summaryrefslogtreecommitdiff
path: root/contrib
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /contrib
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'contrib')
-rw-r--r--contrib/cc/CCSolve.v22
-rw-r--r--contrib/cc/README20
-rw-r--r--contrib/cc/ccalgo.ml357
-rw-r--r--contrib/cc/ccalgo.mli84
-rw-r--r--contrib/cc/ccproof.ml157
-rw-r--r--contrib/cc/ccproof.mli45
-rw-r--r--contrib/cc/cctac.ml4247
-rw-r--r--contrib/correctness/ArrayPermut.v175
-rw-r--r--contrib/correctness/Arrays.v78
-rw-r--r--contrib/correctness/Arrays_stuff.v16
-rw-r--r--contrib/correctness/Correctness.v25
-rw-r--r--contrib/correctness/Exchange.v95
-rw-r--r--contrib/correctness/ProgBool.v66
-rw-r--r--contrib/correctness/ProgInt.v19
-rw-r--r--contrib/correctness/ProgramsExtraction.v30
-rw-r--r--contrib/correctness/Programs_stuff.v13
-rw-r--r--contrib/correctness/Sorted.v202
-rw-r--r--contrib/correctness/Tuples.v98
-rw-r--r--contrib/correctness/examples/Handbook.v232
-rw-r--r--contrib/correctness/examples/exp.v204
-rw-r--r--contrib/correctness/examples/exp_int.v218
-rw-r--r--contrib/correctness/examples/extract.v43
-rw-r--r--contrib/correctness/examples/fact.v69
-rw-r--r--contrib/correctness/examples/fact_int.v195
-rw-r--r--contrib/correctness/past.mli97
-rw-r--r--contrib/correctness/pcic.ml231
-rw-r--r--contrib/correctness/pcic.mli24
-rw-r--r--contrib/correctness/pcicenv.ml118
-rw-r--r--contrib/correctness/pcicenv.mli38
-rw-r--r--contrib/correctness/pdb.ml165
-rw-r--r--contrib/correctness/pdb.mli25
-rw-r--r--contrib/correctness/peffect.ml159
-rw-r--r--contrib/correctness/peffect.mli42
-rw-r--r--contrib/correctness/penv.ml240
-rw-r--r--contrib/correctness/penv.mli87
-rw-r--r--contrib/correctness/perror.ml172
-rw-r--r--contrib/correctness/perror.mli47
-rw-r--r--contrib/correctness/pextract.ml473
-rw-r--r--contrib/correctness/pextract.mli17
-rw-r--r--contrib/correctness/pmisc.ml222
-rw-r--r--contrib/correctness/pmisc.mli81
-rw-r--r--contrib/correctness/pmlize.ml320
-rw-r--r--contrib/correctness/pmlize.mli20
-rw-r--r--contrib/correctness/pmonad.ml665
-rw-r--r--contrib/correctness/pmonad.mli106
-rw-r--r--contrib/correctness/pred.ml115
-rw-r--r--contrib/correctness/pred.mli26
-rw-r--r--contrib/correctness/prename.ml139
-rw-r--r--contrib/correctness/prename.mli57
-rw-r--r--contrib/correctness/preuves.v128
-rw-r--r--contrib/correctness/psyntax.ml41058
-rw-r--r--contrib/correctness/psyntax.mli25
-rw-r--r--contrib/correctness/ptactic.ml258
-rw-r--r--contrib/correctness/ptactic.mli22
-rw-r--r--contrib/correctness/ptype.mli73
-rw-r--r--contrib/correctness/ptyping.ml600
-rw-r--r--contrib/correctness/ptyping.mli36
-rw-r--r--contrib/correctness/putil.ml303
-rw-r--r--contrib/correctness/putil.mli72
-rw-r--r--contrib/correctness/pwp.ml347
-rw-r--r--contrib/correctness/pwp.mli18
-rw-r--r--contrib/extraction/BUGS2
-rw-r--r--contrib/extraction/CHANGES409
-rw-r--r--contrib/extraction/README139
-rw-r--r--contrib/extraction/TODO31
-rw-r--r--contrib/extraction/common.ml441
-rw-r--r--contrib/extraction/common.mli21
-rw-r--r--contrib/extraction/extract_env.ml382
-rw-r--r--contrib/extraction/extract_env.mli20
-rw-r--r--contrib/extraction/extraction.ml855
-rw-r--r--contrib/extraction/extraction.mli42
-rw-r--r--contrib/extraction/g_extraction.ml4119
-rw-r--r--contrib/extraction/haskell.ml280
-rw-r--r--contrib/extraction/haskell.mli20
-rw-r--r--contrib/extraction/miniml.mli159
-rw-r--r--contrib/extraction/mlutil.ml1136
-rw-r--r--contrib/extraction/mlutil.mli111
-rw-r--r--contrib/extraction/modutil.ml405
-rw-r--r--contrib/extraction/modutil.mli70
-rw-r--r--contrib/extraction/ocaml.ml627
-rw-r--r--contrib/extraction/ocaml.mli56
-rw-r--r--contrib/extraction/scheme.ml175
-rw-r--r--contrib/extraction/scheme.mli27
-rw-r--r--contrib/extraction/table.ml446
-rw-r--r--contrib/extraction/table.mli122
-rw-r--r--contrib/extraction/test/.depend713
-rw-r--r--contrib/extraction/test/Makefile109
-rw-r--r--contrib/extraction/test/Makefile.haskell416
-rw-r--r--contrib/extraction/test/addReals21
-rw-r--r--contrib/extraction/test/custom/Adalloc2
-rw-r--r--contrib/extraction/test/custom/Euclid1
-rw-r--r--contrib/extraction/test/custom/List1
-rw-r--r--contrib/extraction/test/custom/ListSet1
-rw-r--r--contrib/extraction/test/custom/Lsort2
-rw-r--r--contrib/extraction/test/custom/Map3
-rw-r--r--contrib/extraction/test/custom/Mapcard4
-rw-r--r--contrib/extraction/test/custom/Mapiter2
-rw-r--r--contrib/extraction/test/custom/R_Ifp2
-rw-r--r--contrib/extraction/test/custom/R_sqr2
-rw-r--r--contrib/extraction/test/custom/Ranalysis2
-rw-r--r--contrib/extraction/test/custom/Raxioms2
-rw-r--r--contrib/extraction/test/custom/Rbase2
-rw-r--r--contrib/extraction/test/custom/Rbasic_fun2
-rw-r--r--contrib/extraction/test/custom/Rdefinitions2
-rw-r--r--contrib/extraction/test/custom/Reals.v17
-rw-r--r--contrib/extraction/test/custom/Rfunctions2
-rw-r--r--contrib/extraction/test/custom/Rgeom2
-rw-r--r--contrib/extraction/test/custom/Rlimit2
-rw-r--r--contrib/extraction/test/custom/Rseries2
-rw-r--r--contrib/extraction/test/custom/Rsigma2
-rw-r--r--contrib/extraction/test/custom/Rtrigo2
-rw-r--r--contrib/extraction/test/custom/ZArith_dec1
-rw-r--r--contrib/extraction/test/custom/fast_integer1
-rw-r--r--contrib/extraction/test/e17
-rwxr-xr-xcontrib/extraction/test/extract12
-rwxr-xr-xcontrib/extraction/test/extract.haskell12
-rw-r--r--contrib/extraction/test/hs2v.ml14
-rwxr-xr-xcontrib/extraction/test/make_mli17
-rw-r--r--contrib/extraction/test/ml2v.ml14
-rw-r--r--contrib/extraction/test/v2hs.ml9
-rw-r--r--contrib/extraction/test/v2ml.ml9
-rw-r--r--contrib/extraction/test_extraction.v552
-rw-r--r--contrib/field/Field.v15
-rw-r--r--contrib/field/Field_Compl.v61
-rw-r--r--contrib/field/Field_Tactic.v432
-rw-r--r--contrib/field/Field_Theory.v645
-rw-r--r--contrib/field/field.ml4190
-rw-r--r--contrib/first-order/formula.ml271
-rw-r--r--contrib/first-order/formula.mli77
-rw-r--r--contrib/first-order/g_ground.ml4103
-rw-r--r--contrib/first-order/ground.ml151
-rw-r--r--contrib/first-order/ground.mli13
-rw-r--r--contrib/first-order/instances.ml203
-rw-r--r--contrib/first-order/instances.mli26
-rw-r--r--contrib/first-order/rules.ml214
-rw-r--r--contrib/first-order/rules.mli54
-rw-r--r--contrib/first-order/sequent.ml303
-rw-r--r--contrib/first-order/sequent.mli66
-rw-r--r--contrib/first-order/unify.ml143
-rw-r--r--contrib/first-order/unify.mli23
-rw-r--r--contrib/fourier/Fourier.v25
-rw-r--r--contrib/fourier/Fourier_util.v222
-rw-r--r--contrib/fourier/fourier.ml205
-rw-r--r--contrib/fourier/fourierR.ml630
-rw-r--r--contrib/fourier/g_fourier.ml417
-rw-r--r--contrib/funind/tacinv.ml4853
-rw-r--r--contrib/funind/tacinvutils.ml277
-rw-r--r--contrib/funind/tacinvutils.mli79
-rw-r--r--contrib/interface/COPYRIGHT19
-rw-r--r--contrib/interface/ascent.mli784
-rwxr-xr-xcontrib/interface/blast.ml628
-rw-r--r--contrib/interface/blast.mli5
-rw-r--r--contrib/interface/centaur.ml4700
-rw-r--r--contrib/interface/ctast.ml76
-rw-r--r--contrib/interface/dad.ml382
-rw-r--r--contrib/interface/dad.mli10
-rw-r--r--contrib/interface/debug_tac.ml4570
-rw-r--r--contrib/interface/debug_tac.mli6
-rw-r--r--contrib/interface/history.ml373
-rw-r--r--contrib/interface/history.mli12
-rwxr-xr-xcontrib/interface/line_parser.ml4241
-rw-r--r--contrib/interface/line_parser.mli5
-rw-r--r--contrib/interface/name_to_ast.ml252
-rw-r--r--contrib/interface/name_to_ast.mli2
-rw-r--r--contrib/interface/parse.ml488
-rw-r--r--contrib/interface/paths.ml26
-rw-r--r--contrib/interface/paths.mli4
-rw-r--r--contrib/interface/pbp.ml758
-rw-r--r--contrib/interface/pbp.mli4
-rw-r--r--contrib/interface/showproof.ml1899
-rwxr-xr-xcontrib/interface/showproof.mli23
-rw-r--r--contrib/interface/showproof_ct.ml185
-rw-r--r--contrib/interface/translate.ml165
-rw-r--r--contrib/interface/translate.mli11
-rw-r--r--contrib/interface/vernacrc12
-rw-r--r--contrib/interface/vtp.ml1915
-rw-r--r--contrib/interface/vtp.mli15
-rw-r--r--contrib/interface/xlate.ml2118
-rw-r--r--contrib/interface/xlate.mli9
-rw-r--r--contrib/jprover/README76
-rw-r--r--contrib/jprover/jall.ml4701
-rw-r--r--contrib/jprover/jall.mli339
-rw-r--r--contrib/jprover/jlogic.ml106
-rw-r--r--contrib/jprover/jlogic.mli40
-rw-r--r--contrib/jprover/jprover.ml4565
-rw-r--r--contrib/jprover/jterm.ml872
-rw-r--r--contrib/jprover/jterm.mli110
-rw-r--r--contrib/jprover/jtunify.ml507
-rw-r--r--contrib/jprover/jtunify.mli35
-rw-r--r--contrib/jprover/opname.ml90
-rw-r--r--contrib/jprover/opname.mli15
-rwxr-xr-xcontrib/omega/Omega.v57
-rw-r--r--contrib/omega/OmegaLemmas.v269
-rw-r--r--contrib/omega/coq_omega.ml1783
-rw-r--r--contrib/omega/g_omega.ml424
-rwxr-xr-xcontrib/omega/omega.ml663
-rw-r--r--contrib/ring/ArithRing.v89
-rw-r--r--contrib/ring/NArithRing.v44
-rw-r--r--contrib/ring/Quote.v84
-rw-r--r--contrib/ring/Ring.v36
-rw-r--r--contrib/ring/Ring_abstract.v704
-rw-r--r--contrib/ring/Ring_normalize.v901
-rw-r--r--contrib/ring/Ring_theory.v376
-rw-r--r--contrib/ring/Setoid_ring.v13
-rw-r--r--contrib/ring/Setoid_ring_normalize.v1137
-rw-r--r--contrib/ring/Setoid_ring_theory.v427
-rw-r--r--contrib/ring/ZArithRing.v36
-rw-r--r--contrib/ring/g_quote.ml418
-rw-r--r--contrib/ring/g_ring.ml4135
-rw-r--r--contrib/ring/quote.ml489
-rw-r--r--contrib/ring/ring.ml904
-rw-r--r--contrib/romega/README6
-rw-r--r--contrib/romega/ROmega.v11
-rw-r--r--contrib/romega/ReflOmegaCore.v2787
-rw-r--r--contrib/romega/const_omega.ml488
-rw-r--r--contrib/romega/g_romega.ml415
-rw-r--r--contrib/romega/omega2.ml675
-rw-r--r--contrib/romega/refl_omega.ml1307
-rw-r--r--contrib/xml/COPYRIGHT25
-rw-r--r--contrib/xml/README254
-rw-r--r--contrib/xml/acic.ml108
-rw-r--r--contrib/xml/acic2Xml.ml4363
-rw-r--r--contrib/xml/cic.dtd259
-rw-r--r--contrib/xml/cic2acic.ml946
-rw-r--r--contrib/xml/doubleTypeInference.ml288
-rw-r--r--contrib/xml/doubleTypeInference.mli24
-rw-r--r--contrib/xml/proof2aproof.ml169
-rw-r--r--contrib/xml/proofTree2Xml.ml4211
-rw-r--r--contrib/xml/theoryobject.dtd62
-rw-r--r--contrib/xml/unshare.ml52
-rw-r--r--contrib/xml/unshare.mli21
-rw-r--r--contrib/xml/xml.ml473
-rw-r--r--contrib/xml/xml.mli38
-rw-r--r--contrib/xml/xmlcommand.ml706
-rw-r--r--contrib/xml/xmlcommand.mli41
-rw-r--r--contrib/xml/xmlentries.ml440
236 files changed, 59016 insertions, 0 deletions
diff --git a/contrib/cc/CCSolve.v b/contrib/cc/CCSolve.v
new file mode 100644
index 00000000..fab6f775
--- /dev/null
+++ b/contrib/cc/CCSolve.v
@@ -0,0 +1,22 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: CCSolve.v,v 1.4.2.1 2004/07/16 19:29:58 herbelin Exp $ *)
+
+Ltac CCsolve :=
+ repeat
+ match goal with
+ | H:?X1 |- ?X2 =>
+ let Heq := fresh "Heq" in
+ (assert (Heq : X2 = X1); [ congruence | rewrite Heq; exact H ])
+ | H:?X1,G:(?X2 -> ?X3) |- _ =>
+ let Heq := fresh "Heq" in
+ (assert (Heq : X2 = X1);
+ [ congruence
+ | rewrite Heq in G; generalize (G H); clear G; intro G ])
+ end.
diff --git a/contrib/cc/README b/contrib/cc/README
new file mode 100644
index 00000000..073b140e
--- /dev/null
+++ b/contrib/cc/README
@@ -0,0 +1,20 @@
+
+cctac: congruence-closure for coq
+
+author: Pierre Corbineau,
+ Stage de DEA au LSV, ENS Cachan
+ Thèse au LRI, Université Paris Sud XI
+
+Files :
+
+- ccalgo.ml : congruence closure algorithm
+- ccproof.ml : proof generation code
+- cctac.ml4 : the tactic itself
+- CCSolve.v : a small Ltac tactic based on congruence
+
+Known Bugs : the congruence tactic can fail due to type dependencies.
+
+Related documents:
+ Peter J. Downey, Ravi Sethi, and Robert E. Tarjan.
+ Variations on the common subexpression problem.
+ JACM, 27(4):758-771, October 1980.
diff --git a/contrib/cc/ccalgo.ml b/contrib/cc/ccalgo.ml
new file mode 100644
index 00000000..e73a6221
--- /dev/null
+++ b/contrib/cc/ccalgo.ml
@@ -0,0 +1,357 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ccalgo.ml,v 1.6.2.1 2004/07/16 19:29:58 herbelin Exp $ *)
+
+(* This file implements the basic congruence-closure algorithm by *)
+(* Downey,Sethi and Tarjan. *)
+
+open Util
+open Names
+open Term
+
+let init_size=251
+
+type pa_constructor=
+ {head_constr: int;
+ arity:int;
+ nhyps:int;
+ args:int list;
+ term_head:int}
+
+
+module PacMap=Map.Make(struct type t=int*int let compare=compare end)
+
+type term=
+ Symb of constr
+ | Appli of term*term
+ | Constructor of constructor*int*int (* constructor arity+ nhyps *)
+
+type rule=
+ Congruence
+ | Axiom of identifier
+ | Injection of int*int*int*int (* terms+head+arg position *)
+
+type equality = {lhs:int;rhs:int;rule:rule}
+
+let swap eq=
+ let swap_rule=match eq.rule with
+ Congruence -> Congruence
+ | Injection (i,j,c,a) -> Injection (j,i,c,a)
+ | Axiom id -> anomaly "no symmetry for axioms"
+ in {lhs=eq.rhs;rhs=eq.lhs;rule=swap_rule}
+
+(* Signature table *)
+
+module ST=struct
+
+ (* l: sign -> term r: term -> sign *)
+
+ type t = {toterm:(int*int,int) Hashtbl.t;
+ tosign:(int,int*int) Hashtbl.t}
+
+ let empty ()=
+ {toterm=Hashtbl.create init_size;
+ tosign=Hashtbl.create init_size}
+
+ let enter t sign st=
+ if Hashtbl.mem st.toterm sign then
+ anomaly "enter: signature already entered"
+ else
+ Hashtbl.replace st.toterm sign t;
+ Hashtbl.replace st.tosign t sign
+
+ let query sign st=Hashtbl.find st.toterm sign
+
+ let delete t st=
+ try let sign=Hashtbl.find st.tosign t in
+ Hashtbl.remove st.toterm sign;
+ Hashtbl.remove st.tosign t
+ with
+ Not_found -> ()
+
+ let rec delete_list l st=
+ match l with
+ []->()
+ | t::q -> delete t st;delete_list q st
+
+end
+
+(* Basic Union-Find algo w/o path compression *)
+
+module UF = struct
+
+module IndMap=Map.Make(struct type t=inductive let compare=compare end)
+
+ type representative=
+ {mutable nfathers:int;
+ mutable fathers:int list;
+ mutable constructors:pa_constructor PacMap.t;
+ mutable inductives:(int * int) IndMap.t}
+
+ type cl = Rep of representative| Eqto of int*equality
+
+ type vertex = Leaf| Node of (int*int)
+
+ type node =
+ {clas:cl;
+ vertex:vertex;
+ term:term;
+ mutable node_constr: int PacMap.t}
+
+ type t={mutable size:int;
+ map:(int,node) Hashtbl.t;
+ syms:(term,int) Hashtbl.t;
+ sigtable:ST.t}
+
+ let empty ():t={size=0;
+ map=Hashtbl.create init_size;
+ syms=Hashtbl.create init_size;
+ sigtable=ST.empty ()}
+
+ let rec find uf i=
+ match (Hashtbl.find uf.map i).clas with
+ Rep _ -> i
+ | Eqto (j,_) ->find uf j
+
+ let get_representative uf i=
+ let node=Hashtbl.find uf.map i in
+ match node.clas with
+ Rep r ->r
+ | _ -> anomaly "get_representative: not a representative"
+
+ let get_constructor uf i=
+ match (Hashtbl.find uf.map i).term with
+ Constructor (cstr,_,_)->cstr
+ | _ -> anomaly "get_constructor: not a constructor"
+
+
+ let fathers uf i=
+ (get_representative uf i).fathers
+
+ let size uf i=
+ (get_representative uf i).nfathers
+
+ let add_father uf i t=
+ let r=get_representative uf i in
+ r.nfathers<-r.nfathers+1;
+ r.fathers<-t::r.fathers
+
+ let pac_map uf i=
+ (get_representative uf i).constructors
+
+ let pac_arity uf i sg=
+ (PacMap.find sg (get_representative uf i).constructors).arity
+
+ let add_node_pac uf i sg j=
+ let node=Hashtbl.find uf.map i in
+ if not (PacMap.mem sg node.node_constr) then
+ node.node_constr<-PacMap.add sg j node.node_constr
+
+ let mem_node_pac uf i sg=
+ PacMap.find sg (Hashtbl.find uf.map i).node_constr
+
+ exception Discriminable of int * int * int * int * t
+
+ let add_pacs uf i pacs =
+ let rep=get_representative uf i in
+ let pending=ref [] and combine=ref [] in
+ let add_pac sg pac=
+ try
+ let opac=PacMap.find sg rep.constructors in
+ if (snd sg)>0 then () else
+ let tk=pac.term_head
+ and tl=opac.term_head in
+ let rec f n lk ll q=
+ if n > 0 then match (lk,ll) with
+ k::qk,l::ql->
+ let eq=
+ {lhs=k;rhs=l;rule=Injection(tk,tl,pac.head_constr,n)}
+ in f (n-1) qk ql (eq::q)
+ | _-> anomaly
+ "add_pacs : weird error in injection subterms merge"
+ else q in
+ combine:=f pac.nhyps pac.args opac.args !combine
+ with Not_found -> (* Still Unknown Constructor *)
+ rep.constructors <- PacMap.add sg pac rep.constructors;
+ pending:=
+ (fathers uf (find uf pac.term_head)) @rep.fathers@ !pending;
+ let (c,a)=sg in
+ if a=0 then
+ let (ind,_)=get_constructor uf c in
+ try
+ let th2,hc2=IndMap.find ind rep.inductives in
+ raise (Discriminable (pac.term_head,c,th2,hc2,uf))
+ with Not_found ->
+ rep.inductives<-
+ IndMap.add ind (pac.term_head,c) rep.inductives in
+ PacMap.iter add_pac pacs;
+ !pending,!combine
+
+ let term uf i=(Hashtbl.find uf.map i).term
+
+ let subterms uf i=
+ match (Hashtbl.find uf.map i).vertex with
+ Node(j,k) -> (j,k)
+ | _ -> anomaly "subterms: not a node"
+
+ let signature uf i=
+ let j,k=subterms uf i in (find uf j,find uf k)
+
+ let nodes uf= (* cherche les noeuds binaires *)
+ Hashtbl.fold
+ (fun i node l->
+ match node.vertex with
+ Node (_,_)->i::l
+ | _ ->l) uf.map []
+
+ let next uf=
+ let n=uf.size in uf.size<-n+1; n
+
+ let new_representative pm im=
+ {nfathers=0;
+ fathers=[];
+ constructors=pm;
+ inductives=im}
+
+ let rec add uf t=
+ try Hashtbl.find uf.syms t with
+ Not_found ->
+ let b=next uf in
+ let new_node=
+ match t with
+ Symb s ->
+ {clas=Rep (new_representative PacMap.empty IndMap.empty);
+ vertex=Leaf;term=t;node_constr=PacMap.empty}
+ | Appli (t1,t2) ->
+ let i1=add uf t1 and i2=add uf t2 in
+ add_father uf (find uf i1) b;
+ add_father uf (find uf i2) b;
+ {clas=Rep (new_representative PacMap.empty IndMap.empty);
+ vertex=Node(i1,i2);term=t;node_constr=PacMap.empty}
+ | Constructor (c,a,n) ->
+ let pacs=
+ PacMap.add (b,a)
+ {head_constr=b;arity=a;nhyps=n;args=[];term_head=b}
+ PacMap.empty in
+ let inds=
+ if a=0 then
+ let (ind,_)=c in
+ IndMap.add ind (b,b) IndMap.empty
+ else IndMap.empty in
+ {clas=Rep (new_representative pacs inds);
+ vertex=Leaf;term=t;node_constr=PacMap.empty}
+ in
+ Hashtbl.add uf.map b new_node;
+ Hashtbl.add uf.syms t b;
+ b
+
+ let link uf i j eq= (* links i -> j *)
+ let node=Hashtbl.find uf.map i in
+ Hashtbl.replace uf.map i {node with clas=Eqto (j,eq)}
+
+ let union uf i1 i2 eq=
+ let r1= get_representative uf i1
+ and r2= get_representative uf i2 in
+ link uf i1 i2 eq;
+ r2.nfathers<-r1.nfathers+r2.nfathers;
+ r2.fathers<-r1.fathers@r2.fathers;
+ add_pacs uf i2 r1.constructors
+
+ let rec down_path uf i l=
+ match (Hashtbl.find uf.map i).clas with
+ Eqto(j,t)->down_path uf j (((i,j),t)::l)
+ | Rep _ ->l
+
+ let rec min_path=function
+ ([],l2)->([],l2)
+ | (l1,[])->(l1,[])
+ | (((c1,t1)::q1),((c2,t2)::q2)) when c1=c2 -> min_path (q1,q2)
+ | cpl -> cpl
+
+ let join_path uf i j=
+ assert (find uf i=find uf j);
+ min_path (down_path uf i [],down_path uf j [])
+
+end
+
+let rec combine_rec uf=function
+ []->[]
+ | t::pending->
+ let combine=combine_rec uf pending in
+ let s=UF.signature uf t in
+ let u=snd (UF.subterms uf t) in
+ let f (c,a) pac pacs=
+ if a=0 then pacs else
+ let sg=(c,a-1) in
+ UF.add_node_pac uf t sg pac.term_head;
+ PacMap.add sg {pac with args=u::pac.args;term_head=t} pacs
+ in
+ let pacs=PacMap.fold f (UF.pac_map uf (fst s)) PacMap.empty in
+ let i=UF.find uf t in
+ let (p,c)=UF.add_pacs uf i pacs in
+ let combine2=(combine_rec uf p)@c@combine in
+ try {lhs=t;rhs=ST.query s uf.UF.sigtable;rule=Congruence}::combine2 with
+ Not_found->
+ ST.enter t s uf.UF.sigtable;combine2
+
+let rec process_rec uf=function
+ []->[]
+ | eq::combine->
+ let pending=process_rec uf combine in
+ let i=UF.find uf eq.lhs
+ and j=UF.find uf eq.rhs in
+ if i=j then
+ pending
+ else
+ if (UF.size uf i)<(UF.size uf j) then
+ let l=UF.fathers uf i in
+ let (p,c)=UF.union uf i j eq in
+ let _ =ST.delete_list l uf.UF.sigtable in
+ let inj_pending=process_rec uf c in
+ inj_pending@p@l@pending
+ else
+ let l=UF.fathers uf j in
+ let (p,c)=UF.union uf j i (swap eq) in
+ let _ =ST.delete_list l uf.UF.sigtable in
+ let inj_pending=process_rec uf c in
+ inj_pending@p@l@pending
+
+let rec cc_rec uf=function
+ []->()
+ | pending->
+ let combine=combine_rec uf pending in
+ let pending0=process_rec uf combine in
+ cc_rec uf pending0
+
+let cc uf=cc_rec uf (UF.nodes uf)
+
+let rec make_uf=function
+ []->UF.empty ()
+ | (ax,(t1,t2))::q->
+ let uf=make_uf q in
+ let i1=UF.add uf t1 in
+ let i2=UF.add uf t2 in
+ let j1=UF.find uf i1 and j2=UF.find uf i2 in
+ if j1=j2 then uf else
+ let (_,inj_combine)=
+ UF.union uf j1 j2 {lhs=i1;rhs=i2;rule=Axiom ax} in
+ let _ = process_rec uf inj_combine in uf
+
+let add_one_diseq uf (t1,t2)=(UF.add uf t1,UF.add uf t2)
+
+let add_disaxioms uf disaxioms=
+ let f (id,cpl)=(id,add_one_diseq uf cpl) in
+ List.map f disaxioms
+
+let check_equal uf (i1,i2) = UF.find uf i1 = UF.find uf i2
+
+let find_contradiction uf diseq =
+ List.find (fun (id,cpl) -> check_equal uf cpl) diseq
+
+
diff --git a/contrib/cc/ccalgo.mli b/contrib/cc/ccalgo.mli
new file mode 100644
index 00000000..47cdb3ea
--- /dev/null
+++ b/contrib/cc/ccalgo.mli
@@ -0,0 +1,84 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ccalgo.mli,v 1.6.2.1 2004/07/16 19:29:58 herbelin Exp $ *)
+
+type pa_constructor
+ (*{head: int; arity: int; args: (int * int) list}*)
+
+module PacMap:Map.S with type key=int * int
+
+type term =
+ Symb of Term.constr
+ | Appli of term * term
+ | Constructor of Names.constructor*int*int
+
+type rule =
+ Congruence
+ | Axiom of Names.identifier
+ | Injection of int*int*int*int
+
+type equality =
+ {lhs : int;
+ rhs : int;
+ rule : rule}
+
+module ST :
+sig
+ type t
+ val empty : unit -> t
+ val enter : int -> int * int -> t -> unit
+ val query : int * int -> t -> int
+ val delete : int -> t -> unit
+ val delete_list : int list -> t -> unit
+end
+
+module UF :
+sig
+ type t
+ exception Discriminable of int * int * int * int * t
+ val empty : unit -> t
+ val find : t -> int -> int
+ val size : t -> int -> int
+ val get_constructor : t -> int -> Names.constructor
+ val pac_arity : t -> int -> int * int -> int
+ val mem_node_pac : t -> int -> int * int -> int
+ val add_pacs : t -> int -> pa_constructor PacMap.t ->
+ int list * equality list
+ val term : t -> int -> term
+ val subterms : t -> int -> int * int
+ val add : t -> term -> int
+ val union : t -> int -> int -> equality -> int list * equality list
+ val join_path : t -> int -> int ->
+ ((int*int)*equality) list*
+ ((int*int)*equality) list
+end
+
+
+val combine_rec : UF.t -> int list -> equality list
+val process_rec : UF.t -> equality list -> int list
+
+val cc : UF.t -> unit
+
+val make_uf :
+ (Names.identifier * (term * term)) list -> UF.t
+
+val add_one_diseq : UF.t -> (term * term) -> int * int
+
+val add_disaxioms :
+ UF.t -> (Names.identifier * (term * term)) list ->
+ (Names.identifier * (int * int)) list
+
+val check_equal : UF.t -> int * int -> bool
+
+val find_contradiction : UF.t ->
+ (Names.identifier * (int * int)) list ->
+ (Names.identifier * (int * int))
+
+
+
diff --git a/contrib/cc/ccproof.ml b/contrib/cc/ccproof.ml
new file mode 100644
index 00000000..fa525e65
--- /dev/null
+++ b/contrib/cc/ccproof.ml
@@ -0,0 +1,157 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ccproof.ml,v 1.8.2.1 2004/07/16 19:29:58 herbelin Exp $ *)
+
+(* This file uses the (non-compressed) union-find structure to generate *)
+(* proof-trees that will be transformed into proof-terms in cctac.ml4 *)
+
+open Util
+open Names
+open Ccalgo
+
+type proof=
+ Ax of identifier
+ | SymAx of identifier
+ | Refl of term
+ | Trans of proof*proof
+ | Congr of proof*proof
+ | Inject of proof*constructor*int*int
+
+let pcongr=function
+ Refl t1, Refl t2 -> Refl (Appli (t1,t2))
+ | p1, p2 -> Congr (p1,p2)
+
+let rec ptrans=function
+ Refl _, p ->p
+ | p, Refl _ ->p
+ | Trans(p1,p2), p3 ->ptrans(p1,ptrans (p2,p3))
+ | Congr(p1,p2), Congr(p3,p4) ->pcongr(ptrans(p1,p3),ptrans(p2,p4))
+ | Congr(p1,p2), Trans(Congr(p3,p4),p5) ->
+ ptrans(pcongr(ptrans(p1,p3),ptrans(p2,p4)),p5)
+ | p1, p2 ->Trans (p1,p2)
+
+let rec psym=function
+ Refl p->Refl p
+ | SymAx s->Ax s
+ | Ax s-> SymAx s
+ | Inject (p,c,n,a)-> Inject (psym p,c,n,a)
+ | Trans (p1,p2)-> ptrans (psym p2,psym p1)
+ | Congr (p1,p2)-> pcongr (psym p1,psym p2)
+
+let pcongr=function
+ Refl t1, Refl t2 ->Refl (Appli (t1,t2))
+ | p1, p2 -> Congr (p1,p2)
+
+let build_proof uf=
+
+ let rec equal_proof i j=
+ if i=j then Refl (UF.term uf i) else
+ let (li,lj)=UF.join_path uf i j in
+ ptrans (path_proof i li,psym (path_proof j lj))
+
+ and edge_proof ((i,j),eq)=
+ let pi=equal_proof i eq.lhs in
+ let pj=psym (equal_proof j eq.rhs) in
+ let pij=
+ match eq.rule with
+ Axiom s->Ax s
+ | Congruence ->congr_proof eq.lhs eq.rhs
+ | Injection (ti,tj,c,a) ->
+ let p=equal_proof ti tj in
+ let p1=constr_proof ti ti c 0
+ and p2=constr_proof tj tj c 0 in
+ match UF.term uf c with
+ Constructor (cstr,nargs,nhyps) ->
+ Inject(ptrans(psym p1,ptrans(p,p2)),cstr,nhyps,a)
+ | _ -> anomaly "injection on non-constructor terms"
+ in ptrans(ptrans (pi,pij),pj)
+
+ and constr_proof i j c n=
+ try
+ let nj=UF.mem_node_pac uf j (c,n) in
+ let (ni,arg)=UF.subterms uf j in
+ let p=constr_proof ni nj c (n+1) in
+ let targ=UF.term uf arg in
+ ptrans (equal_proof i j, pcongr (p,Refl targ))
+ with Not_found->equal_proof i j
+
+ and path_proof i=function
+ [] -> Refl (UF.term uf i)
+ | x::q->ptrans (path_proof (snd (fst x)) q,edge_proof x)
+
+ and congr_proof i j=
+ let (i1,i2) = UF.subterms uf i
+ and (j1,j2) = UF.subterms uf j in
+ pcongr (equal_proof i1 j1, equal_proof i2 j2)
+
+ and discr_proof i ci j cj=
+ let p=equal_proof i j
+ and p1=constr_proof i i ci 0
+ and p2=constr_proof j j cj 0 in
+ ptrans(psym p1,ptrans(p,p2))
+ in
+ function
+ `Prove_goal (i,j) | `Refute_hyp (i,j) -> equal_proof i j
+ | `Discriminate (i,ci,j,cj)-> discr_proof i ci j cj
+
+let rec nth_arg t n=
+ match t with
+ Appli (t1,t2)->
+ if n>0 then
+ nth_arg t1 (n-1)
+ else t2
+ | _ -> anomaly "nth_arg: not enough args"
+
+let rec type_proof axioms p=
+ match p with
+ Ax s->List.assoc s axioms
+ | SymAx s-> let (t1,t2)=List.assoc s axioms in (t2,t1)
+ | Refl t-> t,t
+ | Trans (p1,p2)->
+ let (s1,t1)=type_proof axioms p1
+ and (t2,s2)=type_proof axioms p2 in
+ if t1=t2 then (s1,s2) else anomaly "invalid cc transitivity"
+ | Congr (p1,p2)->
+ let (i1,j1)=type_proof axioms p1
+ and (i2,j2)=type_proof axioms p2 in
+ Appli (i1,i2),Appli (j1,j2)
+ | Inject (p,c,n,a)->
+ let (ti,tj)=type_proof axioms p in
+ nth_arg ti (n-a),nth_arg tj (n-a)
+
+let by_contradiction uf diseq axioms disaxioms=
+ try
+ let id,cpl=find_contradiction uf diseq in
+ let prf=build_proof uf (`Refute_hyp cpl) in
+ if List.assoc id disaxioms=type_proof axioms prf then
+ `Refute_hyp (id,prf)
+ else
+ anomaly "wrong proof generated"
+ with Not_found ->
+ errorlabstrm "Congruence" (Pp.str "I couldn't solve goal")
+
+let cc_proof axioms disaxioms glo=
+ try
+ let uf=make_uf axioms in
+ let diseq=add_disaxioms uf disaxioms in
+ match glo with
+ Some cpl ->
+ let goal=add_one_diseq uf cpl in cc uf;
+ if check_equal uf goal then
+ let prf=build_proof uf (`Prove_goal goal) in
+ if cpl=type_proof axioms prf then
+ `Prove_goal prf
+ else anomaly "wrong proof generated"
+ else by_contradiction uf diseq axioms disaxioms
+ | None -> cc uf; by_contradiction uf diseq axioms disaxioms
+ with UF.Discriminable (i,ci,j,cj,uf) ->
+ let prf=build_proof uf (`Discriminate (i,ci,j,cj)) in
+ `Discriminate (UF.get_constructor uf ci,prf)
+
+
diff --git a/contrib/cc/ccproof.mli b/contrib/cc/ccproof.mli
new file mode 100644
index 00000000..887ed070
--- /dev/null
+++ b/contrib/cc/ccproof.mli
@@ -0,0 +1,45 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ccproof.mli,v 1.6.2.1 2004/07/16 19:29:59 herbelin Exp $ *)
+
+open Ccalgo
+open Names
+
+type proof =
+ Ax of identifier
+ | SymAx of identifier
+ | Refl of term
+ | Trans of proof * proof
+ | Congr of proof * proof
+ | Inject of proof * constructor * int * int
+
+val pcongr : proof * proof -> proof
+val ptrans : proof * proof -> proof
+val psym : proof -> proof
+val pcongr : proof * proof -> proof
+
+val build_proof :
+ UF.t ->
+ [ `Discriminate of int * int * int * int
+ | `Prove_goal of int * int
+ | `Refute_hyp of int * int ]
+ -> proof
+
+val type_proof :
+ (identifier * (term * term)) list -> proof -> term * term
+
+val cc_proof :
+ (identifier * (term * term)) list ->
+ (identifier * (term * term)) list ->
+ (term * term) option ->
+ [ `Discriminate of constructor * proof
+ | `Prove_goal of proof
+ | `Refute_hyp of identifier * proof ]
+
+
diff --git a/contrib/cc/cctac.ml4 b/contrib/cc/cctac.ml4
new file mode 100644
index 00000000..49fe46fe
--- /dev/null
+++ b/contrib/cc/cctac.ml4
@@ -0,0 +1,247 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: cctac.ml4,v 1.13.2.1 2004/07/16 19:29:59 herbelin Exp $ *)
+
+(* This file is the interface between the c-c algorithm and Coq *)
+
+open Evd
+open Proof_type
+open Names
+open Libnames
+open Nameops
+open Inductiveops
+open Declarations
+open Term
+open Termops
+open Tacmach
+open Tactics
+open Tacticals
+open Ccalgo
+open Tacinterp
+open Ccproof
+open Pp
+open Util
+open Format
+
+exception Not_an_eq
+
+let fail()=raise Not_an_eq
+
+let constant dir s = lazy (Coqlib.gen_constant "CC" dir s)
+
+let f_equal_theo = constant ["Init";"Logic"] "f_equal"
+
+let eq_rect_theo = constant ["Init";"Logic"] "eq_rect"
+
+(* decompose member of equality in an applicative format *)
+
+let rec decompose_term env t=
+ match kind_of_term t with
+ App (f,args)->
+ let tf=decompose_term env f in
+ let targs=Array.map (decompose_term env) args in
+ Array.fold_left (fun s t->Appli (s,t)) tf targs
+ | Construct c->
+ let (_,oib)=Global.lookup_inductive (fst c) in
+ let nargs=mis_constructor_nargs_env env c in
+ Constructor (c,nargs,nargs-oib.mind_nparams)
+ | _ ->(Symb t)
+
+(* decompose equality in members and type *)
+
+let rec eq_type_of_term term=
+ match kind_of_term term with
+ App (f,args)->
+ (try
+ let ref = reference_of_constr f in
+ if ref=Coqlib.glob_eq && (Array.length args)=3
+ then (true,args.(0),args.(1),args.(2))
+ else
+ if ref=(Lazy.force Coqlib.coq_not_ref) &&
+ (Array.length args)=1 then
+ let (pol,t,a,b)=eq_type_of_term args.(0) in
+ if pol then (false,t,a,b) else fail ()
+ else fail ()
+ with Not_found -> fail ())
+ | Prod (_,eq,ff) ->
+ (try
+ let ref = reference_of_constr ff in
+ if ref=(Lazy.force Coqlib.coq_False_ref) then
+ let (pol,t,a,b)=eq_type_of_term eq in
+ if pol then (false,t,a,b) else fail ()
+ else fail ()
+ with Not_found -> fail ())
+ | _ -> fail ()
+
+(* read an equality *)
+
+let read_eq env term=
+ let (pol,_,t1,t2)=eq_type_of_term term in
+ (pol,(decompose_term env t1,decompose_term env t2))
+
+(* rebuild a term from applicative format *)
+
+let rec make_term=function
+ Symb s->s
+ | Constructor(c,_,_)->mkConstruct c
+ | Appli (s1,s2)->
+ make_app [(make_term s2)] s1
+and make_app l=function
+ Symb s->applistc s l
+ | Constructor(c,_,_)->applistc (mkConstruct c) l
+ | Appli (s1,s2)->make_app ((make_term s2)::l) s1
+
+(* store all equalities from the context *)
+
+let rec read_hyps env=function
+ []->[],[]
+ | (id,_,e)::hyps->let eq,diseq=read_hyps env hyps in
+ try let pol,cpl=read_eq env e in
+ if pol then
+ ((id,cpl)::eq),diseq
+ else
+ eq,((id,cpl)::diseq)
+ with Not_an_eq -> eq,diseq
+
+(* build a problem ( i.e. read the goal as an equality ) *)
+
+let make_prb gl=
+ let env=pf_env gl in
+ let eq,diseq=read_hyps env gl.it.evar_hyps in
+ try
+ let pol,cpl=read_eq env gl.it.evar_concl in
+ if pol then (eq,diseq,Some cpl) else assert false with
+ Not_an_eq -> (eq,diseq,None)
+
+(* indhyps builds the array of arrays of constructor hyps for (ind largs) *)
+
+let build_projection intype outtype (cstr:constructor) special default gls=
+ let env=pf_env gls in
+ let (h,argv) =
+ try destApplication intype with
+ Invalid_argument _ -> (intype,[||]) in
+ let ind=destInd h in
+ let types=Inductive.arities_of_constructors env ind in
+ let lp=Array.length types in
+ let ci=(snd cstr)-1 in
+ let branch i=
+ let ti=Term.prod_appvect types.(i) argv in
+ let rc=fst (Sign.decompose_prod_assum ti) in
+ let head=
+ if i=ci then special else default in
+ Sign.it_mkLambda_or_LetIn head rc in
+ let branches=Array.init lp branch in
+ let casee=mkRel 1 in
+ let pred=mkLambda(Anonymous,intype,outtype) in
+ let case_info=make_default_case_info (pf_env gls) RegularStyle ind in
+ let body= mkCase(case_info, pred, casee, branches) in
+ let id=pf_get_new_id (id_of_string "t") gls in
+ mkLambda(Name id,intype,body)
+
+(* generate an adhoc tactic following the proof tree *)
+
+let rec proof_tac axioms=function
+ Ax id->exact_check (mkVar id)
+ | SymAx id->tclTHEN symmetry (exact_check (mkVar id))
+ | Refl t->reflexivity
+ | Trans (p1,p2)->let t=(make_term (snd (type_proof axioms p1))) in
+ (tclTHENS (transitivity t)
+ [(proof_tac axioms p1);(proof_tac axioms p2)])
+ | Congr (p1,p2)->
+ fun gls->
+ let (f1,f2)=(type_proof axioms p1)
+ and (x1,x2)=(type_proof axioms p2) in
+ let tf1=make_term f1 and tx1=make_term x1
+ and tf2=make_term f2 and tx2=make_term x2 in
+ let typf=pf_type_of gls tf1 and typx=pf_type_of gls tx1
+ and typfx=pf_type_of gls (mkApp(tf1,[|tx1|])) in
+ let id=pf_get_new_id (id_of_string "f") gls in
+ let appx1=mkLambda(Name id,typf,mkApp(mkRel 1,[|tx1|])) in
+ let lemma1=
+ mkApp(Lazy.force f_equal_theo,[|typf;typfx;appx1;tf1;tf2|])
+ and lemma2=
+ mkApp(Lazy.force f_equal_theo,[|typx;typfx;tf2;tx1;tx2|]) in
+ (tclTHENS (transitivity (mkApp(tf2,[|tx1|])))
+ [tclTHEN (apply lemma1) (proof_tac axioms p1);
+ tclFIRST
+ [tclTHEN (apply lemma2) (proof_tac axioms p2);
+ reflexivity;
+ fun gls ->
+ errorlabstrm "Congruence"
+ (Pp.str
+ "I don't know how to handle dependent equality")]]
+ gls)
+ | Inject (prf,cstr,nargs,argind) as gprf->
+ (fun gls ->
+ let ti,tj=type_proof axioms prf in
+ let ai,aj=type_proof axioms gprf in
+ let cti=make_term ti in
+ let ctj=make_term tj in
+ let cai=make_term ai in
+ let intype=pf_type_of gls cti in
+ let outtype=pf_type_of gls cai in
+ let special=mkRel (1+nargs-argind) in
+ let default=make_term ai in
+ let proj=build_projection intype outtype cstr special default gls in
+ let injt=
+ mkApp (Lazy.force f_equal_theo,[|intype;outtype;proj;cti;ctj|]) in
+ tclTHEN (apply injt) (proof_tac axioms prf) gls)
+
+let refute_tac axioms disaxioms id p gls =
+ let t1,t2=List.assoc id disaxioms in
+ let tt1=make_term t1 and tt2=make_term t2 in
+ let intype=pf_type_of gls tt1 in
+ let neweq=
+ mkApp(constr_of_reference Coqlib.glob_eq,
+ [|intype;tt1;tt2|]) in
+ let hid=pf_get_new_id (id_of_string "Heq") gls in
+ let false_t=mkApp (mkVar id,[|mkVar hid|]) in
+ tclTHENS (true_cut (Name hid) neweq)
+ [proof_tac axioms p; simplest_elim false_t] gls
+
+let discriminate_tac axioms cstr p gls =
+ let t1,t2=type_proof axioms p in
+ let tt1=make_term t1 and tt2=make_term t2 in
+ let intype=pf_type_of gls tt1 in
+ let concl=pf_concl gls in
+ let outsort=mkType (new_univ ()) in
+ let xid=pf_get_new_id (id_of_string "X") gls in
+ let tid=pf_get_new_id (id_of_string "t") gls in
+ let identity=mkLambda(Name xid,outsort,mkLambda(Name tid,mkRel 1,mkRel 1)) in
+ let trivial=pf_type_of gls identity in
+ let outtype=mkType (new_univ ()) in
+ let pred=mkLambda(Name xid,outtype,mkRel 1) in
+ let hid=pf_get_new_id (id_of_string "Heq") gls in
+ let proj=build_projection intype outtype cstr trivial concl gls in
+ let injt=mkApp (Lazy.force f_equal_theo,
+ [|intype;outtype;proj;tt1;tt2;mkVar hid|]) in
+ let endt=mkApp (Lazy.force eq_rect_theo,
+ [|outtype;trivial;pred;identity;concl;injt|]) in
+ let neweq=mkApp(constr_of_reference Coqlib.glob_eq,[|intype;tt1;tt2|]) in
+ tclTHENS (true_cut (Name hid) neweq)
+ [proof_tac axioms p;exact_check endt] gls
+
+(* wrap everything *)
+
+let cc_tactic gls=
+ Library.check_required_library ["Coq";"Init";"Logic"];
+ let (axioms,disaxioms,glo)=make_prb gls in
+ match (cc_proof axioms disaxioms glo) with
+ `Prove_goal p -> proof_tac axioms p gls
+ | `Refute_hyp (id,p) -> refute_tac axioms disaxioms id p gls
+ | `Discriminate (cstr,p) -> discriminate_tac axioms cstr p gls
+
+(* Tactic registration *)
+
+TACTIC EXTEND CC
+ [ "Congruence" ] -> [ tclSOLVE [tclTHEN (tclREPEAT introf) cc_tactic] ]
+END
+
diff --git a/contrib/correctness/ArrayPermut.v b/contrib/correctness/ArrayPermut.v
new file mode 100644
index 00000000..b352045a
--- /dev/null
+++ b/contrib/correctness/ArrayPermut.v
@@ -0,0 +1,175 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ArrayPermut.v,v 1.3.2.1 2004/07/16 19:29:59 herbelin Exp $ *)
+
+(****************************************************************************)
+(* Permutations of elements in arrays *)
+(* Definition and properties *)
+(****************************************************************************)
+
+Require Import ProgInt.
+Require Import Arrays.
+Require Export Exchange.
+
+Require Import Omega.
+
+Set Implicit Arguments.
+
+(* We define "permut" as the smallest equivalence relation which contains
+ * transpositions i.e. exchange of two elements.
+ *)
+
+Inductive permut (n:Z) (A:Set) : array n A -> array n A -> Prop :=
+ | exchange_is_permut :
+ forall (t t':array n A) (i j:Z), exchange t t' i j -> permut t t'
+ | permut_refl : forall t:array n A, permut t t
+ | permut_sym : forall t t':array n A, permut t t' -> permut t' t
+ | permut_trans :
+ forall t t' t'':array n A, permut t t' -> permut t' t'' -> permut t t''.
+
+Hint Resolve exchange_is_permut permut_refl permut_sym permut_trans: v62
+ datatypes.
+
+(* We also define the permutation on a segment of an array, "sub_permut",
+ * the other parts of the array being unchanged
+ *
+ * One again we define it as the smallest equivalence relation containing
+ * transpositions on the given segment.
+ *)
+
+Inductive sub_permut (n:Z) (A:Set) (g d:Z) :
+array n A -> array n A -> Prop :=
+ | exchange_is_sub_permut :
+ forall (t t':array n A) (i j:Z),
+ (g <= i <= d)%Z ->
+ (g <= j <= d)%Z -> exchange t t' i j -> sub_permut g d t t'
+ | sub_permut_refl : forall t:array n A, sub_permut g d t t
+ | sub_permut_sym :
+ forall t t':array n A, sub_permut g d t t' -> sub_permut g d t' t
+ | sub_permut_trans :
+ forall t t' t'':array n A,
+ sub_permut g d t t' -> sub_permut g d t' t'' -> sub_permut g d t t''.
+
+Hint Resolve exchange_is_sub_permut sub_permut_refl sub_permut_sym
+ sub_permut_trans: v62 datatypes.
+
+(* To express that some parts of arrays are equal we introduce the
+ * property "array_id" which says that a segment is the same on two
+ * arrays.
+ *)
+
+Definition array_id (n:Z) (A:Set) (t t':array n A)
+ (g d:Z) := forall i:Z, (g <= i <= d)%Z -> #t [i] = #t' [i].
+
+(* array_id is an equivalence relation *)
+
+Lemma array_id_refl :
+ forall (n:Z) (A:Set) (t:array n A) (g d:Z), array_id t t g d.
+Proof.
+unfold array_id in |- *.
+auto with datatypes.
+Qed.
+
+Hint Resolve array_id_refl: v62 datatypes.
+
+Lemma array_id_sym :
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ array_id t t' g d -> array_id t' t g d.
+Proof.
+unfold array_id in |- *. intros.
+symmetry in |- *; auto with datatypes.
+Qed.
+
+Hint Resolve array_id_sym: v62 datatypes.
+
+Lemma array_id_trans :
+ forall (n:Z) (A:Set) (t t' t'':array n A) (g d:Z),
+ array_id t t' g d -> array_id t' t'' g d -> array_id t t'' g d.
+Proof.
+unfold array_id in |- *. intros.
+apply trans_eq with (y := #t' [i]); auto with datatypes.
+Qed.
+
+Hint Resolve array_id_trans: v62 datatypes.
+
+(* Outside the segment [g,d] the elements are equal *)
+
+Lemma sub_permut_id :
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ sub_permut g d t t' ->
+ array_id t t' 0 (g - 1) /\ array_id t t' (d + 1) (n - 1).
+Proof.
+intros n A t t' g d. simple induction 1; intros.
+elim H2; intros.
+unfold array_id in |- *; split; intros.
+apply H7; omega.
+apply H7; omega.
+auto with datatypes.
+decompose [and] H1; auto with datatypes.
+decompose [and] H1; decompose [and] H3; eauto with datatypes.
+Qed.
+
+Hint Resolve sub_permut_id.
+
+Lemma sub_permut_eq :
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ sub_permut g d t t' ->
+ forall i:Z, (0 <= i < g)%Z \/ (d < i < n)%Z -> #t [i] = #t' [i].
+Proof.
+intros n A t t' g d Htt' i Hi.
+elim (sub_permut_id Htt'). unfold array_id in |- *.
+intros.
+elim Hi; [ intro; apply H; omega | intro; apply H0; omega ].
+Qed.
+
+(* sub_permut is a particular case of permutation *)
+
+Lemma sub_permut_is_permut :
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ sub_permut g d t t' -> permut t t'.
+Proof.
+intros n A t t' g d. simple induction 1; intros; eauto with datatypes.
+Qed.
+
+Hint Resolve sub_permut_is_permut.
+
+(* If we have a sub-permutation on an empty segment, then we have a
+ * sub-permutation on any segment.
+ *)
+
+Lemma sub_permut_void :
+ forall (N:Z) (A:Set) (t t':array N A) (g g' d d':Z),
+ (d < g)%Z -> sub_permut g d t t' -> sub_permut g' d' t t'.
+Proof.
+intros N A t t' g g' d d' Hdg.
+simple induction 1; intros.
+absurd (g <= d)%Z; omega.
+auto with datatypes.
+auto with datatypes.
+eauto with datatypes.
+Qed.
+
+(* A sub-permutation on a segment may be extended to any segment that
+ * contains the first one.
+ *)
+
+Lemma sub_permut_extension :
+ forall (N:Z) (A:Set) (t t':array N A) (g g' d d':Z),
+ (g' <= g)%Z -> (d <= d')%Z -> sub_permut g d t t' -> sub_permut g' d' t t'.
+Proof.
+intros N A t t' g g' d d' Hgg' Hdd'.
+simple induction 1; intros.
+apply exchange_is_sub_permut with (i := i) (j := j);
+ [ omega | omega | assumption ].
+auto with datatypes.
+auto with datatypes.
+eauto with datatypes.
+Qed. \ No newline at end of file
diff --git a/contrib/correctness/Arrays.v b/contrib/correctness/Arrays.v
new file mode 100644
index 00000000..1659917a
--- /dev/null
+++ b/contrib/correctness/Arrays.v
@@ -0,0 +1,78 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Arrays.v,v 1.9.2.1 2004/07/16 19:29:59 herbelin Exp $ *)
+
+(**********************************************)
+(* Functional arrays, for use in Correctness. *)
+(**********************************************)
+
+(* This is an axiomatization of arrays.
+ *
+ * The type (array N T) is the type of arrays ranging from 0 to N-1
+ * which elements are of type T.
+ *
+ * Arrays are created with new, accessed with access and modified with store.
+ *
+ * Operations of accessing and storing are not guarded, but axioms are.
+ * So these arrays can be viewed as arrays where accessing and storing
+ * out of the bounds has no effect.
+ *)
+
+
+Require Export ProgInt.
+
+Set Implicit Arguments.
+
+
+(* The type of arrays *)
+
+Parameter array : Z -> Set -> Set.
+
+
+(* Functions to create, access and modify arrays *)
+
+Parameter new : forall (n:Z) (T:Set), T -> array n T.
+
+Parameter access : forall (n:Z) (T:Set), array n T -> Z -> T.
+
+Parameter store : forall (n:Z) (T:Set), array n T -> Z -> T -> array n T.
+
+
+(* Axioms *)
+
+Axiom
+ new_def :
+ forall (n:Z) (T:Set) (v0:T) (i:Z),
+ (0 <= i < n)%Z -> access (new n v0) i = v0.
+
+Axiom
+ store_def_1 :
+ forall (n:Z) (T:Set) (t:array n T) (v:T) (i:Z),
+ (0 <= i < n)%Z -> access (store t i v) i = v.
+
+Axiom
+ store_def_2 :
+ forall (n:Z) (T:Set) (t:array n T) (v:T) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> i <> j -> access (store t i v) j = access t j.
+
+Hint Resolve new_def store_def_1 store_def_2: datatypes v62.
+
+(* A tactic to simplify access in arrays *)
+
+Ltac array_access i j H :=
+ elim (Z_eq_dec i j);
+ [ intro H; rewrite H; rewrite store_def_1
+ | intro H; rewrite store_def_2; [ idtac | idtac | idtac | exact H ] ].
+
+(* Symbolic notation for access *)
+
+Notation "# t [ c ]" := (access t c) (at level 0, t at level 0). \ No newline at end of file
diff --git a/contrib/correctness/Arrays_stuff.v b/contrib/correctness/Arrays_stuff.v
new file mode 100644
index 00000000..899d7007
--- /dev/null
+++ b/contrib/correctness/Arrays_stuff.v
@@ -0,0 +1,16 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Arrays_stuff.v,v 1.2.16.1 2004/07/16 19:29:59 herbelin Exp $ *)
+
+Require Export Exchange.
+Require Export ArrayPermut.
+Require Export Sorted.
+
diff --git a/contrib/correctness/Correctness.v b/contrib/correctness/Correctness.v
new file mode 100644
index 00000000..a2ad2f50
--- /dev/null
+++ b/contrib/correctness/Correctness.v
@@ -0,0 +1,25 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Correctness.v,v 1.6.2.1 2004/07/16 19:29:59 herbelin Exp $ *)
+
+(* Correctness is base on the tactic Refine (developped on purpose) *)
+
+Require Export Tuples.
+
+Require Export ProgInt.
+Require Export ProgBool.
+Require Export Zwf.
+
+Require Export Arrays.
+
+(*
+Token "'".
+*) \ No newline at end of file
diff --git a/contrib/correctness/Exchange.v b/contrib/correctness/Exchange.v
new file mode 100644
index 00000000..7dc5218e
--- /dev/null
+++ b/contrib/correctness/Exchange.v
@@ -0,0 +1,95 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Exchange.v,v 1.4.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+(****************************************************************************)
+(* Exchange of two elements in an array *)
+(* Definition and properties *)
+(****************************************************************************)
+
+Require Import ProgInt.
+Require Import Arrays.
+
+Set Implicit Arguments.
+
+(* Definition *)
+
+Inductive exchange (n:Z) (A:Set) (t t':array n A) (i j:Z) : Prop :=
+ exchange_c :
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z ->
+ #t [i] = #t' [j] ->
+ #t [j] = #t' [i] ->
+ (forall k:Z, (0 <= k < n)%Z -> k <> i -> k <> j -> #t [k] = #t' [k]) ->
+ exchange t t' i j.
+
+(* Properties about exchanges *)
+
+Lemma exchange_1 :
+ forall (n:Z) (A:Set) (t:array n A) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> #(store (store t i #t [j]) j #t [i]) [i] = #t [j].
+Proof.
+intros n A t i j H_i H_j.
+case (dec_eq j i).
+intro eq_i_j. rewrite eq_i_j.
+auto with datatypes.
+intro not_j_i.
+rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_i not_j_i).
+auto with datatypes.
+Qed.
+
+Hint Resolve exchange_1: v62 datatypes.
+
+
+Lemma exchange_proof :
+ forall (n:Z) (A:Set) (t:array n A) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> exchange (store (store t i #t [j]) j #t [i]) t i j.
+Proof.
+intros n A t i j H_i H_j.
+apply exchange_c; auto with datatypes.
+intros k H_k not_k_i not_k_j.
+cut (j <> k); auto with datatypes. intro not_j_k.
+rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_k not_j_k).
+auto with datatypes.
+Qed.
+
+Hint Resolve exchange_proof: v62 datatypes.
+
+
+Lemma exchange_sym :
+ forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
+ exchange t t' i j -> exchange t' t i j.
+Proof.
+intros n A t t' i j H1.
+elim H1. clear H1. intros.
+constructor 1; auto with datatypes.
+intros. rewrite (H3 k); auto with datatypes.
+Qed.
+
+Hint Resolve exchange_sym: v62 datatypes.
+
+
+Lemma exchange_id :
+ forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
+ exchange t t' i j ->
+ i = j -> forall k:Z, (0 <= k < n)%Z -> #t [k] = #t' [k].
+Proof.
+intros n A t t' i j Hex Heq k Hk.
+elim Hex. clear Hex. intros.
+rewrite Heq in H1. rewrite Heq in H2.
+case (Z_eq_dec k j).
+ intro Heq'. rewrite Heq'. assumption.
+ intro Hnoteq. apply (H3 k); auto with datatypes. rewrite Heq. assumption.
+Qed.
+
+Hint Resolve exchange_id: v62 datatypes. \ No newline at end of file
diff --git a/contrib/correctness/ProgBool.v b/contrib/correctness/ProgBool.v
new file mode 100644
index 00000000..bce19870
--- /dev/null
+++ b/contrib/correctness/ProgBool.v
@@ -0,0 +1,66 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ProgBool.v,v 1.4.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+Require Import ZArith.
+Require Export Bool_nat.
+Require Export Sumbool.
+
+Definition annot_bool :
+ forall b:bool, {b' : bool | if b' then b = true else b = false}.
+Proof.
+intro b.
+exists b. case b; trivial.
+Qed.
+
+
+(* Logical connectives *)
+
+Definition spec_and (A B C D:Prop) (b:bool) := if b then A /\ C else B \/ D.
+
+Definition prog_bool_and :
+ forall Q1 Q2:bool -> Prop,
+ sig Q1 ->
+ sig Q2 ->
+ {b : bool | if b then Q1 true /\ Q2 true else Q1 false \/ Q2 false}.
+Proof.
+intros Q1 Q2 H1 H2.
+elim H1. intro b1. elim H2. intro b2.
+case b1; case b2; intros.
+exists true; auto.
+exists false; auto. exists false; auto. exists false; auto.
+Qed.
+
+Definition spec_or (A B C D:Prop) (b:bool) := if b then A \/ C else B /\ D.
+
+Definition prog_bool_or :
+ forall Q1 Q2:bool -> Prop,
+ sig Q1 ->
+ sig Q2 ->
+ {b : bool | if b then Q1 true \/ Q2 true else Q1 false /\ Q2 false}.
+Proof.
+intros Q1 Q2 H1 H2.
+elim H1. intro b1. elim H2. intro b2.
+case b1; case b2; intros.
+exists true; auto. exists true; auto. exists true; auto.
+exists false; auto.
+Qed.
+
+Definition spec_not (A B:Prop) (b:bool) := if b then B else A.
+
+Definition prog_bool_not :
+ forall Q:bool -> Prop, sig Q -> {b : bool | if b then Q false else Q true}.
+Proof.
+intros Q H.
+elim H. intro b.
+case b; intro.
+exists false; auto. exists true; auto.
+Qed.
diff --git a/contrib/correctness/ProgInt.v b/contrib/correctness/ProgInt.v
new file mode 100644
index 00000000..c26e3553
--- /dev/null
+++ b/contrib/correctness/ProgInt.v
@@ -0,0 +1,19 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ProgInt.v,v 1.2.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+Require Export ZArith.
+Require Export ZArith_dec.
+
+Theorem Znotzero : forall x:Z, {x <> 0%Z} + {x = 0%Z}.
+Proof.
+intro x. elim (Z_eq_dec x 0); auto.
+Qed. \ No newline at end of file
diff --git a/contrib/correctness/ProgramsExtraction.v b/contrib/correctness/ProgramsExtraction.v
new file mode 100644
index 00000000..40253f33
--- /dev/null
+++ b/contrib/correctness/ProgramsExtraction.v
@@ -0,0 +1,30 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ProgramsExtraction.v,v 1.2.16.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+Require Export Extraction.
+
+Extract Inductive unit => unit [ "()" ].
+Extract Inductive bool => bool [ true false ].
+Extract Inductive sumbool => bool [ true false ].
+
+Require Export Correctness.
+
+Declare ML Module "pextract".
+
+Grammar vernac vernac : ast :=
+ imperative_ocaml [ "Write" "Caml" "File" stringarg($file)
+ "[" ne_identarg_list($idl) "]" "." ]
+ -> [ (IMPERATIVEEXTRACTION $file (VERNACARGLIST ($LIST $idl))) ]
+
+| initialize [ "Initialize" identarg($id) "with" comarg($c) "." ]
+ -> [ (INITIALIZE $id $c) ]
+.
diff --git a/contrib/correctness/Programs_stuff.v b/contrib/correctness/Programs_stuff.v
new file mode 100644
index 00000000..1ca4b63e
--- /dev/null
+++ b/contrib/correctness/Programs_stuff.v
@@ -0,0 +1,13 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Programs_stuff.v,v 1.1.16.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+Require Export Arrays_stuff.
diff --git a/contrib/correctness/Sorted.v b/contrib/correctness/Sorted.v
new file mode 100644
index 00000000..2efe54a4
--- /dev/null
+++ b/contrib/correctness/Sorted.v
@@ -0,0 +1,202 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Library about sorted (sub-)arrays / Nicolas Magaud, July 1998 *)
+
+(* $Id: Sorted.v,v 1.7.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+Require Export Arrays.
+Require Import ArrayPermut.
+
+Require Import ZArithRing.
+Require Import Omega.
+Open Local Scope Z_scope.
+
+Set Implicit Arguments.
+
+(* Definition *)
+
+Definition sorted_array (N:Z) (A:array N Z) (deb fin:Z) :=
+ deb <= fin -> forall x:Z, x >= deb -> x < fin -> #A [x] <= #A [x + 1].
+
+(* Elements of a sorted sub-array are in increasing order *)
+
+(* one element and the next one *)
+
+Lemma sorted_elements_1 :
+ forall (N:Z) (A:array N Z) (n m:Z),
+ sorted_array A n m ->
+ forall k:Z,
+ k >= n -> forall i:Z, 0 <= i -> k + i <= m -> #A [k] <= #A [k + i].
+Proof.
+intros N A n m H_sorted k H_k i H_i.
+pattern i in |- *. apply natlike_ind.
+intro.
+replace (k + 0) with k; omega. (*** Ring `k+0` => BUG ***)
+
+intros.
+apply Zle_trans with (m := #A [k + x]).
+apply H0; omega.
+
+unfold Zsucc in |- *.
+replace (k + (x + 1)) with (k + x + 1).
+unfold sorted_array in H_sorted.
+apply H_sorted; omega.
+
+omega.
+
+assumption.
+Qed.
+
+(* one element and any of the following *)
+
+Lemma sorted_elements :
+ forall (N:Z) (A:array N Z) (n m k l:Z),
+ sorted_array A n m ->
+ k >= n -> l < N -> k <= l -> l <= m -> #A [k] <= #A [l].
+Proof.
+intros.
+replace l with (k + (l - k)).
+apply sorted_elements_1 with (n := n) (m := m);
+ [ assumption | omega | omega | omega ].
+omega.
+Qed.
+
+Hint Resolve sorted_elements: datatypes v62.
+
+(* A sub-array of a sorted array is sorted *)
+
+Lemma sub_sorted_array :
+ forall (N:Z) (A:array N Z) (deb fin i j:Z),
+ sorted_array A deb fin ->
+ i >= deb -> j <= fin -> i <= j -> sorted_array A i j.
+Proof.
+unfold sorted_array in |- *.
+intros.
+apply H; omega.
+Qed.
+
+Hint Resolve sub_sorted_array: datatypes v62.
+
+(* Extension on the left of the property of being sorted *)
+
+Lemma left_extension :
+ forall (N:Z) (A:array N Z) (i j:Z),
+ i > 0 ->
+ j < N ->
+ sorted_array A i j -> #A [i - 1] <= #A [i] -> sorted_array A (i - 1) j.
+Proof.
+intros; unfold sorted_array in |- *; intros.
+elim (Z_ge_lt_dec x i). (* (`x >= i`) + (`x < i`) *)
+intro Hcut.
+apply H1; omega.
+
+intro Hcut.
+replace x with (i - 1).
+replace (i - 1 + 1) with i; [ assumption | omega ].
+
+omega.
+Qed.
+
+(* Extension on the right *)
+
+Lemma right_extension :
+ forall (N:Z) (A:array N Z) (i j:Z),
+ i >= 0 ->
+ j < N - 1 ->
+ sorted_array A i j -> #A [j] <= #A [j + 1] -> sorted_array A i (j + 1).
+Proof.
+intros; unfold sorted_array in |- *; intros.
+elim (Z_lt_ge_dec x j).
+intro Hcut.
+apply H1; omega.
+
+intro HCut.
+replace x with j; [ assumption | omega ].
+Qed.
+
+(* Substitution of the leftmost value by a smaller value *)
+
+Lemma left_substitution :
+ forall (N:Z) (A:array N Z) (i j v:Z),
+ i >= 0 ->
+ j < N ->
+ sorted_array A i j -> v <= #A [i] -> sorted_array (store A i v) i j.
+Proof.
+intros N A i j v H_i H_j H_sorted H_v.
+unfold sorted_array in |- *; intros.
+
+cut (x = i \/ x > i).
+intro Hcut; elim Hcut; clear Hcut; intro.
+rewrite H2.
+rewrite store_def_1; try omega.
+rewrite store_def_2; try omega.
+apply Zle_trans with (m := #A [i]); [ assumption | apply H_sorted; omega ].
+
+rewrite store_def_2; try omega.
+rewrite store_def_2; try omega.
+apply H_sorted; omega.
+omega.
+Qed.
+
+(* Substitution of the rightmost value by a larger value *)
+
+Lemma right_substitution :
+ forall (N:Z) (A:array N Z) (i j v:Z),
+ i >= 0 ->
+ j < N ->
+ sorted_array A i j -> #A [j] <= v -> sorted_array (store A j v) i j.
+Proof.
+intros N A i j v H_i H_j H_sorted H_v.
+unfold sorted_array in |- *; intros.
+
+cut (x = j - 1 \/ x < j - 1).
+intro Hcut; elim Hcut; clear Hcut; intro.
+rewrite H2.
+replace (j - 1 + 1) with j; [ idtac | omega ]. (*** Ring `j-1+1`. => BUG ***)
+rewrite store_def_2; try omega.
+rewrite store_def_1; try omega.
+apply Zle_trans with (m := #A [j]).
+apply sorted_elements with (n := i) (m := j); try omega; assumption.
+assumption.
+
+rewrite store_def_2; try omega.
+rewrite store_def_2; try omega.
+apply H_sorted; omega.
+
+omega.
+Qed.
+
+(* Affectation outside of the sorted region *)
+
+Lemma no_effect :
+ forall (N:Z) (A:array N Z) (i j k v:Z),
+ i >= 0 ->
+ j < N ->
+ sorted_array A i j ->
+ 0 <= k < i \/ j < k < N -> sorted_array (store A k v) i j.
+Proof.
+intros.
+unfold sorted_array in |- *; intros.
+rewrite store_def_2; try omega.
+rewrite store_def_2; try omega.
+apply H1; assumption.
+Qed.
+
+Lemma sorted_array_id :
+ forall (N:Z) (t1 t2:array N Z) (g d:Z),
+ sorted_array t1 g d -> array_id t1 t2 g d -> sorted_array t2 g d.
+Proof.
+intros N t1 t2 g d Hsorted Hid.
+unfold array_id in Hid.
+unfold sorted_array in Hsorted. unfold sorted_array in |- *.
+intros Hgd x H1x H2x.
+rewrite <- (Hid x); [ idtac | omega ].
+rewrite <- (Hid (x + 1)); [ idtac | omega ].
+apply Hsorted; assumption.
+Qed. \ No newline at end of file
diff --git a/contrib/correctness/Tuples.v b/contrib/correctness/Tuples.v
new file mode 100644
index 00000000..e3fff08d
--- /dev/null
+++ b/contrib/correctness/Tuples.v
@@ -0,0 +1,98 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Tuples.v,v 1.2.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+(* Tuples *)
+
+Definition tuple_1 (X:Set) := X.
+Definition tuple_2 := prod.
+Definition Build_tuple_2 := pair.
+Definition proj_2_1 := fst.
+Definition proj_2_2 := snd.
+
+Record tuple_3 (T1 T2 T3:Set) : Set :=
+ {proj_3_1 : T1; proj_3_2 : T2; proj_3_3 : T3}.
+
+Record tuple_4 (T1 T2 T3 T4:Set) : Set :=
+ {proj_4_1 : T1; proj_4_2 : T2; proj_4_3 : T3; proj_4_4 : T4}.
+
+Record tuple_5 (T1 T2 T3 T4 T5:Set) : Set :=
+ {proj_5_1 : T1; proj_5_2 : T2; proj_5_3 : T3; proj_5_4 : T4; proj_5_5 : T5}.
+
+Record tuple_6 (T1 T2 T3 T4 T5 T6:Set) : Set :=
+ {proj_6_1 : T1;
+ proj_6_2 : T2;
+ proj_6_3 : T3;
+ proj_6_4 : T4;
+ proj_6_5 : T5;
+ proj_6_6 : T6}.
+
+Record tuple_7 (T1 T2 T3 T4 T5 T6 T7:Set) : Set :=
+ {proj_7_1 : T1;
+ proj_7_2 : T2;
+ proj_7_3 : T3;
+ proj_7_4 : T4;
+ proj_7_5 : T5;
+ proj_7_6 : T6;
+ proj_7_7 : T7}.
+
+
+(* Existentials *)
+
+Definition sig_1 := sig.
+Definition exist_1 := exist.
+
+Inductive sig_2 (T1 T2:Set) (P:T1 -> T2 -> Prop) : Set :=
+ exist_2 : forall (x1:T1) (x2:T2), P x1 x2 -> sig_2 T1 T2 P.
+
+Inductive sig_3 (T1 T2 T3:Set) (P:T1 -> T2 -> T3 -> Prop) : Set :=
+ exist_3 : forall (x1:T1) (x2:T2) (x3:T3), P x1 x2 x3 -> sig_3 T1 T2 T3 P.
+
+
+Inductive sig_4 (T1 T2 T3 T4:Set) (P:T1 -> T2 -> T3 -> T4 -> Prop) : Set :=
+ exist_4 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4),
+ P x1 x2 x3 x4 -> sig_4 T1 T2 T3 T4 P.
+
+Inductive sig_5 (T1 T2 T3 T4 T5:Set) (P:T1 -> T2 -> T3 -> T4 -> T5 -> Prop) :
+Set :=
+ exist_5 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5),
+ P x1 x2 x3 x4 x5 -> sig_5 T1 T2 T3 T4 T5 P.
+
+Inductive sig_6 (T1 T2 T3 T4 T5 T6:Set)
+(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> Prop) : Set :=
+ exist_6 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
+ (x6:T6), P x1 x2 x3 x4 x5 x6 -> sig_6 T1 T2 T3 T4 T5 T6 P.
+
+Inductive sig_7 (T1 T2 T3 T4 T5 T6 T7:Set)
+(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> T7 -> Prop) : Set :=
+ exist_7 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
+ (x6:T6) (x7:T7),
+ P x1 x2 x3 x4 x5 x6 x7 -> sig_7 T1 T2 T3 T4 T5 T6 T7 P.
+
+Inductive sig_8 (T1 T2 T3 T4 T5 T6 T7 T8:Set)
+(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> T7 -> T8 -> Prop) : Set :=
+ exist_8 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
+ (x6:T6) (x7:T7) (x8:T8),
+ P x1 x2 x3 x4 x5 x6 x7 x8 -> sig_8 T1 T2 T3 T4 T5 T6 T7 T8 P.
+
+Inductive dep_tuple_2 (T1 T2:Set) (P:T1 -> T2 -> Set) : Set :=
+ Build_dep_tuple_2 :
+ forall (x1:T1) (x2:T2), P x1 x2 -> dep_tuple_2 T1 T2 P.
+
+Inductive dep_tuple_3 (T1 T2 T3:Set) (P:T1 -> T2 -> T3 -> Set) : Set :=
+ Build_dep_tuple_3 :
+ forall (x1:T1) (x2:T2) (x3:T3), P x1 x2 x3 -> dep_tuple_3 T1 T2 T3 P.
+
diff --git a/contrib/correctness/examples/Handbook.v b/contrib/correctness/examples/Handbook.v
new file mode 100644
index 00000000..8c983a72
--- /dev/null
+++ b/contrib/correctness/examples/Handbook.v
@@ -0,0 +1,232 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: Handbook.v,v 1.3 2001/04/11 07:56:19 filliatr Exp $ *)
+
+(* This file contains proofs of programs taken from the
+ * "Handbook of Theoretical Computer Science", volume B,
+ * chapter "Methods and Logics for Proving Programs", by P. Cousot,
+ * pp 841--993, Edited by J. van Leeuwen (c) Elsevier Science Publishers B.V.
+ * 1990.
+ *
+ * Programs are refered to by numbers and pages.
+ *)
+
+Require Correctness.
+
+Require Sumbool.
+Require Omega.
+Require Zcomplements.
+Require Zpower.
+
+(****************************************************************************)
+
+(* program (2) page 853 to compute x^y (annotated version is (25) page 860) *)
+
+(* en attendant... *)
+Parameter Zdiv2 : Z->Z.
+
+Parameter Zeven_odd_dec : (x:Z){`x=2*(Zdiv2 x)`}+{`x=2*(Zdiv2 x)+1`}.
+Definition Zodd_dec := [z:Z](sumbool_not ? ? (Zeven_odd_dec z)).
+Definition Zodd_bool := [z:Z](bool_of_sumbool ? ? (Zodd_dec z)).
+
+Axiom axiom1 : (x,y:Z) `y>0` -> `x*(Zpower x (Zpred y)) = (Zpower x y)`.
+Axiom axiom2 : (x:Z)`x>0` -> `(Zdiv2 x)<x`.
+Axiom axiom3 : (x,y:Z) `y>=0` -> `(Zpower (x*x) (Zdiv2 y)) = (Zpower x y)`.
+
+Global Variable X : Z ref.
+Global Variable Y : Z ref.
+Global Variable Z_ : Z ref.
+
+Correctness pgm25
+ { `Y >= 0` }
+ begin
+ Z_ := 1;
+ while !Y <> 0 do
+ { invariant `Y >= 0` /\ `Z_ * (Zpower X Y) = (Zpower X@0 Y@0)`
+ variant Y }
+ if (Zodd_bool !Y) then begin
+ Y := (Zpred !Y);
+ Z_ := (Zmult !Z_ !X)
+ end else begin
+ Y := (Zdiv2 !Y);
+ X := (Zmult !X !X)
+ end
+ done
+ end
+ { Z_ = (Zpower X@ Y@) }.
+Proof.
+Split.
+Unfold Zpred; Unfold Zwf; Omega.
+Split.
+Unfold Zpred; Omega.
+Decompose [and] Pre2.
+Rewrite <- H0.
+Replace `Z_1*X0*(Zpower X0 (Zpred Y0))` with `Z_1*(X0*(Zpower X0 (Zpred Y0)))`.
+Apply f_equal with f := (Zmult Z_1).
+Apply axiom1.
+Omega.
+
+Auto.
+Symmetry.
+Apply Zmult_assoc_r.
+
+Split.
+Unfold Zwf.
+Repeat (Apply conj).
+Omega.
+
+Omega.
+
+Apply axiom2. Omega.
+
+Split.
+Omega.
+
+Decompose [and] Pre2.
+Rewrite <- H0.
+Apply f_equal with f:=(Zmult Z_1).
+Apply axiom3. Omega.
+
+Omega.
+
+Decompose [and] Post6.
+Rewrite <- H2.
+Rewrite H0.
+Simpl.
+Omega.
+
+Save.
+
+
+(****************************************************************************)
+
+(* program (178) page 934 to compute the factorial using global variables
+ * annotated version is (185) page 939
+ *)
+
+Parameter Zfact : Z -> Z.
+
+Axiom axiom4 : `(Zfact 0) = 1`.
+Axiom axiom5 : (x:Z) `x>0` -> `(Zfact (x-1))*x=(Zfact x)`.
+
+Correctness pgm178
+let rec F (u:unit) : unit { variant X } =
+ { `X>=0` }
+ (if !X = 0 then
+ Y := 1
+ else begin
+ label L;
+ X := (Zpred !X);
+ (F tt);
+ X := (Zs !X);
+ Y := (Zmult !Y !X)
+ end)
+ { `X=X@` /\ `Y=(Zfact X@)` }.
+Proof.
+Rewrite Test1. Rewrite axiom4. Auto.
+Unfold Zwf. Unfold Zpred. Omega.
+Unfold Zpred. Omega.
+Unfold Zs. Unfold Zpred in Post3. Split.
+Omega.
+Decompose [and] Post3.
+Rewrite H.
+Replace `X0+(-1)+1` with X0.
+Rewrite H0.
+Replace `X0+(-1)` with `X0-1`.
+Apply axiom5.
+Omega.
+Omega.
+Omega.
+Save.
+
+
+(****************************************************************************)
+
+(* program (186) page 939 "showing the usefulness of auxiliary variables" ! *)
+
+Global Variable N : Z ref.
+Global Variable S : Z ref.
+
+Correctness pgm186
+let rec F (u:unit) : unit { variant N } =
+ { `N>=0` }
+ (if !N > 0 then begin
+ label L;
+ N := (Zpred !N);
+ (F tt);
+ S := (Zs !S);
+ (F tt);
+ N := (Zs !N)
+ end)
+ { `N=N@` /\ `S=S@+(Zpower 2 N@)-1` }.
+Proof.
+Unfold Zwf. Unfold Zpred. Omega.
+Unfold Zpred. Omega.
+Decompose [and] Post5. Rewrite H. Unfold Zwf. Unfold Zpred. Omega.
+Decompose [and] Post5. Rewrite H. Unfold Zpred. Omega.
+Split.
+Unfold Zpred in Post5. Omega.
+Decompose [and] Post4. Rewrite H0.
+Decompose [and] Post5. Rewrite H2. Rewrite H1.
+Replace `(Zpower 2 N0)` with `2*(Zpower 2 (Zpred N0))`. Omega.
+Symmetry.
+Replace `(Zpower 2 N0)` with `(Zpower 2 (1+(Zpred N0)))`.
+Replace `2*(Zpower 2 (Zpred N0))` with `(Zpower 2 1)*(Zpower 2 (Zpred N0))`.
+Apply Zpower_exp.
+Omega.
+Unfold Zpred. Omega.
+Auto.
+Replace `(1+(Zpred N0))` with N0; [ Auto | Unfold Zpred; Omega ].
+Split.
+Auto.
+Replace N0 with `0`; Simpl; Omega.
+Save.
+
+
+(****************************************************************************)
+
+(* program (196) page 944 (recursive factorial procedure with value-result
+ * parameters)
+ *)
+
+Correctness pgm196
+let rec F (U:Z) (V:Z ref) : unit { variant U } =
+ { `U >= 0` }
+ (if U = 0 then
+ V := 1
+ else begin
+ (F (Zpred U) V);
+ V := (Zmult !V U)
+ end)
+ { `V = (Zfact U)` }.
+Proof.
+Symmetry. Rewrite Test1. Apply axiom4.
+Unfold Zwf. Unfold Zpred. Omega.
+Unfold Zpred. Omega.
+Rewrite Post3.
+Unfold Zpred. Replace `U0+(-1)` with `U0-1`. Apply axiom5.
+Omega.
+Omega.
+Save.
+
+(****************************************************************************)
+
+(* program (197) page 945 (L_4 subset of Pascal) *)
+
+(*
+procedure P(X:Z; procedure Q(Z:Z));
+ procedure L(X:Z); begin Q(X-1) end;
+ begin if X>0 then P(X-1,L) else Q(X) end;
+
+procedure M(N:Z);
+ procedure R(X:Z); begin writeln(X) (* => RES := !X *) end;
+ begin P(N,R) end.
+*)
diff --git a/contrib/correctness/examples/exp.v b/contrib/correctness/examples/exp.v
new file mode 100644
index 00000000..dcfcec87
--- /dev/null
+++ b/contrib/correctness/examples/exp.v
@@ -0,0 +1,204 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(*i $Id: exp.v,v 1.3 2001/04/11 07:56:19 filliatr Exp $ i*)
+
+(* Efficient computation of X^n using
+ *
+ * X^(2n) = (X^n) ^ 2
+ * X^(2n+1) = X . (X^n) ^ 2
+ *
+ * Proofs of both fonctional and imperative programs.
+ *)
+
+Require Even.
+Require Div2.
+Require Correctness.
+Require ArithRing.
+Require ZArithRing.
+
+(* The specification uses the traditional definition of X^n *)
+
+Fixpoint power [x,n:nat] : nat :=
+ Cases n of
+ O => (S O)
+ | (S n') => (mult x (power x n'))
+ end.
+
+Definition square := [n:nat](mult n n).
+
+
+(* Three lemmas are necessary to establish the forthcoming proof obligations *)
+
+(* n = 2*(n/2) => (x^(n/2))^2 = x^n *)
+
+Lemma exp_div2_0 : (x,n:nat)
+ n=(double (div2 n))
+ -> (square (power x (div2 n)))=(power x n).
+Proof.
+Unfold square.
+Intros x n. Pattern n. Apply ind_0_1_SS.
+Auto.
+
+Intro. (Absurd (1)=(double (0)); Auto).
+
+Intros. Simpl.
+Cut n0=(double (div2 n0)).
+Intro. Rewrite <- (H H1).
+Ring.
+
+Simpl in H0.
+Unfold double in H0.
+Simpl in H0.
+Rewrite <- (plus_n_Sm (div2 n0) (div2 n0)) in H0.
+(Injection H0; Auto).
+Save.
+
+(* n = 2*(n/2)+1 => x*(x^(n/2))^2 = x^n *)
+
+Lemma exp_div2_1 : (x,n:nat)
+ n=(S (double (div2 n)))
+ -> (mult x (square (power x (div2 n))))=(power x n).
+Proof.
+Unfold square.
+Intros x n. Pattern n. Apply ind_0_1_SS.
+
+Intro. (Absurd (0)=(S (double (0))); Auto).
+
+Auto.
+
+Intros. Simpl.
+Cut n0=(S (double (div2 n0))).
+Intro. Rewrite <- (H H1).
+Ring.
+
+Simpl in H0.
+Unfold double in H0.
+Simpl in H0.
+Rewrite <- (plus_n_Sm (div2 n0) (div2 n0)) in H0.
+(Injection H0; Auto).
+Save.
+
+(* x^(2*n) = (x^2)^n *)
+
+Lemma power_2n : (x,n:nat)(power x (double n))=(power (square x) n).
+Proof.
+Unfold double. Unfold square.
+Induction n.
+Auto.
+
+Intros.
+Simpl.
+Rewrite <- H.
+Rewrite <- (plus_n_Sm n0 n0).
+Simpl.
+Auto with arith.
+Save.
+
+Hints Resolve exp_div2_0 exp_div2_1.
+
+
+(* Functional version.
+ *
+ * Here we give the functional program as an incomplete CIC term,
+ * using the tactic Refine.
+ *
+ * On this example, it really behaves as the tactic Program.
+ *)
+
+(*
+Lemma f_exp : (x,n:nat) { y:nat | y=(power x n) }.
+Proof.
+Refine [x:nat]
+ (well_founded_induction nat lt lt_wf
+ [n:nat]{y:nat | y=(power x n) }
+ [n:nat]
+ [f:(p:nat)(lt p n)->{y:nat | y=(power x p) }]
+ Cases (zerop n) of
+ (left _) => (exist ? ? (S O) ?)
+ | (right _) =>
+ let (y,H) = (f (div2 n) ?) in
+ Cases (even_odd_dec n) of
+ (left _) => (exist ? ? (mult y y) ?)
+ | (right _) => (exist ? ? (mult x (mult y y)) ?)
+ end
+ end).
+Proof.
+Rewrite a. Auto.
+Exact (lt_div2 n a).
+Change (square y)=(power x n). Rewrite H. Auto with arith.
+Change (mult x (square y))=(power x n). Rewrite H. Auto with arith.
+Save.
+*)
+
+(* Imperative version. *)
+
+Definition even_odd_bool := [x:nat](bool_of_sumbool ? ? (even_odd_dec x)).
+
+Correctness i_exp
+ fun (x:nat)(n:nat) ->
+ let y = ref (S O) in
+ let m = ref x in
+ let e = ref n in
+ begin
+ while (notzerop_bool !e) do
+ { invariant (power x n)=(mult y (power m e)) as Inv
+ variant e for lt }
+ (if not (even_odd_bool !e) then y := (mult !y !m))
+ { (power x n) = (mult y (power m (double (div2 e)))) as Q };
+ m := (square !m);
+ e := (div2 !e)
+ done;
+ !y
+ end
+ { result=(power x n) }
+.
+Proof.
+Rewrite (odd_double e0 Test1) in Inv. Rewrite Inv. Simpl. Auto with arith.
+
+Rewrite (even_double e0 Test1) in Inv. Rewrite Inv. Reflexivity.
+
+Split.
+Exact (lt_div2 e0 Test2).
+
+Rewrite Q. Unfold double. Unfold square.
+Simpl.
+Change (mult y1 (power m0 (double (div2 e0))))
+ = (mult y1 (power (square m0) (div2 e0))).
+Rewrite (power_2n m0 (div2 e0)). Reflexivity.
+
+Auto with arith.
+
+Decompose [and] Inv.
+Rewrite H. Rewrite H0.
+Auto with arith.
+Save.
+
+
+(* Recursive version. *)
+
+Correctness r_exp
+ let rec exp (x:nat) (n:nat) : nat { variant n for lt} =
+ (if (zerop_bool n) then
+ (S O)
+ else
+ let y = (exp x (div2 n)) in
+ if (even_odd_bool n) then
+ (mult y y)
+ else
+ (mult x (mult y y))
+ ) { result=(power x n) }
+.
+Proof.
+Rewrite Test2. Auto.
+Exact (lt_div2 n0 Test2).
+Change (square y)=(power x0 n0). Rewrite Post7. Auto with arith.
+Change (mult x0 (square y))=(power x0 n0). Rewrite Post7. Auto with arith.
+Save.
diff --git a/contrib/correctness/examples/exp_int.v b/contrib/correctness/examples/exp_int.v
new file mode 100644
index 00000000..accd60c2
--- /dev/null
+++ b/contrib/correctness/examples/exp_int.v
@@ -0,0 +1,218 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: exp_int.v,v 1.4 2001/04/11 07:56:19 filliatr Exp $ *)
+
+(* Efficient computation of X^n using
+ *
+ * X^(2n) = (X^n) ^ 2
+ * X^(2n+1) = X . (X^n) ^ 2
+ *
+ * Proofs of both fonctional and imperative programs.
+ *)
+
+Require Zpower.
+Require Zcomplements.
+
+Require Correctness.
+Require ZArithRing.
+Require Omega.
+
+Definition Zdouble := [n:Z]`2*n`.
+
+Definition Zsquare := [n:Z](Zmult n n).
+
+(* Some auxiliary lemmas about Zdiv2 are necessary *)
+
+Lemma Zdiv2_ge_0 : (x:Z) `x >= 0` -> `(Zdiv2 x) >= 0`.
+Proof.
+Destruct x; Auto with zarith.
+Destruct p; Auto with zarith.
+Simpl. Omega.
+Intros. (Absurd `(NEG p) >= 0`; Red; Auto with zarith).
+Save.
+
+Lemma Zdiv2_lt : (x:Z) `x > 0` -> `(Zdiv2 x) < x`.
+Proof.
+Destruct x.
+Intro. Absurd `0 > 0`; [ Omega | Assumption ].
+Destruct p; Auto with zarith.
+
+Simpl.
+Intro p0.
+Replace (POS (xI p0)) with `2*(POS p0)+1`.
+Omega.
+Simpl. Auto with zarith.
+
+Intro p0.
+Simpl.
+Replace (POS (xO p0)) with `2*(POS p0)`.
+Omega.
+Simpl. Auto with zarith.
+
+Simpl. Omega.
+
+Intros.
+Absurd `(NEG p) > 0`; Red; Auto with zarith.
+Elim p; Auto with zarith.
+Omega.
+Save.
