or a comma-separated list of either hypothesis name,
-or {\tt (value of $H$)} or {\tt (type of $H$)}. Moreover, occurrences
-can be specified after every hypothesis after the {\TERM{at}}
-keyword. {\em concl} is either empty or \TERM{*}, and can be followed
-by occurences.
-
-\begin{transbox}
-\TRANS{in Goal}{in |- *}
-\TRANS{in H H1}{in H1, H2 |-}
-\TRANS{in H H1 ...}{in * |-}
-\TRANS{in H H1 Goal}{in H1, H2 |- *}
-\TRANS{in H H1 H2 ... Goal}{in *}
-\TRANS{in 1 2 H 3 4 H0 1 3 Goal}{in H at 1 2, H0 at 3 4 |- * at 1 3}
-\end{transbox}
-
-\subsection{Main changes in vernacular commands w.r.t. V7}
-
-
-\subsubsection{Require}
-
-The default behaviour of {\tt Require} is not to open the loaded
-module.
-
-\begin{transbox}
-\TRANS{Require Arith}{Require Import Arith}
-\end{transbox}
-
-\subsubsection{Binders}
-
-The binders of vernacular commands changed in the same way as those of
-fixpoints. This also holds for parameters of inductive definitions.
-
-
-\begin{transbox}
-\TRANS{Definition x [a:A] : T := M}{Definition x (a:A) : T := M}
-\TRANS{Inductive and [A,B:Prop]: Prop := \\~~conj : A->B->(and A B)}%
- {Inductive and (A B:Prop): Prop := \\~~conj : A -> B -> and A B}
-\end{transbox}
-
-\subsubsection{Hints}
-
-Both {\tt Hints} and {\tt Hint} commands are beginning with {\tt Hint}.
-
-Command {\tt HintDestruct} has disappeared.
-
-
-The syntax of \emph{Extern} hints changed: the pattern and the tactic
-to be applied are separated by a {\tt =>}.
-\begin{transbox}
-\TRANS{Hint name := Resolve (f ? x)}%
-{Hint Resolve (f _ x)}
-\TRANS{Hint name := Extern 4 (toto ?) Apply lemma}%
-{Hint Extern 4 (toto _) => apply lemma}
-\TRANS{Hints Resolve x y z}{Hint Resolve x y z}
-\TRANS{Hints Resolve f : db1 db2}{Hint Resolve f : db1 db2}
-\TRANS{Hints Immediate x y z}{Hint Immediate x y z}
-\TRANS{Hints Unfold x y z}{Hint Unfold x y z}
-%% \TRANS{\begin{tabular}{@{}l}
-%% HintDestruct Local Conclusion \\
-%% ~~name (f ? ?) 3 [Apply thm]
-%% \end{tabular}}%
-%% {\begin{tabular}{@{}l}
-%% Hint Local Destuct name := \\
-%% ~~3 Conclusion (f _ _) => apply thm
-%% \end{tabular}}
-\end{transbox}
-
-
-\subsubsection{Implicit arguments}
-
-
-{\tt Set Implicit Arguments} changed its meaning in V8: the default is
-to turn implicit only the arguments that are {\em strictly} implicit
-(or rigid), i.e. that remains inferable whatever the other arguments
-are. For instance {\tt x} inferable from {\tt P x} is not strictly
-inferable since it can disappears if {\tt P} is instanciated by a term
-which erases {\tt x}.
-
-\begin{transbox}
-\TRANS{Set Implicit Arguments}%
-{\begin{tabular}{l}
- Set Implicit Arguments. \\
- Unset Strict Implicits.
- \end{tabular}}
-\end{transbox}
-
-However, you may wish to adopt the new semantics of {\tt Set Implicit
-Arguments} (for instance because you think that the choice of
-arguments it sets implicit is more ``natural'' for you).
-
-
-\subsection{Changes in standard library}
-
-Many lemmas had their named changed to improve uniformity. The user
-generally do not have to care since the translators performs the
-renaming.
-
- Type {\tt entier} from fast_integer.v is renamed into {\tt N} by the
-translator. As a consequence, user-defined objects of same name {\tt N}
-are systematically qualified even tough it may not be necessary. The
-following table lists the main names with which the same problem
-arises:
-\begin{transbox}
-\TRANS{IF}{IF_then_else}
-\TRANS{ZERO}{Z0}
-\TRANS{POS}{Zpos}
-\TRANS{NEG}{Zneg}
-\TRANS{SUPERIEUR}{Gt}
-\TRANS{EGAL}{Eq}
-\TRANS{INFERIEUR}{Lt}
-\TRANS{add}{Pplus}
-\TRANS{true_sub}{Pminus}
-\TRANS{entier}{N}
-\TRANS{Un_suivi_de}{Ndouble_plus_one}
-\TRANS{Zero_suivi_de}{Ndouble}
-\TRANS{Nul}{N0}
-\TRANS{Pos}{Npos}
-\end{transbox}
-
-
-\subsubsection{Implicit arguments}
-
-%% Hugo:
-Main definitions of standard library have now implicit
-arguments. These arguments are dropped in the translated files. This
-can exceptionally be a source of incompatibilities which has to be
-solved by hand (it typically happens for polymorphic functions applied
-to {\tt nil} or {\tt None}).
-%% preciser: avant ou apres trad ?
-
-\subsubsection{Logic about {\tt Type}}
-
-Many notations that applied to {\tt Set} have been extended to {\tt
-Type}, so several definitions in {\tt Type} are superseded by them.
-
-\begin{transbox}
-\TRANS{x==y}{x=y}
-\TRANS{(EXT x:Prop | Q)}{exists x:Prop, Q}
-\TRANS{identityT}{identity}
-\end{transbox}
-
-
-
-%% Doc of the translator
-\section{A guide to translation}
-\label{Translation}
-
-%%\subsection{Overview of the translation process}
-
-Here is a short description of the tools involved in the translation process:
-\begin{description}
-\item{\tt coqc -translate}
-is the automatic translator. It is a parser/pretty-printer. This means
-that the translation is made by parsing every command using a parser
-of old syntax, which is printed using the new syntax. Many efforts
-were made to preserve as much as possible of the quality of the
-presentation: it avoids expansion of syntax extensions, comments are
-not discarded and placed at the same place.
-\item{\tt translate-v8} (in the translation package) is a small
-shell-script that will help translate developments that compile with a
-Makefile with minimum requirements.
-\end{description}
-
-\subsection{Preparation to translation}
-
-This step is very important because most of work shall be done before
-translation. If a problem occurs during translation, it often means
-that you will have to modify the original source and restart the
-translation process. This also means that it is recommended not to
-edit the output of the translator since it would be overwritten if
-the translation has to be restarted.
-
-\subsubsection{Compilation with {\tt coqc -v7}}
-
-First of all, it is mandatory that files compile with the current
-version of Coq (8.0) with option {\tt -v7}. Translation is a
-complicated task that involves the full compilation of the
-development. If your development was compiled with older versions,
-first upgrade to Coq V8.0 with option {\tt -v7}. If you use a Makefile
-similar to those produced by {\tt coq\_makefile}, you probably just
-have to do
-
-{\tt make OPT="-opt -v7"} ~~~or~~~ {\tt make OPT="-byte -v7"}
-
-When the development compiles successfully, there are several changes
-that might be necessary for the translation. Essentially, this is
-about syntax extensions (see section below dedicated to porting syntax
-extensions). If you do not use such features, then you are ready to
-try and make the translation.
-
-\subsection{Translation}
-
-\subsubsection{The general case}
-
-The preferred way is to use script {\tt translate-v8} if your development
-is compiled by a Makefile with the following constraints:
-\begin{itemize}
-\item compilation is achieved by invoking make without specifying a target
-\item options are passed to Coq with make variable COQFLAGS that
- includes variables OPT, COQLIBS, OTHERFLAGS and COQ_XML.
-\end{itemize}
-These constraints are met by the makefiles produced by {\tt coq\_makefile}
-
-Otherwise, modify your build program so as to pass option {\tt
--translate} to program {\tt coqc}. The effect of this option is to
-ouptut the translated source of any {\tt .v} file in a file with
-extension {\tt .v8} located in the same directory than the original
-file.
-
-\subsubsection{What may happen during the translation}
-
-This section describes events that may happen during the
-translation and measures to adopt.
-
-These are the warnings that may arise during the translation, but they
-generally do not require any modification for the user:
-Warnings:
-\begin{itemize}
-\item {\tt Unable to detect if $id$ denotes a local definition}\\
-This is due to a semantic change in clauses. In a command such as {\tt
-simpl in H}, the old semantics were to perform simplification in the
-type of {\tt H}, or in its body if it is defined. With the new
-semantics, it is performed both in the type and the body (if any). It
-might lead to incompatibilities
-
-\item {\tt Forgetting obsolete module}\\
-Some modules have disappeared in V8.0 (new syntax). The user does not
-need to worry about it, since the translator deals with it.
-
-\item {\tt Replacing obsolete module}\\
-Same as before but with the module that were renamed. Here again, the
-translator deals with it.
-\end{itemize}
-
-\subsection{Verification of the translation}
-
-The shell-script {\tt translate-v8} also renames {\tt .v8} files into
-{\tt .v} files (older {\tt .v} files are put in a subdirectory called
-{\tt v7}) and tries to recompile them. To do so it invokes {\tt make}
-without option (which should cause the compilation using {\tt coqc}
-without particular option).
-
-If compilation fails at this stage, you should refrain from repairing
-errors manually on the new syntax, but rather modify the old syntax
-script and restart the translation. We insist on that because the
-problem encountered can show up in many instances (especially if the
-problem comes from a syntactic extension), and fixing the original
-sources (for instance the {\tt V8only} parts of notations) once will
-solve all occurrences of the problem.
-
-%%\subsubsection{Errors occurring after translation}
-%%Equality in {\tt Z} or {\tt R}...
