diff options
author | Samuel Mimram <smimram@debian.org> | 2007-02-13 13:48:12 +0000 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2007-02-13 13:48:12 +0000 |
commit | 55ce117e8083477593cf1ff2e51a3641c7973830 (patch) | |
tree | a82defb4105f175c71b0d13cae42831ce608c4d6 /doc/refman/RefMan-ind.tex | |
parent | 208a0f7bfa5249f9795e6e225f309cbe715c0fad (diff) |
Imported Upstream version 8.1+dfsgupstream/8.1+dfsg
Diffstat (limited to 'doc/refman/RefMan-ind.tex')
-rw-r--r-- | doc/refman/RefMan-ind.tex | 498 |
1 files changed, 0 insertions, 498 deletions
diff --git a/doc/refman/RefMan-ind.tex b/doc/refman/RefMan-ind.tex deleted file mode 100644 index d414e606..00000000 --- a/doc/refman/RefMan-ind.tex +++ /dev/null @@ -1,498 +0,0 @@ - -%\documentstyle[11pt]{article} -%\input{title} - -%\include{macros} -%\makeindex - -%\begin{document} -%\coverpage{The module {\tt Equality}}{Cristina CORNES} - -%\tableofcontents - -\chapter{Tactics for inductive types and families} -\label{Addoc-equality} - -This chapter details a few special tactics useful for inferring facts -from inductive hypotheses. They can be considered as tools that -macro-generate complicated uses of the basic elimination tactics for -inductive types. - -Sections \ref{inversion_introduction} to \ref{inversion_using} present -inversion tactics and section \ref{scheme} describes -a command {\tt Scheme} for automatic generation of induction schemes -for mutual inductive types. - -%\end{document} -%\documentstyle[11pt]{article} -%\input{title} - -%\begin{document} -%\coverpage{Module Inv: Inversion Tactics}{Cristina CORNES} - -\section{Generalities about inversion} -\label{inversion_introduction} -When working with (co)inductive predicates, we are very often faced to -some of these situations: -\begin{itemize} -\item we have an inconsistent instance of an inductive predicate in the - local context of hypotheses. Thus, the current goal can be trivially - proved by absurdity. - -\item we have a hypothesis that is an instance of an inductive - predicate, and the instance has some variables whose constraints we - would like to derive. -\end{itemize} - -The inversion tactics are very useful to simplify the work in these -cases. Inversion tools can be classified in three groups: -\begin{enumerate} -\item tactics for inverting an instance without stocking the inversion - lemma in the context: - (\texttt{Dependent}) \texttt{Inversion} and - (\texttt{Dependent}) \texttt{Inversion\_clear}. -\item commands for generating and stocking in the context the inversion - lemma corresponding to an instance: \texttt{Derive} - (\texttt{Dependent}) \texttt{Inversion}, \texttt{Derive} - (\texttt{Dependent}) \texttt{Inversion\_clear}. -\item tactics for inverting an instance using an already defined - inversion lemma: \texttt{Inversion \ldots using}. -\end{enumerate} - -These tactics work for inductive types of arity $(\vec{x}:\vec{T})s$ -where $s \in \{Prop,Set,Type\}$. Sections \ref{inversion_primitive}, -\ref{inversion_derivation} and \ref{inversion_using} -describe respectively each group of tools. - -As inversion proofs may be large in size, we recommend the user to -stock the lemmas whenever the same instance needs to be inverted -several times.\\ - -Let's consider the relation \texttt{Le} over natural numbers and the -following variables: - -\begin{coq_eval} -Restore State "Initial". -\end{coq_eval} - -\begin{coq_example*} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0%N n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -Variable Q : forall n m:nat, Le n m -> Prop. -\end{coq_example*} - -For example purposes we defined \verb+Le: nat->nat->Set+ - but we may have defined -it \texttt{Le} of type \verb+nat->nat->Prop+ or \verb+nat->nat->Type+. - - -\section{Inverting an instance} -\label{inversion_primitive} -\subsection{The non dependent case} -\begin{itemize} - -\item \texttt{Inversion\_clear} \ident~\\ -\index{Inversion-clear@{\tt Inversion\_clear}} - Let the type of \ident~ in the local context be $(I~\vec{t})$, - where $I$ is a (co)inductive predicate. Then, - \texttt{Inversion} applied to \ident~ derives for each possible - constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary - conditions that should hold for the instance $(I~\vec{t})$ to be - proved by $c_i$. Finally it erases \ident~ from the context. - - - -For example, consider the goal: -\begin{coq_eval} -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -To prove the goal we may need to reason by cases on \texttt{H} and