+
+(* A property of Zpower: x^(2*n) = (x^2)^n *)
+
+Lemma Zpower_2n :
+ (x,n:Z)`n >= 0` -> (Zpower x (Zdouble n))=(Zpower (Zsquare x) n).
+Proof.
+Unfold Zdouble.
+Intros x n Hn.
+Replace `2*n` with `n+n`.
+Rewrite Zpower_exp.
+Pattern n.
+Apply natlike_ind.
+
+Simpl. Auto with zarith.
+
+Intros.
+Unfold Zs.
+Rewrite Zpower_exp.
+Rewrite Zpower_exp.
+Replace (Zpower x `1`) with x.
+Replace (Zpower (Zsquare x) `1`) with (Zsquare x).
+Rewrite <- H0.
+Unfold Zsquare.
+Ring.
+
+Unfold Zpower; Unfold Zpower_pos; Simpl. Omega.
+
+Unfold Zpower; Unfold Zpower_pos; Simpl. Omega.
+
+Omega.
+Omega.
+Omega.
+Omega.
+Omega.
+Assumption.
+Assumption.
+Omega.
+Save.
+
+
+(* The program *)
+
+Correctness i_exp
+ fun (x:Z)(n:Z) ->
+ { `n >= 0` }
+ (let y = ref 1 in
+ let m = ref x in
+ let e = ref n in
+ begin
+ while !e > 0 do
+ { invariant (Zpower x n)=(Zmult y (Zpower m e)) /\ `e>=0` as Inv
+ variant e }
+ (if not (Zeven_odd_bool !e) then y := (Zmult !y !m))
+ { (Zpower x n) = (Zmult y (Zpower m (Zdouble (Zdiv2 e)))) as Q };
+ m := (Zsquare !m);
+ e := (Zdiv2 !e)
+ done;
+ !y
+ end)
+ { result=(Zpower x n) }
+.
+Proof.
+(* Zodd *)
+Decompose [and] Inv.
+Rewrite (Zodd_div2 e0 H0 Test1) in H. Rewrite H.
+Rewrite Zpower_exp.
+Unfold Zdouble.
+Replace (Zpower m0 `1`) with m0.
+Ring.
+Unfold Zpower; Unfold Zpower_pos; Simpl; Ring.
+Generalize (Zdiv2_ge_0 e0); Omega.
+Omega.
+(* Zeven *)
+Decompose [and] Inv.
+Rewrite (Zeven_div2 e0 Test1) in H. Rewrite H.
+Auto with zarith.
+Split.
+(* Zwf *)
+Unfold Zwf.
+Repeat Split.
+Generalize (Zdiv2_ge_0 e0); Omega.
+Omega.
+Exact (Zdiv2_lt e0 Test2).
+(* invariant *)
+Split.
+Rewrite Q. Unfold Zdouble. Unfold Zsquare.
+Rewrite (Zpower_2n).
+Trivial.
+Generalize (Zdiv2_ge_0 e0); Omega.
+Generalize (Zdiv2_ge_0 e0); Omega.
+Split; [ Ring | Assumption ].
+(* exit fo loop *)
+Decompose [and] Inv.
+Cut `e0 = 0`. Intro.
+Rewrite H1. Rewrite H.
+Simpl; Ring.
+Omega.
+Save.
+
+
+(* Recursive version. *)
+
+Correctness r_exp
+ let rec exp (x:Z) (n:Z) : Z { variant n } =
+ { `n >= 0` }
+ (if n = 0 then
+ 1
+ else
+ let y = (exp x (Zdiv2 n)) in
+ (if (Zeven_odd_bool n) then
+ (Zmult y y)
+ else
+ (Zmult x (Zmult y y))) { result=(Zpower x n) as Q }
+ )
+ { result=(Zpower x n) }
+.
+Proof.
+Rewrite Test2. Auto with zarith.
+(* w.f. *)
+Unfold Zwf.
+Repeat Split.
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+Omega.
+Generalize (Zdiv2_lt n0) ; Omega.
+(* rec. call *)
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+(* invariant: case even *)
+Generalize (Zeven_div2 n0 Test1).
+Intro Heq. Rewrite Heq.
+Rewrite Post4.
+Replace `2*(Zdiv2 n0)` with `(Zdiv2 n0)+(Zdiv2 n0)`.
+Rewrite Zpower_exp.
+Auto with zarith.
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+Omega.
+(* invariant: cas odd *)
+Generalize (Zodd_div2 n0 Pre1 Test1).
+Intro Heq. Rewrite Heq.
+Rewrite Post4.
+Rewrite Zpower_exp.
+Replace `2*(Zdiv2 n0)` with `(Zdiv2 n0)+(Zdiv2 n0)`.
+Rewrite Zpower_exp.
+Replace `(Zpower x0 1)` with x0.
+Ring.
+Unfold Zpower; Unfold Zpower_pos; Simpl. Omega.
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+Omega.
+Generalize (Zdiv2_ge_0 n0) ; Omega.
+Omega.
+Save.
diff --git a/contrib/correctness/examples/extract.v b/contrib/correctness/examples/extract.v
new file mode 100644
index 00000000..e225ba18
--- /dev/null
+++ b/contrib/correctness/examples/extract.v
@@ -0,0 +1,43 @@
+
+(* Tests d'extraction *)
+
+Require ProgramsExtraction.
+Save State Ici "test extraction".
+
+(* exp *)
+
+Require exp.
+Write Caml File "exp" [ i_exp r_exp ].
+
+(* exp_int *)
+
+Restore State Ici.
+Require exp_int.
+Write Caml File "exp_int" [ i_exp r_exp ].
+
+(* fact *)
+
+Restore State Ici.
+Require fact.
+Initialize x with (S (S (S O))).
+Initialize y with O.
+Write Caml File "fact" [ factorielle ].
+
+(* fact_int *)
+
+Restore State Ici.
+Require fact_int.
+Initialize x with `3`.
+Initialize y with `0`.
+Write Caml File "fact_int" [ factorielle ].
+
+(* Handbook *)
+
+Restore State Ici.
+Require Handbook.
+Initialize X with `3`.
+Initialize Y with `3`.
+Initialize Z with `3`.
+Initialize N with `3`.
+Initialize S with `3`.
+Write Caml File "Handbook" [ pgm178 pgm186 pgm196 ].
diff --git a/contrib/correctness/examples/fact.v b/contrib/correctness/examples/fact.v
new file mode 100644
index 00000000..e480c806
--- /dev/null
+++ b/contrib/correctness/examples/fact.v
@@ -0,0 +1,69 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: fact.v,v 1.3 2001/04/11 07:56:19 filliatr Exp $ *)
+
+(* Proof of an imperative program computing the factorial (over type nat) *)
+
+Require Correctness.
+Require Omega.
+Require Arith.
+
+Fixpoint fact [n:nat] : nat :=
+ Cases n of
+ O => (S O)
+ | (S p) => (mult n (fact p))
+ end.
+
+(* (x * y) * (x-1)! = y * x! *)
+
+Lemma fact_rec : (x,y:nat)(lt O x) ->
+ (mult (mult x y) (fact (pred x))) = (mult y (fact x)).
+Proof.
+Intros x y H.
+Generalize (mult_sym x y). Intro H1. Rewrite H1.
+Generalize (mult_assoc_r y x (fact (pred x))). Intro H2. Rewrite H2.
+Apply (f_equal nat nat [x:nat](mult y x)).
+Generalize H. Elim x; Auto with arith.
+Save.
+
+
+(* we declare two variables x and y *)
+
+Global Variable x : nat ref.
+Global Variable y : nat ref.
+
+(* we give the annotated program *)
+
+Correctness factorielle
+ begin
+ y := (S O);
+ while (notzerop_bool !x) do
+ { invariant (mult y (fact x)) = (fact x@0) as I
+ variant x for lt }
+ y := (mult !x !y);
+ x := (pred !x)
+ done
+ end
+ { y = (fact x@0) }.
+Proof.
+Split.
+(* decreasing of the variant *)
+Omega.
+(* preservation of the invariant *)
+Rewrite <- I. Exact (fact_rec x0 y1 Test1).
+(* entrance of loop *)
+Auto with arith.
+(* exit of loop *)
+Elim I. Intros H1 H2.
+Rewrite H2 in H1.
+Rewrite <- H1.
+Auto with arith.
+Save.
diff --git a/contrib/correctness/examples/fact_int.v b/contrib/correctness/examples/fact_int.v
new file mode 100644
index 00000000..cb2b0460
--- /dev/null
+++ b/contrib/correctness/examples/fact_int.v
@@ -0,0 +1,195 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: fact_int.v,v 1.3 2001/04/11 07:56:19 filliatr Exp $ *)
+
+(* Proof of an imperative program computing the factorial (over type Z) *)
+
+Require Correctness.
+Require Omega.
+Require ZArithRing.
+
+(* We define the factorial as a relation... *)
+
+Inductive fact : Z -> Z -> Prop :=
+ fact_0 : (fact `0` `1`)
+ | fact_S : (z,f:Z) (fact z f) -> (fact (Zs z) (Zmult (Zs z) f)).
+
+(* ...and then we prove that it contains a function *)
+
+Lemma fact_function : (z:Z) `0 <= z` -> (EX f:Z | (fact z f)).
+Proof.
+Intros.
+Apply natlike_ind with P:=[z:Z](EX f:Z | (fact z f)).
+Split with `1`.
+Exact fact_0.
+
+Intros.
+Elim H1.
+Intros.
+Split with `(Zs x)*x0`.
+Exact (fact_S x x0 H2).
+
+Assumption.
+Save.
+
+(* This lemma should belong to the ZArith library *)
+
+Lemma Z_mult_1 : (x,y:Z)`x>=1`->`y>=1`->`x*y>=1`.
+Proof.
+Intros.
+Generalize H.
+Apply natlike_ind with P:=[x:Z]`x >= 1`->`x*y >= 1`.
+Omega.
+
+Intros.
+Simpl.
+Elim (Z_le_lt_eq_dec `0` x0 H1).
+Simpl.
+Unfold Zs.
+Replace `(x0+1)*y` with `x0*y+y`.
+Generalize H2.
+Generalize `x0*y`.
+Intro.
+Intros.
+Omega.
+
+Ring.
+
+Intros.
+Rewrite <- b.
+Omega.
+
+Omega.
+Save.
+
+(* (fact x f) implies x>=0 and f>=1 *)
+
+Lemma fact_pos : (x,f:Z)(fact x f)-> `x>=0` /\ `f>=1`.
+Proof.
+Intros.
+(Elim H; Auto).
+Omega.
+
+Intros.
+(Split; Try Omega).
+(Apply Z_mult_1; Try Omega).
+Save.
+
+(* (fact 0 x) implies x=1 *)
+
+Lemma fact_0_1 : (x:Z)(fact `0` x) -> `x=1`.
+Proof.
+Intros.
+Inversion H.
+Reflexivity.
+
+Elim (fact_pos z f H1).
+Intros.
+(Absurd `z >= 0`; Omega).
+Save.
+
+
+(* We define the loop invariant : y * x! = x0! *)
+
+Inductive invariant [y,x,x0:Z] : Prop :=
+ c_inv : (f,f0:Z)(fact x f)->(fact x0 f0)->(Zmult y f)=f0
+ -> (invariant y x x0).
+
+(* The following lemma is used to prove the preservation of the invariant *)
+
+Lemma fact_rec : (x0,x,y:Z)`0 < x` ->
+ (invariant y x x0)
+ -> (invariant `x*y` (Zpred x) x0).
+Proof.
+Intros x0 x y H H0.
+Elim H0.
+Intros.
+Generalize H H0 H3.
+Elim H1.
+Intros.
+Absurd `0 < 0`; Omega.
+
+Intros.
+Apply c_inv with f:=f1 f0:=f0.
+Cut `z+1+-1 = z`. Intro eq_z. Rewrite <- eq_z in H4.
+Assumption.
+
+Omega.
+
+Assumption.
+
+Rewrite (Zmult_sym (Zs z) y).
+Rewrite (Zmult_assoc_r y (Zs z) f1).
+Auto.
+Save.
+
+
+(* This one is used to prove the proof obligation at the exit of the loop *)
+
+Lemma invariant_0 : (x,y:Z)(invariant y `0` x)->(fact x y).
+Proof.
+Intros.
+Elim H.
+Intros.
+Generalize (fact_0_1 f H0).
+Intro.
+Rewrite H3 in H2.
+Simpl in H2.
+Replace y with `y*1`.
+Rewrite H2.
+Assumption.
+
+Omega.
+Save.
+
+
+(* At last we come to the proof itself *************************************)
+
+(* we declare two variable x and y *)
+
+Global Variable x : Z ref.
+Global Variable y : Z ref.
+
+(* and we give the annotated program *)
+
+Correctness factorielle
+ { `0 <= x` }
+ begin
+ y := 1;
+ while !x <> 0 do
+ { invariant `0 <= x` /\ (invariant y x x@0) as Inv
+ variant x for (Zwf ZERO) }
+ y := (Zmult !x !y);
+ x := (Zpred !x)
+ done
+ end
+ { (fact x@0 y) }.
+Proof.
+Split.
+(* decreasing *)
+Unfold Zwf. Unfold Zpred. Omega.
+(* preservation of the invariant *)
+Split.
+ Unfold Zpred; Omega.
+ Cut `0 < x0`. Intro Hx0.
+ Decompose [and] Inv.
+ Exact (fact_rec x x0 y1 Hx0 H0).
+ Omega.
+(* entrance of the loop *)
+Split; Auto.
+Elim (fact_function x Pre1). Intros.
+Apply c_inv with f:=x0 f0:=x0; Auto.
+Omega.
+(* exit of the loop *)
+Decompose [and] Inv.
+Rewrite H0 in H2.
+Exact (invariant_0 x y1 H2).
+Save.
diff --git a/contrib/correctness/past.mli b/contrib/correctness/past.mli
new file mode 100644
index 00000000..1cc7164e
--- /dev/null
+++ b/contrib/correctness/past.mli
@@ -0,0 +1,97 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: past.mli,v 1.7.6.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+(*s Abstract syntax of imperative programs. *)
+
+open Names
+open Ptype
+open Topconstr
+
+type termination =
+ | RecArg of int
+ | Wf of constr_expr * constr_expr
+
+type variable = identifier
+
+type pattern =
+ | PatVar of identifier
+ | PatConstruct of identifier * ((kernel_name * int) * int)
+ | PatAlias of pattern * identifier
+ | PatPair of pattern * pattern
+ | PatApp of pattern list
+
+type epattern =
+ | ExnConstant of identifier
+ | ExnBind of identifier * identifier
+
+type ('a, 'b) block_st =
+ | Label of string
+ | Assert of 'b Ptype.assertion
+ | Statement of 'a
+
+type ('a, 'b) block = ('a, 'b) block_st list
+
+type ('a, 'b) t = {
+ desc : ('a, 'b) t_desc;
+ pre : 'b Ptype.precondition list;
+ post : 'b Ptype.postcondition option;
+ loc : Util.loc;
+ info : 'a
+}
+
+and ('a, 'b) t_desc =
+ | Variable of variable
+ | Acc of variable
+ | Aff of variable * ('a, 'b) t
+ | TabAcc of bool * variable * ('a, 'b) t
+ | TabAff of bool * variable * ('a, 'b) t * ('a, 'b) t
+ | Seq of (('a, 'b) t, 'b) block
+ | While of ('a, 'b) t * 'b Ptype.assertion option * ('b * 'b) *
+ (('a, 'b) t, 'b) block
+ | If of ('a, 'b) t * ('a, 'b) t * ('a, 'b) t
+ | Lam of 'b Ptype.ml_type_v Ptype.binder list * ('a, 'b) t
+ | Apply of ('a, 'b) t * ('a, 'b) arg list
+ | SApp of ('a, 'b) t_desc list * ('a, 'b) t list
+ | LetRef of variable * ('a, 'b) t * ('a, 'b) t
+ | Let of variable * ('a, 'b) t * ('a, 'b) t
+ | LetRec of variable * 'b Ptype.ml_type_v Ptype.binder list *
+ 'b Ptype.ml_type_v * ('b * 'b) * ('a, 'b) t
+ | PPoint of string * ('a, 'b) t_desc
+ | Expression of Term.constr
+ | Debug of string * ('a, 'b) t
+
+and ('a, 'b) arg =
+ | Term of ('a, 'b) t
+ | Refarg of variable
+ | Type of 'b Ptype.ml_type_v
+
+type program = (unit, Topconstr.constr_expr) t
+
+(*s Intermediate type for CC terms. *)
+
+type cc_type = Term.constr
+
+type cc_bind_type =
+ | CC_typed_binder of cc_type
+ | CC_untyped_binder
+
+type cc_binder = variable * cc_bind_type
+
+type cc_term =
+ | CC_var of variable
+ | CC_letin of bool * cc_type * cc_binder list * cc_term * cc_term
+ | CC_lam of cc_binder list * cc_term
+ | CC_app of cc_term * cc_term list
+ | CC_tuple of bool * cc_type list * cc_term list
+ | CC_case of cc_type * cc_term * cc_term list
+ | CC_expr of Term.constr
+ | CC_hole of cc_type
diff --git a/contrib/correctness/pcic.ml b/contrib/correctness/pcic.ml
new file mode 100644
index 00000000..e87ba70c
--- /dev/null
+++ b/contrib/correctness/pcic.ml
@@ -0,0 +1,231 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pcic.ml,v 1.23.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+open Util
+open Names
+open Nameops
+open Libnames
+open Term
+open Termops
+open Nametab
+open Declarations
+open Indtypes
+open Sign
+open Rawterm
+open Typeops
+open Entries
+open Topconstr
+
+open Pmisc
+open Past
+
+
+(* Here we translate intermediates terms (cc_term) into CCI terms (constr) *)
+
+let make_hole c = mkCast (isevar, c)
+
+(* Tuples are defined in file Tuples.v
+ * and their constructors are called Build_tuple_n or exists_n,
+ * wether they are dependant (last element only) or not.
+ * If necessary, tuples are generated ``on the fly''. *)
+
+let tuple_exists id =
+ try let _ = Nametab.locate (make_short_qualid id) in true
+ with Not_found -> false
+
+let ast_set = CSort (dummy_loc,RProp Pos)
+
+let tuple_n n =
+ let id = make_ident "tuple_" (Some n) in
+ let l1n = Util.interval 1 n in
+ let params =
+ List.map (fun i ->
+ (LocalRawAssum ([dummy_loc,Name (make_ident "T" (Some i))], ast_set)))
+ l1n in
+ let fields =
+ List.map
+ (fun i ->
+ let id = make_ident ("proj_" ^ string_of_int n ^ "_") (Some i) in
+ let id' = make_ident "T" (Some i) in
+ (false, Vernacexpr.AssumExpr ((dummy_loc,Name id), mkIdentC id')))
+ l1n
+ in
+ let cons = make_ident "Build_tuple_" (Some n) in
+ Record.definition_structure
+ ((false, (dummy_loc,id)), params, fields, cons, mk_Set)
+
+(*s [(sig_n n)] generates the inductive
+ \begin{verbatim}
+ Inductive sig_n [T1,...,Tn:Set; P:T1->...->Tn->Prop] : Set :=
+ exist_n : (x1:T1)...(xn:Tn)(P x1 ... xn) -> (sig_n T1 ... Tn P).
+ \end{verbatim} *)
+
+let sig_n n =
+ let id = make_ident "sig_" (Some n) in
+ let l1n = Util.interval 1 n in
+ let lT = List.map (fun i -> make_ident "T" (Some i)) l1n in
+ let lx = List.map (fun i -> make_ident "x" (Some i)) l1n in
+ let idp = make_ident "P" None in
+ let params =
+ let typ = List.fold_right (fun _ c -> mkArrow (mkRel n) c) lT mkProp in
+ (idp, LocalAssum typ) ::
+ (List.rev_map (fun id -> (id, LocalAssum mkSet)) lT)
+ in
+ let lc =
+ let app_sig = mkApp(mkRel (2*n+3),
+ Array.init (n+1) (fun i -> mkRel (2*n+2-i))) in
+ let app_p = mkApp(mkRel (n+1),
+ Array.init n (fun i -> mkRel (n-i))) in
+ let c = mkArrow app_p app_sig in
+ List.fold_right (fun id c -> mkProd (Name id, mkRel (n+1), c)) lx c
+ in
+ let cname = make_ident "exist_" (Some n) in
+ Declare.declare_mind
+ { mind_entry_finite = true;
+ mind_entry_inds =
+ [ { mind_entry_params = params;
+ mind_entry_typename = id;
+ mind_entry_arity = mkSet;
+ mind_entry_consnames = [ cname ];
+ mind_entry_lc = [ lc ] } ] }
+
+(*s On the fly generation of needed (possibly dependent) tuples. *)
+
+let check_product_n n =
+ if n > 2 then
+ let s = Printf.sprintf "tuple_%d" n in
+ if not (tuple_exists (id_of_string s)) then tuple_n n
+
+let check_dep_product_n n =
+ if n > 1 then
+ let s = Printf.sprintf "sig_%d" n in
+ if not (tuple_exists (id_of_string s)) then ignore (sig_n n)
+
+(*s Constructors for the tuples. *)
+
+let pair = ConstructRef ((coq_constant ["Init"; "Datatypes"] "prod",0),1)
+let exist = ConstructRef ((coq_constant ["Init"; "Specif"] "sig",0),1)
+
+let tuple_ref dep n =
+ if n = 2 & not dep then
+ pair
+ else
+ let n = n - (if dep then 1 else 0) in
+ if dep then
+ if n = 1 then
+ exist
+ else begin
+ let id = make_ident "exist_" (Some n) in
+ if not (tuple_exists id) then ignore (sig_n n);
+ Nametab.locate (make_short_qualid id)
+ end
+ else begin
+ let id = make_ident "Build_tuple_" (Some n) in
+ if not (tuple_exists id) then tuple_n n;
+ Nametab.locate (make_short_qualid id)
+ end
+
+(* Binders. *)
+
+let trad_binder avoid nenv id = function
+ | CC_untyped_binder -> RHole (dummy_loc,BinderType (Name id))
+ | CC_typed_binder ty -> Detyping.detype (false,Global.env()) avoid nenv ty
+
+let rec push_vars avoid nenv = function
+ | [] -> ([],avoid,nenv)
+ | (id,b) :: bl ->
+ let b' = trad_binder avoid nenv id b in
+ let bl',avoid',nenv' =
+ push_vars (id :: avoid) (add_name (Name id) nenv) bl
+ in
+ ((id,b') :: bl', avoid', nenv')
+
+let rec raw_lambda bl v = match bl with
+ | [] ->
+ v
+ | (id,ty) :: bl' ->
+ RLambda (dummy_loc, Name id, ty, raw_lambda bl' v)
+
+(* The translation itself is quite easy.
+ letin are translated into Cases constructions *)
+
+let rawconstr_of_prog p =
+ let rec trad avoid nenv = function
+ | CC_var id ->
+ RVar (dummy_loc, id)
+
+ (*i optimisation : let x = <constr> in e2 => e2[x<-constr]
+ | CC_letin (_,_,[id,_],CC_expr c,e2) ->
+ real_subst_in_constr [id,c] (trad e2)
+ | CC_letin (_,_,([_] as b),CC_expr e1,e2) ->
+ let (b',avoid',nenv') = push_vars avoid nenv b in
+ let c1 = Detyping.detype avoid nenv e1
+ and c2 = trad avoid' nenv' e2 in
+ let id = Name (fst (List.hd b')) in
+ RLetIn (dummy_loc, id, c1, c2)
+ i*)
+
+ | CC_letin (_,_,([_] as b),e1,e2) ->
+ let (b',avoid',nenv') = push_vars avoid nenv b in
+ let c1 = trad avoid nenv e1
+ and c2 = trad avoid' nenv' e2 in
+ RApp (dummy_loc, raw_lambda b' c2, [c1])
+
+ | CC_letin (dep,ty,bl,e1,e2) ->
+ let (bl',avoid',nenv') = push_vars avoid nenv bl in
+ let c1 = trad avoid nenv e1
+ and c2 = trad avoid' nenv' e2 in
+ ROrderedCase (dummy_loc, LetStyle, None, c1, [| raw_lambda bl' c2 |], ref None)
+
+ | CC_lam (bl,e) ->
+ let bl',avoid',nenv' = push_vars avoid nenv bl in
+ let c = trad avoid' nenv' e in
+ raw_lambda bl' c
+
+ | CC_app (f,args) ->
+ let c = trad avoid nenv f
+ and cargs = List.map (trad avoid nenv) args in
+ RApp (dummy_loc, c, cargs)
+
+ | CC_tuple (_,_,[e]) ->
+ trad avoid nenv e
+
+ | CC_tuple (false,_,[e1;e2]) ->
+ let c1 = trad avoid nenv e1
+ and c2 = trad avoid nenv e2 in
+ RApp (dummy_loc, RRef (dummy_loc,pair),
+ [RHole (dummy_loc,ImplicitArg (pair,1));
+ RHole (dummy_loc,ImplicitArg (pair,2));c1;c2])
+
+ | CC_tuple (dep,tyl,l) ->
+ let n = List.length l in
+ let cl = List.map (trad avoid nenv) l in
+ let tuple = tuple_ref dep n in
+ let tyl = List.map (Detyping.detype (false,Global.env()) avoid nenv) tyl in
+ let args = tyl @ cl in
+ RApp (dummy_loc, RRef (dummy_loc, tuple), args)
+
+ | CC_case (ty,b,el) ->
+ let c = trad avoid nenv b in
+ let cl = List.map (trad avoid nenv) el in
+ let ty = Detyping.detype (false,Global.env()) avoid nenv ty in
+ ROrderedCase (dummy_loc, RegularStyle, Some ty, c, Array.of_list cl, ref None)
+
+ | CC_expr c ->
+ Detyping.detype (false,Global.env()) avoid nenv c
+
+ | CC_hole c ->
+ RCast (dummy_loc, RHole (dummy_loc, QuestionMark),
+ Detyping.detype (false,Global.env()) avoid nenv c)
+
+ in
+ trad [] empty_names_context p
diff --git a/contrib/correctness/pcic.mli b/contrib/correctness/pcic.mli
new file mode 100644
index 00000000..89731472
--- /dev/null
+++ b/contrib/correctness/pcic.mli
@@ -0,0 +1,24 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(*i $Id: pcic.mli,v 1.3.16.1 2004/07/16 19:30:00 herbelin Exp $ i*)
+
+open Past
+open Rawterm
+
+(* On-the-fly generation of needed (possibly dependent) tuples. *)
+
+val check_product_n : int -> unit
+val check_dep_product_n : int -> unit
+
+(* transforms intermediate functional programs into (raw) CIC terms *)
+
+val rawconstr_of_prog : cc_term -> rawconstr
+
diff --git a/contrib/correctness/pcicenv.ml b/contrib/correctness/pcicenv.ml
new file mode 100644
index 00000000..cc15c8f3
--- /dev/null
+++ b/contrib/correctness/pcicenv.ml
@@ -0,0 +1,118 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pcicenv.ml,v 1.5.14.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+open Names
+open Term
+open Sign
+
+open Pmisc
+open Putil
+open Ptype
+open Past
+
+(* on redéfinit add_sign pour éviter de construire des environnements
+ * avec des doublons (qui font planter la résolution des implicites !) *)
+
+(* VERY UGLY!! find some work around *)
+let modify_sign id t s =
+ fold_named_context
+ (fun ((x,b,ty) as d) sign ->
+ if x=id then add_named_decl (x,b,t) sign else add_named_decl d sign)
+ s ~init:empty_named_context
+
+let add_sign (id,t) s =
+ try
+ let _ = lookup_named id s in
+ modify_sign id t s
+ with Not_found ->
+ add_named_decl (id,None,t) s
+
+let cast_set c = mkCast (c, mkSet)
+
+let set = mkCast (mkSet, mkType Univ.prop_univ)
+
+(* [cci_sign_of env] construit un environnement pour CIC ne comprenant que
+ * les objets fonctionnels de l'environnement de programes [env]
+ *)
+
+let cci_sign_of ren env =
+ Penv.fold_all
+ (fun (id,v) sign ->
+ match v with
+ | Penv.TypeV (Ref _ | Array _) -> sign
+ | Penv.TypeV v ->
+ let ty = Pmonad.trad_ml_type_v ren env v in
+ add_sign (id,cast_set ty) sign
+ | Penv.Set -> add_sign (id,set) sign)
+ env (Global.named_context ())
+
+(* [sign_meta ren env fadd ini]
+ * construit un environnement pour CIC qui prend en compte les variables
+ * de programme.
+ * pour cela, cette fonction parcours tout l'envrionnement (global puis
+ * local [env]) et pour chaque déclaration, ajoute ce qu'il faut avec la
+ * fonction [fadd] s'il s'agit d'un mutable et directement sinon,
+ * en partant de [ini].
+ *)
+
+let sign_meta ren env fast ini =
+ Penv.fold_all
+ (fun (id,v) sign ->
+ match v with
+ | Penv.TypeV (Ref _ | Array _ as v) ->
+ let ty = Pmonad.trad_imp_type ren env v in
+ fast sign id ty
+ | Penv.TypeV v ->
+ let ty = Pmonad.trad_ml_type_v ren env v in
+ add_sign (id,cast_set ty) sign
+ | Penv.Set -> add_sign (id,set) sign)
+ env ini
+
+let add_sign_d dates (id,c) sign =
+ let sign =
+ List.fold_left (fun sign d -> add_sign (at_id id d,c) sign) sign dates
+ in
+ add_sign (id,c) sign
+
+let sign_of add ren env =
+ sign_meta ren env
+ (fun sign id c -> let c = cast_set c in add (id,c) sign)
+ (Global.named_context ())
+
+let result_of sign = function
+ None -> sign
+ | Some (id,c) -> add_sign (id, cast_set c) sign
+
+let before_after_result_sign_of res ren env =
+ let dates = "" :: Prename.all_dates ren in
+ result_of (sign_of (add_sign_d dates) ren env) res
+
+let before_after_sign_of ren =
+ let dates = "" :: Prename.all_dates ren in
+ sign_of (add_sign_d dates) ren
+
+let before_sign_of ren =
+ let dates = Prename.all_dates ren in
+ sign_of (add_sign_d dates) ren
+
+let now_sign_of =
+ sign_of (add_sign_d [])
+
+
+(* environnement après traduction *)
+
+let trad_sign_of ren =
+ sign_of
+ (fun (id,c) sign -> add_sign (Prename.current_var ren id,c) sign)
+ ren
+
+
diff --git a/contrib/correctness/pcicenv.mli b/contrib/correctness/pcicenv.mli
new file mode 100644
index 00000000..fc4fa0b9
--- /dev/null
+++ b/contrib/correctness/pcicenv.mli
@@ -0,0 +1,38 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pcicenv.mli,v 1.2.16.1 2004/07/16 19:30:00 herbelin Exp $ *)
+
+open Penv
+open Names
+open Term
+open Sign
+
+(* Translation of local programs environments into Coq signatures.
+ * It is mainly used to type the pre/post conditions in the good
+ * environment *)
+
+(* cci_sign_of: uniquement les objets purement fonctionnels de l'env. *)
+val cci_sign_of : Prename.t -> local_env -> named_context
+
+(* env. Coq avec seulement les variables X de l'env. *)
+val now_sign_of : Prename.t -> local_env -> named_context
+
+(* + les variables X@d pour toutes les dates de l'env. *)
+val before_sign_of : Prename.t -> local_env -> named_context
+
+(* + les variables `avant' X@ *)
+val before_after_sign_of : Prename.t -> local_env -> named_context
+val before_after_result_sign_of : ((identifier * constr) option)
+ -> Prename.t -> local_env -> named_context
+
+(* env. des programmes traduits, avec les variables rennomées *)
+val trad_sign_of : Prename.t -> local_env -> named_context
+
diff --git a/contrib/correctness/pdb.ml b/contrib/correctness/pdb.ml
new file mode 100644
index 00000000..302db871
--- /dev/null
+++ b/contrib/correctness/pdb.ml
@@ -0,0 +1,165 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pdb.ml,v 1.8.2.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Names
+open Term
+open Termops
+open Nametab
+open Constrintern
+
+open Ptype
+open Past
+open Penv
+
+let cci_global id =
+ try
+ global_reference id
+ with
+ _ -> raise Not_found
+
+let lookup_var ids locop id =
+ if List.mem id ids then
+ None
+ else begin
+ try Some (cci_global id)
+ with Not_found -> Perror.unbound_variable id locop
+ end
+
+let check_ref idl loc id =
+ if (not (List.mem id idl)) & (not (Penv.is_global id)) then
+ Perror.unbound_reference id loc
+
+(* db types : only check the references for the moment *)
+
+let rec check_type_v refs = function
+ | Ref v ->
+ check_type_v refs v
+ | Array (c,v) ->
+ check_type_v refs v
+ | Arrow (bl,c) ->
+ check_binder refs c bl
+ | TypePure _ ->
+ ()
+
+and check_type_c refs ((_,v),e,_,_) =
+ check_type_v refs v;
+ List.iter (check_ref refs None) (Peffect.get_reads e);
+ List.iter (check_ref refs None) (Peffect.get_writes e)
+ (* TODO: check_condition on p and q *)
+
+and check_binder refs c = function
+ | [] ->
+ check_type_c refs c
+ | (id, BindType (Ref _ | Array _ as v)) :: bl ->
+ check_type_v refs v;
+ check_binder (id :: refs) c bl
+ | (_, BindType v) :: bl ->
+ check_type_v refs v;
+ check_binder refs c bl
+ | _ :: bl ->
+ check_binder refs c bl
+
+(* db binders *)
+
+let rec db_binders ((tids,pids,refs) as idl) = function
+ | [] ->
+ idl, []
+ | (id, BindType (Ref _ | Array _ as v)) as b :: rem ->
+ check_type_v refs v;
+ let idl',rem' = db_binders (tids,pids,id::refs) rem in
+ idl', b :: rem'
+ | (id, BindType v) as b :: rem ->
+ check_type_v refs v;
+ let idl',rem' = db_binders (tids,id::pids,refs) rem in
+ idl', b :: rem'
+ | ((id, BindSet) as t) :: rem ->
+ let idl',rem' = db_binders (id::tids,pids,refs) rem in
+ idl', t :: rem'
+ | a :: rem ->
+ let idl',rem' = db_binders idl rem in idl', a :: rem'
+
+
+(* db programs *)
+
+let db_prog e =
+ (* tids = type identifiers, ids = variables, refs = references and arrays *)
+ let rec db_desc ((tids,ids,refs) as idl) = function
+ | (Variable x) as t ->
+ (match lookup_var ids (Some e.loc) x with
+ None -> t
+ | Some c -> Expression c)
+ | (Acc x) as t ->
+ check_ref refs (Some e.loc) x;
+ t
+ | Aff (x,e1) ->
+ check_ref refs (Some e.loc) x;
+ Aff (x, db idl e1)
+ | TabAcc (b,x,e1) ->
+ check_ref refs (Some e.loc) x;
+ TabAcc(b,x,db idl e1)
+ | TabAff (b,x,e1,e2) ->
+ check_ref refs (Some e.loc) x;
+ TabAff (b,x, db idl e1, db idl e2)
+ | Seq bl ->
+ Seq (List.map (function
+ Statement p -> Statement (db idl p)
+ | x -> x) bl)
+ | If (e1,e2,e3) ->
+ If (db idl e1, db idl e2, db idl e3)
+ | While (b,inv,var,bl) ->
+ let bl' = List.map (function
+ Statement p -> Statement (db idl p)
+ | x -> x) bl in
+ While (db idl b, inv, var, bl')
+
+ | Lam (bl,e) ->
+ let idl',bl' = db_binders idl bl in Lam(bl', db idl' e)
+ | Apply (e1,l) ->
+ Apply (db idl e1, List.map (db_arg idl) l)
+ | SApp (dl,l) ->
+ SApp (dl, List.map (db idl) l)
+ | LetRef (x,e1,e2) ->
+ LetRef (x, db idl e1, db (tids,ids,x::refs) e2)
+ | Let (x,e1,e2) ->
+ Let (x, db idl e1, db (tids,x::ids,refs) e2)
+
+ | LetRec (f,bl,v,var,e) ->
+ let (tids',ids',refs'),bl' = db_binders idl bl in
+ check_type_v refs' v;
+ LetRec (f, bl, v, var, db (tids',f::ids',refs') e)
+
+ | Debug (s,e1) ->
+ Debug (s, db idl e1)
+
+ | Expression _ as x -> x
+ | PPoint (s,d) -> PPoint (s, db_desc idl d)
+
+ and db_arg ((tids,_,refs) as idl) = function
+ | Term ({ desc = Variable id } as t) ->
+ if List.mem id refs then Refarg id else Term (db idl t)
+ | Term t -> Term (db idl t)
+ | Type v as ty -> check_type_v refs v; ty
+ | Refarg _ -> assert false
+
+ and db idl e =
+ { desc = db_desc idl e.desc ;
+ pre = e.pre; post = e.post;
+ loc = e.loc; info = e.info }
+
+ in
+ let ids = Termops.ids_of_named_context (Global.named_context ()) in
+ (* TODO: separer X:Set et x:V:Set
+ virer le reste (axiomes, etc.) *)
+ let vars,refs = all_vars (), all_refs () in
+ db ([],vars@ids,refs) e
+;;
+
diff --git a/contrib/correctness/pdb.mli b/contrib/correctness/pdb.mli
new file mode 100644
index 00000000..a0df29bd
--- /dev/null
+++ b/contrib/correctness/pdb.mli
@@ -0,0 +1,25 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pdb.mli,v 1.2.16.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Ptype
+open Past
+
+
+(* Here we separate local and global variables, we check the use of
+ * references and arrays w.r.t the local and global environments, etc.
+ * These functions directly raise UserError exceptions on bad programs.
+ *)
+
+val check_type_v : Names.identifier list -> 'a ml_type_v -> unit
+
+val db_prog : program -> program
+
diff --git a/contrib/correctness/peffect.ml b/contrib/correctness/peffect.ml
new file mode 100644
index 00000000..08d6b002
--- /dev/null
+++ b/contrib/correctness/peffect.ml
@@ -0,0 +1,159 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: peffect.ml,v 1.3.14.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Names
+open Nameops
+open Pmisc
+
+(* The type of effects.
+ *
+ * An effect is composed of two lists (r,w) of variables.
+ * The first one is the list of read-only variables
+ * and the second one is the list of read-write variables.
+ *
+ * INVARIANT: 1. each list is sorted in decreasing order for Pervasives.compare
+ * 2. there are no duplicate elements in each list
+ * 3. the two lists are disjoint
+ *)
+
+type t = identifier list * identifier list
+
+
+(* the empty effect *)
+
+let bottom = ([], [])
+
+(* basic operations *)
+
+let push x l =
+ let rec push_rec = function
+ [] -> [x]
+ | (y::rem) as l ->
+ if x = y then l else if x > y then x::l else y :: push_rec rem
+ in
+ push_rec l
+
+let basic_remove x l =
+ let rec rem_rec = function
+ [] -> []
+ | y::l -> if x = y then l else y :: rem_rec l
+ in
+ rem_rec l
+
+let mem x (r,w) = (List.mem x r) or (List.mem x w)
+
+let rec basic_union = function
+ [], s2 -> s2
+ | s1, [] -> s1
+ | ((v1::l1) as s1), ((v2::l2) as s2) ->
+ if v1 > v2 then
+ v1 :: basic_union (l1,s2)
+ else if v1 < v2 then
+ v2 :: basic_union (s1,l2)
+ else
+ v1 :: basic_union (l1,l2)
+
+(* adds reads and writes variables *)
+
+let add_read id ((r,w) as e) =
+ (* if the variable is already a RW it is ok, otherwise adds it as a RO. *)
+ if List.mem id w then
+ e
+ else
+ push id r, w
+
+let add_write id (r,w) =
+ (* if the variable is a RO then removes it from RO. Adds it to RW. *)
+ if List.mem id r then
+ basic_remove id r, push id w
+ else
+ r, push id w
+
+(* access *)
+
+let get_reads = basic_union
+let get_writes = snd
+let get_repr e = (get_reads e, get_writes e)
+
+(* tests *)
+
+let is_read (r,_) id = List.mem id r
+let is_write (_,w) id = List.mem id w
+
+(* union and disjunction *)
+
+let union (r1,w1) (r2,w2) = basic_union (r1,r2), basic_union (w1,w2)
+
+let rec diff = function
+ [], s2 -> []
+ | s1, [] -> s1
+ | ((v1::l1) as s1), ((v2::l2) as s2) ->
+ if v1 > v2 then
+ v1 :: diff (l1,s2)
+ else if v1 < v2 then
+ diff (s1,l2)
+ else
+ diff (l1,l2)
+
+let disj (r1,w1) (r2,w2) =
+ let w1_w2 = diff (w1,w2) and w2_w1 = diff (w2,w1) in
+ let r = basic_union (basic_union (r1,r2), basic_union (w1_w2,w2_w1))
+ and w = basic_union (w1,w2) in
+ r,w
+
+(* comparison relation *)
+
+let le e1 e2 = failwith "effects: le: not yet implemented"
+
+let inf e1 e2 = failwith "effects: inf: not yet implemented"
+
+(* composition *)
+
+let compose (r1,w1) (r2,w2) =
+ let r = basic_union (r1, diff (r2,w1)) in
+ let w = basic_union (w1,w2) in
+ r,w
+
+(* remove *)
+
+let remove (r,w) name = basic_remove name r, basic_remove name w
+
+(* substitution *)
+
+let subst_list (x,x') l =
+ if List.mem x l then push x' (basic_remove x l) else l
+
+let subst_one (r,w) s = subst_list s r, subst_list s w
+
+let subst s e = List.fold_left subst_one e s
+
+(* pretty-print *)
+
+open Pp
+open Util
+open Himsg
+
+let pp (r,w) =
+ hov 0 (if r<>[] then
+ (str"reads " ++
+ prlist_with_sep (fun () -> (str"," ++ spc ())) pr_id r)
+ else (mt ()) ++
+ spc () ++
+ if w<>[] then
+ (str"writes " ++
+ prlist_with_sep (fun ()-> (str"," ++ spc ())) pr_id w)
+ else (mt ())
+)
+
+let ppr e =
+ Pp.pp (pp e)
+
diff --git a/contrib/correctness/peffect.mli b/contrib/correctness/peffect.mli
new file mode 100644
index 00000000..d6d0ce22
--- /dev/null
+++ b/contrib/correctness/peffect.mli
@@ -0,0 +1,42 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: peffect.mli,v 1.1.16.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Names
+
+(* The abstract type of effects *)
+
+type t
+
+val bottom : t
+val add_read : identifier -> t -> t
+val add_write : identifier -> t -> t
+
+val get_reads : t -> identifier list
+val get_writes : t -> identifier list
+val get_repr : t -> (identifier list) * (identifier list)
+
+val is_read : t -> identifier -> bool (* read-only *)
+val is_write : t -> identifier -> bool (* read-write *)
+
+val compose : t -> t -> t
+
+val union : t -> t -> t
+val disj : t -> t -> t
+
+val remove : t -> identifier -> t
+
+val subst : (identifier * identifier) list -> t -> t
+
+
+val pp : t -> Pp.std_ppcmds
+val ppr : t -> unit
+
diff --git a/contrib/correctness/penv.ml b/contrib/correctness/penv.ml
new file mode 100644
index 00000000..820d1cf0
--- /dev/null
+++ b/contrib/correctness/penv.ml
@@ -0,0 +1,240 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: penv.ml,v 1.10.2.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Pmisc
+open Past
+open Ptype
+open Names
+open Nameops
+open Libobject
+open Library
+open Term
+
+(* Environments for imperative programs.
+ *
+ * An environment of programs is an association tables
+ * from identifiers (Names.identifier) to types of values with effects
+ * (ProgAst.ml_type_v), together with a list of these associations, since
+ * the order is relevant (we have dependent types e.g. [x:nat; t:(array x T)])
+ *)
+
+module Env = struct
+ type 'a t = ('a Idmap.t)
+ * ((identifier * 'a) list)
+ * ((identifier * (identifier * variant)) list)
+ let empty = Idmap.empty, [], []
+ let add id v (m,l,r) = (Idmap.add id v m, (id,v)::l, r)
+ let find id (m,_,_) = Idmap.find id m
+ let fold f (_,l,_) x0 = List.fold_right f l x0
+ let add_rec (id,var) (m,l,r) = (m,l,(id,var)::r)
+ let find_rec id (_,_,r) = List.assoc id r
+end
+
+(* Local environments *)
+
+type type_info = Set | TypeV of type_v
+
+type local_env = type_info Env.t
+
+let empty = (Env.empty : local_env)
+
+let add (id,v) = Env.add id (TypeV v)
+
+let add_set id = Env.add id Set
+
+let find id env =
+ match Env.find id env with TypeV v -> v | Set -> raise Not_found
+
+let is_local env id =
+ try
+ match Env.find id env with TypeV _ -> true | Set -> false
+ with
+ Not_found -> false
+
+let is_local_set env id =
+ try
+ match Env.find id env with TypeV _ -> false | Set -> true
+ with
+ Not_found -> false
+
+
+(* typed programs *)
+
+type typing_info = {
+ env : local_env;
+ kappa : constr ml_type_c
+}
+
+type typed_program = (typing_info, constr) t
+
+
+(* The global environment.
+ *
+ * We have a global typing environment env
+ * We also keep a table of programs for extraction purposes
+ * and a table of initializations (still for extraction)
+ *)
+
+let (env : type_info Env.t ref) = ref Env.empty
+
+let (pgm_table : (typed_program option) Idmap.t ref) = ref Idmap.empty
+
+let (init_table : constr Idmap.t ref) = ref Idmap.empty
+
+let freeze () = (!env, !pgm_table, !init_table)
+let unfreeze (e,p,i) = env := e; pgm_table := p; init_table := i
+let init () =
+ env := Env.empty; pgm_table := Idmap.empty; init_table := Idmap.empty
+;;
+
+Summary.declare_summary "programs-environment"
+ { Summary.freeze_function = freeze;
+ Summary.unfreeze_function = unfreeze;
+ Summary.init_function = init;
+ Summary.survive_module = false;
+ Summary.survive_section = false }
+;;
+
+(* Operations on the global environment. *)
+
+let add_pgm id p = pgm_table := Idmap.add id p !pgm_table
+
+let cache_global (_,(id,v,p)) =
+ env := Env.add id v !env; add_pgm id p
+
+let type_info_app f = function Set -> Set | TypeV v -> TypeV (f v)
+
+let subst_global (_,s,(id,v,p)) = (id, type_info_app (type_v_knsubst s) v, p)
+
+let (inProg,outProg) =
+ declare_object { object_name = "programs-objects";
+ cache_function = cache_global;
+ load_function = (fun _ -> cache_global);
+ open_function = (fun _ _ -> ());
+ classify_function = (fun (_,x) -> Substitute x);
+ subst_function = subst_global;
+ export_function = (fun x -> Some x) }
+
+let is_mutable = function Ref _ | Array _ -> true | _ -> false
+
+let add_global id v p =
+ try
+ let _ = Env.find id !env in
+ Perror.clash id None
+ with
+ Not_found -> begin
+ let id' =
+ if is_mutable v then id
+ else id_of_string ("prog_" ^ (string_of_id id))
+ in
+ Lib.add_leaf id' (inProg (id,TypeV v,p))
+ end
+
+let add_global_set id =
+ try
+ let _ = Env.find id !env in
+ Perror.clash id None
+ with
+ Not_found -> Lib.add_leaf id (inProg (id,Set,None))
+
+let is_global id =
+ try
+ match Env.find id !env with TypeV _ -> true | Set -> false
+ with
+ Not_found -> false
+
+let is_global_set id =
+ try
+ match Env.find id !env with TypeV _ -> false | Set -> true
+ with
+ Not_found -> false
+
+
+let lookup_global id =
+ match Env.find id !env with TypeV v -> v | Set -> raise Not_found
+
+let find_pgm id = Idmap.find id !pgm_table
+
+let all_vars () =
+ Env.fold
+ (fun (id,v) l -> match v with TypeV (Arrow _|TypePure _) -> id::l | _ -> l)
+ !env []
+
+let all_refs () =
+ Env.fold
+ (fun (id,v) l -> match v with TypeV (Ref _ | Array _) -> id::l | _ -> l)
+ !env []
+
+(* initializations *)
+
+let cache_init (_,(id,c)) =
+ init_table := Idmap.add id c !init_table
+
+let subst_init (_,s,(id,c)) = (id, subst_mps s c)
+
+let (inInit,outInit) =
+ declare_object { object_name = "programs-objects-init";
+ cache_function = cache_init;
+ load_function = (fun _ -> cache_init);
+ open_function = (fun _ _-> ());
+ classify_function = (fun (_,x) -> Substitute x);
+ subst_function = subst_init;
+ export_function = (fun x -> Some x) }
+
+let initialize id c = Lib.add_anonymous_leaf (inInit (id,c))
+
+let find_init id = Idmap.find id !init_table
+
+
+(* access in env, local then global *)
+
+let type_in_env env id =
+ try find id env with Not_found -> lookup_global id
+
+let is_in_env env id =
+ (is_global id) or (is_local env id)
+
+let fold_all f lenv x0 =
+ let x1 = Env.fold f !env x0 in
+ Env.fold f lenv x1
+
+
+(* recursions *)
+
+let add_recursion = Env.add_rec
+
+let find_recursion = Env.find_rec
+
+
+(* We also maintain a table of the currently edited proofs of programs
+ * in order to add them in the environnement when the user does Save *)
+
+open Pp
+open Himsg
+
+let (edited : (type_v * typed_program) Idmap.t ref) = ref Idmap.empty
+
+let new_edited id v =
+ edited := Idmap.add id v !edited
+
+let is_edited id =
+ try let _ = Idmap.find id !edited in true with Not_found -> false
+
+let register id id' =
+ try
+ let (v,p) = Idmap.find id !edited in
+ let _ = add_global id' v (Some p) in
+ Options.if_verbose
+ msgnl (hov 0 (str"Program " ++ pr_id id' ++ spc () ++ str"is defined"));
+ edited := Idmap.remove id !edited
+ with Not_found -> ()
+
diff --git a/contrib/correctness/penv.mli b/contrib/correctness/penv.mli
new file mode 100644
index 00000000..ef2e4c6e
--- /dev/null
+++ b/contrib/correctness/penv.mli
@@ -0,0 +1,87 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: penv.mli,v 1.3.8.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Ptype
+open Past
+open Names
+open Libnames
+open Term
+
+(* Environment for imperative programs.
+ *
+ * Here we manage the global environment, which is imperative,
+ * and we provide a functional local environment.
+ *
+ * The most important functions, is_in_env, type_in_env and fold_all
+ * first look in the local environment then in the global one.
+ *)
+
+(* local environments *)
+
+type local_env
+
+val empty : local_env
+val add : (identifier * type_v) -> local_env -> local_env
+val add_set : identifier -> local_env -> local_env
+val is_local : local_env -> identifier -> bool
+val is_local_set : local_env -> identifier -> bool
+
+(* typed programs *)
+
+type typing_info = {
+ env : local_env;
+ kappa : constr ml_type_c
+}
+
+type typed_program = (typing_info, constr) t
+
+(* global environment *)
+
+val add_global : identifier -> type_v -> typed_program option -> object_name
+val add_global_set : identifier -> object_name
+val is_global : identifier -> bool
+val is_global_set : identifier -> bool
+val lookup_global : identifier -> type_v
+
+val all_vars : unit -> identifier list
+val all_refs : unit -> identifier list
+
+(* a table keeps the program (for extraction) *)
+
+val find_pgm : identifier -> typed_program option
+
+(* a table keeps the initializations of mutable objects *)
+
+val initialize : identifier -> constr -> unit
+val find_init : identifier -> constr
+
+(* access in env (local then global) *)
+
+val type_in_env : local_env -> identifier -> type_v
+val is_in_env : local_env -> identifier -> bool
+
+type type_info = Set | TypeV of type_v
+val fold_all : (identifier * type_info -> 'a -> 'a) -> local_env -> 'a -> 'a
+
+(* local environnements also contains a list of recursive functions
+ * with the associated variant *)
+
+val add_recursion : identifier * (identifier*variant) -> local_env -> local_env
+val find_recursion : identifier -> local_env -> identifier * variant
+
+(* We also maintain a table of the currently edited proofs of programs
+ * in order to add them in the environnement when the user does Save *)
+
+val new_edited : identifier -> type_v * typed_program -> unit
+val is_edited : identifier -> bool
+val register : identifier -> identifier -> unit
+
diff --git a/contrib/correctness/perror.ml b/contrib/correctness/perror.ml
new file mode 100644
index 00000000..40fe4c98
--- /dev/null
+++ b/contrib/correctness/perror.ml
@@ -0,0 +1,172 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: perror.ml,v 1.9.2.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Pp
+open Util
+open Names
+open Nameops
+open Term
+open Himsg
+
+open Ptype
+open Past
+
+let is_mutable = function Ref _ | Array _ -> true | _ -> false
+let is_pure = function TypePure _ -> true | _ -> false
+
+let raise_with_loc = function
+ | None -> raise
+ | Some loc -> Stdpp.raise_with_loc loc
+
+let unbound_variable id loc =
+ raise_with_loc loc
+ (UserError ("Perror.unbound_variable",
+ (hov 0 (str"Unbound variable" ++ spc () ++ pr_id id ++ fnl ()))))
+
+let unbound_reference id loc =
+ raise_with_loc loc
+ (UserError ("Perror.unbound_reference",
+ (hov 0 (str"Unbound reference" ++ spc () ++ pr_id id ++ fnl ()))))
+
+let clash id loc =
+ raise_with_loc loc
+ (UserError ("Perror.clash",
+ (hov 0 (str"Clash with previous constant" ++ spc () ++
+ str(string_of_id id) ++ fnl ()))))
+
+let not_defined id =
+ raise
+ (UserError ("Perror.not_defined",
+ (hov 0 (str"The object" ++ spc () ++ pr_id id ++ spc () ++
+ str"is not defined" ++ fnl ()))))
+
+let check_for_reference loc id = function
+ Ref _ -> ()
+ | _ -> Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_for_reference",
+ hov 0 (pr_id id ++ spc () ++
+ str"is not a reference")))
+
+let check_for_array loc id = function
+ Array _ -> ()
+ | _ -> Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_for_array",
+ hov 0 (pr_id id ++ spc () ++
+ str"is not an array")))
+
+let is_constant_type s = function
+ TypePure c ->
+ let id = id_of_string s in
+ let c' = Constrintern.global_reference id in
+ Reductionops.is_conv (Global.env()) Evd.empty c c'
+ | _ -> false
+
+let check_for_index_type loc v =
+ let is_index = is_constant_type "Z" v in
+ if not is_index then
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_for_index",
+ hov 0 (str"This expression is an index" ++ spc () ++
+ str"and should have type int (Z)")))
+
+let check_no_effect loc ef =
+ if not (Peffect.get_writes ef = []) then
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_no_effect",
+ hov 0 (str"A boolean should not have side effects"
+)))
+
+let should_be_boolean loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.should_be_boolean",
+ hov 0 (str"This expression is a test:" ++ spc () ++
+ str"it should have type bool")))
+
+let test_should_be_annotated loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.test_should_be_annotated",
+ hov 0 (str"This test should be annotated")))
+
+let if_branches loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.if_branches",
+ hov 0 (str"The two branches of an `if' expression" ++ spc () ++
+ str"should have the same type")))
+
+let check_for_not_mutable loc v =
+ if is_mutable v then
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_for_not_mutable",
+ hov 0 (str"This expression cannot be a mutable")))
+
+let check_for_pure_type loc v =
+ if not (is_pure v) then
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_for_pure_type",
+ hov 0 (str"This expression must be pure" ++ spc () ++
+ str"(neither a mutable nor a function)")))
+
+let check_for_let_ref loc v =
+ if not (is_pure v) then
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.check_for_let_ref",
+ hov 0 (str"References can only be bound in pure terms")))
+
+let informative loc s =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.variant_informative",
+ hov 0 (str s ++ spc () ++ str"must be informative")))
+
+let variant_informative loc = informative loc "Variant"
+let should_be_informative loc = informative loc "This term"
+
+let app_of_non_function loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.app_of_non_function",
+ hov 0 (str"This term cannot be applied" ++ spc () ++
+ str"(either it is not a function" ++ spc () ++
+ str"or it is applied to non pure arguments)")))
+
+let partial_app loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.partial_app",
+ hov 0 (str"This function does not have" ++
+ spc () ++ str"the right number of arguments")))
+
+let expected_type loc s =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.expected_type",
+ hov 0 (str"Argument is expected to have type" ++ spc () ++ s)))
+
+let expects_a_type id loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.expects_a_type",
+ hov 0 (str"The argument " ++ pr_id id ++ spc () ++
+ str"in this application is supposed to be a type")))
+
+let expects_a_term id =
+ raise
+ (UserError ("Perror.expects_a_type",
+ hov 0 (str"The argument " ++ pr_id id ++ spc () ++
+ str"in this application is supposed to be a term")))
+
+let should_be_a_variable loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.should_be_a_variable",
+ hov 0 (str"Argument should be a variable")))
+
+let should_be_a_reference loc =
+ Stdpp.raise_with_loc loc
+ (UserError ("Perror.should_be_a_reference",
+ hov 0 (str"Argument of function should be a reference")))
+
+
diff --git a/contrib/correctness/perror.mli b/contrib/correctness/perror.mli
new file mode 100644
index 00000000..40b2d25c
--- /dev/null
+++ b/contrib/correctness/perror.mli
@@ -0,0 +1,47 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: perror.mli,v 1.2.6.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Pp
+open Util
+open Names
+open Ptype
+open Past
+
+val unbound_variable : identifier -> loc option -> 'a
+val unbound_reference : identifier -> loc option -> 'a
+
+val clash : identifier -> loc option -> 'a
+val not_defined : identifier -> 'a
+
+val check_for_reference : loc -> identifier -> type_v -> unit
+val check_for_array : loc -> identifier -> type_v -> unit
+
+val check_for_index_type : loc -> type_v -> unit
+val check_no_effect : loc -> Peffect.t -> unit
+val should_be_boolean : loc -> 'a
+val test_should_be_annotated : loc -> 'a
+val if_branches : loc -> 'a
+
+val check_for_not_mutable : loc -> type_v -> unit
+val check_for_pure_type : loc -> type_v -> unit
+val check_for_let_ref : loc -> type_v -> unit
+
+val variant_informative : loc -> 'a
+val should_be_informative : loc -> 'a
+
+val app_of_non_function : loc -> 'a
+val partial_app : loc -> 'a
+val expected_type : loc -> std_ppcmds -> 'a
+val expects_a_type : identifier -> loc -> 'a
+val expects_a_term : identifier -> 'a
+val should_be_a_variable : loc -> 'a
+val should_be_a_reference : loc -> 'a
diff --git a/contrib/correctness/pextract.ml b/contrib/correctness/pextract.ml
new file mode 100644
index 00000000..2a35d471
--- /dev/null
+++ b/contrib/correctness/pextract.ml
@@ -0,0 +1,473 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pextract.ml,v 1.5.6.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Pp_control
+open Pp
+open Util
+open System
+open Names
+open Term
+open Himsg
+open Reduction
+
+open Putil
+open Ptype
+open Past
+open Penv
+open Putil
+
+let extraction env c =
+ let ren = initial_renaming env in
+ let sign = Pcicenv.now_sign_of ren env in
+ let fsign = Mach.fsign_of_sign (Evd.mt_evd()) sign in
+ match Mach.infexecute (Evd.mt_evd()) (sign,fsign) c with
+ | (_,Inf j) -> j._VAL
+ | (_,Logic) -> failwith "Prog_extract.pp: should be informative"
+
+(* les tableaux jouent un role particulier, puisqu'ils seront extraits
+ * vers des tableaux ML *)
+
+let sp_access = coq_constant ["correctness"; "Arrays"] "access"
+let access = ConstRef sp_access
+
+let has_array = ref false
+
+let pp_conversions () =
+ (str"\
+let rec int_of_pos = function
+ XH -> 1
+ | XI p -> 2 * (int_of_pos p) + 1
+ | XO p -> 2 * (int_of_pos p)
+ ++ ++
+
+let int_of_z = function
+ ZERO -> 0
+ | POS p -> int_of_pos p
+ | NEG p -> -(int_of_pos p)
+ ++ ++
+") (* '"' *)
+
+(* collect all section-path in a CIC constant *)
+
+let spset_of_cci env c =
+ let spl = Fw_env.collect (extraction env c) in
+ let sps = List.fold_left (fun e x -> SpSet.add x e) SpSet.empty spl in
+ has_array := !has_array or (SpSet.mem sp_access sps) ++
+ SpSet.remove sp_access sps
+
+
+(* collect all Coq constants and all pgms appearing in a given program *)
+
+let add_id env ((sp,ids) as s) id =
+ if is_local env id then
+ s
+ else if is_global id then
+ (sp,IdSet.add id ids)
+ else
+ try (SpSet.add (Nametab.sp_of_id FW id) sp,ids) with Not_found -> s
+
+let collect env =
+ let rec collect_desc env s = function
+ | Var x -> add_id env s x
+ | Acc x -> add_id env s x
+ | Aff (x,e1) -> add_id env (collect_rec env s e1) x
+ | TabAcc (_,x,e1) ->
+ has_array := true ++
+ add_id env (collect_rec env s e1) x
+ | TabAff (_,x,e1,e2) ->
+ has_array := true ++
+ add_id env (collect_rec env (collect_rec env s e1) e2) x
+ | Seq bl ->
+ List.fold_left (fun s st -> match st with
+ Statement p -> collect_rec env s p
+ | _ -> s) s bl
+ | If (e1,e2,e3) ->
+ collect_rec env (collect_rec env (collect_rec env s e1) e2) e3
+ | While (b,_,_,bl) ->
+ let s = List.fold_left (fun s st -> match st with
+ Statement p -> collect_rec env s p
+ | _ -> s) s bl in
+ collect_rec env s b
+ | Lam (bl,e) ->
+ collect_rec (traverse_binders env bl) s e
+ | App (e1,l) ->
+ let s = List.fold_left (fun s a -> match a with
+ Term t -> collect_rec env s t
+ | Type _ | Refarg _ -> s) s l in
+ collect_rec env s e1
+ | SApp (_,l) ->
+ List.fold_left (fun s a -> collect_rec env s a) s l
+ | LetRef (x,e1,e2) ->
+ let (_,v),_,_,_ = e1.info.kappa in
+ collect_rec (add (x,Ref v) env) (collect_rec env s e1) e2
+ | LetIn (x,e1,e2) ->
+ let (_,v),_,_,_ = e1.info.kappa in
+ collect_rec (add (x,v) env) (collect_rec env s e1) e2
+ | LetRec (f,bl,_,_,e) ->
+ let env' = traverse_binders env bl in
+ let env'' = add (f,make_arrow bl e.info.kappa) env' in
+ collect_rec env'' s e
+ | Debug (_,e1) -> collect_rec env s e1
+ | PPoint (_,d) -> collect_desc env s d
+ | Expression c ->
+ let (sp,ids) = s in
+ let sp' = spset_of_cci env c in
+ SpSet.fold
+ (fun s (es,ei) ->
+ let id = basename s in
+ if is_global id then (*SpSet.add s*)es,IdSet.add id ei
+ else SpSet.add s es,ei)
+ sp' (sp,ids)
+
+ and collect_rec env s p = collect_desc env s p.desc
+
+ in
+ collect_rec env (SpSet.empty,IdSet.empty)
+
+
+(* On a besoin de faire du renommage, tout comme pour l'extraction des
+ * termes Coq. En ce qui concerne les globaux, on utilise la table de
+ * Fwtoml. Pour les objects locaux, on introduit la structure de
+ * renommage rename_struct
+ *)
+
+module Ocaml_ren = Ocaml.OCaml_renaming
+
+let rename_global id =
+ let id' = Ocaml_ren.rename_global_term !Fwtoml.globals (Name id) in
+ Fwtoml.add_global_renaming (id,id') ++
+ id'
+
+type rename_struct = { rn_map : identifier IdMap.t;
+ rn_avoid : identifier list }
+
+let rn_empty = { rn_map = IdMap.empty; rn_avoid = [] }
+
+let rename_local rn id =
+ let id' = Ocaml_ren.rename_term (!Fwtoml.globals@rn.rn_avoid) (Name id) in
+ { rn_map = IdMap.add id id' rn.rn_map; rn_avoid = id' :: rn.rn_avoid },
+ id'
+
+let get_local_name rn id = IdMap.find id rn.rn_map
+
+let get_name env rn id =
+ if is_local env id then
+ get_local_name rn id
+ else
+ Fwtoml.get_global_name id
+
+let rec rename_binders rn = function
+ | [] -> rn
+ | (id,_) :: bl -> let rn',_ = rename_local rn id in rename_binders rn' bl
+
+(* on a bespoin d'un pretty-printer de constr particulier, qui reconnaisse
+ * les acces a des references et dans des tableaux, et qui de plus n'imprime
+ * pas de GENTERM lorsque des identificateurs ne sont pas visibles.
+ * Il est simplifie dans la mesure ou l'on a ici que des constantes et
+ * des applications.
+ *)
+
+let putpar par s =
+ if par then (str"(" ++ s ++ str")") else s
+
+let is_ref env id =
+ try
+ (match type_in_env env id with Ref _ -> true | _ -> false)
+ with
+ Not_found -> false
+
+let rec pp_constr env rn = function
+ | VAR id ->
+ if is_ref env id then
+ (str"!" ++ pID (get_name env rn id))
+ else
+ pID (get_name env rn id)
+ | DOPN((Const _|MutInd _|MutConstruct _) as oper, _) ->
+ pID (Fwtoml.name_of_oper oper)
+ | DOPN(AppL,v) ->
+ if Array.length v = 0 then
+ (mt ())
+ else begin
+ match v.(0) with
+ DOPN(Const sp,_) when sp = sp_access ->
+ (pp_constr env rn v.(3) ++
+ str".(int_of_z " ++ pp_constr env rn v.(4) ++ str")")
+ | _ ->
+ hov 2 (putpar true (prvect_with_sep (fun () -> (spc ()))
+ (pp_constr env rn) v))
+ end
+ | DOP2(Cast,c,_) -> pp_constr env rn c
+ | _ -> failwith "Prog_extract.pp_constr: unexpected constr"
+
+
+(* pretty-print of imperative programs *)
+
+let collect_lambda =
+ let rec collect acc p = match p.desc with
+ | Lam(bl,t) -> collect (bl@acc) t
+ | x -> acc,p
+ in
+ collect []
+
+let pr_binding rn =
+ prlist_with_sep (fun () -> (mt ()))
+ (function
+ | (id,(Untyped | BindType _)) ->
+ (str" " ++ pID (get_local_name rn id))
+ | (id,BindSet) -> (mt ()))
+
+let pp_prog id =
+ let rec pp_d env rn par = function
+ | Var x -> pID (get_name env rn x)
+ | Acc x -> (str"!" ++ pID (get_name env rn x))
+ | Aff (x,e1) -> (pID (get_name env rn x) ++
+ str" := " ++ hov 0 (pp env rn false e1))
+ | TabAcc (_,x,e1) ->
+ (pID (get_name env rn x) ++
+ str".(int_of_z " ++ hov 0 (pp env rn true e1) ++ str")")
+ | TabAff (_,x,e1,e2) ->
+ (pID (get_name env rn x) ++
+ str".(int_of_z " ++ hov 0 (pp env rn true e1) ++ str")" ++
+ str" <-" ++ spc () ++ hov 2 (pp env rn false e2))
+ | Seq bl ->
+ (str"begin" ++ fnl () ++
+ str" " ++ hov 0 (pp_block env rn bl) ++ fnl () ++
+ str"end")
+ | If (e1,e2,e3) ->
+ putpar par (str"if " ++ (pp env rn false e1) ++
+ str" then" ++ fnl () ++
+ str" " ++ hov 0 (pp env rn false e2) ++ fnl () ++
+ str"else" ++ fnl () ++
+ str" " ++ hov 0 (pp env rn false e3))
+ (* optimisations : then begin .... end else begin ... end *)
+ | While (b,inv,_,bl) ->
+ (str"while " ++ (pp env rn false b) ++ str" do" ++ fnl () ++
+ str" " ++
+ hov 0 ((match inv with
+ None -> (mt ())
+ | Some c -> (str"(* invariant: " ++ pTERM c.a_value ++
+ str" *)" ++ fnl ())) ++
+ pp_block env rn bl) ++ fnl () ++
+ str"done")
+ | Lam (bl,e) ->
+ let env' = traverse_binders env bl in
+ let rn' = rename_binders rn bl in
+ putpar par
+ (hov 2 (str"fun" ++ pr_binding rn' bl ++ str" ->" ++
+ spc () ++ pp env' rn' false e))
+ | SApp ((Var id)::_, [e1; e2])
+ when id = connective_and or id = connective_or ->
+ let conn = if id = connective_and then "&" else "or" in
+ putpar par
+ (hov 0 (pp env rn true e1 ++ spc () ++ str conn ++ spc () ++
+ pp env rn true e2))
+ | SApp ((Var id)::_, [e]) when id = connective_not ->
+ putpar par
+ (hov 0 (str"not" ++ spc () ++ pp env rn true e))
+ | SApp _ ->
+ invalid_arg "Prog_extract.pp_prog (SApp)"
+ | App(e1,[]) ->
+ hov 0 (pp env rn false e1)
+ | App (e1,l) ->
+ putpar true
+ (hov 2 (pp env rn true e1 ++
+ prlist (function
+ Term p -> (spc () ++ pp env rn true p)
+ | Refarg x -> (spc () ++ pID (get_name env rn x))
+ | Type _ -> (mt ()))
+ l))
+ | LetRef (x,e1,e2) ->
+ let (_,v),_,_,_ = e1.info.kappa in
+ let env' = add (x,Ref v) env in
+ let rn',x' = rename_local rn x in
+ putpar par
+ (hov 0 (str"let " ++ pID x' ++ str" = ref " ++ pp env rn false e1 ++
+ str" in" ++ fnl () ++ pp env' rn' false e2))
+ | LetIn (x,e1,e2) ->
+ let (_,v),_,_,_ = e1.info.kappa in
+ let env' = add (x,v) env in
+ let rn',x' = rename_local rn x in
+ putpar par
+ (hov 0 (str"let " ++ pID x' ++ str" = " ++ pp env rn false e1 ++
+ str" in" ++ fnl () ++ pp env' rn' false e2))
+ | LetRec (f,bl,_,_,e) ->
+ let env' = traverse_binders env bl in
+ let rn' = rename_binders rn bl in
+ let env'' = add (f,make_arrow bl e.info.kappa) env' in
+ let rn'',f' = rename_local rn' f in
+ putpar par
+ (hov 0 (str"let rec " ++ pID f' ++ pr_binding rn' bl ++ str" =" ++ fnl () ++
+ str" " ++ hov 0 (pp env'' rn'' false e) ++ fnl () ++
+ str"in " ++ pID f'))
+ | Debug (_,e1) -> pp env rn par e1
+ | PPoint (_,d) -> pp_d env rn par d
+ | Expression c ->
+ pp_constr env rn (extraction env c)
+
+ and pp_block env rn bl =
+ let bl =
+ map_succeed (function Statement p -> p | _ -> failwith "caught") bl
+ in
+ prlist_with_sep (fun () -> (str";" ++ fnl ()))
+ (fun p -> hov 0 (pp env rn false p)) bl
+
+ and pp env rn par p =
+ (pp_d env rn par p.desc)
+
+ and pp_mut v c = match v with
+ | Ref _ ->
+ (str"ref " ++ pp_constr empty rn_empty (extraction empty c))
+ | Array (n,_) ->
+ (str"Array.create " ++ cut () ++
+ putpar true
+ (str"int_of_z " ++
+ pp_constr empty rn_empty (extraction empty n)) ++
+ str" " ++ pp_constr empty rn_empty (extraction empty c))
+ | _ -> invalid_arg "pp_mut"
+ in
+ let v = lookup_global id in
+ let id' = rename_global id in
+ if is_mutable v then
+ try
+ let c = find_init id in
+ hov 0 (str"let " ++ pID id' ++ str" = " ++ pp_mut v c)
+ with Not_found ->
+ errorlabstrm "Prog_extract.pp_prog"
+ (str"The variable " ++ pID id ++
+ str" must be initialized first !")
+ else
+ match find_pgm id with
+ | None ->
+ errorlabstrm "Prog_extract.pp_prog"
+ (str"The program " ++ pID id ++
+ str" must be realized first !")
+ | Some p ->
+ let bl,p = collect_lambda p in
+ let rn = rename_binders rn_empty bl in
+ let env = traverse_binders empty bl in
+ hov 0 (str"let " ++ pID id' ++ pr_binding rn bl ++ str" =" ++ fnl () ++
+ str" " ++ hov 2 (pp env rn false p))
+
+(* extraction des programmes impératifs/fonctionnels vers ocaml *)
+
+(* Il faut parfois importer des modules non ouverts, sinon
+ * Ocaml.OCaml_pp_file.pp echoue en disant "machin is not a defined
+ * informative object". Cela dit, ce n'est pas tres satisfaisant, vu que
+ * la constante existe quand meme: il vaudrait mieux contourner l'echec
+ * de ml_import.fwsp_of_id
+ *)
+
+let import sp = match repr_path sp with
+ | [m],_,_ ->
+ begin
+ try Library.import_export_module m true
+ with _ -> ()
+ end
+ | _ -> ()
+
+let pp_ocaml file prm =
+ has_array := false ++
+ (* on separe objects Coq et programmes *)
+ let cic,pgms =
+ List.fold_left
+ (fun (sp,ids) id ->
+ if is_global id then (sp,IdSet.add id ids) else (IdSet.add id sp,ids))
+ (IdSet.empty,IdSet.empty) prm.needed
+ in
+ (* on met les programmes dans l'ordre et pour chacun on recherche les
+ * objects Coq necessaires, que l'on rajoute a l'ensemble cic *)
+ let cic,_,pgms =
+ let o_pgms = fold_all (fun (id,_) l -> id::l) empty [] in
+ List.fold_left
+ (fun (cic,pgms,pl) id ->
+ if IdSet.mem id pgms then
+ let spl,pgms' =
+ try
+ (match find_pgm id with
+ | Some p -> collect empty p
+ | None ->
+ (try
+ let c = find_init id in
+ spset_of_cci empty c,IdSet.empty
+ with Not_found ->
+ SpSet.empty,IdSet.empty))
+ with Not_found -> SpSet.empty,IdSet.empty
+ in
+ let cic' =
+ SpSet.fold
+ (fun sp cic -> import sp ++ IdSet.add (basename sp) cic)
+ spl cic
+ in
+ (cic',IdSet.union pgms pgms',id::pl)
+ else
+ (cic,pgms,pl))
+ (cic,pgms,[]) o_pgms
+ in
+ let cic = IdSet.elements cic in
+ (* on pretty-print *)
+ let prm' = { needed = cic ++ expand = prm.expand ++
+ expansion = prm.expansion ++ exact = prm.exact }
+ in
+ let strm = (Ocaml.OCaml_pp_file.pp_recursive prm' ++
+ fnl () ++ fnl () ++
+ if !has_array then pp_conversions() else (mt ()) ++
+ prlist (fun p -> (pp_prog p ++ fnl () ++ str";;" ++ fnl () ++ fnl ()))
+ pgms
+)
+ in
+ (* puis on ecrit dans le fichier *)
+ let chan = open_trapping_failure open_out file ".ml" in
+ let ft = with_output_to chan in
+ begin
+ try pP_with ft strm ++ pp_flush_with ft ()
+ with e -> pp_flush_with ft () ++ close_out chan ++ raise e
+ end ++
+ close_out chan
+
+
+(* Initializations of mutable objects *)
+
+let initialize id com =
+ let loc = Ast.loc com in
+ let c = constr_of_com (Evd.mt_evd()) (initial_sign()) com in
+ let ty =
+ Reductionops.nf_betaiota (type_of (Evd.mt_evd()) (initial_sign()) c) in
+ try
+ let v = lookup_global id in
+ let ety = match v with
+ | Ref (TypePure c) -> c | Array (_,TypePure c) -> c
+ | _ -> raise Not_found
+ in
+ if conv (Evd.mt_evd()) ty ety then
+ initialize id c
+ else
+ errorlabstrm "Prog_extract.initialize"
+ (str"Not the expected type for the mutable " ++ pID id)
+ with Not_found ->
+ errorlabstrm "Prog_extract.initialize"
+ (pr_id id ++ str" is not a mutable")
+
+(* grammaire *)
+
+open Vernacinterp
+
+let _ = vinterp_add "IMPERATIVEEXTRACTION"
+ (function
+ | VARG_STRING file :: rem ->
+ let prm = parse_param rem in (fun () -> pp_ocaml file prm)
+ | _ -> assert false)
+
+let _ = vinterp_add "INITIALIZE"
+ (function
+ | [VARG_IDENTIFIER id; VARG_COMMAND com] ->
+ (fun () -> initialize id com)
+ | _ -> assert false)
diff --git a/contrib/correctness/pextract.mli b/contrib/correctness/pextract.mli
new file mode 100644
index 00000000..dc5b4124
--- /dev/null
+++ b/contrib/correctness/pextract.mli
@@ -0,0 +1,17 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pextract.mli,v 1.2.16.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Names
+
+val pp_ocaml : string -> unit
+
+
diff --git a/contrib/correctness/pmisc.ml b/contrib/correctness/pmisc.ml
new file mode 100644
index 00000000..aed8c5cb
--- /dev/null
+++ b/contrib/correctness/pmisc.ml
@@ -0,0 +1,222 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pmisc.ml,v 1.18.2.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Pp
+open Util
+open Names
+open Nameops
+open Term
+open Libnames
+open Topconstr
+
+(* debug *)
+
+let deb_mess s =
+ if !Options.debug then begin
+ msgnl s; pp_flush()
+ end
+
+let deb_print f x =
+ if !Options.debug then begin
+ msgnl (f x); pp_flush()
+ end
+
+let list_of_some = function
+ None -> []
+ | Some x -> [x]
+
+let difference l1 l2 =
+ let rec diff = function
+ [] -> []
+ | a::rem -> if List.mem a l2 then diff rem else a::(diff rem)
+ in
+ diff l1
+
+(* TODO: these functions should be moved in the code of Coq *)
+
+let reraise_with_loc loc f x =
+ try f x with Util.UserError (_,_) as e -> Stdpp.raise_with_loc loc e
+
+
+(* functions on names *)
+
+let at = if !Options.v7 then "@" else "'at'"
+
+let at_id id d = id_of_string ((string_of_id id) ^ at ^ d)
+
+let is_at id =
+ try
+ let _ = string_index_from (string_of_id id) 0 at in true
+ with Not_found ->
+ false
+
+let un_at id =
+ let s = string_of_id id in
+ try
+ let n = string_index_from s 0 at in
+ id_of_string (String.sub s 0 n),
+ String.sub s (n + String.length at)
+ (String.length s - n - String.length at)
+ with Not_found ->
+ invalid_arg "un_at"
+
+let renaming_of_ids avoid ids =
+ let rec rename avoid = function
+ [] -> [], avoid
+ | x::rem ->
+ let al,avoid = rename avoid rem in
+ let x' = next_ident_away x avoid in
+ (x,x')::al, x'::avoid
+ in
+ rename avoid ids
+
+let result_id = id_of_string "result"
+
+let adr_id id = id_of_string ("adr_" ^ (string_of_id id))
+
+(* hypotheses names *)
+
+let next s r = function
+ Anonymous -> incr r; id_of_string (s ^ string_of_int !r)
+ | Name id -> id
+
+let reset_names,pre_name,post_name,inv_name,
+ test_name,bool_name,var_name,phi_name,for_name,label_name =
+ let pre = ref 0 in
+ let post = ref 0 in
+ let inv = ref 0 in
+ let test = ref 0 in
+ let bool = ref 0 in
+ let var = ref 0 in
+ let phi = ref 0 in
+ let forr = ref 0 in
+ let label = ref 0 in
+ (fun () ->
+ pre := 0; post := 0; inv := 0; test := 0;
+ bool := 0; var := 0; phi := 0; label := 0),
+ (next "Pre" pre),
+ (next "Post" post),
+ (next "Inv" inv),
+ (next "Test" test),
+ (fun () -> next "Bool" bool Anonymous),
+ (next "Variant" var),
+ (fun () -> next "rphi" phi Anonymous),
+ (fun () -> next "for" forr Anonymous),
+ (fun () -> string_of_id (next "Label" label Anonymous))
+
+let default = id_of_string "x_"
+let id_of_name = function Name id -> id | Anonymous -> default
+
+
+(* functions on CIC terms *)
+
+let isevar = Evarutil.new_evar_in_sign (Global.env ())
+
+(* Substitutions of variables by others. *)
+let subst_in_constr alist =
+ let alist' = List.map (fun (id,id') -> (id, mkVar id')) alist in
+ replace_vars alist'
+
+(*
+let subst_in_ast alist ast =
+ let rec subst = function
+ Nvar(l,s) -> Nvar(l,try List.assoc s alist with Not_found -> s)
+ | Node(l,s,args) -> Node(l,s,List.map subst args)
+ | Slam(l,so,a) -> Slam(l,so,subst a) (* TODO:enlever so de alist ? *)
+ | x -> x
+ in
+ subst ast
+*)
+(*
+let subst_ast_in_ast alist ast =
+ let rec subst = function
+ Nvar(l,s) as x -> (try List.assoc s alist with Not_found -> x)
+ | Node(l,s,args) -> Node(l,s,List.map subst args)
+ | Slam(l,so,a) -> Slam(l,so,subst a) (* TODO:enlever so de alist ? *)
+ | x -> x
+ in
+ subst ast
+*)
+
+let rec subst_in_ast alist = function
+ | CRef (Ident (loc,id)) ->
+ CRef (Ident (loc,(try List.assoc id alist with Not_found -> id)))
+ | x -> map_constr_expr_with_binders subst_in_ast List.remove_assoc alist x
+
+let rec subst_ast_in_ast alist = function
+ | CRef (Ident (_,id)) as x -> (try List.assoc id alist with Not_found -> x)
+ | x ->
+ map_constr_expr_with_binders subst_ast_in_ast List.remove_assoc alist x
+
+(* subst. of variables by constr *)
+let real_subst_in_constr = replace_vars
+
+(* Coq constants *)
+
+let coq_constant d s =
+ Libnames.encode_kn
+ (make_dirpath (List.rev (List.map id_of_string ("Coq"::d))))
+ (id_of_string s)
+
+let bool_sp = coq_constant ["Init"; "Datatypes"] "bool"
+let coq_true = mkConstruct ((bool_sp,0),1)
+let coq_false = mkConstruct ((bool_sp,0),2)
+
+let constant s =
+ let id = Constrextern.id_of_v7_string s in
+ Constrintern.global_reference id
+
+let connective_and = id_of_string "prog_bool_and"
+let connective_or = id_of_string "prog_bool_or"
+let connective_not = id_of_string "prog_bool_not"
+
+let is_connective id =
+ id = connective_and or id = connective_or or id = connective_not
+
+(* [conj i s] constructs the conjunction of two constr *)
+
+let conj i s = Term.applist (constant "and", [i; s])
+
+(* [n_mkNamedProd v [xn,tn;...;x1,t1]] constructs the type
+ [(x1:t1)...(xn:tn)v] *)
+
+let rec n_mkNamedProd v = function
+ | [] -> v
+ | (id,ty) :: rem -> n_mkNamedProd (Term.mkNamedProd id ty v) rem
+
+(* [n_lambda v [xn,tn;...;x1,t1]] constructs the type [x1:t1]...[xn:tn]v *)
+
+let rec n_lambda v = function
+ | [] -> v
+ | (id,ty) :: rem -> n_lambda (Term.mkNamedLambda id ty v) rem
+
+(* [abstract env idl c] constructs [x1]...[xn]c where idl = [x1;...;xn] *)
+
+let abstract ids c = n_lambda c (List.rev ids)
+
+(* substitutivity (of kernel names, for modules management) *)
+
+open Ptype
+
+let rec type_v_knsubst s = function
+ | Ref v -> Ref (type_v_knsubst s v)
+ | Array (c, v) -> Array (subst_mps s c, type_v_knsubst s v)
+ | Arrow (bl, c) -> Arrow (List.map (binder_knsubst s) bl, type_c_knsubst s c)
+ | TypePure c -> TypePure (subst_mps s c)
+
+and type_c_knsubst s ((id,v),e,pl,q) =
+ ((id, type_v_knsubst s v), e,
+ List.map (fun p -> { p with p_value = subst_mps s p.p_value }) pl,
+ option_app (fun q -> { q with a_value = subst_mps s q.a_value }) q)
+
+and binder_knsubst s (id,b) =
+ (id, match b with BindType v -> BindType (type_v_knsubst s v) | _ -> b)
diff --git a/contrib/correctness/pmisc.mli b/contrib/correctness/pmisc.mli
new file mode 100644
index 00000000..ec7521cc
--- /dev/null
+++ b/contrib/correctness/pmisc.mli
@@ -0,0 +1,81 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pmisc.mli,v 1.9.6.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Names
+open Term
+open Ptype
+open Topconstr
+
+(* Some misc. functions *)
+
+val reraise_with_loc : Util.loc -> ('a -> 'b) -> 'a -> 'b
+
+val list_of_some : 'a option -> 'a list
+val difference : 'a list -> 'a list -> 'a list
+
+val at_id : identifier -> string -> identifier
+val un_at : identifier -> identifier * string
+val is_at : identifier -> bool
+
+val result_id : identifier
+val adr_id : identifier -> identifier
+
+val renaming_of_ids : identifier list -> identifier list
+ -> (identifier * identifier) list * identifier list
+
+val reset_names : unit -> unit
+val pre_name : name -> identifier
+val post_name : name -> identifier
+val inv_name : name -> identifier
+val test_name : name -> identifier
+val bool_name : unit -> identifier
+val var_name : name -> identifier
+val phi_name : unit -> identifier
+val for_name : unit -> identifier
+val label_name : unit -> string
+
+val id_of_name : name -> identifier
+
+(* CIC terms *)
+
+val isevar : constr
+
+val subst_in_constr : (identifier * identifier) list -> constr -> constr
+val subst_in_ast : (identifier * identifier) list -> constr_expr -> constr_expr
+val subst_ast_in_ast :
+ (identifier * constr_expr) list -> constr_expr -> constr_expr
+val real_subst_in_constr : (identifier * constr) list -> constr -> constr
+
+val constant : string -> constr
+val coq_constant : string list -> string -> kernel_name
+val conj : constr -> constr -> constr
+
+val coq_true : constr
+val coq_false : constr
+
+val connective_and : identifier
+val connective_or : identifier
+val connective_not : identifier
+val is_connective : identifier -> bool
+
+val n_mkNamedProd : constr -> (identifier * constr) list -> constr
+val n_lambda : constr -> (identifier * constr) list -> constr
+val abstract : (identifier * constr) list -> constr -> constr
+
+val type_v_knsubst : substitution -> type_v -> type_v
+val type_c_knsubst : substitution -> type_c -> type_c
+
+(* for debugging purposes *)
+
+val deb_mess : Pp.std_ppcmds -> unit
+val deb_print : ('a -> Pp.std_ppcmds) -> 'a -> unit
+
diff --git a/contrib/correctness/pmlize.ml b/contrib/correctness/pmlize.ml
new file mode 100644
index 00000000..f899366d
--- /dev/null
+++ b/contrib/correctness/pmlize.ml
@@ -0,0 +1,320 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pmlize.ml,v 1.7.2.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Names
+open Term
+open Termast
+open Pattern
+open Matching
+
+open Pmisc
+open Ptype
+open Past
+open Putil
+open Prename
+open Penv
+open Peffect
+open Ptyping
+open Pmonad
+
+
+let has_proof_part ren env c =
+ let sign = Pcicenv.trad_sign_of ren env in
+ let ty = Typing.type_of (Global.env_of_context sign) Evd.empty c in
+ Hipattern.is_matching_sigma (Reductionops.nf_betaiota ty)
+
+(* main part: translation of imperative programs into functional ones.