-
-\subsection{Particular cases}
-
-\subsubsection{Lexical conventions}
-
-The definition of identifiers changed. Most of those changes are
-handled by the translator. They include:
-\begin{itemize}
-\item {\tt \_} is not an identifier anymore: it is tranlated to {\tt
-x\_}
-\item avoid clash with new keywords by adding a trailing {\tt \_}
-\end{itemize}
-
-If the choices made by translation is not satisfactory
-or in the following cases:
-\begin{itemize}
-\item use of latin letters
-\item use of iso-latin characters in notations
-\end{itemize}
-the user should change his development prior to translation.
-
-\subsubsection{{\tt Case} and {\tt Match}}
-
-These very low-level case analysis are no longer supported. The
-translator tries hard to translate them into a user-friendly one, but
-it might lack type information to do so\footnote{The translator tries
-to typecheck terms before printing them, but it is not always possible
-to determine the context in which terms appearing in tactics
-live.}. If this happens, it is preferable to transform it manually
-before translation.
-
-\subsubsection{Syntax extensions with {\tt Grammar} and {\tt Syntax}}
-
-
-{\tt Grammar} and {\tt Syntax} are no longer supported. They
-should be replaced by an equivalent {\tt Notation} command and be
-processed as described above. Before attempting translation, users
-should verify that compilation with option {\tt -v7} succeeds.
-
-In the cases where {\tt Grammar} and {\tt Syntax} cannot be emulated
-by {\tt Notation}, users have to change manually they development as
-they wish to avoid the use of {\tt Grammar}. If this is not done, the
-translator will simply expand the notations and the output of the
-translator will use the regular Coq syntax.
-
-\subsubsection{Syntax extensions with {\tt Notation} and {\tt Infix}}
-
-These commands do not necessarily need to be changed.
-
-Some work will have to be done manually if the notation conflicts with
-the new syntax (for instance, using keywords like {\tt fun} or {\tt
-exists}, overloading of symbols of the old syntax, etc.) or if the
-precedences are not right.
-
- Precedence levels are now from 0 to 200. In V8, the precedence and
-associativity of an operator cannot be redefined. Typical level are
-(refer to the chapter on notations in the Reference Manual for the
-full list):
-
-\begin{center}
-\begin{tabular}{|cll|}
-\hline
-Notation & Precedence & Associativity \\
-\hline
-\verb!_ <-> _! & 95 & no \\
-\verb!_ \/ _! & 85 & right \\
-\verb!_ /\ _! & 80 & right \\
-\verb!~ _! & 75 & right \\
-\verb!_ = _!, \verb!_ <> _!, \verb!_ < _!, \verb!_ > _!,
- \verb!_ <= _!, \verb!_ >= _! & 70 & no \\
-\verb!_ + _!, \verb!_ - _! & 50 & left \\
-\verb!_ * _!, \verb!_ / _! & 40 & left \\
-\verb!- _! & 35 & right \\
-\verb!_ ^ _! & 30 & left \\
-\hline
-\end{tabular}
-\end{center}
-
-
- By default, the translator keeps the associativity given in V7 while
-the levels are mapped according to the following table:
-
-\begin{center}
-\begin{tabular}{l|l|l}
-V7 level & mapped to & associativity \\
-\hline
-0 & 0 & no \\
-1 & 20 & left \\
-2 & 30 & right \\
-3 & 40 & left \\
-4 & 50 & left \\
-5 & 70 & no \\
-6 & 80 & right \\
-7 & 85 & right \\
-8 & 90 & right \\
-9 & 95 & no \\
-10 & 100 & left
-\end{tabular}
-\end{center}
-
-If this is OK, just simply apply the translator.
-
-
-\paragraph{Associativity conflict}
-
- Since the associativity of the levels obtained by translating a V7
-level (as shown on table above) cannot be changed, you have to choose
-another level with a compatible associativity.
-
- You can choose any level between 0 and 200, knowing that the
-standard operators are already set at the levels shown on the list
-above.
-
-Assume you have a notation
-\begin{verbatim}
-Infix NONA 2 "=_S" my_setoid_eq.
-\end{verbatim}
-By default, the translator moves it to level 30 which is right
-associative, hence a conflict with the expected no associativity.
-
-To solve the problem, just add the "V8only" modifier to reset the
-level and enforce the associativity as follows:
-\begin{verbatim}
-Infix NONA 2 "=_S" my_setoid_eq V8only (at level 70, no associativity).
-\end{verbatim}
-The translator now knows that it has to translate "=_S" at level 70
-with no associativity.
-
-Remark: 70 is the "natural" level for relations, hence the choice of 70
-here, but any other level accepting a no-associativity would have been
-OK.
-
-Second example: assume you have a notation
-\begin{verbatim}
-Infix RIGHTA 1 "o" my_comp.
-\end{verbatim}
-By default, the translator moves it to level 20 which is left
-associative, hence a conflict with the expected right associativity.
-
-To solve the problem, just add the "V8only" modifier to reset the
-level and enforce the associativity as follows:
-\begin{verbatim}
-Infix RIGHTA 1 "o" my_comp V8only (at level 20, right associativity).
-\end{verbatim}
-The translator now knows that it has to translate "o" at level 20
-which has the correct "right associativity".
-
-Remark: we assumed here that the user wants a strong precedence for
-composition, in such a way, say, that "f o g + h" is parsed as
-"(f o g) + h". To get "o" binding less than the arithmetical operators,
-an appropriated level would have been close of 70, and below, e.g. 65.
-
-
-\paragraph{Conflict: notation hides another notation}
-
-Remark: use {\tt Print Grammar constr} in V8 to diagnose the overlap
-and see the section on factorization in the chapter on notations of
-the Reference Manual for hints on how to factorize.
-
-Example:
-\begin{verbatim}
-Notation "{ x }" := (my_embedding x) (at level 1).
-\end{verbatim}
-overlaps in V8 with notation \verb#{ x : A & P }# at level 0 and with
-x at level 99. The conflicts can be solved by left-factorizing the
-notation as follows:
-\begin{verbatim}
-Notation "{ x }" := (my_embedding x) (at level 1)
- V8only (at level 0, x at level 99).
-\end{verbatim}
-
-\paragraph{Conflict: a notation conflicts with the V8 grammar}
-
-Again, use the {\tt V8only} modifier to tell the translator to
-automatically take in charge the new syntax.
-
-Example:
-\begin{verbatim}
-Infix 3 "@" app.
-\end{verbatim}
-Since {\tt @} is used in the new syntax for deactivating the implicit
-arguments, another symbol has to be used, e.g. {\tt @@}. This is done via
-the {\tt V8only} option as follows:
-\begin{verbatim}
-Infix 3 "@" app V8only "@@" (at level 40, left associativity).
-\end{verbatim}
-or, alternatively by
-\begin{verbatim}
-Notation "x @ y" := (app x y) (at level 3, left associativity)
- V8only "x @@ y" (at level 40, left associativity).
-\end{verbatim}
-
-\paragraph{Conflict: my notation is already defined at another level
- (or with another associativity)}
-
-In V8, the level and associativity of a given notation can no longer
-be changed. Then, either you adopt the standard reserved levels and
-associativity for this notation (as given on the list above) or you
-change your notation.
-\begin{itemize}
-\item To change the notation, follow the directions in the previous
-paragraph
-\item To adopt the standard level, just use {\tt V8only} without any
-argument.
-\end{itemize}
-
-Example:
-\begin{verbatim}
-Infix 6 "*" my_mult.
-\end{verbatim}
-is not accepted as such in V8. Write
-\begin{verbatim}
-Infix 6 "*" my_mult V8only.
-\end{verbatim}
-to tell the translator to use {\tt *} at the reserved level (i.e. 40
-with left associativity). Even better, use interpretation scopes (look
-at the Reference Manual).
-
-
-\subsubsection{Strict implicit arguments}
-
-In the case you want to adopt the new semantics of {\tt Set Implicit
- Arguments} (only setting rigid arguments as implicit), add the option
-{\tt -strict-implicit} to the translator.
-
-Warning: changing the number of implicit arguments can break the
-notations. Then use the {\tt V8only} modifier of {\tt Notation}.
-
-\end{document}
diff --git a/doc/tools/latex_filter b/doc/tools/latex_filter
deleted file mode 100755
index 044a8642..00000000
--- a/doc/tools/latex_filter
+++ /dev/null
@@ -1,43 +0,0 @@
-#!/bin/sh
-
-# First argument is the number of lines to treat
-# Second argument is optional and, if it is "no", overfull are not displayed
-
-i=$1
-nooverfull=$2
-error=0
-verbose=0
-chapter=""
-file=""
-while : ; do
- read -r line;
- case $line in
- "! "*)
- echo $line $file;
- error=1
- verbose=1
- ;;
- "LaTeX Font Info"*|"LaTeX Info"*|"Underfull "*)
- verbose=0
- ;;
- "Overfull "*)
- verbose=0
- if [ "$nooverfull" != "no" ]; then echo $line $file; fi
- ;;
- "LaTeX "*)
- verbose=0
- echo $line $chapter
- ;;
- "["*|"Chapter "*)
- verbose=0
- ;;
- "(./"*)
- file="(file `echo $line | cut -b 4- | cut -d' ' -f 1`)"
- verbose=0
- ;;
- *)
- if [ $verbose = 1 ]; then echo $line; fi
- esac;
- if [ "$i" = "0" ]; then break; else i=`expr $i - 1`; fi;
-done
-exit $error
diff --git a/doc/tools/show_latex_messages b/doc/tools/show_latex_messages
deleted file mode 100755
index 8f1470ec..00000000
--- a/doc/tools/show_latex_messages
+++ /dev/null
@@ -1,8 +0,0 @@
-#!/bin/sh
-
-if [ "$1" = "-no-overfull" ]; then
- cat $2 | ../tools/latex_filter `cat $2 | wc -l` no
-else
- cat $1 | ../tools/latex_filter `cat $1 | wc -l` yes
-fi
-
diff --git a/doc/tutorial/Tutorial.tex b/doc/tutorial/Tutorial.tex
deleted file mode 100755
index 63c35548..00000000
--- a/doc/tutorial/Tutorial.tex
+++ /dev/null
@@ -1,1577 +0,0 @@
-\documentclass[11pt,a4paper]{book}
-\usepackage[T1]{fontenc}
-\usepackage[latin1]{inputenc}
-\usepackage{pslatex}
-
-\input{../common/version.tex}
-\input{../common/macros.tex}
-\input{../common/title.tex}
-
-%\makeindex
-
-\begin{document}
-\coverpage{A Tutorial}{Gérard Huet, Gilles Kahn and Christine Paulin-Mohring}{}
-
-%\tableofcontents
-
-\chapter*{Getting started}
-
-\Coq\ is a Proof Assistant for a Logical Framework known as the Calculus
-of Inductive Constructions. It allows the interactive construction of
-formal proofs, and also the manipulation of functional programs
-consistently with their specifications. It runs as a computer program
-on many architectures.