to - derive that \texttt{m} is necessarily of -the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$. -Deriving these conditions corresponds to prove that the -only possible constructor of \texttt{(Le (S n) m)} is -\texttt{LeS} and that we can invert the -\texttt{->} in the type of \texttt{LeS}. -This inversion is possible because \texttt{Le} is the smallest set closed by -the constructors \texttt{LeO} and \texttt{LeS}. - - -\begin{coq_example} -inversion_clear H. -\end{coq_example} - -Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)} -and that the hypothesis \texttt{(Le n m0)} has been added to the -context. - -\item \texttt{Inversion} \ident~\\ -\index{Inversion@{\tt Inversion}} - This tactic differs from {\tt Inversion\_clear} in the fact that - it adds the equality constraints in the context and - it does not erase the hypothesis \ident. - - -In the previous example, {\tt Inversion\_clear} -has substituted \texttt{m} by \texttt{(S m0)}. Sometimes it is -interesting to have the equality \texttt{m=(S m0)} in the -context to use it after. In that case we can use \texttt{Inversion} that -does not clear the equalities: - -\begin{coq_example*} -Undo. -\end{coq_example*} -\begin{coq_example} -inversion H. -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -Note that the hypothesis \texttt{(S m0)=m} has been deduced and -\texttt{H} has not been cleared from the context. - -\end{itemize} - -\begin{Variants} - -\item \texttt{Inversion\_clear } \ident~ \texttt{in} \ident$_1$ \ldots - \ident$_n$\\ -\index{Inversion_clear...in@{\tt Inversion\_clear...in}} - Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This - tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing - {\tt Inversion\_clear}. - -\item \texttt{Inversion } \ident~ \texttt{in} \ident$_1$ \ldots \ident$_n$\\ -\index{Inversion ... in@{\tt Inversion ... in}} - Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This - tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing - \texttt{Inversion}. - - -\item \texttt{Simple Inversion} \ident~ \\ -\index{Simple Inversion@{\tt Simple Inversion}} - It is a very primitive inversion tactic that derives all the necessary - equalities but it does not simplify - the constraints as \texttt{Inversion} and - {\tt Inversion\_clear} do. - -\end{Variants} - - -\subsection{The dependent case} -\begin{itemize} -\item \texttt{Dependent Inversion\_clear} \ident~\\ -\index{Dependent Inversion-clear@{\tt Dependent Inversion\_clear}} - Let the type of \ident~ in the local context be $(I~\vec{t})$, - where $I$ is a (co)inductive predicate, and let the goal depend both on - $\vec{t}$ and \ident. Then, - \texttt{Dependent Inversion\_clear} applied to \ident~ derives - for each possible constructor $c_i$ of $(I~\vec{t})$, {\bf all} the - necessary conditions that should hold for the instance $(I~\vec{t})$ to be - proved by $c_i$. It also substitutes \ident~ for the corresponding - term in the goal and it erases \ident~ from the context. - - -For example, consider the goal: -\begin{coq_eval} -Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -As \texttt{H} occurs in the goal, we may want to reason by cases on its -structure and so, we would like inversion tactics to -substitute \texttt{H} by the corresponding term in constructor form. -Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a -substitution. To have such a behavior we use the dependent inversion tactics: - -\begin{coq_example} -dependent inversion_clear H. -\end{coq_example} - -Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and -\texttt{m} by \texttt{(S m0)}. - - -\end{itemize} - -\begin{Variants} - -\item \texttt{Dependent Inversion\_clear } \ident~ \texttt{ with } \term\\ -\index{Dependent Inversion_clear...with@{\tt Dependent Inversion\_clear...with}} - \noindent Behaves as \texttt{Dependent Inversion\_clear} but allows to give - explicitly the good generalization of the goal. It is useful when - the system fails to generalize the goal automatically. If - \ident~ has type $(I~\vec{t})$ and $I$ has type - $(\vec{x}:\vec{T})s$, then \term~ must be of type - $I:(\vec{x}:\vec{T})(I~\vec{x})\rightarrow s'$ where $s'$ is the - type of the goal. - - - -\item \texttt{Dependent Inversion} \ident~\\ -\index{Dependent Inversion@{\tt Dependent Inversion}} - This tactic differs from \texttt{Dependent Inversion\_clear} in the fact that - it also adds the equality constraints in the context and - it does not erase the hypothesis \ident~. - -\item \texttt{Dependent Inversion } \ident~ \texttt{ with } \term \\ -\index{Dependent Inversion...with@{\tt Dependent Inversion...with}} - Analogous to \texttt{Dependent Inversion\_clear .. with..