+ *
+ * [env] is the environment
+ * [ren] is the current renamings of variables
+ * [t] is the imperative program to translate, annotated with type+effects
+ *
+ * we return the translated program in type cc_term
+ *)
+
+let rec trad ren t =
+ let env = t.info.env in
+ trad_desc ren env t.info.kappa t.desc
+
+and trad_desc ren env ct d =
+ let (_,tt),eft,pt,qt = ct in
+ match d with
+
+ | Expression c ->
+ let ids = get_reads eft in
+ let al = current_vars ren ids in
+ let c' = subst_in_constr al c in
+ if has_proof_part ren env c' then
+ CC_expr c'
+ else
+ let ty = trad_ml_type_v ren env tt in
+ make_tuple [ CC_expr c',ty ] qt ren env (current_date ren)
+
+ | Variable id ->
+ if is_mutable_in_env env id then
+ invalid_arg "Mlise.trad_desc"
+ else if is_local env id then
+ CC_var id
+ else
+ CC_expr (constant (string_of_id id))
+
+ | Acc _ ->
+ failwith "Mlise.trad: pure terms are supposed to be expressions"
+
+ | TabAcc (check, x, e1) ->
+ let _,ty_elem,_ = array_info ren env x in
+ let te1 = trad ren e1 in
+ let (_,ef1,p1,q1) = e1.info.kappa in
+ let w = get_writes ef1 in
+ let ren' = next ren w in
+ let id = id_of_string "index" in
+ let access =
+ make_raw_access ren' env (x,current_var ren' x) (mkVar id)
+ in
+ let t,ty = result_tuple ren' (current_date ren) env
+ (CC_expr access, ty_elem) (eft,qt) in
+ let t =
+ if check then
+ let h = make_pre_access ren env x (mkVar id) in
+ let_in_pre ty (anonymous_pre true h) t
+ else
+ t
+ in
+ make_let_in ren env te1 p1
+ (current_vars ren' w,q1) (id,constant "Z") (t,ty)
+
+ | Aff (x, e1) ->
+ let tx = trad_type_in_env ren env x in
+ let te1 = trad ren e1 in
+ let (_,ef1,p1,q1) = e1.info.kappa in
+ let w1 = get_writes ef1 in
+ let ren' = next ren (x::w1) in
+ let t_ty = result_tuple ren' (current_date ren) env
+ (CC_expr (constant "tt"), constant "unit") (eft,qt)
+ in
+ make_let_in ren env te1 p1
+ (current_vars ren' w1,q1) (current_var ren' x,tx) t_ty
+
+ | TabAff (check, x, e1, e2) ->
+ let _,ty_elem,ty_array = array_info ren env x in
+ let te1 = trad ren e1 in
+ let (_,ef1,p1,q1) = e1.info.kappa in
+ let w1 = get_writes ef1 in
+ let ren' = next ren w1 in
+ let te2 = trad ren' e2 in
+ let (_,ef2,p2,q2) = e2.info.kappa in
+ let w2 = get_writes ef2 in
+ let ren'' = next ren' w2 in
+ let id1 = id_of_string "index" in
+ let id2 = id_of_string "v" in
+ let ren''' = next ren'' [x] in
+ let t,ty = result_tuple ren''' (current_date ren) env
+ (CC_expr (constant "tt"), constant "unit") (eft,qt) in
+ let store = make_raw_store ren'' env (x,current_var ren'' x) (mkVar id1)
+ (mkVar id2) in
+ let t = make_let_in ren'' env (CC_expr store) [] ([],None)
+ (current_var ren''' x,ty_array) (t,ty) in
+ let t = make_let_in ren' env te2 p2
+ (current_vars ren'' w2,q2) (id2,ty_elem) (t,ty) in
+ let t =
+ if check then
+ let h = make_pre_access ren' env x (mkVar id1) in
+ let_in_pre ty (anonymous_pre true h) t
+ else
+ t
+ in
+ make_let_in ren env te1 p1
+ (current_vars ren' w1,q1) (id1,constant "Z") (t,ty)
+
+ | Seq bl ->
+ let before = current_date ren in
+ let finish ren = function
+ Some (id,ty) ->
+ result_tuple ren before env (CC_var id, ty) (eft,qt)
+ | None ->
+ failwith "a block should contain at least one statement"
+ in
+ let bl = trad_block ren env bl in
+ make_block ren env finish bl
+
+ | If (b, e1, e2) ->
+ let tb = trad ren b in
+ let _,efb,_,_ = b.info.kappa in
+ let ren' = next ren (get_writes efb) in
+ let te1 = trad ren' e1 in
+ let te2 = trad ren' e2 in
+ make_if ren env (tb,b.info.kappa) ren' (te1,e1.info.kappa)
+ (te2,e2.info.kappa) ct
+
+ (* Translation of the while. *)
+
+ | While (b, inv, var, bl) ->
+ let ren' = next ren (get_writes eft) in
+ let tb = trad ren' b in
+ let tbl = trad_block ren' env bl in
+ let var' = typed_var ren env var in
+ make_while ren env var' (tb,b.info.kappa) tbl (inv,ct)
+
+ | Lam (bl, e) ->
+ let bl' = trad_binders ren env bl in
+ let env' = traverse_binders env bl in
+ let ren' = initial_renaming env' in
+ let te = trans ren' e in
+ CC_lam (bl', te)
+
+ | SApp ([Variable id; Expression q1; Expression q2], [e1; e2])
+ when id = connective_and or id = connective_or ->
+ let c = constant (string_of_id id) in
+ let te1 = trad ren e1
+ and te2 = trad ren e2 in
+ let q1' = apply_post ren env (current_date ren) (anonymous q1)
+ and q2' = apply_post ren env (current_date ren) (anonymous q2) in
+ CC_app (CC_expr c, [CC_expr q1'.a_value; CC_expr q2'.a_value; te1; te2])
+
+ | SApp ([Variable id; Expression q], [e]) when id = connective_not ->
+ let c = constant (string_of_id id) in
+ let te = trad ren e in
+ let q' = apply_post ren env (current_date ren) (anonymous q) in
+ CC_app (CC_expr c, [CC_expr q'.a_value; te])
+
+ | SApp _ ->
+ invalid_arg "mlise.trad (SApp)"
+
+ | Apply (f, args) ->
+ let trad_arg (ren,args) = function
+ | Term a ->
+ let ((_,tya),efa,_,_) as ca = a.info.kappa in
+ let ta = trad ren a in
+ let w = get_writes efa in
+ let ren' = next ren w in
+ ren', ta::args
+ | Refarg _ ->
+ ren, args
+ | Type v ->
+ let c = trad_ml_type_v ren env v in
+ ren, (CC_expr c)::args
+ in
+ let ren',targs = List.fold_left trad_arg (ren,[]) args in
+ let tf = trad ren' f in
+ let cf = f.info.kappa in
+ let c,(s,_,_),capp = effect_app ren env f args in
+ let tc_args =
+ List.combine
+ (List.rev targs)
+ (Util.map_succeed
+ (function
+ | Term x -> x.info.kappa
+ | Refarg _ -> failwith "caught"
+ | Type _ ->
+ (result_id,TypePure mkSet),Peffect.bottom,[],None)
+ args)
+ in
+ make_app env ren tc_args ren' (tf,cf) (c,s,capp) ct
+
+ | LetRef (x, e1, e2) ->
+ let (_,v1),ef1,p1,q1 = e1.info.kappa in
+ let te1 = trad ren e1 in
+ let tv1 = trad_ml_type_v ren env v1 in
+ let env' = add (x,Ref v1) env in
+ let ren' = next ren [x] in
+ let (_,v2),ef2,p2,q2 = e2.info.kappa in
+ let tv2 = trad_ml_type_v ren' env' v2 in
+ let te2 = trad ren' e2 in
+ let ren'' = next ren' (get_writes ef2) in
+ let t,ty = result_tuple ren'' (current_date ren) env
+ (CC_var result_id, tv2) (eft,qt) in
+ let t = make_let_in ren' env' te2 p2
+ (current_vars ren'' (get_writes ef2),q2)
+ (result_id,tv2) (t,ty) in
+ let t = make_let_in ren env te1 p1
+ (current_vars ren' (get_writes ef1),q1) (x,tv1) (t,ty)
+ in
+ t
+
+ | Let (x, e1, e2) ->
+ let (_,v1),ef1,p1,q1 = e1.info.kappa in
+ let te1 = trad ren e1 in
+ let tv1 = trad_ml_type_v ren env v1 in
+ let env' = add (x,v1) env in
+ let ren' = next ren (get_writes ef1) in
+ let (_,v2),ef2,p2,q2 = e2.info.kappa in
+ let tv2 = trad_ml_type_v ren' env' v2 in
+ let te2 = trad ren' e2 in
+ let ren'' = next ren' (get_writes ef2) in
+ let t,ty = result_tuple ren'' (current_date ren) env
+ (CC_var result_id, tv2) (eft,qt) in
+ let t = make_let_in ren' env' te2 p2
+ (current_vars ren'' (get_writes ef2),q2)
+ (result_id,tv2) (t,ty) in
+ let t = make_let_in ren env te1 p1
+ (current_vars ren' (get_writes ef1),q1) (x,tv1) (t,ty)
+ in
+ t
+
+ | LetRec (f,bl,v,var,e) ->
+ let (_,ef,_,_) as c =
+ match tt with Arrow(_,c) -> c | _ -> assert false in
+ let bl' = trad_binders ren env bl in
+ let env' = traverse_binders env bl in
+ let ren' = initial_renaming env' in
+ let (phi0,var') = find_recursion f e.info.env in
+ let te = trad ren' e in
+ let t = make_letrec ren' env' (phi0,var') f bl' (te,e.info.kappa) c in
+ CC_lam (bl', t)
+
+ | PPoint (s,d) ->
+ let ren' = push_date ren s in
+ trad_desc ren' env ct d
+
+ | Debug _ -> failwith "Mlise.trad: Debug: not implemented"
+
+
+and trad_binders ren env = function
+ | [] ->
+ []
+ | (_,BindType (Ref _ | Array _))::bl ->
+ trad_binders ren env bl
+ | (id,BindType v)::bl ->
+ let tt = trad_ml_type_v ren env v in
+ (id, CC_typed_binder tt) :: (trad_binders ren env bl)
+ | (id,BindSet)::bl ->
+ (id, CC_typed_binder mkSet) :: (trad_binders ren env bl)
+ | (_,Untyped)::_ -> invalid_arg "trad_binders"
+
+
+and trad_block ren env = function
+ | [] ->
+ []
+ | (Assert c)::block ->
+ (Assert c)::(trad_block ren env block)
+ | (Label s)::block ->
+ let ren' = push_date ren s in
+ (Label s)::(trad_block ren' env block)
+ | (Statement e)::block ->
+ let te = trad ren e in
+ let _,efe,_,_ = e.info.kappa in
+ let w = get_writes efe in
+ let ren' = next ren w in
+ (Statement (te,e.info.kappa))::(trad_block ren' env block)
+
+
+and trans ren e =
+ let env = e.info.env in
+ let _,ef,p,_ = e.info.kappa in
+ let ty = trad_ml_type_c ren env e.info.kappa in
+ let ids = get_reads ef in
+ let al = current_vars ren ids in
+ let c = trad ren e in
+ let c = abs_pre ren env (c,ty) p in
+ let bl = binding_of_alist ren env al in
+ make_abs (List.rev bl) c
+
diff --git a/contrib/correctness/pmlize.mli b/contrib/correctness/pmlize.mli
new file mode 100644
index 00000000..95f74ef9
--- /dev/null
+++ b/contrib/correctness/pmlize.mli
@@ -0,0 +1,20 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pmlize.mli,v 1.2.16.1 2004/07/16 19:30:01 herbelin Exp $ *)
+
+open Past
+open Penv
+open Names
+
+(* translation of imperative programs into intermediate functional programs *)
+
+val trans : Prename.t -> typed_program -> cc_term
+
diff --git a/contrib/correctness/pmonad.ml b/contrib/correctness/pmonad.ml
new file mode 100644
index 00000000..b8b39353
--- /dev/null
+++ b/contrib/correctness/pmonad.ml
@@ -0,0 +1,665 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pmonad.ml,v 1.6.16.1 2004/07/16 19:30:02 herbelin Exp $ *)
+
+open Util
+open Names
+open Term
+open Termast
+
+open Pmisc
+open Putil
+open Ptype
+open Past
+open Prename
+open Penv
+open Pcic
+open Peffect
+
+
+(* [product ren [y1,z1;...;yk,zk] q] constructs
+ * the (possibly dependent) tuple type
+ *
+ * z1 x ... x zk if no post-condition
+ * or \exists. y1:z1. ... yk:zk. (Q x1 ... xn) otherwise
+ *
+ * where the xi are given by the renaming [ren].
+ *)
+
+let product_name = function
+ | 2 -> "prod"
+ | n -> check_product_n n; Printf.sprintf "tuple_%d" n
+
+let dep_product_name = function
+ | 1 -> "sig"
+ | n -> check_dep_product_n n; Printf.sprintf "sig_%d" n
+
+let product ren env before lo = function
+ | None -> (* non dependent case *)
+ begin match lo with
+ | [_,v] -> v
+ | _ ->
+ let s = product_name (List.length lo) in
+ Term.applist (constant s, List.map snd lo)
+ end
+ | Some q -> (* dependent case *)
+ let s = dep_product_name (List.length lo) in
+ let a' = apply_post ren env before q in
+ Term.applist (constant s, (List.map snd lo) @ [a'.a_value])
+
+(* [arrow ren v pl] abstracts the term v over the pre-condition if any
+ * i.e. computes
+ *
+ * (P1 x1 ... xn) -> ... -> (Pk x1 ... xn) -> v
+ *
+ * where the xi are given by the renaming [ren].
+ *)
+
+let arrow ren env v pl =
+ List.fold_left
+ (fun t p ->
+ if p.p_assert then t else Term.mkArrow (apply_pre ren env p).p_value t)
+ v pl
+
+(* [abstract_post ren env (e,q) (res,v)] abstract a post-condition q
+ * over the write-variables of e *)
+
+let rec abstract_post ren env (e,q) =
+ let after_id id = id_of_string ((string_of_id id) ^ "'") in
+ let (_,go) = Peffect.get_repr e in
+ let al = List.map (fun id -> (id,after_id id)) go in
+ let q = option_app (named_app (subst_in_constr al)) q in
+ let tgo = List.map (fun (id,aid) -> (aid, trad_type_in_env ren env id)) al in
+ option_app (named_app (abstract tgo)) q
+
+(* Translation of effects types in cic types.
+ *
+ * [trad_ml_type_v] and [trad_ml_type_c] translate types with effects
+ * into cic types.
+ *)
+
+and prod ren env g =
+ List.map
+ (fun id -> (current_var ren id, trad_type_in_env ren env id))
+ g
+
+and input ren env e =
+ let i,_ = Peffect.get_repr e in
+ prod ren env i
+
+and output ren env ((id,v),e) =
+ let tv = trad_ml_type_v ren env v in
+ let _,o = Peffect.get_repr e in
+ (prod ren env o) @ [id,tv]
+
+and input_output ren env c =
+ let ((res,v),e,_,_) = c in
+ input ren env e, output ren env ((res,v),e)
+
+(* The function t -> \barre{t} on V and C. *)
+
+and trad_ml_type_c ren env c =
+ let ((res,v),e,p,q) = c in
+ let q = abstract_post ren env (e,q) in
+ let lo = output ren env ((res,v),e) in
+ let ty = product ren env (current_date ren) lo q in
+ let ty = arrow ren env ty p in
+ let li = input ren env e in
+ n_mkNamedProd ty li
+
+and trad_ml_type_v ren env = function
+
+ | Ref _ | Array _ -> invalid_arg "Monad.trad_ml_type_v"
+
+ | Arrow (bl, c) ->
+ let bl',ren',env' =
+ List.fold_left
+ (fun (bl,ren,env) b -> match b with
+ | (id,BindType ((Ref _ | Array _) as v)) ->
+ let env' = add (id,v) env in
+ let ren' = initial_renaming env' in
+ (bl,ren',env')
+ | (id,BindType v) ->
+ let tt = trad_ml_type_v ren env v in
+ let env' = add (id,v) env in
+ let ren' = initial_renaming env' in
+ (id,tt)::bl,ren',env'
+ | (id, BindSet) ->
+ (id,mkSet) :: bl,ren,env
+ | _ -> failwith "Monad: trad_ml_type_v: not yet implemented"
+ )
+ ([],ren,env) bl
+ in
+ n_mkNamedProd (trad_ml_type_c ren' env' c) bl'
+
+ | TypePure c ->
+ (apply_pre ren env (anonymous_pre false c)).p_value
+
+and trad_imp_type ren env = function
+ | Ref v -> trad_ml_type_v ren env v
+ | Array (c,v) -> Term.applist (constant "array",
+ [c; trad_ml_type_v ren env v])
+ | _ -> invalid_arg "Monad.trad_imp_type"
+
+and trad_type_in_env ren env id =
+ let v = type_in_env env id in trad_imp_type ren env v
+
+
+
+(* bindings *)
+
+let binding_of_alist ren env al =
+ List.map
+ (fun (id,id') -> (id', CC_typed_binder (trad_type_in_env ren env id)))
+ al
+
+
+(* [make_abs bl t p] abstracts t w.r.t binding list bl., that is
+ * [x1:t1]...[xn:tn]t. Returns t if the binding is empty. *)
+
+let make_abs bl t = match bl with
+ | [] -> t
+ | _ -> CC_lam (bl, t)
+
+
+(* [result_tuple ren before env (res,v) (ef,q)] constructs the tuple
+ *
+ * (y1,...,yn,res,?::(q/ren y1 ... yn res))
+ *
+ * where the yi are the values of the output of ef.
+ * if there is no yi and no post-condition, it is simplified in res itself.
+ *)
+
+let simple_constr_of_prog = function
+ | CC_expr c -> c
+ | CC_var id -> mkVar id
+ | _ -> assert false
+
+let make_tuple l q ren env before = match l with
+ | [e,_] when q = None ->
+ e
+ | _ ->
+ let tl = List.map snd l in
+ let dep,h,th = match q with
+ | None -> false,[],[]
+ | Some c ->
+ let args = List.map (fun (e,_) -> simple_constr_of_prog e) l in
+ let c = apply_post ren env before c in
+ true,
+ [ CC_hole (Term.applist (c.a_value, args)) ], (* hole *)
+ [ c.a_value ] (* type of the hole *)
+ in
+ CC_tuple (dep, tl @ th, (List.map fst l) @ h)
+
+let result_tuple ren before env (res,v) (ef,q) =
+ let ids = get_writes ef in
+ let lo =
+ (List.map (fun id ->
+ let id' = current_var ren id in
+ CC_var id', trad_type_in_env ren env id) ids)
+ @ [res,v]
+ in
+ let q = abstract_post ren env (ef,q) in
+ make_tuple lo q ren env before,
+ product ren env before lo q
+
+
+(* [make_let_in ren env fe p (vo,q) (res,v) t] constructs the term
+
+ [ let h1 = ?:P1 in ... let hn = ?:Pm in ]
+ let y1,y2,...,yn, res [,q] = fe in
+ t
+
+ vo=[_,y1;...;_,ym] are list of renamings.
+ v is the type of res
+ *)
+
+let let_in_pre ty p t =
+ let h = p.p_value in
+ CC_letin (false, ty, [pre_name p.p_name,CC_typed_binder h], CC_hole h, t)
+
+let multiple_let_in_pre ty hl t =
+ List.fold_left (fun t h -> let_in_pre ty h t) t hl
+
+let make_let_in ren env fe p (vo,q) (res,tyres) (t,ty) =
+ let b = [res, CC_typed_binder tyres] in
+ let b',dep = match q with
+ | None -> [],false
+ | Some q -> [post_name q.a_name, CC_untyped_binder],true
+ in
+ let bl = (binding_of_alist ren env vo) @ b @ b' in
+ let tyapp =
+ let n = succ (List.length vo) in
+ let name = match q with None -> product_name n | _ -> dep_product_name n in
+ constant name
+ in
+ let t = CC_letin (dep, ty, bl, fe, t) in
+ multiple_let_in_pre ty (List.map (apply_pre ren env) p) t
+
+
+(* [abs_pre ren env (t,ty) pl] abstracts a term t with respect to the
+ * list of pre-conditions [pl]. Some of them are real pre-conditions
+ * and others are assertions, according to the boolean field p_assert,
+ * so we construct the term
+ * [h1:P1]...[hn:Pn]let h'1 = ?:P'1 in ... let H'm = ?:P'm in t
+ *)
+
+let abs_pre ren env (t,ty) pl =
+ List.fold_left
+ (fun t p ->
+ if p.p_assert then
+ let_in_pre ty (apply_pre ren env p) t
+ else
+ let h = pre_name p.p_name in
+ CC_lam ([h,CC_typed_binder (apply_pre ren env p).p_value],t))
+ t pl
+
+
+(* [make_block ren env finish bl] builds the translation of a block
+ * finish is the function that is applied to the result at the end of the
+ * block. *)
+
+let make_block ren env finish bl =
+ let rec rec_block ren result = function
+ | [] ->
+ finish ren result
+ | (Assert c) :: block ->
+ let t,ty = rec_block ren result block in
+ let c = apply_assert ren env c in
+ let p = { p_assert = true; p_name = c.a_name; p_value = c.a_value } in
+ let_in_pre ty p t, ty
+ | (Label s) :: block ->
+ let ren' = push_date ren s in
+ rec_block ren' result block
+ | (Statement (te,info)) :: block ->
+ let (_,tye),efe,pe,qe = info in
+ let w = get_writes efe in
+ let ren' = next ren w in
+ let id = result_id in
+ let tye = trad_ml_type_v ren env tye in
+ let t = rec_block ren' (Some (id,tye)) block in
+ make_let_in ren env te pe (current_vars ren' w,qe) (id,tye) t,
+ snd t
+ in
+ let t,_ = rec_block ren None bl in
+ t
+
+
+(* [make_app env ren args ren' (tf,cf) (cb,s,capp) c]
+ * constructs the application of [tf] to [args].
+ * capp is the effect of application, after substitution (s) and cb before
+ *)
+
+let eq ty e1 e2 =
+ Term.applist (constant "eq", [ty; e1; e2])
+
+let lt r e1 e2 =
+ Term.applist (r, [e1; e2])
+
+let is_recursive env = function
+ | CC_var x ->
+ (try let _ = find_recursion x env in true with Not_found -> false)
+ | _ -> false
+
+let if_recursion env f = function
+ | CC_var x ->
+ (try let v = find_recursion x env in (f v x) with Not_found -> [])
+ | _ -> []
+
+let dec_phi ren env s svi =
+ if_recursion env
+ (fun (phi0,(cphi,r,_)) f ->
+ let phi = subst_in_constr svi (subst_in_constr s cphi) in
+ let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in
+ [CC_expr phi; CC_hole (lt r phi (mkVar phi0))])
+
+let eq_phi ren env s svi =
+ if_recursion env
+ (fun (phi0,(cphi,_,a)) f ->
+ let phi = subst_in_constr svi (subst_in_constr s cphi) in
+ let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in
+ [CC_hole (eq a phi phi)])
+
+let is_ref_binder = function
+ | (_,BindType (Ref _ | Array _)) -> true
+ | _ -> false
+
+let make_app env ren args ren' (tf,cf) ((bl,cb),s,capp) c =
+ let ((_,tvf),ef,pf,qf) = cf in
+ let (_,eapp,papp,qapp) = capp in
+ let ((_,v),e,p,q) = c in
+ let bl = List.filter (fun b -> not (is_ref_binder b)) bl in
+ let recur = is_recursive env tf in
+ let before = current_date ren in
+ let ren'' = next ren' (get_writes ef) in
+ let ren''' = next ren'' (get_writes eapp) in
+ let res = result_id in
+ let vi,svi =
+ let ids = List.map fst bl in
+ let s = fresh (avoid ren ids) ids in
+ List.map snd s, s
+ in
+ let tyres = subst_in_constr svi (trad_ml_type_v ren env v) in
+ let t,ty = result_tuple ren''' before env (CC_var res, tyres) (e,q) in
+ let res_f = id_of_string "vf" in
+ let inf,outf =
+ let i,o = let _,e,_,_ = cb in get_reads e, get_writes e in
+ let apply_s = List.map (fun id -> try List.assoc id s with _ -> id) in
+ apply_s i, apply_s o
+ in
+ let fe =
+ let xi = List.rev (List.map snd (current_vars ren'' inf)) in
+ let holes = List.map (fun x -> (apply_pre ren'' env x).p_value)
+ (List.map (pre_app (subst_in_constr svi)) papp) in
+ CC_app ((if recur then tf else CC_var res_f),
+ (dec_phi ren'' env s svi tf)
+ @(List.map (fun id -> CC_var id) (vi @ xi))
+ @(eq_phi ren'' env s svi tf)
+ @(List.map (fun c -> CC_hole c) holes))
+ in
+ let qapp' = option_app (named_app (subst_in_constr svi)) qapp in
+ let t =
+ make_let_in ren'' env fe [] (current_vars ren''' outf,qapp')
+ (res,tyres) (t,ty)
+ in
+ let t =
+ if recur then
+ t
+ else
+ make_let_in ren' env tf pf
+ (current_vars ren'' (get_writes ef),qf)
+ (res_f,trad_ml_type_v ren env tvf) (t,ty)
+ in
+ let rec eval_args ren = function
+ | [] -> t
+ | (vx,(ta,((_,tva),ea,pa,qa)))::args ->
+ let w = get_writes ea in
+ let ren' = next ren w in
+ let t' = eval_args ren' args in
+ make_let_in ren env ta pa (current_vars ren' (get_writes ea),qa)
+ (vx,trad_ml_type_v ren env tva) (t',ty)
+ in
+ eval_args ren (List.combine vi args)
+
+
+(* [make_if ren env (tb,cb) ren' (t1,c1) (t2,c2)]
+ * constructs the term corresponding to a if expression, i.e
+ *
+ * [p] let o1, b [,q1] = m1 [?::p1] in
+ * Cases b of
+ * R => let o2, v2 [,q2] = t1 [?::p2] in
+ * (proj (o1,o2)), v2 [,?::q]
+ * | S => let o2, v2 [,q2] = t2 [?::p2] in
+ * (proj (o1,o2)), v2 [,?::q]
+ *)
+
+let make_if_case ren env ty (b,qb) (br1,br2) =
+ let id_b,ty',ty1,ty2 = match qb with
+ | Some q ->
+ let q = apply_post ren env (current_date ren) q in
+ let (name,t1,t2) = Term.destLambda q.a_value in
+ q.a_name,
+ Term.mkLambda (name, t1, mkArrow t2 ty),
+ Term.mkApp (q.a_value, [| coq_true |]),
+ Term.mkApp (q.a_value, [| coq_false |])
+ | None -> assert false
+ in
+ let n = test_name Anonymous in
+ CC_app (CC_case (ty', b, [CC_lam ([n,CC_typed_binder ty1], br1);
+ CC_lam ([n,CC_typed_binder ty2], br2)]),
+ [CC_var (post_name id_b)])
+
+let make_if ren env (tb,cb) ren' (t1,c1) (t2,c2) c =
+ let ((_,tvb),eb,pb,qb) = cb in
+ let ((_,tv1),e1,p1,q1) = c1 in
+ let ((_,tv2),e2,p2,q2) = c2 in
+ let ((_,t),e,p,q) = c in
+
+ let wb = get_writes eb in
+ let resb = id_of_string "resultb" in
+ let res = result_id in
+ let tyb = trad_ml_type_v ren' env tvb in
+ let tt = trad_ml_type_v ren env t in
+
+ (* une branche de if *)
+ let branch (tv_br,e_br,p_br,q_br) f_br =
+ let w_br = get_writes e_br in
+ let ren'' = next ren' w_br in
+ let t,ty = result_tuple ren'' (current_date ren') env
+ (CC_var res,tt) (e,q) in
+ make_let_in ren' env f_br p_br (current_vars ren'' w_br,q_br)
+ (res,tt) (t,ty),
+ ty
+ in
+ let t1,ty1 = branch c1 t1 in
+ let t2,ty2 = branch c2 t2 in
+ let ty = ty1 in
+ let qb = force_bool_name qb in
+ let t = make_if_case ren env ty (CC_var resb,qb) (t1,t2) in
+ make_let_in ren env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty)
+
+
+(* [make_while ren env (cphi,r,a) (tb,cb) (te,ce) c]
+ * constructs the term corresponding to the while, i.e.
+ *
+ * [h:(I x)](well_founded_induction
+ * A R ?::(well_founded A R)
+ * [Phi:A] (x) Phi=phi(x)->(I x)-> \exists x'.res.(I x')/\(S x')
+ * [Phi_0:A][w:(Phi:A)(Phi<Phi_0)-> ...]
+ * [x][eq:Phi_0=phi(x)][h:(I x)]
+ * Cases (b x) of
+ * (left HH) => (x,?::(IS x))
+ * | (right HH) => let x1,_,_ = (e x ?) in
+ * (w phi(x1) ? x1 ? ?)
+ * phi(x) x ? ?)
+ *)
+
+let id_phi = id_of_string "phi"
+let id_phi0 = id_of_string "phi0"
+
+let make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c) =
+ let ((_,tvb),eb,pb,qb) = cb in
+ let (_,ef,_,is) = c in
+
+ let ren' = next ren (get_writes ef) in
+ let before = current_date ren in
+
+ let ty =
+ let is = abstract_post ren' env (ef,is) in
+ let _,lo = input_output ren env c in
+ product ren env before lo is
+ in
+ let resb = id_of_string "resultb" in
+ let tyb = trad_ml_type_v ren' env tvb in
+ let wb = get_writes eb in
+
+ (* première branche: le test est vrai => e;w *)
+ let t1 =
+ make_block ren' env
+ (fun ren'' result -> match result with
+ | Some (id,_) ->
+ let v = List.rev (current_vars ren'' (get_writes ef)) in
+ CC_app (CC_var id_w,
+ [CC_expr (phi_of ren'');
+ CC_hole (lt r (phi_of ren'') (mkVar id_phi0))]
+ @(List.map (fun (_,id) -> CC_var id) v)
+ @(CC_hole (eq a (phi_of ren'') (phi_of ren'')))
+ ::(match i with
+ | None -> []
+ | Some c ->
+ [CC_hole (apply_assert ren'' env c).a_value])),
+ ty
+ | None -> failwith "a block should contain at least one statement")
+ tbl
+ in
+
+ (* deuxième branche: le test est faux => on sort de la boucle *)
+ let t2,_ =
+ result_tuple ren' before env
+ (CC_expr (constant "tt"),constant "unit") (ef,is)
+ in
+
+ let b_al = current_vars ren' (get_reads eb) in
+ let qb = force_bool_name qb in
+ let t = make_if_case ren' env ty (CC_var resb,qb) (t1,t2) in
+ let t =
+ make_let_in ren' env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty)
+ in
+ let t =
+ let pl = List.map (pre_of_assert false) (list_of_some i) in
+ abs_pre ren' env (t,ty) pl
+ in
+ let t =
+ CC_lam ([var_name Anonymous,
+ CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren'))],t)
+ in
+ let bl = binding_of_alist ren env (current_vars ren' (get_writes ef)) in
+ make_abs (List.rev bl) t
+
+
+let make_while ren env (cphi,r,a) (tb,cb) tbl (i,c) =
+ let (_,ef,_,is) = c in
+ let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in
+ let wf_a_r = Term.applist (constant "well_founded", [a; r]) in
+
+ let before = current_date ren in
+ let ren' = next ren (get_writes ef) in
+ let al = current_vars ren' (get_writes ef) in
+ let v =
+ let _,lo = input_output ren env c in
+ let is = abstract_post ren' env (ef,is) in
+ match i with
+ | None -> product ren' env before lo is
+ | Some ci ->
+ Term.mkArrow (apply_assert ren' env ci).a_value
+ (product ren' env before lo is)
+ in
+ let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren')) v in
+ let v =
+ n_mkNamedProd v
+ (List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al)
+ in
+ let tw =
+ Term.mkNamedProd id_phi a
+ (Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v)
+ in
+ let id_w = id_of_string "loop" in
+ let vars = List.rev (current_vars ren (get_writes ef)) in
+ let body =
+ make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c)
+ in
+ CC_app (CC_expr (constant "well_founded_induction"),
+ [CC_expr a; CC_expr r;
+ CC_hole wf_a_r;
+ CC_expr (Term.mkNamedLambda id_phi a v);
+ CC_lam ([id_phi0, CC_typed_binder a;
+ id_w, CC_typed_binder tw],
+ body);
+ CC_expr (phi_of ren)]
+ @(List.map (fun (_,id) -> CC_var id) vars)
+ @(CC_hole (eq a (phi_of ren) (phi_of ren)))
+ ::(match i with
+ | None -> []
+ | Some c -> [CC_hole (apply_assert ren env c).a_value]))
+
+
+(* [make_letrec ren env (phi0,(cphi,r,a)) bl (te,ce) c]
+ * constructs the term corresponding to the let rec i.e.
+ *
+ * [x][h:P(x)](well_founded_induction
+ * A R ?::(well_founded A R)
+ * [Phi:A] (bl) (x) Phi=phi(x)->(P x)-> \exists x'.res.(Q x x')
+ * [Phi_0:A][w:(Phi:A)(Phi<Phi_0)-> ...]
+ * [bl][x][eq:Phi_0=phi(x)][h:(P x)]te
+ * phi(x) bl x ? ?)
+ *)
+
+let make_letrec ren env (id_phi0,(cphi,r,a)) idf bl (te,ce) c =
+ let (_,ef,p,q) = c in
+ let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in
+ let wf_a_r = Term.applist (constant "well_founded", [a; r]) in
+
+ let before = current_date ren in
+ let al = current_vars ren (get_reads ef) in
+ let v =
+ let _,lo = input_output ren env c in
+ let q = abstract_post ren env (ef,q) in
+ arrow ren env (product ren env (current_date ren) lo q) p
+ in
+ let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren)) v in
+ let v =
+ n_mkNamedProd v
+ (List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al)
+ in
+ let v =
+ n_mkNamedProd v
+ (List.map (function (id,CC_typed_binder c) -> (id,c)
+ | _ -> assert false) (List.rev bl))
+ in
+ let tw =
+ Term.mkNamedProd id_phi a
+ (Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v)
+ in
+ let vars = List.rev (current_vars ren (get_reads ef)) in
+ let body =
+ let al = current_vars ren (get_reads ef) in
+ let bod = abs_pre ren env (te,v) p in
+ let bod = CC_lam ([var_name Anonymous,
+ CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren))],
+ bod)
+ in
+ let bl' = binding_of_alist ren env al in
+ make_abs (bl@(List.rev bl')) bod
+ in
+ let t =
+ CC_app (CC_expr (constant "well_founded_induction"),
+ [CC_expr a; CC_expr r;
+ CC_hole wf_a_r;
+ CC_expr (Term.mkNamedLambda id_phi a v);
+ CC_lam ([id_phi0, CC_typed_binder a;
+ idf, CC_typed_binder tw],
+ body);
+ CC_expr (phi_of ren)]
+ @(List.map (fun (id,_) -> CC_var id) bl)
+ @(List.map (fun (_,id) -> CC_var id) vars)
+ @[CC_hole (eq a (phi_of ren) (phi_of ren))]
+ )
+ in
+ (* on abstrait juste par rapport aux variables de ef *)
+ let al = current_vars ren (get_reads ef) in
+ let bl = binding_of_alist ren env al in
+ make_abs (List.rev bl) t
+
+
+(* [make_access env id c] Access in array id.
+ *
+ * Constructs [t:(array s T)](access_g s T t c ?::(lt c s)).
+ *)
+
+let array_info ren env id =
+ let ty = type_in_env env id in
+ let size,v = dearray_type ty in
+ let ty_elem = trad_ml_type_v ren env v in
+ let ty_array = trad_imp_type ren env ty in
+ size,ty_elem,ty_array
+
+let make_raw_access ren env (id,id') c =
+ let size,ty_elem,_ = array_info ren env id in
+ Term.applist (constant "access", [size; ty_elem; mkVar id'; c])
+
+let make_pre_access ren env id c =
+ let size,_,_ = array_info ren env id in
+ conj (lt (constant "Zle") (constant "ZERO") c)
+ (lt (constant "Zlt") c size)
+
+let make_raw_store ren env (id,id') c1 c2 =
+ let size,ty_elem,_ = array_info ren env id in
+ Term.applist (constant "store", [size; ty_elem; mkVar id'; c1; c2])
diff --git a/contrib/correctness/pmonad.mli b/contrib/correctness/pmonad.mli
new file mode 100644
index 00000000..e1400fcb
--- /dev/null
+++ b/contrib/correctness/pmonad.mli
@@ -0,0 +1,106 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pmonad.mli,v 1.1.16.1 2004/07/16 19:30:02 herbelin Exp $ *)
+
+open Names
+open Term
+
+open Ptype
+open Past
+open Penv
+
+(* Main part of the translation of imperative programs into functional ones
+ * (with mlise.ml) *)
+
+(* Here we translate the specification into a CIC specification *)
+
+val trad_ml_type_v : Prename.t -> local_env -> type_v -> constr
+val trad_ml_type_c : Prename.t -> local_env -> type_c -> constr
+val trad_imp_type : Prename.t -> local_env -> type_v -> constr
+val trad_type_in_env : Prename.t -> local_env -> identifier -> constr
+
+val binding_of_alist : Prename.t -> local_env
+ -> (identifier * identifier) list
+ -> cc_binder list
+val make_abs : cc_binder list -> cc_term -> cc_term
+val abs_pre : Prename.t -> local_env -> cc_term * constr ->
+ constr precondition list -> cc_term
+
+(* The following functions translate the main constructions *)
+
+val make_tuple : (cc_term * cc_type) list -> predicate option
+ -> Prename.t -> local_env -> string
+ -> cc_term
+
+val result_tuple : Prename.t -> string -> local_env
+ -> (cc_term * constr) -> (Peffect.t * predicate option)
+ -> cc_term * constr
+
+val let_in_pre : constr -> constr precondition -> cc_term -> cc_term
+
+val make_let_in : Prename.t -> local_env -> cc_term
+ -> constr precondition list
+ -> ((identifier * identifier) list * predicate option)
+ -> identifier * constr
+ -> cc_term * constr -> cc_term
+
+val make_block : Prename.t -> local_env
+ -> (Prename.t -> (identifier * constr) option -> cc_term * constr)
+ -> (cc_term * type_c, constr) block
+ -> cc_term
+
+val make_app : local_env
+ -> Prename.t -> (cc_term * type_c) list
+ -> Prename.t -> cc_term * type_c
+ -> ((type_v binder list) * type_c)
+ * ((identifier*identifier) list)
+ * type_c
+ -> type_c
+ -> cc_term
+
+val make_if : Prename.t -> local_env
+ -> cc_term * type_c
+ -> Prename.t
+ -> cc_term * type_c
+ -> cc_term * type_c
+ -> type_c
+ -> cc_term
+
+val make_while : Prename.t -> local_env
+ -> (constr * constr * constr) (* typed variant *)
+ -> cc_term * type_c
+ -> (cc_term * type_c, constr) block
+ -> constr assertion option * type_c
+ -> cc_term
+
+val make_letrec : Prename.t -> local_env
+ -> (identifier * (constr * constr * constr)) (* typed variant *)
+ -> identifier (* the name of the function *)
+ -> (cc_binder list)
+ -> (cc_term * type_c)
+ -> type_c
+ -> cc_term
+
+(* Functions to translate array operations *)
+
+val array_info :
+ Prename.t -> local_env -> identifier -> constr * constr * constr
+
+val make_raw_access :
+ Prename.t -> local_env -> identifier * identifier -> constr -> constr
+
+val make_raw_store :
+ Prename.t -> local_env -> identifier * identifier
+ -> constr -> constr -> constr
+
+val make_pre_access :
+ Prename.t -> local_env -> identifier -> constr -> constr
+
diff --git a/contrib/correctness/pred.ml b/contrib/correctness/pred.ml
new file mode 100644
index 00000000..732dcf08
--- /dev/null
+++ b/contrib/correctness/pred.ml
@@ -0,0 +1,115 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pred.ml,v 1.6.14.1 2004/07/16 19:30:05 herbelin Exp $ *)
+
+open Pp
+open Past
+open Pmisc
+
+let rec cc_subst subst = function
+ | CC_var id as c ->
+ (try CC_expr (List.assoc id subst) with Not_found -> c)
+ | CC_letin (b,ty,bl,c1,c2) ->
+ CC_letin (b, real_subst_in_constr subst ty, cc_subst_binders subst bl,
+ cc_subst subst c1, cc_subst (cc_cross_binders subst bl) c2)
+ | CC_lam (bl, c) ->
+ CC_lam (cc_subst_binders subst bl,
+ cc_subst (cc_cross_binders subst bl) c)
+ | CC_app (c, cl) ->
+ CC_app (cc_subst subst c, List.map (cc_subst subst) cl)
+ | CC_tuple (b, tl, cl) ->
+ CC_tuple (b, List.map (real_subst_in_constr subst) tl,
+ List.map (cc_subst subst) cl)
+ | CC_case (ty, c, cl) ->
+ CC_case (real_subst_in_constr subst ty, cc_subst subst c,
+ List.map (cc_subst subst) cl)
+ | CC_expr c ->
+ CC_expr (real_subst_in_constr subst c)
+ | CC_hole ty ->
+ CC_hole (real_subst_in_constr subst ty)
+
+and cc_subst_binders subst = List.map (cc_subst_binder subst)
+
+and cc_subst_binder subst = function
+ | id,CC_typed_binder c -> id,CC_typed_binder (real_subst_in_constr subst c)
+ | b -> b
+
+and cc_cross_binders subst = function
+ | [] -> subst
+ | (id,_) :: bl -> cc_cross_binders (List.remove_assoc id subst) bl
+
+(* here we only perform eta-reductions on programs to eliminate
+ * redexes of the kind
+ *
+ * let (x1,...,xn) = e in (x1,...,xn) --> e
+ *
+ *)
+
+let is_eta_redex bl al =
+ try
+ List.for_all2
+ (fun (id,_) t -> match t with CC_var id' -> id=id' | _ -> false)
+ bl al
+ with
+ Invalid_argument("List.for_all2") -> false
+
+let rec red = function
+ | CC_letin (_, _, [id,_], CC_expr c1, e2) ->
+ red (cc_subst [id,c1] e2)
+ | CC_letin (dep, ty, bl, e1, e2) ->
+ begin match red e2 with
+ | CC_tuple (false,tl,al) ->
+ if is_eta_redex bl al then
+ red e1
+ else
+ CC_letin (dep, ty, bl, red e1,
+ CC_tuple (false,tl,List.map red al))
+ | e -> CC_letin (dep, ty, bl, red e1, e)
+ end
+ | CC_lam (bl, e) ->
+ CC_lam (bl, red e)
+ | CC_app (e, al) ->
+ CC_app (red e, List.map red al)
+ | CC_case (ty, e1, el) ->
+ CC_case (ty, red e1, List.map red el)
+ | CC_tuple (dep, tl, al) ->
+ CC_tuple (dep, tl, List.map red al)
+ | e -> e
+
+
+(* How to reduce uncomplete proof terms when they have become constr *)
+
+open Term
+open Reductionops
+
+(* Il ne faut pas reduire de redexe (beta/iota) qui impliquerait
+ * la substitution d'une métavariable.
+ *
+ * On commence par rendre toutes les applications binaire (strong bin_app)
+ * puis on applique la reduction spéciale programmes définie dans
+ * typing/reduction *)
+
+(*i
+let bin_app = function
+ | DOPN(AppL,v) as c ->
+ (match Array.length v with
+ | 1 -> v.(0)
+ | 2 -> c
+ | n ->
+ let f = DOPN(AppL,Array.sub v 0 (pred n)) in
+ DOPN(AppL,[|f;v.(pred n)|]))
+ | c -> c
+i*)
+
+let red_cci c =
+ (*i let c = strong bin_app c in i*)
+ strong whd_programs (Global.env ()) Evd.empty c
+
diff --git a/contrib/correctness/pred.mli b/contrib/correctness/pred.mli
new file mode 100644
index 00000000..2f43f4ad
--- /dev/null
+++ b/contrib/correctness/pred.mli
@@ -0,0 +1,26 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pred.mli,v 1.1.16.1 2004/07/16 19:30:05 herbelin Exp $ *)
+
+open Term
+open Past
+
+(* reduction on intermediate programs
+ * get rid of redexes of the kind let (x1,...,xn) = e in (x1,...,xn) *)
+
+val red : cc_term -> cc_term
+
+
+(* Ad-hoc reduction on partial proof terms *)
+
+val red_cci : constr -> constr
+
+
diff --git a/contrib/correctness/prename.ml b/contrib/correctness/prename.ml
new file mode 100644
index 00000000..864f6abd
--- /dev/null
+++ b/contrib/correctness/prename.ml
@@ -0,0 +1,139 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: prename.ml,v 1.3.14.1 2004/07/16 19:30:05 herbelin Exp $ *)
+
+open Names
+open Nameops
+open Util
+open Pp
+open Himsg
+open Pmisc
+
+(* Variables names management *)
+
+type date = string
+
+(* The following data structure keeps the successive names of the variables
+ * as we traverse the program. A each step a ``date'' and a
+ * collection of new names is (possibly) given, and updates the
+ * previous renaming.
+ *
+ * Then, we can ask for the name of a variable, at current date or
+ * at a given date.
+ *
+ * It is easily represented by a list of date x assoc list, most recent coming
+ * first i.e. as follows:
+ *
+ * [ date (= current), [ (x,xi); ... ];
+ * date , [ (z,zk); ... ];
+ * ...
+ * date (= initial), [ (x,xj); (y,yi); ... ]
+ *
+ * We also keep a list of all names already introduced, in order to
+ * quickly get fresh names.
+ *)
+
+type t =
+ { levels : (date * (identifier * identifier) list) list;
+ avoid : identifier list;
+ cpt : int }
+
+
+let empty_ren = { levels = []; avoid = []; cpt = 0 }
+
+let update r d ids =
+ let al,av = renaming_of_ids r.avoid ids in
+ { levels = (d,al) :: r.levels; avoid = av; cpt = r.cpt }
+
+let push_date r d = update r d []
+
+let next r ids =
+ let al,av = renaming_of_ids r.avoid ids in
+ let n = succ r.cpt in
+ let d = string_of_int n in
+ { levels = (d,al) :: r.levels; avoid = av; cpt = n }
+
+
+let find r x =
+ let rec find_in_one = function
+ [] -> raise Not_found
+ | (y,v)::rem -> if y = x then v else find_in_one rem
+ in
+ let rec find_in_all = function
+ [] -> raise Not_found
+ | (_,l)::rem -> try find_in_one l with Not_found -> find_in_all rem
+ in
+ find_in_all r.levels
+
+
+let current_var = find
+
+let current_vars r ids = List.map (fun id -> id,current_var r id) ids
+
+
+let avoid r ids = { levels = r.levels; avoid = r.avoid @ ids; cpt = r.cpt }
+
+let fresh r ids = fst (renaming_of_ids r.avoid ids)
+
+
+let current_date r =
+ match r.levels with
+ [] -> invalid_arg "Renamings.current_date"
+ | (d,_)::_ -> d
+
+let all_dates r = List.map fst r.levels
+
+let rec valid_date da r =
+ let rec valid = function
+ [] -> false
+ | (d,_)::rem -> (d=da) or (valid rem)
+ in
+ valid r.levels
+
+(* [until d r] selects the part of the renaming [r] starting from date [d] *)
+let rec until da r =
+ let rec cut = function
+ [] -> invalid_arg "Renamings.until"
+ | (d,_)::rem as r -> if d=da then r else cut rem
+ in
+ { avoid = r.avoid; levels = cut r.levels; cpt = r.cpt }
+
+let var_at_date r d id =
+ try
+ find (until d r) id
+ with Not_found ->
+ raise (UserError ("Renamings.var_at_date",
+ hov 0 (str"Variable " ++ pr_id id ++ str" is unknown" ++ spc () ++
+ str"at date " ++ str d)))
+
+let vars_at_date r d ids =
+ let r' = until d r in List.map (fun id -> id,find r' id) ids
+
+
+(* pretty-printers *)
+
+open Pp
+open Util
+open Himsg
+
+let pp r =
+ hov 2 (prlist_with_sep (fun () -> (fnl ()))
+ (fun (d,l) ->
+ (str d ++ str": " ++
+ prlist_with_sep (fun () -> (spc ()))
+ (fun (id,id') ->
+ (str"(" ++ pr_id id ++ str"," ++ pr_id id' ++ str")"))
+ l))
+ r.levels)
+
+let ppr e =
+ Pp.pp (pp e)
+
diff --git a/contrib/correctness/prename.mli b/contrib/correctness/prename.mli
new file mode 100644
index 00000000..88b49d2c
--- /dev/null
+++ b/contrib/correctness/prename.mli
@@ -0,0 +1,57 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: prename.mli,v 1.1.16.1 2004/07/16 19:30:05 herbelin Exp $ *)
+
+open Names
+
+(* Abstract type for renamings
+ *
+ * Records the names of the mutables objets (ref, arrays) at the different
+ * moments of the evaluation, called dates
+ *)
+
+type t
+
+type date = string
+
+
+val empty_ren : t
+val update : t -> date -> identifier list -> t
+ (* assign new names for the given variables, associated to a new date *)
+val next : t -> identifier list -> t
+ (* assign new names for the given variables, associated to a new
+ * date which is generated from an internal counter *)
+val push_date : t -> date -> t
+ (* put a new date on top of the stack *)
+
+val valid_date : date -> t -> bool
+val current_date : t -> date
+val all_dates : t -> date list
+
+val current_var : t -> identifier -> identifier
+val current_vars : t -> identifier list -> (identifier * identifier) list
+ (* gives the current names of some variables *)
+
+val avoid : t -> identifier list -> t
+val fresh : t -> identifier list -> (identifier * identifier) list
+ (* introduces new names to avoid and renames some given variables *)
+
+val var_at_date : t -> date -> identifier -> identifier
+ (* gives the name of a variable at a given date *)
+val vars_at_date : t -> date -> identifier list
+ -> (identifier * identifier) list
+ (* idem for a list of variables *)
+
+(* pretty-printers *)
+
+val pp : t -> Pp.std_ppcmds
+val ppr : t -> unit
+
diff --git a/contrib/correctness/preuves.v b/contrib/correctness/preuves.v
new file mode 100644
index 00000000..33659b43
--- /dev/null
+++ b/contrib/correctness/preuves.v
@@ -0,0 +1,128 @@
+
+(* Quelques preuves sur des programmes simples,
+ * juste histoire d'avoir un petit bench.
+ *)
+
+Require Correctness.
+Require Omega.
+
+Global Variable x : Z ref.
+Global Variable y : Z ref.
+Global Variable z : Z ref.
+Global Variable i : Z ref.
+Global Variable j : Z ref.
+Global Variable n : Z ref.
+Global Variable m : Z ref.
+Variable r : Z.
+Variable N : Z.
+Global Variable t : array N of Z.
+
+(**********************************************************************)
+
+Require Exchange.
+Require ArrayPermut.
+
+Correctness swap
+ fun (N:Z)(t:array N of Z)(i,j:Z) ->
+ { `0 <= i < N` /\ `0 <= j < N` }
+ (let v = t[i] in
+ begin
+ t[i] := t[j];
+ t[j] := v
+ end)
+ { (exchange t t@ i j) }.
+Proof.
+Auto with datatypes.
+Save.
+
+Correctness downheap
+ let rec downheap (N:Z)(t:array N of Z) : unit { variant `0` } =
+ (swap N t 0 0) { True }
+.
+
+(**********************************************************************)
+
+Global Variable x : Z ref.
+Debug on.
+Correctness assign0 (x := 0) { `x=0` }.
+Save.
+
+(**********************************************************************)
+
+Global Variable i : Z ref.
+Debug on.
+Correctness assign1 { `0 <= i` } (i := !i + 1) { `0 < i` }.
+Omega.
+Save.
+
+(**********************************************************************)
+
+Global Variable i : Z ref.
+Debug on.
+Correctness if0 { `0 <= i` } (if !i>0 then i:=!i-1 else tt) { `0 <= i` }.
+Omega.
+Save.
+
+(**********************************************************************)
+
+Global Variable i : Z ref.
+Debug on.
+Correctness assert0 { `0 <= i` } begin assert { `i=2` }; i:=!i-1 end { `i=1` }.
+
+(**********************************************************************)
+
+Correctness echange
+ { `0 <= i < N` /\ `0 <= j < N` }
+ begin
+ label B;
+ x := t[!i]; t[!i] := t[!j]; t[!j] := !x;
+ assert { #t[i] = #t@B[j] /\ #t[j] = #t@B[i] }
+ end.
+Proof.
+Auto with datatypes.
+Save.
+
+
+(**********************************************************************)
+
+(*
+ * while x <= y do x := x+1 done { y < x }
+ *)
+
+Correctness incrementation
+ while !x < !y do
+ { invariant True variant `(Zs y)-x` }
+ x := !x + 1
+ done
+ { `y < x` }.
+Proof.
+Exact (Zwf_well_founded `0`).
+Unfold Zwf. Omega.
+Exact I.
+Save.
+
+
+(************************************************************************)
+
+Correctness pivot1
+ begin
+ while (Z_lt_ge_dec !i r) do
+ { invariant True variant (Zminus (Zs r) i) } i := (Zs !i)
+ done;
+ while (Z_lt_ge_dec r !j) do
+ { invariant True variant (Zminus (Zs j) r) } j := (Zpred !j)
+ done
+ end
+ { `j <= r` /\ `r <= i` }.
+Proof.
+Exact (Zwf_well_founded `0`).
+Unfold Zwf. Omega.
+Exact I.
+Exact (Zwf_well_founded `0`).
+Unfold Zwf. Unfold Zpred. Omega.
+Exact I.
+Omega.
+Save.
+
+
+
diff --git a/contrib/correctness/psyntax.ml4 b/contrib/correctness/psyntax.ml4
new file mode 100644
index 00000000..c1f00a3d
--- /dev/null
+++ b/contrib/correctness/psyntax.ml4
@@ -0,0 +1,1058 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: psyntax.ml4,v 1.29.2.1 2004/07/16 19:30:05 herbelin Exp $ *)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Options
+open Util
+open Names
+open Nameops
+open Vernacentries
+open Reduction
+open Term
+open Libnames
+open Topconstr
+
+open Prename
+open Pmisc
+open Putil
+open Ptype
+open Past
+open Penv
+open Pmonad
+open Vernacexpr
+
+
+(* We define new entries for programs, with the use of this module
+ * Programs. These entries are named Programs.<foo>
+ *)
+
+module Gram = Pcoq.Gram
+module Constr = Pcoq.Constr
+module Tactic = Pcoq.Tactic
+
+module Programs =
+ struct
+ let gec s = Gram.Entry.create ("Programs."^s)
+ (* types *)
+ let type_v = gec "type_v"
+ let type_v0 = gec "type_v0"
+ let type_v1 = gec "type_v1"
+ let type_v2 = gec "type_v2"
+ let type_v3 = gec "type_v3"
+ let type_v_app = gec "type_v_app"
+ let type_c = gec "type_c"
+ let effects = gec "effects"
+ let reads = gec "reads"
+ let writes = gec "writes"
+ let pre_condition = gec "pre_condition"
+ let post_condition = gec "post_condition"
+ (* binders *)
+ let binder = gec "binder"
+ let binder_type = gec "binder_type"
+ let binders = gec "binders"
+ (* programs *)
+ let program = gec "program"
+ let prog1 = gec "prog1"
+ let prog2 = gec "prog2"
+ let prog3 = gec "prog3"
+ let prog4 = gec "prog4"
+ let prog5 = gec "prog5"
+ let prog6 = gec "prog6"
+ let prog7 = gec "prog7"
+ let ast1 = gec "ast1"
+ let ast2 = gec "ast2"
+ let ast3 = gec "ast3"
+ let ast4 = gec "ast4"
+ let ast5 = gec "ast5"
+ let ast6 = gec "ast6"
+ let ast7 = gec "ast7"
+ let arg = gec "arg"
+ let block = gec "block"
+ let block_statement = gec "block_statement"
+ let relation = gec "relation"
+ let variable = gec "variable"
+ let invariant = gec "invariant"
+ let variant = gec "variant"
+ let assertion = gec "assertion"
+ let precondition = gec "precondition"
+ let postcondition = gec "postcondition"
+ let predicate = gec "predicate"
+ let name = gec "name"
+ end
+
+open Programs
+
+let ast_of_int n =
+ CDelimiters
+ (dummy_loc, "Z", CNumeral (dummy_loc, Bignat.POS (Bignat.of_string n)))
+
+let constr_of_int n =
+ Constrintern.interp_constr Evd.empty (Global.env ()) (ast_of_int n)
+
+open Util
+open Coqast
+
+let mk_id loc id = mkRefC (Ident (loc, id))
+let mk_ref loc s = mk_id loc (Constrextern.id_of_v7_string s)
+let mk_appl loc1 loc2 f args =
+ CApp (join_loc loc1 loc2, (None,mk_ref loc1 f), List.map (fun a -> a,None) args)
+
+let conj_assert {a_name=n;a_value=a} {a_value=b} =
+ let loc1 = constr_loc a in
+ let loc2 = constr_loc a in
+ { a_value = mk_appl loc1 loc2 "and" [a;b]; a_name = n }
+
+let conj = function
+ None,None -> None
+ | None,b -> b
+ | a,None -> a
+ | Some a,Some b -> Some (conj_assert a b)
+
+let without_effect loc d =
+ { desc = d; pre = []; post = None; loc = loc; info = () }
+
+let isevar = Expression isevar
+
+let bin_op op loc e1 e2 =
+ without_effect loc
+ (Apply (without_effect loc (Expression (constant op)),
+ [ Term e1; Term e2 ]))
+
+let un_op op loc e =
+ without_effect loc
+ (Apply (without_effect loc (Expression (constant op)), [Term e]))
+
+let bool_bin op loc a1 a2 =
+ let w = without_effect loc in
+ let d = SApp ( [Variable op], [a1; a2]) in
+ w d
+
+let bool_or loc = bool_bin connective_or loc
+let bool_and loc = bool_bin connective_and loc
+
+let bool_not loc a =
+ let w = without_effect loc in
+ let d = SApp ( [Variable connective_not ], [a]) in
+ w d
+
+let ast_zwf_zero loc = mk_appl loc loc "Zwf" [mk_ref loc "ZERO"]
+
+(* program -> Coq AST *)
+
+let bdize c =
+ let env =
+ Global.env_of_context (Pcicenv.cci_sign_of Prename.empty_ren Penv.empty)
+ in
+ Constrextern.extern_constr true env c
+
+let rec coqast_of_program loc = function
+ | Variable id -> mk_id loc id
+ | Acc id -> mk_id loc id
+ | Apply (f,l) ->
+ let f = coqast_of_program f.loc f.desc in
+ let args = List.map
+ (function Term t -> (coqast_of_program t.loc t.desc,None)
+ | _ -> invalid_arg "coqast_of_program") l
+ in
+ CApp (dummy_loc, (None,f), args)
+ | Expression c -> bdize c
+ | _ -> invalid_arg "coqast_of_program"
+
+(* The construction `for' is syntactic sugar.
+ *
+ * for i = v1 to v2 do { invariant Inv } block done
+ *
+ * ==> (let rec f i { variant v2+1-i } =
+ * { i <= v2+1 /\ Inv(i) }
+ * (if i > v2 then tt else begin block; (f (i+1)) end)
+ * { Inv(v2+1) }
+ * in (f v1)) { Inv(v2+1) }
+ *)
+
+let ast_plus_un loc ast =
+ let un = ast_of_int "1" in
+ mk_appl loc loc "Zplus" [ast;un]
+
+let make_ast_for loc i v1 v2 inv block =
+ let f = for_name() in
+ let id_i = id_of_string i in
+ let var_i = without_effect loc (Variable id_i) in
+ let var_f = without_effect loc (Variable f) in
+ let succ_v2 =
+ let a_v2 = coqast_of_program v2.loc v2.desc in
+ ast_plus_un loc a_v2 in
+ let post = named_app (subst_ast_in_ast [ id_i, succ_v2 ]) inv in
+ let e1 =
+ let test = bin_op "Z_gt_le_bool" loc var_i v2 in
+ let br_t = without_effect loc (Expression (constant "tt")) in
+ let br_f =
+ let un = without_effect loc (Expression (constr_of_int "1")) in
+ let succ_i = bin_op "Zplus" loc var_i un in
+ let f_succ_i = without_effect loc (Apply (var_f, [Term succ_i])) in
+ without_effect loc (Seq (block @ [Statement f_succ_i]))
+ in
+ let inv' =
+ let i_le_sv2 = mk_appl loc loc "Zle" [mk_ref loc i; succ_v2] in
+ conj_assert {a_value=i_le_sv2;a_name=inv.a_name} inv
+ in
+ { desc = If(test,br_t,br_f); loc = loc;
+ pre = [pre_of_assert false inv']; post = Some post; info = () }
+ in
+ let bl =
+ let typez = mk_ref loc "Z" in
+ [(id_of_string i, BindType (TypePure typez))]
+ in
+ let fv1 = without_effect loc (Apply (var_f, [Term v1])) in
+ let v = TypePure (mk_ref loc "unit") in
+ let var =
+ let a = mk_appl loc loc "Zminus" [succ_v2;mk_ref loc i] in
+ (a, ast_zwf_zero loc)
+ in
+ Let (f, without_effect loc (LetRec (f,bl,v,var,e1)), fv1)
+
+let mk_prog loc p pre post =
+ { desc = p.desc;
+ pre = p.pre @ pre;
+ post = conj (p.post,post);
+ loc = loc;
+ info = () }
+
+if !Options.v7 then
+GEXTEND Gram
+
+ (* Types ******************************************************************)
+ type_v:
+ [ [ t = type_v0 -> t ] ]
+ ;
+ type_v0:
+ [ [ t = type_v1 -> t ] ]
+ ;
+ type_v1:
+ [ [ t = type_v2 -> t ] ]
+ ;
+ type_v2:
+ [ LEFTA
+ [ v = type_v2; IDENT "ref" -> Ref v
+ | t = type_v3 -> t ] ]
+ ;
+ type_v3:
+ [ [ IDENT "array"; size = Constr.constr; "of"; v = type_v0 ->
+ Array (size,v)
+ | IDENT "fun"; bl = binders; c = type_c -> make_arrow bl c
+ | c = Constr.constr -> TypePure c
+ ] ]
+ ;
+ type_c:
+ [ [ IDENT "returns"; id = IDENT; ":"; v = type_v;
+ e = effects; p = OPT pre_condition; q = OPT post_condition; "end" ->
+ ((id_of_string id, v), e, list_of_some p, q)
+ ] ]
+ ;
+ effects:
+ [ [ r = OPT reads; w = OPT writes ->
+ let r' = match r with Some l -> l | _ -> [] in
+ let w' = match w with Some l -> l | _ -> [] in
+ List.fold_left (fun e x -> Peffect.add_write x e)
+ (List.fold_left (fun e x -> Peffect.add_read x e) Peffect.bottom r')
+ w'
+ ] ]
+ ;
+ reads:
+ [ [ IDENT "reads"; l = LIST0 IDENT SEP "," -> List.map id_of_string l ] ]
+ ;
+ writes:
+ [ [ IDENT "writes"; l=LIST0 IDENT SEP "," -> List.map id_of_string l ] ]
+ ;
+ pre_condition:
+ [ [ IDENT "pre"; c = predicate -> pre_of_assert false c ] ]
+ ;
+ post_condition:
+ [ [ IDENT "post"; c = predicate -> c ] ]
+ ;
+
+ (* Binders (for both types and programs) **********************************)
+ binder:
+ [ [ "("; sl = LIST1 IDENT SEP ","; ":"; t = binder_type ; ")" ->
+ List.map (fun s -> (id_of_string s, t)) sl
+ ] ]
+ ;
+ binder_type:
+ [ [ "Set" -> BindSet
+ | v = type_v -> BindType v
+ ] ]
+ ;
+ binders:
+ [ [ bl = LIST0 binder -> List.flatten bl ] ]
+ ;
+
+ (* annotations *)
+ predicate:
+ [ [ c = Constr.constr; n = name -> { a_name = n; a_value = c } ] ]
+ ;
+ name:
+ [ [ "as"; s = IDENT -> Name (id_of_string s)
+ | -> Anonymous
+ ] ]
+ ;
+
+ (* Programs ***************************************************************)
+ variable:
+ [ [ s = IDENT -> id_of_string s ] ]
+ ;
+ assertion:
+ [ [ "{"; c = predicate; "}" -> c ] ]
+ ;
+ precondition:
+ [ [ "{"; c = predicate; "}" -> pre_of_assert false c ] ]
+ ;
+ postcondition:
+ [ [ "{"; c = predicate; "}" -> c ] ]
+ ;
+ program:
+ [ [ p = prog1 -> p ] ]
+ ;
+ prog1:
+ [ [ pre = LIST0 precondition; ast = ast1; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog2:
+ [ [ pre = LIST0 precondition; ast = ast2; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog3:
+ [ [ pre = LIST0 precondition; ast = ast3; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog4:
+ [ [ pre = LIST0 precondition; ast = ast4; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog5:
+ [ [ pre = LIST0 precondition; ast = ast5; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog6:
+ [ [ pre = LIST0 precondition; ast = ast6; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+
+ ast1:
+ [ [ x = prog2; IDENT "or"; y = prog1 -> bool_or loc x y
+ | x = prog2; IDENT "and"; y = prog1 -> bool_and loc x y
+ | x = prog2 -> x
+ ] ]
+ ;
+ ast2:
+ [ [ IDENT "not"; x = prog3 -> bool_not loc x
+ | x = prog3 -> x
+ ] ]
+ ;
+ ast3:
+ [ [ x = prog4; rel = relation; y = prog4 -> bin_op rel loc x y
+ | x = prog4 -> x
+ ] ]
+ ;
+ ast4:
+ [ [ x = prog5; "+"; y = prog4 -> bin_op "Zplus" loc x y
+ | x = prog5; "-"; y = prog4 -> bin_op "Zminus" loc x y
+ | x = prog5 -> x
+ ] ]
+ ;
+ ast5:
+ [ [ x = prog6; "*"; y = prog5 -> bin_op "Zmult" loc x y
+ | x = prog6 -> x
+ ] ]
+ ;
+ ast6:
+ [ [ "-"; x = prog6 -> un_op "Zopp" loc x
+ | x = ast7 -> without_effect loc x
+ ] ]
+ ;
+ ast7:
+ [ [ v = variable ->
+ Variable v
+ | n = INT ->
+ Expression (constr_of_int n)
+ | "!"; v = variable ->
+ Acc v
+ | "?" ->
+ isevar
+ | v = variable; ":="; p = program ->
+ Aff (v,p)
+ | v = variable; "["; e = program; "]" -> TabAcc (true,v,e)
+ | v = variable; "#"; "["; e = program; "]" -> TabAcc (true,v,e)
+ | v = variable; "["; e = program; "]"; ":="; p = program ->
+ TabAff (true,v,e,p)
+ | v = variable; "#"; "["; e = program; "]"; ":="; p = program ->
+ TabAff (true,v,e,p)
+ | IDENT "if"; e1 = program; IDENT "then"; e2 = program;
+ IDENT "else"; e3 = program ->
+ If (e1,e2,e3)
+ | IDENT "if"; e1 = program; IDENT "then"; e2 = program ->
+ If (e1,e2,without_effect loc (Expression (constant "tt")))
+ | IDENT "while"; b = program; IDENT "do";
+ "{"; inv = OPT invariant; IDENT "variant"; wf = variant; "}";
+ bl = block; IDENT "done" ->
+ While (b, inv, wf, bl)
+ | IDENT "for"; i = IDENT; "="; v1 = program; IDENT "to"; v2 = program;
+ IDENT "do"; "{"; inv = invariant; "}";
+ bl = block; IDENT "done" ->
+ make_ast_for loc i v1 v2 inv bl
+ | IDENT "let"; v = variable; "="; IDENT "ref"; p1 = program;
+ "in"; p2 = program ->
+ LetRef (v, p1, p2)
+ | IDENT "let"; v = variable; "="; p1 = program; "in"; p2 = program ->
+ Let (v, p1, p2)
+ | IDENT "begin"; b = block; "end" ->
+ Seq b
+ | IDENT "fun"; bl = binders; "->"; p = program ->
+ Lam (bl,p)
+ | IDENT "let"; IDENT "rec"; f = variable;
+ bl = binders; ":"; v = type_v;
+ "{"; IDENT "variant"; var = variant; "}"; "="; p = program ->
+ LetRec (f,bl,v,var,p)
+ | IDENT "let"; IDENT "rec"; f = variable;
+ bl = binders; ":"; v = type_v;
+ "{"; IDENT "variant"; var = variant; "}"; "="; p = program;
+ "in"; p2 = program ->
+ Let (f, without_effect loc (LetRec (f,bl,v,var,p)), p2)
+
+ | "@"; s = STRING; p = program ->
+ Debug (s,p)
+
+ | "("; p = program; args = LIST0 arg; ")" ->
+ match args with
+ [] ->
+ if p.pre<>[] or p.post<>None then
+ Pp.warning "Some annotations are lost";
+ p.desc
+ | _ ->
+ Apply(p,args)
+ ] ]
+ ;
+ arg:
+ [ [ "'"; t = type_v -> Type t
+ | p = program -> Term p
+ ] ]
+ ;
+ block:
+ [ [ s = block_statement; ";"; b = block -> s::b
+ | s = block_statement -> [s] ] ]
+ ;
+ block_statement:
+ [ [ IDENT "label"; s = IDENT -> Label s
+ | IDENT "assert"; c = assertion -> Assert c
+ | p = program -> Statement p ] ]
+ ;
+ relation:
+ [ [ "<" -> "Z_lt_ge_bool"
+ | "<=" -> "Z_le_gt_bool"
+ | ">" -> "Z_gt_le_bool"
+ | ">=" -> "Z_ge_lt_bool"
+ | "=" -> "Z_eq_bool"
+ | "<>" -> "Z_noteq_bool" ] ]
+ ;
+
+ (* Other entries (invariants, etc.) ***************************************)
+ invariant:
+ [ [ IDENT "invariant"; c = predicate -> c ] ]
+ ;
+ variant:
+ [ [ c = Constr.constr; IDENT "for"; r = Constr.constr -> (c, r)
+ | c = Constr.constr -> (c, ast_zwf_zero loc) ] ]
+ ;
+ END
+else
+GEXTEND Gram
+ GLOBAL: type_v program;
+
+ (* Types ******************************************************************)
+ type_v:
+ [ [ t = type_v0 -> t ] ]
+ ;
+ type_v0:
+ [ [ t = type_v1 -> t ] ]
+ ;
+ type_v1:
+ [ [ t = type_v2 -> t ] ]
+ ;
+ type_v2:
+ [ LEFTA
+ [ v = type_v2; IDENT "ref" -> Ref v
+ | t = type_v3 -> t ] ]
+ ;
+ type_v3:
+ [ [ IDENT "array"; size = Constr.constr; IDENT "of"; v = type_v0 ->
+ Array (size,v)
+ | "fun"; bl = binders; c = type_c -> make_arrow bl c
+ | c = Constr.constr -> TypePure c
+ ] ]
+ ;
+ type_c:
+ [ [ IDENT "returns"; id = IDENT; ":"; v = type_v;
+ e = effects; p = OPT pre_condition; q = OPT post_condition; "end" ->
+ ((id_of_string id, v), e, list_of_some p, q)
+ ] ]
+ ;
+ effects:
+ [ [ r = OPT reads; w = OPT writes ->
+ let r' = match r with Some l -> l | _ -> [] in
+ let w' = match w with Some l -> l | _ -> [] in
+ List.fold_left (fun e x -> Peffect.add_write x e)
+ (List.fold_left (fun e x -> Peffect.add_read x e) Peffect.bottom r')
+ w'
+ ] ]
+ ;
+ reads:
+ [ [ IDENT "reads"; l = LIST0 IDENT SEP "," -> List.map id_of_string l ] ]
+ ;
+ writes:
+ [ [ IDENT "writes"; l=LIST0 IDENT SEP "," -> List.map id_of_string l ] ]
+ ;
+ pre_condition:
+ [ [ IDENT "pre"; c = predicate -> pre_of_assert false c ] ]
+ ;
+ post_condition:
+ [ [ IDENT "post"; c = predicate -> c ] ]
+ ;
+
+ (* Binders (for both types and programs) **********************************)
+ binder:
+ [ [ "("; sl = LIST1 IDENT SEP ","; ":"; t = binder_type ; ")" ->
+ List.map (fun s -> (id_of_string s, t)) sl
+ ] ]
+ ;
+ binder_type:
+ [ [ "Set" -> BindSet
+ | v = type_v -> BindType v
+ ] ]
+ ;
+ binders:
+ [ [ bl = LIST0 binder -> List.flatten bl ] ]
+ ;
+
+ (* annotations *)
+ predicate:
+ [ [ c = Constr.constr; n = name -> { a_name = n; a_value = c } ] ]
+ ;
+ dpredicate:
+ [ [ c = Constr.lconstr; n = name -> { a_name = n; a_value = c } ] ]
+ ;
+ name:
+ [ [ "as"; s = IDENT -> Name (id_of_string s)
+ | -> Anonymous
+ ] ]
+ ;
+
+ (* Programs ***************************************************************)
+ variable:
+ [ [ s = IDENT -> id_of_string s ] ]
+ ;
+ assertion:
+ [ [ "{"; c = dpredicate; "}" -> c ] ]
+ ;
+ precondition:
+ [ [ "{"; c = dpredicate; "}" -> pre_of_assert false c ] ]
+ ;
+ postcondition:
+ [ [ "{"; c = dpredicate; "}" -> c ] ]
+ ;
+ program:
+ [ [ p = prog1 -> p ] ]
+ ;
+ prog1:
+ [ [ pre = LIST0 precondition; ast = ast1; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog2:
+ [ [ pre = LIST0 precondition; ast = ast2; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog3:
+ [ [ pre = LIST0 precondition; ast = ast3; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog4:
+ [ [ pre = LIST0 precondition; ast = ast4; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog5:
+ [ [ pre = LIST0 precondition; ast = ast5; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+ prog6:
+ [ [ pre = LIST0 precondition; ast = ast6; post = OPT postcondition ->
+ mk_prog loc ast pre post ] ]
+ ;
+
+ ast1:
+ [ [ x = prog2; IDENT "or"; y = prog1 -> bool_or loc x y
+ | x = prog2; IDENT "and"; y = prog1 -> bool_and loc x y
+ | x = prog2 -> x
+ ] ]
+ ;
+ ast2:
+ [ [ IDENT "not"; x = prog3 -> bool_not loc x
+ | x = prog3 -> x
+ ] ]
+ ;
+ ast3:
+ [ [ x = prog4; rel = relation; y = prog4 -> bin_op rel loc x y
+ | x = prog4 -> x
+ ] ]
+ ;
+ ast4:
+ [ [ x = prog5; "+"; y = prog4 -> bin_op "Zplus" loc x y
+ | x = prog5; "-"; y = prog4 -> bin_op "Zminus" loc x y
+ | x = prog5 -> x
+ ] ]
+ ;
+ ast5:
+ [ [ x = prog6; "*"; y = prog5 -> bin_op "Zmult" loc x y
+ | x = prog6 -> x
+ ] ]
+ ;
+ ast6:
+ [ [ "-"; x = prog6 -> un_op "Zopp" loc x
+ | x = ast7 -> without_effect loc x
+ ] ]
+ ;
+ ast7:
+ [ [ v = variable ->
+ Variable v
+ | n = INT ->
+ Expression (constr_of_int n)
+ | "!"; v = variable ->
+ Acc v
+ | "?" ->
+ isevar
+ | v = variable; ":="; p = program ->
+ Aff (v,p)
+ | v = variable; "["; e = program; "]" -> TabAcc (true,v,e)
+ | v = variable; "#"; "["; e = program; "]" -> TabAcc (true,v,e)
+ | v = variable; "["; e = program; "]"; ":="; p = program ->
+ TabAff (true,v,e,p)
+ | v = variable; "#"; "["; e = program; "]"; ":="; p = program ->
+ TabAff (true,v,e,p)
+ | "if"; e1 = program; "then"; e2 = program; "else"; e3 = program ->
+ If (e1,e2,e3)
+ | "if"; e1 = program; "then"; e2 = program ->
+ If (e1,e2,without_effect loc (Expression (constant "tt")))
+ | IDENT "while"; b = program; IDENT "do";
+ "{"; inv = OPT invariant; IDENT "variant"; wf = variant; "}";
+ bl = block; IDENT "done" ->
+ While (b, inv, wf, bl)
+ | "for"; i = IDENT; "="; v1 = program; IDENT "to"; v2 = program;
+ IDENT "do"; "{"; inv = invariant; "}";
+ bl = block; IDENT "done" ->
+ make_ast_for loc i v1 v2 inv bl
+ | "let"; v = variable; "="; IDENT "ref"; p1 = program;
+ "in"; p2 = program ->
+ LetRef (v, p1, p2)
+ | "let"; v = variable; "="; p1 = program; "in"; p2 = program ->
+ Let (v, p1, p2)
+ | IDENT "begin"; b = block; "end" ->
+ Seq b
+ | "fun"; bl = binders; "=>"; p = program ->
+ Lam (bl,p)
+ | "let"; IDENT "rec"; f = variable;
+ bl = binders; ":"; v = type_v;
+ "{"; IDENT "variant"; var = variant; "}"; "="; p = program ->
+ LetRec (f,bl,v,var,p)
+ | "let"; IDENT "rec"; f = variable;
+ bl = binders; ":"; v = type_v;
+ "{"; IDENT "variant"; var = variant; "}"; "="; p = program;
+ "in"; p2 = program ->
+ Let (f, without_effect loc (LetRec (f,bl,v,var,p)), p2)
+
+ | "@"; s = STRING; p = program ->
+ Debug (s,p)
+
+ | "("; p = program; args = LIST0 arg; ")" ->
+ match args with
+ [] ->
+ if p.pre<>[] or p.post<>None then
+ Pp.warning "Some annotations are lost";
+ p.desc
+ | _ ->
+ Apply(p,args)
+ ] ]
+ ;
+ arg:
+ [ [ "'"; t = type_v -> Type t
+ | p = program -> Term p
+ ] ]
+ ;
+ block:
+ [ [ s = block_statement; ";"; b = block -> s::b
+ | s = block_statement -> [s] ] ]
+ ;
+ block_statement:
+ [ [ IDENT "label"; s = IDENT -> Label s
+ | IDENT "assert"; c = assertion -> Assert c
+ | p = program -> Statement p ] ]
+ ;
+ relation:
+ [ [ "<" -> "Z_lt_ge_bool"
+ | "<=" -> "Z_le_gt_bool"
+ | ">" -> "Z_gt_le_bool"
+ | ">=" -> "Z_ge_lt_bool"
+ | "=" -> "Z_eq_bool"
+ | "<>" -> "Z_noteq_bool" ] ]
+ ;
+
+ (* Other entries (invariants, etc.) ***************************************)
+ invariant:
+ [ [ IDENT "invariant"; c = predicate -> c ] ]
+ ;
+ variant:
+ [ [ c = Constr.constr; "for"; r = Constr.constr -> (c, r)
+ | c = Constr.constr -> (c, ast_zwf_zero loc) ] ]
+ ;
+ END
+;;
+
+let wit_program, globwit_program, rawwit_program =
+ Genarg.create_arg "program"
+let wit_type_v, globwit_type_v, rawwit_type_v =
+ Genarg.create_arg "type_v"
+
+open Pp
+open Util
+open Himsg
+open Vernacinterp
+open Vernacexpr
+open Declare
+
+let is_assumed global ids =
+ if List.length ids = 1 then
+ msgnl (str (if global then "A global variable " else "") ++
+ pr_id (List.hd ids) ++ str " is assumed")
+ else
+ msgnl (str (if global then "Some global variables " else "") ++
+ prlist_with_sep (fun () -> (str ", ")) pr_id ids ++
+ str " are assumed")
+
+open Pcoq
+
+(* Variables *)
+
+let wit_variables, globwit_variables, rawwit_variables =
+ Genarg.create_arg "variables"
+
+let variables = Gram.Entry.create "Variables"
+
+GEXTEND Gram
+ variables: [ [ l = LIST1 Prim.ident SEP "," -> l ] ];
+END
+
+let pr_variables _prc _prtac l = spc() ++ prlist_with_sep pr_coma pr_id l
+
+let _ =
+ Pptactic.declare_extra_genarg_pprule true
+ (rawwit_variables, pr_variables)
+ (globwit_variables, pr_variables)
+ (wit_variables, pr_variables)
+
+(* then_tac *)
+
+open Genarg
+open Tacinterp
+
+let pr_then_tac _ prt = function
+ | None -> mt ()
+ | Some t -> pr_semicolon () ++ prt t
+
+ARGUMENT EXTEND then_tac
+ TYPED AS tactic_opt
+ PRINTED BY pr_then_tac
+ INTERPRETED BY interp_genarg
+ GLOBALIZED BY intern_genarg
+| [ ";" tactic(t) ] -> [ Some t ]
+| [ ] -> [ None ]
+END
+
+(* Correctness *)
+
+VERNAC COMMAND EXTEND Correctness
+ [ "Correctness" preident(str) program(pgm) then_tac(tac) ]
+ -> [ Ptactic.correctness str pgm (option_app Tacinterp.interp tac) ]
+END
+
+(* Show Programs *)
+
+let show_programs () =
+ fold_all
+ (fun (id,v) _ ->
+ msgnl (pr_id id ++ str " : " ++
+ hov 2 (match v with TypeV v -> pp_type_v v
+ | Set -> (str "Set")) ++
+ fnl ()))
+ Penv.empty ()
+
+VERNAC COMMAND EXTEND ShowPrograms
+ [ "Show" "Programs" ] -> [ show_programs () ]
+END
+
+(* Global Variable *)
+
+let global_variable ids v =
+ List.iter
+ (fun id -> if Penv.is_global id then
+ Util.errorlabstrm "PROGVARIABLE"
+ (str"Clash with previous constant " ++ pr_id id))
+ ids;
+ Pdb.check_type_v (all_refs ()) v;
+ let env = empty in
+ let ren = update empty_ren "" [] in
+ let v = Ptyping.cic_type_v env ren v in
+ if not (is_mutable v) then begin
+ let c =
+ Entries.ParameterEntry (trad_ml_type_v ren env v),
+ Decl_kinds.IsAssumption Decl_kinds.Definitional in
+ List.iter
+ (fun id -> ignore (Declare.declare_constant id c)) ids;
+ if_verbose (is_assumed false) ids
+ end;
+ if not (is_pure v) then begin
+ List.iter (fun id -> ignore (Penv.add_global id v None)) ids;
+ if_verbose (is_assumed true) ids
+ end
+
+VERNAC COMMAND EXTEND ProgVariable
+ [ "Global" "Variable" variables(ids) ":" type_v(t) ]
+ -> [ global_variable ids t]
+END
+
+let pr_id id = pr_id (Constrextern.v7_to_v8_id id)
+
+(* Type printer *)
+
+let pr_reads = function
+ | [] -> mt ()
+ | l -> spc () ++
+ hov 0 (str "reads" ++ spc () ++ prlist_with_sep pr_coma pr_id l)
+
+let pr_writes = function
+ | [] -> mt ()
+ | l -> spc () ++
+ hov 0 (str "writes" ++ spc () ++ prlist_with_sep pr_coma pr_id l)
+
+let pr_effects x =
+ let (ro,rw) = Peffect.get_repr x in pr_reads ro ++ pr_writes rw
+
+let pr_predicate delimited { a_name = n; a_value = c } =
+ (if delimited then Ppconstrnew.pr_lconstr else Ppconstrnew.pr_constr) c ++
+ (match n with Name id -> spc () ++ str "as " ++ pr_id id | Anonymous -> mt())
+
+let pr_assert b { p_name = x; p_value = v } =
+ pr_predicate b { a_name = x; a_value = v }
+
+let pr_pre_condition_list = function
+ | [] -> mt ()
+ | [pre] -> spc() ++ hov 0 (str "pre" ++ spc () ++ pr_assert false pre)
+ | _ -> assert false
+
+let pr_post_condition_opt = function
+ | None -> mt ()
+ | Some post ->
+ spc() ++ hov 0 (str "post" ++ spc () ++ pr_predicate false post)
+
+let rec pr_type_v_v8 = function
+ | Array (a,v) ->
+ str "array" ++ spc() ++ Ppconstrnew.pr_constr a ++ spc() ++ str "of " ++
+ pr_type_v_v8 v
+ | v -> pr_type_v3 v
+
+and pr_type_v3 = function
+ | Ref v -> pr_type_v3 v ++ spc () ++ str "ref"
+ | Arrow (bl,((id,v),e,prel,postl)) ->
+ str "fun" ++ spc() ++ hov 0 (prlist_with_sep cut pr_binder bl) ++
+ spc () ++ str "returns" ++ spc () ++ pr_id id ++ str ":" ++
+ pr_type_v_v8 v ++ pr_effects e ++
+ pr_pre_condition_list prel ++ pr_post_condition_opt postl ++
+ spc () ++ str "end"
+ | TypePure a -> Ppconstrnew.pr_constr a
+ | v -> str "(" ++ pr_type_v_v8 v ++ str ")"
+
+and pr_binder = function
+ | (id,BindType c) ->
+ str "(" ++ pr_id id ++ str ":" ++ pr_type_v_v8 c ++ str ")"
+ | (id,BindSet) ->
+ str "(" ++ pr_id id ++ str ":" ++ str "Set" ++ str ")"
+ | (id,Untyped) ->
+ str "<<<<< TODO: Untyped binder >>>>"
+
+let _ =
+ Pptactic.declare_extra_genarg_pprule true
+ (rawwit_type_v, fun _ _ -> pr_type_v_v8)
+ (globwit_type_v, fun _ -> raise Not_found)
+ (wit_type_v, fun _ -> raise Not_found)
+
+(* Program printer *)
+
+let pr_precondition pred = str "{" ++ pr_assert true pred ++ str "}" ++ spc ()
+
+let pr_postcondition pred = str "{" ++ pr_predicate true pred ++ str "}"
+
+let pr_invariant = function
+ | None -> mt ()
+ | Some c -> hov 2 (str "invariant" ++ spc () ++ pr_predicate false c)
+
+let pr_variant (c1,c2) =
+ Ppconstrnew.pr_constr c1 ++
+ (try Constrextern.check_same_type c2 (ast_zwf_zero dummy_loc); mt ()
+ with _ -> spc() ++ hov 0 (str "for" ++ spc () ++ Ppconstrnew.pr_constr c2))
+
+let rec pr_desc = function
+ | Variable id ->
+ (* Unsafe: should distinguish global names and bound vars *)
+ let vars = (* TODO *) Idset.empty in
+ let id = try
+ snd (repr_qualid
+ (snd (qualid_of_reference
+ (Constrextern.extern_reference
+ dummy_loc vars (Nametab.locate (make_short_qualid id))))))
+ with _ -> id in
+ pr_id id
+ | Acc id -> str "!" ++ pr_id id
+ | Aff (id,p) -> pr_id id ++ spc() ++ str ":=" ++ spc() ++ pr_prog p
+ | TabAcc (b,id,p) -> pr_id id ++ str "[" ++ pr_prog p ++ str "]"
+ | TabAff (b,id,p1,p2) ->
+ pr_id id ++ str "[" ++ pr_prog p1 ++ str "]" ++
+ str ":=" ++ pr_prog p2
+ | Seq bll ->
+ hv 0 (str "begin" ++ spc () ++ pr_block bll ++ spc () ++ str "end")
+ | While (p1,inv,var,bll) ->
+ hv 0 (
+ hov 0 (str "while" ++ spc () ++ pr_prog p1 ++ spc () ++ str "do") ++
+ brk (1,2) ++
+ hv 2 (
+ str "{ " ++
+ pr_invariant inv ++ spc() ++
+ hov 0 (str "variant" ++ spc () ++ pr_variant var)
+ ++ str " }") ++ cut () ++
+ hov 0 (pr_block bll) ++ cut () ++
+ str "done")
+ | If (p1,p2,p3) ->
+ hov 1 (str "if " ++ pr_prog p1) ++ spc () ++
+ hov 0 (str "then" ++ spc () ++ pr_prog p2) ++ spc () ++
+ hov 0 (str "else" ++ spc () ++ pr_prog p3)
+ | Lam (bl,p) ->
+ hov 0
+ (str "fun" ++ spc () ++ hov 0 (prlist_with_sep cut pr_binder bl) ++
+ spc () ++ str "=>") ++
+ pr_prog p
+ | Apply ({desc=Expression e; pre=[]; post=None} as p,args) when isConst e ->
+ begin match
+ string_of_id (snd (repr_path (Nametab.sp_of_global (ConstRef (destConst e))))),
+ args
+ with
+ | "Zmult", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"*" ++ pr_arg a2 ++ str ")"
+ | "Zplus", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"+" ++ pr_arg a2 ++ str ")"
+ | "Zminus", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"-" ++ pr_arg a2 ++ str ")"
+ | "Zopp", [a] ->
+ str "( -" ++ pr_arg a ++ str ")"
+ | "Z_lt_ge_bool", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"<" ++ pr_arg a2 ++ str ")"
+ | "Z_le_gt_bool", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"<=" ++ pr_arg a2 ++ str ")"
+ | "Z_gt_le_bool", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str">" ++ pr_arg a2 ++ str ")"
+ | "Z_ge_lt_bool", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str">=" ++ pr_arg a2 ++ str ")"
+ | "Z_eq_bool", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"=" ++ pr_arg a2 ++ str ")"
+ | "Z_noteq_bool", [a1;a2] ->
+ str "(" ++ pr_arg a1 ++ str"<> " ++ pr_arg a2 ++ str ")"
+ | _ ->
+ str "(" ++ pr_prog p ++ spc () ++ prlist_with_sep spc pr_arg args ++
+ str ")"
+ end
+ | Apply (p,args) ->
+ str "(" ++ pr_prog p ++ spc () ++ prlist_with_sep spc pr_arg args ++
+ str ")"
+ | SApp ([Variable v], args) ->
+ begin match string_of_id v, args with
+ | "prog_bool_and", [a1;a2] ->
+ str"(" ++ pr_prog a1 ++ spc() ++ str"and " ++ pr_prog a2 ++str")"
+ | "prog_bool_or", [a1;a2] ->
+ str"(" ++ pr_prog a1 ++ spc() ++ str"or " ++ pr_prog a2 ++ str")"
+ | "prog_bool_not", [a] ->
+ str "(not " ++ pr_prog a ++ str ")"
+ | _ -> failwith "Correctness printer: TODO"
+ end
+ | SApp _ -> failwith "Correctness printer: TODO"
+ | LetRef (v,p1,p2) ->
+ hov 2 (
+ str "let " ++ pr_id v ++ str " =" ++ spc () ++ str "ref" ++ spc () ++
+ pr_prog p1 ++ str " in") ++
+ spc () ++ pr_prog p2
+ | Let (id, {desc=LetRec (f,bl,v,var,p); pre=[]; post=None },p2) when f=id ->
+ hov 2 (
+ str "let rec " ++ pr_id f ++ spc () ++
+ hov 0 (prlist_with_sep cut pr_binder bl) ++ spc () ++
+ str ":" ++ pr_type_v_v8 v ++ spc () ++
+ hov 2 (str "{ variant" ++ spc () ++ pr_variant var ++ str " }") ++
+ spc() ++ str "=" ++ spc () ++ pr_prog p ++
+ str " in") ++
+ spc () ++ pr_prog p2
+ | Let (v,p1,p2) ->
+ hov 2 (
+ str "let " ++ pr_id v ++ str " =" ++ spc () ++ pr_prog p1 ++ str" in")
+ ++ spc () ++ pr_prog p2
+ | LetRec (f,bl,v,var,p) ->
+ str "let rec " ++ pr_id f ++ spc () ++
+ hov 0 (prlist_with_sep cut pr_binder bl) ++ spc () ++
+ str ":" ++ pr_type_v_v8 v ++ spc () ++
+ hov 2 (str "{ variant" ++ spc () ++ pr_variant var ++ str " }") ++
+ spc () ++ str "=" ++ spc () ++ pr_prog p
+ | PPoint _ -> str "TODO: Ppoint" (* Internal use only *)
+ | Expression c ->
+ (* Numeral or "tt": use a printer which doesn't globalize *)
+ Ppconstr.pr_constr
+ (Constrextern.extern_constr_in_scope false "Z_scope" (Global.env()) c)
+ | Debug (s,p) -> str "@" ++ Pptacticnew.qsnew s ++ pr_prog p
+
+and pr_block_st = function
+ | Label s -> hov 0 (str "label" ++ spc() ++ str s)
+ | Assert pred ->
+ hov 0 (str "assert" ++ spc() ++ hov 0 (pr_postcondition pred))
+ | Statement p -> pr_prog p
+
+and pr_block bl = prlist_with_sep pr_semicolon pr_block_st bl
+
+and pr_arg = function
+ | Past.Term p -> pr_prog p
+ | Past.Type t -> str "'" ++ pr_type_v_v8 t
+ | Refarg _ -> str "TODO: Refarg" (* Internal use only *)
+
+and pr_prog0 b { desc = desc; pre = pre; post = post } =
+ hv 0 (
+ prlist pr_precondition pre ++
+ hov 0
+ (if b & post<>None then str"(" ++ pr_desc desc ++ str")"
+ else pr_desc desc)
+ ++ Ppconstrnew.pr_opt pr_postcondition post)
+
+and pr_prog x = pr_prog0 true x
+
+let _ =
+ Pptactic.declare_extra_genarg_pprule true
+ (rawwit_program, fun _ _ a -> spc () ++ pr_prog0 false a)
+ (globwit_program, fun _ -> raise Not_found)
+ (wit_program, fun _ -> raise Not_found)
+
diff --git a/contrib/correctness/psyntax.mli b/contrib/correctness/psyntax.mli
new file mode 100644
index 00000000..18912548
--- /dev/null
+++ b/contrib/correctness/psyntax.mli
@@ -0,0 +1,25 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: psyntax.mli,v 1.3.2.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Pcoq
+open Ptype
+open Past
+open Topconstr
+
+(* Grammar for the programs and the tactic Correctness *)
+
+module Programs :
+ sig
+ val program : program Gram.Entry.e
+ val type_v : constr_expr ml_type_v Gram.Entry.e
+ val type_c : constr_expr ml_type_c Gram.Entry.e
+ end
diff --git a/contrib/correctness/ptactic.ml b/contrib/correctness/ptactic.ml
new file mode 100644
index 00000000..4b22954e
--- /dev/null
+++ b/contrib/correctness/ptactic.ml
@@ -0,0 +1,258 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ptactic.ml,v 1.30.2.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Pp
+open Options
+open Names
+open Libnames
+open Term
+open Pretyping
+open Pfedit
+open Decl_kinds
+open Vernacentries
+
+open Pmisc
+open Putil
+open Past
+open Penv
+open Prename
+open Peffect
+open Pmonad
+
+(* [coqast_of_prog: program -> constr * constr]
+ * Traduction d'un programme impératif en un but (second constr)
+ * et un terme de preuve partiel pour ce but (premier constr)
+ *)
+
+let coqast_of_prog p =
+ (* 1. db : séparation dB/var/const *)
+ let p = Pdb.db_prog p in
+
+ (* 2. typage avec effets *)
+ deb_mess (str"Ptyping.states: Typing with effects..." ++ fnl ());
+ let env = Penv.empty in
+ let ren = initial_renaming env in
+ let p = Ptyping.states ren env p in
+ let ((_,v),_,_,_) as c = p.info.kappa in
+ Perror.check_for_not_mutable p.loc v;
+ deb_print pp_type_c c;
+
+ (* 3. propagation annotations *)
+ let p = Pwp.propagate ren p in
+
+ (* 4a. traduction type *)
+ let ty = Pmonad.trad_ml_type_c ren env c in
+ deb_print (Printer.prterm_env (Global.env())) ty;
+
+ (* 4b. traduction terme (terme intermédiaire de type cc_term) *)
+ deb_mess
+ (fnl () ++ str"Mlize.trad: Translation program -> cc_term..." ++ fnl ());
+ let cc = Pmlize.trans ren p in
+ let cc = Pred.red cc in
+ deb_print Putil.pp_cc_term cc;
+
+ (* 5. traduction en constr *)
+ deb_mess
+ (fnl () ++ str"Pcic.constr_of_prog: Translation cc_term -> rawconstr..." ++
+ fnl ());
+ let r = Pcic.rawconstr_of_prog cc in
+ deb_print Printer.pr_rawterm r;
+
+ (* 6. résolution implicites *)
+ deb_mess (fnl () ++ str"Resolution implicits (? => Meta(n))..." ++ fnl ());
+ let oc = understand_gen_tcc Evd.empty (Global.env()) [] None r in
+ deb_print (Printer.prterm_env (Global.env())) (snd oc);
+
+ p,oc,ty,v
+
+(* [automatic : tactic]
+ *
+ * Certains buts engendrés par "correctness" (ci-dessous)
+ * sont réellement triviaux. On peut les résoudre aisément, sans pour autant
+ * tomber dans la solution trop lourde qui consiste à faire "; Auto."