-%, and mainly on Unix machines.
-It is available with a variety of user interfaces. The present
-document does not attempt to present a comprehensive view of all the
-possibilities of \Coq, but rather to present in the most elementary
-manner a tutorial on the basic specification language, called Gallina,
-in which formal axiomatisations may be developed, and on the main
-proof tools. For more advanced information, the reader could refer to
-the \Coq{} Reference Manual or the \textit{Coq'Art}, a new book by Y.
-Bertot and P. Castéran on practical uses of the \Coq{} system.
-
-Coq can be used from a standard teletype-like shell window but
-preferably through the graphical user interface
-CoqIde\footnote{Alternative graphical interfaces exist: Proof General
-and Pcoq.}.
-
-Instructions on installation procedures, as well as more comprehensive
-documentation, may be found in the standard distribution of \Coq,
-which may be obtained from \Coq{} web site \texttt{http://coq.inria.fr}.
-
-In the following, we assume that \Coq~ is called from a standard
-teletype-like shell window. All examples preceded by the prompting
-sequence \verb:Coq < : represent user input, terminated by a
-period.
-
-The following lines usually show \Coq's answer as it appears on the
-users screen. When used from a graphical user interface such as
-CoqIde, the prompt is not displayed: user input is given in one window
-and \Coq's answers are displayed in a different window.
-
-The sequence of such examples is a valid \Coq~
-session, unless otherwise specified. This version of the tutorial has
-been prepared on a PC workstation running Linux. The standard
-invocation of \Coq\ delivers a message such as:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-unix:~> coqtop
-Welcome to Coq 8.3 (October 2010)
-
-Coq <
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-The first line gives a banner stating the precise version of \Coq~
-used. You should always return this banner when you report an anomaly
-to our bug-tracking system
-\verb|http://coq.inria.fr/bugs|
-
-\chapter{Basic Predicate Calculus}
-
-\section{An overview of the specification language Gallina}
-
-A formal development in Gallina consists in a sequence of {\sl declarations}
-and {\sl definitions}. You may also send \Coq~ {\sl commands} which are
-not really part of the formal development, but correspond to information
-requests, or service routine invocations. For instance, the command:
-\begin{verbatim}
-Coq < Quit.
-\end{verbatim}
-terminates the current session.
-
-\subsection{Declarations}
-
-A declaration associates a {\sl name} with
-a {\sl specification}.
-A name corresponds roughly to an identifier in a programming
-language, i.e. to a string of letters, digits, and a few ASCII symbols like
-underscore (\verb"_") and prime (\verb"'"), starting with a letter.
-We use case distinction, so that the names \verb"A" and \verb"a" are distinct.
-Certain strings are reserved as key-words of \Coq, and thus are forbidden
-as user identifiers.
-
-A specification is a formal expression which classifies the notion which is
-being declared. There are basically three kinds of specifications:
-{\sl logical propositions}, {\sl mathematical collections}, and
-{\sl abstract types}. They are classified by the three basic sorts
-of the system, called respectively \verb:Prop:, \verb:Set:, and
-\verb:Type:, which are themselves atomic abstract types.
-
-Every valid expression $e$ in Gallina is associated with a specification,
-itself a valid expression, called its {\sl type} $\tau(E)$. We write
-$e:\tau(E)$ for the judgment that $e$ is of type $E$.
-You may request \Coq~ to return to you the type of a valid expression by using
-the command \verb:Check::
-
-\begin{coq_eval}
-Set Printing Width 60.
-\end{coq_eval}
-
-\begin{coq_example}
-Check O.
-\end{coq_example}
-
-Thus we know that the identifier \verb:O: (the name `O', not to be
-confused with the numeral `0' which is not a proper identifier!) is
-known in the current context, and that its type is the specification
-\verb:nat:. This specification is itself classified as a mathematical
-collection, as we may readily check:
-
-\begin{coq_example}
-Check nat.
-\end{coq_example}
-
-The specification \verb:Set: is an abstract type, one of the basic
-sorts of the Gallina language, whereas the notions $nat$ and $O$ are
-notions which are defined in the arithmetic prelude,
-automatically loaded when running the \Coq\ system.
-
-We start by introducing a so-called section name. The role of sections
-is to structure the modelisation by limiting the scope of parameters,
-hypotheses and definitions. It will also give a convenient way to
-reset part of the development.
-
-\begin{coq_example}
-Section Declaration.
-\end{coq_example}
-With what we already know, we may now enter in the system a declaration,
-corresponding to the informal mathematics {\sl let n be a natural
- number}.
-
-\begin{coq_example}
-Variable n : nat.
-\end{coq_example}
-
-If we want to translate a more precise statement, such as
-{\sl let n be a positive natural number},
-we have to add another declaration, which will declare explicitly the
-hypothesis \verb:Pos_n:, with specification the proper logical
-proposition:
-\begin{coq_example}
-Hypothesis Pos_n : (gt n 0).
-\end{coq_example}
-
-Indeed we may check that the relation \verb:gt: is known with the right type
-in the current context:
-
-\begin{coq_example}
-Check gt.
-\end{coq_example}
-
-which tells us that \verb:gt: is a function expecting two arguments of
-type \verb:nat: in order to build a logical proposition.
-What happens here is similar to what we are used to in a functional
-programming language: we may compose the (specification) type \verb:nat:
-with the (abstract) type \verb:Prop: of logical propositions through the
-arrow function constructor, in order to get a functional type
-\verb:nat->Prop::
-\begin{coq_example}
-Check (nat -> Prop).
-\end{coq_example}
-which may be composed one more times with \verb:nat: in order to obtain the
-type \verb:nat->nat->Prop: of binary relations over natural numbers.
-Actually the type \verb:nat->nat->Prop: is an abbreviation for
-\verb:nat->(nat->Prop):.
-
-Functional notions may be composed in the usual way. An expression $f$
-of type $A\ra B$ may be applied to an expression $e$ of type $A$ in order
-to form the expression $(f~e)$ of type $B$. Here we get that
-the expression \verb:(gt n): is well-formed of type \verb:nat->Prop:,
-and thus that the expression \verb:(gt n O):, which abbreviates
-\verb:((gt n) O):, is a well-formed proposition.
-\begin{coq_example}
-Check gt n O.
-\end{coq_example}
-
-\subsection{Definitions}
-
-The initial prelude contains a few arithmetic definitions:
-\verb:nat: is defined as a mathematical collection (type \verb:Set:), constants
-\verb:O:, \verb:S:, \verb:plus:, are defined as objects of types
-respectively \verb:nat:, \verb:nat->nat:, and \verb:nat->nat->nat:.
-You may introduce new definitions, which link a name to a well-typed value.
-For instance, we may introduce the constant \verb:one: as being defined
-to be equal to the successor of zero:
-\begin{coq_example}
-Definition one := (S O).
-\end{coq_example}
-We may optionally indicate the required type:
-\begin{coq_example}
-Definition two : nat := S one.
-\end{coq_example}
-
-Actually \Coq~ allows several possible syntaxes:
-\begin{coq_example}
-Definition three : nat := S two.
-\end{coq_example}
-
-Here is a way to define the doubling function, which expects an
-argument \verb:m: of type \verb:nat: in order to build its result as
-\verb:(plus m m)::
-
-\begin{coq_example}
-Definition double (m:nat) := plus m m.
-\end{coq_example}
-This introduces the constant \texttt{double} defined as the
-expression \texttt{fun m:nat => plus m m}.
-The abstraction introduced by \texttt{fun} is explained as follows. The expression
-\verb+fun x:A => e+ is well formed of type \verb+A->B+ in a context
-whenever the expression \verb+e+ is well-formed of type \verb+B+ in
-the given context to which we add the declaration that \verb+x+
-is of type \verb+A+. Here \verb+x+ is a bound, or dummy variable in
-the expression \verb+fun x:A => e+. For instance we could as well have
-defined \verb:double: as \verb+fun n:nat => (plus n n)+.
-
-Bound (local) variables and free (global) variables may be mixed.
-For instance, we may define the function which adds the constant \verb:n:
-to its argument as
-\begin{coq_example}
-Definition add_n (m:nat) := plus m n.
-\end{coq_example}
-However, note that here we may not rename the formal argument $m$ into $n$
-without capturing the free occurrence of $n$, and thus changing the meaning
-of the defined notion.
-
-Binding operations are well known for instance in logic, where they
-are called quantifiers. Thus we may universally quantify a
-proposition such as $m>0$ in order to get a universal proposition
-$\forall m\cdot m>0$. Indeed this operator is available in \Coq, with
-the following syntax: \verb+forall m:nat, gt m O+. Similarly to the
-case of the functional abstraction binding, we are obliged to declare
-explicitly the type of the quantified variable. We check:
-\begin{coq_example}
-Check (forall m:nat, gt m 0).
-\end{coq_example}
-We may clean-up the development by removing the contents of the
-current section:
-\begin{coq_example}
-Reset Declaration.