} above. -\end{Variants} - - - -\section{Deriving the inversion lemmas} -\label{inversion_derivation} -\subsection{The non dependent case} - -The tactics (\texttt{Dependent}) \texttt{Inversion} and (\texttt{Dependent}) -{\tt Inversion\_clear} work on a -certain instance $(I~\vec{t})$ of an inductive predicate. At each -application, they inspect the given instance and derive the -corresponding inversion lemma. If we have to invert the same -instance several times it is recommended to stock the lemma in the -context and to reuse it whenever we need it. - -The families of commands \texttt{Derive Inversion}, \texttt{Derive -Dependent Inversion}, \texttt{Derive} \\ {\tt Inversion\_clear} and \texttt{Derive Dependent Inversion\_clear} -allow to generate inversion lemmas for given instances and sorts. Next -section describes the tactic \texttt{Inversion}$\ldots$\texttt{using} that refines the -goal with a specified inversion lemma. - -\begin{itemize} - -\item \texttt{Derive Inversion\_clear} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\ -\index{Derive Inversion_clear...with@{\tt Derive Inversion\_clear...with}} - Let $I$ be an inductive predicate and $\vec{x}$ the variables - occurring in $\vec{t}$. This command generates and stocks - the inversion lemma for the sort \sort~ corresponding to the instance - $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf - global} environment. When applied it is equivalent to have - inverted the instance with the tactic {\tt Inversion\_clear}. - - - For example, to generate the inversion lemma for the instance - \texttt{(Le (S n) m)} and the sort \texttt{Prop} we do: -\begin{coq_example} -Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort - Prop. -\end{coq_example} - -Let us inspect the type of the generated lemma: -\begin{coq_example} -Check leminv. -\end{coq_example} - - - -\end{itemize} - -%\variants -%\begin{enumerate} -%\item \verb+Derive Inversion_clear+ \ident$_1$ \ident$_2$ \\ -%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}} -% Let \ident$_1$ have type $(I~\vec{t})$ in the local context ($I$ -% an inductive predicate). Then, this command has the same semantics -% as \verb+Derive Inversion_clear+ \ident$_2$~ \verb+with+ -% $(\vec{x}:\vec{T})(I~\vec{t})$ \verb+Sort Prop+ where $\vec{x}$ are the free -% variables of $(I~\vec{t})$ declared in the local context (variables -% of the global context are considered as constants). -%\item \verb+Derive Inversion+ \ident$_1$~ \ident$_2$~\\ -%\index{Derive Inversion@{\tt Derive Inversion}} -% Analogous to the previous command. -%\item \verb+Derive Inversion+ $num$ \ident~ \ident~ \\ -%\index{Derive Inversion@{\tt Derive Inversion}} -% This command behaves as \verb+Derive Inversion+ \ident~ {\it -% namehyp} performed on the goal number $num$. -% -%\item \verb+Derive Inversion_clear+ $num$ \ident~ \ident~ \\ -%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}} -% This command behaves as \verb+Derive Inversion_clear+ \ident~ -% \ident~ performed on the goal number $num$. -%\end{enumerate} - - - -A derived inversion lemma is adequate for inverting the instance -with which it was generated, \texttt{Derive} applied to -different instances yields different lemmas. In general, if we generate -the inversion lemma with -an instance $(\vec{x}:\vec{T})(I~\vec{t})$ and a sort $s$, the inversion lemma will -expect a predicate of type $(\vec{x}:\vec{T})s$ as first argument. \\ - -\begin{Variant} -\item \texttt{Derive Inversion} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort\\ -\index{Derive Inversion...with@{\tt Derive Inversion...with}} - Analogous of \texttt{Derive Inversion\_clear .. with ..} but - when applied it is equivalent to having - inverted the instance with the tactic \texttt{Inversion}. -\end{Variant} - -\subsection{The dependent case} -\begin{itemize} -\item \texttt{Derive Dependent Inversion\_clear} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\ -\index{Derive Dependent Inversion\_clear...with@{\tt Derive Dependent Inversion\_clear...with}} - Let $I$ be an inductive predicate. This command generates and stocks - the dependent inversion lemma for the sort \sort~ corresponding to the instance - $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf - global} environment. When applied it is equivalent to having - inverted the instance with the tactic \texttt{Dependent Inversion\_clear}. -\end{itemize} - -\begin{coq_example} -Derive Dependent Inversion_clear leminv_dep with - (forall n m:nat, Le (S n) m) Sort Prop. -\end{coq_example} - -\begin{coq_example} -Check leminv_dep. -\end{coq_example} - -\begin{Variants} -\item \texttt{Derive Dependent Inversion} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\ -\index{Derive Dependent Inversion...with@{\tt Derive Dependent Inversion...with}} - Analogous to \texttt{Derive Dependent Inversion\_clear}, but when - applied it is equivalent to having - inverted the instance with the tactic \texttt{Dependent Inversion}. - -\end{Variants} - -\section{Using already defined inversion lemmas} -\label{inversion_using} -\begin{itemize} -\item \texttt{Inversion} \ident \texttt{ using} \ident$'$ \\ -\index{Inversion...using@{\tt Inversion...using}} - Let \ident~ have type $(I~\vec{t})$ ($I$ an inductive - predicate) in the local context, and \ident$'$ be a (dependent) inversion - lemma. Then, this tactic refines the current goal with the specified - lemma. - - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} -\begin{coq_example} -inversion H using leminv. -\end{coq_example} - - -\end{itemize} -\variant -\begin{enumerate} -\item \texttt{Inversion} \ident~ \texttt{using} \ident$'$ \texttt{in} \ident$_1$\ldots \ident$_n$\\ -\index{Inversion...using...in@{\tt Inversion...using...in}} -This tactic behaves as generalizing \ident$_1$\ldots \ident$_n$, -then doing \texttt{Use Inversion} \ident~\ident$'$. -\end{enumerate} - -\section{\tt Scheme ...}\index{Scheme@{\tt Scheme}}\label{Scheme} -\label{scheme} -The {\tt Scheme} command is a high-level tool for generating -automatically (possibly mutual) induction principles for given types -and sorts. Its syntax follows the schema : - -\noindent -{\tt Scheme {\ident$_1$} := Induction for \term$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} .. \\ - with {\ident$_m$} := Induction for {\term$_m$} Sort - {\sort$_m$}}\\ -\term$_1$ \ldots \term$_m$ are different inductive types belonging to -the same package of mutual inductive definitions. This command -generates {\ident$_1$}\ldots{\ident$_m$} to be mutually recursive -definitions. Each term {\ident$_i$} proves a general principle -of mutual induction for objects in type {\term$_i$}. - -\Example -The definition of principle of mutual induction for {\tt tree} and -{\tt forest} over the sort {\tt Set} is defined by the command: -\begin{coq_eval} -Restore State "Initial". -Variables A B : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. -\end{coq_eval} -\begin{coq_example*} -Scheme tree_forest_rec := Induction for tree - Sort Set - with forest_tree_rec := Induction for forest Sort Set. -\end{coq_example*} -You may now look at the type of {\tt tree\_forest\_rec} : -\begin{coq_example} -Check tree_forest_rec. -\end{coq_example} -This principle involves two different predicates for {\tt trees} and -{\tt forests}; it also has three premises each one corresponding to a -constructor of one of the inductive definitions. - -The principle {\tt tree\_forest\_rec} shares exactly the same -premises, only the conclusion now refers to the property of forests. -\begin{coq_example} -Check forest_tree_rec. -\end{coq_example} - -\begin{Variant} -\item {\tt Scheme {\ident$_1$} := Minimality for \term$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} .. \\ - with {\ident$_m$} := Minimality for {\term$_m$} Sort - {\sort$_m$}}\\ -Same as before but defines a non-dependent elimination principle more -natural in case of inductively defined relations. -\end{Variant} - -\Example -With the predicates {\tt odd} and {\tt even} inductively defined as: -\begin{coq_eval} -Restore State "Initial". -\end{coq_eval} -\begin{coq_example*} -Inductive odd : nat -> Prop := - oddS : forall n:nat, even n -> odd (S n) -with even : nat -> Prop := - | evenO : even 0%N - | evenS : forall n:nat, odd n -> even (S n). -\end{coq_example*} -The following command generates a powerful elimination -principle: -\begin{coq_example*} -Scheme odd_even := Minimality for odd Sort Prop - with even_odd := Minimality for even Sort Prop. -\end{coq_example*} -The type of {\tt odd\_even} for instance will be: -\begin{coq_example} -Check odd_even. -\end{coq_example} -The type of {\tt even\_odd} shares the same premises but the -conclusion is {\tt (n:nat)(even n)->(Q n)}. - - - -%\end{document} - -% $Id: RefMan-ind.tex 8609 2006-02-24 13:32:57Z notin,no-port-forwarding,no-agent-forwarding,no-X11-forwarding,no-pty $ |