+ *
+ * Cette tactique fait les choses suivantes :
+ * o elle élimine les hypothèses de nom loop<i>
+ * o sur G |- (well_founded nat lt) ==> Exact lt_wf.
+ * o sur G |- (well_founded Z (Zwf c)) ==> Exact (Zwf_well_founded c)
+ * o sur G |- e = e' ==> Reflexivity. (arg. de decr. des boucles)
+ * sinon Try Assumption.
+ * o sur G |- P /\ Q ==> Try (Split; Assumption). (sortie de boucle)
+ * o sinon, Try AssumptionBis (= Assumption + décomposition /\ dans hyp.)
+ * (pour entrée dans corps de boucle par ex.)
+ *)
+
+open Pattern
+open Tacmach
+open Tactics
+open Tacticals
+open Equality
+open Nametab
+
+let nat = IndRef (coq_constant ["Init";"Datatypes"] "nat", 0)
+let lt = ConstRef (coq_constant ["Init";"Peano"] "lt")
+let well_founded = ConstRef (coq_constant ["Init";"Wf"] "well_founded")
+let z = IndRef (coq_constant ["ZArith";"BinInt"] "Z", 0)
+let and_ = IndRef (coq_constant ["Init";"Logic"] "and", 0)
+let eq = IndRef (coq_constant ["Init";"Logic"] "eq", 0)
+
+let mkmeta n = Nameops.make_ident "X" (Some n)
+let mkPMeta n = PMeta (Some (mkmeta n))
+
+(* ["(well_founded nat lt)"] *)
+let wf_nat_pattern =
+ PApp (PRef well_founded, [| PRef nat; PRef lt |])
+(* ["((well_founded Z (Zwf ?1))"] *)
+let wf_z_pattern =
+ let zwf = ConstRef (coq_constant ["ZArith";"Zwf"] "Zwf") in
+ PApp (PRef well_founded, [| PRef z; PApp (PRef zwf, [| mkPMeta 1 |]) |])
+(* ["(and ?1 ?2)"] *)
+let and_pattern =
+ PApp (PRef and_, [| mkPMeta 1; mkPMeta 2 |])
+(* ["(eq ?1 ?2 ?3)"] *)
+let eq_pattern =
+ PApp (PRef eq, [| mkPMeta 1; mkPMeta 2; mkPMeta 3 |])
+
+(* loop_ids: remove loop<i> hypotheses from the context, and rewrite
+ * using Variant<i> hypotheses when needed. *)
+
+let (loop_ids : tactic) = fun gl ->
+ let rec arec hyps gl =
+ let env = pf_env gl in
+ let concl = pf_concl gl in
+ match hyps with
+ | [] -> tclIDTAC gl
+ | (id,a) :: al ->
+ let s = string_of_id id in
+ let n = String.length s in
+ if n >= 4 & (let su = String.sub s 0 4 in su="loop" or su="Bool")
+ then
+ tclTHEN (clear [id]) (arec al) gl
+ else if n >= 7 & String.sub s 0 7 = "Variant" then begin
+ match pf_matches gl eq_pattern (body_of_type a) with
+ | [_; _,varphi; _] when isVar varphi ->
+ let phi = destVar varphi in
+ if Termops.occur_var env phi concl then
+ tclTHEN (rewriteLR (mkVar id)) (arec al) gl
+ else
+ arec al gl
+ | _ -> assert false end
+ else
+ arec al gl
+ in
+ arec (pf_hyps_types gl) gl
+
+(* assumption_bis: like assumption, but also solves ... h:A/\B ... |- A
+ * (resp. B) *)
+
+let (assumption_bis : tactic) = fun gl ->
+ let concl = pf_concl gl in
+ let rec arec = function
+ | [] -> Util.error "No such assumption"
+ | (s,a) :: al ->
+ let a = body_of_type a in
+ if pf_conv_x_leq gl a concl then
+ refine (mkVar s) gl
+ else if pf_is_matching gl and_pattern a then
+ match pf_matches gl and_pattern a with
+ | [_,c1; _,c2] ->
+ if pf_conv_x_leq gl c1 concl then
+ exact_check (applistc (constant "proj1") [c1;c2;mkVar s]) gl
+ else if pf_conv_x_leq gl c2 concl then
+ exact_check (applistc (constant "proj2") [c1;c2;mkVar s]) gl
+ else
+ arec al
+ | _ -> assert false
+ else
+ arec al
+ in
+ arec (pf_hyps_types gl)
+
+(* automatic: see above *)
+
+let (automatic : tactic) =
+ tclTHEN
+ loop_ids
+ (fun gl ->
+ let c = pf_concl gl in
+ if pf_is_matching gl wf_nat_pattern c then
+ exact_check (constant "lt_wf") gl
+ else if pf_is_matching gl wf_z_pattern c then
+ let (_,z) = List.hd (pf_matches gl wf_z_pattern c) in
+ exact_check (Term.applist (constant "Zwf_well_founded",[z])) gl
+ else if pf_is_matching gl and_pattern c then
+ (tclORELSE assumption_bis
+ (tclTRY (tclTHEN simplest_split assumption))) gl
+ else if pf_is_matching gl eq_pattern c then
+ (tclORELSE reflexivity (tclTRY assumption_bis)) gl
+ else
+ tclTRY assumption_bis gl)
+
+(* [correctness s p] : string -> program -> tactic option -> unit
+ *
+ * Vernac: Correctness <string> <program> [; <tactic>].
+ *)
+
+let reduce_open_constr (em0,c) =
+ let existential_map_of_constr =
+ let rec collect em c = match kind_of_term c with
+ | Cast (c',t) ->
+ (match kind_of_term c' with
+ | Evar (ev,_) ->
+ if not (Evd.in_dom em ev) then
+ Evd.add em ev (Evd.map em0 ev)
+ else
+ em
+ | _ -> fold_constr collect em c)
+ | Evar _ ->
+ assert false (* all existentials should be casted *)
+ | _ ->
+ fold_constr collect em c
+ in
+ collect Evd.empty
+ in
+ let c = Pred.red_cci c in
+ let em = existential_map_of_constr c in
+ (em,c)
+
+let register id n =
+ let id' = match n with None -> id | Some id' -> id' in
+ Penv.register id id'
+
+ (* On dit à la commande "Save" d'enregistrer les nouveaux programmes *)
+let correctness_hook _ ref =
+ let pf_id = Nametab.id_of_global ref in
+ register pf_id None
+
+let correctness s p opttac =
+ Library.check_required_library ["Coq";"correctness";"Correctness"];
+ Pmisc.reset_names();
+ let p,oc,cty,v = coqast_of_prog p in
+ let env = Global.env () in
+ let sign = Global.named_context () in
+ let sigma = Evd.empty in
+ let cty = Reduction.nf_betaiota cty in
+ let id = id_of_string s in
+ start_proof id (IsGlobal (Proof Lemma)) sign cty correctness_hook;
+ Penv.new_edited id (v,p);
+ if !debug then msg (Pfedit.pr_open_subgoals());
+ deb_mess (str"Pred.red_cci: Reduction..." ++ fnl ());
+ let oc = reduce_open_constr oc in
+ deb_mess (str"AFTER REDUCTION:" ++ fnl ());
+ deb_print (Printer.prterm_env (Global.env())) (snd oc);
+ let tac = (tclTHEN (Extratactics.refine_tac oc) automatic) in
+ let tac = match opttac with
+ | None -> tac
+ | Some t -> tclTHEN tac t
+ in
+ solve_nth 1 tac;
+ if_verbose msg (pr_open_subgoals ())
diff --git a/contrib/correctness/ptactic.mli b/contrib/correctness/ptactic.mli
new file mode 100644
index 00000000..875e0780
--- /dev/null
+++ b/contrib/correctness/ptactic.mli
@@ -0,0 +1,22 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ptactic.mli,v 1.2.16.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+(* The main tactic: takes a name N, a program P, creates a goal
+ * of name N with the functional specification of P, then apply the Refine
+ * tactic with the partial proof term obtained by the translation of
+ * P into a functional program.
+ *
+ * Then an ad-hoc automatic tactic is applied on each subgoal to solve the
+ * trivial proof obligations *)
+
+val correctness : string -> Past.program -> Tacmach.tactic option -> unit
+
diff --git a/contrib/correctness/ptype.mli b/contrib/correctness/ptype.mli
new file mode 100644
index 00000000..f2dc85e3
--- /dev/null
+++ b/contrib/correctness/ptype.mli
@@ -0,0 +1,73 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ptype.mli,v 1.2.16.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Term
+
+(* Types des valeurs (V) et des calculs (C).
+ *
+ * On a C = r:V,E,P,Q
+ *
+ * et V = (x1:V1)...(xn:Vn)C | V ref | V array | <type pur>
+ *
+ * INVARIANT: l'effet E contient toutes les variables apparaissant dans
+ * le programme ET les annotations P et Q
+ * Si E = { x1,...,xn | y1,...,ym }, les variables x sont les
+ * variables en lecture seule et y1 les variables modifiées
+ * les xi sont libres dans P et Q, et les yi,result liées dans Q
+ * i.e. P = p(x)
+ * et Q = [y1]...[yn][res]q(x,y,res)
+ *)
+
+(* pre and post conditions *)
+
+type 'a precondition = { p_assert : bool; p_name : Names.name; p_value : 'a }
+
+type 'a assertion = { a_name : Names.name; a_value : 'a }
+
+type 'a postcondition = 'a assertion
+
+type predicate = constr assertion
+
+(* binders *)
+
+type 'a binder_type =
+ BindType of 'a
+ | BindSet
+ | Untyped
+
+type 'a binder = Names.identifier * 'a binder_type
+
+(* variant *)
+
+type variant = constr * constr * constr (* phi, R, A *)
+
+(* types des valeurs *)
+
+type 'a ml_type_v =
+ Ref of 'a ml_type_v
+ | Array of 'a * 'a ml_type_v (* size x type *)
+ | Arrow of 'a ml_type_v binder list * 'a ml_type_c
+
+ | TypePure of 'a
+
+(* et type des calculs *)
+
+and 'a ml_type_c =
+ (Names.identifier * 'a ml_type_v)
+ * Peffect.t
+ * ('a precondition list) * ('a postcondition option)
+
+(* at beginning they contain Coq AST but they become constr after typing *)
+type type_v = constr ml_type_v
+type type_c = constr ml_type_c
+
+
diff --git a/contrib/correctness/ptyping.ml b/contrib/correctness/ptyping.ml
new file mode 100644
index 00000000..9047a925
--- /dev/null
+++ b/contrib/correctness/ptyping.ml
@@ -0,0 +1,600 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ptyping.ml,v 1.7.6.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Pp
+open Util
+open Names
+open Term
+open Termops
+open Environ
+open Constrintern
+open Himsg
+open Proof_trees
+open Topconstr
+
+open Pmisc
+open Putil
+open Prename
+open Ptype
+open Past
+open Penv
+open Peffect
+open Pcicenv
+
+(* Ce module implante le jugement Gamma |-a e : kappa de la thèse.
+ * Les annotations passent du type CoqAst.t au type Term.constr ici.
+ * Les post-conditions sont abstraites par rapport au résultat. *)
+
+let simplify_type_of env sigma t =
+ Reductionops.nf_betaiota (Typing.type_of env sigma t)
+
+let just_reads e =
+ difference (get_reads e) (get_writes e)
+
+let type_v_sup loc t1 t2 =
+ if t1 = t2 then
+ t1
+ else
+ Perror.if_branches loc
+
+let typed_var ren env (phi,r) =
+ let sign = Pcicenv.before_after_sign_of ren env in
+ let a = simplify_type_of (Global.env_of_context sign) Evd.empty phi in
+ (phi,r,a)
+
+(* Application de fonction *)
+
+let rec convert = function
+ | (TypePure c1, TypePure c2) ->
+ Reductionops.is_conv (Global.env ()) Evd.empty c1 c2
+ | (Ref v1, Ref v2) ->
+ convert (v1,v2)
+ | (Array (s1,v1), Array (s2,v2)) ->
+ (Reductionops.is_conv (Global.env ()) Evd.empty s1 s2) && (convert (v1,v2))
+ | (v1,v2) -> v1 = v2
+
+let effect_app ren env f args =
+ let n = List.length args in
+ let tf =
+ let ((_,v),_,_,_) = f.info.kappa in
+ match v with TypePure c -> v_of_constr c | _ -> v
+ in
+ let bl,c =
+ match tf with
+ Arrow (bl, c) ->
+ if List.length bl <> n then Perror.partial_app f.loc;
+ bl,c
+ | _ -> Perror.app_of_non_function f.loc
+ in
+ let check_type loc v t so =
+ let v' = type_v_rsubst so v in
+ if not (convert (v',t)) then Perror.expected_type loc (pp_type_v v')
+ in
+ let s,so,ok =
+ (* s est la substitution des références, so celle des autres arg.
+ * ok nous dit si les arguments sont sans effet i.e. des expressions *)
+ List.fold_left
+ (fun (s,so,ok) (b,a) ->
+ match b,a with
+ (id,BindType (Ref _ | Array _ as v)), Refarg id' ->
+ let ta = type_in_env env id' in
+ check_type f.loc v ta so;
+ (id,id')::s, so, ok
+ | _, Refarg _ -> Perror.should_be_a_variable f.loc
+ | (id,BindType v), Term t ->
+ let ((_,ta),_,_,_) = t.info.kappa in
+ check_type t.loc v ta so;
+ (match t.desc with
+ Expression c -> s, (id,c)::so, ok
+ | _ -> s,so,false)
+ | (id,BindSet), Type v ->
+ let c = Pmonad.trad_ml_type_v ren env v in
+ s, (id,c)::so, ok
+ | (id,BindSet), Term t -> Perror.expects_a_type id t.loc
+ | (id,BindType _), Type _ -> Perror.expects_a_term id
+ | (_,Untyped), _ -> invalid_arg "effects_app")
+ ([],[],true)
+ (List.combine bl args)
+ in
+ let (id,v),ef,pre,post = type_c_subst s c in
+ (bl,c), (s,so,ok), ((id,type_v_rsubst so v),ef,pre,post)
+
+(* Execution of a Coq AST. Returns value and type.
+ * Also returns its variables *)
+
+let state_coq_ast sign a =
+ let env = Global.env_of_context sign in
+ let j =
+ reraise_with_loc (constr_loc a) (judgment_of_rawconstr Evd.empty env) a in
+ let ids = global_vars env j.uj_val in
+ j.uj_val, j.uj_type, ids
+
+(* [is_pure p] tests wether the program p is an expression or not. *)
+
+let type_of_expression ren env c =
+ let sign = now_sign_of ren env in
+ simplify_type_of (Global.env_of_context sign) Evd.empty c
+
+let rec is_pure_type_v = function
+ TypePure _ -> true
+ | Arrow (bl,c) -> List.for_all is_pure_arg bl & is_pure_type_c c
+ | Ref _ | Array _ -> false
+and is_pure_arg = function
+ (_,BindType v) -> is_pure_type_v v
+ | (_,BindSet) -> true
+ | (_,Untyped) -> false
+and is_pure_type_c = function
+ (_,v),_,[],None -> is_pure_type_v v
+ | _ -> false
+
+let rec is_pure_desc ren env = function
+ Variable id ->
+ not (is_in_env env id) or (is_pure_type_v (type_in_env env id))
+ | Expression c ->
+ (c = isevar) or (is_pure_cci (type_of_expression ren env c))
+ | Acc _ -> true
+ | TabAcc (_,_,p) -> is_pure ren env p
+ | Apply (p,args) ->
+ is_pure ren env p & List.for_all (is_pure_arg ren env) args
+ | SApp _ | Aff _ | TabAff _ | Seq _ | While _ | If _
+ | Lam _ | LetRef _ | Let _ | LetRec _ -> false
+ | Debug (_,p) -> is_pure ren env p
+ | PPoint (_,d) -> is_pure_desc ren env d
+and is_pure ren env p =
+ p.pre = [] & p.post = None & is_pure_desc ren env p.desc
+and is_pure_arg ren env = function
+ Term p -> is_pure ren env p
+ | Type _ -> true
+ | Refarg _ -> false
+
+(* [state_var ren env (phi,r)] returns a tuple (e,(phi',r'))
+ * where e is the effect of the variant phi and phi',r' the corresponding
+ * constr of phi and r.
+ *)
+
+let state_var ren env (phi,r) =
+ let sign = Pcicenv.before_after_sign_of ren env in
+ let phi',_,ids = state_coq_ast sign phi in
+ let ef = List.fold_left
+ (fun e id ->
+ if is_mutable_in_env env id then Peffect.add_read id e else e)
+ Peffect.bottom ids in
+ let r',_,_ = state_coq_ast (Global.named_context ()) r in
+ ef,(phi',r')
+
+(* [state_pre ren env pl] returns a pair (e,c) where e is the effect of the
+ * pre-conditions list pl and cl the corresponding constrs not yet abstracted
+ * over the variables xi (i.e. c NOT [x1]...[xn]c !)
+ *)
+
+let state_pre ren env pl =
+ let state e p =
+ let sign = Pcicenv.before_sign_of ren env in
+ let cc,_,ids = state_coq_ast sign p.p_value in
+ let ef = List.fold_left
+ (fun e id ->
+ if is_mutable_in_env env id then
+ Peffect.add_read id e
+ else if is_at id then
+ let uid,_ = un_at id in
+ if is_mutable_in_env env uid then
+ Peffect.add_read uid e
+ else
+ e
+ else
+ e)
+ e ids
+ in
+ ef,{ p_assert = p.p_assert; p_name = p.p_name; p_value = cc }
+ in
+ List.fold_left
+ (fun (e,cl) p -> let ef,c = state e p in (ef,c::cl))
+ (Peffect.bottom,[]) pl
+
+let state_assert ren env a =
+ let p = pre_of_assert true a in
+ let e,l = state_pre ren env [p] in
+ e,assert_of_pre (List.hd l)
+
+let state_inv ren env = function
+ None -> Peffect.bottom, None
+ | Some i -> let e,p = state_assert ren env i in e,Some p
+
+(* [state_post ren env (id,v,ef) q] returns a pair (e,c)
+ * where e is the effect of the
+ * post-condition q and c the corresponding constr not yet abstracted
+ * over the variables xi, yi and result.
+ * Moreover the RW variables not appearing in ef have been replaced by
+ * RO variables, and (id,v) is the result
+ *)
+
+let state_post ren env (id,v,ef) = function
+ None -> Peffect.bottom, None
+ | Some q ->
+ let v' = Pmonad.trad_ml_type_v ren env v in
+ let sign = Pcicenv.before_after_result_sign_of (Some (id,v')) ren env in
+ let cc,_,ids = state_coq_ast sign q.a_value in
+ let ef,c =
+ List.fold_left
+ (fun (e,c) id ->
+ if is_mutable_in_env env id then
+ if is_write ef id then
+ Peffect.add_write id e, c
+ else
+ Peffect.add_read id e,
+ subst_in_constr [id,at_id id ""] c
+ else if is_at id then
+ let uid,_ = un_at id in
+ if is_mutable_in_env env uid then
+ Peffect.add_read uid e, c
+ else
+ e,c
+ else
+ e,c)
+ (Peffect.bottom,cc) ids
+ in
+ let c = abstract [id,v'] c in
+ ef, Some { a_name = q.a_name; a_value = c }
+
+(* transformation of AST into constr in types V and C *)
+
+let rec cic_type_v env ren = function
+ | Ref v -> Ref (cic_type_v env ren v)
+ | Array (com,v) ->
+ let sign = Pcicenv.now_sign_of ren env in
+ let c = interp_constr Evd.empty (Global.env_of_context sign) com in
+ Array (c, cic_type_v env ren v)
+ | Arrow (bl,c) ->
+ let bl',ren',env' =
+ List.fold_left
+ (fun (bl,ren,env) b ->
+ let b' = cic_binder env ren b in
+ let env' = traverse_binders env [b'] in
+ let ren' = initial_renaming env' in
+ b'::bl,ren',env')
+ ([],ren,env) bl
+ in
+ let c' = cic_type_c env' ren' c in
+ Arrow (List.rev bl',c')
+ | TypePure com ->
+ let sign = Pcicenv.cci_sign_of ren env in
+ let c = interp_constr Evd.empty (Global.env_of_context sign) com in
+ TypePure c
+
+and cic_type_c env ren ((id,v),e,p,q) =
+ let v' = cic_type_v env ren v in
+ let cv = Pmonad.trad_ml_type_v ren env v' in
+ let efp,p' = state_pre ren env p in
+ let efq,q' = state_post ren env (id,v',e) q in
+ let ef = Peffect.union e (Peffect.union efp efq) in
+ ((id,v'),ef,p',q')
+
+and cic_binder env ren = function
+ | (id,BindType v) ->
+ let v' = cic_type_v env ren v in
+ let env' = add (id,v') env in
+ let ren' = initial_renaming env' in
+ (id, BindType v')
+ | (id,BindSet) -> (id,BindSet)
+ | (id,Untyped) -> (id,Untyped)
+
+and cic_binders env ren = function
+ [] -> []
+ | b::bl ->
+ let b' = cic_binder env ren b in
+ let env' = traverse_binders env [b'] in
+ let ren' = initial_renaming env' in
+ b' :: (cic_binders env' ren' bl)
+
+
+(* The case of expressions.
+ *
+ * Expressions are programs without neither effects nor pre/post conditions.
+ * But access to variables are allowed.
+ *
+ * Here we transform an expression into the corresponding constr,
+ * the variables still appearing as VAR (they will be abstracted in
+ * Mlise.trad)
+ * We collect the pre-conditions (e<N for t[e]) as we traverse the term.
+ * We also return the effect, which does contain only *read* variables.
+ *)
+
+let states_expression ren env expr =
+ let rec effect pl = function
+ | Variable id ->
+ (if is_global id then constant (string_of_id id) else mkVar id),
+ pl, Peffect.bottom
+ | Expression c -> c, pl, Peffect.bottom
+ | Acc id -> mkVar id, pl, Peffect.add_read id Peffect.bottom
+ | TabAcc (_,id,p) ->
+ let c,pl,ef = effect pl p.desc in
+ let pre = Pmonad.make_pre_access ren env id c in
+ Pmonad.make_raw_access ren env (id,id) c,
+ (anonymous_pre true pre)::pl, Peffect.add_read id ef
+ | Apply (p,args) ->
+ let a,pl,e = effect pl p.desc in
+ let args,pl,e =
+ List.fold_right
+ (fun arg (l,pl,e) ->
+ match arg with
+ Term p ->
+ let carg,pl,earg = effect pl p.desc in
+ carg::l,pl,Peffect.union e earg
+ | Type v ->
+ let v' = cic_type_v env ren v in
+ (Pmonad.trad_ml_type_v ren env v')::l,pl,e
+ | Refarg _ -> assert false)
+ args ([],pl,e)
+ in
+ Term.applist (a,args),pl,e
+ | _ -> invalid_arg "Ptyping.states_expression"
+ in
+ let e0,pl0 = state_pre ren env expr.pre in
+ let c,pl,e = effect [] expr.desc in
+ let sign = Pcicenv.before_sign_of ren env in
+ (*i WAS
+ let c = (Trad.ise_resolve true empty_evd [] (gLOB sign) c)._VAL in
+ i*)
+ let ty = simplify_type_of (Global.env_of_context sign) Evd.empty c in
+ let v = TypePure ty in
+ let ef = Peffect.union e0 e in
+ Expression c, (v,ef), pl0@pl
+
+
+(* We infer here the type with effects.
+ * The type of types with effects (ml_type_c) is defined in the module ProgAst.
+ *
+ * A program of the shape {P} e {Q} has a type
+ *
+ * V, E, {None|Some P}, {None|Some Q}
+ *
+ * where - V is the type of e
+ * - E = (I,O) is the effect; the input I contains
+ * all the input variables appearing in P,e and Q;
+ * the output O contains variables possibly modified in e
+ * - P is NOT abstracted
+ * - Q = [y'1]...[y'k][result]Q where O = {y'j}
+ * i.e. Q is only abstracted over the output and the result
+ * the other variables now refer to value BEFORE
+ *)
+
+let verbose_fix = ref false
+
+let rec states_desc ren env loc = function
+
+ Expression c ->
+ let ty = type_of_expression ren env c in
+ let v = v_of_constr ty in
+ Expression c, (v,Peffect.bottom)
+
+ | Acc _ ->
+ failwith "Ptyping.states: term is supposed not to be pure"
+
+ | Variable id ->
+ let v = type_in_env env id in
+ let ef = Peffect.bottom in
+ Variable id, (v,ef)
+
+ | Aff (x, e1) ->
+ Perror.check_for_reference loc x (type_in_env env x);
+ let s_e1 = states ren env e1 in
+ let _,e,_,_ = s_e1.info.kappa in
+ let ef = add_write x e in
+ let v = constant_unit () in
+ Aff (x, s_e1), (v, ef)
+
+ | TabAcc (check, x, e) ->
+ let s_e = states ren env e in
+ let _,efe,_,_ = s_e.info.kappa in
+ let ef = Peffect.add_read x efe in
+ let _,ty = dearray_type (type_in_env env x) in
+ TabAcc (check, x, s_e), (ty, ef)
+
+ | TabAff (check, x, e1, e2) ->
+ let s_e1 = states ren env e1 in
+ let s_e2 = states ren env e2 in
+ let _,ef1,_,_ = s_e1.info.kappa in
+ let _,ef2,_,_ = s_e2.info.kappa in
+ let ef = Peffect.add_write x (Peffect.union ef1 ef2) in
+ let v = constant_unit () in
+ TabAff (check, x, s_e1, s_e2), (v,ef)
+
+ | Seq bl ->
+ let bl,v,ef,_ = states_block ren env bl in
+ Seq bl, (v,ef)
+
+ | While(b, invopt, var, bl) ->
+ let efphi,(cvar,r') = state_var ren env var in
+ let ren' = next ren [] in
+ let s_b = states ren' env b in
+ let s_bl,_,ef_bl,_ = states_block ren' env bl in
+ let cb = s_b.info.kappa in
+ let efinv,inv = state_inv ren env invopt in
+ let _,efb,_,_ = s_b.info.kappa in
+ let ef =
+ Peffect.union (Peffect.union ef_bl efb) (Peffect.union efinv efphi)
+ in
+ let v = constant_unit () in
+ let cvar =
+ let al = List.map (fun id -> (id,at_id id "")) (just_reads ef) in
+ subst_in_constr al cvar
+ in
+ While (s_b,inv,(cvar,r'),s_bl), (v,ef)
+
+ | Lam ([],_) ->
+ failwith "Ptyping.states: abs. should have almost one binder"
+
+ | Lam (bl, e) ->
+ let bl' = cic_binders env ren bl in
+ let env' = traverse_binders env bl' in
+ let ren' = initial_renaming env' in
+ let s_e = states ren' env' e in
+ let v = make_arrow bl' s_e.info.kappa in
+ let ef = Peffect.bottom in
+ Lam(bl',s_e), (v,ef)
+
+ (* Connectives AND and OR *)
+ | SApp ([Variable id], [e1;e2]) ->
+ let s_e1 = states ren env e1
+ and s_e2 = states ren env e2 in
+ let (_,ef1,_,_) = s_e1.info.kappa
+ and (_,ef2,_,_) = s_e2.info.kappa in
+ let ef = Peffect.union ef1 ef2 in
+ SApp ([Variable id], [s_e1; s_e2]),
+ (TypePure (constant "bool"), ef)
+
+ (* Connective NOT *)
+ | SApp ([Variable id], [e]) ->
+ let s_e = states ren env e in
+ let (_,ef,_,_) = s_e.info.kappa in
+ SApp ([Variable id], [s_e]),
+ (TypePure (constant "bool"), ef)
+
+ | SApp _ -> invalid_arg "Ptyping.states (SApp)"
+
+ (* ATTENTION:
+ Si un argument réel de type ref. correspond à une ref. globale
+ modifiée par la fonction alors la traduction ne sera pas correcte.
+ Exemple:
+ f=[x:ref Int]( r := !r+1 ; x := !x+1) modifie r et son argument x
+ donc si on l'applique à r justement, elle ne modifiera que r
+ mais le séquencement ne sera pas correct. *)
+
+ | Apply (f, args) ->
+ let s_f = states ren env f in
+ let _,eff,_,_ = s_f.info.kappa in
+ let s_args = List.map (states_arg ren env) args in
+ let ef_args =
+ List.map
+ (function Term t -> let (_,e,_,_) = t.info.kappa in e
+ | _ -> Peffect.bottom)
+ s_args
+ in
+ let _,_,((_,tapp),efapp,_,_) = effect_app ren env s_f s_args in
+ let ef =
+ Peffect.compose (List.fold_left Peffect.compose eff ef_args) efapp
+ in
+ Apply (s_f, s_args), (tapp, ef)
+
+ | LetRef (x, e1, e2) ->
+ let s_e1 = states ren env e1 in
+ let (_,v1),ef1,_,_ = s_e1.info.kappa in
+ let env' = add (x,Ref v1) env in
+ let ren' = next ren [x] in
+ let s_e2 = states ren' env' e2 in
+ let (_,v2),ef2,_,_ = s_e2.info.kappa in
+ Perror.check_for_let_ref loc v2;
+ let ef = Peffect.compose ef1 (Peffect.remove ef2 x) in
+ LetRef (x, s_e1, s_e2), (v2,ef)
+
+ | Let (x, e1, e2) ->
+ let s_e1 = states ren env e1 in
+ let (_,v1),ef1,_,_ = s_e1.info.kappa in
+ Perror.check_for_not_mutable e1.loc v1;
+ let env' = add (x,v1) env in
+ let s_e2 = states ren env' e2 in
+ let (_,v2),ef2,_,_ = s_e2.info.kappa in
+ let ef = Peffect.compose ef1 ef2 in
+ Let (x, s_e1, s_e2), (v2,ef)
+
+ | If (b, e1, e2) ->
+ let s_b = states ren env b in
+ let s_e1 = states ren env e1
+ and s_e2 = states ren env e2 in
+ let (_,tb),efb,_,_ = s_b.info.kappa in
+ let (_,t1),ef1,_,_ = s_e1.info.kappa in
+ let (_,t2),ef2,_,_ = s_e2.info.kappa in
+ let ef = Peffect.compose efb (disj ef1 ef2) in
+ let v = type_v_sup loc t1 t2 in
+ If (s_b, s_e1, s_e2), (v,ef)
+
+ | LetRec (f,bl,v,var,e) ->
+ let bl' = cic_binders env ren bl in
+ let env' = traverse_binders env bl' in
+ let ren' = initial_renaming env' in
+ let v' = cic_type_v env' ren' v in
+ let efvar,var' = state_var ren' env' var in
+ let phi0 = phi_name () in
+ let tvar = typed_var ren env' var' in
+ (* effect for a let/rec construct is computed as a fixpoint *)
+ let rec state_rec c =
+ let tf = make_arrow bl' c in
+ let env'' = add_recursion (f,(phi0,tvar)) (add (f,tf) env') in
+ let s_e = states ren' env'' e in
+ if s_e.info.kappa = c then
+ s_e
+ else begin
+ if !verbose_fix then begin msgnl (pp_type_c s_e.info.kappa) end ;
+ state_rec s_e.info.kappa
+ end
+ in
+ let s_e = state_rec ((result_id,v'),efvar,[],None) in
+ let tf = make_arrow bl' s_e.info.kappa in
+ LetRec (f,bl',v',var',s_e), (tf,Peffect.bottom)
+
+ | PPoint (s,d) ->
+ let ren' = push_date ren s in
+ states_desc ren' env loc d
+
+ | Debug _ -> failwith "Ptyping.states: Debug: TODO"
+
+
+and states_arg ren env = function
+ Term a -> let s_a = states ren env a in Term s_a
+ | Refarg id -> Refarg id
+ | Type v -> let v' = cic_type_v env ren v in Type v'
+
+
+and states ren env expr =
+ (* Here we deal with the pre- and post- conditions:
+ * we add their effects to the effects of the program *)
+ let (d,(v,e),p1) =
+ if is_pure_desc ren env expr.desc then
+ states_expression ren env expr
+ else
+ let (d,ve) = states_desc ren env expr.loc expr.desc in (d,ve,[])
+ in
+ let (ep,p) = state_pre ren env expr.pre in
+ let (eq,q) = state_post ren env (result_id,v,e) expr.post in
+ let e' = Peffect.union e (Peffect.union ep eq) in
+ let p' = p1 @ p in
+ let tinfo = { env = env; kappa = ((result_id,v),e',p',q) } in
+ { desc = d;
+ loc = expr.loc;
+ pre = p'; post = q; (* on les conserve aussi ici pour prog_wp *)
+ info = tinfo }
+
+
+and states_block ren env bl =
+ let rec ef_block ren tyres = function
+ [] ->
+ begin match tyres with
+ Some ty -> [],ty,Peffect.bottom,ren
+ | None -> failwith "a block should contain at least one statement"
+ end
+ | (Assert p)::block ->
+ let ep,c = state_assert ren env p in
+ let bl,t,ef,ren' = ef_block ren tyres block in
+ (Assert c)::bl,t,Peffect.union ep ef,ren'
+ | (Label s)::block ->
+ let ren' = push_date ren s in
+ let bl,t,ef,ren'' = ef_block ren' tyres block in
+ (Label s)::bl,t,ef,ren''
+ | (Statement e)::block ->
+ let s_e = states ren env e in
+ let (_,t),efe,_,_ = s_e.info.kappa in
+ let ren' = next ren (get_writes efe) in
+ let bl,t,ef,ren'' = ef_block ren' (Some t) block in
+ (Statement s_e)::bl,t,Peffect.compose efe ef,ren''
+ in
+ ef_block ren None bl
+
diff --git a/contrib/correctness/ptyping.mli b/contrib/correctness/ptyping.mli
new file mode 100644
index 00000000..0c0d5905
--- /dev/null
+++ b/contrib/correctness/ptyping.mli
@@ -0,0 +1,36 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: ptyping.mli,v 1.3.6.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Names
+open Term
+open Topconstr
+
+open Ptype
+open Past
+open Penv
+
+(* This module realizes type and effect inference *)
+
+val cic_type_v : local_env -> Prename.t -> constr_expr ml_type_v -> type_v
+
+val effect_app : Prename.t -> local_env
+ -> (typing_info,'b) Past.t
+ -> (typing_info,constr) arg list
+ -> (type_v binder list * type_c)
+ * ((identifier*identifier) list * (identifier*constr) list * bool)
+ * type_c
+
+val typed_var : Prename.t -> local_env -> constr * constr -> variant
+
+val type_of_expression : Prename.t -> local_env -> constr -> constr
+
+val states : Prename.t -> local_env -> program -> typed_program
diff --git a/contrib/correctness/putil.ml b/contrib/correctness/putil.ml
new file mode 100644
index 00000000..48f0781a
--- /dev/null
+++ b/contrib/correctness/putil.ml
@@ -0,0 +1,303 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: putil.ml,v 1.10.2.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Util
+open Names
+open Nameops
+open Term
+open Termops
+open Pattern
+open Matching
+open Hipattern
+open Environ
+
+open Pmisc
+open Ptype
+open Past
+open Penv
+open Prename
+
+let is_mutable = function Ref _ | Array _ -> true | _ -> false
+let is_pure = function TypePure _ -> true | _ -> false
+
+let named_app f x = { a_name = x.a_name; a_value = (f x.a_value) }
+
+let pre_app f x =
+ { p_assert = x.p_assert; p_name = x.p_name; p_value = f x.p_value }
+
+let post_app = named_app
+
+let anonymous x = { a_name = Anonymous; a_value = x }
+
+let anonymous_pre b x = { p_assert = b; p_name = Anonymous; p_value = x }
+
+let force_name f x =
+ option_app (fun q -> { a_name = Name (f q.a_name); a_value = q.a_value }) x
+
+let force_post_name x = force_name post_name x
+
+let force_bool_name x =
+ force_name (function Name id -> id | Anonymous -> bool_name()) x
+
+let out_post = function
+ Some { a_value = x } -> x
+ | None -> invalid_arg "out_post"
+
+let pre_of_assert b x =
+ { p_assert = b; p_name = x.a_name; p_value = x.a_value }
+
+let assert_of_pre x =
+ { a_name = x.p_name; a_value = x.p_value }
+
+(* Some generic functions on programs *)
+
+let is_mutable_in_env env id =
+ (is_in_env env id) & (is_mutable (type_in_env env id))
+
+let now_vars env c =
+ Util.map_succeed
+ (function id -> if is_mutable_in_env env id then id else failwith "caught")
+ (global_vars (Global.env()) c)
+
+let make_before_after c =
+ let ids = global_vars (Global.env()) c in
+ let al =
+ Util.map_succeed
+ (function id ->
+ if is_at id then
+ match un_at id with (uid,"") -> (id,uid) | _ -> failwith "caught"
+ else failwith "caught")
+ ids
+ in
+ subst_in_constr al c
+
+(* [apply_pre] and [apply_post] instantiate pre- and post- conditions
+ * according to a given renaming of variables (and a date that means
+ * `before' in the case of the post-condition).
+ *)
+
+let make_assoc_list ren env on_prime ids =
+ List.fold_left
+ (fun al id ->
+ if is_mutable_in_env env id then
+ (id,current_var ren id)::al
+ else if is_at id then
+ let uid,d = un_at id in
+ if is_mutable_in_env env uid then
+ (match d with
+ "" -> (id,on_prime ren uid)
+ | _ -> (id,var_at_date ren d uid))::al
+ else
+ al
+ else
+ al)
+ [] ids
+
+let apply_pre ren env c =
+ let ids = global_vars (Global.env()) c.p_value in
+ let al = make_assoc_list ren env current_var ids in
+ { p_assert = c.p_assert; p_name = c.p_name;
+ p_value = subst_in_constr al c.p_value }
+
+let apply_assert ren env c =
+ let ids = global_vars (Global.env()) c.a_value in
+ let al = make_assoc_list ren env current_var ids in
+ { a_name = c.a_name; a_value = subst_in_constr al c.a_value }
+
+let apply_post ren env before c =
+ let ids = global_vars (Global.env()) c.a_value in
+ let al =
+ make_assoc_list ren env (fun r uid -> var_at_date r before uid) ids in
+ { a_name = c.a_name; a_value = subst_in_constr al c.a_value }
+
+(* [traverse_binder ren env bl] updates renaming [ren] and environment [env]
+ * as we cross the binders [bl]
+ *)
+
+let rec traverse_binders env = function
+ [] -> env
+ | (id,BindType v)::rem ->
+ traverse_binders (add (id,v) env) rem
+ | (id,BindSet)::rem ->
+ traverse_binders (add_set id env) rem
+ | (_,Untyped)::_ ->
+ invalid_arg "traverse_binders"
+
+let initial_renaming env =
+ let ids = Penv.fold_all (fun (id,_) l -> id::l) env [] in
+ update empty_ren "0" ids
+
+
+(* Substitutions *)
+
+let rec type_c_subst s ((id,t),e,p,q) =
+ let s' = s @ List.map (fun (x,x') -> (at_id x "", at_id x' "")) s in
+ (id, type_v_subst s t), Peffect.subst s e,
+ List.map (pre_app (subst_in_constr s)) p,
+ option_app (post_app (subst_in_constr s')) q
+
+and type_v_subst s = function
+ Ref v -> Ref (type_v_subst s v)
+ | Array (n,v) -> Array (n,type_v_subst s v)
+ | Arrow (bl,c) -> Arrow(List.map (binder_subst s) bl, type_c_subst s c)
+ | (TypePure _) as v -> v
+
+and binder_subst s = function
+ (n, BindType v) -> (n, BindType (type_v_subst s v))
+ | b -> b
+
+(* substitution of constr by others *)
+
+let rec type_c_rsubst s ((id,t),e,p,q) =
+ (id, type_v_rsubst s t), e,
+ List.map (pre_app (real_subst_in_constr s)) p,
+ option_app (post_app (real_subst_in_constr s)) q
+
+and type_v_rsubst s = function
+ Ref v -> Ref (type_v_rsubst s v)
+ | Array (n,v) -> Array (real_subst_in_constr s n,type_v_rsubst s v)
+ | Arrow (bl,c) -> Arrow(List.map (binder_rsubst s) bl, type_c_rsubst s c)
+ | TypePure c -> TypePure (real_subst_in_constr s c)
+
+and binder_rsubst s = function
+ | (n, BindType v) -> (n, BindType (type_v_rsubst s v))
+ | b -> b
+
+(* make_arrow bl c = (x1:V1)...(xn:Vn)c *)
+
+let make_arrow bl c = match bl with
+ | [] -> invalid_arg "make_arrow: no binder"
+ | _ -> Arrow (bl,c)
+
+(* misc. functions *)
+
+let deref_type = function
+ | Ref v -> v
+ | _ -> invalid_arg "deref_type"
+
+let dearray_type = function
+ | Array (size,v) -> size,v
+ | _ -> invalid_arg "dearray_type"
+
+let constant_unit () = TypePure (constant "unit")
+
+let id_from_name = function Name id -> id | Anonymous -> (id_of_string "X")
+
+(* v_of_constr : traduit un type CCI en un type ML *)
+
+(* TODO: faire un test plus serieux sur le type des objets Coq *)
+let rec is_pure_cci c = match kind_of_term c with
+ | Cast (c,_) -> is_pure_cci c
+ | Prod(_,_,c') -> is_pure_cci c'
+ | Rel _ | Ind _ | Const _ -> true (* heu... *)
+ | App _ -> not (is_matching_sigma c)
+ | _ -> Util.error "CCI term not acceptable in programs"
+
+let rec v_of_constr c = match kind_of_term c with
+ | Cast (c,_) -> v_of_constr c
+ | Prod _ ->
+ let revbl,t2 = Term.decompose_prod c in
+ let bl =
+ List.map
+ (fun (name,t1) -> (id_from_name name, BindType (v_of_constr t1)))
+ (List.rev revbl)
+ in
+ let vars = List.rev (List.map (fun (id,_) -> mkVar id) bl) in
+ Arrow (bl, c_of_constr (substl vars t2))
+ | Ind _ | Const _ | App _ ->
+ TypePure c
+ | _ ->
+ failwith "v_of_constr: TODO"
+
+and c_of_constr c =
+ if is_matching_sigma c then
+ let (a,q) = match_sigma c in
+ (result_id, v_of_constr a), Peffect.bottom, [], Some (anonymous q)
+ else
+ (result_id, v_of_constr c), Peffect.bottom, [], None
+
+
+(* pretty printers (for debugging purposes) *)
+
+open Pp
+open Util
+
+let prterm x = Printer.prterm_env (Global.env()) x
+
+let pp_pre = function
+ [] -> (mt ())
+ | l ->
+ hov 0 (str"pre " ++
+ prlist_with_sep (fun () -> (spc ()))
+ (fun x -> prterm x.p_value) l)
+
+let pp_post = function
+ None -> (mt ())
+ | Some c -> hov 0 (str"post " ++ prterm c.a_value)
+
+let rec pp_type_v = function
+ Ref v -> hov 0 (pp_type_v v ++ spc () ++ str"ref")
+ | Array (cc,v) -> hov 0 (str"array " ++ prterm cc ++ str" of " ++ pp_type_v v)
+ | Arrow (b,c) ->
+ hov 0 (prlist_with_sep (fun () -> (mt ())) pp_binder b ++
+ pp_type_c c)
+ | TypePure c -> prterm c
+
+and pp_type_c ((id,v),e,p,q) =
+ hov 0 (str"returns " ++ pr_id id ++ str":" ++ pp_type_v v ++ spc () ++
+ Peffect.pp e ++ spc () ++ pp_pre p ++ spc () ++ pp_post q ++
+ spc () ++ str"end")
+
+and pp_binder = function
+ id,BindType v -> (str"(" ++ pr_id id ++ str":" ++ pp_type_v v ++ str")")
+ | id,BindSet -> (str"(" ++ pr_id id ++ str":Set)")
+ | id,Untyped -> (str"(" ++ pr_id id ++ str")")
+
+(* pretty-print of cc-terms (intermediate terms) *)
+
+let rec pp_cc_term = function
+ CC_var id -> pr_id id
+ | CC_letin (_,_,bl,c,c1) ->
+ hov 0 (hov 2 (str"let " ++
+ prlist_with_sep (fun () -> (str","))
+ (fun (id,_) -> pr_id id) bl ++
+ str" =" ++ spc () ++
+ pp_cc_term c ++
+ str " in") ++
+ fnl () ++
+ pp_cc_term c1)
+ | CC_lam (bl,c) ->
+ hov 2 (prlist (fun (id,_) -> (str"[" ++ pr_id id ++ str"]")) bl ++
+ cut () ++
+ pp_cc_term c)
+ | CC_app (f,args) ->
+ hov 2 (str"(" ++
+ pp_cc_term f ++ spc () ++
+ prlist_with_sep (fun () -> (spc ())) pp_cc_term args ++
+ str")")
+ | CC_tuple (_,_,cl) ->
+ hov 2 (str"(" ++
+ prlist_with_sep (fun () -> (str"," ++ cut ()))
+ pp_cc_term cl ++
+ str")")
+ | CC_case (_,b,[e1;e2]) ->
+ hov 0 (str"if " ++ pp_cc_term b ++ str" then" ++ fnl () ++
+ str" " ++ hov 0 (pp_cc_term e1) ++ fnl () ++
+ str"else" ++ fnl () ++
+ str" " ++ hov 0 (pp_cc_term e2))
+ | CC_case _ ->
+ hov 0 (str"<Case: not yet implemented>")
+ | CC_expr c ->
+ hov 0 (prterm c)
+ | CC_hole c ->
+ (str"(?::" ++ prterm c ++ str")")
+
diff --git a/contrib/correctness/putil.mli b/contrib/correctness/putil.mli
new file mode 100644
index 00000000..b44774ae
--- /dev/null
+++ b/contrib/correctness/putil.mli
@@ -0,0 +1,72 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: putil.mli,v 1.3.2.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Pp
+open Names
+open Term
+open Pmisc
+open Ptype
+open Past
+open Penv
+
+val is_mutable : 'a ml_type_v -> bool
+val is_pure : 'a ml_type_v -> bool
+
+val named_app : ('a -> 'b) -> 'a assertion -> 'b assertion
+val pre_app : ('a -> 'b) -> 'a precondition -> 'b precondition
+val post_app : ('a -> 'b) -> 'a postcondition -> 'b postcondition
+
+val anonymous : 'a -> 'a assertion
+val anonymous_pre : bool -> 'a -> 'a precondition
+val out_post : 'a postcondition option -> 'a
+val pre_of_assert : bool -> 'a assertion -> 'a precondition
+val assert_of_pre : 'a precondition -> 'a assertion
+
+val force_post_name : 'a postcondition option -> 'a postcondition option
+val force_bool_name : 'a postcondition option -> 'a postcondition option
+
+val make_before_after : constr -> constr
+
+val traverse_binders : local_env -> (type_v binder) list -> local_env
+val initial_renaming : local_env -> Prename.t
+
+val apply_pre : Prename.t -> local_env -> constr precondition ->
+ constr precondition
+val apply_post : Prename.t -> local_env -> string -> constr postcondition ->
+ constr postcondition
+val apply_assert : Prename.t -> local_env -> constr assertion ->
+ constr assertion
+
+val type_v_subst : (identifier * identifier) list -> type_v -> type_v
+val type_c_subst : (identifier * identifier) list -> type_c -> type_c
+
+val type_v_rsubst : (identifier * constr) list -> type_v -> type_v
+val type_c_rsubst : (identifier * constr) list -> type_c -> type_c
+
+val make_arrow : ('a ml_type_v binder) list -> 'a ml_type_c -> 'a ml_type_v
+
+val is_mutable_in_env : local_env -> identifier -> bool
+val now_vars : local_env -> constr -> identifier list
+
+val deref_type : 'a ml_type_v -> 'a ml_type_v
+val dearray_type : 'a ml_type_v -> 'a * 'a ml_type_v
+val constant_unit : unit -> constr ml_type_v
+val v_of_constr : constr -> constr ml_type_v
+val c_of_constr : constr -> constr ml_type_c
+val is_pure_cci : constr -> bool
+
+(* pretty printers *)
+
+val pp_type_v : type_v -> std_ppcmds
+val pp_type_c : type_c -> std_ppcmds
+val pp_cc_term : cc_term -> std_ppcmds
+
diff --git a/contrib/correctness/pwp.ml b/contrib/correctness/pwp.ml
new file mode 100644
index 00000000..58bef673
--- /dev/null
+++ b/contrib/correctness/pwp.ml
@@ -0,0 +1,347 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pwp.ml,v 1.8.2.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Util
+open Names
+open Libnames
+open Term
+open Termops
+open Environ
+open Nametab
+
+open Pmisc
+open Ptype
+open Past
+open Putil
+open Penv
+open Peffect
+open Ptyping
+open Prename
+
+(* In this module:
+ * - we try to insert more annotations to achieve a greater completeness;
+ * - we recursively propagate annotations inside programs;
+ * - we normalize boolean expressions.
+ *
+ * The propagation schemas are the following:
+ *
+ * 1. (f a1 ... an) -> (f a1 ... an) {Qf} if the ai are functional
+ *
+ * 2. (if e1 then e2 else e3) {Q} -> (if e1 then e2 {Q} else e3 {Q}) {Q}
+ *
+ * 3. (let x = e1 in e2) {Q} -> (let x = e1 in e2 {Q}) {Q}
+ *)
+
+(* force a post-condition *)
+let update_post env top ef c =
+ let i,o = Peffect.get_repr ef in
+ let al =
+ List.fold_left
+ (fun l id ->
+ if is_mutable_in_env env id then
+ if is_write ef id then l else (id,at_id id "")::l
+ else if is_at id then
+ let (uid,d) = un_at id in
+ if is_mutable_in_env env uid & d="" then
+ (id,at_id uid top)::l
+ else
+ l
+ else
+ l)
+ [] (global_vars (Global.env()) c)
+ in
+ subst_in_constr al c
+
+let force_post up env top q e =
+ let (res,ef,p,_) = e.info.kappa in
+ let q' =
+ if up then option_app (named_app (update_post env top ef)) q else q
+ in
+ let i = { env = e.info.env; kappa = (res,ef,p,q') } in
+ { desc = e.desc; pre = e.pre; post = q'; loc = e.loc; info = i }
+
+(* put a post-condition if none is present *)
+let post_if_none_up env top q = function
+ | { post = None } as p -> force_post true env top q p
+ | p -> p
+
+let post_if_none env q = function
+ | { post = None } as p -> force_post false env "" q p
+ | p -> p
+
+(* [annotation_candidate p] determines if p is a candidate for a
+ * post-condition *)
+
+let annotation_candidate = function
+ | { desc = If _ | Let _ | LetRef _ ; post = None } -> true
+ | _ -> false
+
+(* [extract_pre p] erase the pre-condition of p and returns it *)
+let extract_pre pr =
+ let (v,e,p,q) = pr.info.kappa in
+ { desc = pr.desc; pre = []; post = pr.post; loc = pr.loc;
+ info = { env = pr.info.env; kappa = (v,e,[],q) } },
+ p
+
+(* adds some pre-conditions *)
+let add_pre p1 pr =
+ let (v,e,p,q) = pr.info.kappa in
+ let p' = p1 @ p in
+ { desc = pr.desc; pre = p'; post = pr.post; loc = pr.loc;
+ info = { env = pr.info.env; kappa = (v,e,p',q) } }
+
+(* change the statement *)
+let change_desc p d =
+ { desc = d; pre = p.pre; post = p.post; loc = p.loc; info = p.info }
+
+let create_bool_post c =
+ Some { a_value = c; a_name = Name (bool_name()) }
+
+(* [normalize_boolean b] checks if the boolean expression b (of type bool) is
+ * annotated, and if it is not the case tries to add the annotation
+ * (if result then c=true else c=false) if b is an expression c.
+ *)
+
+let is_bool = function
+ | TypePure c ->
+ (match kind_of_term (strip_outer_cast c) with
+ | Ind op ->
+ string_of_id (id_of_global (IndRef op)) = "bool"
+ | _ -> false)
+ | _ -> false
+
+let normalize_boolean ren env b =
+ let ((res,v),ef,p,q) = b.info.kappa in
+ Perror.check_no_effect b.loc ef;
+ if is_bool v then
+ match q with
+ | Some _ ->
+ (* il y a une annotation : on se contente de lui forcer un nom *)
+ let q = force_bool_name q in
+ { desc = b.desc; pre = b.pre; post = q; loc = b.loc;
+ info = { env = b.info.env; kappa = ((res,v),ef,p,q) } }
+ | None -> begin
+ (* il n'y a pas d'annotation : on cherche à en mettre une *)
+ match b.desc with
+ Expression c ->
+ let c' = Term.applist (constant "annot_bool",[c]) in
+ let ty = type_of_expression ren env c' in
+ let (_,q') = Hipattern.match_sigma ty in
+ let q' = Some { a_value = q'; a_name = Name (bool_name()) } in
+ { desc = Expression c';
+ pre = b.pre; post = q'; loc = b.loc;
+ info = { env = b.info.env; kappa = ((res, v),ef,p,q') } }
+ | _ -> b
+ end
+ else
+ Perror.should_be_boolean b.loc
+
+(* [decomp_boolean c] returns the specs R and S of a boolean expression *)
+
+let decomp_boolean = function
+ | Some { a_value = q } ->
+ Reductionops.whd_betaiota (Term.applist (q, [constant "true"])),
+ Reductionops.whd_betaiota (Term.applist (q, [constant "false"]))
+ | _ -> invalid_arg "Ptyping.decomp_boolean"
+
+(* top point of a program *)
+
+let top_point = function
+ | PPoint (s,_) as p -> s,p
+ | p -> let s = label_name() in s,PPoint(s,p)
+
+let top_point_block = function
+ | (Label s :: _) as b -> s,b
+ | b -> let s = label_name() in s,(Label s)::b
+
+let abstract_unit q = abstract [result_id,constant "unit"] q
+
+(* [add_decreasing env ren ren' phi r bl] adds the decreasing condition
+ * phi(ren') r phi(ren)
+ * to the last assertion of the block [bl], which is created if needed
+ *)
+
+let add_decreasing env inv (var,r) lab bl =
+ let ids = now_vars env var in
+ let al = List.map (fun id -> (id,at_id id lab)) ids in
+ let var_lab = subst_in_constr al var in
+ let dec = Term.applist (r, [var;var_lab]) in
+ let post = match inv with
+ None -> anonymous dec
+ | Some i -> { a_value = conj dec i.a_value; a_name = i.a_name }
+ in
+ bl @ [ Assert post ]
+
+(* [post_last_statement env top q bl] annotates the last statement of the
+ * sequence bl with q if necessary *)
+
+let post_last_statement env top q bl =
+ match List.rev bl with
+ | Statement e :: rem when annotation_candidate e ->
+ List.rev ((Statement (post_if_none_up env top q e)) :: rem)
+ | _ -> bl
+
+(* [propagate_desc] moves the annotations inside the program
+ * info is the typing information coming from the outside annotations *)
+let rec propagate_desc ren info d =
+ let env = info.env in
+ let (_,_,p,q) = info.kappa in
+ match d with
+ | If (e1,e2,e3) ->
+ (* propagation number 2 *)
+ let e1' = normalize_boolean ren env (propagate ren e1) in
+ if e2.post = None or e3.post = None then
+ let top = label_name() in
+ let ren' = push_date ren top in
+ PPoint (top, If (e1',
+ propagate ren' (post_if_none_up env top q e2),
+ propagate ren' (post_if_none_up env top q e3)))
+ else
+ If (e1', propagate ren e2, propagate ren e3)
+ | Aff (x,e) ->
+ Aff (x, propagate ren e)
+ | TabAcc (ch,x,e) ->
+ TabAcc (ch, x, propagate ren e)
+ | TabAff (ch,x,({desc=Expression c} as e1),e2) ->
+ let p = Pmonad.make_pre_access ren env x c in
+ let e1' = add_pre [(anonymous_pre true p)] e1 in
+ TabAff (false, x, propagate ren e1', propagate ren e2)
+ | TabAff (ch,x,e1,e2) ->
+ TabAff (ch, x, propagate ren e1, propagate ren e2)
+ | Apply (f,l) ->
+ Apply (propagate ren f, List.map (propagate_arg ren) l)
+ | SApp (f,l) ->
+ let l =
+ List.map (fun e -> normalize_boolean ren env (propagate ren e)) l
+ in
+ SApp (f, l)
+ | Lam (bl,e) ->
+ Lam (bl, propagate ren e)
+ | Seq bl ->
+ let top,bl = top_point_block bl in
+ let bl = post_last_statement env top q bl in
+ Seq (propagate_block ren env bl)
+ | While (b,inv,var,bl) ->
+ let b = normalize_boolean ren env (propagate ren b) in
+ let lab,bl = top_point_block bl in
+ let bl = add_decreasing env inv var lab bl in
+ While (b,inv,var,propagate_block ren env bl)
+ | LetRef (x,e1,e2) ->
+ let top = label_name() in
+ let ren' = push_date ren top in
+ PPoint (top, LetRef (x, propagate ren' e1,
+ propagate ren' (post_if_none_up env top q e2)))
+ | Let (x,e1,e2) ->
+ let top = label_name() in
+ let ren' = push_date ren top in
+ PPoint (top, Let (x, propagate ren' e1,
+ propagate ren' (post_if_none_up env top q e2)))
+ | LetRec (f,bl,v,var,e) ->
+ LetRec (f, bl, v, var, propagate ren e)
+ | PPoint (s,d) ->
+ PPoint (s, propagate_desc ren info d)
+ | Debug _ | Variable _
+ | Acc _ | Expression _ as d -> d
+
+
+(* [propagate] adds new annotations if possible *)
+and propagate ren p =
+ let env = p.info.env in
+ let p = match p.desc with
+ | Apply (f,l) ->
+ let _,(_,so,ok),(_,_,_,qapp) = effect_app ren env f l in
+ if ok then
+ let q = option_app (named_app (real_subst_in_constr so)) qapp in
+ post_if_none env q p
+ else
+ p
+ | _ -> p
+ in
+ let d = propagate_desc ren p.info p.desc in
+ let p = change_desc p d in
+ match d with
+ | Aff (x,e) ->
+ let e1,p1 = extract_pre e in
+ change_desc (add_pre p1 p) (Aff (x,e1))
+
+ | TabAff (check, x, ({ desc = Expression _ } as e1), e2) ->
+ let e1',p1 = extract_pre e1 in
+ let e2',p2 = extract_pre e2 in
+ change_desc (add_pre (p1@p2) p) (TabAff (check,x,e1',e2'))
+
+ | While (b,inv,_,_) ->
+ let _,s = decomp_boolean b.post in
+ let s = make_before_after s in
+ let q = match inv with
+ None -> Some (anonymous s)
+ | Some i -> Some { a_value = conj i.a_value s; a_name = i.a_name }
+ in
+ let q = option_app (named_app abstract_unit) q in
+ post_if_none env q p
+
+ | SApp ([Variable id], [e1;e2])
+ when id = connective_and or id = connective_or ->
+ let (_,_,_,q1) = e1.info.kappa
+ and (_,_,_,q2) = e2.info.kappa in
+ let (r1,s1) = decomp_boolean q1
+ and (r2,s2) = decomp_boolean q2 in
+ let q =
+ let conn = if id = connective_and then "spec_and" else "spec_or" in
+ let c = Term.applist (constant conn, [r1; s1; r2; s2]) in
+ let c = Reduction.whd_betadeltaiota (Global.env()) c in
+ create_bool_post c
+ in
+ let d =
+ SApp ([Variable id;
+ Expression (out_post q1);
+ Expression (out_post q2)],
+ [e1; e2] )
+ in
+ post_if_none env q (change_desc p d)
+
+ | SApp ([Variable id], [e1]) when id = connective_not ->
+ let (_,_,_,q1) = e1.info.kappa in
+ let (r1,s1) = decomp_boolean q1 in
+ let q =
+ let c = Term.applist (constant "spec_not", [r1; s1]) in
+ let c = Reduction.whd_betadeltaiota (Global.env ()) c in
+ create_bool_post c
+ in
+ let d = SApp ([Variable id; Expression (out_post q1)], [ e1 ]) in
+ post_if_none env q (change_desc p d)
+
+ | _ -> p
+
+and propagate_arg ren = function
+ | Type _ | Refarg _ as a -> a
+ | Term e -> Term (propagate ren e)
+
+
+and propagate_block ren env = function
+ | [] ->
+ []
+ | (Statement p) :: (Assert q) :: rem when annotation_candidate p ->
+ (* TODO: plutot p.post = None ? *)
+ let q' =
+ let ((id,v),_,_,_) = p.info.kappa in
+ let tv = Pmonad.trad_ml_type_v ren env v in
+ named_app (abstract [id,tv]) q
+ in
+ let p' = post_if_none env (Some q') p in
+ (Statement (propagate ren p')) :: (Assert q)
+ :: (propagate_block ren env rem)
+ | (Statement p) :: rem ->
+ (Statement (propagate ren p)) :: (propagate_block ren env rem)
+ | (Label s as x) :: rem ->
+ x :: propagate_block (push_date ren s) env rem
+ | x :: rem ->
+ x :: propagate_block ren env rem
diff --git a/contrib/correctness/pwp.mli b/contrib/correctness/pwp.mli
new file mode 100644
index 00000000..015031a0
--- /dev/null
+++ b/contrib/correctness/pwp.mli
@@ -0,0 +1,18 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
+
+(* $Id: pwp.mli,v 1.2.16.1 2004/07/16 19:30:06 herbelin Exp $ *)
+
+open Term
+open Penv
+
+val update_post : local_env -> string -> Peffect.t -> constr -> constr
+
+val propagate : Prename.t -> typed_program -> typed_program
diff --git a/contrib/extraction/BUGS b/contrib/extraction/BUGS
new file mode 100644
index 00000000..7f3f59c1
--- /dev/null
+++ b/contrib/extraction/BUGS
@@ -0,0 +1,2 @@
+It's not a bug, it's a lack of feature !!
+Cf TODO.
diff --git a/contrib/extraction/CHANGES b/contrib/extraction/CHANGES
new file mode 100644
index 00000000..83ea4910
--- /dev/null
+++ b/contrib/extraction/CHANGES
@@ -0,0 +1,409 @@
+7.4 -> 8.0
+
+No revolution this time. Mostly "behind-the-scene" clean-up and bug-fixes,
+but also a few steps toward a more user-friendly extraction:
+
+* syntax of extraction:
+- The old (Recursive) Extraction Module M.
+ is now (Recursive) Extraction Library M.
+ The old name was misleading since this command only works with M being a
+ library M.v, and not a module produced by interactive command Module M.
+- The other commands
+ Extraction foo.
+ Recursive Extraction foo bar.
+ Extraction "myfile.ml" foo bar.
+ now accept that foo can be a module name instead of just a constant name.
+
+* Support of type scheme axioms (i.e. axiom whose type is an arity
+ (x1:X1)...(xn:Xn)s with s a sort). For example:
+
+ Axiom myprod : Set -> Set -> Set.
+ Extract Constant myprod "'a" "'b" => "'a * 'b".
+ Recursive Extraction myprod.
+ -------> type ('a,'b) myprod = 'a * 'b
+
+* More flexible support of axioms. When an axiom isn't realized via Extract
+ Constant before extraction, a warning is produced (instead of an error),
+ and the extracted code must be completed later by hand. To find what
+ needs to be completed, search for the following string: AXIOM TO BE REALIZED
+
+* Cosmetics: When extraction produces a file, it tells it.
+
+* (Experimental) It is allowed to extract under a opened interactive module
+ (but still outside sections). Feature to be used with caution.
+
+* A problem has been identified concerning .v files used as normal interactive
+ modules, like in
+
+ <file A.v>
+ Definition foo :=O.
+ <End file A.v>
+
+ <at toplevel>
+ Require A.
+ Module M:=A
+ Extraction M.
+
+ I might try to support that in the future. In the meanwhile, the
+ current behaviour of extraction is to forbid this.
+
+* bug fixes:
+- many concerning Records.
+- a Stack Overflow with mutual inductive (PR#320)
+- some optimizations have been removed since they were not type-safe:
+ For example if e has type: type 'x a = A
+ Then: match e with A -> A -----X----> e
+ To be investigated further.
+
+
+7.3 -> 7.4
+
+* The two main new features:
+ - Automatic generation of Obj.magic when the extracted code
+ in Ocaml is not directly typable.
+ - An experimental extraction of Coq's new modules to Ocaml modules.
+
+* Concerning those Obj.magic:
+ - The extraction now computes the expected type of any terms. Then
+ it compares it with the actual type of the produced code. And when
+ a mismatch is found, a Obj.magic is inserted.
+
+ - As a rule, any extracted development that was compiling out of the box
+ should not contain any Obj.magic. At the other hand, generation of
+ Obj.magic is not optimized yet: there might be several of them at a place
+ were one would have been enough.
+
+ - Examples of code needing those Obj.magic:
+ * contrib/extraction/test_extraction.v in the Coq source
+ * in the users' contributions:
+ Lannion
+ Lyon/CIRCUITS
+ Rocq/HIGMAN
+
+ - As a side-effect of this Obj.magic feature, we now print the types
+ of the extracted terms, both in .ml files as commented documentation
+ and in interfaces .mli files
+
+ - This feature hasn't been ported yet to Haskell. We are aware of
+ some unsafe casting functions like "unsafeCoerce" on some Haskell implems.
+ So it will eventually be done.
+
+* Concerning the extraction of Coq's new modules:
+ - Taking in account the new Coq's modules system has implied a *huge*
+ rewrite of most of the extraction code.
+
+ - The extraction core (translation from Coq to an abstract mini-ML)
+ is now complete and fairly stable, and supports modules, modules type
+ and functors and all that stuff.
+
+ - The ocaml pretty-print part, especially the renaming issue, is
+ clearly weaker, and certainly still contains bugs.
+
+ - Nothing done for translating these Coq Modules to Haskell.
+
+ - A temporary drawback of this module extraction implementation is that
+ efficiency (especially extraction speed) has been somehow neglected.
+ To improve ...
+
+ - As an interesting side-effect, definitions are now printed according to
+ the user's original order. No more of this "dependency-correct but weird"
+ order. In particular realized axioms via Extract Constant are now at their
+ right place, and not at the beginning.
+
+* Other news:
+
+ - Records are now printed using the Ocaml record syntax
+
+ - Syntax output toward Scheme. Quite funny, but quite experimental and
+ not documented. I recommend using the bigloo compiler since it contains
+ natively some pattern matching.
+
+ - the dummy constant "__" have changed. see README
+
+ - a few bug-fixes (#191 and others)
+
+7.2 -> 7.3
+
+* Improved documentation in the Reference Manual.
+
+* Theoretical bad news:
+- a naughty example (see the end of test_extraction.v)
+forced me to stop eliminating lambdas and arguments corresponding to
+so-called "arity" in the general case.
+
+- The dummy constant used in extraction ( let prop = () in ocaml )
+may in some cases be applied to arguments. This problem is dealt by
+generating sufficient abstraction before the ().
+
+
+* Theoretical good news:
+- there is now a mechanism that remove useless prop/arity lambdas at the
+top of function declarations. If your function had signature
+nat -> prop -> nat in the previous extraction, it will now be nat -> nat.
+So the extractions of common terms should look very much like the old
+V6.2 one, except in some particular cases (functions as parameters, partial
+applications, etc). In particular the bad news above have nearly no
+impact...
+
+
+* By the way there is no more "let prop = ()" in ocaml. Those () are
+directly inlined. And in Haskell the dummy constant is now __ (two
+underscore) and is defined by
+__ = Prelude.error "Logical or arity value used"
+This dummy constant should never be evaluated when computing an
+informative value, thanks to the lazy strategy. Hence the error message.
+
+
+* Syntax changes, see Documentation for details:
+
+Extraction Language Ocaml.
+Extraction Language Haskell.
+Extraction Language Toplevel.
+
+That fixes the target language of extraction. Default is Ocaml, even in the
+coq toplevel: you can now do copy-paste from the coq toplevel without
+renaming problems. Toplevel language is the ocaml pseudo-language used
+previously used inside the coq toplevel: coq names are printed with the coq
+way, i.e. with no renaming.
+
+So there is no more particular commands for Haskell, like
+Haskell Extraction "file" id. Just set your favourite language and go...
+
+
+* Haskell extraction has been tested at last (and corrected...).
+See specificities in Documentation.
+
+
+* Extraction of CoInductive in Ocaml language is now correct: it uses the
+Lazy.force and lazy features of Ocaml.
+
+
+* Modular extraction in Ocaml is now far more readable:
+instead of qualifying everywhere (A.foo), there are now some "open" at the
+beginning of files. Possible clashes are dealt with.
+
+
+* By default, any recursive function associated with an inductive type
+(foo_rec and foo_rect when foo is inductive type) will now be inlined
+in extracted code.
+
+
+* A few constants are explicitely declared to be inlined in extracted code.
+For the moment there are:
+ Wf.Acc_rec
+ Wf.Acc_rect
+ Wf.well_founded_induction
+ Wf.well_founded_induction_type
+Those constants does not match the auto-inlining criterion based on strictness.
+Of course, you can still overide this behaviour via some Extraction NoInline.
+
+* There is now a web page showing the extraction of all standard theories:
+http://www.lri.fr/~letouzey/extraction
+
+
+7.1 -> 7.2 :
+
+* Syntax changes, see Documentation for more details:
+
+Set/Unset Extraction Optimize.
+
+Default is Set. This control all optimizations made on the ML terms
+(mostly reduction of dummy beta/iota redexes, but also simplications on
+Cases, etc). Put this option to Unset if you what a ML term as close as
+possible to the Coq term.
+
+Set/Unset Extraction AutoInline.
+
+Default in Set, so by default, the extraction mechanism feels free to
+inline the bodies of some defined constants, according to some heuristics
+like size of bodies, useness of some arguments, etc. Those heuristics are
+not always perfect, you may want to disable this feature, do it by Unset.
+
+Extraction Inline toto foo.
+Extraction NoInline titi faa bor.
+
+In addition to the automatic inline feature, you can now tell precisely to
+inline some more constants by the Extraction Inline command. Conversely,
+you can forbid the inlining of some specific constants by automatic inlining.
+Those two commands enable a precise control of what is inlined and what is not.
+
+Print Extraction Inline.
+
+Sum up the current state of the table recording the custom inlings
+(Extraction (No)Inline).
+
+Reset Extraction Inline.
+
+Put the table recording the custom inlings back to empty.
+
+As a consequence, there is no more need for options inside the commands of
+extraction:
+
+Extraction foo.
+Recursive Extraction foo bar.
+Extraction "file" foo bar.
+Extraction Module Mymodule.
+Recursive Extraction Module Mymodule.
+
+New: The last syntax extracts the module Mymodule and all the modules
+it depends on.
+
+You can also try the Haskell versions (not tested yet):
+
+Haskell Extraction foo.
+Haskell Recursive Extraction foo bar.
+Haskell Extraction "file" foo bar.
+Haskell Extraction Module Mymodule.
+Haskell Recursive Extraction Module Mymodule.
+
+And there's still the realization syntax:
+
+Extract Constant coq_bla => "caml_bla".
+Extract Inlined Constant coq_bla => "caml_bla".
+Extract Inductive myinductive => mycamlind [my_caml_constr1 ... ].
+
+Note that now, the Extract Inlined Constant command is sugar for an Extract
+Constant followed by a Extraction Inline. So be careful with
+Reset Extraction Inline.
+
+
+
+* Lot of works around optimization of produced code. Should make code more
+readable.
+
+- fixpoint definitions : there should be no more stupid printings like
+
+let foo x =
+ let rec f x =
+ .... (f y) ....
+ in f x
+
+but rather
+
+let rec foo x =
+ .... (foo y) ....
+
+- generalized iota (in particular iota and permutation cases/cases):
+
+A generalized iota redex is a "Cases e of ...." where e is ok.
+And the recursive predicate "ok" is given by:
+e is ok if e is a Constructor or a Cases where all branches are ok.
+In the case of generalized iota redex, it might be good idea to reduce it,
+so we do it.
+Example:
+
+match (match t with
+ O -> Left
+ | S n -> match n with
+ O -> Right
+ | S m -> Left) with
+ Left -> blabla
+| Right -> bloblo
+
+After simplification, that gives:
+
+match t with
+ O -> blabla
+| S n -> match n with
+ O -> bloblo
+ | S n -> blabla
+
+As shown on the example, code duplication can occur. In practice
+it seems not to happen frequently.
+
+- "constant" case:
+In V7.1 we used to simplify cases where all branches are the same.
+In V7.2 we can simplify in addition terms like
+ cases e of
+ C1 x y -> f (C x y)
+ | C2 z -> f (C2 z)
+If x y z don't occur in f, we can produce (f e).
+
+- permutation cases/fun:
+extracted code has frequenty functions in branches of cases:
+
+let foo x = match x with
+ O -> fun _ -> ....
+ | S y -> fun _ -> ....
+
+the optimization consist in lifting the common "fun _ ->", and that gives
+
+let foo x _ = match x with
+ O -> .....
+ | S y -> ....
+
+
+* Some bug corrections (many thanks in particular to Michel Levy).
+
+* Testing in coq contributions:
+If you are interested in extraction, you can look at the extraction tests
+I'have put in the following coq contributions
+
+Bordeaux/Additions computation of fibonacci(2000)
+Bordeaux/EXCEPTIONS multiplication using exception.
+Bordeaux/SearchTrees list -> binary tree. maximum.
+Dyade/BDDS boolean tautology checker.
+Lyon/CIRCUITS multiplication via a modelization of a circuit.
+Lyon/FIRING-SQUAD print the states of the firing squad.
+Marseille/CIRCUITS compares integers via a modelization of a circuit.
+Nancy/FOUnify unification of two first-orderde deux termes.
+Rocq/ARITH/Chinese computation of the chinese remaindering.
+Rocq/COC small coc typechecker. (test by B. Barras, not by me)
+Rocq/HIGMAN run the proof on one example.
+Rocq/GRAPHS linear constraints checker in Z.
+Sophia-Antipolis/Stalmarck boolean tautology checker.
+Suresnes/BDD boolean tautology checker.
+
+Just do "make" in those contributions, the extraction test is integrated.
+More tests will follow on more contributions.
+
+
+
+7.0 -> 7.1 : mostly bug corrections. No theoretical problems dealed with.
+
+* The semantics of Extract Constant changed: If you provide a extraction
+for p by Extract Constant p => "0", your generated ML file will begin by
+a let p = 0. The old semantics, which was to replace p everywhere by the
+provided terms, is still available via the Extract Inlined Constant p =>
+"0" syntax.
+
+
+* There are more optimizations applied to the generated code:
+- identity cases: match e with P x y -> P x y | Q z -> Q z | ...
+is simplified into e. Especially interesting with the sumbool terms:
+there will be no more match ... with Left -> Left | Right -> Right
+
+- constant cases: match e with P x y -> c | Q z -> c | ...
+is simplified into c as soon as x, y, z do not occur in c.
+So no more match ... with Left -> Left | Right -> Left.
+
+
+* the extraction at Toplevel (Extraction foo and Recursive Extraction foo),
+which was only a development tool at the beginning, is now closer to
+the real extraction to a file. In particular optimizations are done,
+and constants like recursors ( ..._rec ) are expanded.
+
+
+* the singleton optimization is now protected against circular type.
+( Remind : this optimization is the one that simplify
+type 'a sig = Exists of 'a into type 'a sig = 'a and
+match e with (Exists c) -> d into let c = e in d )
+
+
+* Fixed one bug concerning casted code
+
+
+* The inductives generated should now have always correct type-var list
+('a,'b,'c...)
+
+
+* Code cleanup until three days before release. Messing-up code
+in the last three days before release.
+
+
+
+
+
+
+
+6.x -> 7.0 : Everything changed. See README
diff --git a/contrib/extraction/README b/contrib/extraction/README
new file mode 100644
index 00000000..7350365e
--- /dev/null
+++ b/contrib/extraction/README
@@ -0,0 +1,139 @@
+
+Status of Extraction in Coq version 7.x
+======================================
+
+(* 22 jan 2003 : Updated for version 7.4 *)
+
+
+J.C. Filliâtre
+P. Letouzey
+
+
+
+Extraction code has been completely rewritten since version V6.3.
+This work is still not finished, but most parts of it are already usable.
+In consequence it is included in the Coq V7.0 final release.
+But don't be mistaken:
+
+ THIS WORK IS STILL EXPERIMENTAL !
+
+1) Principles
+
+The main goal of the new extraction is to handle any Coq term, even
+those upon sort Type, and to produce code that always compiles.
+Thus it will never answer something like "Not an ML type", but rather
+a dummy term like the ML unit.
+
+Translation between Coq and ML is based upon the following principles:
+
+- Terms of sort Prop don't have any computational meaning, so they are
+merged into one ML term "__". This part is done according to P. Letouzey's
+works (*) and (**).
+
+This dummy constant "__" used to be implemented by the unit (), but
+we recently found that this constant might be applied in some cases.
+So "__" is now in Ocaml a fixpoint that forgets its arguments:
+
+ let __ = let rec f _ = Obj.repr f in Obj.repr f
+
+
+- Terms that are type schemes (i.e. something of type ( : )( : )...s with
+s a sort ) don't have any ML counterpart at the term level, since they
+are types transformers. In fact they do not have any computational
+meaning either. So we also merge them into that dummy term "__".
+
+- A Coq term gives a ML term or a ML type depending of its type:
+type schemes will (try to) give ML types, and all other terms give ML terms.
+
+And the rest of the translation is (almost) straightforward: an inductive
+gives an inductive, etc...
+
+This gives ML code that have no special reason to typecheck, due
+to the incompatibilities between Coq and ML typing systems. In fact
+most of the time everything goes right. For example, it is sufficient
+to extract and compile everything in the "theories" directory
+(cf test subdirectory).
+
+We now verify during extraction that the produced code is typecheckable,
+and if it is not we insert unsafe type casting at critical points in the
+code. For the moment, it is an Ocaml-only feature, using the "Obj.magic"
+function, but the same kind of trick will be soon made in Haskell.
+
+
+2) Differences with previous extraction (V6.3 and before)
+
+2.a) The pros
+
+The ability to extract every Coq term, as explain in the previous
+paragraph.
+
+The ability to extract from a file an ML module (cf Extraction Module in the
+documentation)
+
+You can have a taste of extraction directly at the toplevel by
+using the "Extraction <ident>" or the "Recursive Extraction <ident>".
+This toplevel extraction was already there in V6.3, but was printing
+Fw terms. It now prints in the language of your choice:
+Ocaml, Haskell, Scheme, or an Ocaml-like with Coq namings.
+
+The optimization done on extracted code has been ported between
+V6.3 and V7 and enhanced, and in particular the mechanism of automatic
+expansion.
+
+2.b) The cons
+
+The presence of some parasite "__" as dummy arguments
+in functions. This denotes the rests of a proof part. The previous
+extraction was able to remove them totally. The current implementation
+removes a good deal of them (more that in 7.0), but not all.
+
+This problem is due to extraction upon Type.
+For example, let's take this pathological term:
+ (if b then Set else Prop) : Type
+The only way to know if this is an Set (to keep) or a Prop (to remove)
+is to compute the boolean b, and we do not want to do that during
+extraction.
+
+There is no more "ML import" feature. You can compensate by using
+Axioms, and then "Extract Constant ..."
+
+3) Examples
+
+The file "test-extraction.v" is made of some examples used while debugging.
+
+In the subdirectory "test", you can test extraction on the Coq theories.
+Go there.
+"make tree" to make a local copy of the "theories" tree
+"make" to extract & compile most of the theories file in Ocaml
+"make -f Makefile.haskell" to extract & compile in Haskell
+
+See also Reference Manual for explanation of extraction syntaxes
+and more examples.
+
+
+(*):
+Exécution de termes de preuves: une nouvelle méthode d'extraction
+pour le Calcul des Constructions Inductives, Pierre Letouzey,
+DEA thesis, 2000,
+http://www.lri.fr/~letouzey/download/rapport_dea.ps.gz
+
+(**)
+A New Extraction for Coq, Pierre Letouzey,
+Types 2002 Post-Workshop Proceedings, to appear,
+draft at http://www.lri.fr/~letouzey/download/extraction2002.ps.gz
+
+
+Any feedback is welcome:
+Pierre.Letouzey@lri.fr
+Jean.Christophe.Filliatre@lri.fr
+
+
+
+
+
+
+
+
+
+
+
diff --git a/contrib/extraction/TODO b/contrib/extraction/TODO
new file mode 100644
index 00000000..174be06e
--- /dev/null
+++ b/contrib/extraction/TODO
@@ -0,0 +1,31 @@
+
+ 16. Haskell :
+ - equivalent of Obj.magic (unsafeCoerce ?)
+ - look again at the syntax (make it independant of layout ...)
+ - producing .hi files
+ - modules/modules types/functors in Haskell ?
+
+ 17. Scheme :
+ - modular Scheme ?
+
+ 18. Improve speed (profiling)
+
+ 19. Look again at those hugly renamings functions.
+ Especially get rid of ML clashes like
+
+ let t = 0
+ module M = struct
+ let t = 1
+ let u = The.External.t (* ?? *)
+ end
+
+ 20. Support the .v-as-internal-module, like in
+
+ <file A.v>
+ Definition foo :=O.
+ <End file A.v>
+
+ <at toplevel>
+ Require A.
+ Module M:=A
+ Extraction M. \ No newline at end of file
diff --git a/contrib/extraction/common.ml b/contrib/extraction/common.ml
new file mode 100644
index 00000000..53a2631e
--- /dev/null
+++ b/contrib/extraction/common.ml
@@ -0,0 +1,441 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: common.ml,v 1.51.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
+
+open Pp
+open Util
+open Names
+open Term
+open Declarations
+open Nameops
+open Libnames
+open Table
+open Miniml
+open Modutil
+open Ocaml
+
+(*S Renamings. *)
+
+(*s Tables of global renamings *)
+
+let keywords = ref Idset.empty
+let global_ids = ref Idset.empty
+let modular = ref false
+
+(* For each [global_reference], this table will contain the different parts
+ of its renamings, in [string list] form. *)
+let renamings = Hashtbl.create 97
+let rename r l = Hashtbl.add renamings r l
+let get_renamings r = Hashtbl.find renamings r
+
+(* Idem for [module_path]. *)
+let mp_renamings = Hashtbl.create 97
+let mp_rename mp l = Hashtbl.add mp_renamings mp l
+let mp_get_renamings mp = Hashtbl.find mp_renamings mp
+
+let modvisited = ref MPset.empty
+let modcontents = ref Gset.empty
+let add_module_contents mp s = modcontents := Gset.add (mp,s) !modcontents
+let module_contents mp s = Gset.mem (mp,s) !modcontents
+
+let to_qualify = ref Refset.empty
+
+let mod_1st_level = ref Idmap.empty
+
+(*s Uppercase/lowercase renamings. *)
+
+let is_upper s = match s.[0] with 'A' .. 'Z' -> true | _ -> false
+
+let is_lower s = match s.[0] with 'a' .. 'z' | '_' -> true | _ -> false
+
+(* This function creates from [id] a correct uppercase/lowercase identifier.
+ This is done by adding a [Coq_] or [coq_] prefix. To avoid potential clashes
+ with previous [Coq_id] variable, these prefixes are duplicated if already
+ existing. *)
+
+let modular_rename up id =
+ let s = string_of_id id in
+ let prefix = if up then "Coq_" else "coq_" in
+ let check = if up then is_upper else is_lower in
+ if not (check s) ||
+ (Idset.mem id !keywords) ||
+ (String.length s >= 4 && String.sub s 0 4 = prefix)
+ then prefix ^ s
+ else s
+
+let rename_module = modular_rename true
+
+(* [clash mp0 l s mpl] checks if [mp0-l-s] can be printed as [l-s] when
+ [mpl] is the context of visible modules. More precisely, we check if
+ there exists a mp1, module (sub-)path of an element of [mpl], such as
+ module [mp1-l] contains [s].
+ The verification stops if we encounter [mp1=mp0]. *)
+
+exception Stop
+
+let clash mp0 l s mpl =
+ let rec clash_one mp = match mp with
+ | _ when mp = mp0 -> raise Stop
+ | MPdot (mp',_) ->
+ (module_contents (add_labels_mp mp l) s) || (clash_one mp')
+ | mp when is_toplevel mp -> false
+ | _ -> module_contents (add_labels_mp mp l) s
+ in
+ let rec clash_list = function
+ | [] -> false
+ | mp :: mpl -> (clash_one mp) || (clash_list mpl)
+ in try clash_list mpl with Stop -> false
+
+(*s [contents_first_level mp] finds the names of the first-level objects
+ exported by module [mp]. Nota: it might fail if [mp] isn't a directly
+ visible module. Ex: [MPself] under functor, [MPbound], etc ... *)
+
+let contents_first_level mp =
+ if not (MPset.mem mp !modvisited) then begin
+ modvisited := MPset.add mp !modvisited;
+ match (Global.lookup_module mp).mod_type with
+ | MTBsig (msid,msb) ->
+ let add b id = add_module_contents mp (modular_rename b id) in
+ let upper_type = (lang () = Haskell) in
+ List.iter
+ (function
+ | (l, SPBconst cb) ->
+ (match Extraction.constant_kind (Global.env ()) cb with
+ | Extraction.Logical -> ()
+ | Extraction.Type -> add upper_type (id_of_label l)
+ | Extraction.Term -> add false (id_of_label l))
+ | (_, SPBmind mib) ->
+ Array.iter
+ (fun mip -> if mip.mind_sort <> (Prop Null) then begin
+ add upper_type mip.mind_typename;
+ Array.iter (add true) mip.mind_consnames
+ end)
+ mib.mind_packets
+ | _ -> ())
+ (Modops.subst_signature_msid msid mp msb)
+ | _ -> ()
+ end
+
+(*s Initial renamings creation, for modular extraction. *)
+
+let rec mp_create_modular_renamings mp =
+ try mp_get_renamings mp
+ with Not_found ->
+ let ren = match mp with
+ | MPdot (mp,l) ->
+ (rename_module (id_of_label l)) :: (mp_create_modular_renamings mp)
+ | MPself msid -> [rename_module (id_of_msid msid)]
+ | MPbound mbid -> [rename_module (id_of_mbid mbid)]
+ | MPfile f -> [String.capitalize (string_of_id (List.hd (repr_dirpath f)))]
+ in mp_rename mp ren; ren
+
+
+let create_modular_renamings struc =
+ let current_module = fst (List.hd struc) in
+ let modfiles = ref MPset.empty in
+ let { up = u ; down = d } = struct_get_references_set struc
+ in
+ (* 1) creates renamings of objects *)
+ let add upper r =
+ let mp = modpath (kn_of_r r) in
+ let l = mp_create_modular_renamings mp in
+ let s = modular_rename upper (id_of_global r) in
+ global_ids := Idset.add (id_of_string s) !global_ids;
+ rename r (s::l);
+ begin try
+ let mp = modfile_of_mp mp in
+ if mp <> current_module then modfiles := MPset.add mp !modfiles
+ with Not_found -> ()
+ end;
+ in
+ Refset.iter (add true) u;
+ Refset.iter (add false) d;
+
+ (* 2) determines the opened libraries. *)
+ let used_modules = MPset.elements !modfiles in
+
+ (* [s] will contain all first-level sub-modules of [cur_mp] *)
+ let s = ref Stringset.empty in
+ begin
+ let add l = s := Stringset.add (rename_module (id_of_label l)) !s in
+ match (Global.lookup_module current_module).mod_type with
+ | MTBsig (_,msb) ->
+ List.iter (function (l,SPBmodule _) -> add l | _ -> ()) msb
+ | _ -> ()
+ end;
+ (* We now compare [s] with the modules coming from [used_modules]. *)
+ List.iter
+ (function
+ | MPfile d ->
+ let s_mp =
+ String.capitalize (string_of_id (List.hd (repr_dirpath d))) in
+ if Stringset.mem s_mp !s then error_module_clash s_mp
+ else s:= Stringset.add s_mp !s
+ | _ -> assert false)
+ used_modules;
+
+ (* 3) determines the potential clashes *)
+ List.iter contents_first_level used_modules;
+ let used_modules' = List.rev used_modules in
+ let needs_qualify r =
+ let mp = modpath (kn_of_r r) in
+ if (is_modfile mp) && mp <> current_module &&
+ (clash mp [] (List.hd (get_renamings r)) used_modules')
+ then to_qualify := Refset.add r !to_qualify
+ in
+ Refset.iter needs_qualify u;
+ Refset.iter needs_qualify d;
+ used_modules
+
+(*s Initial renamings creation, for monolithic extraction. *)
+
+let begins_with_CoqXX s =
+ (String.length s >= 4) &&
+ (String.sub s 0 3 = "Coq") &&
+ (try
+ for i = 4 to (String.index s '_')-1 do
+ match s.[i] with
+ | '0'..'9' -> ()
+ | _ -> raise Not_found
+ done;
+ true
+ with Not_found -> false)
+
+let mod_1st_level_rename l =
+ let coqid = id_of_string "Coq" in
+ let id = id_of_label l in
+ try
+ let coqset = Idmap.find id !mod_1st_level in
+ let nextcoq = next_ident_away coqid coqset in
+ mod_1st_level := Idmap.add id (nextcoq::coqset) !mod_1st_level;
+ (string_of_id nextcoq)^"_"^(string_of_id id)
+ with Not_found ->
+ let s = string_of_id id in
+ if is_lower s || begins_with_CoqXX s then
+ (mod_1st_level := Idmap.add id [coqid] !mod_1st_level; "Coq_"^s)
+ else
+ (mod_1st_level := Idmap.add id [] !mod_1st_level; s)
+
+let rec mp_create_mono_renamings mp =
+ try mp_get_renamings mp
+ with Not_found ->
+ let ren = match mp with
+ | _ when (at_toplevel mp) -> [""]
+ | MPdot (mp,l) ->
+ let lmp = mp_create_mono_renamings mp in
+ if lmp = [""] then (mod_1st_level_rename l)::lmp
+ else (rename_module (id_of_label l))::lmp
+ | MPself msid -> [rename_module (id_of_msid msid)]
+ | MPbound mbid -> [rename_module (id_of_mbid mbid)]
+ | _ -> assert false
+ in mp_rename mp ren; ren
+
+let create_mono_renamings struc =
+ let { up = u ; down = d } = struct_get_references_list struc in
+ let add upper r =
+ let mp = modpath (kn_of_r r) in
+ let l = mp_create_mono_renamings mp in
+ let mycase = if upper then uppercase_id else lowercase_id in
+ let id =
+ if l = [""] then
+ next_ident_away (mycase (id_of_global r)) (Idset.elements !global_ids)
+ else id_of_string (modular_rename upper (id_of_global r))
+ in
+ global_ids := Idset.add id !global_ids;
+ rename r ((string_of_id id)::l)
+ in
+ List.iter (add true) (List.rev u);
+ List.iter (add false) (List.rev d)
+
+(*s Renaming issues at toplevel *)
+
+module TopParams = struct
+ let globals () = Idset.empty
+ let pp_global _ r = pr_id (id_of_global r)
+ let pp_module _ mp = str (string_of_mp mp)
+end
+
+(*s Renaming issues for a monolithic or modular extraction. *)
+
+module StdParams = struct
+
+ let globals () = !global_ids
+
+ (* TODO: remettre des conditions [lang () = Haskell] disant de qualifier. *)
+
+ let rec dottify = function
+ | [] -> assert false
+ | [s] -> s
+ | s::[""] -> s
+ | s::l -> (dottify l)^"."^s
+
+ let pp_global mpl r =
+ let ls = get_renamings r in
+ let s = List.hd ls in
+ let mp = modpath (kn_of_r r) in
+ let ls =
+ if mp = List.hd mpl then [s] (* simpliest situation *)
+ else
+ try (* has [mp] something in common with one of those in [mpl] ? *)
+ let pref = common_prefix_from_list mp mpl in
+ (*i TODO: possibilité de clash i*)
+ list_firstn ((mp_length mp)-(mp_length pref)+1) ls
+ with Not_found -> (* [mp] is othogonal with every element of [mp]. *)
+ let base = base_mp mp in
+ if !modular &&
+ (at_toplevel mp) &&
+ not (Refset.mem r !to_qualify) &&
+ not (clash base [] s mpl)
+ then snd (list_sep_last ls)
+ else ls
+ in
+ add_module_contents mp s; (* update the visible environment *)
+ str (dottify ls)
+
+ let pp_module mpl mp =
+ let ls =
+ if !modular
+ then mp_create_modular_renamings mp
+ else mp_create_mono_renamings mp
+ in
+ let ls =
+ try (* has [mp] something in common with one of those in [mpl] ? *)
+ let pref = common_prefix_from_list mp mpl in
+ (*i TODO: clash possible i*)
+ list_firstn ((mp_length mp)-(mp_length pref)) ls
+ with Not_found -> (* [mp] is othogonal with every element of [mp]. *)
+ let base = base_mp mp in
+ if !modular && (at_toplevel mp)
+ then snd (list_sep_last ls)
+ else ls
+ in str (dottify ls)
+
+end
+
+module ToplevelPp = Ocaml.Make(TopParams)
+module OcamlPp = Ocaml.Make(StdParams)
+module HaskellPp = Haskell.Make(StdParams)
+module SchemePp = Scheme.Make(StdParams)
+
+let pp_decl mp d = match lang () with
+ | Ocaml -> OcamlPp.pp_decl mp d
+ | Haskell -> HaskellPp.pp_decl mp d
+ | Scheme -> SchemePp.pp_decl mp d
+ | Toplevel -> ToplevelPp.pp_decl mp d
+
+let pp_struct s = match lang () with
+ | Ocaml -> OcamlPp.pp_struct s
+ | Haskell -> HaskellPp.pp_struct s
+ | Scheme -> SchemePp.pp_struct s
+ | Toplevel -> ToplevelPp.pp_struct s
+
+let pp_signature s = match lang () with
+ | Ocaml -> OcamlPp.pp_signature s
+ | Haskell -> HaskellPp.pp_signature s
+ | _ -> assert false
+
+let set_keywords () =
+ (match lang () with
+ | Ocaml -> keywords := Ocaml.keywords
+ | Haskell -> keywords := Haskell.keywords
+ | Scheme -> keywords := Scheme.keywords
+ | Toplevel -> keywords := Idset.empty);
+ global_ids := !keywords;
+ to_qualify := Refset.empty
+
+let preamble prm = match lang () with
+ | Ocaml -> Ocaml.preamble prm
+ | Haskell -> Haskell.preamble prm
+ | Scheme -> Scheme.preamble prm
+ | Toplevel -> (fun _ _ -> mt ())
+
+let preamble_sig prm = match lang () with
+ | Ocaml -> Ocaml.preamble_sig prm
+ | _ -> assert false
+
+(*S Extraction of one decl to stdout. *)
+
+let print_one_decl struc mp decl =
+ set_keywords ();
+ modular := false;
+ create_mono_renamings struc;
+ msgnl (pp_decl [mp] decl)
+
+(*S Extraction to a file. *)
+
+let info f =
+ Options.if_verbose msgnl
+ (str ("The file "^f^" has been created by extraction."))