-\end{coq_example}
-
-\section{Introduction to the proof engine: Minimal Logic}
-
-In the following, we are going to consider various propositions, built
-from atomic propositions $A, B, C$. This may be done easily, by
-introducing these atoms as global variables declared of type \verb:Prop:.
-It is easy to declare several names with the same specification:
-\begin{coq_example}
-Section Minimal_Logic.
-Variables A B C : Prop.
-\end{coq_example}
-
-We shall consider simple implications, such as $A\ra B$, read as
-``$A$ implies $B$''. Remark that we overload the arrow symbol, which
-has been used above as the functionality type constructor, and which
-may be used as well as propositional connective:
-\begin{coq_example}
-Check (A -> B).
-\end{coq_example}
-
-Let us now embark on a simple proof. We want to prove the easy tautology
-$((A\ra (B\ra C))\ra (A\ra B)\ra (A\ra C)$.
-We enter the proof engine by the command
-\verb:Goal:, followed by the conjecture we want to verify:
-\begin{coq_example}
-Goal (A -> B -> C) -> (A -> B) -> A -> C.
-\end{coq_example}
-
-The system displays the current goal below a double line, local hypotheses
-(there are none initially) being displayed above the line. We call
-the combination of local hypotheses with a goal a {\sl judgment}.
-We are now in an inner
-loop of the system, in proof mode.
-New commands are available in this
-mode, such as {\sl tactics}, which are proof combining primitives.
-A tactic operates on the current goal by attempting to construct a proof
-of the corresponding judgment, possibly from proofs of some
-hypothetical judgments, which are then added to the current
-list of conjectured judgments.
-For instance, the \verb:intro: tactic is applicable to any judgment
-whose goal is an implication, by moving the proposition to the left
-of the application to the list of local hypotheses:
-\begin{coq_example}
-intro H.
-\end{coq_example}
-
-Several introductions may be done in one step:
-\begin{coq_example}
-intros H' HA.
-\end{coq_example}
-
-We notice that $C$, the current goal, may be obtained from hypothesis
-\verb:H:, provided the truth of $A$ and $B$ are established.
-The tactic \verb:apply: implements this piece of reasoning:
-\begin{coq_example}
-apply H.
-\end{coq_example}
-
-We are now in the situation where we have two judgments as conjectures
-that remain to be proved. Only the first is listed in full, for the
-others the system displays only the corresponding subgoal, without its
-local hypotheses list. Remark that \verb:apply: has kept the local
-hypotheses of its father judgment, which are still available for
-the judgments it generated.
-
-In order to solve the current goal, we just have to notice that it is
-exactly available as hypothesis $HA$:
-\begin{coq_example}
-exact HA.
-\end{coq_example}
-
-Now $H'$ applies:
-\begin{coq_example}
-apply H'.
-\end{coq_example}
-
-And we may now conclude the proof as before, with \verb:exact HA.:
-Actually, we may not bother with the name \verb:HA:, and just state that
-the current goal is solvable from the current local assumptions:
-\begin{coq_example}
-assumption.
-\end{coq_example}
-
-The proof is now finished. We may either discard it, by using the
-command \verb:Abort: which returns to the standard \Coq~ toplevel loop
-without further ado, or else save it as a lemma in the current context,
-under name say \verb:trivial_lemma::
-\begin{coq_example}
-Save trivial_lemma.
-\end{coq_example}
-
-As a comment, the system shows the proof script listing all tactic
-commands used in the proof.
-
-Let us redo the same proof with a few variations. First of all we may name
-the initial goal as a conjectured lemma:
-\begin{coq_example}
-Lemma distr_impl : (A -> B -> C) -> (A -> B) -> A -> C.
-\end{coq_example}
-
-Next, we may omit the names of local assumptions created by the introduction
-tactics, they can be automatically created by the proof engine as new
-non-clashing names.
-\begin{coq_example}
-intros.
-\end{coq_example}
-
-The \verb:intros: tactic, with no arguments, effects as many individual
-applications of \verb:intro: as is legal.
-
-Then, we may compose several tactics together in sequence, or in parallel,
-through {\sl tacticals}, that is tactic combinators. The main constructions
-are the following:
-\begin{itemize}
-\item $T_1 ; T_2$ (read $T_1$ then $T_2$) applies tactic $T_1$ to the current
-goal, and then tactic $T_2$ to all the subgoals generated by $T_1$.
-\item $T; [T_1 | T_2 | ... | T_n]$ applies tactic $T$ to the current
-goal, and then tactic $T_1$ to the first newly generated subgoal,
-..., $T_n$ to the nth.
-\end{itemize}
-
-We may thus complete the proof of \verb:distr_impl: with one composite tactic:
-\begin{coq_example}
-apply H; [ assumption | apply H0; assumption ].
-\end{coq_example}
-
-Let us now save lemma \verb:distr_impl::
-\begin{coq_example}
-Save.
-\end{coq_example}
-
-Here \verb:Save: needs no argument, since we gave the name \verb:distr_impl:
-in advance;
-it is however possible to override the given name by giving a different
-argument to command \verb:Save:.
-
-Actually, such an easy combination of tactics \verb:intro:, \verb:apply:
-and \verb:assumption: may be found completely automatically by an automatic
-tactic, called \verb:auto:, without user guidance:
-\begin{coq_example}
-Lemma distr_imp : (A -> B -> C) -> (A -> B) -> A -> C.
-auto.
-\end{coq_example}
-
-This time, we do not save the proof, we just discard it with the \verb:Abort:
-command:
-
-\begin{coq_example}
-Abort.
-\end{coq_example}
-
-At any point during a proof, we may use \verb:Abort: to exit the proof mode
-and go back to Coq's main loop. We may also use \verb:Restart: to restart
-from scratch the proof of the same lemma. We may also use \verb:Undo: to
-backtrack one step, and more generally \verb:Undo n: to
-backtrack n steps.
-
-We end this section by showing a useful command, \verb:Inspect n.:,
-which inspects the global \Coq~ environment, showing the last \verb:n: declared
-notions:
-\begin{coq_example}
-Inspect 3.
-\end{coq_example}
-
-The declarations, whether global parameters or axioms, are shown preceded by
-\verb:***:; definitions and lemmas are stated with their specification, but
-their value (or proof-term) is omitted.
-
-\section{Propositional Calculus}
-
-\subsection{Conjunction}
-
-We have seen how \verb:intro: and \verb:apply: tactics could be combined
-in order to prove implicational statements. More generally, \Coq~ favors a style
-of reasoning, called {\sl Natural Deduction}, which decomposes reasoning into
-so called {\sl introduction rules}, which tell how to prove a goal whose main
-operator is a given propositional connective, and {\sl elimination rules},
-which tell how to use an hypothesis whose main operator is the propositional
-connective. Let us show how to use these ideas for the propositional connectives
-\verb:/\: and \verb:\/:.
-
-\begin{coq_example}
-Lemma and_commutative : A /\ B -> B /\ A.
-intro.
-\end{coq_example}
-
-We make use of the conjunctive hypothesis \verb:H: with the \verb:elim: tactic,
-which breaks it into its components:
-\begin{coq_example}
-elim H.
-\end{coq_example}
-
-We now use the conjunction introduction tactic \verb:split:, which splits the
-conjunctive goal into the two subgoals:
-\begin{coq_example}
-split.
-\end{coq_example}
-and the proof is now trivial. Indeed, the whole proof is obtainable as follows:
-\begin{coq_example}
-Restart.
-intro H; elim H; auto.
-Qed.
-\end{coq_example}
-
-The tactic \verb:auto: succeeded here because it knows as a hint the
-conjunction introduction operator \verb+conj+
-\begin{coq_example}
-Check conj.
-\end{coq_example}
-
-Actually, the tactic \verb+Split+ is just an abbreviation for \verb+apply conj.+
-
-What we have just seen is that the \verb:auto: tactic is more powerful than
-just a simple application of local hypotheses; it tries to apply as well
-lemmas which have been specified as hints. A
-\verb:Hint Resolve: command registers a
-lemma as a hint to be used from now on by the \verb:auto: tactic, whose power
-may thus be incrementally augmented.
-
-\subsection{Disjunction}
-
-In a similar fashion, let us consider disjunction:
-
-\begin{coq_example}
-Lemma or_commutative : A \/ B -> B \/ A.
-intro H; elim H.
-\end{coq_example}
-
-Let us prove the first subgoal in detail. We use \verb:intro: in order to
-be left to prove \verb:B\/A: from \verb:A::
-
-\begin{coq_example}
-intro HA.
-\end{coq_example}
-
-Here the hypothesis \verb:H: is not needed anymore. We could choose to
-actually erase it with the tactic \verb:clear:; in this simple proof it
-does not really matter, but in bigger proof developments it is useful to
-clear away unnecessary hypotheses which may clutter your screen.
-\begin{coq_example}
-clear H.
-\end{coq_example}
-
-The disjunction connective has two introduction rules, since \verb:P\/Q:
-may be obtained from \verb:P: or from \verb:Q:; the two corresponding
-proof constructors are called respectively \verb:or_introl: and
-\verb:or_intror:; they are applied to the current goal by tactics
-\verb:left: and \verb:right: respectively. For instance:
-\begin{coq_example}
-right.
-trivial.
-\end{coq_example}
-The tactic \verb:trivial: works like \verb:auto: with the hints
-database, but it only tries those tactics that can solve the goal in one
-step.
-
-As before, all these tedious elementary steps may be performed automatically,
-as shown for the second symmetric case:
-
-\begin{coq_example}
-auto.
-\end{coq_example}
-
-However, \verb:auto: alone does not succeed in proving the full lemma, because
-it does not try any elimination step.
-It is a bit disappointing that \verb:auto: is not able to prove automatically
-such a simple tautology. The reason is that we want to keep
-\verb:auto: efficient, so that it is always effective to use.
-
-\subsection{Tauto}
-
-A complete tactic for propositional
-tautologies is indeed available in \Coq~ as the \verb:tauto: tactic.
-\begin{coq_example}
-Restart.
-tauto.
-Qed.