+
+let print_structure_to_file f prm struc =
+ cons_cofix := Refset.empty;
+ Hashtbl.clear renamings;
+ mod_1st_level := Idmap.empty;
+ modcontents := Gset.empty;
+ modvisited := MPset.empty;
+ set_keywords ();
+ modular := prm.modular;
+ let used_modules =
+ if lang () = Toplevel then []
+ else if prm.modular then create_modular_renamings struc
+ else (create_mono_renamings struc; [])
+ in
+ let print_dummys =
+ (struct_ast_search MLdummy struc,
+ struct_type_search Tdummy struc,
+ struct_type_search Tunknown struc)
+ in
+ (* print the implementation *)
+ let cout = option_app (fun (f,_) -> open_out f) f in
+ let ft = match cout with
+ | None -> !Pp_control.std_ft
+ | Some cout -> Pp_control.with_output_to cout in
+ begin try
+ msg_with ft (preamble prm used_modules print_dummys);
+ msg_with ft (pp_struct struc);
+ option_iter close_out cout;
+ with e ->
+ option_iter close_out cout; raise e
+ end;
+ option_iter (fun (f,_) -> info f) f;
+ (* print the signature *)
+ match f with
+ | Some (_,f) when lang () = Ocaml ->
+ let cout = open_out f in
+ let ft = Pp_control.with_output_to cout in
+ begin try
+ msg_with ft (preamble_sig prm used_modules print_dummys);
+ msg_with ft (pp_signature (signature_of_structure struc));
+ close_out cout;
+ with e ->
+ close_out cout; raise e
+ end;
+ info f
+ | _ -> ()
+
+
+(*i
+ (* DO NOT REMOVE: used when making names resolution *)
+ let cout = open_out (f^".ren") in
+ let ft = Pp_control.with_output_to cout in
+ Hashtbl.iter
+ (fun r id ->
+ if short_module r = !current_module then
+ msgnl_with ft (pr_id id ++ str " " ++ pr_sp (sp_of_r r)))
+ renamings;
+ pp_flush_with ft ();
+ close_out cout;
+i*)
+
+
+
+
+
+
+
diff --git a/contrib/extraction/common.mli b/contrib/extraction/common.mli
new file mode 100644
index 00000000..3e5efa0c
--- /dev/null
+++ b/contrib/extraction/common.mli
@@ -0,0 +1,21 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: common.mli,v 1.19.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
+
+open Names
+open Miniml
+open Mlutil
+
+val print_one_decl :
+ ml_structure -> module_path -> ml_decl -> unit
+
+val print_structure_to_file :
+ (string * string) option -> extraction_params -> ml_structure -> unit
+
+
diff --git a/contrib/extraction/extract_env.ml b/contrib/extraction/extract_env.ml
new file mode 100644
index 00000000..d725a1d7
--- /dev/null
+++ b/contrib/extraction/extract_env.ml
@@ -0,0 +1,382 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: extract_env.ml,v 1.74.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
+
+open Term
+open Declarations
+open Names
+open Libnames
+open Pp
+open Util
+open Miniml
+open Table
+open Extraction
+open Modutil
+open Common
+
+(*s Obtaining Coq environment. *)
+
+let toplevel_env () =
+ let seg = Lib.contents_after None in
+ let get_reference = function
+ | (_,kn), Lib.Leaf o ->
+ let mp,_,l = repr_kn kn in
+ let seb = match Libobject.object_tag o with
+ | "CONSTANT" -> SEBconst (Global.lookup_constant kn)
+ | "INDUCTIVE" -> SEBmind (Global.lookup_mind kn)
+ | "MODULE" -> SEBmodule (Global.lookup_module (MPdot (mp,l)))
+ | "MODULE TYPE" -> SEBmodtype (Global.lookup_modtype kn)
+ | _ -> failwith "caught"
+ in l,seb
+ | _ -> failwith "caught"
+ in
+ match current_toplevel () with
+ | MPself msid -> MEBstruct (msid, List.rev (map_succeed get_reference seg))
+ | _ -> assert false
+
+let environment_until dir_opt =
+ let rec parse = function
+ | [] when dir_opt = None -> [current_toplevel (), toplevel_env ()]
+ | [] -> []
+ | d :: l ->
+ match (Global.lookup_module (MPfile d)).mod_expr with
+ | Some meb ->
+ if dir_opt = Some d then [MPfile d, meb]
+ else (MPfile d, meb) :: (parse l)
+ | _ -> assert false
+ in parse (Library.loaded_libraries ())
+
+type visit = { mutable kn : KNset.t; mutable mp : MPset.t }
+
+let in_kn v kn = KNset.mem kn v.kn
+let in_mp v mp = MPset.mem mp v.mp
+
+let visit_mp v mp = v.mp <- MPset.union (prefixes_mp mp) v.mp
+let visit_kn v kn = v.kn <- KNset.add kn v.kn; visit_mp v (modpath kn)
+let visit_ref v r = visit_kn v (kn_of_r r)
+
+exception Impossible
+
+let check_arity env cb =
+ if Reduction.is_arity env cb.const_type then raise Impossible
+
+let check_fix env cb i =
+ match cb.const_body with
+ | None -> raise Impossible
+ | Some lbody ->
+ match kind_of_term (Declarations.force lbody) with
+ | Fix ((_,j),recd) when i=j -> check_arity env cb; (true,recd)
+ | CoFix (j,recd) when i=j -> check_arity env cb; (false,recd)
+ | _ -> raise Impossible
+
+let factor_fix env l cb msb =
+ let _,recd as check = check_fix env cb 0 in
+ let n = Array.length (let fi,_,_ = recd in fi) in
+ if n = 1 then [|l|], recd, msb
+ else begin
+ if List.length msb < n-1 then raise Impossible;
+ let msb', msb'' = list_chop (n-1) msb in
+ let labels = Array.make n l in
+ list_iter_i
+ (fun j ->
+ function
+ | (l,SEBconst cb') ->
+ if check <> check_fix env cb' (j+1) then raise Impossible;
+ labels.(j+1) <- l;
+ | _ -> raise Impossible) msb';
+ labels, recd, msb''
+ end
+
+let get_decl_references v d =
+ let f = visit_ref v in decl_iter_references f f f d
+
+let get_spec_references v s =
+ let f = visit_ref v in spec_iter_references f f f s
+
+let rec extract_msig env v mp = function
+ | [] -> []
+ | (l,SPBconst cb) :: msig ->
+ let kn = make_kn mp empty_dirpath l in
+ let s = extract_constant_spec env kn cb in
+ if logical_spec s then extract_msig env v mp msig
+ else begin
+ get_spec_references v s;
+ (l,Spec s) :: (extract_msig env v mp msig)
+ end
+ | (l,SPBmind cb) :: msig ->
+ let kn = make_kn mp empty_dirpath l in
+ let s = Sind (kn, extract_inductive env kn) in
+ if logical_spec s then extract_msig env v mp msig
+ else begin
+ get_spec_references v s;
+ (l,Spec s) :: (extract_msig env v mp msig)
+ end
+ | (l,SPBmodule {msb_modtype=mtb}) :: msig ->
+(*i let mpo = Some (MPdot (mp,l)) in i*)
+ (l,Smodule (extract_mtb env v None (*i mpo i*) mtb)) :: (extract_msig env v mp msig)
+ | (l,SPBmodtype mtb) :: msig ->
+ (l,Smodtype (extract_mtb env v None mtb)) :: (extract_msig env v mp msig)
+
+and extract_mtb env v mpo = function
+ | MTBident kn -> visit_kn v kn; MTident kn
+ | MTBfunsig (mbid, mtb, mtb') ->
+ let mp = MPbound mbid in
+ let env' = Modops.add_module mp (Modops.module_body_of_type mtb) env in
+ MTfunsig (mbid, extract_mtb env v None mtb,
+ extract_mtb env' v None mtb')
+ | MTBsig (msid, msig) ->
+ let mp, msig = match mpo with
+ | None -> MPself msid, msig
+ | Some mp -> mp, Modops.subst_signature_msid msid mp msig
+ in
+ let env' = Modops.add_signature mp msig env in
+ MTsig (msid, extract_msig env' v mp msig)
+
+let rec extract_msb env v mp all = function
+ | [] -> []
+ | (l,SEBconst cb) :: msb ->
+ (try
+ let vl,recd,msb = factor_fix env l cb msb in
+ let vkn = Array.map (fun id -> make_kn mp empty_dirpath id) vl in
+ let ms = extract_msb env v mp all msb in
+ let b = array_exists (in_kn v) vkn in
+ if all || b then
+ let d = extract_fixpoint env vkn recd in
+ if (not b) && (logical_decl d) then ms
+ else begin get_decl_references v d; (l,SEdecl d) :: ms end
+ else ms
+ with Impossible ->
+ let ms = extract_msb env v mp all msb in
+ let kn = make_kn mp empty_dirpath l in
+ let b = in_kn v kn in
+ if all || b then
+ let d = extract_constant env kn cb in
+ if (not b) && (logical_decl d) then ms
+ else begin get_decl_references v d; (l,SEdecl d) :: ms end
+ else ms)
+ | (l,SEBmind mib) :: msb ->
+ let ms = extract_msb env v mp all msb in
+ let kn = make_kn mp empty_dirpath l in
+ let b = in_kn v kn in
+ if all || b then
+ let d = Dind (kn, extract_inductive env kn) in
+ if (not b) && (logical_decl d) then ms
+ else begin get_decl_references v d; (l,SEdecl d) :: ms end
+ else ms
+ | (l,SEBmodule mb) :: msb ->
+ let ms = extract_msb env v mp all msb in
+ let mp = MPdot (mp,l) in
+ if all || in_mp v mp then
+ (l,SEmodule (extract_module env v mp true mb)) :: ms
+ else ms
+ | (l,SEBmodtype mtb) :: msb ->
+ let ms = extract_msb env v mp all msb in
+ let kn = make_kn mp empty_dirpath l in
+ if all || in_kn v kn then
+ (l,SEmodtype (extract_mtb env v None mtb)) :: ms
+ else ms
+
+and extract_meb env v mpo all = function
+ | MEBident (MPfile d) -> error_MPfile_as_mod d (* temporary (I hope) *)
+ | MEBident mp -> visit_mp v mp; MEident mp
+ | MEBapply (meb, meb',_) ->
+ MEapply (extract_meb env v None true meb,
+ extract_meb env v None true meb')
+ | MEBfunctor (mbid, mtb, meb) ->
+ let mp = MPbound mbid in
+ let env' = Modops.add_module mp (Modops.module_body_of_type mtb) env in
+ MEfunctor (mbid, extract_mtb env v None mtb,
+ extract_meb env' v None true meb)
+ | MEBstruct (msid, msb) ->
+ let mp,msb = match mpo with
+ | None -> MPself msid, msb
+ | Some mp -> mp, subst_msb (map_msid msid mp) msb
+ in
+ let env' = add_structure mp msb env in
+ MEstruct (msid, extract_msb env' v mp all msb)
+
+and extract_module env v mp all mb =
+ (* [mb.mod_expr <> None ], since we look at modules from outside. *)
+ (* Example of module with empty [mod_expr] is X inside a Module F [X:SIG]. *)
+ let meb = out_some mb.mod_expr in
+ let mtb = match mb.mod_user_type with None -> mb.mod_type | Some mt -> mt in
+ (* Because of the "with" construct, the module type can be [MTBsig] with *)
+ (* a msid different from the one of the module. Here is the patch. *)
+ let mtb = replicate_msid meb mtb in
+ { ml_mod_expr = extract_meb env v (Some mp) all meb;
+ ml_mod_type = extract_mtb env v None mtb }
+
+let unpack = function MEstruct (_,sel) -> sel | _ -> assert false
+
+let mono_environment refs mpl =
+ let l = environment_until None in
+ let v =
+ let add_kn r = KNset.add (kn_of_r r) in
+ let kns = List.fold_right add_kn refs KNset.empty in
+ let add_mp mp = MPset.union (prefixes_mp mp) in
+ let mps = List.fold_right add_mp mpl MPset.empty in
+ let mps = KNset.fold (fun k -> add_mp (modpath k)) kns mps in
+ { kn = kns; mp = mps }
+ in
+ let env = Global.env () in
+ List.rev_map (fun (mp,m) -> mp, unpack (extract_meb env v (Some mp) false m))
+ (List.rev l)
+
+(*s Recursive extraction in the Coq toplevel. The vernacular command is
+ \verb!Recursive Extraction! [qualid1] ... [qualidn]. We use [extract_env]
+ to get the saturated environment to extract. *)
+
+let mono_extraction (f,m) qualids =
+ check_inside_section ();
+ check_inside_module ();
+ let rec find = function
+ | [] -> [],[]
+ | q::l ->
+ let refs,mps = find l in
+ try
+ let mp = Nametab.locate_module (snd (qualid_of_reference q))
+ in refs,(mp::mps)
+ with Not_found -> (Nametab.global q)::refs, mps
+ in
+ let refs,mps = find qualids in
+ let prm = {modular=false; mod_name = m; to_appear= refs} in
+ let struc = optimize_struct prm None (mono_environment refs mps) in
+ print_structure_to_file f prm struc;
+ reset_tables ()
+
+let extraction_rec = mono_extraction (None,id_of_string "Main")
+
+(*s Extraction in the Coq toplevel. We display the extracted term in
+ Ocaml syntax and we use the Coq printers for globals. The
+ vernacular command is \verb!Extraction! [qualid]. *)
+
+let extraction qid =
+ check_inside_section ();
+ check_inside_module ();
+ try
+ let _ = Nametab.locate_module (snd (qualid_of_reference qid)) in
+ extraction_rec [qid]
+ with Not_found ->
+ let r = Nametab.global qid in
+ if is_custom r then
+ msgnl (str "User defined extraction:" ++ spc () ++
+ str (find_custom r) ++ fnl ())
+ else begin
+ let prm =
+ { modular = false; mod_name = id_of_string "Main"; to_appear = [r]} in
+ let kn = kn_of_r r in
+ let struc = optimize_struct prm None (mono_environment [r] []) in
+ let d = get_decl_in_structure r struc in
+ print_one_decl struc (modpath kn) d;
+ reset_tables ()
+ end
+
+(*s Extraction to a file (necessarily recursive).
+ The vernacular command is
+ \verb!Extraction "file"! [qualid1] ... [qualidn].*)
+
+let lang_suffix () = match lang () with
+ | Ocaml -> ".ml",".mli"
+ | Haskell -> ".hs",".hi"
+ | Scheme -> ".scm",".scm"
+ | Toplevel -> assert false
+
+let filename f =
+ let s,s' = lang_suffix () in
+ if Filename.check_suffix f s then
+ let f' = Filename.chop_suffix f s in
+ Some (f,f'^s'),id_of_string f'
+ else Some (f^s,f^s'),id_of_string f
+
+let extraction_file f vl =
+ if lang () = Toplevel then error_toplevel ()
+ else mono_extraction (filename f) vl
+
+(*s Extraction of a module at the toplevel. *)
+
+let extraction_module m =
+ check_inside_section ();
+ check_inside_module ();
+ match lang () with
+ | Toplevel -> error_toplevel ()
+ | Scheme -> error_scheme ()
+ | _ ->
+ let q = snd (qualid_of_reference m) in
+ let mp =
+ try Nametab.locate_module q
+ with Not_found -> error_unknown_module q
+ in
+ let b = is_modfile mp in
+ let prm = {modular=b; mod_name = id_of_string ""; to_appear= []} in
+ let l = environment_until None in
+ let v = { kn = KNset.empty ; mp = prefixes_mp mp } in
+ let env = Global.env () in
+ let struc =
+ List.rev_map
+ (fun (mp,m) -> mp, unpack (extract_meb env v (Some mp) b m))
+ (List.rev l)
+ in
+ let struc = optimize_struct prm None struc in
+ let struc =
+ let bmp = base_mp mp in
+ try [bmp, List.assoc bmp struc] with Not_found -> assert false
+ in
+ print_structure_to_file None prm struc;
+ reset_tables ()
+
+(*s (Recursive) Extraction of a library. The vernacular command is
+ \verb!(Recursive) Extraction Library! [M]. *)
+
+let module_file_name m = match lang () with
+ | Ocaml -> let f = String.uncapitalize (string_of_id m) in f^".ml", f^".mli"
+ | Haskell -> let f = String.capitalize (string_of_id m) in f^".hs", f^".hi"
+ | _ -> assert false
+
+let dir_module_of_id m =
+ let q = make_short_qualid m in
+ try Nametab.full_name_module q with Not_found -> error_unknown_module q
+
+let extraction_library is_rec m =
+ check_inside_section ();
+ check_inside_module ();
+ match lang () with
+ | Toplevel -> error_toplevel ()
+ | Scheme -> error_scheme ()
+ | _ ->
+ let dir_m = dir_module_of_id m in
+ let v = { kn = KNset.empty; mp = MPset.singleton (MPfile dir_m) } in
+ let l = environment_until (Some dir_m) in
+ let struc =
+ let env = Global.env () in
+ let select l (mp,meb) =
+ if in_mp v mp (* [mp] est long -> [in_mp] peut etre sans [long_mp] *)
+ then (mp, unpack (extract_meb env v (Some mp) true meb)) :: l
+ else l
+ in
+ List.fold_left select [] (List.rev l)
+ in
+ let dummy_prm = {modular=true; mod_name=m; to_appear=[]} in
+ let struc = optimize_struct dummy_prm None struc in
+ let rec print = function
+ | [] -> ()
+ | (MPfile dir, _) :: l when not is_rec && dir <> dir_m -> print l
+ | (MPfile dir, sel) as e :: l ->
+ let short_m = snd (split_dirpath dir) in
+ let f = module_file_name short_m in
+ let prm = {modular=true;mod_name=short_m;to_appear=[]} in
+ print_structure_to_file (Some f) prm [e];
+ print l
+ | _ -> assert false
+ in print struc;
+ reset_tables ()
+
+
+
+
+
diff --git a/contrib/extraction/extract_env.mli b/contrib/extraction/extract_env.mli
new file mode 100644
index 00000000..8ce64342
--- /dev/null
+++ b/contrib/extraction/extract_env.mli
@@ -0,0 +1,20 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: extract_env.mli,v 1.13.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
+
+(*s This module declares the extraction commands. *)
+
+open Names
+open Libnames
+
+val extraction : reference -> unit
+val extraction_rec : reference list -> unit
+val extraction_file : string -> reference list -> unit
+val extraction_module : reference -> unit
+val extraction_library : bool -> identifier -> unit
diff --git a/contrib/extraction/extraction.ml b/contrib/extraction/extraction.ml
new file mode 100644
index 00000000..46bf06dd
--- /dev/null
+++ b/contrib/extraction/extraction.ml
@@ -0,0 +1,855 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: extraction.ml,v 1.136.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
+
+(*i*)
+open Util
+open Names
+open Term
+open Declarations
+open Environ
+open Reduction
+open Reductionops
+open Inductive
+open Termops
+open Inductiveops
+open Recordops
+open Nameops
+open Summary
+open Libnames
+open Nametab
+open Miniml
+open Table
+open Mlutil
+(*i*)
+
+exception I of inductive_info
+
+(* A set of all inductive currently being computed,
+ to avoid loops in [extract_inductive] *)
+let internal_call = ref KNset.empty
+
+let none = Evd.empty
+
+let type_of env c = Retyping.get_type_of env none (strip_outer_cast c)
+
+let sort_of env c = Retyping.get_sort_family_of env none (strip_outer_cast c)
+
+let is_axiom env kn = (Environ.lookup_constant kn env).const_body = None
+
+(*S Generation of flags and signatures. *)
+
+(* The type [flag] gives us information about any Coq term:
+ \begin{itemize}
+ \item [TypeScheme] denotes a type scheme, that is
+ something that will become a type after enough applications.
+ More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with
+ [s = Set], [Prop] or [Type]
+ \item [Default] denotes the other cases. It may be inexact after
+ instanciation. For example [(X:Type)X] is [Default] and may give [Set]
+ after instanciation, which is rather [TypeScheme]
+ \item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop]
+ \item [Info] is the opposite. The same example [(X:Type)X] shows
+ that an [Info] term might in fact be [Logic] later on.
+ \end{itemize} *)
+
+type info = Logic | Info
+
+type scheme = TypeScheme | Default
+
+type flag = info * scheme
+
+(*s [flag_of_type] transforms a type [t] into a [flag].
+ Really important function. *)
+
+let rec flag_of_type env t =
+ let t = whd_betadeltaiota env none t in
+ match kind_of_term t with
+ | Prod (x,t,c) -> flag_of_type (push_rel (x,None,t) env) c
+ | Sort (Prop Null) -> (Logic,TypeScheme)
+ | Sort _ -> (Info,TypeScheme)
+ | _ -> if (sort_of env t) = InProp then (Logic,Default) else (Info,Default)
+
+(*s Two particular cases of [flag_of_type]. *)
+
+let is_default env t = (flag_of_type env t = (Info, Default))
+
+let is_info_scheme env t = (flag_of_type env t = (Info, TypeScheme))
+
+(*s [type_sign] gernerates a signature aimed at treating a type application. *)
+
+let rec type_sign env c =
+ match kind_of_term (whd_betadeltaiota env none c) with
+ | Prod (n,t,d) ->
+ (is_info_scheme env t)::(type_sign (push_rel_assum (n,t) env) d)
+ | _ -> []
+
+let rec type_scheme_nb_args env c =
+ match kind_of_term (whd_betadeltaiota env none c) with
+ | Prod (n,t,d) ->
+ let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in
+ if is_info_scheme env t then n+1 else n
+ | _ -> 0
+
+let _ = register_type_scheme_nb_args type_scheme_nb_args
+
+(*s [type_sign_vl] does the same, plus a type var list. *)
+
+let rec type_sign_vl env c =
+ match kind_of_term (whd_betadeltaiota env none c) with
+ | Prod (n,t,d) ->
+ let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in
+ if not (is_info_scheme env t) then false::s, vl
+ else true::s, (next_ident_away (id_of_name n) vl) :: vl
+ | _ -> [],[]
+
+let rec nb_default_params env c =
+ match kind_of_term (whd_betadeltaiota env none c) with
+ | Prod (n,t,d) ->
+ let n = nb_default_params (push_rel_assum (n,t) env) d in
+ if is_default env t then n+1 else n
+ | _ -> 0
+
+(*S Management of type variable contexts. *)
+
+(* A De Bruijn variable context (db) is a context for translating Coq [Rel]
+ into ML type [Tvar]. *)
+
+(*s From a type signature toward a type variable context (db). *)
+
+let db_from_sign s =
+ let rec make i acc = function
+ | [] -> acc
+ | true :: l -> make (i+1) (i::acc) l
+ | false :: l -> make i (0::acc) l
+ in make 1 [] s
+
+(*s Create a type variable context from indications taken from
+ an inductive type (see just below). *)
+
+let rec db_from_ind dbmap i =
+ if i = 0 then []
+ else (try Intmap.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1))
+
+(*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument
+ of a constructor corresponds to the j-th type var of the ML inductive. *)
+
+(* \begin{itemize}
+ \item [si] : signature of the inductive
+ \item [i] : counter of Coq args for [(I args)]
+ \item [j] : counter of ML type vars
+ \item [relmax] : total args number of the constructor
+ \end{itemize} *)
+
+let parse_ind_args si args relmax =
+ let rec parse i j = function
+ | [] -> Intmap.empty
+ | false :: s -> parse (i+1) j s
+ | true :: s ->
+ (match kind_of_term args.(i-1) with
+ | Rel k -> Intmap.add (relmax+1-k) j (parse (i+1) (j+1) s)
+ | _ -> parse (i+1) (j+1) s)
+ in parse 1 1 si
+
+(*S Extraction of a type. *)
+
+(* [extract_type env db c args] is used to produce an ML type from the
+ coq term [(c args)], which is supposed to be a Coq type. *)
+
+(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
+
+(* [j] stands for the next ML type var. [j=0] means we do not
+ generate ML type var anymore (in subterms for example). *)
+
+let rec extract_type env db j c args =
+ match kind_of_term (whd_betaiotazeta c) with
+ | App (d, args') ->
+ (* We just accumulate the arguments. *)
+ extract_type env db j d (Array.to_list args' @ args)
+ | Lambda (_,_,d) ->
+ (match args with
+ | [] -> assert false (* otherwise the lambda would be reductible. *)
+ | a :: args -> extract_type env db j (subst1 a d) args)
+ | Prod (n,t,d) ->
+ assert (args = []);
+ let env' = push_rel_assum (n,t) env in
+ (match flag_of_type env t with
+ | (Info, Default) ->
+ (* Standard case: two [extract_type] ... *)
+ let mld = extract_type env' (0::db) j d [] in
+ if mld = Tdummy then Tdummy
+ else Tarr (extract_type env db 0 t [], mld)
+ | (Info, TypeScheme) when j > 0 ->
+ (* A new type var. *)
+ let mld = extract_type env' (j::db) (j+1) d [] in
+ if mld = Tdummy then Tdummy else Tarr (Tdummy, mld)
+ | _ ->
+ let mld = extract_type env' (0::db) j d [] in
+ if mld = Tdummy then Tdummy else Tarr (Tdummy, mld))
+ | Sort _ -> Tdummy (* The two logical cases. *)
+ | _ when sort_of env (applist (c, args)) = InProp -> Tdummy
+ | Rel n ->
+ (match lookup_rel n env with
+ | (_,Some t,_) -> extract_type env db j (lift n t) args
+ | _ ->
+ (* Asks [db] a translation for [n]. *)
+ if n > List.length db then Tunknown
+ else let n' = List.nth db (n-1) in
+ if n' = 0 then Tunknown else Tvar n')
+ | Const kn ->
+ let r = ConstRef kn in
+ let cb = lookup_constant kn env in
+ let typ = cb.const_type in
+ (match flag_of_type env typ with
+ | (Info, TypeScheme) ->
+ let mlt = extract_type_app env db (r, type_sign env typ) args in
+ (match cb.const_body with
+ | None -> mlt
+ | Some _ when is_custom r -> mlt
+ | Some lbody ->
+ let newc = applist (Declarations.force lbody, args) in
+ let mlt' = extract_type env db j newc [] in
+ (* ML type abbreviations interact badly with Coq *)
+ (* reduction, so [mlt] and [mlt'] might be different: *)
+ (* The more precise is [mlt'], extracted after reduction *)
+ (* The shortest is [mlt], which use abbreviations *)
+ (* If possible, we take [mlt], otherwise [mlt']. *)
+ if type_eq (mlt_env env) mlt mlt' then mlt else mlt')
+ | _ -> (* only other case here: Info, Default, i.e. not an ML type *)
+ (match cb.const_body with
+ | None -> Tunknown (* Brutal approximation ... *)
+ | Some lbody ->
+ (* We try to reduce. *)
+ let newc = applist (Declarations.force lbody, args) in
+ extract_type env db j newc []))
+ | Ind ((kn,i) as ip) ->
+ let s = (extract_ind env kn).ind_packets.(i).ip_sign in
+ extract_type_app env db (IndRef (kn,i),s) args
+ | Case _ | Fix _ | CoFix _ -> Tunknown
+ | _ -> assert false
+
+(* [extract_maybe_type] calls [extract_type] when used on a Coq type,
+ and otherwise returns [Tdummy] or [Tunknown] *)
+
+and extract_maybe_type env db c =
+ let t = whd_betadeltaiota env none (type_of env c) in
+ if isSort t then extract_type env db 0 c []
+ else if sort_of env t = InProp then Tdummy else Tunknown
+
+(*s Auxiliary function dealing with type application.
+ Precondition: [r] is a type scheme represented by the signature [s],
+ and is completely applied: [List.length args = List.length s]. *)
+
+and extract_type_app env db (r,s) args =
+ let ml_args =
+ List.fold_right
+ (fun (b,c) a -> if b then
+ let p = List.length (fst (splay_prod env none (type_of env c))) in
+ let db = iterate (fun l -> 0 :: l) p db in
+ (extract_type_scheme env db c p) :: a
+ else a)
+ (List.combine s args) []
+ in Tglob (r, ml_args)
+
+(*S Extraction of a type scheme. *)
+
+(* [extract_type_scheme env db c p] works on a Coq term [c] which is
+ an informative type scheme. It means that [c] is not a Coq type, but will
+ be when applied to sufficiently many arguments ([p] in fact).
+ This function decomposes p lambdas, with eta-expansion if needed. *)
+
+(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
+
+and extract_type_scheme env db c p =
+ if p=0 then extract_type env db 0 c []
+ else
+ let c = whd_betaiotazeta c in
+ match kind_of_term c with
+ | Lambda (n,t,d) ->
+ extract_type_scheme (push_rel_assum (n,t) env) db d (p-1)
+ | _ ->
+ let rels = fst (splay_prod env none (type_of env c)) in
+ let env = push_rels_assum rels env in
+ let eta_args = List.rev_map mkRel (interval 1 p) in
+ extract_type env db 0 (lift p c) eta_args
+
+
+(*S Extraction of an inductive type. *)
+
+and extract_ind env kn = (* kn is supposed to be in long form *)
+ try
+ if KNset.mem kn !internal_call then lookup_ind kn (* Already started. *)
+ else if visible_kn kn then lookup_ind kn (* Standard situation. *)
+ else raise Not_found (* Never trust the table for a internal kn. *)
+ with Not_found ->
+ internal_call := KNset.add kn !internal_call;
+ let mib = Environ.lookup_mind kn env in
+ (* Everything concerning parameters. *)
+ (* We do that first, since they are common to all the [mib]. *)
+ let mip0 = mib.mind_packets.(0) in
+ let npar = mip0.mind_nparams in
+ let epar = push_rel_context mip0.mind_params_ctxt env in
+ (* First pass: we store inductive signatures together with *)
+ (* their type var list. *)
+ let packets =
+ Array.map
+ (fun mip ->
+ let b = mip.mind_sort <> (Prop Null) in
+ let s,v = if b then type_sign_vl env mip.mind_nf_arity else [],[] in
+ let t = Array.make (Array.length mip.mind_nf_lc) [] in
+ { ip_typename = mip.mind_typename;
+ ip_consnames = mip.mind_consnames;
+ ip_logical = (not b);
+ ip_sign = s;
+ ip_vars = v;
+ ip_types = t })
+ mib.mind_packets
+ in
+ add_ind kn {ind_info = Standard; ind_nparams = npar; ind_packets = packets};
+ (* Second pass: we extract constructors *)
+ for i = 0 to mib.mind_ntypes - 1 do
+ let p = packets.(i) in
+ if not p.ip_logical then
+ let types = arities_of_constructors env (kn,i) in
+ for j = 0 to Array.length types - 1 do
+ let t = snd (decompose_prod_n npar types.(j)) in
+ let prods,head = dest_prod epar t in
+ let nprods = List.length prods in
+ let args = match kind_of_term head with
+ | App (f,args) -> args (* [kind_of_term f = Ind ip] *)
+ | _ -> [||]
+ in
+ let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in
+ let db = db_from_ind dbmap npar in
+ p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1)
+ done
+ done;
+ (* Third pass: we determine special cases. *)
+ let ind_info =
+ try
+ if not mib.mind_finite then raise (I Coinductive);
+ if mib.mind_ntypes <> 1 then raise (I Standard);
+ let p = packets.(0) in
+ if p.ip_logical then raise (I Standard);
+ if Array.length p.ip_types <> 1 then raise (I Standard);
+ let typ = p.ip_types.(0) in
+ let l = List.filter (type_neq (mlt_env env) Tdummy) typ in
+ if List.length l = 1 && not (type_mem_kn kn (List.hd l))
+ then raise (I Singleton);
+ if l = [] then raise (I Standard);
+ let ip = (kn, 0) in
+ if is_custom (IndRef ip) then raise (I Standard);
+ let projs =
+ try (find_structure ip).s_PROJ
+ with Not_found -> raise (I Standard);
+ in
+ let n = nb_default_params env mip0.mind_nf_arity in
+ let projs = try List.map out_some projs with _ -> raise (I Standard) in
+ let is_true_proj kn =
+ let (_,body) = Sign.decompose_lam_assum (constant_value env kn) in
+ match kind_of_term body with
+ | Rel _ -> false
+ | Case _ -> true
+ | _ -> assert false
+ in
+ let projs = List.filter is_true_proj projs in
+ let rec check = function
+ | [] -> [],[]
+ | (typ, kn) :: l ->
+ let l1,l2 = check l in
+ if type_eq (mlt_env env) Tdummy typ then l1,l2
+ else
+ let r = ConstRef kn in
+ if List.mem false (type_to_sign (mlt_env env) typ)
+ then r :: l1, l2
+ else r :: l1, r :: l2
+ in
+ add_record kn n (check (List.combine typ projs));
+ raise (I Record)
+ with (I info) -> info
+ in
+ let i = {ind_info = ind_info; ind_nparams = npar; ind_packets = packets} in
+ add_ind kn i;
+ internal_call := KNset.remove kn !internal_call;
+ i
+
+(*s [extract_type_cons] extracts the type of an inductive
+ constructor toward the corresponding list of ML types. *)
+
+(* \begin{itemize}
+ \item [db] is a context for translating Coq [Rel] into ML type [Tvar]
+ \item [dbmap] is a translation map (produced by a call to [parse_in_args])
+ \item [i] is the rank of the current product (initially [params_nb+1])
+ \end{itemize} *)
+
+and extract_type_cons env db dbmap c i =
+ match kind_of_term (whd_betadeltaiota env none c) with
+ | Prod (n,t,d) ->
+ let env' = push_rel_assum (n,t) env in
+ let db' = (try Intmap.find i dbmap with Not_found -> 0) :: db in
+ let l = extract_type_cons env' db' dbmap d (i+1) in
+ (extract_type env db 0 t []) :: l
+ | _ -> []
+
+(*s Recording the ML type abbreviation of a Coq type scheme constant. *)
+
+and mlt_env env r = match r with
+ | ConstRef kn ->
+ (try
+ if not (visible_kn kn) then raise Not_found;
+ match lookup_term kn with
+ | Dtype (_,vl,mlt) -> Some mlt
+ | _ -> None
+ with Not_found ->
+ let cb = Environ.lookup_constant kn env in
+ let typ = cb.const_type in
+ match cb.const_body with
+ | None -> None
+ | Some l_body ->
+ (match flag_of_type env typ with
+ | Info,TypeScheme ->
+ let body = Declarations.force l_body in
+ let s,vl = type_sign_vl env typ in
+ let db = db_from_sign s in
+ let t = extract_type_scheme env db body (List.length s)
+ in add_term kn (Dtype (r, vl, t)); Some t
+ | _ -> None))
+ | _ -> None
+
+let type_expand env = type_expand (mlt_env env)
+let type_neq env = type_neq (mlt_env env)
+let type_to_sign env = type_to_sign (mlt_env env)
+let type_expunge env = type_expunge (mlt_env env)
+
+(*s Extraction of the type of a constant. *)
+
+let record_constant_type env kn opt_typ =
+ try
+ if not (visible_kn kn) then raise Not_found;
+ lookup_type kn
+ with Not_found ->
+ let typ = match opt_typ with
+ | None -> constant_type env kn
+ | Some typ -> typ
+ in let mlt = extract_type env [] 1 typ []
+ in let schema = (type_maxvar mlt, mlt)
+ in add_type kn schema; schema
+
+(*S Extraction of a term. *)
+
+(* Precondition: [(c args)] is not a type scheme, and is informative. *)
+
+(* [mle] is a ML environment [Mlenv.t]. *)
+(* [mlt] is the ML type we want our extraction of [(c args)] to have. *)
+
+let rec extract_term env mle mlt c args =
+ match kind_of_term c with
+ | App (f,a) ->
+ extract_term env mle mlt f (Array.to_list a @ args)
+ | Lambda (n, t, d) ->
+ let id = id_of_name n in
+ (match args with
+ | a :: l ->
+ (* We make as many [LetIn] as possible. *)
+ let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l))
+ in extract_term env mle mlt d' []
+ | [] ->
+ let env' = push_rel_assum (Name id, t) env in
+ let id, a =
+ if is_default env t
+ then id, new_meta ()
+ else dummy_name, Tdummy in
+ let b = new_meta () in
+ (* If [mlt] cannot be unified with an arrow type, then magic! *)
+ let magic = needs_magic (mlt, Tarr (a, b)) in
+ let d' = extract_term env' (Mlenv.push_type mle a) b d [] in
+ put_magic_if magic (MLlam (id, d')))
+ | LetIn (n, c1, t1, c2) ->
+ let id = id_of_name n in
+ let env' = push_rel (Name id, Some c1, t1) env in
+ let args' = List.map (lift 1) args in
+ if is_default env t1 then
+ let a = new_meta () in
+ let c1' = extract_term env mle a c1 [] in
+ (* The type of [c1'] is generalized and stored in [mle]. *)
+ let mle' = Mlenv.push_gen mle a in
+ MLletin (id, c1', extract_term env' mle' mlt c2 args')
+ else
+ let mle' = Mlenv.push_std_type mle Tdummy in
+ ast_pop (extract_term env' mle' mlt c2 args')
+ | Const kn ->
+ extract_cst_app env mle mlt kn args
+ | Construct cp ->
+ extract_cons_app env mle mlt cp args
+ | Rel n ->
+ (* As soon as the expected [mlt] for the head is known, *)
+ (* we unify it with an fresh copy of the stored type of [Rel n]. *)
+ let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n)
+ in extract_app env mle mlt extract_rel args
+ | Case ({ci_ind=ip},_,c0,br) ->
+ extract_app env mle mlt (extract_case env mle (ip,c0,br)) args
+ | Fix ((_,i),recd) ->
+ extract_app env mle mlt (extract_fix env mle i recd) args
+ | CoFix (i,recd) ->
+ extract_app env mle mlt (extract_fix env mle i recd) args
+ | Cast (c, _) -> extract_term env mle mlt c args
+ | Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false
+
+(*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *)
+
+and extract_maybe_term env mle mlt c =
+ if is_default env (type_of env c) then extract_term env mle mlt c []
+ else put_magic (mlt, Tdummy) MLdummy
+
+(*s Generic way to deal with an application. *)
+
+(* We first type all arguments starting with unknown meta types.
+ This gives us the expected type of the head. Then we use the
+ [mk_head] to produce the ML head from this type. *)
+
+and extract_app env mle mlt mk_head args =
+ let metas = List.map new_meta args in
+ let type_head = type_recomp (metas, mlt) in
+ let mlargs = List.map2 (extract_maybe_term env mle) metas args in
+ if mlargs = [] then mk_head type_head else MLapp (mk_head type_head, mlargs)
+
+(*s Auxiliary function used to extract arguments of constant or constructor. *)
+
+and make_mlargs env e s args typs =
+ let l = ref s in
+ let keep () = match !l with [] -> true | b :: s -> l:=s; b in
+ let rec f = function
+ | [], [] -> []
+ | a::la, t::lt when keep() -> extract_maybe_term env e t a :: (f (la,lt))
+ | _::la, _::lt -> f (la,lt)
+ | _ -> assert false
+ in f (args,typs)
+
+(*s Extraction of a constant applied to arguments. *)
+
+and extract_cst_app env mle mlt kn args =
+ (* First, the [ml_schema] of the constant, in expanded version. *)
+ let nb,t = record_constant_type env kn None in
+ let schema = nb, type_expand env t in
+ (* Then the expected type of this constant. *)
+ let metas = List.map new_meta args in
+ (* We compare stored and expected types in two steps. *)
+ (* First, can [kn] be applied to all args ? *)
+ let a = new_meta () in
+ let magic1 = needs_magic (type_recomp (metas, a), instantiation schema) in
+ (* Second, is the resulting type compatible with the expected type [mlt] ? *)
+ let magic2 = needs_magic (a, mlt) in
+ (* The internal head receives a magic if [magic1] *)
+ let head = put_magic_if magic1 (MLglob (ConstRef kn)) in
+ (* Now, the extraction of the arguments. *)
+ let s = type_to_sign env (snd schema) in
+ let ls = List.length s in
+ let la = List.length args in
+ let mla = make_mlargs env mle s args metas in
+ let mla =
+ if not magic1 then
+ try
+ let l,l' = list_chop (projection_arity (ConstRef kn)) mla in
+ if l' <> [] then (List.map (fun _ -> MLexn "Proj Args") l) @ l'
+ else mla
+ with _ -> mla
+ else mla
+ in
+ (* Different situations depending of the number of arguments: *)
+ if ls = 0 then put_magic_if magic2 head
+ else if List.mem true s then
+ if la >= ls then put_magic_if (magic2 && not magic1) (MLapp (head, mla))
+ else
+ (* Not enough arguments. We complete via eta-expansion. *)
+ let ls' = ls-la in
+ let s' = list_lastn ls' s in
+ let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
+ put_magic_if magic2 (anonym_or_dummy_lams (MLapp (head, mla)) s')
+ else
+ (* In the special case of always false signature, one dummy lam is left. *)
+ (* So a [MLdummy] is left accordingly. *)
+ if la >= ls
+ then put_magic_if (magic2 && not magic1) (MLapp (head, MLdummy :: mla))
+ else put_magic_if magic2 (dummy_lams head (ls-la-1))
+
+(*s Extraction of an inductive constructor applied to arguments. *)
+
+(* \begin{itemize}
+ \item In ML, contructor arguments are uncurryfied.
+ \item We managed to suppress logical parts inside inductive definitions,
+ but they must appears outside (for partial applications for instance)
+ \item We also suppressed all Coq parameters to the inductives, since
+ they are fixed, and thus are not used for the computation.
+ \end{itemize} *)
+
+and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args =
+ (* First, we build the type of the constructor, stored in small pieces. *)
+ let mi = extract_ind env kn in
+ let params_nb = mi.ind_nparams in
+ let oi = mi.ind_packets.(i) in
+ let nb_tvars = List.length oi.ip_vars
+ and types = List.map (type_expand env) oi.ip_types.(j-1) in
+ let list_tvar = List.map (fun i -> Tvar i) (interval 1 nb_tvars) in
+ let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in
+ let type_cons = instantiation (nb_tvars, type_cons) in
+ (* Then, the usual variables [s], [ls], [la], ... *)
+ let s = List.map ((<>) Tdummy) types in
+ let ls = List.length s in
+ let la = List.length args in
+ assert (la <= ls + params_nb);
+ let la' = max 0 (la - params_nb) in
+ let args' = list_lastn la' args in
+ (* Now, we build the expected type of the constructor *)
+ let metas = List.map new_meta args' in
+ (* If stored and expected types differ, then magic! *)
+ let a = new_meta () in
+ let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in
+ let magic2 = needs_magic (a, mlt) in
+ let head mla =
+ if mi.ind_info = Singleton then
+ put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *)
+ else put_magic_if magic1 (MLcons (ConstructRef cp, mla))
+ in
+ (* Different situations depending of the number of arguments: *)
+ if la < params_nb then
+ let head' = head (eta_args_sign ls s) in
+ put_magic_if magic2
+ (dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la))
+ else
+ let mla = make_mlargs env mle s args' metas in
+ if la = ls + params_nb
+ then put_magic_if (magic2 && not magic1) (head mla)
+ else (* [ params_nb <= la <= ls + params_nb ] *)
+ let ls' = params_nb + ls - la in
+ let s' = list_lastn ls' s in
+ let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
+ put_magic_if magic2 (anonym_or_dummy_lams (head mla) s')
+
+(*S Extraction of a case. *)
+
+and extract_case env mle ((kn,i) as ip,c,br) mlt =
+ (* [br]: bodies of each branch (in functional form) *)
+ (* [ni]: number of arguments without parameters in each branch *)
+ let ni = mis_constr_nargs_env env ip in
+ let br_size = Array.length br in
+ assert (Array.length ni = br_size);
+ if br_size = 0 then begin
+ add_recursors env kn; (* May have passed unseen if logical ... *)
+ MLexn "absurd case"
+ end else
+ (* [c] has an inductive type, and is not a type scheme type. *)
+ let t = type_of env c in
+ (* The only non-informative case: [c] is of sort [Prop] *)
+ if (sort_of env t) = InProp then
+ begin
+ add_recursors env kn; (* May have passed unseen if logical ... *)
+ (* Logical singleton case: *)
+ (* [match c with C i j k -> t] becomes [t'] *)
+ assert (br_size = 1);
+ let s = iterate (fun l -> false :: l) ni.(0) [] in
+ let mlt = iterate (fun t -> Tarr (Tdummy, t)) ni.(0) mlt in
+ let e = extract_maybe_term env mle mlt br.(0) in
+ snd (case_expunge s e)
+ end
+ else
+ let mi = extract_ind env kn in
+ let params_nb = mi.ind_nparams in
+ let oi = mi.ind_packets.(i) in
+ let metas = Array.init (List.length oi.ip_vars) new_meta in
+ (* The extraction of the head. *)
+ let type_head = Tglob (IndRef ip, Array.to_list metas) in
+ let a = extract_term env mle type_head c [] in
+ (* The extraction of each branch. *)
+ let extract_branch i =
+ (* The types of the arguments of the corresponding constructor. *)
+ let f t = type_subst_vect metas (type_expand env t) in
+ let l = List.map f oi.ip_types.(i) in
+ (* Extraction of the branch (in functional form). *)
+ let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in
+ (* We suppress dummy arguments according to signature. *)
+ let ids,e = case_expunge (List.map ((<>) Tdummy) l) e in
+ (ConstructRef (ip,i+1), List.rev ids, e)
+ in
+ if mi.ind_info = Singleton then
+ begin
+ (* Informative singleton case: *)
+ (* [match c with C i -> t] becomes [let i = c' in t'] *)
+ assert (br_size = 1);
+ let (_,ids,e') = extract_branch 0 in
+ assert (List.length ids = 1);
+ MLletin (List.hd ids,a,e')
+ end
+ else
+ (* Standard case: we apply [extract_branch]. *)
+ MLcase (a, Array.init br_size extract_branch)
+
+(*s Extraction of a (co)-fixpoint. *)
+
+and extract_fix env mle i (fi,ti,ci as recd) mlt =
+ let env = push_rec_types recd env in
+ let metas = Array.map new_meta fi in
+ metas.(i) <- mlt;
+ let mle = Array.fold_left Mlenv.push_type mle metas in
+ let ei = array_map2 (extract_maybe_term env mle) metas ci in
+ MLfix (i, Array.map id_of_name fi, ei)
+
+(*S ML declarations. *)
+
+(* [decomp_lams_eta env c t] finds the number [n] of products in the type [t],
+ and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *)
+
+let rec decomp_lams_eta_n n env c t =
+ let rels = fst (decomp_n_prod env none n t) in
+ let rels = List.map (fun (id,_,c) -> (id,c)) rels in
+ let m = nb_lam c in
+ if m >= n then decompose_lam_n n c
+ else
+ let rels',c = decompose_lam c in
+ let d = n - m in
+ (* we'd better keep rels' as long as possible. *)
+ let rels = (list_firstn d rels) @ rels' in
+ let eta_args = List.rev_map mkRel (interval 1 d) in
+ rels, applist (lift d c,eta_args)
+
+(*s From a constant to a ML declaration. *)
+
+let extract_std_constant env kn body typ =
+ reset_meta_count ();
+ (* The short type [t] (i.e. possibly with abbreviations). *)
+ let t = snd (record_constant_type env kn (Some typ)) in
+ (* The real type [t']: without head lambdas, expanded, *)
+ (* and with [Tvar] translated to [Tvar'] (not instantiable). *)
+ let l,t' = type_decomp (type_expand env (var2var' t)) in
+ let s = List.map ((<>) Tdummy) l in
+ (* The initial ML environment. *)
+ let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in
+ (* Decomposing the top level lambdas of [body]. *)
+ let rels,c = decomp_lams_eta_n (List.length s) env body typ in
+ (* The lambdas names. *)
+ let ids = List.map (fun (n,_) -> id_of_name n) rels in
+ (* The according Coq environment. *)
+ let env = push_rels_assum rels env in
+ (* The real extraction: *)
+ let e = extract_term env mle t' c [] in
+ (* Expunging term and type from dummy lambdas. *)
+ term_expunge s (ids,e), type_expunge env t
+
+let extract_fixpoint env vkn (fi,ti,ci) =
+ let n = Array.length vkn in
+ let types = Array.make n Tdummy
+ and terms = Array.make n MLdummy in
+ (* for replacing recursive calls [Rel ..] by the corresponding [Const]: *)
+ let sub = List.rev_map mkConst (Array.to_list vkn) in
+ for i = 0 to n-1 do
+ if sort_of env ti.(i) <> InProp then begin
+ let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in
+ terms.(i) <- e;
+ types.(i) <- t;
+ end
+ done;
+ Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types)
+
+let extract_constant env kn cb =
+ let r = ConstRef kn in
+ let typ = cb.const_type in
+ match cb.const_body with
+ | None -> (* A logical axiom is risky, an informative one is fatal. *)
+ (match flag_of_type env typ with
+ | (Info,TypeScheme) ->
+ if not (is_custom r) then warning_info_ax r;
+ let n = type_scheme_nb_args env typ in
+ let ids = iterate (fun l -> anonymous::l) n [] in
+ Dtype (r, ids, Taxiom)
+ | (Info,Default) ->
+ if not (is_custom r) then warning_info_ax r;
+ let t = snd (record_constant_type env kn (Some typ)) in
+ Dterm (r, MLaxiom, type_expunge env t)
+ | (Logic,TypeScheme) -> warning_log_ax r; Dtype (r, [], Tdummy)
+ | (Logic,Default) -> warning_log_ax r; Dterm (r, MLdummy, Tdummy))
+ | Some body ->
+ (match flag_of_type env typ with
+ | (Logic, Default) -> Dterm (r, MLdummy, Tdummy)
+ | (Logic, TypeScheme) -> Dtype (r, [], Tdummy)
+ | (Info, Default) ->
+ let e,t = extract_std_constant env kn (force body) typ in
+ Dterm (r,e,t)
+ | (Info, TypeScheme) ->
+ let s,vl = type_sign_vl env typ in
+ let db = db_from_sign s in
+ let t = extract_type_scheme env db (force body) (List.length s)
+ in Dtype (r, vl, t))
+
+let extract_constant_spec env kn cb =
+ let r = ConstRef kn in
+ let typ = cb.const_type in
+ match flag_of_type env typ with
+ | (Logic, TypeScheme) -> Stype (r, [], Some Tdummy)
+ | (Logic, Default) -> Sval (r, Tdummy)
+ | (Info, TypeScheme) ->
+ let s,vl = type_sign_vl env typ in
+ (match cb.const_body with
+ | None -> Stype (r, vl, None)
+ | Some body ->
+ let db = db_from_sign s in
+ let t = extract_type_scheme env db (force body) (List.length s)
+ in Stype (r, vl, Some t))
+ | (Info, Default) ->
+ let t = snd (record_constant_type env kn (Some typ)) in
+ Sval (r, type_expunge env t)
+
+let extract_inductive env kn =
+ let ind = extract_ind env kn in
+ add_recursors env kn;
+ let f l = List.filter (type_neq env Tdummy) l in
+ let packets =
+ Array.map (fun p -> { p with ip_types = Array.map f p.ip_types })
+ ind.ind_packets
+ in { ind with ind_packets = packets }
+
+(*s From a global reference to a ML declaration. *)
+
+let extract_declaration env r = match r with
+ | ConstRef kn -> extract_constant env kn (Environ.lookup_constant kn env)
+ | IndRef (kn,_) -> Dind (kn, extract_inductive env kn)
+ | ConstructRef ((kn,_),_) -> Dind (kn, extract_inductive env kn)
+ | VarRef kn -> assert false
+
+(*s Without doing complete extraction, just guess what a constant would be. *)
+
+type kind = Logical | Term | Type
+
+let constant_kind env cb =
+ match flag_of_type env cb.const_type with
+ | (Logic,_) -> Logical
+ | (Info,TypeScheme) -> Type
+ | (Info,Default) -> Term
+
+(*s Is a [ml_decl] logical ? *)
+
+let logical_decl = function
+ | Dterm (_,MLdummy,Tdummy) -> true
+ | Dtype (_,[],Tdummy) -> true
+ | Dfix (_,av,tv) ->
+ (array_for_all ((=) MLdummy) av) && (array_for_all ((=) Tdummy) tv)
+ | Dind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets
+ | _ -> false
+
+(*s Is a [ml_spec] logical ? *)
+
+let logical_spec = function
+ | Stype (_, [], Some Tdummy) -> true
+ | Sval (_,Tdummy) -> true
+ | Sind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets
+ | _ -> false
+
+
+
+
+
+
diff --git a/contrib/extraction/extraction.mli b/contrib/extraction/extraction.mli
new file mode 100644
index 00000000..fc5782c9
--- /dev/null
+++ b/contrib/extraction/extraction.mli
@@ -0,0 +1,42 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: extraction.mli,v 1.27.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
+
+(*s Extraction from Coq terms to Miniml. *)
+
+open Names
+open Term
+open Declarations
+open Environ
+open Libnames
+open Miniml
+
+val extract_constant : env -> kernel_name -> constant_body -> ml_decl
+
+val extract_constant_spec : env -> kernel_name -> constant_body -> ml_spec
+
+val extract_fixpoint :
+ env -> kernel_name array -> (constr, types) prec_declaration -> ml_decl
+
+val extract_inductive : env -> kernel_name -> ml_ind
+
+(*s ML declaration corresponding to a Coq reference. *)
+
+val extract_declaration : env -> global_reference -> ml_decl
+
+(*s Without doing complete extraction, just guess what a constant would be. *)
+
+type kind = Logical | Term | Type
+
+val constant_kind : env -> constant_body -> kind
+
+(*s Is a [ml_decl] or a [ml_spec] logical ? *)
+
+val logical_decl : ml_decl -> bool
+val logical_spec : ml_spec -> bool
diff --git a/contrib/extraction/g_extraction.ml4 b/contrib/extraction/g_extraction.ml4
new file mode 100644
index 00000000..33a6117d
--- /dev/null
+++ b/contrib/extraction/g_extraction.ml4
@@ -0,0 +1,119 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* ML names *)
+
+open Vernacexpr
+open Pcoq
+open Genarg
+open Pp
+
+let pr_mlname _ _ s =
+ spc () ++
+ (if !Options.v7 && not (Options.do_translate()) then qs s
+ else Pptacticnew.qsnew s)
+
+ARGUMENT EXTEND mlname
+ TYPED AS string
+ PRINTED BY pr_mlname
+| [ preident(id) ] -> [ id ]
+| [ string(s) ] -> [ s ]
+END
+
+open Table
+open Extract_env
+
+VERNAC ARGUMENT EXTEND language
+| [ "Ocaml" ] -> [ Ocaml ]
+| [ "Haskell" ] -> [ Haskell ]
+| [ "Scheme" ] -> [ Scheme ]
+| [ "Toplevel" ] -> [ Toplevel ]
+END
+
+(* Temporary for translator *)
+if !Options.v7 then
+ let pr_language _ _ = function
+ | Ocaml -> str " Ocaml"
+ | Haskell -> str " Haskell"
+ | Scheme -> str " Scheme"
+ | Toplevel -> str " Toplevel"
+ in
+ let globwit_language = Obj.magic rawwit_language in
+ let wit_language = Obj.magic rawwit_language in
+ Pptactic.declare_extra_genarg_pprule true
+ (rawwit_language, pr_language)
+ (globwit_language, pr_language)
+ (wit_language, pr_language);
+
+(* Extraction commands *)
+
+VERNAC COMMAND EXTEND Extraction
+(* Extraction in the Coq toplevel *)
+| [ "Extraction" global(x) ] -> [ extraction x ]
+| [ "Recursive" "Extraction" ne_global_list(l) ] -> [ extraction_rec l ]
+
+(* Monolithic extraction to a file *)
+| [ "Extraction" string(f) ne_global_list(l) ]
+ -> [ extraction_file f l ]
+END
+
+(* Modular extraction (one Coq library = one ML module) *)
+VERNAC COMMAND EXTEND ExtractionLibrary
+| [ "Extraction" "Library" ident(m) ]
+ -> [ extraction_library false m ]
+END
+
+VERNAC COMMAND EXTEND RecursiveExtractionLibrary
+| [ "Recursive" "Extraction" "Library" ident(m) ]
+ -> [ extraction_library true m ]
+END
+
+(* Target Language *)
+VERNAC COMMAND EXTEND ExtractionLanguage
+| [ "Extraction" "Language" language(l) ]
+ -> [ extraction_language l ]
+END
+
+VERNAC COMMAND EXTEND ExtractionInline
+(* Custom inlining directives *)
+| [ "Extraction" "Inline" ne_global_list(l) ]
+ -> [ extraction_inline true l ]
+END
+
+VERNAC COMMAND EXTEND ExtractionNoInline
+| [ "Extraction" "NoInline" ne_global_list(l) ]
+ -> [ extraction_inline false l ]
+END
+
+VERNAC COMMAND EXTEND PrintExtractionInline
+| [ "Print" "Extraction" "Inline" ]
+ -> [ print_extraction_inline () ]
+END
+
+VERNAC COMMAND EXTEND ResetExtractionInline
+| [ "Reset" "Extraction" "Inline" ]
+ -> [ reset_extraction_inline () ]
+END
+
+(* Overriding of a Coq object by an ML one *)
+VERNAC COMMAND EXTEND ExtractionConstant
+| [ "Extract" "Constant" global(x) string_list(idl) "=>" mlname(y) ]
+ -> [ extract_constant_inline false x idl y ]
+END
+
+VERNAC COMMAND EXTEND ExtractionInlinedConstant
+| [ "Extract" "Inlined" "Constant" global(x) "=>" mlname(y) ]
+ -> [ extract_constant_inline true x [] y ]
+END
+
+VERNAC COMMAND EXTEND ExtractionInductive
+| [ "Extract" "Inductive" global(x) "=>" mlname(id) "[" mlname_list(idl) "]" ]
+ -> [ extract_inductive x (id,idl) ]
+END
diff --git a/contrib/extraction/haskell.ml b/contrib/extraction/haskell.ml
new file mode 100644
index 00000000..29c8cd18
--- /dev/null
+++ b/contrib/extraction/haskell.ml
@@ -0,0 +1,280 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: haskell.ml,v 1.40.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*s Production of Haskell syntax. *)
+
+open Pp
+open Util
+open Names
+open Nameops
+open Libnames
+open Table
+open Miniml
+open Mlutil
+open Ocaml
+
+(*s Haskell renaming issues. *)
+
+let keywords =
+ List.fold_right (fun s -> Idset.add (id_of_string s))
+ [ "case"; "class"; "data"; "default"; "deriving"; "do"; "else";
+ "if"; "import"; "in"; "infix"; "infixl"; "infixr"; "instance";
+ "let"; "module"; "newtype"; "of"; "then"; "type"; "where"; "_"; "__";
+ "as"; "qualified"; "hiding" ; "unit" ]
+ Idset.empty
+
+let preamble prm used_modules (mldummy,tdummy,tunknown) =
+ let pp_mp = function
+ | MPfile d -> pr_upper_id (List.hd (repr_dirpath d))
+ | _ -> assert false
+ in
+ str "module " ++ pr_upper_id prm.mod_name ++ str " where" ++ fnl ()
+ ++ fnl() ++
+ str "import qualified Prelude" ++ fnl() ++
+ prlist (fun mp -> str "import qualified " ++ pp_mp mp ++ fnl ()) used_modules
+ ++ fnl () ++
+ (if mldummy then
+ str "__ = Prelude.error \"Logical or arity value used\""
+ ++ fnl () ++ fnl()
+ else mt())
+
+let preamble_sig prm used_modules (mldummy,tdummy,tunknown) = failwith "TODO"
+
+let pp_abst = function
+ | [] -> (mt ())
+ | l -> (str "\\" ++
+ prlist_with_sep (fun () -> (str " ")) pr_id l ++
+ str " ->" ++ spc ())
+
+let pr_lower_id id = pr_id (lowercase_id id)
+
+(*s The pretty-printing functor. *)
+
+module Make = functor(P : Mlpp_param) -> struct
+
+let local_mpl = ref ([] : module_path list)
+
+let pp_global r = P.pp_global !local_mpl r
+let empty_env () = [], P.globals()
+
+(*s Pretty-printing of types. [par] is a boolean indicating whether parentheses
+ are needed or not. *)
+
+let rec pp_type par vl t =
+ let rec pp_rec par = function
+ | Tmeta _ | Tvar' _ -> assert false
+ | Tvar i -> (try pr_id (List.nth vl (pred i)) with _ -> (str "a" ++ int i))
+ | Tglob (r,[]) -> pp_global r
+ | Tglob (r,l) ->
+ pp_par par
+ (pp_global r ++ spc () ++ prlist_with_sep spc (pp_type true vl) l)
+ | Tarr (t1,t2) ->
+ pp_par par
+ (pp_rec true t1 ++ spc () ++ str "->" ++ spc () ++ pp_rec false t2)
+ | Tdummy -> str "()"
+ | Tunknown -> str "()"
+ | Taxiom -> str "() -- AXIOM TO BE REALIZED\n"
+ | Tcustom s -> str s
+ in
+ hov 0 (pp_rec par t)
+
+(*s Pretty-printing of expressions. [par] indicates whether
+ parentheses are needed or not. [env] is the list of names for the
+ de Bruijn variables. [args] is the list of collected arguments
+ (already pretty-printed). *)
+
+let expr_needs_par = function
+ | MLlam _ -> true
+ | MLcase _ -> true
+ | _ -> false
+
+
+let rec pp_expr par env args =
+ let par' = args <> [] || par
+ and apply st = pp_apply st par args in
+ function
+ | MLrel n ->
+ let id = get_db_name n env in apply (pr_id id)
+ | MLapp (f,args') ->
+ let stl = List.map (pp_expr true env []) args' in
+ pp_expr par env (stl @ args) f
+ | MLlam _ as a ->
+ let fl,a' = collect_lams a in
+ let fl,env' = push_vars fl env in
+ let st = (pp_abst (List.rev fl) ++ pp_expr false env' [] a') in
+ apply (pp_par par' st)
+ | MLletin (id,a1,a2) ->
+ let i,env' = push_vars [id] env in
+ let pp_id = pr_id (List.hd i)
+ and pp_a1 = pp_expr false env [] a1
+ and pp_a2 = pp_expr (not par && expr_needs_par a2) env' [] a2 in
+ hv 0
+ (apply
+ (pp_par par'
+ (hv 0
+ (hov 5
+ (str "let" ++ spc () ++ pp_id ++ str " = " ++ pp_a1) ++
+ spc () ++ str "in") ++
+ spc () ++ hov 0 pp_a2)))
+ | MLglob r ->
+ apply (pp_global r)
+ | MLcons (r,[]) ->
+ assert (args=[]); pp_global r
+ | MLcons (r,[a]) ->
+ assert (args=[]);
+ pp_par par (pp_global r ++ spc () ++ pp_expr true env [] a)
+ | MLcons (r,args') ->
+ assert (args=[]);
+ pp_par par (pp_global r ++ spc () ++
+ prlist_with_sep spc (pp_expr true env []) args')
+ | MLcase (t, pv) ->
+ apply (pp_par par'
+ (v 0 (str "case " ++ pp_expr false env [] t ++ str " of" ++
+ fnl () ++ str " " ++ pp_pat env pv)))
+ | MLfix (i,ids,defs) ->
+ let ids',env' = push_vars (List.rev (Array.to_list ids)) env in
+ pp_fix par env' i (Array.of_list (List.rev ids'),defs) args
+ | MLexn s ->
+ (* An [MLexn] may be applied, but I don't really care. *)
+ pp_par par (str "Prelude.error" ++ spc () ++ qs s)
+ | MLdummy ->
+ str "__" (* An [MLdummy] may be applied, but I don't really care. *)
+ | MLmagic a -> pp_expr par env args a
+ | MLaxiom -> pp_par par (str "Prelude.error \"AXIOM TO BE REALIZED\"")
+
+and pp_pat env pv =
+ let pp_one_pat (name,ids,t) =
+ let ids,env' = push_vars (List.rev ids) env in
+ let par = expr_needs_par t in
+ hov 2 (pp_global name ++
+ (match ids with
+ | [] -> mt ()
+ | _ -> (str " " ++
+ prlist_with_sep
+ (fun () -> (spc ())) pr_id (List.rev ids))) ++
+ str " ->" ++ spc () ++ pp_expr par env' [] t)
+ in
+ (prvect_with_sep (fun () -> (fnl () ++ str " ")) pp_one_pat pv)
+
+(*s names of the functions ([ids]) are already pushed in [env],
+ and passed here just for convenience. *)
+
+and pp_fix par env i (ids,bl) args =
+ pp_par par
+ (v 0
+ (v 2 (str "let" ++ fnl () ++
+ prvect_with_sep fnl
+ (fun (fi,ti) -> pp_function env (pr_id fi) ti)
+ (array_map2 (fun a b -> a,b) ids bl)) ++
+ fnl () ++
+ hov 2 (str "in " ++ pp_apply (pr_id ids.(i)) false args)))
+
+and pp_function env f t =
+ let bl,t' = collect_lams t in
+ let bl,env' = push_vars bl env in
+ (f ++ pr_binding (List.rev bl) ++
+ str " =" ++ fnl () ++ str " " ++
+ hov 2 (pp_expr false env' [] t'))
+
+(*s Pretty-printing of inductive types declaration. *)
+
+let pp_comment s = str "-- " ++ s ++ fnl ()
+
+let pp_logical_ind packet =
+ pp_comment (pr_id packet.ip_typename ++ str " : logical inductive") ++
+ pp_comment (str "with constructors : " ++
+ prvect_with_sep spc pr_id packet.ip_consnames)
+
+let pp_singleton kn packet =
+ let l = rename_tvars keywords packet.ip_vars in
+ let l' = List.rev l in
+ hov 2 (str "type " ++ pp_global (IndRef (kn,0)) ++ spc () ++
+ prlist_with_sep spc pr_id l ++
+ (if l <> [] then str " " else mt ()) ++ str "=" ++ spc () ++
+ pp_type false l' (List.hd packet.ip_types.(0)) ++ fnl () ++
+ pp_comment (str "singleton inductive, whose constructor was " ++
+ pr_id packet.ip_consnames.(0)))
+
+let pp_one_ind ip pl cv =
+ let pl = rename_tvars keywords pl in
+ let pp_constructor (r,l) =
+ (pp_global r ++
+ match l with
+ | [] -> (mt ())
+ | _ -> (str " " ++
+ prlist_with_sep
+ (fun () -> (str " ")) (pp_type true (List.rev pl)) l))
+ in
+ str (if cv = [||] then "type " else "data ") ++
+ pp_global (IndRef ip) ++ str " " ++
+ prlist_with_sep (fun () -> str " ") pr_lower_id pl ++
+ (if pl = [] then mt () else str " ") ++
+ if cv = [||] then str "= () -- empty inductive"
+ else
+ (v 0 (str "= " ++
+ prvect_with_sep (fun () -> fnl () ++ str " | ") pp_constructor
+ (Array.mapi (fun i c -> ConstructRef (ip,i+1),c) cv)))
+
+let rec pp_ind first kn i ind =
+ if i >= Array.length ind.ind_packets then
+ if first then mt () else fnl ()
+ else
+ let ip = (kn,i) in
+ let p = ind.ind_packets.(i) in
+ if is_custom (IndRef (kn,i)) then pp_ind first kn (i+1) ind
+ else
+ if p.ip_logical then
+ pp_logical_ind p ++ pp_ind first kn (i+1) ind
+ else
+ pp_one_ind ip p.ip_vars p.ip_types ++ fnl () ++
+ pp_ind false kn (i+1) ind
+
+
+(*s Pretty-printing of a declaration. *)
+
+let pp_decl mpl =
+ local_mpl := mpl;
+ function
+ | Dind (kn,i) when i.ind_info = Singleton ->
+ pp_singleton kn i.ind_packets.(0) ++ fnl ()
+ | Dind (kn,i) -> hov 0 (pp_ind true kn 0 i)
+ | Dtype (r, l, t) ->
+ if is_inline_custom r then mt ()
+ else
+ let l = rename_tvars keywords l in
+ let l' = List.rev l in
+ hov 2 (str "type " ++ pp_global r ++ spc () ++
+ prlist (fun id -> pr_id id ++ str " ") l ++
+ str "=" ++ spc () ++ pp_type false l' t) ++ fnl () ++ fnl ()
+ | Dfix (rv, defs,_) ->
+ let ppv = Array.map pp_global rv in
+ prlist_with_sep (fun () -> fnl () ++ fnl ())
+ (fun (pi,ti) -> pp_function (empty_env ()) pi ti)
+ (List.combine (Array.to_list ppv) (Array.to_list defs))
+ ++ fnl () ++ fnl ()
+ | Dterm (r, a, _) ->
+ if is_inline_custom r then mt ()
+ else
+ hov 0 (pp_function (empty_env ()) (pp_global r) a ++ fnl () ++ fnl ())
+
+let pp_structure_elem mpl = function
+ | (l,SEdecl d) -> pp_decl mpl d
+ | (l,SEmodule m) ->
+ failwith "TODO: Haskell extraction of modules not implemented yet"
+ | (l,SEmodtype m) ->
+ failwith "TODO: Haskell extraction of modules not implemented yet"
+
+let pp_struct =
+ prlist (fun (mp,sel) -> prlist (pp_structure_elem [mp]) sel)
+
+let pp_signature s = failwith "TODO"
+
+end
+
diff --git a/contrib/extraction/haskell.mli b/contrib/extraction/haskell.mli
new file mode 100644
index 00000000..4da5db0c
--- /dev/null
+++ b/contrib/extraction/haskell.mli
@@ -0,0 +1,20 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: haskell.mli,v 1.15.6.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+open Pp
+open Names
+open Miniml
+
+val keywords : Idset.t
+
+val preamble :
+ extraction_params -> module_path list -> bool * bool * bool -> std_ppcmds
+
+module Make : functor(P : Mlpp_param) -> Mlpp
diff --git a/contrib/extraction/miniml.mli b/contrib/extraction/miniml.mli
new file mode 100644
index 00000000..866ff847
--- /dev/null
+++ b/contrib/extraction/miniml.mli
@@ -0,0 +1,159 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: miniml.mli,v 1.46.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*s Target language for extraction: a core ML called MiniML. *)
+
+open Pp
+open Util
+open Names
+open Libnames
+
+(* The [signature] type is used to know how many arguments a CIC
+ object expects, and what these arguments will become in the ML
+ object. *)
+
+(* Convention: outmost lambda/product gives the head of the list,
+ and [true] means that the argument is to be kept. *)
+
+type signature = bool list
+
+(*s ML type expressions. *)
+
+type ml_type =
+ | Tarr of ml_type * ml_type
+ | Tglob of global_reference * ml_type list
+ | Tvar of int
+ | Tvar' of int (* same as Tvar, used to avoid clash *)
+ | Tmeta of ml_meta (* used during ML type reconstruction *)
+ | Tdummy
+ | Tunknown
+ | Taxiom
+ | Tcustom of string
+
+and ml_meta = { id : int; mutable contents : ml_type option }
+
+(* ML type schema.
+ The integer is the number of variable in the schema. *)
+
+type ml_schema = int * ml_type
+
+(*s ML inductive types. *)
+
+type inductive_info = Record | Singleton | Coinductive | Standard
+
+(* A [ml_ind_packet] is the miniml counterpart of a [one_inductive_body].
+ If the inductive is logical ([ip_logical = false]), then all other fields
+ are unused. Otherwise,
+ [ip_sign] is a signature concerning the arguments of the inductive,
+ [ip_vars] contains the names of the type variables surviving in ML,
+ [ip_types] contains the ML types of all constructors.
+*)
+
+type ml_ind_packet = {
+ ip_typename : identifier;
+ ip_consnames : identifier array;
+ ip_logical : bool;
+ ip_sign : signature;
+ ip_vars : identifier list;
+ ip_types : (ml_type list) array }
+
+(* [ip_nparams] contains the number of parameters. *)
+
+type ml_ind = {
+ ind_info : inductive_info;
+ ind_nparams : int;
+ ind_packets : ml_ind_packet array }
+
+(*s ML terms. *)
+
+type ml_ast =
+ | MLrel of int
+ | MLapp of ml_ast * ml_ast list
+ | MLlam of identifier * ml_ast
+ | MLletin of identifier * ml_ast * ml_ast
+ | MLglob of global_reference
+ | MLcons of global_reference * ml_ast list
+ | MLcase of ml_ast * (global_reference * identifier list * ml_ast) array
+ | MLfix of int * identifier array * ml_ast array
+ | MLexn of string
+ | MLdummy
+ | MLaxiom
+ | MLmagic of ml_ast
+
+(*s ML declarations. *)
+
+type ml_decl =
+ | Dind of kernel_name * ml_ind
+ | Dtype of global_reference * identifier list * ml_type
+ | Dterm of global_reference * ml_ast * ml_type
+ | Dfix of global_reference array * ml_ast array * ml_type array
+
+type ml_spec =
+ | Sind of kernel_name * ml_ind
+ | Stype of global_reference * identifier list * ml_type option
+ | Sval of global_reference * ml_type
+
+type ml_specif =
+ | Spec of ml_spec
+ | Smodule of ml_module_type
+ | Smodtype of ml_module_type
+
+and ml_module_type =
+ | MTident of kernel_name
+ | MTfunsig of mod_bound_id * ml_module_type * ml_module_type
+ | MTsig of mod_self_id * ml_module_sig
+
+and ml_module_sig = (label * ml_specif) list
+
+type ml_structure_elem =
+ | SEdecl of ml_decl
+ | SEmodule of ml_module
+ | SEmodtype of ml_module_type
+
+and ml_module_expr =
+ | MEident of module_path
+ | MEfunctor of mod_bound_id * ml_module_type * ml_module_expr
+ | MEstruct of mod_self_id * ml_module_structure
+ | MEapply of ml_module_expr * ml_module_expr
+
+and ml_module_structure = (label * ml_structure_elem) list
+
+and ml_module =
+ { ml_mod_expr : ml_module_expr;
+ ml_mod_type : ml_module_type }
+
+(* NB: we do not translate the [mod_equiv] field, since [mod_equiv = mp]
+ implies that [mod_expr = MEBident mp]. Same with [msb_equiv]. *)
+
+type ml_structure = (module_path * ml_module_structure) list
+
+type ml_signature = (module_path * ml_module_sig) list
+
+(*s Pretty-printing of MiniML in a given concrete syntax is parameterized
+ by a function [pp_global] that pretty-prints global references.
+ The resulting pretty-printer is a module of type [Mlpp] providing
+ functions to print types, terms and declarations. *)
+
+module type Mlpp_param = sig
+ val globals : unit -> Idset.t
+ val pp_global : module_path list -> global_reference -> std_ppcmds
+ val pp_module : module_path list -> module_path -> std_ppcmds
+end
+
+module type Mlpp = sig
+ val pp_decl : module_path list -> ml_decl -> std_ppcmds
+ val pp_struct : ml_structure -> std_ppcmds
+ val pp_signature : ml_signature -> std_ppcmds
+end
+
+type extraction_params =
+ { modular : bool;
+ mod_name : identifier;
+ to_appear : global_reference list }
diff --git a/contrib/extraction/mlutil.ml b/contrib/extraction/mlutil.ml
new file mode 100644
index 00000000..fbe423a7
--- /dev/null
+++ b/contrib/extraction/mlutil.ml
@@ -0,0 +1,1136 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: mlutil.ml,v 1.104.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*i*)
+open Pp
+open Util
+open Names
+open Libnames
+open Nametab
+open Table
+open Miniml
+(*i*)
+
+(*s Exceptions. *)
+
+exception Found
+exception Impossible
+
+(*S Names operations. *)
+
+let anonymous = id_of_string "x"
+let dummy_name = id_of_string "_"
+
+let id_of_name = function
+ | Anonymous -> anonymous
+ | Name id when id = dummy_name -> anonymous
+ | Name id -> id
+
+(*S Operations upon ML types (with meta). *)
+
+let meta_count = ref 0
+
+let reset_meta_count () = meta_count := 0
+
+let new_meta _ =
+ incr meta_count;
+ Tmeta {id = !meta_count; contents = None}
+
+(*s Sustitution of [Tvar i] by [t] in a ML type. *)
+
+let type_subst i t0 t =
+ let rec subst t = match t with
+ | Tvar j when i = j -> t0
+ | Tmeta {contents=None} -> t
+ | Tmeta {contents=Some u} -> subst u
+ | Tarr (a,b) -> Tarr (subst a, subst b)
+ | Tglob (r, l) -> Tglob (r, List.map subst l)
+ | a -> a
+ in subst t
+
+(* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *)
+
+let type_subst_list l t =
+ let rec subst t = match t with
+ | Tvar j -> List.nth l (j-1)
+ | Tmeta {contents=None} -> t
+ | Tmeta {contents=Some u} -> subst u
+ | Tarr (a,b) -> Tarr (subst a, subst b)
+ | Tglob (r, l) -> Tglob (r, List.map subst l)
+ | a -> a
+ in subst t
+
+(* Simultaneous substitution of [[|Tvar 1; ... ; Tvar n|]] by [v] in a ML type. *)
+
+let type_subst_vect v t =
+ let rec subst t = match t with
+ | Tvar j -> v.(j-1)
+ | Tmeta {contents=None} -> t
+ | Tmeta {contents=Some u} -> subst u
+ | Tarr (a,b) -> Tarr (subst a, subst b)
+ | Tglob (r, l) -> Tglob (r, List.map subst l)
+ | a -> a
+ in subst t
+
+(*s From a type schema to a type. All [Tvar] become fresh [Tmeta]. *)
+
+let instantiation (nb,t) = type_subst_vect (Array.init nb new_meta) t
+
+(*s Occur-check of a free meta in a type *)
+
+let rec type_occurs alpha t =
+ match t with
+ | Tmeta {id=beta; contents=None} -> alpha = beta
+ | Tmeta {contents=Some u} -> type_occurs alpha u
+ | Tarr (t1, t2) -> type_occurs alpha t1 || type_occurs alpha t2
+ | Tglob (r,l) -> List.exists (type_occurs alpha) l
+ | _ -> false
+
+(*s Most General Unificator *)
+
+let rec mgu = function
+ | Tmeta m, Tmeta m' when m.id = m'.id -> ()
+ | Tmeta m, t when m.contents=None ->
+ if type_occurs m.id t then raise Impossible
+ else m.contents <- Some t
+ | t, Tmeta m when m.contents=None ->
+ if type_occurs m.id t then raise Impossible
+ else m.contents <- Some t
+ | Tmeta {contents=Some u}, t -> mgu (u, t)
+ | t, Tmeta {contents=Some u} -> mgu (t, u)
+ | Tarr(a, b), Tarr(a', b') ->
+ mgu (a, a'); mgu (b, b')
+ | Tglob (r,l), Tglob (r',l') when r = r' ->
+ List.iter mgu (List.combine l l')
+ | Tvar i, Tvar j when i = j -> ()
+ | Tvar' i, Tvar' j when i = j -> ()
+ | Tdummy, Tdummy -> ()
+ | Tunknown, Tunknown -> ()
+ | _ -> raise Impossible
+
+let needs_magic p = try mgu p; false with Impossible -> true
+
+let put_magic_if b a = if b then MLmagic a else a
+
+let put_magic p a = if needs_magic p then MLmagic a else a
+
+
+(*S ML type env. *)
+
+module Mlenv = struct
+
+ let meta_cmp m m' = compare m.id m'.id
+ module Metaset = Set.Make(struct type t = ml_meta let compare = meta_cmp end)
+
+ (* Main MLenv type. [env] is the real environment, whereas [free]
+ (tries to) record the free meta variables occurring in [env]. *)
+
+ type t = { env : ml_schema list; mutable free : Metaset.t}
+
+ (* Empty environment. *)
+
+ let empty = { env = []; free = Metaset.empty }
+
+ (* [get] returns a instantiated copy of the n-th most recently added
+ type in the environment. *)
+
+ let get mle n =
+ assert (List.length mle.env >= n);
+ instantiation (List.nth mle.env (n-1))
+
+ (* [find_free] finds the free meta in a type. *)
+
+ let rec find_free set = function
+ | Tmeta m when m.contents = None -> Metaset.add m set
+ | Tmeta {contents = Some t} -> find_free set t
+ | Tarr (a,b) -> find_free (find_free set a) b
+ | Tglob (_,l) -> List.fold_left find_free set l
+ | _ -> set
+
+ (* The [free] set of an environment can be outdate after
+ some unifications. [clean_free] takes care of that. *)
+
+ let clean_free mle =
+ let rem = ref Metaset.empty
+ and add = ref Metaset.empty in
+ let clean m = match m.contents with
+ | None -> ()
+ | Some u -> rem := Metaset.add m !rem; add := find_free !add u
+ in
+ Metaset.iter clean mle.free;
+ mle.free <- Metaset.union (Metaset.diff mle.free !rem) !add
+
+ (* From a type to a type schema. If a [Tmeta] is still uninstantiated
+ and does appears in the [mle], then it becomes a [Tvar]. *)
+
+ let generalization mle t =
+ let c = ref 0 in
+ let map = ref (Intmap.empty : int Intmap.t) in
+ let add_new i = incr c; map := Intmap.add i !c !map; !c in
+ let rec meta2var t = match t with
+ | Tmeta {contents=Some u} -> meta2var u
+ | Tmeta ({id=i} as m) ->
+ (try Tvar (Intmap.find i !map)
+ with Not_found ->
+ if Metaset.mem m mle.free then t
+ else Tvar (add_new i))
+ | Tarr (t1,t2) -> Tarr (meta2var t1, meta2var t2)
+ | Tglob (r,l) -> Tglob (r, List.map meta2var l)
+ | t -> t
+ in !c, meta2var t
+
+ (* Adding a type in an environment, after generalizing. *)
+
+ let push_gen mle t =
+ clean_free mle;
+ { env = generalization mle t :: mle.env; free = mle.free }
+
+ (* Adding a type with no [Tvar], hence no generalization needed. *)
+
+ let push_type {env=e;free=f} t =
+ { env = (0,t) :: e; free = find_free f t}
+
+ (* Adding a type with no [Tvar] nor [Tmeta]. *)
+
+ let push_std_type {env=e;free=f} t =
+ { env = (0,t) :: e; free = f}
+
+end
+
+(*S Operations upon ML types (without meta). *)
+
+(*s Does a section path occur in a ML type ? *)
+
+let rec type_mem_kn kn = function
+ | Tmeta _ -> assert false
+ | Tglob (r,l) -> (kn_of_r r) = kn || List.exists (type_mem_kn kn) l
+ | Tarr (a,b) -> (type_mem_kn kn a) || (type_mem_kn kn b)
+ | _ -> false
+
+(*s Greatest variable occurring in [t]. *)
+
+let type_maxvar t =
+ let rec parse n = function
+ | Tmeta _ -> assert false
+ | Tvar i -> max i n
+ | Tarr (a,b) -> parse (parse n a) b
+ | Tglob (_,l) -> List.fold_left parse n l
+ | _ -> n
+ in parse 0 t
+
+(*s From [a -> b -> c] to [[a;b],c]. *)
+
+let rec type_decomp = function
+ | Tmeta _ -> assert false
+ | Tarr (a,b) -> let l,h = type_decomp b in a::l, h
+ | a -> [],a
+
+(*s The converse: From [[a;b],c] to [a -> b -> c]. *)
+
+let rec type_recomp (l,t) = match l with
+ | [] -> t
+ | a::l -> Tarr (a, type_recomp (l,t))
+
+(*s Translating [Tvar] to [Tvar'] to avoid clash. *)
+
+let rec var2var' = function
+ | Tmeta _ -> assert false
+ | Tvar i -> Tvar' i
+ | Tarr (a,b) -> Tarr (var2var' a, var2var' b)
+ | Tglob (r,l) -> Tglob (r, List.map var2var' l)
+ | a -> a
+
+type abbrev_map = global_reference -> ml_type option
+
+(*s Delta-reduction of type constants everywhere in a ML type [t].
+ [env] is a function of type [ml_type_env]. *)
+
+let type_expand env t =
+ let rec expand = function
+ | Tmeta _ -> assert false
+ | Tglob (r,l) as t ->
+ (match env r with
+ | Some mlt -> expand (type_subst_list l mlt)
+ | None -> Tglob (r, List.map expand l))
+ | Tarr (a,b) -> Tarr (expand a, expand b)
+ | a -> a
+ in expand t
+
+(*s Idem, but only at the top level of implications. *)
+
+let is_arrow = function Tarr _ -> true | _ -> false
+
+let type_weak_expand env t =
+ let rec expand = function
+ | Tmeta _ -> assert false
+ | Tglob (r,l) as t ->
+ (match env r with
+ | Some mlt ->
+ let u = expand (type_subst_list l mlt) in
+ if is_arrow u then u else t
+ | None -> t)
+ | Tarr (a,b) -> Tarr (a, expand b)
+ | a -> a
+ in expand t
+
+(*s Equality over ML types modulo delta-reduction *)
+
+let type_eq env t t' = (type_expand env t = type_expand env t')
+
+let type_neq env t t' = (type_expand env t <> type_expand env t')
+
+(*s Generating a signature from a ML type. *)
+
+let type_to_sign env t =
+ let rec f = function
+ | Tmeta _ -> assert false
+ | Tarr (a,b) -> (Tdummy <> a) :: (f b)
+ | _ -> []
+ in f (type_expand env t)
+
+(*s Removing [Tdummy] from the top level of a ML type. *)
+
+let type_expunge env t =
+ let s = type_to_sign env t in
+ if s = [] then t
+ else if List.mem true s then
+ let rec f t s =
+ if List.mem false s then
+ match t with
+ | Tmeta _ -> assert false
+ | Tarr (a,b) ->
+ let t = f b (List.tl s) in
+ if List.hd s then Tarr (a, t) else t
+ | Tglob (r,l) ->
+ (match env r with
+ | Some mlt -> f (type_subst_list l mlt) s
+ | None -> assert false)
+ | _ -> assert false
+ else t
+ in f t s
+ else Tarr (Tdummy, snd (type_decomp (type_weak_expand env t)))
+
+(*S Generic functions over ML ast terms. *)
+
+(*s [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care
+ of the number of bingings crossed before reaching the [MLrel]. *)
+
+let ast_iter_rel f =
+ let rec iter n = function
+ | MLrel i -> f (i-n)
+ | MLlam (_,a) -> iter (n+1) a
+ | MLletin (_,a,b) -> iter n a; iter (n+1) b
+ | MLcase (a,v) ->
+ iter n a; Array.iter (fun (_,l,t) -> iter (n + (List.length l)) t) v
+ | MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
+ | MLapp (a,l) -> iter n a; List.iter (iter n) l
+ | MLcons (_,l) -> List.iter (iter n) l
+ | MLmagic a -> iter n a
+ | MLglob _ | MLexn _ | MLdummy | MLaxiom -> ()
+ in iter 0
+
+(*s Map over asts. *)
+
+let ast_map_case f (c,ids,a) = (c,ids,f a)
+
+let ast_map f = function
+ | MLlam (i,a) -> MLlam (i, f a)
+ | MLletin (i,a,b) -> MLletin (i, f a, f b)
+ | MLcase (a,v) -> MLcase (f a, Array.map (ast_map_case f) v)
+ | MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
+ | MLapp (a,l) -> MLapp (f a, List.map f l)
+ | MLcons (c,l) -> MLcons (c, List.map f l)
+ | MLmagic a -> MLmagic (f a)
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
+
+(*s Map over asts, with binding depth as parameter. *)
+
+let ast_map_lift_case f n (c,ids,a) = (c,ids, f (n+(List.length ids)) a)
+
+let ast_map_lift f n = function
+ | MLlam (i,a) -> MLlam (i, f (n+1) a)
+ | MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
+ | MLcase (a,v) -> MLcase (f n a,Array.map (ast_map_lift_case f n) v)
+ | MLfix (i,ids,v) ->
+ let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
+ | MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
+ | MLcons (c,l) -> MLcons (c, List.map (f n) l)
+ | MLmagic a -> MLmagic (f n a)
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
+
+(*s Iter over asts. *)
+
+let ast_iter_case f (c,ids,a) = f a
+
+let ast_iter f = function
+ | MLlam (i,a) -> f a
+ | MLletin (i,a,b) -> f a; f b
+ | MLcase (a,v) -> f a; Array.iter (ast_iter_case f) v
+ | MLfix (i,ids,v) -> Array.iter f v
+ | MLapp (a,l) -> f a; List.iter f l
+ | MLcons (c,l) -> List.iter f l
+ | MLmagic a -> f a
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> ()
+
+(*S Operations concerning De Bruijn indices. *)
+
+(*s [ast_occurs k t] returns [true] if [(Rel k)] occurs in [t]. *)
+
+let ast_occurs k t =
+ try
+ ast_iter_rel (fun i -> if i = k then raise Found) t; false
+ with Found -> true
+
+(*s [occurs_itvl k k' t] returns [true] if there is a [(Rel i)]
+ in [t] with [k<=i<=k'] *)
+
+let ast_occurs_itvl k k' t =
+ try
+ ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false
+ with Found -> true
+
+(*s Number of occurences of [Rel k] and [Rel 1] in [t]. *)
+
+let nb_occur_k k t =
+ let cpt = ref 0 in
+ ast_iter_rel (fun i -> if i = k then incr cpt) t;
+ !cpt
+
+let nb_occur t = nb_occur_k 1 t
+
+(* Number of occurences of [Rel 1] in [t], with special treatment of match:
+ occurences in different branches aren't added, but we rather use max. *)
+
+let nb_occur_match =
+ let rec nb k = function
+ | MLrel i -> if i = k then 1 else 0
+ | MLcase(a,v) ->
+ (nb k a) +
+ Array.fold_left
+ (fun r (_,ids,a) -> max r (nb (k+(List.length ids)) a)) 0 v
+ | MLletin (_,a,b) -> (nb k a) + (nb (k+1) b)
+ | MLfix (_,ids,v) -> let k = k+(Array.length ids) in
+ Array.fold_left (fun r a -> r+(nb k a)) 0 v
+ | MLlam (_,a) -> nb (k+1) a
+ | MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l
+ | MLcons (_,l) -> List.fold_left (fun r a -> r+(nb k a)) 0 l
+ | MLmagic a -> nb k a
+ | MLglob _ | MLexn _ | MLdummy | MLaxiom -> 0
+ in nb 1
+
+(*s Lifting on terms.
+ [ast_lift k t] lifts the binding depth of [t] across [k] bindings. *)
+
+let ast_lift k t =
+ let rec liftrec n = function
+ | MLrel i as a -> if i-n < 1 then a else MLrel (i+k)
+ | a -> ast_map_lift liftrec n a
+ in if k = 0 then t else liftrec 0 t
+
+let ast_pop t = ast_lift (-1) t
+
+(*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ...
+ Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *)
+
+let permut_rels k k' =
+ let rec permut n = function
+ | MLrel i as a ->
+ let i' = i-n in
+ if i'<1 || i'>k+k' then a
+ else if i'<=k then MLrel (i+k')
+ else MLrel (i-k)
+ | a -> ast_map_lift permut n a
+ in permut 0
+
+(*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t].
+ Lifting (of one binder) is done at the same time. *)
+
+let ast_subst e =
+ let rec subst n = function
+ | MLrel i as a ->
+ let i' = i-n in
+ if i'=1 then ast_lift n e
+ else if i'<1 then a
+ else MLrel (i-1)
+ | a -> ast_map_lift subst n a
+ in subst 0
+
+(*s Generalized substitution.
+ [gen_subst v d t] applies to [t] the substitution coded in the
+ [v] array: [(Rel i)] becomes [v.(i-1)]. [d] is the correction applies
+ to [Rel] greater than [Array.length v]. *)
+
+let gen_subst v d t =
+ let rec subst n = function
+ | MLrel i as a ->
+ let i'= i-n in
+ if i' < 1 then a
+ else if i' <= Array.length v then
+ ast_lift n v.(i'-1)
+ else MLrel (i+d)
+ | a -> ast_map_lift subst n a
+ in subst 0 t
+
+(*S Operations concerning lambdas. *)
+
+(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
+ [[idn;...;id1]] and the term [t]. *)
+
+let collect_lams =
+ let rec collect acc = function
+ | MLlam(id,t) -> collect (id::acc) t
+ | x -> acc,x
+ in collect []
+
+(*s [collect_n_lams] does the same for a precise number of [MLlam]. *)
+
+let collect_n_lams =
+ let rec collect acc n t =
+ if n = 0 then acc,t
+ else match t with
+ | MLlam(id,t) -> collect (id::acc) (n-1) t
+ | _ -> assert false
+ in collect []
+
+(*s [remove_n_lams] just removes some [MLlam]. *)
+
+let rec remove_n_lams n t =
+ if n = 0 then t
+ else match t with
+ | MLlam(_,t) -> remove_n_lams (n-1) t
+ | _ -> assert false
+
+(*s [nb_lams] gives the number of head [MLlam]. *)
+
+let rec nb_lams = function
+ | MLlam(_,t) -> succ (nb_lams t)
+ | _ -> 0
+
+(*s [named_lams] does the converse of [collect_lams]. *)
+
+let rec named_lams ids a = match ids with
+ | [] -> a
+ | id :: ids -> named_lams ids (MLlam (id,a))
+
+(*s The same in anonymous version. *)
+
+let rec anonym_lams a = function
+ | 0 -> a
+ | n -> anonym_lams (MLlam (anonymous,a)) (pred n)
+
+(*s Idem for [dummy_name]. *)
+
+let rec dummy_lams a = function
+ | 0 -> a
+ | n -> dummy_lams (MLlam (dummy_name,a)) (pred n)
+
+(*s mixed according to a signature. *)
+
+let rec anonym_or_dummy_lams a = function
+ | [] -> a
+ | true :: s -> MLlam(anonymous, anonym_or_dummy_lams a s)
+ | false :: s -> MLlam(dummy_name, anonym_or_dummy_lams a s)
+
+(*S Operations concerning eta. *)
+
+(*s The following function creates [MLrel n;...;MLrel 1] *)
+
+let rec eta_args n =
+ if n = 0 then [] else (MLrel n)::(eta_args (pred n))
+
+(*s Same, but filtered by a signature. *)
+
+let rec eta_args_sign n = function
+ | [] -> []
+ | true :: s -> (MLrel n) :: (eta_args_sign (n-1) s)
+ | false :: s -> eta_args_sign (n-1) s
+
+(*s This one tests [MLrel (n+k); ... ;MLrel (1+k)] *)
+
+let rec test_eta_args_lift k n = function
+ | [] -> n=0
+ | a :: q -> (a = (MLrel (k+n))) && (test_eta_args_lift k (pred n) q)
+
+(*s Computes an eta-reduction. *)
+
+let eta_red e =
+ let ids,t = collect_lams e in
+ let n = List.length ids in
+ if n = 0 then e
+ else match t with
+ | MLapp (f,a) ->
+ let m = (List.length a) - n in
+ if m < 0 then e
+ else
+ let a1,a2 = list_chop m a in
+ let f = if m = 0 then f else MLapp (f,a1) in
+ if test_eta_args_lift 0 n a2 && not (ast_occurs_itvl 1 n f)
+ then ast_lift (-n) f
+ else e
+ | _ -> e
+
+(*s Computes all head linear beta-reductions possible in [(t a)].
+ Non-linear head beta-redex become let-in. *)
+
+let rec linear_beta_red a t = match a,t with
+ | [], _ -> t
+ | a0::a, MLlam (id,t) ->
+ (match nb_occur_match t with
+ | 0 -> linear_beta_red a (ast_pop t)
+ | 1 -> linear_beta_red a (ast_subst a0 t)
+ | _ ->
+ let a = List.map (ast_lift 1) a in
+ MLletin (id, a0, linear_beta_red a t))
+ | _ -> MLapp (t, a)
+
+(*s Applies a substitution [s] of constants by their body, plus
+ linear beta reductions at modified positions. *)
+
+let rec ast_glob_subst s t = match t with
+ | MLapp ((MLglob (ConstRef kn)) as f, a) ->
+ let a = List.map (ast_glob_subst s) a in
+ (try linear_beta_red a (KNmap.find kn s)
+ with Not_found -> MLapp (f, a))
+ | MLglob (ConstRef kn) -> (try KNmap.find kn s with Not_found -> t)
+ | _ -> ast_map (ast_glob_subst s) t
+
+
+(*S Auxiliary functions used in simplification of ML cases. *)
+
+(*s [check_and_generalize (r0,l,c)] transforms any [MLcons(r0,l)] in [MLrel 1]
+ and raises [Impossible] if any variable in [l] occurs outside such a
+ [MLcons] *)
+
+let check_and_generalize (r0,l,c) =
+ let nargs = List.length l in
+ let rec genrec n = function
+ | MLrel i as c ->
+ let i' = i-n in
+ if i'<1 then c
+ else if i'>nargs then MLrel (i-nargs+1)
+ else raise Impossible
+ | MLcons(r,args) when r=r0 && (test_eta_args_lift n nargs args) ->
+ MLrel (n+1)
+ | a -> ast_map_lift genrec n a
+ in genrec 0 c
+
+(*s [check_generalizable_case] checks if all branches can be seen as the
+ same function [f] applied to the term matched. It is a generalized version
+ of the identity case optimization. *)
+
+(* CAVEAT: this optimization breaks typing in some special case. example:
+ [type 'x a = A]. Then [let f = function A -> A] has type ['x a -> 'y a],
+ which is incompatible with the type of [let f x = x].
+ By default, we brutally disable this optim except for some known types:
+ [bool], [sumbool], [sumor] *)
+
+let generalizable_list =
+ let datatypes = MPfile (dirpath_of_string "Coq.Init.Datatypes")
+ and specif = MPfile (dirpath_of_string "Coq.Init.Specif")
+ in
+ [ make_kn datatypes empty_dirpath (mk_label "bool");
+ make_kn specif empty_dirpath (mk_label "sumbool");
+ make_kn specif empty_dirpath (mk_label "sumor") ]
+
+let check_generalizable_case unsafe br =
+ if not unsafe then
+ (match br.(0) with
+ | ConstructRef ((kn,_),_), _, _ ->
+ if not (List.mem kn generalizable_list) then raise Impossible
+ | _ -> assert false);
+ let f = check_and_generalize br.(0) in
+ for i = 1 to Array.length br - 1 do
+ if check_and_generalize br.(i) <> f then raise Impossible
+ done; f
+
+(*s Do all branches correspond to the same thing? *)
+
+let check_constant_case br =
+ if br = [||] then raise Impossible;
+ let (r,l,t) = br.(0) in
+ let n = List.length l in
+ if ast_occurs_itvl 1 n t then raise Impossible;
+ let cst = ast_lift (-n) t in
+ for i = 1 to Array.length br - 1 do
+ let (r,l,t) = br.(i) in
+ let n = List.length l in
+ if (ast_occurs_itvl 1 n t) || (cst <> (ast_lift (-n) t))
+ then raise Impossible
+ done; cst
+
+(*s If all branches are functions, try to permut the case and the functions. *)
+
+let rec merge_ids ids ids' = match ids,ids' with
+ | [],l -> l
+ | l,[] -> l
+ | i::ids, i'::ids' ->
+ (if i = dummy_name then i' else i) :: (merge_ids ids ids')
+
+let is_exn = function MLexn _ -> true | _ -> false
+
+let rec permut_case_fun br acc =
+ let nb = ref max_int in
+ Array.iter (fun (_,_,t) ->
+ let ids, c = collect_lams t in
+ let n = List.length ids in
+ if (n < !nb) && (not (is_exn c)) then nb := n) br;
+ if !nb = max_int || !nb = 0 then ([],br)
+ else begin
+ let br = Array.copy br in
+ let ids = ref [] in
+ for i = 0 to Array.length br - 1 do
+ let (r,l,t) = br.(i) in
+ let local_nb = nb_lams t in
+ if local_nb < !nb then (* t = MLexn ... *)
+ br.(i) <- (r,l,remove_n_lams local_nb t)
+ else begin
+ let local_ids,t = collect_n_lams !nb t in
+ ids := merge_ids !ids local_ids;
+ br.(i) <- (r,l,permut_rels !nb (List.length l) t)
+ end
+ done;
+ (!ids,br)
+ end
+
+(*S Generalized iota-reduction. *)
+
+(* Definition of a generalized iota-redex: it's a [MLcase(e,_)]
+ with [(is_iota_gen e)=true]. Any generalized iota-redex is
+ transformed into beta-redexes. *)
+
+let rec is_iota_gen = function
+ | MLcons _ -> true
+ | MLcase(_,br)-> array_for_all (fun (_,_,t)->is_iota_gen t) br
+ | _ -> false
+
+let constructor_index = function
+ | ConstructRef (_,j) -> pred j
+ | _ -> assert false
+
+let iota_gen br =
+ let rec iota k = function
+ | MLcons (r,a) ->
+ let (_,ids,c) = br.(constructor_index r) in
+ let c = List.fold_right (fun id t -> MLlam (id,t)) ids c in
+ let c = ast_lift k c in
+ MLapp (c,a)
+ | MLcase(e,br') ->
+ let new_br =
+ Array.map (fun (n,i,c)->(n,i,iota (k+(List.length i)) c)) br'
+ in MLcase(e, new_br)
+ | _ -> assert false
+ in iota 0
+
+let is_atomic = function
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy -> true
+ | _ -> false
+
+(*S The main simplification function. *)
+
+(* Some beta-iota reductions + simplifications. *)
+
+let rec simpl o = function
+ | MLapp (f, []) ->
+ simpl o f
+ | MLapp (f, a) ->
+ simpl_app o (List.map (simpl o) a) (simpl o f)
+ | MLcase (e,br) ->
+ let br = Array.map (fun (n,l,t) -> (n,l,simpl o t)) br in
+ simpl_case o br (simpl o e)
+ | MLletin(id,c,e) when
+ (id = dummy_name) || (is_atomic c) || (is_atomic e) ||
+ (let n = nb_occur_match e in n = 0 || (n=1 && o.opt_lin_let)) ->
+ simpl o (ast_subst c e)
+ | MLfix(i,ids,c) ->
+ let n = Array.length ids in
+ if ast_occurs_itvl 1 n c.(i) then
+ MLfix (i, ids, Array.map (simpl o) c)
+ else simpl o (ast_lift (-n) c.(i)) (* Dummy fixpoint *)
+ | a -> ast_map (simpl o) a
+
+and simpl_app o a = function
+ | MLapp (f',a') -> simpl_app o (a'@a) f'
+ | MLlam (id,t) when id = dummy_name ->
+ simpl o (MLapp (ast_pop t, List.tl a))
+ | MLlam (id,t) -> (* Beta redex *)
+ (match nb_occur_match t with
+ | 0 -> simpl o (MLapp (ast_pop t, List.tl a))
+ | 1 when o.opt_lin_beta ->
+ simpl o (MLapp (ast_subst (List.hd a) t, List.tl a))
+ | _ ->
+ let a' = List.map (ast_lift 1) (List.tl a) in
+ simpl o (MLletin (id, List.hd a, MLapp (t, a'))))
+ | MLletin (id,e1,e2) when o.opt_let_app ->
+ (* Application of a letin: we push arguments inside *)
+ MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a)))
+ | MLcase (e,br) when o.opt_case_app ->
+ (* Application of a case: we push arguments inside *)
+ let br' =
+ Array.map
+ (fun (n,l,t) ->
+ let k = List.length l in
+ let a' = List.map (ast_lift k) a in
+ (n, l, simpl o (MLapp (t,a')))) br
+ in simpl o (MLcase (e,br'))
+ | (MLdummy | MLexn _) as e -> e
+ (* We just discard arguments in those cases. *)
+ | f -> MLapp (f,a)
+
+and simpl_case o br e =
+ if o.opt_case_iot && (is_iota_gen e) then (* Generalized iota-redex *)
+ simpl o (iota_gen br e)
+ else
+ try (* Does a term [f] exist such as each branch is [(f e)] ? *)
+ if not o.opt_case_idr then raise Impossible;
+ let f = check_generalizable_case o.opt_case_idg br in
+ simpl o (MLapp (MLlam (anonymous,f),[e]))
+ with Impossible ->
+ try (* Is each branch independant of [e] ? *)
+ if not o.opt_case_cst then raise Impossible;
+ check_constant_case br
+ with Impossible ->
+ (* Swap the case and the lam if possible *)
+ if o.opt_case_fun
+ then
+ let ids,br = permut_case_fun br [] in
+ let n = List.length ids in
+ if n <> 0 then named_lams ids (MLcase (ast_lift n e, br))
+ else MLcase (e, br)
+ else MLcase (e,br)
+
+let rec post_simpl = function
+ | MLletin(_,c,e) when (is_atomic (eta_red c)) ->
+ post_simpl (ast_subst (eta_red c) e)
+ | a -> ast_map post_simpl a
+
+(*S Local prop elimination. *)
+(* We try to eliminate as many [prop] as possible inside an [ml_ast]. *)
+
+(*s In a list, it selects only the elements corresponding to a [true]
+ in the boolean list [l]. *)
+
+let rec select_via_bl l args = match l,args with
+ | [],_ -> args
+ | true::l,a::args -> a :: (select_via_bl l args)
+ | false::l,a::args -> select_via_bl l args
+ | _ -> assert false
+
+(*s [kill_some_lams] removes some head lambdas according to the bool list [bl].
+ This list is build on the identifier list model: outermost lambda
+ is on the right. [true] means "to keep" and [false] means "to eliminate".
+ [Rels] corresponding to removed lambdas are supposed not to occur, and
+ the other [Rels] are made correct via a [gen_subst].
+ Output is not directly a [ml_ast], compose with [named_lams] if needed. *)
+
+let kill_some_lams bl (ids,c) =
+ let n = List.length bl in
+ let n' = List.fold_left (fun n b -> if b then (n+1) else n) 0 bl in
+ if n = n' then ids,c
+ else if n' = 0 then [],ast_lift (-n) c
+ else begin
+ let v = Array.make n MLdummy in
+ let rec parse_ids i j = function
+ | [] -> ()
+ | true :: l -> v.(i) <- MLrel j; parse_ids (i+1) (j+1) l
+ | false :: l -> parse_ids (i+1) j l
+ in parse_ids 0 1 bl ;
+ select_via_bl bl ids, gen_subst v (n'-n) c
+ end
+
+(*s [kill_dummy_lams] uses the last function to kill the lambdas corresponding
+ to a [dummy_name]. It can raise [Impossible] if there is nothing to do, or
+ if there is no lambda left at all. *)
+
+let kill_dummy_lams c =
+ let ids,c = collect_lams c in
+ let bl = List.map ((<>) dummy_name) ids in
+ if (List.mem true bl) && (List.mem false bl) then
+ let ids',c = kill_some_lams bl (ids,c) in
+ ids, named_lams ids' c
+ else raise Impossible
+
+(*s [eta_expansion_sign] takes a function [fun idn ... id1 -> c]
+ and a signature [s] and builds a eta-long version. *)
+
+(* For example, if [s = [true;true;false;true]] then the output is :
+ [fun idn ... id1 x x _ x -> (c' 4 3 __ 1)] with [c' = lift 4 c] *)
+
+let eta_expansion_sign s (ids,c) =
+ let rec abs ids rels i = function
+ | [] ->
+ let a = List.rev_map (function MLrel x -> MLrel (i-x) | a -> a) rels
+ in ids, MLapp (ast_lift (i-1) c, a)
+ | true :: l -> abs (anonymous :: ids) (MLrel i :: rels) (i+1) l
+ | false :: l -> abs (dummy_name :: ids) (MLdummy :: rels) (i+1) l
+ in abs ids [] 1 s
+
+(*s If [s = [b1; ... ; bn]] then [case_expunge] decomposes [e]
+ in [n] lambdas (with eta-expansion if needed) and removes all dummy lambdas
+ corresponding to [false] in [s]. *)
+
+let case_expunge s e =
+ let m = List.length s in
+ let n = nb_lams e in
+ let p = if m <= n then collect_n_lams m e
+ else eta_expansion_sign (list_skipn n s) (collect_lams e) in
+ kill_some_lams (List.rev s) p
+
+(*s [term_expunge] takes a function [fun idn ... id1 -> c]
+ and a signature [s] and remove dummy lams. The difference
+ with [case_expunge] is that we here leave one dummy lambda
+ if all lambdas are dummy. *)
+
+let term_expunge s (ids,c) =
+ if s = [] then c
+ else
+ let ids,c = kill_some_lams (List.rev s) (ids,c) in
+ if ids = [] then MLlam (dummy_name, ast_lift 1 c)
+ else named_lams ids c
+
+(*s [kill_dummy_args ids t0 t] looks for occurences of [t0] in [t] and
+ purge the args of [t0] corresponding to a [dummy_name].
+ It makes eta-expansion if needed. *)
+
+let kill_dummy_args ids t0 t =
+ let m = List.length ids in
+ let bl = List.rev_map ((<>) dummy_name) ids in
+ let rec killrec n = function
+ | MLapp(e, a) when e = ast_lift n t0 ->
+ let k = max 0 (m - (List.length a)) in
+ let a = List.map (killrec n) a in
+ let a = List.map (ast_lift k) a in
+ let a = select_via_bl bl (a @ (eta_args k)) in
+ named_lams (list_firstn k ids) (MLapp (ast_lift k e, a))
+ | e when e = ast_lift n t0 ->
+ let a = select_via_bl bl (eta_args m) in
+ named_lams ids (MLapp (ast_lift m e, a))
+ | e -> ast_map_lift killrec n e
+ in killrec 0 t
+
+(*s The main function for local [dummy] elimination. *)
+
+let rec kill_dummy = function
+ | MLfix(i,fi,c) ->
+ (try
+ let ids,c = kill_dummy_fix i fi c in
+ ast_subst (MLfix (i,fi,c)) (kill_dummy_args ids (MLrel 1) (MLrel 1))
+ with Impossible -> MLfix (i,fi,Array.map kill_dummy c))
+ | MLapp (MLfix (i,fi,c),a) ->
+ (try
+ let ids,c = kill_dummy_fix i fi c in
+ let a = List.map (fun t -> ast_lift 1 (kill_dummy t)) a in
+ let e = kill_dummy_args ids (MLrel 1) (MLapp (MLrel 1,a)) in
+ ast_subst (MLfix (i,fi,c)) e
+ with Impossible ->
+ MLapp(MLfix(i,fi,Array.map kill_dummy c),List.map kill_dummy a))
+ | MLletin(id, MLfix (i,fi,c),e) ->
+ (try
+ let ids,c = kill_dummy_fix i fi c in
+ let e = kill_dummy (kill_dummy_args ids (MLrel 1) e) in
+ MLletin(id, MLfix(i,fi,c),e)
+ with Impossible ->
+ MLletin(id, MLfix(i,fi,Array.map kill_dummy c),kill_dummy e))
+ | MLletin(id,c,e) ->
+ (try
+ let ids,c = kill_dummy_lams c in
+ let e = kill_dummy_args ids (MLrel 1) e in
+ MLletin (id, kill_dummy c,kill_dummy e)
+ with Impossible -> MLletin(id,kill_dummy c,kill_dummy e))
+ | a -> ast_map kill_dummy a
+
+and kill_dummy_fix i fi c =
+ let n = Array.length fi in
+ let ids,ci = kill_dummy_lams c.(i) in
+ let c = Array.copy c in c.(i) <- ci;
+ for j = 0 to (n-1) do
+ c.(j) <- kill_dummy (kill_dummy_args ids (MLrel (n-i)) c.(j))
+ done;
+ ids,c
+
+(*s Putting things together. *)
+
+let normalize a =
+ let o = optims () in
+ let a = simpl o a in
+ if o.opt_kill_dum then post_simpl (kill_dummy a) else a
+
+(*S Special treatment of fixpoint for pretty-printing purpose. *)
+
+let general_optimize_fix f ids n args m c =
+ let v = Array.make n 0 in
+ for i=0 to (n-1) do v.(i)<-i done;
+ let aux i = function
+ | MLrel j when v.(j-1)>=0 -> v.(j-1)<-(-i-1)
+ | _ -> raise Impossible
+ in list_iter_i aux args;
+ let args_f = List.rev_map (fun i -> MLrel (i+m+1)) (Array.to_list v) in
+ let new_f = anonym_lams (MLapp (MLrel (n+m+1),args_f)) m in
+ let new_c = named_lams ids (normalize (MLapp ((ast_subst new_f c),args))) in
+ MLfix(0,[|f|],[|new_c|])
+
+let optimize_fix a =
+ if not (optims()).opt_fix_fun then a
+ else
+ let ids,a' = collect_lams a in
+ let n = List.length ids in
+ if n = 0 then a
+ else match a' with
+ | MLfix(_,[|f|],[|c|]) ->
+ let new_f = MLapp (MLrel (n+1),eta_args n) in
+ let new_c = named_lams ids (normalize (ast_subst new_f c))
+ in MLfix(0,[|f|],[|new_c|])
+ | MLapp(a',args) ->
+ let m = List.length args in
+ (match a' with
+ | MLfix(_,_,_) when
+ (test_eta_args_lift 0 n args) && not (ast_occurs_itvl 1 m a')
+ -> a'
+ | MLfix(_,[|f|],[|c|]) ->
+ (try general_optimize_fix f ids n args m c
+ with Impossible ->
+ named_lams ids (MLapp (MLfix (0,[|f|],[|c|]),args)))
+ | _ -> a)
+ | _ -> a
+
+(*S Inlining. *)
+
+(* Utility functions used in the decision of inlining. *)
+
+let rec ml_size = function
+ | MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
+ | MLlam(_,t) -> 1 + ml_size t
+ | MLcons(_,l) -> ml_size_list l
+ | MLcase(t,pv) ->
+ 1 + ml_size t + (Array.fold_right (fun (_,_,t) a -> a + ml_size t) pv 0)
+ | MLfix(_,_,f) -> ml_size_array f
+ | MLletin (_,_,t) -> ml_size t
+ | MLmagic t -> ml_size t
+ | _ -> 0
+
+and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l
+
+and ml_size_array l = Array.fold_left (fun a t -> a + ml_size t) 0 l
+
+let is_fix = function MLfix _ -> true | _ -> false
+
+let rec is_constr = function
+ | MLcons _ -> true
+ | MLlam(_,t) -> is_constr t
+ | _ -> false
+
+(*s Strictness *)
+
+(* A variable is strict if the evaluation of the whole term implies
+ the evaluation of this variable. Non-strict variables can be found
+ behind Match, for example. Expanding a term [t] is a good idea when
+ it begins by at least one non-strict lambda, since the corresponding
+ argument to [t] might be unevaluated in the expanded code. *)
+
+exception Toplevel
+
+let lift n l = List.map ((+) n) l
+
+let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l
+
+(* This function returns a list of de Bruijn indices of non-strict variables,
+ or raises [Toplevel] if it has an internal non-strict variable.
+ In fact, not all variables are checked for strictness, only the ones which
+ de Bruijn index is in the candidates list [cand]. The flag [add] controls
+ the behaviour when going through a lambda: should we add the corresponding
+ variable to the candidates? We use this flag to check only the external
+ lambdas, those that will correspond to arguments. *)
+
+let rec non_stricts add cand = function
+ | MLlam (id,t) ->
+ let cand = lift 1 cand in
+ let cand = if add then 1::cand else cand in
+ pop 1 (non_stricts add cand t)
+ | MLrel n ->
+ List.filter ((<>) n) cand
+ | MLapp (MLrel n, _) ->
+ List.filter ((<>) n) cand
+ (* In [(x y)] we say that only x is strict. Cf [sig_rec]. We may *)
+ (* gain something if x is replaced by a function like a projection *)
+ | MLapp (t,l)->
+ let cand = non_stricts false cand t in
+ List.fold_left (non_stricts false) cand l
+ | MLcons (_,l) ->
+ List.fold_left (non_stricts false) cand l
+ | MLletin (_,t1,t2) ->
+ let cand = non_stricts false cand t1 in
+ pop 1 (non_stricts add (lift 1 cand) t2)
+ | MLfix (_,i,f)->
+ let n = Array.length i in
+ let cand = lift n cand in
+ let cand = Array.fold_left (non_stricts false) cand f in
+ pop n cand
+ | MLcase (t,v) ->
+ (* The only interesting case: for a variable to be non-strict, *)
+ (* it is sufficient that it appears non-strict in at least one branch, *)
+ (* so we make an union (in fact a merge). *)
+ let cand = non_stricts false cand t in
+ Array.fold_left
+ (fun c (_,i,t)->
+ let n = List.length i in
+ let cand = lift n cand in
+ let cand = pop n (non_stricts add cand t) in
+ Sort.merge (<=) cand c) [] v
+ (* [merge] may duplicates some indices, but I don't mind. *)
+ | MLmagic t ->
+ non_stricts add cand t
+ | _ ->
+ cand
+
+(* The real test: we are looking for internal non-strict variables, so we start
+ with no candidates, and the only positive answer is via the [Toplevel]
+ exception. *)
+
+let is_not_strict t =
+ try let _ = non_stricts true [] t in false
+ with Toplevel -> true
+
+(*s Inlining decision *)
+
+(* [inline_test] answers the following question:
+ If we could inline [t] (the user said nothing special),
+ should we inline ?
+
+ We expand small terms with at least one non-strict
+ variable (i.e. a variable that may not be evaluated).
+
+ Futhermore we don't expand fixpoints. *)
+
+let inline_test t =
+ not (is_fix (eta_red t)) && (ml_size t < 12 && is_not_strict t)
+
+let manual_inline_list =
+ let mp = MPfile (dirpath_of_string "Coq.Init.Wf") in
+ List.map (fun s -> (make_kn mp empty_dirpath (mk_label s)))
+ [ "well_founded_induction_type"; "well_founded_induction";
+ "Acc_rect"; "Acc_rec" ; "Acc_iter" ]
+
+let manual_inline = function
+ | ConstRef c -> List.mem c manual_inline_list
+ | _ -> false
+
+(* If the user doesn't say he wants to keep [t], we inline in two cases:
+ \begin{itemize}
+ \item the user explicitly requests it
+ \item [expansion_test] answers that the inlining is a good idea, and
+ we are free to act (AutoInline is set)
+ \end{itemize} *)
+
+let inline r t =
+ not (to_keep r) (* The user DOES want to keep it *)
+ && not (is_inline_custom r)
+ && (to_inline r (* The user DOES want to inline it *)
+ || (auto_inline () && lang () <> Haskell && not (is_projection r)
+ && (is_recursor r || manual_inline r || inline_test t)))
+
diff --git a/contrib/extraction/mlutil.mli b/contrib/extraction/mlutil.mli
new file mode 100644
index 00000000..eaf38778
--- /dev/null
+++ b/contrib/extraction/mlutil.mli
@@ -0,0 +1,111 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: mlutil.mli,v 1.47.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+open Util
+open Names
+open Term
+open Libnames
+open Miniml
+
+(*s Utility functions over ML types with meta. *)
+
+val reset_meta_count : unit -> unit
+val new_meta : 'a -> ml_type
+
+val type_subst : int -> ml_type -> ml_type -> ml_type
+val type_subst_list : ml_type list -> ml_type -> ml_type
+val type_subst_vect : ml_type array -> ml_type -> ml_type
+
+val instantiation : ml_schema -> ml_type
+
+val needs_magic : ml_type * ml_type -> bool
+val put_magic_if : bool -> ml_ast -> ml_ast
+val put_magic : ml_type * ml_type -> ml_ast -> ml_ast
+
+(*s ML type environment. *)
+
+module Mlenv : sig
+ type t
+ val empty : t
+
+ (* get the n-th more recently entered schema and instantiate it. *)
+ val get : t -> int -> ml_type
+
+ (* Adding a type in an environment, after generalizing free meta *)
+ val push_gen : t -> ml_type -> t
+
+ (* Adding a type with no [Tvar] *)
+ val push_type : t -> ml_type -> t
+
+ (* Adding a type with no [Tvar] nor [Tmeta] *)
+ val push_std_type : t -> ml_type -> t
+end
+
+(*s Utility functions over ML types without meta *)
+
+val type_mem_kn : kernel_name -> ml_type -> bool
+
+val type_maxvar : ml_type -> int
+
+val type_decomp : ml_type -> ml_type list * ml_type
+val type_recomp : ml_type list * ml_type -> ml_type
+
+val var2var' : ml_type -> ml_type
+
+type abbrev_map = global_reference -> ml_type option
+
+val type_expand : abbrev_map -> ml_type -> ml_type
+val type_eq : abbrev_map -> ml_type -> ml_type -> bool
+val type_neq : abbrev_map -> ml_type -> ml_type -> bool
+val type_to_sign : abbrev_map -> ml_type -> bool list
+val type_expunge : abbrev_map -> ml_type -> ml_type
+
+val case_expunge : bool list -> ml_ast -> identifier list * ml_ast
+val term_expunge : bool list -> identifier list * ml_ast -> ml_ast
+
+
+(*s Special identifiers. [dummy_name] is to be used for dead code
+ and will be printed as [_] in concrete (Caml) code. *)
+
+val anonymous : identifier
+val dummy_name : identifier
+val id_of_name : name -> identifier
+
+(*s [collect_lambda MLlam(id1,...MLlam(idn,t)...)] returns
+ the list [idn;...;id1] and the term [t]. *)
+
+val collect_lams : ml_ast -> identifier list * ml_ast
+val collect_n_lams : int -> ml_ast -> identifier list * ml_ast
+val nb_lams : ml_ast -> int
+
+val dummy_lams : ml_ast -> int -> ml_ast
+val anonym_or_dummy_lams : ml_ast -> bool list -> ml_ast
+
+val eta_args_sign : int -> bool list -> ml_ast list
+
+(*s Utility functions over ML terms. *)
+
+val ast_map : (ml_ast -> ml_ast) -> ml_ast -> ml_ast
+val ast_map_lift : (int -> ml_ast -> ml_ast) -> int -> ml_ast -> ml_ast
+val ast_iter : (ml_ast -> unit) -> ml_ast -> unit
+val ast_occurs : int -> ml_ast -> bool
+val ast_occurs_itvl : int -> int -> ml_ast -> bool
+val ast_lift : int -> ml_ast -> ml_ast
+val ast_pop : ml_ast -> ml_ast
+val ast_subst : ml_ast -> ml_ast -> ml_ast
+
+val ast_glob_subst : ml_ast KNmap.t -> ml_ast -> ml_ast
+
+val normalize : ml_ast -> ml_ast
+val optimize_fix : ml_ast -> ml_ast
+val inline : global_reference -> ml_ast -> bool
+
+
+
diff --git a/contrib/extraction/modutil.ml b/contrib/extraction/modutil.ml
new file mode 100644
index 00000000..feb9e54e
--- /dev/null
+++ b/contrib/extraction/modutil.ml
@@ -0,0 +1,405 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: modutil.ml,v 1.7.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+open Names
+open Declarations
+open Environ
+open Libnames
+open Util
+open Miniml
+open Table
+open Mlutil
+
+(*S Functions upon modules missing in [Modops]. *)
+
+(*s Add _all_ direct subobjects of a module, not only those exported.
+ Build on the [Modops.add_signature] model. *)
+
+let add_structure mp msb env =
+ let add_one env (l,elem) =
+ let kn = make_kn mp empty_dirpath l in
+ match elem with
+ | SEBconst cb -> Environ.add_constant kn cb env
+ | SEBmind mib -> Environ.add_mind kn mib env
+ | SEBmodule mb -> Modops.add_module (MPdot (mp,l)) mb env
+ | SEBmodtype mtb -> Environ.add_modtype kn mtb env
+ in List.fold_left add_one env msb
+
+(*s Apply a module path substitution on a module.
+ Build on the [Modops.subst_modtype] model. *)
+
+let rec subst_module sub mb =
+ let mtb' = Modops.subst_modtype sub mb.mod_type
+ and meb' = option_smartmap (subst_meb sub) mb.mod_expr
+ and mtb'' = option_smartmap (Modops.subst_modtype sub) mb.mod_user_type
+ and mpo' = option_smartmap (subst_mp sub) mb.mod_equiv in
+ if (mtb'==mb.mod_type) && (meb'==mb.mod_expr) &&
+ (mtb''==mb.mod_user_type) && (mpo'==mb.mod_equiv)
+ then mb
+ else { mod_expr= meb';
+ mod_type=mtb';
+ mod_user_type=mtb'';
+ mod_equiv=mpo';
+ mod_constraints=mb.mod_constraints }
+
+and subst_meb sub = function
+ | MEBident mp -> MEBident (subst_mp sub mp)
+ | MEBfunctor (mbid, mtb, meb) ->
+ assert (not (occur_mbid mbid sub));
+ MEBfunctor (mbid, Modops.subst_modtype sub mtb, subst_meb sub meb)
+ | MEBstruct (msid, msb) ->
+ assert (not (occur_msid msid sub));
+ MEBstruct (msid, subst_msb sub msb)
+ | MEBapply (meb, meb', c) ->
+ MEBapply (subst_meb sub meb, subst_meb sub meb', c)
+
+and subst_msb sub msb =
+ let subst_body = function
+ | SEBconst cb -> SEBconst (subst_const_body sub cb)
+ | SEBmind mib -> SEBmind (subst_mind sub mib)
+ | SEBmodule mb -> SEBmodule (subst_module sub mb)
+ | SEBmodtype mtb -> SEBmodtype (Modops.subst_modtype sub mtb)
+ in List.map (fun (l,b) -> (l,subst_body b)) msb
+
+(*s Change a msid in a module type, to follow a module expr.
+ Because of the "with" construct, the module type of a module can be a
+ [MTBsig] with a msid different from the one of the module. *)
+
+let rec replicate_msid meb mtb = match meb,mtb with
+ | MEBfunctor (_, _, meb), MTBfunsig (mbid, mtb1, mtb2) ->
+ let mtb' = replicate_msid meb mtb2 in
+ if mtb' == mtb2 then mtb else MTBfunsig (mbid, mtb1, mtb')
+ | MEBstruct (msid, _), MTBsig (msid1, msig) when msid <> msid1 ->
+ let msig' = Modops.subst_signature_msid msid1 (MPself msid) msig in
+ if msig' == msig then MTBsig (msid, msig) else MTBsig (msid, msig')
+ | _ -> mtb
+
+
+(*S More functions concerning [module_path]. *)
+
+let rec mp_length = function
+ | MPdot (mp, _) -> 1 + (mp_length mp)
+ | _ -> 1
+
+let rec prefixes_mp mp = match mp with
+ | MPdot (mp',_) -> MPset.add mp (prefixes_mp mp')
+ | _ -> MPset.singleton mp
+
+let rec common_prefix prefixes_mp1 mp2 =
+ if MPset.mem mp2 prefixes_mp1 then mp2
+ else match mp2 with
+ | MPdot (mp,_) -> common_prefix prefixes_mp1 mp
+ | _ -> raise Not_found
+
+let common_prefix_from_list mp0 mpl =
+ let prefixes_mp0 = prefixes_mp mp0 in
+ let rec f = function
+ | [] -> raise Not_found
+ | mp1 :: l -> try common_prefix prefixes_mp0 mp1 with Not_found -> f l
+ in f mpl
+
+let rec modfile_of_mp mp = match mp with
+ | MPfile _ -> mp
+ | MPdot (mp,_) -> modfile_of_mp mp
+ | _ -> raise Not_found
+
+let rec parse_labels ll = function
+ | MPdot (mp,l) -> parse_labels (l::ll) mp
+ | mp -> mp,ll
+
+let labels_of_mp mp = parse_labels [] mp
+
+let labels_of_kn kn =
+ let mp,_,l = repr_kn kn in parse_labels [l] mp
+
+let rec add_labels_mp mp = function
+ | [] -> mp
+ | l :: ll -> add_labels_mp (MPdot (mp,l)) ll
+
+
+(*S Functions upon ML modules. *)
+
+(*s Apply some functions upon all [ml_decl] and [ml_spec] found in a
+ [ml_structure]. *)
+
+let struct_iter do_decl do_spec s =
+ let rec mt_iter = function
+ | MTident _ -> ()
+ | MTfunsig (_,mt,mt') -> mt_iter mt; mt_iter mt'
+ | MTsig (_, sign) -> List.iter spec_iter sign
+ and spec_iter = function
+ | (_,Spec s) -> do_spec s
+ | (_,Smodule mt) -> mt_iter mt
+ | (_,Smodtype mt) -> mt_iter mt
+ in
+ let rec se_iter = function
+ | (_,SEdecl d) -> do_decl d
+ | (_,SEmodule m) ->
+ me_iter m.ml_mod_expr; mt_iter m.ml_mod_type
+ | (_,SEmodtype m) -> mt_iter m
+ and me_iter = function
+ | MEident _ -> ()
+ | MEfunctor (_,mt,me) -> me_iter me; mt_iter mt
+ | MEapply (me,me') -> me_iter me; me_iter me'
+ | MEstruct (msid, sel) -> List.iter se_iter sel
+ in
+ List.iter (function (_,sel) -> List.iter se_iter sel) s
+
+(*s Apply some fonctions upon all references in [ml_type], [ml_ast],
+ [ml_decl], [ml_spec] and [ml_structure]. *)
+
+type do_ref = global_reference -> unit
+
+let type_iter_references do_type t =
+ let rec iter = function
+ | Tglob (r,l) -> do_type r; List.iter iter l
+ | Tarr (a,b) -> iter a; iter b
+ | _ -> ()
+ in iter t
+
+let ast_iter_references do_term do_cons do_type a =
+ let rec iter a =
+ ast_iter iter a;
+ match a with
+ | MLglob r -> do_term r
+ | MLcons (r,_) -> do_cons r
+ | MLcase (_,v) as a -> Array.iter (fun (r,_,_) -> do_cons r) v
+ | _ -> ()
+ in iter a
+
+let ind_iter_references do_term do_cons do_type kn ind =
+ let type_iter = type_iter_references do_type in
+ let cons_iter cp l = do_cons (ConstructRef cp); List.iter type_iter l in
+ let packet_iter ip p =
+ do_type (IndRef ip); Array.iteri (fun j -> cons_iter (ip,j+1)) p.ip_types
+ in
+ if ind.ind_info = Record then List.iter do_term (find_projections kn);
+ Array.iteri (fun i -> packet_iter (kn,i)) ind.ind_packets
+
+let decl_iter_references do_term do_cons do_type =
+ let type_iter = type_iter_references do_type
+ and ast_iter = ast_iter_references do_term do_cons do_type in
+ function
+ | Dind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind
+ | Dtype (r,_,t) -> do_type r; type_iter t
+ | Dterm (r,a,t) -> do_term r; ast_iter a; type_iter t
+ | Dfix(rv,c,t) ->
+ Array.iter do_term rv; Array.iter ast_iter c; Array.iter type_iter t
+
+let spec_iter_references do_term do_cons do_type = function
+ | Sind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind
+ | Stype (r,_,ot) -> do_type r; option_iter (type_iter_references do_type) ot
+ | Sval (r,t) -> do_term r; type_iter_references do_type t
+
+let struct_iter_references do_term do_cons do_type =
+ struct_iter
+ (decl_iter_references do_term do_cons do_type)
+ (spec_iter_references do_term do_cons do_type)
+
+(*s Get all references used in one [ml_structure], either in [list] or [set]. *)
+
+type 'a updown = { mutable up : 'a ; mutable down : 'a }
+
+let struct_get_references empty add struc =
+ let o = { up = empty ; down = empty } in
+ let do_term r = o.down <- add r o.down in
+ let do_cons r = o.up <- add r o.up in
+ let do_type = if lang () = Haskell then do_cons else do_term in
+ struct_iter_references do_term do_cons do_type struc; o
+
+let struct_get_references_set = struct_get_references Refset.empty Refset.add
+
+module Orefset = struct
+ type t = { set : Refset.t ; list : global_reference list }
+ let empty = { set = Refset.empty ; list = [] }
+ let add r o =
+ if Refset.mem r o.set then o
+ else { set = Refset.add r o.set ; list = r :: o.list }
+ let set o = o.set
+ let list o = o.list
+end
+
+let struct_get_references_list struc =
+ let o = struct_get_references Orefset.empty Orefset.add struc in
+ { up = Orefset.list o.up; down = Orefset.list o.down }
+
+
+(*s Searching occurrences of a particular term (no lifting done). *)
+
+exception Found
+
+let rec ast_search t a =
+ if t = a then raise Found else ast_iter (ast_search t) a
+
+let decl_ast_search t = function
+ | Dterm (_,a,_) -> ast_search t a
+ | Dfix (_,c,_) -> Array.iter (ast_search t) c
+ | _ -> ()
+
+let struct_ast_search t s =
+ try struct_iter (decl_ast_search t) (fun _ -> ()) s; false
+ with Found -> true
+
+let rec type_search t = function
+ | Tarr (a,b) -> type_search t a; type_search t b
+ | Tglob (r,l) -> List.iter (type_search t) l
+ | u -> if t = u then raise Found
+
+let decl_type_search t = function
+ | Dind (_,{ind_packets=p}) ->
+ Array.iter
+ (fun {ip_types=v} -> Array.iter (List.iter (type_search t)) v) p
+ | Dterm (_,_,u) -> type_search t u
+ | Dfix (_,_,v) -> Array.iter (type_search t) v
+ | Dtype (_,_,u) -> type_search t u
+
+let spec_type_search t = function
+ | Sind (_,{ind_packets=p}) ->
+ Array.iter
+ (fun {ip_types=v} -> Array.iter (List.iter (type_search t)) v) p
+ | Stype (_,_,ot) -> option_iter (type_search t) ot
+ | Sval (_,u) -> type_search t u
+
+let struct_type_search t s =
+ try struct_iter (decl_type_search t) (spec_type_search t) s; false
+ with Found -> true
+
+
+(*s Generating the signature. *)
+
+let rec msig_of_ms = function
+ | [] -> []
+ | (l,SEdecl (Dind (kn,i))) :: ms ->
+ (l,Spec (Sind (kn,i))) :: (msig_of_ms ms)
+ | (l,SEdecl (Dterm (r,_,t))) :: ms ->
+ (l,Spec (Sval (r,t))) :: (msig_of_ms ms)
+ | (l,SEdecl (Dtype (r,v,t))) :: ms ->
+ (l,Spec (Stype (r,v,Some t))) :: (msig_of_ms ms)
+ | (l,SEdecl (Dfix (rv,_,tv))) :: ms ->
+ let msig = ref (msig_of_ms ms) in
+ for i = Array.length rv - 1 downto 0 do
+ msig := (l,Spec (Sval (rv.(i),tv.(i))))::!msig
+ done;
+ !msig
+ | (l,SEmodule m) :: ms -> (l,Smodule m.ml_mod_type) :: (msig_of_ms ms)
+ | (l,SEmodtype m) :: ms -> (l,Smodtype m) :: (msig_of_ms ms)
+
+let signature_of_structure s =
+ List.map (fun (mp,ms) -> mp,msig_of_ms ms) s
+
+
+(*s Searching one [ml_decl] in a [ml_structure] by its [global_reference] *)
+
+let get_decl_in_structure r struc =
+ try
+ let kn = kn_of_r r in
+ let base_mp,ll = labels_of_kn kn in
+ if not (at_toplevel base_mp) then error_not_visible r;
+ let sel = List.assoc base_mp struc in
+ let rec go ll sel = match ll with
+ | [] -> assert false
+ | l :: ll ->
+ match List.assoc l sel with
+ | SEdecl d -> d
+ | SEmodtype m -> assert false
+ | SEmodule m ->
+ match m.ml_mod_expr with
+ | MEstruct (_,sel) -> go ll sel
+ | _ -> error_not_visible r
+ in go ll sel
+ with Not_found -> assert false
+
+
+(*s Optimization of a [ml_structure]. *)
+
+(* Some transformations of ML terms. [optimize_struct] simplify
+ all beta redexes (when the argument does not occur, it is just
+ thrown away; when it occurs exactly once it is substituted; otherwise
+ a let-in redex is created for clarity) and iota redexes, plus some other
+ optimizations. *)
+
+let dfix_to_mlfix rv av i =
+ let rec make_subst n s =
+ if n < 0 then s
+ else make_subst (n-1) (KNmap.add (kn_of_r rv.(n)) (n+1) s)
+ in
+ let s = make_subst (Array.length rv - 1) KNmap.empty
+ in
+ let rec subst n t = match t with
+ | MLglob (ConstRef kn) ->
+ (try MLrel (n + (KNmap.find kn s)) with Not_found -> t)
+ | _ -> ast_map_lift subst n t
+ in
+ let ids = Array.map (fun r -> id_of_label (label (kn_of_r r))) rv in
+ let c = Array.map (subst 0) av
+ in MLfix(i, ids, c)
+
+let rec optim prm s = function
+ | [] -> []
+ | (Dtype (r,_,Tdummy) | Dterm(r,MLdummy,_)) as d :: l ->
+ if List.mem r prm.to_appear then d :: (optim prm s l) else optim prm s l
+ | Dterm (r,t,typ) :: l ->
+ let t = normalize (ast_glob_subst !s t) in
+ let i = inline r t in
+ if i then s := KNmap.add (kn_of_r r) t !s;
+ if not i || prm.modular || List.mem r prm.to_appear
+ then
+ let d = match optimize_fix t with
+ | MLfix (0, _, [|c|]) ->
+ Dfix ([|r|], [|ast_subst (MLglob r) c|], [|typ|])
+ | t -> Dterm (r, t, typ)
+ in d :: (optim prm s l)
+ else optim prm s l
+ | d :: l -> d :: (optim prm s l)
+
+let rec optim_se top prm s = function
+ | [] -> []
+ | (l,SEdecl (Dterm (r,a,t))) :: lse ->
+ let kn = kn_of_r r in
+ let a = normalize (ast_glob_subst !s a) in
+ let i = inline r a in
+ if i then s := KNmap.add kn a !s;
+ if top && i && not prm.modular && not (List.mem r prm.to_appear)
+ then optim_se top prm s lse
+ else
+ let d = match optimize_fix a with
+ | MLfix (0, _, [|c|]) ->
+ Dfix ([|r|], [|ast_subst (MLglob r) c|], [|t|])
+ | a -> Dterm (r, a, t)
+ in (l,SEdecl d) :: (optim_se top prm s lse)
+ | (l,SEdecl (Dfix (rv,av,tv))) :: lse ->
+ let av = Array.map (fun a -> normalize (ast_glob_subst !s a)) av in
+ let all = ref true in
+ (* This fake body ensures that no fixpoint will be auto-inlined. *)
+ let fake_body = MLfix (0,[||],[||]) in
+ for i = 0 to Array.length rv - 1 do
+ if inline rv.(i) fake_body
+ then s := KNmap.add (kn_of_r rv.(i)) (dfix_to_mlfix rv av i) !s
+ else all := false
+ done;
+ if !all && top && not prm.modular
+ && (array_for_all (fun r -> not (List.mem r prm.to_appear)) rv)
+ then optim_se top prm s lse
+ else (l,SEdecl (Dfix (rv, av, tv))) :: (optim_se top prm s lse)
+ | (l,SEmodule m) :: lse ->
+ let m = { m with ml_mod_expr = optim_me prm s m.ml_mod_expr}
+ in (l,SEmodule m) :: (optim_se top prm s lse)
+ | se :: lse -> se :: (optim_se top prm s lse)
+
+and optim_me prm s = function
+ | MEstruct (msid, lse) -> MEstruct (msid, optim_se false prm s lse)
+ | MEident mp as me -> me
+ | MEapply (me, me') -> MEapply (optim_me prm s me, optim_me prm s me')
+ | MEfunctor (mbid,mt,me) -> MEfunctor (mbid,mt, optim_me prm s me)
+
+let optimize_struct prm before struc =
+ let subst = ref (KNmap.empty : ml_ast KNmap.t) in
+ option_iter (fun l -> ignore (optim prm subst l)) before;
+ List.map (fun (mp,lse) -> (mp, optim_se true prm subst lse)) struc
diff --git a/contrib/extraction/modutil.mli b/contrib/extraction/modutil.mli
new file mode 100644
index 00000000..f73e18f7
--- /dev/null
+++ b/contrib/extraction/modutil.mli
@@ -0,0 +1,70 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: modutil.mli,v 1.2.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+open Names
+open Declarations
+open Environ
+open Libnames
+open Miniml
+
+(*s Functions upon modules missing in [Modops]. *)
+
+(* Add _all_ direct subobjects of a module, not only those exported.
+ Build on the [Modops.add_signature] model. *)
+
+val add_structure : module_path -> module_structure_body -> env -> env
+
+(* Apply a module path substitution on a module.
+ Build on the [Modops.subst_modtype] model. *)
+
+val subst_module : substitution -> module_body -> module_body
+val subst_meb : substitution -> module_expr_body -> module_expr_body
+val subst_msb : substitution -> module_structure_body -> module_structure_body
+
+(* Change a msid in a module type, to follow a module expr. *)
+
+val replicate_msid : module_expr_body -> module_type_body -> module_type_body
+
+(*s More utilities concerning [module_path]. *)
+
+val mp_length : module_path -> int
+val prefixes_mp : module_path -> MPset.t
+val modfile_of_mp : module_path -> module_path
+val common_prefix_from_list : module_path -> module_path list -> module_path
+val add_labels_mp : module_path -> label list -> module_path
+
+(*s Functions upon ML modules. *)
+
+val struct_ast_search : ml_ast -> ml_structure -> bool
+val struct_type_search : ml_type -> ml_structure -> bool
+
+type do_ref = global_reference -> unit
+
+val decl_iter_references : do_ref -> do_ref -> do_ref -> ml_decl -> unit
+val spec_iter_references : do_ref -> do_ref -> do_ref -> ml_spec -> unit
+val struct_iter_references : do_ref -> do_ref -> do_ref -> ml_structure -> unit
+
+type 'a updown = { mutable up : 'a ; mutable down : 'a }
+
+val struct_get_references_set : ml_structure -> Refset.t updown
+val struct_get_references_list : ml_structure -> global_reference list updown
+
+val signature_of_structure : ml_structure -> ml_signature
+
+val get_decl_in_structure : global_reference -> ml_structure -> ml_decl
+
+(* Some transformations of ML terms. [optimize_struct] simplify
+ all beta redexes (when the argument does not occur, it is just
+ thrown away; when it occurs exactly once it is substituted; otherwise
+ a let-in redex is created for clarity) and iota redexes, plus some other
+ optimizations. *)
+
+val optimize_struct :
+ extraction_params -> ml_decl list option -> ml_structure -> ml_structure
diff --git a/contrib/extraction/ocaml.ml b/contrib/extraction/ocaml.ml
new file mode 100644
index 00000000..707ef94f
--- /dev/null
+++ b/contrib/extraction/ocaml.ml
@@ -0,0 +1,627 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ocaml.ml,v 1.100.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*s Production of Ocaml syntax. *)
+
+open Pp
+open Util
+open Names
+open Nameops
+open Libnames
+open Table
+open Miniml
+open Mlutil
+open Modutil
+
+let cons_cofix = ref Refset.empty
+
+(*s Some utility functions. *)
+
+let pp_par par st = if par then str "(" ++ st ++ str ")" else st
+
+let pp_tvar id =
+ let s = string_of_id id in
+ if String.length s < 2 || s.[1]<>'\''
+ then str ("'"^s)
+ else str ("' "^s)
+
+let pp_tuple_light f = function
+ | [] -> mt ()
+ | [x] -> f true x
+ | l ->
+ pp_par true (prlist_with_sep (fun () -> str "," ++ spc ()) (f false) l)
+
+let pp_tuple f = function
+ | [] -> mt ()
+ | [x] -> f x
+ | l -> pp_par true (prlist_with_sep (fun () -> str "," ++ spc ()) f l)
+
+let pp_boxed_tuple f = function
+ | [] -> mt ()
+ | [x] -> f x
+ | l -> pp_par true (hov 0 (prlist_with_sep (fun () -> str "," ++ spc ()) f l))
+
+let pp_abst = function
+ | [] -> mt ()
+ | l ->
+ str "fun " ++ prlist_with_sep (fun () -> str " ") pr_id l ++
+ str " ->" ++ spc ()
+
+let pp_apply st par args = match args with
+ | [] -> st
+ | _ -> hov 2 (pp_par par (st ++ spc () ++ prlist_with_sep spc identity args))
+
+let pr_binding = function
+ | [] -> mt ()
+ | l -> str " " ++ prlist_with_sep (fun () -> str " ") pr_id l
+
+let space_if = function true -> str " " | false -> mt ()
+
+let sec_space_if = function true -> spc () | false -> mt ()
+
+let fnl2 () = fnl () ++ fnl ()
+
+(*s Generic renaming issues. *)
+
+let rec rename_id id avoid =
+ if Idset.mem id avoid then rename_id (lift_ident id) avoid else id
+
+let lowercase_id id = id_of_string (String.uncapitalize (string_of_id id))
+let uppercase_id id = id_of_string (String.capitalize (string_of_id id))
+
+(* [pr_upper_id id] makes 2 String.copy lesser than [pr_id (uppercase_id id)] *)
+let pr_upper_id id = str (String.capitalize (string_of_id id))
+
+(*s de Bruijn environments for programs *)
+
+type env = identifier list * Idset.t
+
+let rec rename_vars avoid = function
+ | [] ->
+ [], avoid
+ | id :: idl when id == dummy_name ->
+ (* we don't rename dummy binders *)
+ let (idl', avoid') = rename_vars avoid idl in
+ (id :: idl', avoid')
+ | id :: idl ->
+ let (idl, avoid) = rename_vars avoid idl in
+ let id = rename_id (lowercase_id id) avoid in
+ (id :: idl, Idset.add id avoid)
+
+let rename_tvars avoid l =
+ let rec rename avoid = function
+ | [] -> [],avoid
+ | id :: idl ->
+ let id = rename_id (lowercase_id id) avoid in
+ let idl, avoid = rename (Idset.add id avoid) idl in
+ (id :: idl, avoid) in
+ fst (rename avoid l)
+
+let push_vars ids (db,avoid) =
+ let ids',avoid' = rename_vars avoid ids in
+ ids', (ids' @ db, avoid')
+
+let get_db_name n (db,_) =
+ let id = List.nth db (pred n) in
+ if id = dummy_name then id_of_string "__" else id
+
+(*s Ocaml renaming issues. *)
+
+let keywords =
+ List.fold_right (fun s -> Idset.add (id_of_string s))
+ [ "and"; "as"; "assert"; "begin"; "class"; "constraint"; "do";
+ "done"; "downto"; "else"; "end"; "exception"; "external"; "false";
+ "for"; "fun"; "function"; "functor"; "if"; "in"; "include";
+ "inherit"; "initializer"; "lazy"; "let"; "match"; "method";
+ "module"; "mutable"; "new"; "object"; "of"; "open"; "or";
+ "parser"; "private"; "rec"; "sig"; "struct"; "then"; "to"; "true";
+ "try"; "type"; "val"; "virtual"; "when"; "while"; "with"; "mod";
+ "land"; "lor"; "lxor"; "lsl"; "lsr"; "asr" ; "unit" ; "_" ; "__" ]
+ Idset.empty
+
+let preamble _ used_modules (mldummy,tdummy,tunknown) =
+ let pp_mp = function
+ | MPfile d -> pr_upper_id (List.hd (repr_dirpath d))
+ | _ -> assert false
+ in
+ prlist (fun mp -> str "open " ++ pp_mp mp ++ fnl ()) used_modules
+ ++
+ (if used_modules = [] then mt () else fnl ())
+ ++
+ (if tdummy || tunknown then str "type __ = Obj.t" ++ fnl() else mt())
+ ++
+ (if mldummy then
+ str "let __ = let rec f _ = Obj.repr f in Obj.repr f" ++ fnl ()
+ else mt ())
+ ++
+ (if tdummy || tunknown || mldummy then fnl () else mt ())
+
+let preamble_sig _ used_modules (_,tdummy,tunknown) =
+ let pp_mp = function
+ | MPfile d -> pr_upper_id (List.hd (repr_dirpath d))
+ | _ -> assert false
+ in
+ prlist (fun mp -> str "open " ++ pp_mp mp ++ fnl ()) used_modules
+ ++
+ (if used_modules = [] then mt () else fnl ())
+ ++
+ (if tdummy || tunknown then str "type __ = Obj.t" ++ fnl() ++ fnl ()
+ else mt())
+
+(*s The pretty-printing functor. *)
+
+module Make = functor(P : Mlpp_param) -> struct
+
+let local_mpl = ref ([] : module_path list)
+
+let pp_global r =
+ if is_inline_custom r then str (find_custom r)
+ else P.pp_global !local_mpl r
+
+let empty_env () = [], P.globals ()
+
+(*s Pretty-printing of types. [par] is a boolean indicating whether parentheses
+ are needed or not. *)
+
+let rec pp_type par vl t =
+ let rec pp_rec par = function
+ | Tmeta _ | Tvar' _ | Taxiom -> assert false
+ | Tvar i -> (try pp_tvar (List.nth vl (pred i))
+ with _ -> (str "'a" ++ int i))
+ | Tglob (r,[]) -> pp_global r
+ | Tglob (r,l) -> pp_tuple_light pp_rec l ++ spc () ++ pp_global r
+ | Tarr (t1,t2) ->
+ pp_par par
+ (pp_rec true t1 ++ spc () ++ str "->" ++ spc () ++ pp_rec false t2)
+ | Tdummy -> str "__"
+ | Tunknown -> str "__"
+ | Tcustom s -> str s
+ in
+ hov 0 (pp_rec par t)
+
+(*s Pretty-printing of expressions. [par] indicates whether
+ parentheses are needed or not. [env] is the list of names for the
+ de Bruijn variables. [args] is the list of collected arguments
+ (already pretty-printed). *)
+
+let expr_needs_par = function
+ | MLlam _ -> true
+ | MLcase (_,[|_|]) -> false
+ | MLcase _ -> true
+ | _ -> false
+
+
+let rec pp_expr par env args =
+ let par' = args <> [] || par
+ and apply st = pp_apply st par args in
+ function
+ | MLrel n ->
+ let id = get_db_name n env in apply (pr_id id)
+ | MLapp (f,args') ->
+ let stl = List.map (pp_expr true env []) args' in
+ pp_expr par env (stl @ args) f
+ | MLlam _ as a ->
+ let fl,a' = collect_lams a in
+ let fl,env' = push_vars fl env in
+ let st = (pp_abst (List.rev fl) ++ pp_expr false env' [] a') in
+ apply (pp_par par' st)
+ | MLletin (id,a1,a2) ->
+ let i,env' = push_vars [id] env in
+ let pp_id = pr_id (List.hd i)
+ and pp_a1 = pp_expr false env [] a1
+ and pp_a2 = pp_expr (not par && expr_needs_par a2) env' [] a2 in
+ hv 0
+ (apply
+ (pp_par par'
+ (hv 0
+ (hov 2
+ (str "let " ++ pp_id ++ str " =" ++ spc () ++ pp_a1) ++
+ spc () ++ str "in") ++
+ spc () ++ hov 0 pp_a2)))
+ | MLglob r ->
+ (try
+ let args = list_skipn (projection_arity r) args in
+ let record = List.hd args in
+ pp_apply (record ++ str "." ++ pp_global r) par (List.tl args)
+ with _ -> apply (pp_global r))
+ | MLcons (r,[]) ->
+ assert (args=[]);
+ if Refset.mem r !cons_cofix then
+ pp_par par (str "lazy " ++ pp_global r)
+ else pp_global r
+ | MLcons (r,args') ->
+ (try
+ let projs = find_projections (kn_of_r r) in
+ pp_record_pat (projs, List.map (pp_expr true env []) args')
+ with Not_found ->
+ assert (args=[]);
+ let tuple = pp_tuple (pp_expr true env []) args' in
+ if Refset.mem r !cons_cofix then
+ pp_par par (str "lazy (" ++ pp_global r ++ spc() ++ tuple ++str ")")
+ else pp_par par (pp_global r ++ spc () ++ tuple))
+ | MLcase (t, pv) ->
+ let r,_,_ = pv.(0) in
+ let expr = if Refset.mem r !cons_cofix then
+ (str "Lazy.force" ++ spc () ++ pp_expr true env [] t)
+ else
+ (pp_expr false env [] t)
+ in
+ (try
+ let projs = find_projections (kn_of_r r) in
+ let (_, ids, c) = pv.(0) in
+ let n = List.length ids in
+ match c with
+ | MLrel i when i <= n ->
+ apply (pp_par par' (pp_expr true env [] t ++ str "." ++
+ pp_global (List.nth projs (n-i))))
+ | MLapp (MLrel i, a) when i <= n ->
+ if List.exists (ast_occurs_itvl 1 n) a
+ then raise Not_found
+ else
+ let ids,env' = push_vars (List.rev ids) env in
+ (pp_apply
+ (pp_expr true env [] t ++ str "." ++
+ pp_global (List.nth projs (n-i)))
+ par ((List.map (pp_expr true env' []) a) @ args))
+ | _ -> raise Not_found
+ with Not_found ->
+ if Array.length pv = 1 then
+ let s1,s2 = pp_one_pat env pv.(0) in
+ apply
+ (hv 0
+ (pp_par par'
+ (hv 0
+ (hov 2 (str "let " ++ s1 ++ str " =" ++ spc () ++ expr)
+ ++ spc () ++ str "in") ++
+ spc () ++ hov 0 s2)))
+ else
+ apply
+ (pp_par par'
+ (v 0 (str "match " ++ expr ++ str " with" ++
+ fnl () ++ str " | " ++ pp_pat env pv))))
+ | MLfix (i,ids,defs) ->
+ let ids',env' = push_vars (List.rev (Array.to_list ids)) env in
+ pp_fix par env' i (Array.of_list (List.rev ids'),defs) args
+ | MLexn s ->
+ (* An [MLexn] may be applied, but I don't really care. *)
+ pp_par par (str "assert false" ++ spc () ++ str ("(* "^s^" *)"))
+ | MLdummy ->
+ str "__" (* An [MLdummy] may be applied, but I don't really care. *)
+ | MLmagic a ->
+ pp_apply (str "Obj.magic") par (pp_expr true env [] a :: args)
+ | MLaxiom ->
+ pp_par par (str "failwith \"AXIOM TO BE REALIZED\"")
+
+
+and pp_record_pat (projs, args) =
+ str "{ " ++
+ prlist_with_sep (fun () -> str ";" ++ spc ())
+ (fun (r,a) -> pp_global r ++ str " =" ++ spc () ++ a)
+ (List.combine projs args) ++
+ str " }"
+
+and pp_one_pat env (r,ids,t) =
+ let ids,env' = push_vars (List.rev ids) env in
+ let expr = pp_expr (expr_needs_par t) env' [] t in
+ try
+ let projs = find_projections (kn_of_r r) in
+ pp_record_pat (projs, List.rev_map pr_id ids), expr
+ with Not_found ->
+ let args =
+ if ids = [] then (mt ())
+ else str " " ++ pp_boxed_tuple pr_id (List.rev ids) in
+ pp_global r ++ args, expr
+
+and pp_pat env pv =
+ prvect_with_sep (fun () -> (fnl () ++ str " | "))
+ (fun x -> let s1,s2 = pp_one_pat env x in
+ hov 2 (s1 ++ str " ->" ++ spc () ++ s2)) pv
+
+and pp_function env f t =
+ let bl,t' = collect_lams t in
+ let bl,env' = push_vars bl env in
+ let is_function pv =
+ let ktl = array_map_to_list (fun (_,l,t0) -> (List.length l,t0)) pv in
+ not (List.exists (fun (k,t0) -> ast_occurs (k+1) t0) ktl)
+ in
+ let is_not_cofix pv =
+ let (r,_,_) = pv.(0) in not (Refset.mem r !cons_cofix)
+ in
+ match t' with
+ | MLcase(MLrel 1,pv) when is_not_cofix pv ->
+ if is_function pv then
+ (f ++ pr_binding (List.rev (List.tl bl)) ++
+ str " = function" ++ fnl () ++
+ v 0 (str " | " ++ pp_pat env' pv))
+ else
+ (f ++ pr_binding (List.rev bl) ++
+ str " = match " ++
+ pr_id (List.hd bl) ++ str " with" ++ fnl () ++
+ v 0 (str " | " ++ pp_pat env' pv))
+
+ | _ -> (f ++ pr_binding (List.rev bl) ++
+ str " =" ++ fnl () ++ str " " ++
+ hov 2 (pp_expr false env' [] t'))
+
+(*s names of the functions ([ids]) are already pushed in [env],
+ and passed here just for convenience. *)
+
+and pp_fix par env i (ids,bl) args =
+ pp_par par
+ (v 0 (str "let rec " ++
+ prvect_with_sep
+ (fun () -> fnl () ++ str "and ")
+ (fun (fi,ti) -> pp_function env (pr_id fi) ti)
+ (array_map2 (fun id b -> (id,b)) ids bl) ++
+ fnl () ++
+ hov 2 (str "in " ++ pp_apply (pr_id ids.(i)) false args)))
+
+let pp_val e typ =
+ str "(** val " ++ e ++ str " : " ++ pp_type false [] typ ++
+ str " **)" ++ fnl2 ()
+
+(*s Pretty-printing of [Dfix] *)
+
+let rec pp_Dfix init i ((rv,c,t) as fix) =
+ if i >= Array.length rv then mt ()
+ else
+ if is_inline_custom rv.(i) then pp_Dfix init (i+1) fix
+ else
+ let e = pp_global rv.(i) in
+ (if init then mt () else fnl2 ()) ++
+ pp_val e t.(i) ++
+ str (if init then "let rec " else "and ") ++
+ (if is_custom rv.(i) then e ++ str " = " ++ str (find_custom rv.(i))
+ else pp_function (empty_env ()) e c.(i)) ++
+ pp_Dfix false (i+1) fix
+
+(*s Pretty-printing of inductive types declaration. *)
+
+let pp_parameters l =
+ (pp_boxed_tuple pp_tvar l ++ space_if (l<>[]))
+
+let pp_string_parameters l =
+ (pp_boxed_tuple str l ++ space_if (l<>[]))
+
+let pp_one_ind prefix ip pl cv =
+ let pl = rename_tvars keywords pl in
+ let pp_constructor (r,l) =
+ hov 2 (str " | " ++ pp_global r ++
+ match l with
+ | [] -> mt ()
+ | _ -> (str " of " ++
+ prlist_with_sep
+ (fun () -> spc () ++ str "* ") (pp_type true pl) l))
+ in
+ pp_parameters pl ++ str prefix ++ pp_global (IndRef ip) ++ str " =" ++
+ if cv = [||] then str " unit (* empty inductive *)"
+ else fnl () ++ v 0 (prvect_with_sep fnl pp_constructor
+ (Array.mapi (fun i c -> ConstructRef (ip,i+1), c) cv))
+
+let pp_comment s = str "(* " ++ s ++ str " *)"
+
+let pp_logical_ind packet =
+ pp_comment (pr_id packet.ip_typename ++ str " : logical inductive") ++
+ fnl () ++ pp_comment (str "with constructors : " ++
+ prvect_with_sep spc pr_id packet.ip_consnames)
+
+let pp_singleton kn packet =
+ let l = rename_tvars keywords packet.ip_vars in
+ hov 2 (str "type " ++ pp_parameters l ++
+ pp_global (IndRef (kn,0)) ++ str " =" ++ spc () ++
+ pp_type false l (List.hd packet.ip_types.(0)) ++ fnl () ++
+ pp_comment (str "singleton inductive, whose constructor was " ++
+ pr_id packet.ip_consnames.(0)))
+
+let pp_record kn packet =
+ let l = List.combine (find_projections kn) packet.ip_types.(0) in
+ let projs = find_projections kn in
+ let pl = rename_tvars keywords packet.ip_vars in
+ str "type " ++ pp_parameters pl ++ pp_global (IndRef (kn,0)) ++ str " = { "++
+ hov 0 (prlist_with_sep (fun () -> str ";" ++ spc ())
+ (fun (r,t) -> pp_global r ++ str " : " ++ pp_type true pl t) l)
+ ++ str " }"
+
+let pp_coind ip pl =
+ let r = IndRef ip in
+ let pl = rename_tvars keywords pl in
+ pp_parameters pl ++ pp_global r ++ str " = " ++
+ pp_parameters pl ++ str "__" ++ pp_global r ++ str " Lazy.t"
+
+let pp_ind co kn ind =
+ let some = ref false in
+ let init= ref (str "type ") in
+ let rec pp i =
+ if i >= Array.length ind.ind_packets then mt ()
+ else
+ let ip = (kn,i) in
+ let p = ind.ind_packets.(i) in
+ if is_custom (IndRef (kn,i)) then pp (i+1)
+ else begin
+ some := true;
+ if p.ip_logical then pp_logical_ind p ++ pp (i+1)
+ else
+ let s = !init in
+ begin
+ init := (fnl () ++ str "and ");
+ s ++
+ (if co then pp_coind ip p.ip_vars ++ fnl () ++ str "and " else mt ())
+ ++ pp_one_ind (if co then "__" else "") ip p.ip_vars p.ip_types ++
+ pp (i+1)
+ end
+ end
+ in
+ let st = pp 0 in if !some then st else failwith "empty phrase"
+
+
+(*s Pretty-printing of a declaration. *)
+
+let pp_mind kn i =
+ match i.ind_info with
+ | Singleton -> pp_singleton kn i.ind_packets.(0)
+ | Coinductive ->
+ let nop _ = ()
+ and add r = cons_cofix := Refset.add r !cons_cofix in
+ decl_iter_references nop add nop (Dind (kn,i));
+ pp_ind true kn i
+ | Record -> pp_record kn i.ind_packets.(0)
+ | _ -> pp_ind false kn i
+
+let pp_decl mpl =
+ local_mpl := mpl;
+ function
+ | Dind (kn,i) as d -> pp_mind kn i
+ | Dtype (r, l, t) ->
+ if is_inline_custom r then failwith "empty phrase"
+ else
+ let l = rename_tvars keywords l in
+ let ids, def = try
+ let ids,s = find_type_custom r in
+ pp_string_parameters ids, str "=" ++ spc () ++ str s
+ with not_found ->
+ pp_parameters l,
+ if t = Taxiom then str "(* AXIOM TO BE REALIZED *)"
+ else str "=" ++ spc () ++ pp_type false l t
+ in
+ hov 2 (str "type" ++ spc () ++ ids ++ pp_global r ++
+ spc () ++ def)
+ | Dterm (r, a, t) ->
+ if is_inline_custom r then failwith "empty phrase"
+ else
+ let e = pp_global r in
+ pp_val e t ++
+ hov 0
+ (str "let " ++
+ if is_custom r then
+ e ++ str " = " ++ str (find_custom r)
+ else if is_projection r then
+ let s = prvecti (fun _ -> str)
+ (Array.make (projection_arity r) " _") in
+ e ++ s ++ str " x = x." ++ e
+ else pp_function (empty_env ()) e a)
+ | Dfix (rv,defs,typs) ->
+ pp_Dfix true 0 (rv,defs,typs)
+
+let pp_spec mpl =
+ local_mpl := mpl;
+ function
+ | Sind (kn,i) -> pp_mind kn i
+ | Sval (r,t) ->
+ if is_inline_custom r then failwith "empty phrase"
+ else
+ hov 2 (str "val" ++ spc () ++ pp_global r ++ str " :" ++ spc () ++
+ pp_type false [] t)
+ | Stype (r,vl,ot) ->
+ if is_inline_custom r then failwith "empty phrase"
+ else
+ let l = rename_tvars keywords vl in
+ let ids, def =
+ try
+ let ids, s = find_type_custom r in
+ pp_string_parameters ids, str "= " ++ str s
+ with not_found ->
+ let ids = pp_parameters l in
+ match ot with
+ | None -> ids, mt ()
+ | Some Taxiom -> ids, str "(* AXIOM TO BE REALIZED *)"
+ | Some t -> ids, str "=" ++ spc () ++ pp_type false l t
+ in
+ hov 2 (str "type" ++ spc () ++ ids ++ pp_global r ++ spc () ++ def)
+
+let rec pp_specif mpl = function
+ | (_,Spec s) -> pp_spec mpl s
+ | (l,Smodule mt) ->
+ hov 1
+ (str "module " ++
+ P.pp_module mpl (MPdot (List.hd mpl, l)) ++
+ str " : " ++ fnl () ++ pp_module_type mpl None (* (Some l) *) mt)
+ | (l,Smodtype mt) ->
+ hov 1
+ (str "module type " ++
+ P.pp_module mpl (MPdot (List.hd mpl, l)) ++
+ str " = " ++ fnl () ++ pp_module_type mpl None mt)
+
+and pp_module_type mpl ol = function
+ | MTident kn ->
+ let mp,_,l = repr_kn kn in P.pp_module mpl (MPdot (mp,l))
+ | MTfunsig (mbid, mt, mt') ->
+ str "functor (" ++
+ P.pp_module mpl (MPbound mbid) ++
+ str ":" ++
+ pp_module_type mpl None mt ++
+ str ") ->" ++ fnl () ++
+ pp_module_type mpl None mt'
+ | MTsig (msid, sign) ->
+ let mpl = match ol, mpl with
+ | None, _ -> (MPself msid) :: mpl
+ | Some l, mp :: mpl -> (MPdot (mp,l)) :: mpl
+ | _ -> assert false
+ in
+ let l = map_succeed (pp_specif mpl) sign in
+ str "sig " ++ fnl () ++
+ v 1 (str " " ++ prlist_with_sep fnl2 identity l) ++
+ fnl () ++ str "end"
+
+let is_short = function MEident _ | MEapply _ -> true | _ -> false
+
+let rec pp_structure_elem mpl = function
+ | (_,SEdecl d) -> pp_decl mpl d
+ | (l,SEmodule m) ->
+ hov 1
+ (str "module " ++ P.pp_module mpl (MPdot (List.hd mpl, l)) ++
+ (* if you want signatures everywhere: *)
+ (*i str " :" ++ fnl () ++ i*)
+ (*i pp_module_type mpl None m.ml_mod_type ++ fnl () ++ i*)
+ str " = " ++
+ (if (is_short m.ml_mod_expr) then mt () else fnl ()) ++
+ pp_module_expr mpl (Some l) m.ml_mod_expr)
+ | (l,SEmodtype m) ->
+ hov 1
+ (str "module type " ++ P.pp_module mpl (MPdot (List.hd mpl, l)) ++
+ str " = " ++ fnl () ++ pp_module_type mpl None m)
+
+and pp_module_expr mpl ol = function
+ | MEident mp' -> P.pp_module mpl mp'
+ | MEfunctor (mbid, mt, me) ->
+ str "functor (" ++
+ P.pp_module mpl (MPbound mbid) ++
+ str ":" ++
+ pp_module_type mpl None mt ++
+ str ") ->" ++ fnl () ++
+ pp_module_expr mpl None me
+ | MEapply (me, me') ->
+ pp_module_expr mpl None me ++ str "(" ++
+ pp_module_expr mpl None me' ++ str ")"
+ | MEstruct (msid, sel) ->
+ let mpl = match ol, mpl with
+ | None, _ -> (MPself msid) :: mpl
+ | Some l, mp :: mpl -> (MPdot (mp,l)) :: mpl
+ | _ -> assert false
+ in
+ let l = map_succeed (pp_structure_elem mpl) sel in
+ str "struct " ++ fnl () ++
+ v 1 (str " " ++ prlist_with_sep fnl2 identity l) ++
+ fnl () ++ str "end"
+
+let pp_struct s =
+ let pp mp s = pp_structure_elem [mp] s ++ fnl2 () in
+ prlist (fun (mp,sel) -> prlist identity (map_succeed (pp mp) sel)) s
+
+let pp_signature s =
+ let pp mp s = pp_specif [mp] s ++ fnl2 () in
+ prlist (fun (mp,sign) -> prlist identity (map_succeed (pp mp) sign)) s
+
+let pp_decl mpl d =
+ try pp_decl mpl d with Failure "empty phrase" -> mt ()
+
+end
+
+
+
diff --git a/contrib/extraction/ocaml.mli b/contrib/extraction/ocaml.mli
new file mode 100644
index 00000000..711c15da
--- /dev/null
+++ b/contrib/extraction/ocaml.mli
@@ -0,0 +1,56 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ocaml.mli,v 1.26.6.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*s Some utility functions to be reused in module [Haskell]. *)
+
+open Pp
+open Names
+open Libnames
+open Miniml
+
+val cons_cofix : Refset.t ref
+
+val pp_par : bool -> std_ppcmds -> std_ppcmds
+val pp_abst : identifier list -> std_ppcmds
+val pp_apply : std_ppcmds -> bool -> std_ppcmds list -> std_ppcmds
+val pr_binding : identifier list -> std_ppcmds
+
+val rename_id : identifier -> Idset.t -> identifier
+
+val lowercase_id : identifier -> identifier
+val uppercase_id : identifier -> identifier
+
+val pr_upper_id : identifier -> std_ppcmds
+
+type env = identifier list * Idset.t
+
+val rename_vars: Idset.t -> identifier list -> env
+val rename_tvars: Idset.t -> identifier list -> identifier list
+val push_vars : identifier list -> env -> identifier list * env
+val get_db_name : int -> env -> identifier
+
+val keywords : Idset.t
+
+val preamble :
+ extraction_params -> module_path list -> bool * bool * bool -> std_ppcmds
+
+val preamble_sig :
+ extraction_params -> module_path list -> bool * bool * bool -> std_ppcmds
+
+(*s Production of Ocaml syntax. We export both a functor to be used for
+ extraction in the Coq toplevel and a function to extract some
+ declarations to a file. *)
+
+module Make : functor(P : Mlpp_param) -> Mlpp
+
+
+
+
+
diff --git a/contrib/extraction/scheme.ml b/contrib/extraction/scheme.ml
new file mode 100644
index 00000000..61045304
--- /dev/null
+++ b/contrib/extraction/scheme.ml
@@ -0,0 +1,175 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: scheme.ml,v 1.9.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*s Production of Scheme syntax. *)
+
+open Pp
+open Util
+open Names
+open Nameops
+open Libnames
+open Miniml
+open Mlutil
+open Table
+open Ocaml
+
+(*s Scheme renaming issues. *)
+
+let keywords =
+ List.fold_right (fun s -> Idset.add (id_of_string s))
+ [ "define"; "let"; "lambda"; "lambdas"; "match-case";
+ "apply"; "car"; "cdr";
+ "error"; "delay"; "force"; "_"; "__"]
+ Idset.empty
+
+let preamble _ _ (mldummy,_,_) =
+ (if mldummy then
+ str "(define __ (lambda (_) __))"
+ ++ fnl () ++ fnl()
+ else mt ())
+
+let paren = pp_par true
+
+let pp_abst st = function
+ | [] -> assert false
+ | [id] -> paren (str "lambda " ++ paren (pr_id id) ++ spc () ++ st)
+ | l -> paren
+ (str "lambdas " ++ paren (prlist_with_sep spc pr_id l) ++ spc () ++ st)
+
+(*s The pretty-printing functor. *)
+
+module Make = functor(P : Mlpp_param) -> struct
+
+let pp_global r = P.pp_global [initial_path] r
+let empty_env () = [], P.globals()
+
+(*s Pretty-printing of expressions. *)
+
+let rec pp_expr env args =
+ let apply st = pp_apply st true args in
+ function
+ | MLrel n ->
+ let id = get_db_name n env in apply (pr_id id)
+ | MLapp (f,args') ->
+ let stl = List.map (pp_expr env []) args' in
+ pp_expr env (stl @ args) f
+ | MLlam _ as a ->
+ let fl,a' = collect_lams a in
+ let fl,env' = push_vars fl env in
+ pp_abst (pp_expr env' [] a') (List.rev fl)
+ | MLletin (id,a1,a2) ->
+ let i,env' = push_vars [id] env in
+ apply
+ (hv 0
+ (hov 2
+ (paren
+ (str "let " ++
+ paren
+ (paren
+ (pr_id (List.hd i) ++ spc () ++ pp_expr env [] a1))
+ ++ spc () ++ hov 0 (pp_expr env' [] a2)))))
+ | MLglob r ->
+ apply (pp_global r)
+ | MLcons (r,args') ->
+ assert (args=[]);
+ let st =
+ str "`" ++
+ paren (pp_global r ++
+ (if args' = [] then mt () else (spc () ++ str ",")) ++
+ prlist_with_sep
+ (fun () -> spc () ++ str ",")
+ (pp_expr env []) args')
+ in
+ if Refset.mem r !cons_cofix then
+ paren (str "delay " ++ st)
+ else st
+ | MLcase (t, pv) ->
+ let r,_,_ = pv.(0) in
+ let e = if Refset.mem r !cons_cofix then
+ paren (str "force" ++ spc () ++ pp_expr env [] t)
+ else
+ pp_expr env [] t
+ in apply (v 3 (paren
+ (str "match-case " ++ e ++ fnl () ++ pp_pat env pv)))
+ | MLfix (i,ids,defs) ->
+ let ids',env' = push_vars (List.rev (Array.to_list ids)) env in
+ pp_fix env' i (Array.of_list (List.rev ids'),defs) args
+ | MLexn s ->
+ (* An [MLexn] may be applied, but I don't really care. *)
+ paren (str "absurd")
+ | MLdummy ->
+ str "__" (* An [MLdummy] may be applied, but I don't really care. *)
+ | MLmagic a ->
+ pp_expr env args a
+ | MLaxiom -> paren (str "absurd ;;AXIOM TO BE REALIZED\n")
+
+
+and pp_one_pat env (r,ids,t) =
+ let pp_arg id = str "?" ++ pr_id id in
+ let ids,env' = push_vars (List.rev ids) env in
+ let args =
+ if ids = [] then mt ()
+ else (str " " ++ prlist_with_sep spc pp_arg (List.rev ids))
+ in
+ (pp_global r ++ args), (pp_expr env' [] t)
+
+and pp_pat env pv =
+ prvect_with_sep fnl
+ (fun x -> let s1,s2 = pp_one_pat env x in
+ hov 2 (str "((" ++ s1 ++ str ")" ++ spc () ++ s2 ++ str ")")) pv
+
+(*s names of the functions ([ids]) are already pushed in [env],
+ and passed here just for convenience. *)
+
+and pp_fix env j (ids,bl) args =
+ paren
+ (str "letrec " ++
+ (v 0 (paren
+ (prvect_with_sep fnl
+ (fun (fi,ti) -> paren ((pr_id fi) ++ (pp_expr env [] ti)))
+ (array_map2 (fun id b -> (id,b)) ids bl)) ++
+ fnl () ++
+ hov 2 (pp_apply (pr_id (ids.(j))) true args))))
+
+(*s Pretty-printing of a declaration. *)
+
+let pp_decl _ = function
+ | Dind _ -> mt ()
+ | Dtype _ -> mt ()
+ | Dfix (rv, defs,_) ->
+ let ppv = Array.map pp_global rv in
+ prvect_with_sep fnl
+ (fun (pi,ti) ->
+ hov 2
+ (paren (str "define " ++ pi ++ spc () ++
+ (pp_expr (empty_env ()) [] ti))
+ ++ fnl ()))
+ (array_map2 (fun p b -> (p,b)) ppv defs) ++
+ fnl ()
+ | Dterm (r, a, _) ->
+ if is_inline_custom r then mt ()
+ else
+ hov 2 (paren (str "define " ++ pp_global r ++ spc () ++
+ pp_expr (empty_env ()) [] a)) ++ fnl () ++ fnl ()
+
+let pp_structure_elem mp = function
+ | (l,SEdecl d) -> pp_decl mp d
+ | (l,SEmodule m) ->
+ failwith "TODO: Scheme extraction of modules not implemented yet"
+ | (l,SEmodtype m) ->
+ failwith "TODO: Scheme extraction of modules not implemented yet"
+
+let pp_struct =
+ prlist (fun (mp,sel) -> prlist (pp_structure_elem mp) sel)
+
+let pp_signature s = assert false
+
+end
+
diff --git a/contrib/extraction/scheme.mli b/contrib/extraction/scheme.mli
new file mode 100644
index 00000000..6e689a47
--- /dev/null
+++ b/contrib/extraction/scheme.mli
@@ -0,0 +1,27 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: scheme.mli,v 1.6.6.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*s Some utility functions to be reused in module [Haskell]. *)
+
+open Pp
+open Miniml
+open Names
+
+val keywords : Idset.t
+
+val preamble :
+ extraction_params -> module_path list -> bool * bool * bool -> std_ppcmds
+
+module Make : functor(P : Mlpp_param) -> Mlpp
+
+
+
+
+
diff --git a/contrib/extraction/table.ml b/contrib/extraction/table.ml
new file mode 100644
index 00000000..a65c51a4
--- /dev/null
+++ b/contrib/extraction/table.ml
@@ -0,0 +1,446 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: table.ml,v 1.35.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+open Names
+open Term
+open Declarations
+open Nameops
+open Summary
+open Libobject
+open Goptions
+open Libnames
+open Util
+open Pp
+open Miniml
+
+(*S Utilities concerning [module_path] and [kernel_names] *)
+
+let kn_of_r r = match r with
+ | ConstRef kn -> kn
+ | IndRef (kn,_) -> kn
+ | ConstructRef ((kn,_),_) -> kn
+ | VarRef _ -> assert false
+
+let current_toplevel () = fst (Lib.current_prefix ())
+
+let rec base_mp = function
+ | MPdot (mp,l) -> base_mp mp
+ | mp -> mp
+
+let is_modfile = function
+ | MPfile _ -> true
+ | _ -> false
+
+let is_toplevel mp =
+ mp = initial_path || mp = current_toplevel ()
+
+let at_toplevel mp =
+ is_modfile mp || is_toplevel mp
+
+let visible_kn kn = at_toplevel (base_mp (modpath kn))
+
+
+(*S The main tables: constants, inductives, records, ... *)
+
+(*s Constants tables. *)
+
+let terms = ref (KNmap.empty : ml_decl KNmap.t)
+let init_terms () = terms := KNmap.empty
+let add_term kn d = terms := KNmap.add kn d !terms
+let lookup_term kn = KNmap.find kn !terms
+
+let types = ref (KNmap.empty : ml_schema KNmap.t)
+let init_types () = types := KNmap.empty
+let add_type kn s = types := KNmap.add kn s !types
+let lookup_type kn = KNmap.find kn !types
+
+(*s Inductives table. *)
+
+let inductives = ref (KNmap.empty : ml_ind KNmap.t)
+let init_inductives () = inductives := KNmap.empty
+let add_ind kn m = inductives := KNmap.add kn m !inductives
+let lookup_ind kn = KNmap.find kn !inductives
+
+(*s Recursors table. *)
+
+let recursors = ref KNset.empty
+let init_recursors () = recursors := KNset.empty
+
+let add_recursors env kn =
+ let make_kn id = make_kn (modpath kn) empty_dirpath (label_of_id id) in
+ let mib = Environ.lookup_mind kn env in
+ Array.iter
+ (fun mip ->
+ let id = mip.mind_typename in
+ let kn_rec = make_kn (Nameops.add_suffix id "_rec")
+ and kn_rect = make_kn (Nameops.add_suffix id "_rect") in
+ recursors := KNset.add kn_rec (KNset.add kn_rect !recursors))
+ mib.mind_packets
+
+let is_recursor = function
+ | ConstRef kn -> KNset.mem kn !recursors
+ | _ -> false
+
+(*s Record tables. *)
+
+let records = ref (KNmap.empty : global_reference list KNmap.t)
+let init_records () = records := KNmap.empty
+
+let projs = ref (Refmap.empty : int Refmap.t)
+let init_projs () = projs := Refmap.empty
+
+let add_record kn n (l1,l2) =
+ records := KNmap.add kn l1 !records;
+ projs := List.fold_right (fun r -> Refmap.add r n) l2 !projs
+
+let find_projections kn = KNmap.find kn !records
+let is_projection r = Refmap.mem r !projs
+let projection_arity r = Refmap.find r !projs
+
+(*s Tables synchronization. *)
+
+let reset_tables () =
+ init_terms (); init_types (); init_inductives (); init_recursors ();
+ init_records (); init_projs ()
+
+(*s Printing. *)
+
+(* The following functions work even on objects not in [Global.env ()].