-\end{coq_example}
-
-It is possible to inspect the actual proof tree constructed by \verb:tauto:,
-using a standard command of the system, which prints the value of any notion
-currently defined in the context:
-\begin{coq_example}
-Print or_commutative.
-\end{coq_example}
-
-It is not easy to understand the notation for proof terms without a few
-explanations. The \texttt{fun} prefix, such as \verb+fun H:A\/B =>+,
-corresponds
-to \verb:intro H:, whereas a subterm such as
-\verb:(or_intror: \verb:B H0):
-corresponds to the sequence of tactics \verb:apply or_intror; exact H0:.
-The generic combinator \verb:or_intror: needs to be instantiated by
-the two properties \verb:B: and \verb:A:. Because \verb:A: can be
-deduced from the type of \verb:H0:, only \verb:B: is printed.
-The two instantiations are effected automatically by the tactic
-\verb:apply: when pattern-matching a goal. The specialist will of course
-recognize our proof term as a $\lambda$-term, used as notation for the
-natural deduction proof term through the Curry-Howard isomorphism. The
-naive user of \Coq~ may safely ignore these formal details.
-
-Let us exercise the \verb:tauto: tactic on a more complex example:
-\begin{coq_example}
-Lemma distr_and : A -> B /\ C -> (A -> B) /\ (A -> C).
-tauto.
-Qed.
-\end{coq_example}
-
-\subsection{Classical reasoning}
-
-The tactic \verb:tauto: always comes back with an answer. Here is an example where it
-fails:
-\begin{coq_example}
-Lemma Peirce : ((A -> B) -> A) -> A.
-try tauto.
-\end{coq_example}
-
-Note the use of the \verb:Try: tactical, which does nothing if its tactic
-argument fails.
-
-This may come as a surprise to someone familiar with classical reasoning.
-Peirce's lemma is true in Boolean logic, i.e. it evaluates to \verb:true: for
-every truth-assignment to \verb:A: and \verb:B:. Indeed the double negation
-of Peirce's law may be proved in \Coq~ using \verb:tauto::
-\begin{coq_example}
-Abort.
-Lemma NNPeirce : ~ ~ (((A -> B) -> A) -> A).
-tauto.
-Qed.
-\end{coq_example}
-
-In classical logic, the double negation of a proposition is equivalent to this
-proposition, but in the constructive logic of \Coq~ this is not so. If you
-want to use classical logic in \Coq, you have to import explicitly the
-\verb:Classical: module, which will declare the axiom \verb:classic:
-of excluded middle, and classical tautologies such as de Morgan's laws.
-The \verb:Require: command is used to import a module from \Coq's library:
-\begin{coq_example}
-Require Import Classical.
-Check NNPP.
-\end{coq_example}
-
-and it is now easy (although admittedly not the most direct way) to prove
-a classical law such as Peirce's:
-\begin{coq_example}
-Lemma Peirce : ((A -> B) -> A) -> A.
-apply NNPP; tauto.
-Qed.
-\end{coq_example}
-
-Here is one more example of propositional reasoning, in the shape of
-a Scottish puzzle. A private club has the following rules:
-\begin{enumerate}
-\item Every non-scottish member wears red socks
-\item Every member wears a kilt or doesn't wear red socks
-\item The married members don't go out on Sunday
-\item A member goes out on Sunday if and only if he is Scottish
-\item Every member who wears a kilt is Scottish and married
-\item Every scottish member wears a kilt
-\end{enumerate}
-Now, we show that these rules are so strict that no one can be accepted.
-\begin{coq_example}
-Section club.
-Variables Scottish RedSocks WearKilt Married GoOutSunday : Prop.
-Hypothesis rule1 : ~ Scottish -> RedSocks.
-Hypothesis rule2 : WearKilt \/ ~ RedSocks.
-Hypothesis rule3 : Married -> ~ GoOutSunday.
-Hypothesis rule4 : GoOutSunday <-> Scottish.
-Hypothesis rule5 : WearKilt -> Scottish /\ Married.
-Hypothesis rule6 : Scottish -> WearKilt.
-Lemma NoMember : False.
-tauto.
-Qed.
-\end{coq_example}
-At that point \verb:NoMember: is a proof of the absurdity depending on
-hypotheses.
-We may end the section, in that case, the variables and hypotheses
-will be discharged, and the type of \verb:NoMember: will be
-generalised.
-
-\begin{coq_example}
-End club.
-Check NoMember.
-\end{coq_example}
-
-\section{Predicate Calculus}
-
-Let us now move into predicate logic, and first of all into first-order
-predicate calculus. The essence of predicate calculus is that to try to prove
-theorems in the most abstract possible way, without using the definitions of
-the mathematical notions, but by formal manipulations of uninterpreted
-function and predicate symbols.
-
-\subsection{Sections and signatures}
-
-Usually one works in some domain of discourse, over which range the individual
-variables and function symbols. In \Coq~ we speak in a language with a rich
-variety of types, so me may mix several domains of discourse, in our
-multi-sorted language. For the moment, we just do a few exercises, over a
-domain of discourse \verb:D: axiomatised as a \verb:Set:, and we consider two
-predicate symbols \verb:P: and \verb:R: over \verb:D:, of arities
-respectively 1 and 2. Such abstract entities may be entered in the context
-as global variables. But we must be careful about the pollution of our
-global environment by such declarations. For instance, we have already
-polluted our \Coq~ session by declaring the variables
-\verb:n:, \verb:Pos_n:, \verb:A:, \verb:B:, and \verb:C:. If we want to revert to the clean state of
-our initial session, we may use the \Coq~ \verb:Reset: command, which returns
-to the state just prior the given global notion as we did before to
-remove a section, or we may return to the initial state using~:
-\begin{coq_example}
-Reset Initial.
-\end{coq_example}
-\begin{coq_eval}
-Set Printing Width 60.
-\end{coq_eval}
-
-We shall now declare a new \verb:Section:, which will allow us to define
-notions local to a well-delimited scope. We start by assuming a domain of
-discourse \verb:D:, and a binary relation \verb:R: over \verb:D::
-\begin{coq_example}
-Section Predicate_calculus.
-Variable D : Set.
-Variable R : D -> D -> Prop.
-\end{coq_example}
-
-As a simple example of predicate calculus reasoning, let us assume
-that relation \verb:R: is symmetric and transitive, and let us show that
-\verb:R: is reflexive in any point \verb:x: which has an \verb:R: successor.
-Since we do not want to make the assumptions about \verb:R: global axioms of
-a theory, but rather local hypotheses to a theorem, we open a specific
-section to this effect.
-\begin{coq_example}
-Section R_sym_trans.
-Hypothesis R_symmetric : forall x y:D, R x y -> R y x.
-Hypothesis R_transitive : forall x y z:D, R x y -> R y z -> R x z.
-\end{coq_example}
-
-Remark the syntax \verb+forall x:D,+ which stands for universal quantification
-$\forall x : D$.
-
-\subsection{Existential quantification}
-
-We now state our lemma, and enter proof mode.
-\begin{coq_example}
-Lemma refl_if : forall x:D, (exists y, R x y) -> R x x.
-\end{coq_example}
-
-Remark that the hypotheses which are local to the currently opened sections
-are listed as local hypotheses to the current goals.
-The rationale is that these hypotheses are going to be discharged, as we
-shall see, when we shall close the corresponding sections.
-
-Note the functional syntax for existential quantification. The existential
-quantifier is built from the operator \verb:ex:, which expects a
-predicate as argument:
-\begin{coq_example}
-Check ex.
-\end{coq_example}
-and the notation \verb+(exists x:D, P x)+ is just concrete syntax for
-the expression \verb+(ex D (fun x:D => P x))+.
-Existential quantification is handled in \Coq~ in a similar
-fashion to the connectives \verb:/\: and \verb:\/: : it is introduced by
-the proof combinator \verb:ex_intro:, which is invoked by the specific
-tactic \verb:Exists:, and its elimination provides a witness \verb+a:D+ to
-\verb:P:, together with an assumption \verb+h:(P a)+ that indeed \verb+a+
-verifies \verb:P:. Let us see how this works on this simple example.
-\begin{coq_example}
-intros x x_Rlinked.
-\end{coq_example}
-
-Remark that \verb:intros: treats universal quantification in the same way
-as the premises of implications. Renaming of bound variables occurs
-when it is needed; for instance, had we started with \verb:intro y:,
-we would have obtained the goal:
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-\begin{coq_example}
-intro y.
-\end{coq_example}
-\begin{coq_eval}
-Undo.
-intros x x_Rlinked.
-\end{coq_eval}
-
-Let us now use the existential hypothesis \verb:x_Rlinked: to
-exhibit an R-successor y of x. This is done in two steps, first with
-\verb:elim:, then with \verb:intros:
-
-\begin{coq_example}
-elim x_Rlinked.
-intros y Rxy.
-\end{coq_example}
-
-Now we want to use \verb:R_transitive:. The \verb:apply: tactic will know
-how to match \verb:x: with \verb:x:, and \verb:z: with \verb:x:, but needs
-help on how to instantiate \verb:y:, which appear in the hypotheses of
-\verb:R_transitive:, but not in its conclusion. We give the proper hint
-to \verb:apply: in a \verb:with: clause, as follows:
-\begin{coq_example}
-apply R_transitive with y.
-\end{coq_example}
-
-The rest of the proof is routine:
-\begin{coq_example}
-assumption.
-apply R_symmetric; assumption.
-\end{coq_example}
-\begin{coq_example*}
-Qed.
-\end{coq_example*}
-
-Let us now close the current section.
-\begin{coq_example}
-End R_sym_trans.
-\end{coq_example}
-
-Here \Coq's printout is a warning that all local hypotheses have been
-discharged in the statement of \verb:refl_if:, which now becomes a general
-theorem in the first-order language declared in section
-\verb:Predicate_calculus:. In this particular example, the use of section
-\verb:R_sym_trans: has not been really significant, since we could have
-instead stated theorem \verb:refl_if: in its general form, and done
-basically the same proof, obtaining \verb:R_symmetric: and
-\verb:R_transitive: as local hypotheses by initial \verb:intros: rather
-than as global hypotheses in the context. But if we had pursued the
-theory by proving more theorems about relation \verb:R:,
-we would have obtained all general statements at the closing of the section,
-with minimal dependencies on the hypotheses of symmetry and transitivity.