+ WARNING: for inductive objects, an extract_inductive must have been
+ done before. *)
+
+let id_of_global = function
+ | ConstRef kn -> let _,_,l = repr_kn kn in id_of_label l
+ | IndRef (kn,i) -> (lookup_ind kn).ind_packets.(i).ip_typename
+ | ConstructRef ((kn,i),j) -> (lookup_ind kn).ind_packets.(i).ip_consnames.(j-1)
+ | _ -> assert false
+
+let pr_global r = pr_id (id_of_global r)
+
+(*S Warning and Error messages. *)
+
+let err s = errorlabstrm "Extraction" s
+
+let error_axiom_scheme r i =
+ err (str "The type scheme axiom " ++ spc () ++
+ pr_global r ++ spc () ++ str "needs " ++ pr_int i ++
+ str " type variable(s).")
+
+let warning_info_ax r =
+ Options.if_verbose msg_warning
+ (str "You must realize axiom " ++
+ pr_global r ++ str " in the extracted code.")
+
+let warning_log_ax r =
+ Options.if_verbose msg_warning
+ (str "This extraction depends on logical axiom" ++ spc () ++
+ pr_global r ++ str "." ++ spc() ++
+ str "Having false logical axiom in the environment when extracting" ++
+ spc () ++ str "may lead to incorrect or non-terminating ML terms.")
+
+let check_inside_module () =
+ try
+ ignore (Lib.what_is_opened ());
+ Options.if_verbose warning
+ ("Extraction inside an opened module is experimental.\n"^
+ "In case of problem, close it first.\n");
+ Pp.flush_all ()
+ with Not_found -> ()
+
+let check_inside_section () =
+ if Lib.sections_are_opened () then
+ err (str "You can't do that within a section." ++ fnl () ++
+ str "Close it and try again.")
+
+let error_constant r =
+ err (Printer.pr_global r ++ str " is not a constant.")
+
+let error_inductive r =
+ err (Printer.pr_global r ++ spc () ++ str "is not an inductive type.")
+
+let error_nb_cons () =
+ err (str "Not the right number of constructors.")
+
+let error_module_clash s =
+ err (str ("There are two Coq modules with ML name " ^ s ^".\n") ++
+ str "This is not allowed in ML. Please do some renaming first.")
+
+let error_unknown_module m =
+ err (str "Module" ++ spc () ++ pr_qualid m ++ spc () ++ str "not found.")
+
+let error_toplevel () =
+ err (str "Toplevel pseudo-ML language can be used only at Coq toplevel.\n" ++
+ str "You should use Extraction Language Ocaml or Haskell before.")
+
+let error_scheme () =
+ err (str "No Scheme modular extraction available yet.")
+
+let error_not_visible r =
+ err (Printer.pr_global r ++ str " is not directly visible.\n" ++
+ str "For example, it may be inside an applied functor." ++
+ str "Use Recursive Extraction to get the whole environment.")
+
+let error_unqualified_name s1 s2 =
+ err (str (s1 ^ " is used in " ^ s2 ^ " where it cannot be disambiguated\n" ^
+ "in ML from another name sharing the same basename.\n" ^
+ "Please do some renaming.\n"))
+
+let error_MPfile_as_mod d =
+ err (str ("The whole file "^(string_of_dirpath d)^".v is used somewhere as a module.\n"^
+ "Extraction cannot currently deal with this situation.\n"))
+
+(*S The Extraction auxiliary commands *)
+
+(*s Extraction AutoInline *)
+
+let auto_inline_ref = ref true
+
+let auto_inline () = !auto_inline_ref
+
+let _ = declare_bool_option
+ {optsync = true;
+ optname = "Extraction AutoInline";
+ optkey = SecondaryTable ("Extraction", "AutoInline");
+ optread = auto_inline;
+ optwrite = (:=) auto_inline_ref}
+
+
+(*s Extraction Optimize *)
+
+type opt_flag =
+ { opt_kill_dum : bool; (* 1 *)
+ opt_fix_fun : bool; (* 2 *)
+ opt_case_iot : bool; (* 4 *)
+ opt_case_idr : bool; (* 8 *)
+ opt_case_idg : bool; (* 16 *)
+ opt_case_cst : bool; (* 32 *)
+ opt_case_fun : bool; (* 64 *)
+ opt_case_app : bool; (* 128 *)
+ opt_let_app : bool; (* 256 *)
+ opt_lin_let : bool; (* 512 *)
+ opt_lin_beta : bool } (* 1024 *)
+
+let kth_digit n k = (n land (1 lsl k) <> 0)
+
+let flag_of_int n =
+ { opt_kill_dum = kth_digit n 0;
+ opt_fix_fun = kth_digit n 1;
+ opt_case_iot = kth_digit n 2;
+ opt_case_idr = kth_digit n 3;
+ opt_case_idg = kth_digit n 4;
+ opt_case_cst = kth_digit n 5;
+ opt_case_fun = kth_digit n 6;
+ opt_case_app = kth_digit n 7;
+ opt_let_app = kth_digit n 8;
+ opt_lin_let = kth_digit n 9;
+ opt_lin_beta = kth_digit n 10 }
+
+(* For the moment, we allow by default everything except the type-unsafe
+ optimization [opt_case_idg]. *)
+
+let int_flag_init = 1 + 2 + 4 + 8 + 32 + 64 + 128 + 256 + 512 + 1024
+
+let int_flag_ref = ref int_flag_init
+let opt_flag_ref = ref (flag_of_int int_flag_init)
+
+let chg_flag n = int_flag_ref := n; opt_flag_ref := flag_of_int n
+
+let optims () = !opt_flag_ref
+
+let _ = declare_bool_option
+ {optsync = true;
+ optname = "Extraction Optimize";
+ optkey = SecondaryTable ("Extraction", "Optimize");
+ optread = (fun () -> !int_flag_ref <> 0);
+ optwrite = (fun b -> chg_flag (if b then int_flag_init else 0))}
+
+let _ = declare_int_option
+ { optsync = true;
+ optname = "Extraction Flag";
+ optkey = SecondaryTable("Extraction","Flag");
+ optread = (fun _ -> Some !int_flag_ref);
+ optwrite = (function
+ | None -> chg_flag 0
+ | Some i -> chg_flag (max i 0))}
+
+
+(*s Extraction Lang *)
+
+type lang = Ocaml | Haskell | Scheme | Toplevel
+
+let lang_ref = ref Ocaml
+
+let lang () = !lang_ref
+
+let (extr_lang,_) =
+ declare_object
+ {(default_object "Extraction Lang") with
+ cache_function = (fun (_,l) -> lang_ref := l);
+ load_function = (fun _ (_,l) -> lang_ref := l);
+ export_function = (fun x -> Some x)}
+
+let _ = declare_summary "Extraction Lang"
+ { freeze_function = (fun () -> !lang_ref);
+ unfreeze_function = ((:=) lang_ref);
+ init_function = (fun () -> lang_ref := Ocaml);
+ survive_module = false;
+ survive_section = true }
+
+let extraction_language x = Lib.add_anonymous_leaf (extr_lang x)
+
+
+(*s Extraction Inline/NoInline *)
+
+let empty_inline_table = (Refset.empty,Refset.empty)
+
+let inline_table = ref empty_inline_table
+
+let to_inline r = Refset.mem r (fst !inline_table)
+
+let to_keep r = Refset.mem r (snd !inline_table)
+
+let add_inline_entries b l =
+ let f b = if b then Refset.add else Refset.remove in
+ let i,k = !inline_table in
+ inline_table :=
+ (List.fold_right (f b) l i),
+ (List.fold_right (f (not b)) l k)
+
+(* Registration of operations for rollback. *)
+
+let (inline_extraction,_) =
+ declare_object
+ {(default_object "Extraction Inline") with
+ cache_function = (fun (_,(b,l)) -> add_inline_entries b l);
+ load_function = (fun _ (_,(b,l)) -> add_inline_entries b l);
+ export_function = (fun x -> Some x);
+ classify_function = (fun (_,o) -> Substitute o);
+ subst_function = (fun (_,s,(b,l)) -> (b,(List.map (subst_global s) l))) }
+
+let _ = declare_summary "Extraction Inline"
+ { freeze_function = (fun () -> !inline_table);
+ unfreeze_function = ((:=) inline_table);
+ init_function = (fun () -> inline_table := empty_inline_table);
+ survive_module = false;
+ survive_section = true }
+
+(* Grammar entries. *)
+
+let extraction_inline b l =
+ check_inside_section ();
+ check_inside_module ();
+ let refs = List.map Nametab.global l in
+ List.iter
+ (fun r -> match r with
+ | ConstRef _ -> ()
+ | _ -> error_constant r) refs;
+ Lib.add_anonymous_leaf (inline_extraction (b,refs))
+
+(* Printing part *)
+
+let print_extraction_inline () =
+ let (i,n)= !inline_table in
+ let i'= Refset.filter (function ConstRef _ -> true | _ -> false) i in
+ msg
+ (str "Extraction Inline:" ++ fnl () ++
+ Refset.fold
+ (fun r p ->
+ (p ++ str " " ++ Printer.pr_global r ++ fnl ())) i' (mt ()) ++
+ str "Extraction NoInline:" ++ fnl () ++
+ Refset.fold
+ (fun r p ->
+ (p ++ str " " ++ Printer.pr_global r ++ fnl ())) n (mt ()))
+
+(* Reset part *)
+
+let (reset_inline,_) =
+ declare_object
+ {(default_object "Reset Extraction Inline") with
+ cache_function = (fun (_,_)-> inline_table := empty_inline_table);
+ load_function = (fun _ (_,_)-> inline_table := empty_inline_table);
+ export_function = (fun x -> Some x)}
+
+let reset_extraction_inline () = Lib.add_anonymous_leaf (reset_inline ())
+
+
+(*s Extract Constant/Inductive. *)
+
+(* UGLY HACK: to be defined in [extraction.ml] *)
+let use_type_scheme_nb_args, register_type_scheme_nb_args =
+ let r = ref (fun _ _ -> 0) in (fun x y -> !r x y), (:=) r
+
+let customs = ref Refmap.empty
+
+let add_custom r ids s = customs := Refmap.add r (ids,s) !customs
+
+let is_custom r = Refmap.mem r !customs
+
+let is_inline_custom r = (is_custom r) && (to_inline r)
+
+let find_custom r = snd (Refmap.find r !customs)
+
+let find_type_custom r = Refmap.find r !customs
+
+(* Registration of operations for rollback. *)
+
+let (in_customs,_) =
+ declare_object
+ {(default_object "ML extractions") with
+ cache_function = (fun (_,(r,ids,s)) -> add_custom r ids s);
+ load_function = (fun _ (_,(r,ids,s)) -> add_custom r ids s);
+ export_function = (fun x -> Some x)}
+
+let _ = declare_summary "ML extractions"
+ { freeze_function = (fun () -> !customs);
+ unfreeze_function = ((:=) customs);
+ init_function = (fun () -> customs := Refmap.empty);
+ survive_module = false;
+ survive_section = true }
+
+(* Grammar entries. *)
+
+let extract_constant_inline inline r ids s =
+ check_inside_section ();
+ check_inside_module ();
+ let g = Nametab.global r in
+ match g with
+ | ConstRef kn ->
+ let env = Global.env () in
+ let typ = Environ.constant_type env kn in
+ let typ = Reduction.whd_betadeltaiota env typ in
+ if Reduction.is_arity env typ
+ then begin
+ let nargs = use_type_scheme_nb_args env typ in
+ if List.length ids <> nargs then error_axiom_scheme g nargs
+ end;
+ Lib.add_anonymous_leaf (inline_extraction (inline,[g]));
+ Lib.add_anonymous_leaf (in_customs (g,ids,s))
+ | _ -> error_constant g
+
+
+let extract_inductive r (s,l) =
+ check_inside_section ();
+ check_inside_module ();
+ let g = Nametab.global r in
+ match g with
+ | IndRef ((kn,i) as ip) ->
+ let mib = Global.lookup_mind kn in
+ let n = Array.length mib.mind_packets.(i).mind_consnames in
+ if n <> List.length l then error_nb_cons ();
+ Lib.add_anonymous_leaf (inline_extraction (true,[g]));
+ Lib.add_anonymous_leaf (in_customs (g,[],s));
+ list_iter_i
+ (fun j s ->
+ let g = ConstructRef (ip,succ j) in
+ Lib.add_anonymous_leaf (inline_extraction (true,[g]));
+ Lib.add_anonymous_leaf (in_customs (g,[],s))) l
+ | _ -> error_inductive g
+
+
diff --git a/contrib/extraction/table.mli b/contrib/extraction/table.mli
new file mode 100644
index 00000000..680638e5
--- /dev/null
+++ b/contrib/extraction/table.mli
@@ -0,0 +1,122 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: table.mli,v 1.25.2.1 2004/07/16 19:30:09 herbelin Exp $ i*)
+
+open Names
+open Libnames
+open Miniml
+
+val id_of_global : global_reference -> identifier
+
+(*s Warning and Error messages. *)
+
+val error_axiom_scheme : global_reference -> int -> 'a
+val warning_info_ax : global_reference -> unit
+val warning_log_ax : global_reference -> unit
+val error_constant : global_reference -> 'a
+val error_inductive : global_reference -> 'a
+val error_nb_cons : unit -> 'a
+val error_module_clash : string -> 'a
+val error_unknown_module : qualid -> 'a
+val error_toplevel : unit -> 'a
+val error_scheme : unit -> 'a
+val error_not_visible : global_reference -> 'a
+val error_unqualified_name : string -> string -> 'a
+val error_MPfile_as_mod : dir_path -> 'a
+
+val check_inside_module : unit -> unit
+val check_inside_section : unit -> unit
+
+(*s utilities concerning [module_path]. *)
+
+val kn_of_r : global_reference -> kernel_name
+
+val current_toplevel : unit -> module_path
+val base_mp : module_path -> module_path
+val is_modfile : module_path -> bool
+val is_toplevel : module_path -> bool
+val at_toplevel : module_path -> bool
+val visible_kn : kernel_name -> bool
+
+(*s Some table-related operations *)
+
+val add_term : kernel_name -> ml_decl -> unit
+val lookup_term : kernel_name -> ml_decl
+
+val add_type : kernel_name -> ml_schema -> unit
+val lookup_type : kernel_name -> ml_schema
+
+val add_ind : kernel_name -> ml_ind -> unit
+val lookup_ind : kernel_name -> ml_ind
+
+val add_recursors : Environ.env -> kernel_name -> unit
+val is_recursor : global_reference -> bool
+
+val add_record :
+ kernel_name -> int -> global_reference list * global_reference list -> unit
+val find_projections : kernel_name -> global_reference list
+val is_projection : global_reference -> bool
+val projection_arity : global_reference -> int
+
+val reset_tables : unit -> unit
+
+(*s AutoInline parameter *)
+
+val auto_inline : unit -> bool
+
+(*s Optimize parameter *)
+
+type opt_flag =
+ { opt_kill_dum : bool; (* 1 *)
+ opt_fix_fun : bool; (* 2 *)
+ opt_case_iot : bool; (* 4 *)
+ opt_case_idr : bool; (* 8 *)
+ opt_case_idg : bool; (* 16 *)
+ opt_case_cst : bool; (* 32 *)
+ opt_case_fun : bool; (* 64 *)
+ opt_case_app : bool; (* 128 *)
+ opt_let_app : bool; (* 256 *)
+ opt_lin_let : bool; (* 512 *)
+ opt_lin_beta : bool } (* 1024 *)
+
+val optims : unit -> opt_flag
+
+(*s Target language. *)
+
+type lang = Ocaml | Haskell | Scheme | Toplevel
+val lang : unit -> lang
+
+(*s Table for custom inlining *)
+
+val to_inline : global_reference -> bool
+val to_keep : global_reference -> bool
+
+(*s Table for user-given custom ML extractions. *)
+
+(* UGLY HACK: registration of a function defined in [extraction.ml] *)
+val register_type_scheme_nb_args : (Environ.env -> Term.constr -> int) -> unit
+
+val is_custom : global_reference -> bool
+val is_inline_custom : global_reference -> bool
+val find_custom : global_reference -> string
+val find_type_custom : global_reference -> string list * string
+
+(*s Extraction commands. *)
+
+val extraction_language : lang -> unit
+val extraction_inline : bool -> reference list -> unit
+val print_extraction_inline : unit -> unit
+val reset_extraction_inline : unit -> unit
+val extract_constant_inline :
+ bool -> reference -> string list -> string -> unit
+val extract_inductive : reference -> string * string list -> unit
+
+
+
+
diff --git a/contrib/extraction/test/.depend b/contrib/extraction/test/.depend
new file mode 100644
index 00000000..641b50a7
--- /dev/null
+++ b/contrib/extraction/test/.depend
@@ -0,0 +1,713 @@
+theories/Arith/arith.cmo: theories/Arith/arith.cmi
+theories/Arith/arith.cmx: theories/Arith/arith.cmi
+theories/Arith/between.cmo: theories/Arith/between.cmi
+theories/Arith/between.cmx: theories/Arith/between.cmi
+theories/Arith/bool_nat.cmo: theories/Arith/compare_dec.cmi \
+ theories/Init/datatypes.cmi theories/Arith/peano_dec.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi \
+ theories/Arith/bool_nat.cmi
+theories/Arith/bool_nat.cmx: theories/Arith/compare_dec.cmx \
+ theories/Init/datatypes.cmx theories/Arith/peano_dec.cmx \
+ theories/Init/specif.cmx theories/Bool/sumbool.cmx \
+ theories/Arith/bool_nat.cmi
+theories/Arith/compare_dec.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Arith/compare_dec.cmi
+theories/Arith/compare_dec.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Arith/compare_dec.cmi
+theories/Arith/compare.cmo: theories/Arith/compare_dec.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Arith/compare.cmi
+theories/Arith/compare.cmx: theories/Arith/compare_dec.cmx \
+ theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Arith/compare.cmi
+theories/Arith/div2.cmo: theories/Init/datatypes.cmi theories/Init/peano.cmi \
+ theories/Init/specif.cmi theories/Arith/div2.cmi
+theories/Arith/div2.cmx: theories/Init/datatypes.cmx theories/Init/peano.cmx \
+ theories/Init/specif.cmx theories/Arith/div2.cmi
+theories/Arith/eqNat.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Arith/eqNat.cmi
+theories/Arith/eqNat.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Arith/eqNat.cmi
+theories/Arith/euclid.cmo: theories/Arith/compare_dec.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Arith/euclid.cmi
+theories/Arith/euclid.cmx: theories/Arith/compare_dec.cmx \
+ theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Arith/euclid.cmi
+theories/Arith/even.cmo: theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Arith/even.cmi
+theories/Arith/even.cmx: theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Arith/even.cmi
+theories/Arith/factorial.cmo: theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Arith/factorial.cmi
+theories/Arith/factorial.cmx: theories/Init/datatypes.cmx \
+ theories/Init/peano.cmx theories/Arith/factorial.cmi
+theories/Arith/gt.cmo: theories/Arith/gt.cmi
+theories/Arith/gt.cmx: theories/Arith/gt.cmi
+theories/Arith/le.cmo: theories/Arith/le.cmi
+theories/Arith/le.cmx: theories/Arith/le.cmi
+theories/Arith/lt.cmo: theories/Arith/lt.cmi
+theories/Arith/lt.cmx: theories/Arith/lt.cmi
+theories/Arith/max.cmo: theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Arith/max.cmi
+theories/Arith/max.cmx: theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Arith/max.cmi
+theories/Arith/min.cmo: theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Arith/min.cmi
+theories/Arith/min.cmx: theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Arith/min.cmi
+theories/Arith/minus.cmo: theories/Arith/minus.cmi
+theories/Arith/minus.cmx: theories/Arith/minus.cmi
+theories/Arith/mult.cmo: theories/Init/datatypes.cmi theories/Arith/plus.cmi \
+ theories/Arith/mult.cmi
+theories/Arith/mult.cmx: theories/Init/datatypes.cmx theories/Arith/plus.cmx \
+ theories/Arith/mult.cmi
+theories/Arith/peano_dec.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Arith/peano_dec.cmi
+theories/Arith/peano_dec.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Arith/peano_dec.cmi
+theories/Arith/plus.cmo: theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Arith/plus.cmi
+theories/Arith/plus.cmx: theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Arith/plus.cmi
+theories/Arith/wf_nat.cmo: theories/Init/datatypes.cmi \
+ theories/Arith/wf_nat.cmi
+theories/Arith/wf_nat.cmx: theories/Init/datatypes.cmx \
+ theories/Arith/wf_nat.cmi
+theories/Bool/boolEq.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Bool/boolEq.cmi
+theories/Bool/boolEq.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Bool/boolEq.cmi
+theories/Bool/bool.cmo: theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Bool/bool.cmi
+theories/Bool/bool.cmx: theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Bool/bool.cmi
+theories/Bool/bvector.cmo: theories/Bool/bool.cmi theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Bool/bvector.cmi
+theories/Bool/bvector.cmx: theories/Bool/bool.cmx theories/Init/datatypes.cmx \
+ theories/Init/peano.cmx theories/Bool/bvector.cmi
+theories/Bool/decBool.cmo: theories/Init/specif.cmi theories/Bool/decBool.cmi
+theories/Bool/decBool.cmx: theories/Init/specif.cmx theories/Bool/decBool.cmi
+theories/Bool/ifProp.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Bool/ifProp.cmi
+theories/Bool/ifProp.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Bool/ifProp.cmi
+theories/Bool/sumbool.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi
+theories/Bool/sumbool.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Bool/sumbool.cmi
+theories/Bool/zerob.cmo: theories/Init/datatypes.cmi theories/Bool/zerob.cmi
+theories/Bool/zerob.cmx: theories/Init/datatypes.cmx theories/Bool/zerob.cmi
+theories/Init/datatypes.cmo: theories/Init/datatypes.cmi
+theories/Init/datatypes.cmx: theories/Init/datatypes.cmi
+theories/Init/logic.cmo: theories/Init/logic.cmi
+theories/Init/logic.cmx: theories/Init/logic.cmi
+theories/Init/logic_Type.cmo: theories/Init/datatypes.cmi \
+ theories/Init/logic_Type.cmi
+theories/Init/logic_Type.cmx: theories/Init/datatypes.cmx \
+ theories/Init/logic_Type.cmi
+theories/Init/notations.cmo: theories/Init/notations.cmi
+theories/Init/notations.cmx: theories/Init/notations.cmi
+theories/Init/peano.cmo: theories/Init/datatypes.cmi theories/Init/peano.cmi
+theories/Init/peano.cmx: theories/Init/datatypes.cmx theories/Init/peano.cmi
+theories/Init/prelude.cmo: theories/Init/prelude.cmi
+theories/Init/prelude.cmx: theories/Init/prelude.cmi
+theories/Init/specif.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Init/specif.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmi
+theories/Init/wf.cmo: theories/Init/wf.cmi
+theories/Init/wf.cmx: theories/Init/wf.cmi
+theories/IntMap/adalloc.cmo: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/NArith/binPos.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/map.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi \
+ theories/IntMap/adalloc.cmi
+theories/IntMap/adalloc.cmx: theories/IntMap/addec.cmx \
+ theories/IntMap/addr.cmx theories/NArith/binPos.cmx \
+ theories/Init/datatypes.cmx theories/IntMap/map.cmx \
+ theories/Init/specif.cmx theories/Bool/sumbool.cmx \
+ theories/IntMap/adalloc.cmi
+theories/IntMap/addec.cmo: theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi \
+ theories/IntMap/addec.cmi
+theories/IntMap/addec.cmx: theories/IntMap/addr.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Bool/sumbool.cmx \
+ theories/IntMap/addec.cmi
+theories/IntMap/addr.cmo: theories/NArith/binPos.cmi theories/Bool/bool.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/IntMap/addr.cmi
+theories/IntMap/addr.cmx: theories/NArith/binPos.cmx theories/Bool/bool.cmx \
+ theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/IntMap/addr.cmi
+theories/IntMap/adist.cmo: theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/IntMap/adist.cmi
+theories/IntMap/adist.cmx: theories/IntMap/addr.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/IntMap/adist.cmi
+theories/IntMap/allmaps.cmo: theories/IntMap/allmaps.cmi
+theories/IntMap/allmaps.cmx: theories/IntMap/allmaps.cmi
+theories/IntMap/fset.cmo: theories/IntMap/addec.cmi theories/IntMap/addr.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/map.cmi \
+ theories/Init/specif.cmi theories/IntMap/fset.cmi
+theories/IntMap/fset.cmx: theories/IntMap/addec.cmx theories/IntMap/addr.cmx \
+ theories/Init/datatypes.cmx theories/IntMap/map.cmx \
+ theories/Init/specif.cmx theories/IntMap/fset.cmi
+theories/IntMap/lsort.cmo: theories/IntMap/addec.cmi theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Bool/bool.cmi \
+ theories/Init/datatypes.cmi theories/Lists/list.cmi \
+ theories/IntMap/map.cmi theories/IntMap/mapiter.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi \
+ theories/IntMap/lsort.cmi
+theories/IntMap/lsort.cmx: theories/IntMap/addec.cmx theories/IntMap/addr.cmx \
+ theories/NArith/binPos.cmx theories/Bool/bool.cmx \
+ theories/Init/datatypes.cmx theories/Lists/list.cmx \
+ theories/IntMap/map.cmx theories/IntMap/mapiter.cmx \
+ theories/Init/specif.cmx theories/Bool/sumbool.cmx \
+ theories/IntMap/lsort.cmi
+theories/IntMap/mapaxioms.cmo: theories/IntMap/mapaxioms.cmi
+theories/IntMap/mapaxioms.cmx: theories/IntMap/mapaxioms.cmi
+theories/IntMap/mapcanon.cmo: theories/IntMap/map.cmi \
+ theories/Init/specif.cmi theories/IntMap/mapcanon.cmi
+theories/IntMap/mapcanon.cmx: theories/IntMap/map.cmx \
+ theories/Init/specif.cmx theories/IntMap/mapcanon.cmi
+theories/IntMap/mapcard.cmo: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/Init/datatypes.cmi \
+ theories/IntMap/map.cmi theories/Init/peano.cmi \
+ theories/Arith/peano_dec.cmi theories/Arith/plus.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi \
+ theories/IntMap/mapcard.cmi
+theories/IntMap/mapcard.cmx: theories/IntMap/addec.cmx \
+ theories/IntMap/addr.cmx theories/Init/datatypes.cmx \
+ theories/IntMap/map.cmx theories/Init/peano.cmx \
+ theories/Arith/peano_dec.cmx theories/Arith/plus.cmx \
+ theories/Init/specif.cmx theories/Bool/sumbool.cmx \
+ theories/IntMap/mapcard.cmi
+theories/IntMap/mapc.cmo: theories/IntMap/mapc.cmi
+theories/IntMap/mapc.cmx: theories/IntMap/mapc.cmi
+theories/IntMap/mapfold.cmo: theories/IntMap/addr.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/fset.cmi \
+ theories/IntMap/map.cmi theories/IntMap/mapiter.cmi \
+ theories/Init/specif.cmi theories/IntMap/mapfold.cmi
+theories/IntMap/mapfold.cmx: theories/IntMap/addr.cmx \
+ theories/Init/datatypes.cmx theories/IntMap/fset.cmx \
+ theories/IntMap/map.cmx theories/IntMap/mapiter.cmx \
+ theories/Init/specif.cmx theories/IntMap/mapfold.cmi
+theories/IntMap/mapiter.cmo: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/IntMap/map.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi theories/IntMap/mapiter.cmi
+theories/IntMap/mapiter.cmx: theories/IntMap/addec.cmx \
+ theories/IntMap/addr.cmx theories/Init/datatypes.cmx \
+ theories/Lists/list.cmx theories/IntMap/map.cmx theories/Init/specif.cmx \
+ theories/Bool/sumbool.cmx theories/IntMap/mapiter.cmi
+theories/IntMap/maplists.cmo: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/Init/datatypes.cmi \
+ theories/IntMap/fset.cmi theories/Lists/list.cmi theories/IntMap/map.cmi \
+ theories/IntMap/mapiter.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi theories/IntMap/maplists.cmi
+theories/IntMap/maplists.cmx: theories/IntMap/addec.cmx \
+ theories/IntMap/addr.cmx theories/Init/datatypes.cmx \
+ theories/IntMap/fset.cmx theories/Lists/list.cmx theories/IntMap/map.cmx \
+ theories/IntMap/mapiter.cmx theories/Init/specif.cmx \
+ theories/Bool/sumbool.cmx theories/IntMap/maplists.cmi
+theories/IntMap/map.cmo: theories/IntMap/addec.cmi theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi theories/IntMap/map.cmi
+theories/IntMap/map.cmx: theories/IntMap/addec.cmx theories/IntMap/addr.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Init/peano.cmx theories/Init/specif.cmx theories/IntMap/map.cmi
+theories/IntMap/mapsubset.cmo: theories/Bool/bool.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/fset.cmi \
+ theories/IntMap/map.cmi theories/IntMap/mapiter.cmi \
+ theories/IntMap/mapsubset.cmi
+theories/IntMap/mapsubset.cmx: theories/Bool/bool.cmx \
+ theories/Init/datatypes.cmx theories/IntMap/fset.cmx \
+ theories/IntMap/map.cmx theories/IntMap/mapiter.cmx \
+ theories/IntMap/mapsubset.cmi
+theories/Lists/list.cmo: theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Lists/list.cmi
+theories/Lists/list.cmx: theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Lists/list.cmi
+theories/Lists/listSet.cmo: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Init/specif.cmi \
+ theories/Lists/listSet.cmi
+theories/Lists/listSet.cmx: theories/Init/datatypes.cmx \
+ theories/Lists/list.cmx theories/Init/specif.cmx \
+ theories/Lists/listSet.cmi
+theories/Lists/monoList.cmo: theories/Init/datatypes.cmi \
+ theories/Lists/monoList.cmi
+theories/Lists/monoList.cmx: theories/Init/datatypes.cmx \
+ theories/Lists/monoList.cmi
+theories/Lists/streams.cmo: theories/Init/datatypes.cmi \
+ theories/Lists/streams.cmi
+theories/Lists/streams.cmx: theories/Init/datatypes.cmx \
+ theories/Lists/streams.cmi
+theories/Lists/theoryList.cmo: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Init/specif.cmi \
+ theories/Lists/theoryList.cmi
+theories/Lists/theoryList.cmx: theories/Init/datatypes.cmx \
+ theories/Lists/list.cmx theories/Init/specif.cmx \
+ theories/Lists/theoryList.cmi
+theories/Logic/berardi.cmo: theories/Logic/berardi.cmi
+theories/Logic/berardi.cmx: theories/Logic/berardi.cmi
+theories/Logic/choiceFacts.cmo: theories/Logic/choiceFacts.cmi
+theories/Logic/choiceFacts.cmx: theories/Logic/choiceFacts.cmi
+theories/Logic/classicalChoice.cmo: theories/Logic/classicalChoice.cmi
+theories/Logic/classicalChoice.cmx: theories/Logic/classicalChoice.cmi
+theories/Logic/classicalDescription.cmo: \
+ theories/Logic/classicalDescription.cmi
+theories/Logic/classicalDescription.cmx: \
+ theories/Logic/classicalDescription.cmi
+theories/Logic/classicalFacts.cmo: theories/Logic/classicalFacts.cmi
+theories/Logic/classicalFacts.cmx: theories/Logic/classicalFacts.cmi
+theories/Logic/classical.cmo: theories/Logic/classical.cmi
+theories/Logic/classical.cmx: theories/Logic/classical.cmi
+theories/Logic/classical_Pred_Set.cmo: theories/Logic/classical_Pred_Set.cmi
+theories/Logic/classical_Pred_Set.cmx: theories/Logic/classical_Pred_Set.cmi
+theories/Logic/classical_Pred_Type.cmo: \
+ theories/Logic/classical_Pred_Type.cmi
+theories/Logic/classical_Pred_Type.cmx: \
+ theories/Logic/classical_Pred_Type.cmi
+theories/Logic/classical_Prop.cmo: theories/Logic/classical_Prop.cmi
+theories/Logic/classical_Prop.cmx: theories/Logic/classical_Prop.cmi
+theories/Logic/classical_Type.cmo: theories/Logic/classical_Type.cmi
+theories/Logic/classical_Type.cmx: theories/Logic/classical_Type.cmi
+theories/Logic/decidable.cmo: theories/Logic/decidable.cmi
+theories/Logic/decidable.cmx: theories/Logic/decidable.cmi
+theories/Logic/diaconescu.cmo: theories/Logic/diaconescu.cmi
+theories/Logic/diaconescu.cmx: theories/Logic/diaconescu.cmi
+theories/Logic/eqdep_dec.cmo: theories/Logic/eqdep_dec.cmi
+theories/Logic/eqdep_dec.cmx: theories/Logic/eqdep_dec.cmi
+theories/Logic/eqdep.cmo: theories/Logic/eqdep.cmi
+theories/Logic/eqdep.cmx: theories/Logic/eqdep.cmi
+theories/Logic/hurkens.cmo: theories/Logic/hurkens.cmi
+theories/Logic/hurkens.cmx: theories/Logic/hurkens.cmi
+theories/Logic/jMeq.cmo: theories/Logic/jMeq.cmi
+theories/Logic/jMeq.cmx: theories/Logic/jMeq.cmi
+theories/Logic/proofIrrelevance.cmo: theories/Logic/proofIrrelevance.cmi
+theories/Logic/proofIrrelevance.cmx: theories/Logic/proofIrrelevance.cmi
+theories/Logic/relationalChoice.cmo: theories/Logic/relationalChoice.cmi
+theories/Logic/relationalChoice.cmx: theories/Logic/relationalChoice.cmi
+theories/NArith/binNat.cmo: theories/NArith/binPos.cmi \
+ theories/Init/datatypes.cmi theories/NArith/binNat.cmi
+theories/NArith/binNat.cmx: theories/NArith/binPos.cmx \
+ theories/Init/datatypes.cmx theories/NArith/binNat.cmi
+theories/NArith/binPos.cmo: theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/NArith/binPos.cmi
+theories/NArith/binPos.cmx: theories/Init/datatypes.cmx \
+ theories/Init/peano.cmx theories/NArith/binPos.cmi
+theories/NArith/nArith.cmo: theories/NArith/nArith.cmi
+theories/NArith/nArith.cmx: theories/NArith/nArith.cmi
+theories/NArith/pnat.cmo: theories/NArith/pnat.cmi
+theories/NArith/pnat.cmx: theories/NArith/pnat.cmi
+theories/Relations/newman.cmo: theories/Relations/newman.cmi
+theories/Relations/newman.cmx: theories/Relations/newman.cmi
+theories/Relations/operators_Properties.cmo: \
+ theories/Relations/operators_Properties.cmi
+theories/Relations/operators_Properties.cmx: \
+ theories/Relations/operators_Properties.cmi
+theories/Relations/relation_Definitions.cmo: \
+ theories/Relations/relation_Definitions.cmi
+theories/Relations/relation_Definitions.cmx: \
+ theories/Relations/relation_Definitions.cmi
+theories/Relations/relation_Operators.cmo: theories/Lists/list.cmi \
+ theories/Init/specif.cmi theories/Relations/relation_Operators.cmi
+theories/Relations/relation_Operators.cmx: theories/Lists/list.cmx \
+ theories/Init/specif.cmx theories/Relations/relation_Operators.cmi
+theories/Relations/relations.cmo: theories/Relations/relations.cmi
+theories/Relations/relations.cmx: theories/Relations/relations.cmi
+theories/Relations/rstar.cmo: theories/Relations/rstar.cmi
+theories/Relations/rstar.cmx: theories/Relations/rstar.cmi
+theories/Setoids/setoid.cmo: theories/Setoids/setoid.cmi
+theories/Setoids/setoid.cmx: theories/Setoids/setoid.cmi
+theories/Sets/classical_sets.cmo: theories/Sets/classical_sets.cmi
+theories/Sets/classical_sets.cmx: theories/Sets/classical_sets.cmi
+theories/Sets/constructive_sets.cmo: theories/Sets/constructive_sets.cmi
+theories/Sets/constructive_sets.cmx: theories/Sets/constructive_sets.cmi
+theories/Sets/cpo.cmo: theories/Sets/partial_Order.cmi theories/Sets/cpo.cmi
+theories/Sets/cpo.cmx: theories/Sets/partial_Order.cmx theories/Sets/cpo.cmi
+theories/Sets/ensembles.cmo: theories/Sets/ensembles.cmi
+theories/Sets/ensembles.cmx: theories/Sets/ensembles.cmi
+theories/Sets/finite_sets_facts.cmo: theories/Sets/finite_sets_facts.cmi
+theories/Sets/finite_sets_facts.cmx: theories/Sets/finite_sets_facts.cmi
+theories/Sets/finite_sets.cmo: theories/Sets/finite_sets.cmi
+theories/Sets/finite_sets.cmx: theories/Sets/finite_sets.cmi
+theories/Sets/image.cmo: theories/Sets/image.cmi
+theories/Sets/image.cmx: theories/Sets/image.cmi
+theories/Sets/infinite_sets.cmo: theories/Sets/infinite_sets.cmi
+theories/Sets/infinite_sets.cmx: theories/Sets/infinite_sets.cmi
+theories/Sets/integers.cmo: theories/Init/datatypes.cmi \
+ theories/Sets/partial_Order.cmi theories/Sets/integers.cmi
+theories/Sets/integers.cmx: theories/Init/datatypes.cmx \
+ theories/Sets/partial_Order.cmx theories/Sets/integers.cmi
+theories/Sets/multiset.cmo: theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi \
+ theories/Sets/multiset.cmi
+theories/Sets/multiset.cmx: theories/Init/datatypes.cmx \
+ theories/Init/peano.cmx theories/Init/specif.cmx \
+ theories/Sets/multiset.cmi
+theories/Sets/partial_Order.cmo: theories/Sets/ensembles.cmi \
+ theories/Sets/relations_1.cmi theories/Sets/partial_Order.cmi
+theories/Sets/partial_Order.cmx: theories/Sets/ensembles.cmx \
+ theories/Sets/relations_1.cmx theories/Sets/partial_Order.cmi
+theories/Sets/permut.cmo: theories/Sets/permut.cmi
+theories/Sets/permut.cmx: theories/Sets/permut.cmi
+theories/Sets/powerset_Classical_facts.cmo: \
+ theories/Sets/powerset_Classical_facts.cmi
+theories/Sets/powerset_Classical_facts.cmx: \
+ theories/Sets/powerset_Classical_facts.cmi
+theories/Sets/powerset_facts.cmo: theories/Sets/powerset_facts.cmi
+theories/Sets/powerset_facts.cmx: theories/Sets/powerset_facts.cmi
+theories/Sets/powerset.cmo: theories/Sets/ensembles.cmi \
+ theories/Sets/partial_Order.cmi theories/Sets/powerset.cmi
+theories/Sets/powerset.cmx: theories/Sets/ensembles.cmx \
+ theories/Sets/partial_Order.cmx theories/Sets/powerset.cmi
+theories/Sets/relations_1_facts.cmo: theories/Sets/relations_1_facts.cmi
+theories/Sets/relations_1_facts.cmx: theories/Sets/relations_1_facts.cmi
+theories/Sets/relations_1.cmo: theories/Sets/relations_1.cmi
+theories/Sets/relations_1.cmx: theories/Sets/relations_1.cmi
+theories/Sets/relations_2_facts.cmo: theories/Sets/relations_2_facts.cmi
+theories/Sets/relations_2_facts.cmx: theories/Sets/relations_2_facts.cmi
+theories/Sets/relations_2.cmo: theories/Sets/relations_2.cmi
+theories/Sets/relations_2.cmx: theories/Sets/relations_2.cmi
+theories/Sets/relations_3_facts.cmo: theories/Sets/relations_3_facts.cmi
+theories/Sets/relations_3_facts.cmx: theories/Sets/relations_3_facts.cmi
+theories/Sets/relations_3.cmo: theories/Sets/relations_3.cmi
+theories/Sets/relations_3.cmx: theories/Sets/relations_3.cmi
+theories/Sets/uniset.cmo: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Sets/uniset.cmi
+theories/Sets/uniset.cmx: theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/Sets/uniset.cmi
+theories/Sorting/heap.cmo: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Sets/multiset.cmi \
+ theories/Init/peano.cmi theories/Sorting/sorting.cmi \
+ theories/Init/specif.cmi theories/Sorting/heap.cmi
+theories/Sorting/heap.cmx: theories/Init/datatypes.cmx \
+ theories/Lists/list.cmx theories/Sets/multiset.cmx \
+ theories/Init/peano.cmx theories/Sorting/sorting.cmx \
+ theories/Init/specif.cmx theories/Sorting/heap.cmi
+theories/Sorting/permutation.cmo: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Sets/multiset.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi \
+ theories/Sorting/permutation.cmi
+theories/Sorting/permutation.cmx: theories/Init/datatypes.cmx \
+ theories/Lists/list.cmx theories/Sets/multiset.cmx \
+ theories/Init/peano.cmx theories/Init/specif.cmx \
+ theories/Sorting/permutation.cmi
+theories/Sorting/sorting.cmo: theories/Lists/list.cmi \
+ theories/Init/specif.cmi theories/Sorting/sorting.cmi
+theories/Sorting/sorting.cmx: theories/Lists/list.cmx \
+ theories/Init/specif.cmx theories/Sorting/sorting.cmi
+theories/Wellfounded/disjoint_Union.cmo: \
+ theories/Wellfounded/disjoint_Union.cmi
+theories/Wellfounded/disjoint_Union.cmx: \
+ theories/Wellfounded/disjoint_Union.cmi
+theories/Wellfounded/inclusion.cmo: theories/Wellfounded/inclusion.cmi
+theories/Wellfounded/inclusion.cmx: theories/Wellfounded/inclusion.cmi
+theories/Wellfounded/inverse_Image.cmo: \
+ theories/Wellfounded/inverse_Image.cmi
+theories/Wellfounded/inverse_Image.cmx: \
+ theories/Wellfounded/inverse_Image.cmi
+theories/Wellfounded/lexicographic_Exponentiation.cmo: \
+ theories/Wellfounded/lexicographic_Exponentiation.cmi
+theories/Wellfounded/lexicographic_Exponentiation.cmx: \
+ theories/Wellfounded/lexicographic_Exponentiation.cmi
+theories/Wellfounded/lexicographic_Product.cmo: \
+ theories/Wellfounded/lexicographic_Product.cmi
+theories/Wellfounded/lexicographic_Product.cmx: \
+ theories/Wellfounded/lexicographic_Product.cmi
+theories/Wellfounded/transitive_Closure.cmo: \
+ theories/Wellfounded/transitive_Closure.cmi
+theories/Wellfounded/transitive_Closure.cmx: \
+ theories/Wellfounded/transitive_Closure.cmi
+theories/Wellfounded/union.cmo: theories/Wellfounded/union.cmi
+theories/Wellfounded/union.cmx: theories/Wellfounded/union.cmi
+theories/Wellfounded/wellfounded.cmo: theories/Wellfounded/wellfounded.cmi
+theories/Wellfounded/wellfounded.cmx: theories/Wellfounded/wellfounded.cmi
+theories/Wellfounded/well_Ordering.cmo: theories/Init/specif.cmi \
+ theories/Wellfounded/well_Ordering.cmi
+theories/Wellfounded/well_Ordering.cmx: theories/Init/specif.cmx \
+ theories/Wellfounded/well_Ordering.cmi
+theories/ZArith/auxiliary.cmo: theories/ZArith/auxiliary.cmi
+theories/ZArith/auxiliary.cmx: theories/ZArith/auxiliary.cmi
+theories/ZArith/binInt.cmo: theories/NArith/binNat.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/ZArith/binInt.cmi
+theories/ZArith/binInt.cmx: theories/NArith/binNat.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/ZArith/binInt.cmi
+theories/ZArith/wf_Z.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi theories/ZArith/wf_Z.cmi
+theories/ZArith/wf_Z.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Init/peano.cmx theories/Init/specif.cmx theories/ZArith/wf_Z.cmi
+theories/ZArith/zabs.cmo: theories/ZArith/binInt.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi theories/ZArith/zabs.cmi
+theories/ZArith/zabs.cmx: theories/ZArith/binInt.cmx theories/Init/specif.cmx \
+ theories/Bool/sumbool.cmx theories/ZArith/zabs.cmi
+theories/ZArith/zArith_base.cmo: theories/ZArith/zArith_base.cmi
+theories/ZArith/zArith_base.cmx: theories/ZArith/zArith_base.cmi
+theories/ZArith/zArith_dec.cmo: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi theories/ZArith/zArith_dec.cmi
+theories/ZArith/zArith_dec.cmx: theories/ZArith/binInt.cmx \
+ theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Bool/sumbool.cmx theories/ZArith/zArith_dec.cmi
+theories/ZArith/zArith.cmo: theories/ZArith/zArith.cmi
+theories/ZArith/zArith.cmx: theories/ZArith/zArith.cmi
+theories/ZArith/zbinary.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Bool/bvector.cmi \
+ theories/Init/datatypes.cmi theories/ZArith/zeven.cmi \
+ theories/ZArith/zbinary.cmi
+theories/ZArith/zbinary.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Bool/bvector.cmx \
+ theories/Init/datatypes.cmx theories/ZArith/zeven.cmx \
+ theories/ZArith/zbinary.cmi
+theories/ZArith/zbool.cmo: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi theories/ZArith/zArith_dec.cmi \
+ theories/ZArith/zeven.cmi theories/ZArith/zbool.cmi
+theories/ZArith/zbool.cmx: theories/ZArith/binInt.cmx \
+ theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/Bool/sumbool.cmx theories/ZArith/zArith_dec.cmx \
+ theories/ZArith/zeven.cmx theories/ZArith/zbool.cmi
+theories/ZArith/zcompare.cmo: theories/ZArith/zcompare.cmi
+theories/ZArith/zcompare.cmx: theories/ZArith/zcompare.cmi
+theories/ZArith/zcomplements.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Init/specif.cmi theories/ZArith/wf_Z.cmi \
+ theories/ZArith/zabs.cmi theories/ZArith/zcomplements.cmi
+theories/ZArith/zcomplements.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Lists/list.cmx theories/Init/specif.cmx theories/ZArith/wf_Z.cmx \
+ theories/ZArith/zabs.cmx theories/ZArith/zcomplements.cmi
+theories/ZArith/zdiv.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/ZArith/zArith_dec.cmi \
+ theories/ZArith/zbool.cmi theories/ZArith/zdiv.cmi
+theories/ZArith/zdiv.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/ZArith/zArith_dec.cmx \
+ theories/ZArith/zbool.cmx theories/ZArith/zdiv.cmi
+theories/ZArith/zeven.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/ZArith/zeven.cmi
+theories/ZArith/zeven.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/ZArith/zeven.cmi
+theories/ZArith/zhints.cmo: theories/ZArith/zhints.cmi
+theories/ZArith/zhints.cmx: theories/ZArith/zhints.cmi
+theories/ZArith/zlogarithm.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/ZArith/zlogarithm.cmi
+theories/ZArith/zlogarithm.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/ZArith/zlogarithm.cmi
+theories/ZArith/zmin.cmo: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/ZArith/zmin.cmi
+theories/ZArith/zmin.cmx: theories/ZArith/binInt.cmx \
+ theories/Init/datatypes.cmx theories/ZArith/zmin.cmi
+theories/ZArith/zmisc.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/ZArith/zmisc.cmi
+theories/ZArith/zmisc.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/ZArith/zmisc.cmi
+theories/ZArith/znat.cmo: theories/ZArith/znat.cmi
+theories/ZArith/znat.cmx: theories/ZArith/znat.cmi
+theories/ZArith/znumtheory.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/ZArith/wf_Z.cmi \
+ theories/ZArith/zArith_dec.cmi theories/ZArith/zdiv.cmi \
+ theories/ZArith/zorder.cmi theories/ZArith/znumtheory.cmi
+theories/ZArith/znumtheory.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/Init/specif.cmx theories/ZArith/wf_Z.cmx \
+ theories/ZArith/zArith_dec.cmx theories/ZArith/zdiv.cmx \
+ theories/ZArith/zorder.cmx theories/ZArith/znumtheory.cmi
+theories/ZArith/zorder.cmo: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/ZArith/zorder.cmi
+theories/ZArith/zorder.cmx: theories/ZArith/binInt.cmx \
+ theories/Init/datatypes.cmx theories/Init/specif.cmx \
+ theories/ZArith/zorder.cmi
+theories/ZArith/zpower.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/ZArith/zmisc.cmi theories/ZArith/zpower.cmi
+theories/ZArith/zpower.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/datatypes.cmx \
+ theories/ZArith/zmisc.cmx theories/ZArith/zpower.cmi
+theories/ZArith/zsqrt.cmo: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/specif.cmi \
+ theories/ZArith/zArith_dec.cmi theories/ZArith/zsqrt.cmi
+theories/ZArith/zsqrt.cmx: theories/ZArith/binInt.cmx \
+ theories/NArith/binPos.cmx theories/Init/specif.cmx \
+ theories/ZArith/zArith_dec.cmx theories/ZArith/zsqrt.cmi
+theories/ZArith/zwf.cmo: theories/ZArith/zwf.cmi
+theories/ZArith/zwf.cmx: theories/ZArith/zwf.cmi
+theories/Arith/bool_nat.cmi: theories/Arith/compare_dec.cmi \
+ theories/Init/datatypes.cmi theories/Arith/peano_dec.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi
+theories/Arith/compare_dec.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Arith/compare.cmi: theories/Arith/compare_dec.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Arith/div2.cmi: theories/Init/datatypes.cmi theories/Init/peano.cmi \
+ theories/Init/specif.cmi
+theories/Arith/eqNat.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Arith/euclid.cmi: theories/Arith/compare_dec.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Arith/even.cmi: theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Arith/factorial.cmi: theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi
+theories/Arith/max.cmi: theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Arith/min.cmi: theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Arith/mult.cmi: theories/Init/datatypes.cmi theories/Arith/plus.cmi
+theories/Arith/peano_dec.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Arith/plus.cmi: theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Arith/wf_nat.cmi: theories/Init/datatypes.cmi
+theories/Bool/boolEq.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Bool/bool.cmi: theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Bool/bvector.cmi: theories/Bool/bool.cmi theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi
+theories/Bool/decBool.cmi: theories/Init/specif.cmi
+theories/Bool/ifProp.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Bool/sumbool.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Bool/zerob.cmi: theories/Init/datatypes.cmi
+theories/Init/logic_Type.cmi: theories/Init/datatypes.cmi
+theories/Init/peano.cmi: theories/Init/datatypes.cmi
+theories/Init/specif.cmi: theories/Init/datatypes.cmi
+theories/IntMap/adalloc.cmi: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/NArith/binPos.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/map.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi
+theories/IntMap/addec.cmi: theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi
+theories/IntMap/addr.cmi: theories/NArith/binPos.cmi theories/Bool/bool.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/IntMap/adist.cmi: theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi
+theories/IntMap/fset.cmi: theories/IntMap/addec.cmi theories/IntMap/addr.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/map.cmi \
+ theories/Init/specif.cmi
+theories/IntMap/lsort.cmi: theories/IntMap/addec.cmi theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Bool/bool.cmi \
+ theories/Init/datatypes.cmi theories/Lists/list.cmi \
+ theories/IntMap/map.cmi theories/IntMap/mapiter.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi
+theories/IntMap/mapcanon.cmi: theories/IntMap/map.cmi \
+ theories/Init/specif.cmi
+theories/IntMap/mapcard.cmi: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/Init/datatypes.cmi \
+ theories/IntMap/map.cmi theories/Init/peano.cmi \
+ theories/Arith/peano_dec.cmi theories/Arith/plus.cmi \
+ theories/Init/specif.cmi theories/Bool/sumbool.cmi
+theories/IntMap/mapfold.cmi: theories/IntMap/addr.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/fset.cmi \
+ theories/IntMap/map.cmi theories/IntMap/mapiter.cmi \
+ theories/Init/specif.cmi
+theories/IntMap/mapiter.cmi: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/IntMap/map.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi
+theories/IntMap/maplists.cmi: theories/IntMap/addec.cmi \
+ theories/IntMap/addr.cmi theories/Init/datatypes.cmi \
+ theories/IntMap/fset.cmi theories/Lists/list.cmi theories/IntMap/map.cmi \
+ theories/IntMap/mapiter.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi
+theories/IntMap/map.cmi: theories/IntMap/addec.cmi theories/IntMap/addr.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi
+theories/IntMap/mapsubset.cmi: theories/Bool/bool.cmi \
+ theories/Init/datatypes.cmi theories/IntMap/fset.cmi \
+ theories/IntMap/map.cmi theories/IntMap/mapiter.cmi
+theories/Lists/list.cmi: theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/Lists/listSet.cmi: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Init/specif.cmi
+theories/Lists/monoList.cmi: theories/Init/datatypes.cmi
+theories/Lists/streams.cmi: theories/Init/datatypes.cmi
+theories/Lists/theoryList.cmi: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Init/specif.cmi
+theories/NArith/binNat.cmi: theories/NArith/binPos.cmi \
+ theories/Init/datatypes.cmi
+theories/NArith/binPos.cmi: theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi
+theories/Relations/relation_Operators.cmi: theories/Lists/list.cmi \
+ theories/Init/specif.cmi
+theories/Sets/cpo.cmi: theories/Sets/partial_Order.cmi
+theories/Sets/integers.cmi: theories/Init/datatypes.cmi \
+ theories/Sets/partial_Order.cmi
+theories/Sets/multiset.cmi: theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi
+theories/Sets/partial_Order.cmi: theories/Sets/ensembles.cmi \
+ theories/Sets/relations_1.cmi
+theories/Sets/powerset.cmi: theories/Sets/ensembles.cmi \
+ theories/Sets/partial_Order.cmi
+theories/Sets/uniset.cmi: theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/Sorting/heap.cmi: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Sets/multiset.cmi \
+ theories/Init/peano.cmi theories/Sorting/sorting.cmi \
+ theories/Init/specif.cmi
+theories/Sorting/permutation.cmi: theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Sets/multiset.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi
+theories/Sorting/sorting.cmi: theories/Lists/list.cmi \
+ theories/Init/specif.cmi
+theories/Wellfounded/well_Ordering.cmi: theories/Init/specif.cmi
+theories/ZArith/binInt.cmi: theories/NArith/binNat.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi
+theories/ZArith/wf_Z.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/peano.cmi theories/Init/specif.cmi
+theories/ZArith/zabs.cmi: theories/ZArith/binInt.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi
+theories/ZArith/zArith_dec.cmi: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi
+theories/ZArith/zbinary.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Bool/bvector.cmi \
+ theories/Init/datatypes.cmi theories/ZArith/zeven.cmi
+theories/ZArith/zbool.cmi: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi \
+ theories/Bool/sumbool.cmi theories/ZArith/zArith_dec.cmi \
+ theories/ZArith/zeven.cmi
+theories/ZArith/zcomplements.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Lists/list.cmi theories/Init/specif.cmi theories/ZArith/wf_Z.cmi \
+ theories/ZArith/zabs.cmi
+theories/ZArith/zdiv.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/ZArith/zArith_dec.cmi \
+ theories/ZArith/zbool.cmi
+theories/ZArith/zeven.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi
+theories/ZArith/zlogarithm.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi
+theories/ZArith/zmin.cmi: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi
+theories/ZArith/zmisc.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi
+theories/ZArith/znumtheory.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/Init/specif.cmi theories/ZArith/wf_Z.cmi \
+ theories/ZArith/zArith_dec.cmi theories/ZArith/zdiv.cmi \
+ theories/ZArith/zorder.cmi
+theories/ZArith/zorder.cmi: theories/ZArith/binInt.cmi \
+ theories/Init/datatypes.cmi theories/Init/specif.cmi
+theories/ZArith/zpower.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/datatypes.cmi \
+ theories/ZArith/zmisc.cmi
+theories/ZArith/zsqrt.cmi: theories/ZArith/binInt.cmi \
+ theories/NArith/binPos.cmi theories/Init/specif.cmi \
+ theories/ZArith/zArith_dec.cmi
diff --git a/contrib/extraction/test/Makefile b/contrib/extraction/test/Makefile
new file mode 100644
index 00000000..c9bb5623
--- /dev/null
+++ b/contrib/extraction/test/Makefile
@@ -0,0 +1,109 @@
+#
+# General variables
+#
+
+TOPDIR=../../..
+
+# Files with axioms to be realized: can't be extracted directly
+
+AXIOMSVO:= \
+theories/Reals/% \
+theories/Num/%
+
+DIRS:= $(shell (cd $(TOPDIR);find theories -type d ! -name CVS))
+
+INCL:= $(patsubst %,-I %,$(DIRS))
+
+VO:= $(shell (cd $(TOPDIR);find theories -name \*.vo))
+
+VO:= $(filter-out $(AXIOMSVO),$(VO))
+
+ML:= $(shell test -x v2ml && ./v2ml $(VO))
+
+MLI:= $(patsubst %.ml,%.mli,$(ML))
+
+CMO:= $(patsubst %.ml,%.cmo,$(ML))
+
+OSTDLIB:=$(shell (ocamlc -where))
+
+#
+# General rules
+#
+
+all: v2ml ml $(MLI) $(CMO)
+
+ml: $(ML)
+
+depend: $(ML)
+ rm -f .depend; ocamldep $(INCL) theories/*/*.ml theories/*/*.mli > .depend
+
+tree:
+ mkdir -p $(DIRS)
+ cp $(OSTDLIB)/pervasives.cmi $(OSTDLIB)/obj.cmi $(OSTDLIB)/lazy.cmi theories
+
+#%.mli:%.ml
+# ./make_mli $< > $@
+
+%.cmi:%.mli
+ ocamlc -c $(INCL) -nostdlib $<
+
+%.cmo:%.ml
+ ocamlc -c $(INCL) -nostdlib $<
+
+$(ML): ml2v
+ ./extract $@
+
+clean:
+ rm -f theories/*/*.ml* theories/*/*.cm*
+
+
+#
+# Utilities
+#
+
+open:
+ find theories -name "*".ml -exec ./qualify2open \{\} \;
+
+undo_open:
+ find theories -name "*".ml -exec mv \{\}.orig \{\} \;
+
+ml2v: ml2v.ml
+ ocamlopt -o $@ $<
+
+v2ml: v2ml.ml
+ ocamlopt -o $@ $<
+ $(MAKE)
+
+#
+# Extraction of Reals
+#
+
+
+REALSAXIOMSVO:=theories/Reals/Rsyntax.vo
+
+REALSALLVO:=$(shell cd $(TOPDIR); ls -tr theories/Reals/*.vo)
+REALSVO:=$(filter-out $(REALSAXIOMSVO),$(REALSALLVO))
+REALSML:=$(shell test -x v2ml && ./v2ml $(REALSVO))
+REALSCMO:= $(patsubst %.ml,%.cmo,$(REALSML))
+
+reals: all realsml theories/Reals/addReals.cmo $(REALSCMO)
+
+realsml: $(REALSML)
+
+theories/Reals/addReals.ml:
+ cp -f addReals theories/Reals/addReals.ml
+
+$(REALSML):
+ ./extract $@
+
+
+#
+# The End
+#
+
+.PHONY: all tree clean reals realsml depend
+
+include .depend
+
+
+
diff --git a/contrib/extraction/test/Makefile.haskell b/contrib/extraction/test/Makefile.haskell
new file mode 100644
index 00000000..6e1e15d1
--- /dev/null
+++ b/contrib/extraction/test/Makefile.haskell
@@ -0,0 +1,416 @@
+#
+# General variables
+#
+
+TOPDIR=../../..
+
+# Files with axioms to be realized: can't be extracted directly
+
+AXIOMSVO:= \
+theories/Init/Prelude.vo \
+theories/Reals/% \
+theories/Num/%
+
+DIRS:= $(shell (cd $(TOPDIR);find theories -type d ! -name CVS))
+
+INCL:= $(patsubst %,-i%,$(DIRS))
+
+VO:= $(shell (cd $(TOPDIR);find theories -name \*.vo))
+
+VO:= $(filter-out $(AXIOMSVO),$(VO))
+
+HS:= $(shell test -x v2hs && ./v2hs $(VO))
+
+O:= $(patsubst %.hs,%.o,$(HS))
+
+#
+# General rules
+#
+
+all: v2hs hs $(O)
+
+hs: $(HS)
+
+tree:
+ mkdir -p $(DIRS)
+
+%.o:%.hs
+ ghc $(INCL) -c $<
+
+$(HS): hs2v
+ ./extract.haskell $@
+
+clean:
+ rm -f theories/*/*.h* theories/*/*.o
+
+
+#
+# Utilities
+#
+
+hs2v: hs2v.ml
+ ocamlc -o $@ $<
+
+v2hs: v2hs.ml
+ ocamlc -o $@ $<
+ $(MAKE) -f Makefile.haskell
+
+
+#
+# The End
+#
+
+.PHONY: all tree clean depend
+
+# DO NOT DELETE: Beginning of Haskell dependencies
+theories/Arith/Between.o : theories/Arith/Between.hs
+theories/Arith/Bool_nat.o : theories/Arith/Bool_nat.hs
+theories/Arith/Bool_nat.o : theories/Bool/Sumbool.o
+theories/Arith/Bool_nat.o : theories/Init/Specif.o
+theories/Arith/Bool_nat.o : theories/Arith/Peano_dec.o
+theories/Arith/Bool_nat.o : theories/Init/Datatypes.o
+theories/Arith/Bool_nat.o : theories/Arith/Compare_dec.o
+theories/Arith/Compare_dec.o : theories/Arith/Compare_dec.hs
+theories/Arith/Compare_dec.o : theories/Init/Specif.o
+theories/Arith/Compare_dec.o : theories/Init/Logic.o
+theories/Arith/Compare_dec.o : theories/Init/Datatypes.o
+theories/Arith/Compare.o : theories/Arith/Compare.hs
+theories/Arith/Compare.o : theories/Init/Specif.o
+theories/Arith/Compare.o : theories/Init/Datatypes.o
+theories/Arith/Compare.o : theories/Arith/Compare_dec.o
+theories/Arith/Div2.o : theories/Arith/Div2.hs
+theories/Arith/Div2.o : theories/Init/Specif.o
+theories/Arith/Div2.o : theories/Init/Peano.o
+theories/Arith/Div2.o : theories/Init/Datatypes.o
+theories/Arith/EqNat.o : theories/Arith/EqNat.hs
+theories/Arith/EqNat.o : theories/Init/Specif.o
+theories/Arith/EqNat.o : theories/Init/Datatypes.o
+theories/Arith/Euclid.o : theories/Arith/Euclid.hs
+theories/Arith/Euclid.o : theories/Arith/Wf_nat.o
+theories/Arith/Euclid.o : theories/Init/Specif.o
+theories/Arith/Euclid.o : theories/Arith/Minus.o
+theories/Arith/Euclid.o : theories/Init/Datatypes.o
+theories/Arith/Euclid.o : theories/Arith/Compare_dec.o
+theories/Arith/Even.o : theories/Arith/Even.hs
+theories/Arith/Even.o : theories/Init/Specif.o
+theories/Arith/Even.o : theories/Init/Datatypes.o
+theories/Arith/Gt.o : theories/Arith/Gt.hs
+theories/Arith/Le.o : theories/Arith/Le.hs
+theories/Arith/Lt.o : theories/Arith/Lt.hs
+theories/Arith/Max.o : theories/Arith/Max.hs
+theories/Arith/Max.o : theories/Init/Specif.o
+theories/Arith/Max.o : theories/Init/Logic.o
+theories/Arith/Max.o : theories/Init/Datatypes.o
+theories/Arith/Min.o : theories/Arith/Min.hs
+theories/Arith/Min.o : theories/Init/Specif.o
+theories/Arith/Min.o : theories/Init/Logic.o
+theories/Arith/Min.o : theories/Init/Datatypes.o
+theories/Arith/Minus.o : theories/Arith/Minus.hs
+theories/Arith/Minus.o : theories/Init/Datatypes.o
+theories/Arith/Mult.o : theories/Arith/Mult.hs
+theories/Arith/Mult.o : theories/Arith/Plus.o
+theories/Arith/Mult.o : theories/Init/Datatypes.o
+theories/Arith/Peano_dec.o : theories/Arith/Peano_dec.hs
+theories/Arith/Peano_dec.o : theories/Init/Specif.o
+theories/Arith/Peano_dec.o : theories/Init/Datatypes.o
+theories/Arith/Plus.o : theories/Arith/Plus.hs
+theories/Arith/Plus.o : theories/Init/Specif.o
+theories/Arith/Plus.o : theories/Init/Logic.o
+theories/Arith/Plus.o : theories/Init/Datatypes.o
+theories/Arith/Wf_nat.o : theories/Arith/Wf_nat.hs
+theories/Arith/Wf_nat.o : theories/Init/Wf.o
+theories/Arith/Wf_nat.o : theories/Init/Logic.o
+theories/Arith/Wf_nat.o : theories/Init/Datatypes.o
+theories/Bool/BoolEq.o : theories/Bool/BoolEq.hs
+theories/Bool/BoolEq.o : theories/Init/Specif.o
+theories/Bool/BoolEq.o : theories/Init/Datatypes.o
+theories/Bool/Bool.o : theories/Bool/Bool.hs
+theories/Bool/Bool.o : theories/Init/Specif.o
+theories/Bool/Bool.o : theories/Init/Datatypes.o
+theories/Bool/DecBool.o : theories/Bool/DecBool.hs
+theories/Bool/DecBool.o : theories/Init/Specif.o
+theories/Bool/IfProp.o : theories/Bool/IfProp.hs
+theories/Bool/IfProp.o : theories/Init/Specif.o
+theories/Bool/IfProp.o : theories/Init/Datatypes.o
+theories/Bool/Sumbool.o : theories/Bool/Sumbool.hs
+theories/Bool/Sumbool.o : theories/Init/Specif.o
+theories/Bool/Sumbool.o : theories/Init/Datatypes.o
+theories/Bool/Zerob.o : theories/Bool/Zerob.hs
+theories/Bool/Zerob.o : theories/Init/Datatypes.o
+theories/Init/Datatypes.o : theories/Init/Datatypes.hs
+theories/Init/DatatypesSyntax.o : theories/Init/DatatypesSyntax.hs
+theories/Init/Logic.o : theories/Init/Logic.hs
+theories/Init/LogicSyntax.o : theories/Init/LogicSyntax.hs
+theories/Init/Logic_Type.o : theories/Init/Logic_Type.hs
+theories/Init/Logic_TypeSyntax.o : theories/Init/Logic_TypeSyntax.hs
+theories/Init/Peano.o : theories/Init/Peano.hs
+theories/Init/Peano.o : theories/Init/Datatypes.o
+theories/Init/Specif.o : theories/Init/Specif.hs
+theories/Init/Specif.o : theories/Init/Logic.o
+theories/Init/Specif.o : theories/Init/Datatypes.o
+theories/Init/SpecifSyntax.o : theories/Init/SpecifSyntax.hs
+theories/Init/Wf.o : theories/Init/Wf.hs
+theories/IntMap/Adalloc.o : theories/IntMap/Adalloc.hs
+theories/IntMap/Adalloc.o : theories/ZArith/Fast_integer.o
+theories/IntMap/Adalloc.o : theories/Bool/Sumbool.o
+theories/IntMap/Adalloc.o : theories/Init/Specif.o
+theories/IntMap/Adalloc.o : theories/IntMap/Map.o
+theories/IntMap/Adalloc.o : theories/Init/Logic.o
+theories/IntMap/Adalloc.o : theories/Init/Datatypes.o
+theories/IntMap/Adalloc.o : theories/IntMap/Addr.o
+theories/IntMap/Adalloc.o : theories/IntMap/Addec.o
+theories/IntMap/Addec.o : theories/IntMap/Addec.hs
+theories/IntMap/Addec.o : theories/ZArith/Fast_integer.o
+theories/IntMap/Addec.o : theories/Bool/Sumbool.o
+theories/IntMap/Addec.o : theories/Init/Specif.o
+theories/IntMap/Addec.o : theories/Init/Datatypes.o
+theories/IntMap/Addec.o : theories/IntMap/Addr.o
+theories/IntMap/Addr.o : theories/IntMap/Addr.hs
+theories/IntMap/Addr.o : theories/ZArith/Fast_integer.o
+theories/IntMap/Addr.o : theories/Init/Specif.o
+theories/IntMap/Addr.o : theories/Init/Datatypes.o
+theories/IntMap/Addr.o : theories/Bool/Bool.o
+theories/IntMap/Adist.o : theories/IntMap/Adist.hs
+theories/IntMap/Adist.o : theories/ZArith/Fast_integer.o
+theories/IntMap/Adist.o : theories/Arith/Min.o
+theories/IntMap/Adist.o : theories/Init/Datatypes.o
+theories/IntMap/Adist.o : theories/IntMap/Addr.o
+theories/IntMap/Allmaps.o : theories/IntMap/Allmaps.hs
+theories/IntMap/Fset.o : theories/IntMap/Fset.hs
+theories/IntMap/Fset.o : theories/Init/Specif.o
+theories/IntMap/Fset.o : theories/IntMap/Map.o
+theories/IntMap/Fset.o : theories/Init/Logic.o
+theories/IntMap/Fset.o : theories/Init/Datatypes.o
+theories/IntMap/Fset.o : theories/IntMap/Addr.o
+theories/IntMap/Fset.o : theories/IntMap/Addec.o
+theories/IntMap/Lsort.o : theories/IntMap/Lsort.hs
+theories/IntMap/Lsort.o : theories/ZArith/Fast_integer.o
+theories/IntMap/Lsort.o : theories/Bool/Sumbool.o
+theories/IntMap/Lsort.o : theories/Init/Specif.o
+theories/IntMap/Lsort.o : theories/Lists/PolyList.o
+theories/IntMap/Lsort.o : theories/IntMap/Mapiter.o
+theories/IntMap/Lsort.o : theories/IntMap/Map.o
+theories/IntMap/Lsort.o : theories/Init/Logic.o
+theories/IntMap/Lsort.o : theories/Init/Datatypes.o
+theories/IntMap/Lsort.o : theories/Bool/Bool.o
+theories/IntMap/Lsort.o : theories/IntMap/Addr.o
+theories/IntMap/Lsort.o : theories/IntMap/Addec.o
+theories/IntMap/Mapaxioms.o : theories/IntMap/Mapaxioms.hs
+theories/IntMap/Mapcanon.o : theories/IntMap/Mapcanon.hs
+theories/IntMap/Mapcanon.o : theories/Init/Specif.o
+theories/IntMap/Mapcanon.o : theories/IntMap/Map.o
+theories/IntMap/Mapcard.o : theories/IntMap/Mapcard.hs
+theories/IntMap/Mapcard.o : theories/Bool/Sumbool.o
+theories/IntMap/Mapcard.o : theories/Init/Specif.o
+theories/IntMap/Mapcard.o : theories/Arith/Plus.o
+theories/IntMap/Mapcard.o : theories/Arith/Peano_dec.o
+theories/IntMap/Mapcard.o : theories/Init/Peano.o
+theories/IntMap/Mapcard.o : theories/IntMap/Map.o
+theories/IntMap/Mapcard.o : theories/Init/Logic.o
+theories/IntMap/Mapcard.o : theories/Init/Datatypes.o
+theories/IntMap/Mapcard.o : theories/IntMap/Addr.o
+theories/IntMap/Mapcard.o : theories/IntMap/Addec.o
+theories/IntMap/Mapc.o : theories/IntMap/Mapc.hs
+theories/IntMap/Mapfold.o : theories/IntMap/Mapfold.hs
+theories/IntMap/Mapfold.o : theories/Init/Specif.o
+theories/IntMap/Mapfold.o : theories/IntMap/Mapiter.o
+theories/IntMap/Mapfold.o : theories/IntMap/Map.o
+theories/IntMap/Mapfold.o : theories/Init/Logic.o
+theories/IntMap/Mapfold.o : theories/IntMap/Fset.o
+theories/IntMap/Mapfold.o : theories/Init/Datatypes.o
+theories/IntMap/Mapfold.o : theories/IntMap/Addr.o
+theories/IntMap/Map.o : theories/IntMap/Map.hs
+theories/IntMap/Map.o : theories/ZArith/Fast_integer.o
+theories/IntMap/Map.o : theories/Init/Specif.o
+theories/IntMap/Map.o : theories/Init/Peano.o
+theories/IntMap/Map.o : theories/Init/Datatypes.o
+theories/IntMap/Map.o : theories/IntMap/Addr.o
+theories/IntMap/Map.o : theories/IntMap/Addec.o
+theories/IntMap/Mapiter.o : theories/IntMap/Mapiter.hs
+theories/IntMap/Mapiter.o : theories/Bool/Sumbool.o
+theories/IntMap/Mapiter.o : theories/Init/Specif.o
+theories/IntMap/Mapiter.o : theories/Lists/PolyList.o
+theories/IntMap/Mapiter.o : theories/IntMap/Map.o
+theories/IntMap/Mapiter.o : theories/Init/Logic.o
+theories/IntMap/Mapiter.o : theories/Init/Datatypes.o
+theories/IntMap/Mapiter.o : theories/IntMap/Addr.o
+theories/IntMap/Mapiter.o : theories/IntMap/Addec.o
+theories/IntMap/Maplists.o : theories/IntMap/Maplists.hs
+theories/IntMap/Maplists.o : theories/Bool/Sumbool.o
+theories/IntMap/Maplists.o : theories/Init/Specif.o
+theories/IntMap/Maplists.o : theories/Lists/PolyList.o
+theories/IntMap/Maplists.o : theories/IntMap/Mapiter.o
+theories/IntMap/Maplists.o : theories/IntMap/Map.o
+theories/IntMap/Maplists.o : theories/Init/Logic.o
+theories/IntMap/Maplists.o : theories/IntMap/Fset.o
+theories/IntMap/Maplists.o : theories/Init/Datatypes.o
+theories/IntMap/Maplists.o : theories/Bool/Bool.o
+theories/IntMap/Maplists.o : theories/IntMap/Addr.o
+theories/IntMap/Maplists.o : theories/IntMap/Addec.o
+theories/IntMap/Mapsubset.o : theories/IntMap/Mapsubset.hs
+theories/IntMap/Mapsubset.o : theories/IntMap/Mapiter.o
+theories/IntMap/Mapsubset.o : theories/IntMap/Map.o
+theories/IntMap/Mapsubset.o : theories/IntMap/Fset.o
+theories/IntMap/Mapsubset.o : theories/Init/Datatypes.o
+theories/IntMap/Mapsubset.o : theories/Bool/Bool.o
+theories/Lists/ListSet.o : theories/Lists/ListSet.hs
+theories/Lists/ListSet.o : theories/Init/Specif.o
+theories/Lists/ListSet.o : theories/Lists/PolyList.o
+theories/Lists/ListSet.o : theories/Init/Logic.o
+theories/Lists/ListSet.o : theories/Init/Datatypes.o
+theories/Lists/PolyList.o : theories/Lists/PolyList.hs
+theories/Lists/PolyList.o : theories/Init/Specif.o
+theories/Lists/PolyList.o : theories/Init/Datatypes.o
+theories/Lists/PolyListSyntax.o : theories/Lists/PolyListSyntax.hs
+theories/Lists/Streams.o : theories/Lists/Streams.hs
+theories/Lists/Streams.o : theories/Init/Datatypes.o
+theories/Lists/TheoryList.o : theories/Lists/TheoryList.hs
+theories/Lists/TheoryList.o : theories/Init/Specif.o
+theories/Lists/TheoryList.o : theories/Lists/PolyList.o
+theories/Lists/TheoryList.o : theories/Bool/DecBool.o
+theories/Lists/TheoryList.o : theories/Init/Datatypes.o
+theories/Logic/Berardi.o : theories/Logic/Berardi.hs
+theories/Logic/ClassicalFacts.o : theories/Logic/ClassicalFacts.hs
+theories/Logic/Classical.o : theories/Logic/Classical.hs
+theories/Logic/Classical_Pred_Set.o : theories/Logic/Classical_Pred_Set.hs
+theories/Logic/Classical_Pred_Type.o : theories/Logic/Classical_Pred_Type.hs
+theories/Logic/Classical_Prop.o : theories/Logic/Classical_Prop.hs
+theories/Logic/Classical_Type.o : theories/Logic/Classical_Type.hs
+theories/Logic/Decidable.o : theories/Logic/Decidable.hs
+theories/Logic/Eqdep_dec.o : theories/Logic/Eqdep_dec.hs
+theories/Logic/Eqdep.o : theories/Logic/Eqdep.hs
+theories/Logic/Hurkens.o : theories/Logic/Hurkens.hs
+theories/Logic/JMeq.o : theories/Logic/JMeq.hs
+theories/Logic/ProofIrrelevance.o : theories/Logic/ProofIrrelevance.hs
+theories/Relations/Newman.o : theories/Relations/Newman.hs
+theories/Relations/Operators_Properties.o : theories/Relations/Operators_Properties.hs
+theories/Relations/Relation_Definitions.o : theories/Relations/Relation_Definitions.hs
+theories/Relations/Relation_Operators.o : theories/Relations/Relation_Operators.hs
+theories/Relations/Relation_Operators.o : theories/Init/Specif.o
+theories/Relations/Relation_Operators.o : theories/Lists/PolyList.o
+theories/Relations/Relations.o : theories/Relations/Relations.hs
+theories/Relations/Rstar.o : theories/Relations/Rstar.hs
+theories/Setoids/Setoid.o : theories/Setoids/Setoid.hs
+theories/Sets/Classical_sets.o : theories/Sets/Classical_sets.hs
+theories/Sets/Constructive_sets.o : theories/Sets/Constructive_sets.hs
+theories/Sets/Cpo.o : theories/Sets/Cpo.hs
+theories/Sets/Cpo.o : theories/Sets/Partial_Order.o
+theories/Sets/Ensembles.o : theories/Sets/Ensembles.hs
+theories/Sets/Finite_sets_facts.o : theories/Sets/Finite_sets_facts.hs
+theories/Sets/Finite_sets.o : theories/Sets/Finite_sets.hs
+theories/Sets/Image.o : theories/Sets/Image.hs
+theories/Sets/Infinite_sets.o : theories/Sets/Infinite_sets.hs
+theories/Sets/Integers.o : theories/Sets/Integers.hs
+theories/Sets/Integers.o : theories/Sets/Partial_Order.o
+theories/Sets/Integers.o : theories/Init/Datatypes.o
+theories/Sets/Multiset.o : theories/Sets/Multiset.hs
+theories/Sets/Multiset.o : theories/Init/Specif.o
+theories/Sets/Multiset.o : theories/Init/Peano.o
+theories/Sets/Multiset.o : theories/Init/Datatypes.o
+theories/Sets/Partial_Order.o : theories/Sets/Partial_Order.hs
+theories/Sets/Permut.o : theories/Sets/Permut.hs
+theories/Sets/Powerset_Classical_facts.o : theories/Sets/Powerset_Classical_facts.hs
+theories/Sets/Powerset_facts.o : theories/Sets/Powerset_facts.hs
+theories/Sets/Powerset.o : theories/Sets/Powerset.hs
+theories/Sets/Powerset.o : theories/Sets/Partial_Order.o
+theories/Sets/Relations_1_facts.o : theories/Sets/Relations_1_facts.hs
+theories/Sets/Relations_1.o : theories/Sets/Relations_1.hs
+theories/Sets/Relations_2_facts.o : theories/Sets/Relations_2_facts.hs
+theories/Sets/Relations_2.o : theories/Sets/Relations_2.hs
+theories/Sets/Relations_3_facts.o : theories/Sets/Relations_3_facts.hs
+theories/Sets/Relations_3.o : theories/Sets/Relations_3.hs
+theories/Sets/Uniset.o : theories/Sets/Uniset.hs
+theories/Sets/Uniset.o : theories/Init/Specif.o
+theories/Sets/Uniset.o : theories/Init/Datatypes.o
+theories/Sets/Uniset.o : theories/Bool/Bool.o
+theories/Sorting/Heap.o : theories/Sorting/Heap.hs
+theories/Sorting/Heap.o : theories/Init/Specif.o
+theories/Sorting/Heap.o : theories/Sorting/Sorting.o
+theories/Sorting/Heap.o : theories/Lists/PolyList.o
+theories/Sorting/Heap.o : theories/Sets/Multiset.o
+theories/Sorting/Heap.o : theories/Init/Logic.o
+theories/Sorting/Permutation.o : theories/Sorting/Permutation.hs
+theories/Sorting/Permutation.o : theories/Init/Specif.o
+theories/Sorting/Permutation.o : theories/Lists/PolyList.o
+theories/Sorting/Permutation.o : theories/Sets/Multiset.o
+theories/Sorting/Sorting.o : theories/Sorting/Sorting.hs
+theories/Sorting/Sorting.o : theories/Init/Specif.o
+theories/Sorting/Sorting.o : theories/Lists/PolyList.o
+theories/Sorting/Sorting.o : theories/Init/Logic.o
+theories/Wellfounded/Disjoint_Union.o : theories/Wellfounded/Disjoint_Union.hs
+theories/Wellfounded/Inclusion.o : theories/Wellfounded/Inclusion.hs
+theories/Wellfounded/Inverse_Image.o : theories/Wellfounded/Inverse_Image.hs
+theories/Wellfounded/Lexicographic_Exponentiation.o : theories/Wellfounded/Lexicographic_Exponentiation.hs
+theories/Wellfounded/Lexicographic_Product.o : theories/Wellfounded/Lexicographic_Product.hs
+theories/Wellfounded/Transitive_Closure.o : theories/Wellfounded/Transitive_Closure.hs
+theories/Wellfounded/Union.o : theories/Wellfounded/Union.hs
+theories/Wellfounded/Wellfounded.o : theories/Wellfounded/Wellfounded.hs
+theories/Wellfounded/Well_Ordering.o : theories/Wellfounded/Well_Ordering.hs
+theories/Wellfounded/Well_Ordering.o : theories/Init/Wf.o
+theories/Wellfounded/Well_Ordering.o : theories/Init/Specif.o
+theories/ZArith/Auxiliary.o : theories/ZArith/Auxiliary.hs
+theories/ZArith/Fast_integer.o : theories/ZArith/Fast_integer.hs
+theories/ZArith/Fast_integer.o : theories/Init/Peano.o
+theories/ZArith/Fast_integer.o : theories/Init/Datatypes.o
+theories/ZArith/Wf_Z.o : theories/ZArith/Wf_Z.hs
+theories/ZArith/Wf_Z.o : theories/ZArith/Zarith_aux.o
+theories/ZArith/Wf_Z.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Wf_Z.o : theories/Init/Specif.o
+theories/ZArith/Wf_Z.o : theories/Init/Peano.o
+theories/ZArith/Wf_Z.o : theories/Init/Logic.o
+theories/ZArith/Wf_Z.o : theories/Init/Datatypes.o
+theories/ZArith/Zarith_aux.o : theories/ZArith/Zarith_aux.hs
+theories/ZArith/Zarith_aux.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zarith_aux.o : theories/Init/Specif.o
+theories/ZArith/Zarith_aux.o : theories/Init/Datatypes.o
+theories/ZArith/ZArith_base.o : theories/ZArith/ZArith_base.hs
+theories/ZArith/ZArith_dec.o : theories/ZArith/ZArith_dec.hs
+theories/ZArith/ZArith_dec.o : theories/ZArith/Fast_integer.o
+theories/ZArith/ZArith_dec.o : theories/Bool/Sumbool.o
+theories/ZArith/ZArith_dec.o : theories/Init/Specif.o
+theories/ZArith/ZArith_dec.o : theories/Init/Logic.o
+theories/ZArith/ZArith.o : theories/ZArith/ZArith.hs
+theories/ZArith/Zbool.o : theories/ZArith/Zbool.hs
+theories/ZArith/Zbool.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zbool.o : theories/ZArith/Zmisc.o
+theories/ZArith/Zbool.o : theories/ZArith/ZArith_dec.o
+theories/ZArith/Zbool.o : theories/Bool/Sumbool.o
+theories/ZArith/Zbool.o : theories/Init/Specif.o
+theories/ZArith/Zbool.o : theories/Init/Datatypes.o
+theories/ZArith/Zcomplements.o : theories/ZArith/Zcomplements.hs
+theories/ZArith/Zcomplements.o : theories/ZArith/Zarith_aux.o
+theories/ZArith/Zcomplements.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zcomplements.o : theories/ZArith/Wf_Z.o
+theories/ZArith/Zcomplements.o : theories/Init/Specif.o
+theories/ZArith/Zcomplements.o : theories/Init/Logic.o
+theories/ZArith/Zcomplements.o : theories/Init/Datatypes.o
+theories/ZArith/Zdiv.o : theories/ZArith/Zdiv.hs
+theories/ZArith/Zdiv.o : theories/ZArith/Zarith_aux.o
+theories/ZArith/Zdiv.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zdiv.o : theories/ZArith/Zmisc.o
+theories/ZArith/Zdiv.o : theories/ZArith/ZArith_dec.o
+theories/ZArith/Zdiv.o : theories/Init/Specif.o
+theories/ZArith/Zdiv.o : theories/Init/Logic.o
+theories/ZArith/Zdiv.o : theories/Init/Datatypes.o
+theories/ZArith/Zhints.o : theories/ZArith/Zhints.hs
+theories/ZArith/Zlogarithm.o : theories/ZArith/Zlogarithm.hs
+theories/ZArith/Zlogarithm.o : theories/ZArith/Zarith_aux.o
+theories/ZArith/Zlogarithm.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zmisc.o : theories/ZArith/Zmisc.hs
+theories/ZArith/Zmisc.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zmisc.o : theories/Init/Specif.o
+theories/ZArith/Zmisc.o : theories/Init/Datatypes.o
+theories/ZArith/Zpower.o : theories/ZArith/Zpower.hs
+theories/ZArith/Zpower.o : theories/ZArith/Zarith_aux.o
+theories/ZArith/Zpower.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zpower.o : theories/ZArith/Zmisc.o
+theories/ZArith/Zpower.o : theories/Init/Logic.o
+theories/ZArith/Zpower.o : theories/Init/Datatypes.o
+theories/ZArith/Zsqrt.o : theories/ZArith/Zsqrt.hs
+theories/ZArith/Zsqrt.o : theories/ZArith/Zarith_aux.o
+theories/ZArith/Zsqrt.o : theories/ZArith/Fast_integer.o
+theories/ZArith/Zsqrt.o : theories/ZArith/ZArith_dec.o
+theories/ZArith/Zsqrt.o : theories/Init/Specif.o
+theories/ZArith/Zsqrt.o : theories/Init/Logic.o
+theories/ZArith/Zwf.o : theories/ZArith/Zwf.hs
+# DO NOT DELETE: End of Haskell dependencies
diff --git a/contrib/extraction/test/addReals b/contrib/extraction/test/addReals
new file mode 100644
index 00000000..fb73d47b
--- /dev/null
+++ b/contrib/extraction/test/addReals
@@ -0,0 +1,21 @@
+open TypeSyntax
+open Fast_integer
+
+
+let total_order_T x y =
+if x = y then InleftT RightT
+else if x < y then InleftT LeftT
+else InrightT
+
+let rec int_to_positive i =
+ if i = 1 then XH
+ else
+ if (i mod 2) = 0 then XO (int_to_positive (i/2))
+ else XI (int_to_positive (i/2))
+
+let rec int_to_Z i =
+ if i = 0 then ZERO
+ else if i > 0 then POS (int_to_positive i)
+ else NEG (int_to_positive (-i))
+
+let my_ceil x = int_to_Z (succ (int_of_float (floor x)))
diff --git a/contrib/extraction/test/custom/Adalloc b/contrib/extraction/test/custom/Adalloc
new file mode 100644
index 00000000..0fb556aa
--- /dev/null
+++ b/contrib/extraction/test/custom/Adalloc
@@ -0,0 +1,2 @@
+Require Import Addr.
+Extraction NoInline ad_double ad_double_plus_un.
diff --git a/contrib/extraction/test/custom/Euclid b/contrib/extraction/test/custom/Euclid
new file mode 100644
index 00000000..a58e3940
--- /dev/null
+++ b/contrib/extraction/test/custom/Euclid
@@ -0,0 +1 @@
+Extraction Inline Wf_nat.gt_wf_rec Wf_nat.lt_wf_rec.
diff --git a/contrib/extraction/test/custom/List b/contrib/extraction/test/custom/List
new file mode 100644
index 00000000..ffee7dc9
--- /dev/null
+++ b/contrib/extraction/test/custom/List
@@ -0,0 +1 @@
+Extraction NoInline map.
diff --git a/contrib/extraction/test/custom/ListSet b/contrib/extraction/test/custom/ListSet
new file mode 100644
index 00000000..c9bea52a
--- /dev/null
+++ b/contrib/extraction/test/custom/ListSet
@@ -0,0 +1 @@
+Extraction NoInline set_add set_mem.
diff --git a/contrib/extraction/test/custom/Lsort b/contrib/extraction/test/custom/Lsort
new file mode 100644
index 00000000..6a185683
--- /dev/null
+++ b/contrib/extraction/test/custom/Lsort
@@ -0,0 +1,2 @@
+Require Import Addr.
+Extraction NoInline ad_double ad_double_plus_un.
diff --git a/contrib/extraction/test/custom/Map b/contrib/extraction/test/custom/Map
new file mode 100644
index 00000000..3e464e39
--- /dev/null
+++ b/contrib/extraction/test/custom/Map
@@ -0,0 +1,3 @@
+Require Import Addr.
+Extraction NoInline ad_double ad_double_plus_un.
+
diff --git a/contrib/extraction/test/custom/Mapcard b/contrib/extraction/test/custom/Mapcard
new file mode 100644
index 00000000..ca555aa3
--- /dev/null
+++ b/contrib/extraction/test/custom/Mapcard
@@ -0,0 +1,4 @@
+Require Import Plus.
+Extraction NoInline plus_is_one.
+Require Import Addr.
+Extraction NoInline ad_double ad_double_plus_un.
diff --git a/contrib/extraction/test/custom/Mapiter b/contrib/extraction/test/custom/Mapiter
new file mode 100644
index 00000000..6a185683
--- /dev/null
+++ b/contrib/extraction/test/custom/Mapiter
@@ -0,0 +1,2 @@
+Require Import Addr.
+Extraction NoInline ad_double ad_double_plus_un.
diff --git a/contrib/extraction/test/custom/R_Ifp b/contrib/extraction/test/custom/R_Ifp
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/R_Ifp
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/R_sqr b/contrib/extraction/test/custom/R_sqr
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/R_sqr
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Ranalysis b/contrib/extraction/test/custom/Ranalysis
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Ranalysis
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Raxioms b/contrib/extraction/test/custom/Raxioms
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Raxioms
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rbase b/contrib/extraction/test/custom/Rbase
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rbase
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rbasic_fun b/contrib/extraction/test/custom/Rbasic_fun
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rbasic_fun
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rdefinitions b/contrib/extraction/test/custom/Rdefinitions
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rdefinitions
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Reals.v b/contrib/extraction/test/custom/Reals.v
new file mode 100644
index 00000000..45d0a224
--- /dev/null
+++ b/contrib/extraction/test/custom/Reals.v
@@ -0,0 +1,17 @@
+Require Import Reals.
+Extract Inlined Constant R => float.
+Extract Inlined Constant R0 => "0.0".
+Extract Inlined Constant R1 => "1.0".
+Extract Inlined Constant Rplus => "(+.)".
+Extract Inlined Constant Rmult => "( *.)".
+Extract Inlined Constant Ropp => "(~-.)".
+Extract Inlined Constant Rinv => "(fun x -> 1.0 /. x)".
+Extract Inlined Constant Rlt => "(<)".
+Extract Inlined Constant up => "AddReals.my_ceil".
+Extract Inlined Constant total_order_T => "AddReals.total_order_T".
+Extract Inlined Constant sqrt => "sqrt".
+Extract Inlined Constant sigma => "(fun l h -> sigma_aux l h (Minus.minus h l))".
+Extract Inlined Constant PI => "3.141593".
+Extract Inlined Constant cos => cos.