-
-\subsection{Paradoxes of classical predicate calculus}
-
-Let us illustrate this feature by pursuing our \verb:Predicate_calculus:
-section with an enrichment of our language: we declare a unary predicate
-\verb:P: and a constant \verb:d::
-\begin{coq_example}
-Variable P : D -> Prop.
-Variable d : D.
-\end{coq_example}
-
-We shall now prove a well-known fact from first-order logic: a universal
-predicate is non-empty, or in other terms existential quantification
-follows from universal quantification.
-\begin{coq_example}
-Lemma weird : (forall x:D, P x) -> exists a, P a.
- intro UnivP.
-\end{coq_example}
-
-First of all, notice the pair of parentheses around
-\verb+forall x:D, P x+ in
-the statement of lemma \verb:weird:.
-If we had omitted them, \Coq's parser would have interpreted the
-statement as a truly trivial fact, since we would
-postulate an \verb:x: verifying \verb:(P x):. Here the situation is indeed
-more problematic. If we have some element in \verb:Set: \verb:D:, we may
-apply \verb:UnivP: to it and conclude, otherwise we are stuck. Indeed
-such an element \verb:d: exists, but this is just by virtue of our
-new signature. This points out a subtle difference between standard
-predicate calculus and \Coq. In standard first-order logic,
-the equivalent of lemma \verb:weird: always holds,
-because such a rule is wired in the inference rules for quantifiers, the
-semantic justification being that the interpretation domain is assumed to
-be non-empty. Whereas in \Coq, where types are not assumed to be
-systematically inhabited, lemma \verb:weird: only holds in signatures
-which allow the explicit construction of an element in the domain of
-the predicate.
-
-Let us conclude the proof, in order to show the use of the \verb:Exists:
-tactic:
-\begin{coq_example}
-exists d; trivial.
-Qed.
-\end{coq_example}
-
-Another fact which illustrates the sometimes disconcerting rules of
-classical
-predicate calculus is Smullyan's drinkers' paradox: ``In any non-empty
-bar, there is a person such that if she drinks, then everyone drinks''.
-We modelize the bar by Set \verb:D:, drinking by predicate \verb:P:.
-We shall need classical reasoning. Instead of loading the \verb:Classical:
-module as we did above, we just state the law of excluded middle as a
-local hypothesis schema at this point:
-\begin{coq_example}
-Hypothesis EM : forall A:Prop, A \/ ~ A.
-Lemma drinker : exists x:D, P x -> forall x:D, P x.
-\end{coq_example}
-The proof goes by cases on whether or not
-there is someone who does not drink. Such reasoning by cases proceeds
-by invoking the excluded middle principle, via \verb:elim: of the
-proper instance of \verb:EM::
-\begin{coq_example}
-elim (EM (exists x, ~ P x)).
-\end{coq_example}
-
-We first look at the first case. Let Tom be the non-drinker:
-\begin{coq_example}
-intro Non_drinker; elim Non_drinker;
- intros Tom Tom_does_not_drink.
-\end{coq_example}
-
-We conclude in that case by considering Tom, since his drinking leads to
-a contradiction:
-\begin{coq_example}
-exists Tom; intro Tom_drinks.
-\end{coq_example}
-
-There are several ways in which we may eliminate a contradictory case;
-a simple one is to use the \verb:absurd: tactic as follows:
-\begin{coq_example}
-absurd (P Tom); trivial.
-\end{coq_example}
-
-We now proceed with the second case, in which actually any person will do;
-such a John Doe is given by the non-emptiness witness \verb:d::
-\begin{coq_example}
-intro No_nondrinker; exists d; intro d_drinks.
-\end{coq_example}
-
-Now we consider any Dick in the bar, and reason by cases according to its
-drinking or not:
-\begin{coq_example}
-intro Dick; elim (EM (P Dick)); trivial.
-\end{coq_example}
-
-The only non-trivial case is again treated by contradiction:
-\begin{coq_example}
-intro Dick_does_not_drink; absurd (exists x, ~ P x); trivial.
-exists Dick; trivial.
-Qed.
-\end{coq_example}
-
-Now, let us close the main section and look at the complete statements
-we proved:
-\begin{coq_example}
-End Predicate_calculus.
-Check refl_if.
-Check weird.
-Check drinker.
-\end{coq_example}
-
-Remark how the three theorems are completely generic in the most general
-fashion;
-the domain \verb:D: is discharged in all of them, \verb:R: is discharged in
-\verb:refl_if: only, \verb:P: is discharged only in \verb:weird: and
-\verb:drinker:, along with the hypothesis that \verb:D: is inhabited.
-Finally, the excluded middle hypothesis is discharged only in
-\verb:drinker:.
-
-Note that the name \verb:d: has vanished as well from
-the statements of \verb:weird: and \verb:drinker:,
-since \Coq's pretty-printer replaces
-systematically a quantification such as \verb+forall d:D, E+, where \verb:d:
-does not occur in \verb:E:, by the functional notation \verb:D->E:.
-Similarly the name \verb:EM: does not appear in \verb:drinker:.
-
-Actually, universal quantification, implication,
-as well as function formation, are
-all special cases of one general construct of type theory called
-{\sl dependent product}. This is the mathematical construction
-corresponding to an indexed family of functions. A function
-$f\in \Pi x:D\cdot Cx$ maps an element $x$ of its domain $D$ to its
-(indexed) codomain $Cx$. Thus a proof of $\forall x:D\cdot Px$ is
-a function mapping an element $x$ of $D$ to a proof of proposition $Px$.
-
-
-\subsection{Flexible use of local assumptions}
-
-Very often during the course of a proof we want to retrieve a local
-assumption and reintroduce it explicitly in the goal, for instance
-in order to get a more general induction hypothesis. The tactic
-\verb:generalize: is what is needed here:
-
-\begin{coq_example}
-Section Predicate_Calculus.
-Variables P Q : nat -> Prop.
-Variable R : nat -> nat -> Prop.
-Lemma PQR :
- forall x y:nat, (R x x -> P x -> Q x) -> P x -> R x y -> Q x.
-intros.
-generalize H0.
-\end{coq_example}
-
-Sometimes it may be convenient to use a lemma, although we do not have
-a direct way to appeal to such an already proven fact. The tactic \verb:cut:
-permits to use the lemma at this point, keeping the corresponding proof
-obligation as a new subgoal:
-\begin{coq_example}
-cut (R x x); trivial.
-\end{coq_example}
-We clean the goal by doing an \verb:Abort: command.
-\begin{coq_example*}
-Abort.
-\end{coq_example*}
-
-
-\subsection{Equality}
-
-The basic equality provided in \Coq~ is Leibniz equality, noted infix like
-\verb+x=y+, when \verb:x: and \verb:y: are two expressions of
-type the same Set. The replacement of \verb:x: by \verb:y: in any
-term is effected by a variety of tactics, such as \verb:rewrite:
-and \verb:replace:.
-
-Let us give a few examples of equality replacement. Let us assume that
-some arithmetic function \verb:f: is null in zero:
-\begin{coq_example}
-Variable f : nat -> nat.
-Hypothesis foo : f 0 = 0.
-\end{coq_example}
-
-We want to prove the following conditional equality:
-\begin{coq_example*}
-Lemma L1 : forall k:nat, k = 0 -> f k = k.
-\end{coq_example*}
-
-As usual, we first get rid of local assumptions with \verb:intro::
-\begin{coq_example}
-intros k E.
-\end{coq_example}
-
-Let us now use equation \verb:E: as a left-to-right rewriting:
-\begin{coq_example}
-rewrite E.
-\end{coq_example}
-This replaced both occurrences of \verb:k: by \verb:O:.
-
-Now \verb:apply foo: will finish the proof:
-
-\begin{coq_example}
-apply foo.
-Qed.
-\end{coq_example}
-
-When one wants to rewrite an equality in a right to left fashion, we should
-use \verb:rewrite <- E: rather than \verb:rewrite E: or the equivalent
-\verb:rewrite -> E:.
-Let us now illustrate the tactic \verb:replace:.
-\begin{coq_example}
-Hypothesis f10 : f 1 = f 0.
-Lemma L2 : f (f 1) = 0.
-replace (f 1) with 0.
-\end{coq_example}
-What happened here is that the replacement left the first subgoal to be
-proved, but another proof obligation was generated by the \verb:replace:
-tactic, as the second subgoal. The first subgoal is solved immediately
-by applying lemma \verb:foo:; the second one transitivity and then
-symmetry of equality, for instance with tactics \verb:transitivity: and
-\verb:symmetry::
-\begin{coq_example}
-apply foo.
-transitivity (f 0); symmetry; trivial.
-\end{coq_example}
-In case the equality $t=u$ generated by \verb:replace: $u$ \verb:with:
-$t$ is an assumption
-(possibly modulo symmetry), it will be automatically proved and the
-corresponding goal will not appear. For instance:
-\begin{coq_example}
-Restart.
-replace (f 0) with 0.
-rewrite f10; rewrite foo; trivial.
-Qed.
-\end{coq_example}
-
-\section{Using definitions}
-
-The development of mathematics does not simply proceed by logical
-argumentation from first principles: definitions are used in an essential way.
-A formal development proceeds by a dual process of abstraction, where one
-proves abstract statements in predicate calculus, and use of definitions,
-which in the contrary one instantiates general statements with particular
-notions in order to use the structure of mathematical values for the proof of
-more specialised properties.
-
-\subsection{Unfolding definitions}
-
-Assume that we want to develop the theory of sets represented as characteristic
-predicates over some universe \verb:U:. For instance:
-\begin{coq_example}
-Variable U : Type.
-Definition set := U -> Prop.
-Definition element (x:U) (S:set) := S x.
-Definition subset (A B:set) :=
- forall x:U, element x A -> element x B.
-\end{coq_example}
-
-Now, assume that we have loaded a module of general properties about
-relations over some abstract type \verb:T:, such as transitivity:
-
-\begin{coq_example}
-Definition transitive (T:Type) (R:T -> T -> Prop) :=
- forall x y z:T, R x y -> R y z -> R x z.
-\end{coq_example}
-
-Now, assume that we want to prove that \verb:subset: is a \verb:transitive:
-relation.
-\begin{coq_example}
-Lemma subset_transitive : transitive set subset.
-\end{coq_example}
-
-In order to make any progress, one needs to use the definition of
-\verb:transitive:. The \verb:unfold: tactic, which replaces all
-occurrences of a defined notion by its definition in the current goal,
-may be used here.
-\begin{coq_example}
-unfold transitive.
-\end{coq_example}
-
-Now, we must unfold \verb:subset::
-\begin{coq_example}
-unfold subset.
-\end{coq_example}
-Now, unfolding \verb:element: would be a mistake, because indeed a simple proof
-can be found by \verb:auto:, keeping \verb:element: an abstract predicate:
-\begin{coq_example}
-auto.
-\end{coq_example}
-
-Many variations on \verb:unfold: are provided in \Coq. For instance,
-we may selectively unfold one designated occurrence:
-\begin{coq_example}
-Undo 2.
-unfold subset at 2.
-\end{coq_example}
-
-One may also unfold a definition in a given local hypothesis, using the
-\verb:in: notation:
-\begin{coq_example}
-intros.
-unfold subset in H.
-\end{coq_example}
-
-Finally, the tactic \verb:red: does only unfolding of the head occurrence
-of the current goal:
-\begin{coq_example}
-red.
-auto.
-Qed.
-\end{coq_example}
-
-
-\subsection{Principle of proof irrelevance}
-
-Even though in principle the proof term associated with a verified lemma
-corresponds to a defined value of the corresponding specification, such
-definitions cannot be unfolded in \Coq: a lemma is considered an {\sl opaque}
-definition. This conforms to the mathematical tradition of {\sl proof
-irrelevance}: the proof of a logical proposition does not matter, and the
-mathematical justification of a logical development relies only on
-{\sl provability} of the lemmas used in the formal proof.
-
-Conversely, ordinary mathematical definitions can be unfolded at will, they
-are {\sl transparent}.
-\chapter{Induction}
-
-\section{Data Types as Inductively Defined Mathematical Collections}
-
-All the notions which were studied until now pertain to traditional
-mathematical logic. Specifications of objects were abstract properties
-used in reasoning more or less constructively; we are now entering
-the realm of inductive types, which specify the existence of concrete
-mathematical constructions.
-
-\subsection{Booleans}
-
-Let us start with the collection of booleans, as they are specified
-in the \Coq's \verb:Prelude: module:
-\begin{coq_example}
-Inductive bool : Set := true | false.
-\end{coq_example}
-
-Such a declaration defines several objects at once. First, a new
-\verb:Set: is declared, with name \verb:bool:. Then the {\sl constructors}
-of this \verb:Set: are declared, called \verb:true: and \verb:false:.
-Those are analogous to introduction rules of the new Set \verb:bool:.
-Finally, a specific elimination rule for \verb:bool: is now available, which
-permits to reason by cases on \verb:bool: values. Three instances are
-indeed defined as new combinators in the global context: \verb:bool_ind:,
-a proof combinator corresponding to reasoning by cases,
-\verb:bool_rec:, an if-then-else programming construct,
-and \verb:bool_rect:, a similar combinator at the level of types.
-Indeed:
-\begin{coq_example}
-Check bool_ind.
-Check bool_rec.
-Check bool_rect.
-\end{coq_example}
-
-Let us for instance prove that every Boolean is true or false.
-\begin{coq_example}
-Lemma duality : forall b:bool, b = true \/ b = false.
-intro b.
-\end{coq_example}
-
-We use the knowledge that \verb:b: is a \verb:bool: by calling tactic
-\verb:elim:, which is this case will appeal to combinator \verb:bool_ind:
-in order to split the proof according to the two cases:
-\begin{coq_example}
-elim b.
-\end{coq_example}
-
-It is easy to conclude in each case:
-\begin{coq_example}
-left; trivial.
-right; trivial.
-\end{coq_example}
-
-Indeed, the whole proof can be done with the combination of the
- \verb:simple: \verb:induction:, which combines \verb:intro: and \verb:elim:,
-with good old \verb:auto::
-\begin{coq_example}
-Restart.
-simple induction b; auto.
-Qed.
-\end{coq_example}
-
-\subsection{Natural numbers}
-
-Similarly to Booleans, natural numbers are defined in the \verb:Prelude:
-module with constructors \verb:S: and \verb:O::
-\begin{coq_example}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-\end{coq_example}
-
-The elimination principles which are automatically generated are Peano's
-induction principle, and a recursion operator:
-\begin{coq_example}
-Check nat_ind.
-Check nat_rec.
-\end{coq_example}
-
-Let us start by showing how to program the standard primitive recursion
-operator \verb:prim_rec: from the more general \verb:nat_rec::
-\begin{coq_example}
-Definition prim_rec := nat_rec (fun i:nat => nat).
-\end{coq_example}
-
-That is, instead of computing for natural \verb:i: an element of the indexed
-\verb:Set: \verb:(P i):, \verb:prim_rec: computes uniformly an element of
-\verb:nat:. Let us check the type of \verb:prim_rec::
-\begin{coq_example}
-Check prim_rec.
-\end{coq_example}
-
-Oops! Instead of the expected type \verb+nat->(nat->nat->nat)->nat->nat+ we
-get an apparently more complicated expression. Indeed the type of
-\verb:prim_rec: is equivalent by rule $\beta$ to its expected type; this may
-be checked in \Coq~ by command \verb:Eval Cbv Beta:, which $\beta$-reduces
-an expression to its {\sl normal form}:
-\begin{coq_example}
-Eval cbv beta in
- ((fun _:nat => nat) O ->
- (forall y:nat,
- (fun _:nat => nat) y -> (fun _:nat => nat) (S y)) ->
- forall n:nat, (fun _:nat => nat) n).
-\end{coq_example}
-
-Let us now show how to program addition with primitive recursion:
-\begin{coq_example}
-Definition addition (n m:nat) :=
- prim_rec m (fun p rec:nat => S rec) n.
-\end{coq_example}
-
-That is, we specify that \verb+(addition n m)+ computes by cases on \verb:n:
-according to its main constructor; when \verb:n = O:, we get \verb:m:;
- when \verb:n = S p:, we get \verb:(S rec):, where \verb:rec: is the result
-of the recursive computation \verb+(addition p m)+. Let us verify it by
-asking \Coq~to compute for us say $2+3$:
-\begin{coq_example}
-Eval compute in (addition (S (S O)) (S (S (S O)))).
-\end{coq_example}
-
-Actually, we do not have to do all explicitly. {\Coq} provides a
-special syntax {\tt Fixpoint/match} for generic primitive recursion,
-and we could thus have defined directly addition as:
-
-\begin{coq_example}
-Fixpoint plus (n m:nat) {struct n} : nat :=
- match n with
- | O => m
- | S p => S (plus p m)
- end.
-\end{coq_example}
-
-For the rest of the session, we shall clean up what we did so far with
-types \verb:bool: and \verb:nat:, in order to use the initial definitions
-given in \Coq's \verb:Prelude: module, and not to get confusing error
-messages due to our redefinitions. We thus revert to the state before
-our definition of \verb:bool: with the \verb:Reset: command:
-\begin{coq_example}
-Reset bool.
-\end{coq_example}
-
-
-\subsection{Simple proofs by induction}
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_eval}
-Set Printing Width 60.
-\end{coq_eval}
-
-Let us now show how to do proofs by structural induction. We start with easy
-properties of the \verb:plus: function we just defined. Let us first
-show that $n=n+0$.
-\begin{coq_example}
-Lemma plus_n_O : forall n:nat, n = n + 0.
-intro n; elim n.
-\end{coq_example}
-
-What happened was that \verb:elim n:, in order to construct a \verb:Prop:
-(the initial goal) from a \verb:nat: (i.e. \verb:n:), appealed to the
-corresponding induction principle \verb:nat_ind: which we saw was indeed
-exactly Peano's induction scheme. Pattern-matching instantiated the
-corresponding predicate \verb:P: to \verb+fun n:nat => n = n + 0+, and we get
-as subgoals the corresponding instantiations of the base case \verb:(P O): ,
-and of the inductive step \verb+forall y:nat, P y -> P (S y)+.
-In each case we get an instance of function \verb:plus: in which its second
-argument starts with a constructor, and is thus amenable to simplification
-by primitive recursion. The \Coq~tactic \verb:simpl: can be used for
-this purpose:
-\begin{coq_example}
-simpl.
-auto.
-\end{coq_example}
-
-We proceed in the same way for the base step:
-\begin{coq_example}
-simpl; auto.
-Qed.
-\end{coq_example}
-
-Here \verb:auto: succeeded, because it used as a hint lemma \verb:eq_S:,
-which say that successor preserves equality:
-\begin{coq_example}
-Check eq_S.
-\end{coq_example}
-
-Actually, let us see how to declare our lemma \verb:plus_n_O: as a hint
-to be used by \verb:auto::
-\begin{coq_example}
-Hint Resolve plus_n_O .
-\end{coq_example}
-
-We now proceed to the similar property concerning the other constructor
-\verb:S::
-\begin{coq_example}
-Lemma plus_n_S : forall n m:nat, S (n + m) = n + S m.
-\end{coq_example}
-
-We now go faster, remembering that tactic \verb:simple induction: does the
-necessary \verb:intros: before applying \verb:elim:. Factoring simplification
-and automation in both cases thanks to tactic composition, we prove this
-lemma in one line:
-\begin{coq_example}
-simple induction n; simpl; auto.
-Qed.
-Hint Resolve plus_n_S .
-\end{coq_example}
-
-Let us end this exercise with the commutativity of \verb:plus::
-
-\begin{coq_example}
-Lemma plus_com : forall n m:nat, n + m = m + n.
-\end{coq_example}
-
-Here we have a choice on doing an induction on \verb:n: or on \verb:m:, the
-situation being symmetric. For instance:
-\begin{coq_example}
-simple induction m; simpl; auto.
-\end{coq_example}
-
-Here \verb:auto: succeeded on the base case, thanks to our hint
-\verb:plus_n_O:, but the induction step requires rewriting, which
-\verb:auto: does not handle:
-
-\begin{coq_example}
-intros m' E; rewrite <- E; auto.
-Qed.
-\end{coq_example}
-
-\subsection{Discriminate}
-
-It is also possible to define new propositions by primitive recursion.
-Let us for instance define the predicate which discriminates between
-the constructors \verb:O: and \verb:S:: it computes to \verb:False:
-when its argument is \verb:O:, and to \verb:True: when its argument is
-of the form \verb:(S n)::
-\begin{coq_example}
-Definition Is_S (n:nat) := match n with
- | O => False
- | S p => True
- end.
-\end{coq_example}
-
-Now we may use the computational power of \verb:Is_S: in order to prove
-trivially that \verb:(Is_S (S n))::
-\begin{coq_example}
-Lemma S_Is_S : forall n:nat, Is_S (S n).
-simpl; trivial.
-Qed.
-\end{coq_example}
-
-But we may also use it to transform a \verb:False: goal into
-\verb:(Is_S O):. Let us show a particularly important use of this feature;
-we want to prove that \verb:O: and \verb:S: construct different values, one
-of Peano's axioms:
-\begin{coq_example}
-Lemma no_confusion : forall n:nat, 0 <> S n.
-\end{coq_example}
-
-First of all, we replace negation by its definition, by reducing the
-goal with tactic \verb:red:; then we get contradiction by successive
-\verb:intros::
-\begin{coq_example}
-red; intros n H.
-\end{coq_example}
-
-Now we use our trick:
-\begin{coq_example}
-change (Is_S 0).
-\end{coq_example}
-
-Now we use equality in order to get a subgoal which computes out to
-\verb:True:, which finishes the proof:
-\begin{coq_example}
-rewrite H; trivial.
-simpl; trivial.
-\end{coq_example}
-
-Actually, a specific tactic \verb:discriminate: is provided
-to produce mechanically such proofs, without the need for the user to define
-explicitly the relevant discrimination predicates:
-
-\begin{coq_example}
-Restart.
-intro n; discriminate.
-Qed.
-\end{coq_example}
-
-
-\section{Logic programming}
-
-In the same way as we defined standard data-types above, we
-may define inductive families, and for instance inductive predicates.
-Here is the definition of predicate $\le$ over type \verb:nat:, as
-given in \Coq's \verb:Prelude: module:
-\begin{coq_example*}
-Inductive le (n:nat) : nat -> Prop :=
- | le_n : le n n
- | le_S : forall m:nat, le n m -> le n (S m).
-\end{coq_example*}
-
-This definition introduces a new predicate \verb+le:nat->nat->Prop+,
-and the two constructors \verb:le_n: and \verb:le_S:, which are the
-defining clauses of \verb:le:. That is, we get not only the ``axioms''
-\verb:le_n: and \verb:le_S:, but also the converse property, that
-\verb:(le n m): if and only if this statement can be obtained as a
-consequence of these defining clauses; that is, \verb:le: is the
-minimal predicate verifying clauses \verb:le_n: and \verb:le_S:. This is
-insured, as in the case of inductive data types, by an elimination principle,
-which here amounts to an induction principle \verb:le_ind:, stating this
-minimality property:
-\begin{coq_example}
-Check le.
-Check le_ind.
-\end{coq_example}
-
-Let us show how proofs may be conducted with this principle.
-First we show that $n\le m \Rightarrow n+1\le m+1$:
-\begin{coq_example}
-Lemma le_n_S : forall n m:nat, le n m -> le (S n) (S m).
-intros n m n_le_m.
-elim n_le_m.
-\end{coq_example}
-
-What happens here is similar to the behaviour of \verb:elim: on natural
-numbers: it appeals to the relevant induction principle, here \verb:le_ind:,
-which generates the two subgoals, which may then be solved easily
-with the help of the defining clauses of \verb:le:.
-\begin{coq_example}
-apply le_n; trivial.
-intros; apply le_S; trivial.
-\end{coq_example}
-
-Now we know that it is a good idea to give the defining clauses as hints,
-so that the proof may proceed with a simple combination of
-\verb:induction: and \verb:auto:.
-\begin{coq_example}
-Restart.
-Hint Resolve le_n le_S .
-\end{coq_example}
-
-We have a slight problem however. We want to say ``Do an induction on
-hypothesis \verb:(le n m):'', but we have no explicit name for it. What we
-do in this case is to say ``Do an induction on the first unnamed hypothesis'',
-as follows.
-\begin{coq_example}
-simple induction 1; auto.
-Qed.
-\end{coq_example}
-
-Here is a more tricky problem. Assume we want to show that
-$n\le 0 \Rightarrow n=0$. This reasoning ought to follow simply from the
-fact that only the first defining clause of \verb:le: applies.
-\begin{coq_example}
-Lemma tricky : forall n:nat, le n 0 -> n = 0.
-\end{coq_example}
-
-However, here trying something like \verb:induction 1: would lead
-nowhere (try it and see what happens).
-An induction on \verb:n: would not be convenient either.
-What we must do here is analyse the definition of \verb"le" in order
-to match hypothesis \verb:(le n O): with the defining clauses, to find
-that only \verb:le_n: applies, whence the result.
-This analysis may be performed by the ``inversion'' tactic
-\verb:inversion_clear: as follows:
-\begin{coq_example}
-intros n H; inversion_clear H.
-trivial.
-Qed.
-\end{coq_example}
-
-\chapter{Modules}
-
-\section{Opening library modules}
-
-When you start \Coq~ without further requirements in the command line,
-you get a bare system with few libraries loaded. As we saw, a standard
-prelude module provides the standard logic connectives, and a few
-arithmetic notions. If you want to load and open other modules from
-the library, you have to use the \verb"Require" command, as we saw for
-classical logic above. For instance, if you want more arithmetic
-constructions, you should request:
-\begin{coq_example*}
-Require Import Arith.
-\end{coq_example*}
-
-Such a command looks for a (compiled) module file \verb:Arith.vo: in
-the libraries registered by \Coq. Libraries inherit the structure of
-the file system of the operating system and are registered with the
-command \verb:Add LoadPath:. Physical directories are mapped to
-logical directories. Especially the standard library of \Coq~ is
-pre-registered as a library of name \verb=Coq=. Modules have absolute
-unique names denoting their place in \Coq~ libraries. An absolute
-name is a sequence of single identifiers separated by dots. E.g. the
-module \verb=Arith= has full name \verb=Coq.Arith.Arith= and because
-it resides in eponym subdirectory \verb=Arith= of the standard
-library, it can be as well required by the command
-
-\begin{coq_example*}
-Require Import Coq.Arith.Arith.
-\end{coq_example*}
-
-This may be useful to avoid ambiguities if somewhere, in another branch
-of the libraries known by Coq, another module is also called
-\verb=Arith=. Notice that by default, when a library is registered,
-all its contents, and all the contents of its subdirectories recursively are
-visible and accessible by a short (relative) name as \verb=Arith=.
-Notice also that modules or definitions not explicitly registered in
-a library are put in a default library called \verb=Top=.
-
-The loading of a compiled file is quick, because the corresponding
-development is not type-checked again.
-
-\section{Creating your own modules}
-
-You may create your own module files, by writing {\Coq} commands in a file,
-say \verb:my_module.v:. Such a module may be simply loaded in the current
-context, with command \verb:Load my_module:. It may also be compiled,
-in ``batch'' mode, using the UNIX command
-\verb:coqc:. Compiling the module \verb:my_module.v: creates a
-file \verb:my_module.vo:{} that can be reloaded with command
-\verb:Require: \verb:Import: \verb:my_module:.
-
-If a required module depends on other modules then the latters are
-automatically required beforehand. However their contents is not
-automatically visible. If you want a module \verb=M= required in a
-module \verb=N= to be automatically visible when \verb=N= is required,
-you should use \verb:Require Export M: in your module \verb:N:.
-
-\section{Managing the context}
-
-It is often difficult to remember the names of all lemmas and
-definitions available in the current context, especially if large
-libraries have been loaded. A convenient \verb:SearchAbout: command
-is available to lookup all known facts
-concerning a given predicate. For instance, if you want to know all the
-known lemmas about the less or equal relation, just ask:
-\begin{coq_example}
-SearchAbout le.
-\end{coq_example}
-Another command \verb:Search: displays only lemmas where the searched
-predicate appears at the head position in the conclusion.
-\begin{coq_example}
-Search le.
-\end{coq_example}
-
-A new and more convenient search tool is \textsf{SearchPattern}
-developed by Yves Bertot. It allows to find the theorems with a
-conclusion matching a given pattern, where \verb:\_: can be used in
-place of an arbitrary term. We remark in this example, that \Coq{}
-provides usual infix notations for arithmetic operators.
-
-\begin{coq_example}
-SearchPattern (_ + _ = _).
-\end{coq_example}
-
-\section{Now you are on your own}
-
-This tutorial is necessarily incomplete. If you wish to pursue serious
-proving in \Coq, you should now get your hands on \Coq's Reference Manual,
-which contains a complete description of all the tactics we saw,
-plus many more.
-You also should look in the library of developed theories which is distributed
-with \Coq, in order to acquaint yourself with various proof techniques.
-
-
-\end{document}
-
-% $Id: Tutorial.tex 13548 2010-10-14 12:35:43Z notin $