+Extract Inlined Constant sin => sin.
+Extract Inlined Constant derive_pt => "(fun f x -> ((f (x+.1E-5))-.(f x))*.1E5)".
diff --git a/contrib/extraction/test/custom/Rfunctions b/contrib/extraction/test/custom/Rfunctions
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rfunctions
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rgeom b/contrib/extraction/test/custom/Rgeom
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rgeom
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rlimit b/contrib/extraction/test/custom/Rlimit
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rlimit
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rseries b/contrib/extraction/test/custom/Rseries
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rseries
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rsigma b/contrib/extraction/test/custom/Rsigma
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rsigma
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/Rtrigo b/contrib/extraction/test/custom/Rtrigo
new file mode 100644
index 00000000..d8f1b3e7
--- /dev/null
+++ b/contrib/extraction/test/custom/Rtrigo
@@ -0,0 +1,2 @@
+Load "custom/Reals".
+
diff --git a/contrib/extraction/test/custom/ZArith_dec b/contrib/extraction/test/custom/ZArith_dec
new file mode 100644
index 00000000..2201419e
--- /dev/null
+++ b/contrib/extraction/test/custom/ZArith_dec
@@ -0,0 +1 @@
+Extraction Inline Dcompare_inf Zcompare_rec.
diff --git a/contrib/extraction/test/custom/fast_integer b/contrib/extraction/test/custom/fast_integer
new file mode 100644
index 00000000..e2b24953
--- /dev/null
+++ b/contrib/extraction/test/custom/fast_integer
@@ -0,0 +1 @@
+Extraction NoInline Zero_suivi_de Un_suivi_de.
diff --git a/contrib/extraction/test/e b/contrib/extraction/test/e
new file mode 100644
index 00000000..88b6c90b
--- /dev/null
+++ b/contrib/extraction/test/e
@@ -0,0 +1,17 @@
+
+(* To trace Extraction, you can use this file via: *)
+(* Drop. #use "e";; *)
+(* *)
+
+#use "include";;
+open Extraction;;
+open Miniml;;
+#trace extract_declaration;;
+go();;
+
+
+
+
+
+
+
diff --git a/contrib/extraction/test/extract b/contrib/extraction/test/extract
new file mode 100755
index 00000000..83444be3
--- /dev/null
+++ b/contrib/extraction/test/extract
@@ -0,0 +1,12 @@
+#!/bin/sh
+rm -f /tmp/extr$$.v
+vfile=`./ml2v $1`
+d=`dirname $vfile`
+n=`basename $vfile .v`
+if [ -e custom/$n ]; then cat custom/$n > /tmp/extr$$.v; fi
+echo "Cd \"$d\". Extraction Library $n. " >> /tmp/extr$$.v
+../../../bin/coqtop.opt -silent -batch -require $n -load-vernac-source /tmp/extr$$.v
+out=$?
+rm -f /tmp/extr$$.v
+exit $out
+
diff --git a/contrib/extraction/test/extract.haskell b/contrib/extraction/test/extract.haskell
new file mode 100755
index 00000000..d11bc706
--- /dev/null
+++ b/contrib/extraction/test/extract.haskell
@@ -0,0 +1,12 @@
+#!/bin/sh
+rm -f /tmp/extr$$.v
+vfile=`./hs2v $1`
+d=`dirname $vfile`
+n=`basename $vfile .v`
+if [ -e custom/$n ]; then cat custom/$n > /tmp/extr$$.v; fi
+echo "Cd \"$d\". Extraction Language Haskell. Extraction Library $n. " >> /tmp/extr$$.v
+../../../bin/coqtop.opt -silent -batch -require $n -load-vernac-source /tmp/extr$$.v
+out=$?
+rm -f /tmp/extr$$.v
+exit $out
+
diff --git a/contrib/extraction/test/hs2v.ml b/contrib/extraction/test/hs2v.ml
new file mode 100644
index 00000000..fd8b9b26
--- /dev/null
+++ b/contrib/extraction/test/hs2v.ml
@@ -0,0 +1,14 @@
+let _ =
+ for j = 1 to ((Array.length Sys.argv)-1) do
+ let fml = Sys.argv.(j) in
+ let f = Filename.chop_extension fml in
+ let fv = f ^ ".v" in
+ if Sys.file_exists ("../../../" ^ fv) then
+ print_string (fv^" ")
+ else
+ let d = Filename.dirname f in
+ let b = String.uncapitalize (Filename.basename f) in
+ let fv = Filename.concat d (b ^ ".v ") in
+ print_string fv
+ done;
+ print_newline()
diff --git a/contrib/extraction/test/make_mli b/contrib/extraction/test/make_mli
new file mode 100755
index 00000000..40ee496e
--- /dev/null
+++ b/contrib/extraction/test/make_mli
@@ -0,0 +1,17 @@
+#!/usr/bin/awk -We $0
+
+{ match($0,"^open")
+ if (RLENGTH>0) state=1
+ match($0,"^type")
+ if (RLENGTH>0) state=1
+ match($0,"^\(\*\* ")
+ if (RLENGTH>0) state=2
+ match($0,"^let")
+ if (RLENGTH>0) state=0
+ match($0,"^and")
+ if ((RLENGTH>0) && (state==2)) state=0
+ if ((RLENGTH>0) && (state==1)) state=1
+ gsub("\(\*\* ","")
+ gsub("\*\*\)","")
+ if (state>0) print
+}
diff --git a/contrib/extraction/test/ml2v.ml b/contrib/extraction/test/ml2v.ml
new file mode 100644
index 00000000..363ea642
--- /dev/null
+++ b/contrib/extraction/test/ml2v.ml
@@ -0,0 +1,14 @@
+let _ =
+ for j = 1 to ((Array.length Sys.argv)-1) do
+ let fml = Sys.argv.(j) in
+ let f = Filename.chop_extension fml in
+ let fv = f ^ ".v" in
+ if Sys.file_exists ("../../../" ^ fv) then
+ print_string (fv^" ")
+ else
+ let d = Filename.dirname f in
+ let b = String.capitalize (Filename.basename f) in
+ let fv = Filename.concat d (b ^ ".v ") in
+ print_string fv
+ done;
+ print_newline()
diff --git a/contrib/extraction/test/v2hs.ml b/contrib/extraction/test/v2hs.ml
new file mode 100644
index 00000000..88632875
--- /dev/null
+++ b/contrib/extraction/test/v2hs.ml
@@ -0,0 +1,9 @@
+let _ =
+ for j = 1 to ((Array.length Sys.argv) -1) do
+ let s = Sys.argv.(j) in
+ let b = Filename.chop_extension (Filename.basename s) in
+ let b = String.capitalize b in
+ let d = Filename.dirname s in
+ print_string (Filename.concat d (b ^ ".hs "))
+ done;
+ print_newline()
diff --git a/contrib/extraction/test/v2ml.ml b/contrib/extraction/test/v2ml.ml
new file mode 100644
index 00000000..245a1b1e
--- /dev/null
+++ b/contrib/extraction/test/v2ml.ml
@@ -0,0 +1,9 @@
+let _ =
+ for j = 1 to ((Array.length Sys.argv) -1) do
+ let s = Sys.argv.(j) in
+ let b = Filename.chop_extension (Filename.basename s) in
+ let b = String.uncapitalize b in
+ let d = Filename.dirname s in
+ print_string (Filename.concat d (b ^ ".ml "))
+ done;
+ print_newline()
diff --git a/contrib/extraction/test_extraction.v b/contrib/extraction/test_extraction.v
new file mode 100644
index 00000000..0745f62d
--- /dev/null
+++ b/contrib/extraction/test_extraction.v
@@ -0,0 +1,552 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Arith.
+Require Import List.
+
+(*** STANDARD EXAMPLES *)
+
+(** Functions. *)
+
+Definition idnat (x:nat) := x.
+Extraction idnat.
+(* let idnat x = x *)
+
+Definition id (X:Type) (x:X) := x.
+Extraction id. (* let id x = x *)
+Definition id' := id Set nat.
+Extraction id'. (* type id' = nat *)
+
+Definition test2 (f:nat -> nat) (x:nat) := f x.
+Extraction test2.
+(* let test2 f x = f x *)
+
+Definition test3 (f:nat -> Set -> nat) (x:nat) := f x nat.
+Extraction test3.
+(* let test3 f x = f x __ *)
+
+Definition test4 (f:(nat -> nat) -> nat) (x:nat) (g:nat -> nat) := f g.
+Extraction test4.
+(* let test4 f x g = f g *)
+
+Definition test5 := (1, 0).
+Extraction test5.
+(* let test5 = Pair ((S O), O) *)
+
+Definition cf (x:nat) (_:x <= 0) := S x.
+Extraction NoInline cf.
+Definition test6 := cf 0 (le_n 0).
+Extraction test6.
+(* let test6 = cf O *)
+
+Definition test7 := (fun (X:Set) (x:X) => x) nat.
+Extraction test7.
+(* let test7 x = x *)
+
+Definition d (X:Type) := X.
+Extraction d. (* type 'x d = 'x *)
+Definition d2 := d Set.
+Extraction d2. (* type d2 = __ d *)
+Definition d3 (x:d Set) := 0.
+Extraction d3. (* let d3 _ = O *)
+Definition d4 := d nat.
+Extraction d4. (* type d4 = nat d *)
+Definition d5 := (fun x:d Type => 0) Type.
+Extraction d5. (* let d5 = O *)
+Definition d6 (x:d Type) := x.
+Extraction d6. (* type 'x d6 = 'x *)
+
+Definition test8 := (fun (X:Type) (x:X) => x) Set nat.
+Extraction test8. (* type test8 = nat *)
+
+Definition test9 := let t := nat in id Set t.
+Extraction test9. (* type test9 = nat *)
+
+Definition test10 := (fun (X:Type) (x:X) => 0) Type Type.
+Extraction test10. (* let test10 = O *)
+
+Definition test11 := let n := 0 in let p := S n in S p.
+Extraction test11. (* let test11 = S (S O) *)
+
+Definition test12 := forall x:forall X:Type, X -> X, x Type Type.
+Extraction test12.
+(* type test12 = (__ -> __ -> __) -> __ *)
+
+
+Definition test13 := match left True I with
+ | left x => 1
+ | right x => 0
+ end.
+Extraction test13. (* let test13 = S O *)
+
+
+(** example with more arguments that given by the type *)
+
+Definition test19 :=
+ nat_rec (fun n:nat => nat -> nat) (fun n:nat => 0)
+ (fun (n:nat) (f:nat -> nat) => f) 0 0.
+Extraction test19.
+(* let test19 =
+ let rec f = function
+ | O -> (fun n0 -> O)
+ | S n0 -> f n0
+ in f O O
+*)
+
+
+(** casts *)
+
+Definition test20 := True:Type.
+Extraction test20.
+(* type test20 = __ *)
+
+
+(** Simple inductive type and recursor. *)
+
+Extraction nat.
+(*
+type nat =
+ | O
+ | S of nat
+*)
+
+Extraction sumbool_rect.
+(*
+let sumbool_rect f f0 = function
+ | Left -> f __
+ | Right -> f0 __
+*)
+
+(** Less simple inductive type. *)
+
+Inductive c (x:nat) : nat -> Set :=
+ | refl : c x x
+ | trans : forall y z:nat, c x y -> y <= z -> c x z.
+Extraction c.
+(*
+type c =
+ | Refl
+ | Trans of nat * nat * c
+*)
+
+Definition Ensemble (U:Type) := U -> Prop.
+Definition Empty_set (U:Type) (x:U) := False.
+Definition Add (U:Type) (A:Ensemble U) (x y:U) := A y \/ x = y.
+
+Inductive Finite (U:Type) : Ensemble U -> Set :=
+ | Empty_is_finite : Finite U (Empty_set U)
+ | Union_is_finite :
+ forall A:Ensemble U,
+ Finite U A -> forall x:U, ~ A x -> Finite U (Add U A x).
+Extraction Finite.
+(*
+type 'u finite =
+ | Empty_is_finite
+ | Union_is_finite of 'u finite * 'u
+*)
+
+
+(** Mutual Inductive *)
+
+Inductive tree : Set :=
+ Node : nat -> forest -> tree
+with forest : Set :=
+ | Leaf : nat -> forest
+ | Cons : tree -> forest -> forest.
+
+Extraction tree.
+(*
+type tree =
+ | Node of nat * forest
+and forest =
+ | Leaf of nat
+ | Cons of tree * forest
+*)
+
+Fixpoint tree_size (t:tree) : nat :=
+ match t with
+ | Node a f => S (forest_size f)
+ end
+
+ with forest_size (f:forest) : nat :=
+ match f with
+ | Leaf b => 1
+ | Cons t f' => tree_size t + forest_size f'
+ end.
+
+Extraction tree_size.
+(*
+let rec tree_size = function
+ | Node (a, f) -> S (forest_size f)
+and forest_size = function
+ | Leaf b -> S O
+ | Cons (t, f') -> plus (tree_size t) (forest_size f')
+*)
+
+
+(** Eta-expansions of inductive constructor *)
+
+Inductive titi : Set :=
+ tata : nat -> nat -> nat -> nat -> titi.
+Definition test14 := tata 0.
+Extraction test14.
+(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
+Definition test15 := tata 0 1.
+Extraction test15.
+(* let test15 x x0 = Tata (O, (S O), x, x0) *)
+
+Inductive eta : Set :=
+ eta_c : nat -> Prop -> nat -> Prop -> eta.
+Extraction eta_c.
+(*
+type eta =
+ | Eta_c of nat * nat
+*)
+Definition test16 := eta_c 0.
+Extraction test16.
+(* let test16 x = Eta_c (O, x) *)
+Definition test17 := eta_c 0 True.
+Extraction test17.
+(* let test17 x = Eta_c (O, x) *)
+Definition test18 := eta_c 0 True 0.
+Extraction test18.
+(* let test18 _ = Eta_c (O, O) *)
+
+
+(** Example of singleton inductive type *)
+
+Inductive bidon (A:Prop) (B:Type) : Set :=
+ tb : forall (x:A) (y:B), bidon A B.
+Definition fbidon (A B:Type) (f:A -> B -> bidon True nat)
+ (x:A) (y:B) := f x y.
+Extraction bidon.
+(* type 'b bidon = 'b *)
+Extraction tb.
+(* tb : singleton inductive constructor *)
+Extraction fbidon.
+(* let fbidon f x y =
+ f x y
+*)
+
+Definition fbidon2 := fbidon True nat (tb True nat).
+Extraction fbidon2. (* let fbidon2 y = y *)
+Extraction NoInline fbidon.
+Extraction fbidon2.
+(* let fbidon2 y = fbidon (fun _ x -> x) __ y *)
+
+(* NB: first argument of fbidon2 has type [True], so it disappears. *)
+
+(** mutual inductive on many sorts *)
+
+Inductive test_0 : Prop :=
+ ctest0 : test_0
+with test_1 : Set :=
+ ctest1 : test_0 -> test_1.
+Extraction test_0.
+(* test0 : logical inductive *)
+Extraction test_1.
+(*
+type test1 =
+ | Ctest1
+*)
+
+(** logical singleton *)
+
+Extraction eq.
+(* eq : logical inductive *)
+Extraction eq_rect.
+(* let eq_rect x f y =
+ f
+*)
+
+(** No more propagation of type parameters. Obj.t instead. *)
+
+Inductive tp1 : Set :=
+ T : forall (C:Set) (c:C), tp2 -> tp1
+with tp2 : Set :=
+ T' : tp1 -> tp2.
+Extraction tp1.
+(*
+type tp1 =
+ | T of __ * tp2
+and tp2 =
+ | T' of tp1
+*)
+
+Inductive tp1bis : Set :=
+ Tbis : tp2bis -> tp1bis
+with tp2bis : Set :=
+ T'bis : forall (C:Set) (c:C), tp1bis -> tp2bis.
+Extraction tp1bis.
+(*
+type tp1bis =
+ | Tbis of tp2bis
+and tp2bis =
+ | T'bis of __ * tp1bis
+*)
+
+
+(** Strange inductive type. *)
+
+Inductive Truc : Set -> Set :=
+ | chose : forall A:Set, Truc A
+ | machin : forall A:Set, A -> Truc bool -> Truc A.
+Extraction Truc.
+(*
+type 'x truc =
+ | Chose
+ | Machin of 'x * bool truc
+*)
+
+
+(** Dependant type over Type *)
+
+Definition test24 := sigT (fun a:Set => option a).
+Extraction test24.
+(* type test24 = (__, __ option) sigT *)
+
+
+(** Coq term non strongly-normalizable after extraction *)
+
+Require Import Gt.
+Definition loop (Ax:Acc gt 0) :=
+ (fix F (a:nat) (b:Acc gt a) {struct b} : nat :=
+ F (S a) (Acc_inv b (S a) (gt_Sn_n a))) 0 Ax.
+Extraction loop.
+(* let loop _ =
+ let rec f a =
+ f (S a)
+ in f O
+*)
+
+(*** EXAMPLES NEEDING OBJ.MAGIC *)
+
+(** False conversion of type: *)
+
+Lemma oups : forall H:nat = list nat, nat -> nat.
+intros.
+generalize H0; intros.
+rewrite H in H1.
+case H1.
+exact H0.
+intros.
+exact n.
+Qed.
+Extraction oups.
+(*
+let oups h0 =
+ match Obj.magic h0 with
+ | Nil -> h0
+ | Cons0 (n, l) -> n
+*)
+
+
+(** hybrids *)
+
+Definition horibilis (b:bool) :=
+ if b as b return (if b then Type else nat) then Set else 0.
+Extraction horibilis.
+(*
+let horibilis = function
+ | True -> Obj.magic __
+ | False -> Obj.magic O
+*)
+
+Definition PropSet (b:bool) := if b then Prop else Set.
+Extraction PropSet. (* type propSet = __ *)
+
+Definition natbool (b:bool) := if b then nat else bool.
+Extraction natbool. (* type natbool = __ *)
+
+Definition zerotrue (b:bool) := if b as x return natbool x then 0 else true.
+Extraction zerotrue.
+(*
+let zerotrue = function
+ | True -> Obj.magic O
+ | False -> Obj.magic True
+*)
+
+Definition natProp (b:bool) := if b return Type then nat else Prop.
+
+Definition natTrue (b:bool) := if b return Type then nat else True.
+
+Definition zeroTrue (b:bool) := if b as x return natProp x then 0 else True.
+Extraction zeroTrue.
+(*
+let zeroTrue = function
+ | True -> Obj.magic O
+ | False -> Obj.magic __
+*)
+
+Definition natTrue2 (b:bool) := if b return Type then nat else True.
+
+Definition zeroprop (b:bool) := if b as x return natTrue x then 0 else I.
+Extraction zeroprop.
+(*
+let zeroprop = function
+ | True -> Obj.magic O
+ | False -> Obj.magic __
+*)
+
+(** polymorphic f applied several times *)
+
+Definition test21 := (id nat 0, id bool true).
+Extraction test21.
+(* let test21 = Pair ((id O), (id True)) *)
+
+(** ok *)
+
+Definition test22 :=
+ (fun f:forall X:Type, X -> X => (f nat 0, f bool true))
+ (fun (X:Type) (x:X) => x).
+Extraction test22.
+(* let test22 =
+ let f = fun x -> x in Pair ((f O), (f True)) *)
+
+(* still ok via optim beta -> let *)
+
+Definition test23 (f:forall X:Type, X -> X) := (f nat 0, f bool true).
+Extraction test23.
+(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *)
+
+(* problem: fun f -> (f 0, f true) not legal in ocaml *)
+(* solution: magic ... *)
+
+
+(** Dummy constant __ can be applied.... *)
+
+Definition f (X:Type) (x:nat -> X) (y:X -> bool) : bool := y (x 0).
+Extraction f.
+(* let f x y =
+ y (x O)
+*)
+
+Definition f_prop := f (0 = 0) (fun _ => refl_equal 0) (fun _ => true).
+Extraction NoInline f.
+Extraction f_prop.
+(* let f_prop =
+ f (Obj.magic __) (fun _ -> True)
+*)
+
+Definition f_arity := f Set (fun _:nat => nat) (fun _:Set => true).
+Extraction f_arity.
+(* let f_arity =
+ f (Obj.magic __) (fun _ -> True)
+*)
+
+Definition f_normal :=
+ f nat (fun x => x) (fun x => match x with
+ | O => true
+ | _ => false
+ end).
+Extraction f_normal.
+(* let f_normal =
+ f (fun x -> x) (fun x -> match x with
+ | O -> True
+ | S n -> False)
+*)
+
+
+(* inductive with magic needed *)
+
+Inductive Boite : Set :=
+ boite : forall b:bool, (if b then nat else (nat * nat)%type) -> Boite.
+Extraction Boite.
+(*
+type boite =
+ | Boite of bool * __
+*)
+
+
+Definition boite1 := boite true 0.
+Extraction boite1.
+(* let boite1 = Boite (True, (Obj.magic O)) *)
+
+Definition boite2 := boite false (0, 0).
+Extraction boite2.
+(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *)
+
+Definition test_boite (B:Boite) :=
+ match B return nat with
+ | boite true n => n
+ | boite false n => fst n + snd n
+ end.
+Extraction test_boite.
+(*
+let test_boite = function
+ | Boite (b0, n) ->
+ (match b0 with
+ | True -> Obj.magic n
+ | False -> plus (fst (Obj.magic n)) (snd (Obj.magic n)))
+*)
+
+(* singleton inductive with magic needed *)
+
+Inductive Box : Set :=
+ box : forall A:Set, A -> Box.
+Extraction Box.
+(* type box = __ *)
+
+Definition box1 := box nat 0.
+Extraction box1. (* let box1 = Obj.magic O *)
+
+(* applied constant, magic needed *)
+
+Definition idzarb (b:bool) (x:if b then nat else bool) := x.
+Definition zarb := idzarb true 0.
+Extraction NoInline idzarb.
+Extraction zarb.
+(* let zarb = Obj.magic idzarb True (Obj.magic O) *)
+
+(** function of variable arity. *)
+(** Fun n = nat -> nat -> ... -> nat *)
+
+Fixpoint Fun (n:nat) : Set :=
+ match n with
+ | O => nat
+ | S n => nat -> Fun n
+ end.
+
+Fixpoint Const (k n:nat) {struct n} : Fun n :=
+ match n as x return Fun x with
+ | O => k
+ | S n => fun p:nat => Const k n
+ end.
+
+Fixpoint proj (k n:nat) {struct n} : Fun n :=
+ match n as x return Fun x with
+ | O => 0 (* ou assert false ....*)
+ | S n =>
+ match k with
+ | O => fun x => Const x n
+ | S k => fun x => proj k n
+ end
+ end.
+
+Definition test_proj := proj 2 4 0 1 2 3.
+
+Eval compute in test_proj.
+
+Recursive Extraction test_proj.
+
+
+
+(*** TO SUM UP: ***)
+
+
+Extraction
+ "test_extraction.ml" idnat id id' test2 test3 test4 test5 test6 test7 d d2
+ d3 d4 d5 d6 test8 id id' test9 test10 test11 test12
+ test13 test19 test20 nat sumbool_rect c Finite tree
+ tree_size test14 test15 eta_c test16 test17 test18 bidon
+ tb fbidon fbidon2 fbidon2 test_0 test_1 eq eq_rect tp1
+ tp1bis Truc oups test24 loop horibilis PropSet natbool
+ zerotrue zeroTrue zeroprop test21 test22 test23 f f_prop
+ f_arity f_normal Boite boite1 boite2 test_boite Box box1
+ zarb test_proj.
+
diff --git a/contrib/field/Field.v b/contrib/field/Field.v
new file mode 100644
index 00000000..7b48e275
--- /dev/null
+++ b/contrib/field/Field.v
@@ -0,0 +1,15 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field.v,v 1.6.2.1 2004/07/16 19:30:09 herbelin Exp $ *)
+
+Require Export Field_Compl.
+Require Export Field_Theory.
+Require Export Field_Tactic.
+
+(* Command declarations are moved to the ML side *) \ No newline at end of file
diff --git a/contrib/field/Field_Compl.v b/contrib/field/Field_Compl.v
new file mode 100644
index 00000000..cba921f7
--- /dev/null
+++ b/contrib/field/Field_Compl.v
@@ -0,0 +1,61 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Compl.v,v 1.8.2.1 2004/07/16 19:30:09 herbelin Exp $ *)
+
+Inductive listT (A:Type) : Type :=
+ | nilT : listT A
+ | consT : A -> listT A -> listT A.
+
+Fixpoint appT (A:Type) (l m:listT A) {struct l} : listT A :=
+ match l with
+ | nilT => m
+ | consT a l1 => consT A a (appT A l1 m)
+ end.
+
+Inductive prodT (A B:Type) : Type :=
+ pairT : A -> B -> prodT A B.
+
+Definition assoc_2nd :=
+ (fix assoc_2nd_rec (A:Type) (B:Set)
+ (eq_dec:forall e1 e2:B, {e1 = e2} + {e1 <> e2})
+ (lst:listT (prodT A B)) {struct lst} :
+ B -> A -> A :=
+ fun (key:B) (default:A) =>
+ match lst with
+ | nilT => default
+ | consT (pairT v e) l =>
+ match eq_dec e key with
+ | left _ => v
+ | right _ => assoc_2nd_rec A B eq_dec l key default
+ end
+ end).
+
+Definition fstT (A B:Type) (c:prodT A B) := match c with
+ | pairT a _ => a
+ end.
+
+Definition sndT (A B:Type) (c:prodT A B) := match c with
+ | pairT _ a => a
+ end.
+
+Definition mem :=
+ (fix mem (A:Set) (eq_dec:forall e1 e2:A, {e1 = e2} + {e1 <> e2})
+ (a:A) (l:listT A) {struct l} : bool :=
+ match l with
+ | nilT => false
+ | consT a1 l1 =>
+ match eq_dec a a1 with
+ | left _ => true
+ | right _ => mem A eq_dec a l1
+ end
+ end).
+
+Inductive field_rel_option (A:Type) : Type :=
+ | Field_None : field_rel_option A
+ | Field_Some : (A -> A -> A) -> field_rel_option A. \ No newline at end of file
diff --git a/contrib/field/Field_Tactic.v b/contrib/field/Field_Tactic.v
new file mode 100644
index 00000000..c5c06547
--- /dev/null
+++ b/contrib/field/Field_Tactic.v
@@ -0,0 +1,432 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Tactic.v,v 1.20.2.1 2004/07/16 19:30:09 herbelin Exp $ *)
+
+Require Import Ring.
+Require Export Field_Compl.
+Require Export Field_Theory.
+
+(**** Interpretation A --> ExprA ****)
+
+Ltac mem_assoc var lvar :=
+ match constr:lvar with
+ | (nilT _) => constr:false
+ | (consT _ ?X1 ?X2) =>
+ match constr:(X1 = var) with
+ | (?X1 = ?X1) => constr:true
+ | _ => mem_assoc var X2
+ end
+ end.
+
+Ltac seek_var_aux FT lvar trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT)
+ with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | AzeroT => lvar
+ | AoneT => lvar
+ | (AplusT ?X1 ?X2) =>
+ let l1 := seek_var_aux FT lvar X1 in
+ seek_var_aux FT l1 X2
+ | (AmultT ?X1 ?X2) =>
+ let l1 := seek_var_aux FT lvar X1 in
+ seek_var_aux FT l1 X2
+ | (AoppT ?X1) => seek_var_aux FT lvar X1
+ | (AinvT ?X1) => seek_var_aux FT lvar X1
+ | ?X1 =>
+ let res := mem_assoc X1 lvar in
+ match constr:res with
+ | true => lvar
+ | false => constr:(consT AT X1 lvar)
+ end
+ end.
+
+Ltac seek_var FT trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT) in
+ seek_var_aux FT (nilT AT) trm.
+
+Ltac number_aux lvar cpt :=
+ match constr:lvar with
+ | (nilT ?X1) => constr:(nilT (prodT X1 nat))
+ | (consT ?X1 ?X2 ?X3) =>
+ let l2 := number_aux X3 (S cpt) in
+ constr:(consT (prodT X1 nat) (pairT X1 nat X2 cpt) l2)
+ end.
+
+Ltac number lvar := number_aux lvar 0.
+
+Ltac build_varlist FT trm := let lvar := seek_var FT trm in
+ number lvar.
+
+Ltac assoc elt lst :=
+ match constr:lst with
+ | (nilT _) => fail
+ | (consT (prodT _ nat) (pairT _ nat ?X1 ?X2) ?X3) =>
+ match constr:(elt = X1) with
+ | (?X1 = ?X1) => constr:X2
+ | _ => assoc elt X3
+ end
+ end.
+
+Ltac interp_A FT lvar trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT)
+ with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | AzeroT => constr:EAzero
+ | AoneT => constr:EAone
+ | (AplusT ?X1 ?X2) =>
+ let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
+ constr:(EAplus e1 e2)
+ | (AmultT ?X1 ?X2) =>
+ let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
+ constr:(EAmult e1 e2)
+ | (AoppT ?X1) =>
+ let e := interp_A FT lvar X1 in
+ constr:(EAopp e)
+ | (AinvT ?X1) => let e := interp_A FT lvar X1 in
+ constr:(EAinv e)
+ | ?X1 => let idx := assoc X1 lvar in
+ constr:(EAvar idx)
+ end.
+
+(************************)
+(* Simplification *)
+(************************)
+
+(**** Generation of the multiplier ****)
+
+Ltac remove e l :=
+ match constr:l with
+ | (nilT _) => l
+ | (consT ?X1 e ?X2) => constr:X2
+ | (consT ?X1 ?X2 ?X3) => let nl := remove e X3 in
+ constr:(consT X1 X2 nl)
+ end.
+
+Ltac union l1 l2 :=
+ match constr:l1 with
+ | (nilT _) => l2
+ | (consT ?X1 ?X2 ?X3) =>
+ let nl2 := remove X2 l2 in
+ let nl := union X3 nl2 in
+ constr:(consT X1 X2 nl)
+ end.
+
+Ltac raw_give_mult trm :=
+ match constr:trm with
+ | (EAinv ?X1) => constr:(consT ExprA X1 (nilT ExprA))
+ | (EAopp ?X1) => raw_give_mult X1
+ | (EAplus ?X1 ?X2) =>
+ let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
+ union l1 l2
+ | (EAmult ?X1 ?X2) =>
+ let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
+ eval compute in (appT ExprA l1 l2)
+ | _ => constr:(nilT ExprA)
+ end.
+
+Ltac give_mult trm :=
+ let ltrm := raw_give_mult trm in
+ constr:(mult_of_list ltrm).
+
+(**** Associativity ****)
+
+Ltac apply_assoc FT lvar trm :=
+ let t := eval compute in (assoc trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- *
+ end.
+
+(**** Distribution *****)
+
+Ltac apply_distrib FT lvar trm :=
+ let t := eval compute in (distrib trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (distrib_correct FT trm);
+ change (distrib trm) with t in |- *
+ end.
+
+(**** Multiplication by the inverse product ****)
+
+Ltac grep_mult := match goal with
+ | id:(interp_ExprA _ _ _ <> _) |- _ => id
+ end.
+
+Ltac weak_reduce :=
+ match goal with
+ | |- context [(interp_ExprA ?X1 ?X2 _)] =>
+ cbv beta iota zeta
+ delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero
+ Aone Aplus Amult Aopp Ainv] in |- *
+ end.
+
+Ltac multiply mul :=
+ match goal with
+ | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA ?X1 ?X2 ?X4) =>
+ let AzeroT := eval cbv beta iota delta [Azero X1] in (Azero X1) in
+ (cut (interp_ExprA X1 X2 mul <> AzeroT);
+ [ intro; let id := grep_mult in
+ apply (mult_eq X1 X3 X4 mul X2 id)
+ | weak_reduce;
+ let AoneT := eval cbv beta iota delta [Aone X1] in (Aone X1)
+ with AmultT := eval cbv beta iota delta [Amult X1] in (Amult X1) in
+ (try
+ match goal with
+ | |- context [(AmultT _ AoneT)] => rewrite (AmultT_1r X1)
+ end; clear X1 X2) ])
+ end.
+
+Ltac apply_multiply FT lvar trm :=
+ let t := eval compute in (multiply trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (multiply_correct FT trm);
+ change (multiply trm) with t in |- *
+ end.
+
+(**** Permutations and simplification ****)
+
+Ltac apply_inverse mul FT lvar trm :=
+ let t := eval compute in (inverse_simplif mul trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (inverse_correct FT trm mul);
+ [ change (inverse_simplif mul trm) with t in |- * | assumption ]
+ end.
+(**** Inverse test ****)
+
+Ltac strong_fail tac := first [ tac | fail 2 ].
+
+Ltac inverse_test_aux FT trm :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | (AinvT _) => fail 1
+ | (AoppT ?X1) =>
+ strong_fail ltac:(inverse_test_aux FT X1; idtac)
+ | (AplusT ?X1 ?X2) =>
+ strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
+ | (AmultT ?X1 ?X2) =>
+ strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
+ | _ => idtac
+ end.
+
+Ltac inverse_test FT :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
+ match goal with
+ | |- (?X1 = ?X2) => inverse_test_aux FT (AplusT X1 X2)
+ end.
+
+(**** Field itself ****)
+
+Ltac apply_simplif sfun :=
+ match goal with
+ | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA _ _ _) =>
+ sfun X1 X2 X3
+ end;
+ match goal with
+ | |- (interp_ExprA _ _ _ = interp_ExprA ?X1 ?X2 ?X3) =>
+ sfun X1 X2 X3
+ end.
+
+Ltac unfolds FT :=
+ match eval cbv beta iota delta [Aminus] in (Aminus FT) with
+ | (Field_Some _ ?X1) => unfold X1 in |- *
+ | _ => idtac
+ end;
+ match eval cbv beta iota delta [Adiv] in (Adiv FT) with
+ | (Field_Some _ ?X1) => unfold X1 in |- *
+ | _ => idtac
+ end.
+
+Ltac reduce FT :=
+ let AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * ||
+ compute in |- *).
+
+Ltac field_gen_aux FT :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
+ match goal with
+ | |- (?X1 = ?X2) =>
+ let lvar := build_varlist FT (AplusT X1 X2) in
+ let trm1 := interp_A FT lvar X1 with trm2 := interp_A FT lvar X2 in
+ let mul := give_mult (EAplus trm1 trm2) in
+ (cut
+ (let ft := FT in
+ let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2);
+ [ compute in |- *; auto
+ | intros ft vm; apply_simplif apply_distrib;
+ apply_simplif apply_assoc; multiply mul;
+ [ apply_simplif apply_multiply;
+ apply_simplif ltac:(apply_inverse mul);
+ let id := grep_mult in
+ clear id; weak_reduce; clear ft vm; first
+ [ inverse_test FT; ring | field_gen_aux FT ]
+ | idtac ] ])
+ end.
+
+Ltac field_gen FT := unfolds FT; (inverse_test FT; ring) || field_gen_aux FT.
+
+(*****************************)
+(* Term Simplification *)
+(*****************************)
+
+(**** Minus and division expansions ****)
+
+Ltac init_exp FT trm :=
+ let e :=
+ (match eval cbv beta iota delta [Aminus] in (Aminus FT) with
+ | (Field_Some _ ?X1) => eval cbv beta delta [X1] in trm
+ | _ => trm
+ end) in
+ match eval cbv beta iota delta [Adiv] in (Adiv FT) with
+ | (Field_Some _ ?X1) => eval cbv beta delta [X1] in e
+ | _ => e
+ end.
+
+(**** Inverses simplification ****)
+
+Ltac simpl_inv trm :=
+ match constr:trm with
+ | (EAplus ?X1 ?X2) =>
+ let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
+ constr:(EAplus e1 e2)
+ | (EAmult ?X1 ?X2) =>
+ let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
+ constr:(EAmult e1 e2)
+ | (EAopp ?X1) => let e := simpl_inv X1 in
+ constr:(EAopp e)
+ | (EAinv ?X1) => SimplInvAux X1
+ | ?X1 => constr:X1
+ end
+ with SimplInvAux trm :=
+ match constr:trm with
+ | (EAinv ?X1) => simpl_inv X1
+ | (EAmult ?X1 ?X2) =>
+ let e1 := simpl_inv (EAinv X1) with e2 := simpl_inv (EAinv X2) in
+ constr:(EAmult e1 e2)
+ | ?X1 => let e := simpl_inv X1 in
+ constr:(EAinv e)
+ end.
+
+(**** Monom simplification ****)
+
+Ltac map_tactic fcn lst :=
+ match constr:lst with
+ | (nilT _) => lst
+ | (consT ?X1 ?X2 ?X3) =>
+ let r := fcn X2 with t := map_tactic fcn X3 in
+ constr:(consT X1 r t)
+ end.
+
+Ltac build_monom_aux lst trm :=
+ match constr:lst with
+ | (nilT _) => eval compute in (assoc trm)
+ | (consT _ ?X1 ?X2) => build_monom_aux X2 (EAmult trm X1)
+ end.
+
+Ltac build_monom lnum lden :=
+ let ildn := map_tactic ltac:(fun e => constr:(EAinv e)) lden in
+ let ltot := eval compute in (appT ExprA lnum ildn) in
+ let trm := build_monom_aux ltot EAone in
+ match constr:trm with
+ | (EAmult _ ?X1) => constr:X1
+ | ?X1 => constr:X1
+ end.
+
+Ltac simpl_monom_aux lnum lden trm :=
+ match constr:trm with
+ | (EAmult (EAinv ?X1) ?X2) =>
+ let mma := mem_assoc X1 lnum in
+ match constr:mma with
+ | true =>
+ let newlnum := remove X1 lnum in
+ simpl_monom_aux newlnum lden X2
+ | false => simpl_monom_aux lnum (consT ExprA X1 lden) X2
+ end
+ | (EAmult ?X1 ?X2) =>
+ let mma := mem_assoc X1 lden in
+ match constr:mma with
+ | true =>
+ let newlden := remove X1 lden in
+ simpl_monom_aux lnum newlden X2
+ | false => simpl_monom_aux (consT ExprA X1 lnum) lden X2
+ end
+ | (EAinv ?X1) =>
+ let mma := mem_assoc X1 lnum in
+ match constr:mma with
+ | true =>
+ let newlnum := remove X1 lnum in
+ build_monom newlnum lden
+ | false => build_monom lnum (consT ExprA X1 lden)
+ end
+ | ?X1 =>
+ let mma := mem_assoc X1 lden in
+ match constr:mma with
+ | true =>
+ let newlden := remove X1 lden in
+ build_monom lnum newlden
+ | false => build_monom (consT ExprA X1 lnum) lden
+ end
+ end.
+
+Ltac simpl_monom trm := simpl_monom_aux (nilT ExprA) (nilT ExprA) trm.
+
+Ltac simpl_all_monomials trm :=
+ match constr:trm with
+ | (EAplus ?X1 ?X2) =>
+ let e1 := simpl_monom X1 with e2 := simpl_all_monomials X2 in
+ constr:(EAplus e1 e2)
+ | ?X1 => simpl_monom X1
+ end.
+
+(**** Associativity and distribution ****)
+
+Ltac assoc_distrib trm := eval compute in (assoc (distrib trm)).
+
+(**** The tactic Field_Term ****)
+
+Ltac eval_weak_reduce trm :=
+ eval
+ cbv beta iota zeta
+ delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero Aone Aplus
+ Amult Aopp Ainv] in trm.
+
+Ltac field_term FT exp :=
+ let newexp := init_exp FT exp in
+ let lvar := build_varlist FT newexp in
+ let trm := interp_A FT lvar newexp in
+ let tma := eval compute in (assoc trm) in
+ let tsmp :=
+ simpl_all_monomials
+ ltac:(assoc_distrib ltac:(simpl_all_monomials ltac:(simpl_inv tma))) in
+ let trep := eval_weak_reduce (interp_ExprA FT lvar tsmp) in
+ (replace exp with trep; [ ring trep | field_gen FT ]). \ No newline at end of file
diff --git a/contrib/field/Field_Theory.v b/contrib/field/Field_Theory.v
new file mode 100644
index 00000000..8737fd79
--- /dev/null
+++ b/contrib/field/Field_Theory.v
@@ -0,0 +1,645 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Theory.v,v 1.12.2.1 2004/07/16 19:30:09 herbelin Exp $ *)
+
+Require Import Peano_dec.
+Require Import Ring.
+Require Import Field_Compl.
+
+Record Field_Theory : Type :=
+ {A : Type;
+ Aplus : A -> A -> A;
+ Amult : A -> A -> A;
+ Aone : A;
+ Azero : A;
+ Aopp : A -> A;
+ Aeq : A -> A -> bool;
+ Ainv : A -> A;
+ Aminus : field_rel_option A;
+ Adiv : field_rel_option A;
+ RT : Ring_Theory Aplus Amult Aone Azero Aopp Aeq;
+ Th_inv_def : forall n:A, n <> Azero -> Amult (Ainv n) n = Aone}.
+
+(* The reflexion structure *)
+Inductive ExprA : Set :=
+ | EAzero : ExprA
+ | EAone : ExprA
+ | EAplus : ExprA -> ExprA -> ExprA
+ | EAmult : ExprA -> ExprA -> ExprA
+ | EAopp : ExprA -> ExprA
+ | EAinv : ExprA -> ExprA
+ | EAvar : nat -> ExprA.
+
+(**** Decidability of equality ****)
+
+Lemma eqExprA_O : forall e1 e2:ExprA, {e1 = e2} + {e1 <> e2}.
+Proof.
+ double induction e1 e2; try intros;
+ try (left; reflexivity) || (try (right; discriminate)).
+ elim (H1 e0); intro y; elim (H2 e); intro y0;
+ try
+ (left; rewrite y; rewrite y0; auto) ||
+ (right; red in |- *; intro; inversion H3; auto).
+ elim (H1 e0); intro y; elim (H2 e); intro y0;
+ try
+ (left; rewrite y; rewrite y0; auto) ||
+ (right; red in |- *; intro; inversion H3; auto).
+ elim (H0 e); intro y.
+ left; rewrite y; auto.
+ right; red in |- *; intro; inversion H1; auto.
+ elim (H0 e); intro y.
+ left; rewrite y; auto.
+ right; red in |- *; intro; inversion H1; auto.
+ elim (eq_nat_dec n n0); intro y.
+ left; rewrite y; auto.
+ right; red in |- *; intro; inversion H; auto.
+Defined.
+
+Definition eq_nat_dec := Eval compute in eq_nat_dec.
+Definition eqExprA := Eval compute in eqExprA_O.
+
+(**** Generation of the multiplier ****)
+
+Fixpoint mult_of_list (e:listT ExprA) : ExprA :=
+ match e with
+ | nilT => EAone
+ | consT e1 l1 => EAmult e1 (mult_of_list l1)
+ end.
+
+Section Theory_of_fields.
+
+Variable T : Field_Theory.
+
+Let AT := A T.
+Let AplusT := Aplus T.
+Let AmultT := Amult T.
+Let AoneT := Aone T.
+Let AzeroT := Azero T.
+Let AoppT := Aopp T.
+Let AeqT := Aeq T.
+Let AinvT := Ainv T.
+Let RTT := RT T.
+Let Th_inv_defT := Th_inv_def T.
+
+Add Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (
+ Azero T) (Aopp T) (Aeq T) (RT T).
+
+Add Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
+
+(***************************)
+(* Lemmas to be used *)
+(***************************)
+
+Lemma AplusT_sym : forall r1 r2:AT, AplusT r1 r2 = AplusT r2 r1.
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AplusT_assoc :
+ forall r1 r2 r3:AT, AplusT (AplusT r1 r2) r3 = AplusT r1 (AplusT r2 r3).
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AmultT_sym : forall r1 r2:AT, AmultT r1 r2 = AmultT r2 r1.
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AmultT_assoc :
+ forall r1 r2 r3:AT, AmultT (AmultT r1 r2) r3 = AmultT r1 (AmultT r2 r3).
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AplusT_Ol : forall r:AT, AplusT AzeroT r = r.
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AmultT_1l : forall r:AT, AmultT AoneT r = r.
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AplusT_AoppT_r : forall r:AT, AplusT r (AoppT r) = AzeroT.
+Proof.
+ intros; ring.
+Qed.
+
+Lemma AmultT_AplusT_distr :
+ forall r1 r2 r3:AT,
+ AmultT r1 (AplusT r2 r3) = AplusT (AmultT r1 r2) (AmultT r1 r3).
+Proof.
+ intros; ring.
+Qed.
+
+Lemma r_AplusT_plus : forall r r1 r2:AT, AplusT r r1 = AplusT r r2 -> r1 = r2.
+Proof.
+ intros; transitivity (AplusT (AplusT (AoppT r) r) r1).
+ ring.
+ transitivity (AplusT (AplusT (AoppT r) r) r2).
+ repeat rewrite AplusT_assoc; rewrite <- H; reflexivity.
+ ring.
+Qed.
+
+Lemma r_AmultT_mult :
+ forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2.
+Proof.
+ intros; transitivity (AmultT (AmultT (AinvT r) r) r1).
+ rewrite Th_inv_defT; [ symmetry in |- *; apply AmultT_1l; auto | auto ].
+ transitivity (AmultT (AmultT (AinvT r) r) r2).
+ repeat rewrite AmultT_assoc; rewrite H; trivial.
+ rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ].
+Qed.
+
+Lemma AmultT_Or : forall r:AT, AmultT r AzeroT = AzeroT.
+Proof.
+ intro; ring.
+Qed.
+
+Lemma AmultT_Ol : forall r:AT, AmultT AzeroT r = AzeroT.
+Proof.
+ intro; ring.
+Qed.
+
+Lemma AmultT_1r : forall r:AT, AmultT r AoneT = r.
+Proof.
+ intro; ring.
+Qed.
+
+Lemma AinvT_r : forall r:AT, r <> AzeroT -> AmultT r (AinvT r) = AoneT.
+Proof.
+ intros; rewrite AmultT_sym; apply Th_inv_defT; auto.
+Qed.
+
+Lemma Rmult_neq_0_reg :
+ forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT.
+Proof.
+ intros r1 r2 H; split; red in |- *; intro; apply H; rewrite H0; ring.
+Qed.
+
+(************************)
+(* Interpretation *)
+(************************)
+
+(**** ExprA --> A ****)
+
+Fixpoint interp_ExprA (lvar:listT (prodT AT nat)) (e:ExprA) {struct e} :
+ AT :=
+ match e with
+ | EAzero => AzeroT
+ | EAone => AoneT
+ | EAplus e1 e2 => AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
+ | EAmult e1 e2 => AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
+ | EAopp e => Aopp T (interp_ExprA lvar e)
+ | EAinv e => Ainv T (interp_ExprA lvar e)
+ | EAvar n => assoc_2nd AT nat eq_nat_dec lvar n AzeroT
+ end.
+
+(************************)
+(* Simplification *)
+(************************)
+
+(**** Associativity ****)
+
+Definition merge_mult :=
+ (fix merge_mult (e1:ExprA) : ExprA -> ExprA :=
+ fun e2:ExprA =>
+ match e1 with
+ | EAmult t1 t2 =>
+ match t2 with
+ | EAmult t2 t3 => EAmult t1 (EAmult t2 (merge_mult t3 e2))
+ | _ => EAmult t1 (EAmult t2 e2)
+ end
+ | _ => EAmult e1 e2
+ end).
+
+Fixpoint assoc_mult (e:ExprA) : ExprA :=
+ match e with
+ | EAmult e1 e3 =>
+ match e1 with
+ | EAmult e1 e2 =>
+ merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
+ (assoc_mult e3)
+ | _ => EAmult e1 (assoc_mult e3)
+ end
+ | _ => e
+ end.
+
+Definition merge_plus :=
+ (fix merge_plus (e1:ExprA) : ExprA -> ExprA :=
+ fun e2:ExprA =>
+ match e1 with
+ | EAplus t1 t2 =>
+ match t2 with
+ | EAplus t2 t3 => EAplus t1 (EAplus t2 (merge_plus t3 e2))
+ | _ => EAplus t1 (EAplus t2 e2)
+ end
+ | _ => EAplus e1 e2
+ end).
+
+Fixpoint assoc (e:ExprA) : ExprA :=
+ match e with
+ | EAplus e1 e3 =>
+ match e1 with
+ | EAplus e1 e2 =>
+ merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3)
+ | _ => EAplus (assoc_mult e1) (assoc e3)
+ end
+ | _ => assoc_mult e
+ end.
+
+Lemma merge_mult_correct1 :
+ forall (e1 e2 e3:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_mult (EAmult e1 e2) e3) =
+ interp_ExprA lvar (EAmult e1 (merge_mult e2 e3)).
+Proof.
+intros e1 e2; generalize e1; generalize e2; clear e1 e2.
+simple induction e2; auto; intros.
+unfold merge_mult at 1 in |- *; fold merge_mult in |- *;
+ unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
+ fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
+ fold interp_ExprA in |- *; auto.
+Qed.
+
+Lemma merge_mult_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2).
+Proof.
+simple induction e1; auto; intros.
+elim e0; try (intros; simpl in |- *; ring).
+unfold interp_ExprA in H2; fold interp_ExprA in H2;
+ cut
+ (AmultT (interp_ExprA lvar e2)
+ (AmultT (interp_ExprA lvar e4)
+ (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
+ AmultT
+ (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1;
+ simpl in |- *; ring.
+ring.
+Qed.
+
+Lemma assoc_mult_correct1 :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ AmultT (interp_ExprA lvar (assoc_mult e1))
+ (interp_ExprA lvar (assoc_mult e2)) =
+ interp_ExprA lvar (assoc_mult (EAmult e1 e2)).
+Proof.
+simple induction e1; auto; intros.
+rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_mult_correct;
+ simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
+ auto.
+Qed.
+
+Lemma assoc_mult_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (assoc_mult e) = interp_ExprA lvar e.
+Proof.
+simple induction e; auto; intros.
+elim e0; intros.
+intros; simpl in |- *; ring.
+simpl in |- *; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
+ rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
+ rewrite merge_mult_correct; simpl in |- *; rewrite AmultT_assoc;
+ rewrite assoc_mult_correct1; rewrite H2; simpl in |- *;
+ rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1;
+ fold interp_ExprA in H1; rewrite (H0 lvar) in H1;
+ rewrite (AmultT_sym (interp_ExprA lvar e3) (interp_ExprA lvar e1));
+ rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc;
+ ring.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+Qed.
+
+Lemma merge_plus_correct1 :
+ forall (e1 e2 e3:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_plus (EAplus e1 e2) e3) =
+ interp_ExprA lvar (EAplus e1 (merge_plus e2 e3)).
+Proof.
+intros e1 e2; generalize e1; generalize e2; clear e1 e2.
+simple induction e2; auto; intros.
+unfold merge_plus at 1 in |- *; fold merge_plus in |- *;
+ unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
+ fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
+ fold interp_ExprA in |- *; auto.
+Qed.
+
+Lemma merge_plus_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2).
+Proof.
+simple induction e1; auto; intros.
+elim e0; try intros; try (simpl in |- *; ring).
+unfold interp_ExprA in H2; fold interp_ExprA in H2;
+ cut
+ (AplusT (interp_ExprA lvar e2)
+ (AplusT (interp_ExprA lvar e4)
+ (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
+ AplusT
+ (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1;
+ simpl in |- *; ring.
+ring.
+Qed.
+
+Lemma assoc_plus_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)) =
+ interp_ExprA lvar (assoc (EAplus e1 e2)).
+Proof.
+simple induction e1; auto; intros.
+rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_plus_correct;
+ simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
+ auto.
+Qed.
+
+Lemma assoc_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (assoc e) = interp_ExprA lvar e.
+Proof.
+simple induction e; auto; intros.
+elim e0; intros.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
+ rewrite merge_plus_correct; simpl in |- *; rewrite AplusT_assoc;
+ rewrite assoc_plus_correct; rewrite H2; simpl in |- *;
+ apply
+ (r_AplusT_plus (interp_ExprA lvar (assoc e1))
+ (AplusT (interp_ExprA lvar (assoc e2))
+ (AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
+ (AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
+ (interp_ExprA lvar e1))); rewrite <- AplusT_assoc;
+ rewrite
+ (AplusT_sym (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))
+ ; rewrite assoc_plus_correct; rewrite H1; simpl in |- *;
+ rewrite (H0 lvar);
+ rewrite <-
+ (AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1))
+ (interp_ExprA lvar e3) (interp_ExprA lvar e1))
+ ;
+ rewrite
+ (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e3));
+ rewrite (AplusT_sym (interp_ExprA lvar e1) (interp_ExprA lvar e3));
+ rewrite <-
+ (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
+ (interp_ExprA lvar e1)); apply AplusT_sym.
+unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
+ fold interp_ExprA in |- *; rewrite assoc_mult_correct;
+ rewrite (H0 lvar); simpl in |- *; auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
+ fold interp_ExprA in |- *; rewrite assoc_mult_correct;
+ simpl in |- *; auto.
+Qed.
+
+(**** Distribution *****)
+
+Fixpoint distrib_EAopp (e:ExprA) : ExprA :=
+ match e with
+ | EAplus e1 e2 => EAplus (distrib_EAopp e1) (distrib_EAopp e2)
+ | EAmult e1 e2 => EAmult (distrib_EAopp e1) (distrib_EAopp e2)
+ | EAopp e => EAmult (EAopp EAone) (distrib_EAopp e)
+ | e => e
+ end.
+
+Definition distrib_mult_right :=
+ (fix distrib_mult_right (e1:ExprA) : ExprA -> ExprA :=
+ fun e2:ExprA =>
+ match e1 with
+ | EAplus t1 t2 =>
+ EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2)
+ | _ => EAmult e1 e2
+ end).
+
+Fixpoint distrib_mult_left (e1 e2:ExprA) {struct e1} : ExprA :=
+ match e1 with
+ | EAplus t1 t2 =>
+ EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2)
+ | _ => distrib_mult_right e2 e1
+ end.
+
+Fixpoint distrib_main (e:ExprA) : ExprA :=
+ match e with
+ | EAmult e1 e2 => distrib_mult_left (distrib_main e1) (distrib_main e2)
+ | EAplus e1 e2 => EAplus (distrib_main e1) (distrib_main e2)
+ | EAopp e => EAopp (distrib_main e)
+ | _ => e
+ end.
+
+Definition distrib (e:ExprA) : ExprA := distrib_main (distrib_EAopp e).
+
+Lemma distrib_mult_right_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (distrib_mult_right e1 e2) =
+ AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
+Proof.
+simple induction e1; try intros; simpl in |- *; auto.
+rewrite AmultT_sym; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar);
+ rewrite (H0 e2 lvar); ring.
+Qed.
+
+Lemma distrib_mult_left_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (distrib_mult_left e1 e2) =
+ AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
+Proof.
+simple induction e1; try intros; simpl in |- *.
+rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl in |- *;
+ apply AmultT_Or.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite AmultT_sym;
+ rewrite
+ (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
+ (interp_ExprA lvar e0));
+ rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e));
+ rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e0));
+ rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+Qed.
+
+Lemma distrib_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (distrib e) = interp_ExprA lvar e.
+Proof.
+simple induction e; intros; auto.
+simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib in |- *; simpl in |- *; auto.
+simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib in |- *; simpl in |- *; apply distrib_mult_left_correct.
+simpl in |- *; fold AoppT in |- *; rewrite <- (H lvar);
+ unfold distrib in |- *; simpl in |- *; rewrite distrib_mult_right_correct;
+ simpl in |- *; fold AoppT in |- *; ring.
+Qed.
+
+(**** Multiplication by the inverse product ****)
+
+Lemma mult_eq :
+ forall (e1 e2 a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) ->
+ interp_ExprA lvar e1 = interp_ExprA lvar e2.
+Proof.
+ simpl in |- *; intros;
+ apply
+ (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e2)); assumption.
+Qed.
+
+Fixpoint multiply_aux (a e:ExprA) {struct e} : ExprA :=
+ match e with
+ | EAplus e1 e2 => EAplus (EAmult a e1) (multiply_aux a e2)
+ | _ => EAmult a e
+ end.
+
+Definition multiply (e:ExprA) : ExprA :=
+ match e with
+ | EAmult a e1 => multiply_aux a e1
+ | _ => e
+ end.
+
+Lemma multiply_aux_correct :
+ forall (a e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (multiply_aux a e) =
+ AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
+Proof.
+simple induction e; simpl in |- *; intros; try rewrite merge_mult_correct;
+ auto.
+ simpl in |- *; rewrite (H0 lvar); ring.
+Qed.
+
+Lemma multiply_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (multiply e) = interp_ExprA lvar e.
+Proof.
+ simple induction e; simpl in |- *; auto.
+ intros; apply multiply_aux_correct.
+Qed.
+
+(**** Permutations and simplification ****)
+
+Fixpoint monom_remove (a m:ExprA) {struct m} : ExprA :=
+ match m with
+ | EAmult m0 m1 =>
+ match eqExprA m0 (EAinv a) with
+ | left _ => m1
+ | right _ => EAmult m0 (monom_remove a m1)
+ end
+ | _ =>
+ match eqExprA m (EAinv a) with
+ | left _ => EAone
+ | right _ => EAmult a m
+ end
+ end.
+
+Definition monom_simplif_rem :=
+ (fix monom_simplif_rem (a:ExprA) : ExprA -> ExprA :=
+ fun m:ExprA =>
+ match a with
+ | EAmult a0 a1 => monom_simplif_rem a1 (monom_remove a0 m)
+ | _ => monom_remove a m
+ end).
+
+Definition monom_simplif (a m:ExprA) : ExprA :=
+ match m with
+ | EAmult a' m' =>
+ match eqExprA a a' with
+ | left _ => monom_simplif_rem a m'
+ | right _ => m
+ end
+ | _ => m
+ end.
+
+Fixpoint inverse_simplif (a e:ExprA) {struct e} : ExprA :=
+ match e with
+ | EAplus e1 e2 => EAplus (monom_simplif a e1) (inverse_simplif a e2)
+ | _ => monom_simplif a e
+ end.
+
+Lemma monom_remove_correct :
+ forall (e a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (monom_remove a e) =
+ AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
+Proof.
+simple induction e; intros.
+simpl in |- *; case (eqExprA EAzero (EAinv a)); intros;
+ [ inversion e0 | simpl in |- *; trivial ].
+simpl in |- *; case (eqExprA EAone (EAinv a)); intros;
+ [ inversion e0 | simpl in |- *; trivial ].
+simpl in |- *; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
+ [ inversion e2 | simpl in |- *; trivial ].
+simpl in |- *; case (eqExprA e0 (EAinv a)); intros.
+rewrite e2; simpl in |- *; fold AinvT in |- *.
+rewrite <-
+ (AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
+ (interp_ExprA lvar e1)); rewrite AinvT_r; [ ring | assumption ].
+simpl in |- *; rewrite H0; auto; ring.
+simpl in |- *; fold AoppT in |- *; case (eqExprA (EAopp e0) (EAinv a));
+ intros; [ inversion e1 | simpl in |- *; trivial ].
+unfold monom_remove in |- *; case (eqExprA (EAinv e0) (EAinv a)); intros.
+case (eqExprA e0 a); intros.
+rewrite e2; simpl in |- *; fold AinvT in |- *; rewrite AinvT_r; auto.
+inversion e1; simpl in |- *; elimtype False; auto.
+simpl in |- *; trivial.
+unfold monom_remove in |- *; case (eqExprA (EAvar n) (EAinv a)); intros;
+ [ inversion e0 | simpl in |- *; trivial ].
+Qed.
+
+Lemma monom_simplif_rem_correct :
+ forall (a e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (monom_simplif_rem a e) =
+ AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
+Proof.
+simple induction a; simpl in |- *; intros; try rewrite monom_remove_correct;
+ auto.
+elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1);
+ intros.
+rewrite (H0 (monom_remove e e1) lvar H3); rewrite monom_remove_correct; auto.
+ring.
+Qed.
+
+Lemma monom_simplif_correct :
+ forall (e a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e.
+Proof.
+simple induction e; intros; auto.
+simpl in |- *; case (eqExprA a e0); intros.
+rewrite <- e2; apply monom_simplif_rem_correct; auto.
+simpl in |- *; trivial.
+Qed.
+
+Lemma inverse_correct :
+ forall (e a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e.
+Proof.
+simple induction e; intros; auto.
+simpl in |- *; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
+unfold inverse_simplif in |- *; rewrite monom_simplif_correct; auto.
+Qed.
+
+End Theory_of_fields. \ No newline at end of file
diff --git a/contrib/field/field.ml4 b/contrib/field/field.ml4
new file mode 100644
index 00000000..32adec66
--- /dev/null
+++ b/contrib/field/field.ml4
@@ -0,0 +1,190 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: field.ml4,v 1.33.2.1 2004/07/16 19:30:09 herbelin Exp $ *)
+
+open Names
+open Pp
+open Proof_type
+open Tacinterp
+open Tacmach
+open Term
+open Typing
+open Util
+open Vernacinterp
+open Vernacexpr
+open Tacexpr
+
+(* Interpretation of constr's *)
+let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c
+
+(* Construction of constants *)
+let constant dir s = Coqlib.gen_constant "Field" ("field"::dir) s
+
+(* To deal with the optional arguments *)
+let constr_of_opt a opt =
+ let ac = constr_of a in
+ match opt with
+ | None -> mkApp ((constant ["Field_Compl"] "Field_None"),[|ac|])
+ | Some f -> mkApp ((constant ["Field_Compl"] "Field_Some"),[|ac;constr_of f|])
+
+(* Table of theories *)
+let th_tab = ref (Gmap.empty : (constr,constr) Gmap.t)
+
+let lookup env typ =
+ try Gmap.find typ !th_tab
+ with Not_found ->
+ errorlabstrm "field"
+ (str "No field is declared for type" ++ spc() ++
+ Printer.prterm_env env typ)
+
+let _ =
+ let init () = th_tab := Gmap.empty in
+ let freeze () = !th_tab in
+ let unfreeze fs = th_tab := fs in
+ Summary.declare_summary "field"
+ { Summary.freeze_function = freeze;
+ Summary.unfreeze_function = unfreeze;
+ Summary.init_function = init;
+ Summary.survive_module = false;
+ Summary.survive_section = false }
+
+let load_addfield _ = ()
+let cache_addfield (_,(typ,th)) = th_tab := Gmap.add typ th !th_tab
+let subst_addfield (_,subst,(typ,th as obj)) =
+ let typ' = subst_mps subst typ in
+ let th' = subst_mps subst th in
+ if typ' == typ && th' == th then obj else
+ (typ',th')
+let export_addfield x = Some x
+
+(* Declaration of the Add Field library object *)
+let (in_addfield,out_addfield)=
+ Libobject.declare_object {(Libobject.default_object "ADD_FIELD") with
+ Libobject.open_function = (fun i o -> if i=1 then cache_addfield o);
+ Libobject.cache_function = cache_addfield;
+ Libobject.subst_function = subst_addfield;
+ Libobject.classify_function = (fun (_,a) -> Libobject.Substitute a);
+ Libobject.export_function = export_addfield }
+
+(* Adds a theory to the table *)
+let add_field a aplus amult aone azero aopp aeq ainv aminus_o adiv_o rth
+ ainv_l =
+ begin
+ (try
+ Ring.add_theory true true false a None None None aplus amult aone azero
+ (Some aopp) aeq rth Quote.ConstrSet.empty
+ with | UserError("Add Semi Ring",_) -> ());
+ let th = mkApp ((constant ["Field_Theory"] "Build_Field_Theory"),
+ [|a;aplus;amult;aone;azero;aopp;aeq;ainv;aminus_o;adiv_o;rth;ainv_l|]) in
+ begin
+ let _ = type_of (Global.env ()) Evd.empty th in ();
+ Lib.add_anonymous_leaf (in_addfield (a,th))
+ end
+ end
+
+(* Vernac command declaration *)
+open Extend
+open Pcoq
+open Genarg
+
+VERNAC ARGUMENT EXTEND divarg
+| [ "div" ":=" constr(adiv) ] -> [ adiv ]
+END
+
+VERNAC ARGUMENT EXTEND minusarg
+| [ "minus" ":=" constr(aminus) ] -> [ aminus ]
+END
+
+(*
+(* The v7->v8 translator needs printers, then temporary use ARGUMENT EXTEND...*)
+VERNAC ARGUMENT EXTEND minus_div_arg
+| [ "with" minusarg(m) divarg_opt(d) ] -> [ Some m, d ]
+| [ "with" divarg(d) minusarg_opt(m) ] -> [ m, Some d ]
+| [ ] -> [ None, None ]
+END
+*)
+
+(* For the translator, otherwise the code above is OK *)
+open Ppconstrnew
+let pp_minus_div_arg _prc _prt (omin,odiv) =
+ if omin=None && odiv=None then mt() else
+ spc() ++ str "with" ++
+ pr_opt (fun c -> str "minus := " ++ _prc c) omin ++
+ pr_opt (fun c -> str "div := " ++ _prc c) odiv
+(*
+let () =
+ Pptactic.declare_extra_genarg_pprule true
+ (rawwit_minus_div_arg,pp_minus_div_arg)
+ (globwit_minus_div_arg,pp_minus_div_arg)
+ (wit_minus_div_arg,pp_minus_div_arg)
+*)
+ARGUMENT EXTEND minus_div_arg
+ TYPED AS constr_opt * constr_opt
+ PRINTED BY pp_minus_div_arg
+| [ "with" minusarg(m) divarg_opt(d) ] -> [ Some m, d ]
+| [ "with" divarg(d) minusarg_opt(m) ] -> [ m, Some d ]
+| [ ] -> [ None, None ]
+END
+
+VERNAC COMMAND EXTEND Field
+ [ "Add" "Field"
+ constr(a) constr(aplus) constr(amult) constr(aone)
+ constr(azero) constr(aopp) constr(aeq)
+ constr(ainv) constr(rth) constr(ainv_l) minus_div_arg(md) ]
+ -> [ let (aminus_o, adiv_o) = md in
+ add_field
+ (constr_of a) (constr_of aplus) (constr_of amult)
+ (constr_of aone) (constr_of azero) (constr_of aopp)
+ (constr_of aeq) (constr_of ainv) (constr_of_opt a aminus_o)
+ (constr_of_opt a adiv_o) (constr_of rth) (constr_of ainv_l) ]
+END
+
+(* Guesses the type and calls field_gen with the right theory *)
+let field g =
+ Library.check_required_library ["Coq";"field";"Field"];
+ let ist = { lfun=[]; debug=get_debug () } in
+ let typ =
+ match Hipattern.match_with_equation (pf_concl g) with
+ | Some (eq,t::args) when eq = (Coqlib.build_coq_eq_data()).Coqlib.eq -> t
+ | _ -> error "The statement is not built from Leibniz' equality" in
+ let th = VConstr (lookup (pf_env g) typ) in
+ (interp_tac_gen [(id_of_string "FT",th)] (get_debug ())
+ <:tactic< match goal with |- (@eq _ _ _) => field_gen FT end >>) g
+
+(* Verifies that all the terms have the same type and gives the right theory *)
+let guess_theory env evc = function
+ | c::tl ->
+ let t = type_of env evc c in
+ if List.exists (fun c1 ->
+ not (Reductionops.is_conv env evc t (type_of env evc c1))) tl then
+ errorlabstrm "Field:" (str" All the terms must have the same type")
+ else
+ lookup env t
+ | [] -> anomaly "Field: must have a non-empty constr list here"
+
+(* Guesses the type and calls Field_Term with the right theory *)
+let field_term l g =
+ Library.check_required_library ["Coq";"field";"Field"];
+ let env = (pf_env g)
+ and evc = (project g) in
+ let th = valueIn (VConstr (guess_theory env evc l))
+ and nl = List.map (fun x -> valueIn (VConstr x)) (Quote.sort_subterm g l) in
+ (List.fold_right
+ (fun c a ->
+ let tac = (Tacinterp.interp <:tactic<(Field_Term $th $c)>>) in
+ Tacticals.tclTHENFIRSTn tac [|a|]) nl Tacticals.tclIDTAC) g
+
+(* Declaration of Field *)
+
+TACTIC EXTEND Field
+| [ "Field" ] -> [ field ]
+| [ "Field" ne_constr_list(l) ] -> [ field_term l ]
+END
diff --git a/contrib/first-order/formula.ml b/contrib/first-order/formula.ml
new file mode 100644
index 00000000..49cb8e25
--- /dev/null
+++ b/contrib/first-order/formula.ml
@@ -0,0 +1,271 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: formula.ml,v 1.18.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Hipattern
+open Names
+open Term
+open Termops
+open Reductionops
+open Tacmach
+open Util
+open Declarations
+open Libnames
+open Inductiveops
+
+let qflag=ref true
+
+let red_flags=ref Closure.betaiotazeta
+
+let (=?) f g i1 i2 j1 j2=
+ let c=f i1 i2 in
+ if c=0 then g j1 j2 else c
+
+let (==?) fg h i1 i2 j1 j2 k1 k2=
+ let c=fg i1 i2 j1 j2 in
+ if c=0 then h k1 k2 else c
+
+type ('a,'b) sum = Left of 'a | Right of 'b
+
+type counter = bool -> metavariable
+
+exception Is_atom of constr
+
+let meta_succ m = m+1
+
+let rec nb_prod_after n c=
+ match kind_of_term c with
+ | Prod (_,_,b) ->if n>0 then nb_prod_after (n-1) b else
+ 1+(nb_prod_after 0 b)
+ | _ -> 0
+
+let construct_nhyps ind gls =
+ let env=pf_env gls in
+ let nparams = (snd (Global.lookup_inductive ind)).mind_nparams in
+ let constr_types = Inductive.arities_of_constructors (pf_env gls) ind in
+ let hyp = nb_prod_after nparams in
+ Array.map hyp constr_types
+
+(* indhyps builds the array of arrays of constructor hyps for (ind largs)*)
+let ind_hyps nevar ind largs gls=
+ let types= Inductive.arities_of_constructors (pf_env gls) ind in
+ let lp=Array.length types in
+ let myhyps i=
+ let t1=Term.prod_applist types.(i) largs in
+ let t2=snd (Sign.decompose_prod_n_assum nevar t1) in
+ fst (Sign.decompose_prod_assum t2) in
+ Array.init lp myhyps
+
+let special_nf gl=
+ let infos=Closure.create_clos_infos !red_flags (pf_env gl) in
+ (fun t -> Closure.norm_val infos (Closure.inject t))
+
+let special_whd gl=
+ let infos=Closure.create_clos_infos !red_flags (pf_env gl) in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+type kind_of_formula=
+ Arrow of constr*constr
+ | False of inductive*constr list
+ | And of inductive*constr list*bool
+ | Or of inductive*constr list*bool
+ | Exists of inductive*constr list
+ | Forall of constr*constr
+ | Atom of constr
+
+let rec kind_of_formula gl term =
+ let normalize=special_nf gl in
+ let cciterm=special_whd gl term in
+ match match_with_imp_term cciterm with
+ Some (a,b)-> Arrow(a,(pop b))
+ |_->
+ match match_with_forall_term cciterm with
+ Some (_,a,b)-> Forall(a,b)
+ |_->
+ match match_with_nodep_ind cciterm with
+ Some (i,l,n)->
+ let ind=destInd i in
+ let (mib,mip) = Global.lookup_inductive ind in
+ let nconstr=Array.length mip.mind_consnames in
+ if nconstr=0 then
+ False(ind,l)
+ else
+ let has_realargs=(n>0) in
+ let is_trivial=
+ let is_constant c =
+ nb_prod c = mip.mind_nparams in
+ array_exists is_constant mip.mind_nf_lc in
+ if Inductiveops.mis_is_recursive (ind,mib,mip) ||
+ (has_realargs && not is_trivial)
+ then
+ Atom cciterm
+ else
+ if nconstr=1 then
+ And(ind,l,is_trivial)
+ else
+ Or(ind,l,is_trivial)
+ | _ ->
+ match match_with_sigma_type cciterm with
+ Some (i,l)-> Exists((destInd i),l)
+ |_-> Atom (normalize cciterm)
+
+type atoms = {positive:constr list;negative:constr list}
+
+type side = Hyp | Concl | Hint
+
+let no_atoms = (false,{positive=[];negative=[]})
+
+let dummy_id=VarRef (id_of_string "")
+
+let build_atoms gl metagen side cciterm =
+ let trivial =ref false
+ and positive=ref []
+ and negative=ref [] in
+ let normalize=special_nf gl in
+ let rec build_rec env polarity cciterm=
+ match kind_of_formula gl cciterm with
+ False(_,_)->if not polarity then trivial:=true
+ | Arrow (a,b)->
+ build_rec env (not polarity) a;
+ build_rec env polarity b
+ | And(i,l,b) | Or(i,l,b)->
+ if b then
+ begin
+ let unsigned=normalize (substnl env 0 cciterm) in
+ if polarity then
+ positive:= unsigned :: !positive
+ else
+ negative:= unsigned :: !negative
+ end;
+ let v = ind_hyps 0 i l gl in
+ let g i _ (_,_,t) =
+ build_rec env polarity (lift i t) in
+ let f l =
+ list_fold_left_i g (1-(List.length l)) () l in
+ if polarity && (* we have a constant constructor *)
+ array_exists (function []->true|_->false) v
+ then trivial:=true;
+ Array.iter f v
+ | Exists(i,l)->
+ let var=mkMeta (metagen true) in
+ let v =(ind_hyps 1 i l gl).(0) in
+ let g i _ (_,_,t) =
+ build_rec (var::env) polarity (lift i t) in
+ list_fold_left_i g (2-(List.length l)) () v
+ | Forall(_,b)->
+ let var=mkMeta (metagen true) in
+ build_rec (var::env) polarity b
+ | Atom t->
+ let unsigned=substnl env 0 t in
+ if not (isMeta unsigned) then (* discarding wildcard atoms *)
+ if polarity then
+ positive:= unsigned :: !positive
+ else
+ negative:= unsigned :: !negative in
+ begin
+ match side with
+ Concl -> build_rec [] true cciterm
+ | Hyp -> build_rec [] false cciterm
+ | Hint ->
+ let rels,head=decompose_prod cciterm in
+ let env=List.rev (List.map (fun _->mkMeta (metagen true)) rels) in
+ build_rec env false head;trivial:=false (* special for hints *)
+ end;
+ (!trivial,
+ {positive= !positive;
+ negative= !negative})
+
+type right_pattern =
+ Rarrow
+ | Rand
+ | Ror
+ | Rfalse
+ | Rforall
+ | Rexists of metavariable*constr*bool
+
+type left_arrow_pattern=
+ LLatom
+ | LLfalse of inductive*constr list
+ | LLand of inductive*constr list
+ | LLor of inductive*constr list
+ | LLforall of constr
+ | LLexists of inductive*constr list
+ | LLarrow of constr*constr*constr
+
+type left_pattern=
+ Lfalse
+ | Land of inductive
+ | Lor of inductive
+ | Lforall of metavariable*constr*bool
+ | Lexists of inductive
+ | LA of constr*left_arrow_pattern
+
+type t={id:global_reference;
+ constr:constr;
+ pat:(left_pattern,right_pattern) sum;
+ atoms:atoms}
+
+let build_formula side nam typ gl metagen=
+ let normalize = special_nf gl in
+ try
+ let m=meta_succ(metagen false) in
+ let trivial,atoms=
+ if !qflag then
+ build_atoms gl metagen side typ
+ else no_atoms in
+ let pattern=
+ match side with
+ Concl ->
+ let pat=
+ match kind_of_formula gl typ with
+ False(_,_) -> Rfalse
+ | Atom a -> raise (Is_atom a)
+ | And(_,_,_) -> Rand
+ | Or(_,_,_) -> Ror
+ | Exists (i,l) ->
+ let (_,_,d)=list_last (ind_hyps 0 i l gl).(0) in
+ Rexists(m,d,trivial)
+ | Forall (_,a) -> Rforall
+ | Arrow (a,b) -> Rarrow in
+ Right pat
+ | _ ->
+ let pat=
+ match kind_of_formula gl typ with
+ False(i,_) -> Lfalse
+ | Atom a -> raise (Is_atom a)
+ | And(i,_,b) ->
+ if b then
+ let nftyp=normalize typ in raise (Is_atom nftyp)
+ else Land i
+ | Or(i,_,b) ->
+ if b then
+ let nftyp=normalize typ in raise (Is_atom nftyp)
+ else Lor i
+ | Exists (ind,_) -> Lexists ind
+ | Forall (d,_) ->
+ Lforall(m,d,trivial)
+ | Arrow (a,b) ->
+ let nfa=normalize a in
+ LA (nfa,
+ match kind_of_formula gl a with
+ False(i,l)-> LLfalse(i,l)
+ | Atom t-> LLatom
+ | And(i,l,_)-> LLand(i,l)
+ | Or(i,l,_)-> LLor(i,l)
+ | Arrow(a,c)-> LLarrow(a,c,b)
+ | Exists(i,l)->LLexists(i,l)
+ | Forall(_,_)->LLforall a) in
+ Left pat
+ in
+ Left {id=nam;
+ constr=normalize typ;
+ pat=pattern;
+ atoms=atoms}
+ with Is_atom a-> Right a (* already in nf *)
+
diff --git a/contrib/first-order/formula.mli b/contrib/first-order/formula.mli
new file mode 100644
index 00000000..db24f20f
--- /dev/null
+++ b/contrib/first-order/formula.mli
@@ -0,0 +1,77 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: formula.mli,v 1.17.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Term
+open Names
+open Libnames
+
+val qflag : bool ref
+
+val red_flags: Closure.RedFlags.reds ref
+
+val (=?) : ('a -> 'a -> int) -> ('b -> 'b -> int) ->
+ 'a -> 'a -> 'b -> 'b -> int
+
+val (==?) : ('a -> 'a -> 'b ->'b -> int) -> ('c -> 'c -> int) ->
+ 'a -> 'a -> 'b -> 'b -> 'c ->'c -> int
+
+type ('a,'b) sum = Left of 'a | Right of 'b
+
+type counter = bool -> metavariable
+
+val construct_nhyps : inductive -> Proof_type.goal Tacmach.sigma -> int array
+
+val ind_hyps : int -> inductive -> constr list ->
+ Proof_type.goal Tacmach.sigma -> Sign.rel_context array
+
+type atoms = {positive:constr list;negative:constr list}
+
+type side = Hyp | Concl | Hint
+
+val dummy_id: global_reference
+
+val build_atoms : Proof_type.goal Tacmach.sigma -> counter ->
+ side -> constr -> bool * atoms
+
+type right_pattern =
+ Rarrow
+ | Rand
+ | Ror
+ | Rfalse
+ | Rforall
+ | Rexists of metavariable*constr*bool
+
+type left_arrow_pattern=
+ LLatom
+ | LLfalse of inductive*constr list
+ | LLand of inductive*constr list
+ | LLor of inductive*constr list
+ | LLforall of constr
+ | LLexists of inductive*constr list
+ | LLarrow of constr*constr*constr
+
+type left_pattern=
+ Lfalse
+ | Land of inductive
+ | Lor of inductive
+ | Lforall of metavariable*constr*bool
+ | Lexists of inductive
+ | LA of constr*left_arrow_pattern
+
+type t={id: global_reference;
+ constr: constr;
+ pat: (left_pattern,right_pattern) sum;
+ atoms: atoms}
+
+(*exception Is_atom of constr*)
+
+val build_formula : side -> global_reference -> types ->
+ Proof_type.goal Tacmach.sigma -> counter -> (t,types) sum
+
diff --git a/contrib/first-order/g_ground.ml4 b/contrib/first-order/g_ground.ml4
new file mode 100644
index 00000000..f85f2171
--- /dev/null
+++ b/contrib/first-order/g_ground.ml4
@@ -0,0 +1,103 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: g_ground.ml4,v 1.10.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Formula
+open Sequent
+open Ground
+open Goptions
+open Tactics
+open Tacticals
+open Tacinterp
+open Term
+open Names
+open Util
+open Libnames
+
+(* declaring search depth as a global option *)
+
+let ground_depth=ref 5
+
+let _=
+ let gdopt=
+ { optsync=true;
+ optname="Firstorder Depth";
+ optkey=SecondaryTable("Firstorder","Depth");
+ optread=(fun ()->Some !ground_depth);
+ optwrite=
+ (function
+ None->ground_depth:=5
+ | Some i->ground_depth:=(max i 0))}
+ in
+ declare_int_option gdopt
+
+let default_solver=(Tacinterp.interp <:tactic<auto with *>>)
+
+let fail_solver=tclFAIL 0 "GTauto failed"
+
+type external_env=
+ Ids of global_reference list
+ | Bases of Auto.hint_db_name list
+ | Void
+
+let gen_ground_tac flag taco ext gl=
+ let backup= !qflag in
+ try
+ qflag:=flag;
+ let solver=
+ match taco with
+ Some tac-> tac
+ | None-> default_solver in
+ let startseq=
+ match ext with
+ Void -> (fun gl -> empty_seq !ground_depth)
+ | Ids l-> create_with_ref_list l !ground_depth
+ | Bases l-> create_with_auto_hints l !ground_depth in
+ let result=ground_tac solver startseq gl in
+ qflag:=backup;result
+ with e ->qflag:=backup;raise e
+
+(* special for compatibility with Intuition
+
+let constant str = Coqlib.gen_constant "User" ["Init";"Logic"] str
+
+let defined_connectives=lazy
+ [[],EvalConstRef (destConst (constant "not"));
+ [],EvalConstRef (destConst (constant "iff"))]
+
+let normalize_evaluables=
+ onAllClauses
+ (function
+ None->unfold_in_concl (Lazy.force defined_connectives)
+ | Some id->
+ unfold_in_hyp (Lazy.force defined_connectives)
+ (Tacexpr.InHypType id)) *)
+
+TACTIC EXTEND Firstorder
+ [ "Firstorder" tactic_opt(t) "with" ne_reference_list(l) ] ->
+ [ gen_ground_tac true (option_app eval_tactic t) (Ids l) ]
+| [ "Firstorder" tactic_opt(t) "using" ne_preident_list(l) ] ->
+ [ gen_ground_tac true (option_app eval_tactic t) (Bases l) ]
+| [ "Firstorder" tactic_opt(t) ] ->
+ [ gen_ground_tac true (option_app eval_tactic t) Void ]
+END
+
+(* Obsolete since V8.0
+TACTIC EXTEND GTauto
+ [ "GTauto" ] ->
+ [ gen_ground_tac false (Some fail_solver) Void ]
+END
+*)
+
+TACTIC EXTEND GIntuition
+ [ "GIntuition" tactic_opt(t) ] ->
+ [ gen_ground_tac false (option_app eval_tactic t) Void ]
+END
diff --git a/contrib/first-order/ground.ml b/contrib/first-order/ground.ml
new file mode 100644
index 00000000..23e27a3c
--- /dev/null
+++ b/contrib/first-order/ground.ml
@@ -0,0 +1,151 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ground.ml,v 1.5.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Formula
+open Sequent
+open Rules
+open Instances
+open Term
+open Tacmach
+open Tactics
+open Tacticals
+open Libnames
+
+(*
+let old_search=ref !Auto.searchtable
+
+(* I use this solution as a means to know whether hints have changed,
+but this prevents the GC from collecting the previous table,
+resulting in some limited space wasting*)
+
+let update_flags ()=
+ if not ( !Auto.searchtable == !old_search ) then
+ begin
+ old_search:=!Auto.searchtable;
+ let predref=ref Names.KNpred.empty in
+ let f p_a_t =
+ match p_a_t.Auto.code with
+ Auto.Unfold_nth (ConstRef kn)->
+ predref:=Names.KNpred.add kn !predref
+ | _ ->() in
+ let g _ l=List.iter f l in
+ let h _ hdb=Auto.Hint_db.iter g hdb in
+ Util.Stringmap.iter h !Auto.searchtable;
+ red_flags:=
+ Closure.RedFlags.red_add_transparent
+ Closure.betaiotazeta (Names.Idpred.full,!predref)
+ end
+*)
+
+let update_flags ()=
+ let predref=ref Names.KNpred.empty in
+ let f coe=
+ try
+ let kn=destConst (Classops.get_coercion_value coe) in
+ predref:=Names.KNpred.add kn !predref
+ with Invalid_argument "destConst"-> () in
+ List.iter f (Classops.coercions ());
+ red_flags:=
+ Closure.RedFlags.red_add_transparent
+ Closure.betaiotazeta
+ (Names.Idpred.full,Names.KNpred.complement !predref)
+
+let ground_tac solver startseq gl=
+ update_flags ();
+ let rec toptac skipped seq gl=
+ if Tacinterp.get_debug()=Tactic_debug.DebugOn 0
+ then Pp.msgnl (Proof_trees.pr_goal (sig_it gl));
+ tclORELSE (axiom_tac seq.gl seq)
+ begin
+ try
+ let (hd,seq1)=take_formula seq
+ and re_add s=re_add_formula_list skipped s in
+ let continue=toptac []
+ and backtrack gl=toptac (hd::skipped) seq1 gl in
+ match hd.pat with
+ Right rpat->
+ begin
+ match rpat with
+ Rand->
+ and_tac backtrack continue (re_add seq1)
+ | Rforall->
+ let backtrack1=
+ if !qflag then
+ tclFAIL 0 "reversible in 1st order mode"
+ else
+ backtrack in
+ forall_tac backtrack continue (re_add seq1)
+ | Rarrow->
+ arrow_tac backtrack continue (re_add seq1)
+ | Ror->
+ or_tac backtrack continue (re_add seq1)
+ | Rfalse->backtrack
+ | Rexists(i,dom,triv)->
+ let (lfp,seq2)=collect_quantified seq in
+ let backtrack2=toptac (lfp@skipped) seq2 in
+ if !qflag && seq.depth>0 then
+ quantified_tac lfp backtrack2
+ continue (re_add seq)
+ else
+ backtrack2 (* need special backtracking *)
+ end
+ | Left lpat->
+ begin
+ match lpat with
+ Lfalse->
+ left_false_tac hd.id
+ | Land ind->
+ left_and_tac ind backtrack
+ hd.id continue (re_add seq1)
+ | Lor ind->
+ left_or_tac ind backtrack
+ hd.id continue (re_add seq1)
+ | Lforall (_,_,_)->
+ let (lfp,seq2)=collect_quantified seq in
+ let backtrack2=toptac (lfp@skipped) seq2 in
+ if !qflag && seq.depth>0 then
+ quantified_tac lfp backtrack2
+ continue (re_add seq)
+ else
+ backtrack2 (* need special backtracking *)
+ | Lexists ind ->
+ if !qflag then
+ left_exists_tac ind hd.id continue (re_add seq1)
+ else backtrack
+ | LA (typ,lap)->
+ let la_tac=
+ begin
+ match lap with
+ LLatom -> backtrack
+ | LLand (ind,largs) | LLor(ind,largs)
+ | LLfalse (ind,largs)->
+ (ll_ind_tac ind largs backtrack
+ hd.id continue (re_add seq1))
+ | LLforall p ->
+ if seq.depth>0 && !qflag then
+ (ll_forall_tac p backtrack
+ hd.id continue (re_add seq1))
+ else backtrack
+ | LLexists (ind,l) ->
+ if !qflag then
+ ll_ind_tac ind l backtrack
+ hd.id continue (re_add seq1)
+ else
+ backtrack
+ | LLarrow (a,b,c) ->
+ (ll_arrow_tac a b c backtrack
+ hd.id continue (re_add seq1))
+ end in
+ ll_atom_tac typ la_tac hd.id continue (re_add seq1)
+ end
+ with Heap.EmptyHeap->solver
+ end gl in
+ wrap (List.length (pf_hyps gl)) true (toptac []) (startseq gl) gl
+
diff --git a/contrib/first-order/ground.mli b/contrib/first-order/ground.mli
new file mode 100644
index 00000000..cfc17e77
--- /dev/null
+++ b/contrib/first-order/ground.mli
@@ -0,0 +1,13 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ground.mli,v 1.1.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+val ground_tac: Tacmach.tactic ->
+ (Proof_type.goal Tacmach.sigma -> Sequent.t) -> Tacmach.tactic
+
diff --git a/contrib/first-order/instances.ml b/contrib/first-order/instances.ml
new file mode 100644
index 00000000..e2e9e2ef
--- /dev/null
+++ b/contrib/first-order/instances.ml
@@ -0,0 +1,203 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: instances.ml,v 1.9.2.1 2004/07/16 19:30:10 herbelin Exp $ i*)
+
+open Formula
+open Sequent
+open Unify
+open Rules
+open Util
+open Term
+open Rawterm
+open Tacmach
+open Tactics
+open Tacticals
+open Termops
+open Reductionops
+open Declarations
+open Formula
+open Sequent
+open Names
+open Libnames
+
+let compare_instance inst1 inst2=
+ match inst1,inst2 with
+ Phantom(d1),Phantom(d2)->
+ (OrderedConstr.compare d1 d2)
+ | Real((m1,c1),n1),Real((m2,c2),n2)->
+ ((-) =? (-) ==? OrderedConstr.compare) m2 m1 n1 n2 c1 c2
+ | Phantom(_),Real((m,_),_)-> if m=0 then -1 else 1
+ | Real((m,_),_),Phantom(_)-> if m=0 then 1 else -1
+
+let compare_gr id1 id2=
+ if id1==id2 then 0 else
+ if id1==dummy_id then 1
+ else if id2==dummy_id then -1
+ else Pervasives.compare id1 id2
+
+module OrderedInstance=
+struct
+ type t=instance * Libnames.global_reference
+ let compare (inst1,id1) (inst2,id2)=
+ (compare_instance =? compare_gr) inst2 inst1 id2 id1
+ (* we want a __decreasing__ total order *)
+end
+
+module IS=Set.Make(OrderedInstance)
+
+let make_simple_atoms seq=
+ let ratoms=
+ match seq.glatom with
+ Some t->[t]
+ | None->[]
+ in {negative=seq.latoms;positive=ratoms}
+
+let do_sequent setref triv id seq i dom atoms=
+ let flag=ref true in
+ let phref=ref triv in
+ let do_atoms a1 a2 =
+ let do_pair t1 t2 =
+ match unif_atoms i dom t1 t2 with
+ None->()
+ | Some (Phantom _) ->phref:=true
+ | Some c ->flag:=false;setref:=IS.add (c,id) !setref in
+ List.iter (fun t->List.iter (do_pair t) a2.negative) a1.positive;
+ List.iter (fun t->List.iter (do_pair t) a2.positive) a1.negative in
+ HP.iter (fun lf->do_atoms atoms lf.atoms) seq.redexes;
+ do_atoms atoms (make_simple_atoms seq);
+ !flag && !phref
+
+let match_one_quantified_hyp setref seq lf=
+ match lf.pat with
+ Left(Lforall(i,dom,triv))|Right(Rexists(i,dom,triv))->
+ if do_sequent setref triv lf.id seq i dom lf.atoms then
+ setref:=IS.add ((Phantom dom),lf.id) !setref
+ | _ ->anomaly "can't happen"
+
+let give_instances lf seq=
+ let setref=ref IS.empty in
+ List.iter (match_one_quantified_hyp setref seq) lf;
+ IS.elements !setref
+
+(* collector for the engine *)
+
+let rec collect_quantified seq=
+ try
+ let hd,seq1=take_formula seq in
+ (match hd.pat with
+ Left(Lforall(_,_,_)) | Right(Rexists(_,_,_)) ->
+ let (q,seq2)=collect_quantified seq1 in
+ ((hd::q),seq2)
+ | _->[],seq)
+ with Heap.EmptyHeap -> [],seq
+
+(* open instances processor *)
+
+let dummy_constr=mkMeta (-1)
+
+let dummy_bvid=id_of_string "x"
+
+let mk_open_instance id gl m t=
+ let env=pf_env gl in
+ let evmap=Refiner.sig_sig gl in
+ let var_id=
+ if id==dummy_id then dummy_bvid else
+ let typ=pf_type_of gl (constr_of_reference id) in
+ (* since we know we will get a product,
+ reduction is not too expensive *)
+ let (nam,_,_)=destProd (whd_betadeltaiota env evmap typ) in
+ match nam with
+ Name id -> id
+ | Anonymous -> dummy_bvid in
+ let revt=substl (list_tabulate (fun i->mkRel (m-i)) m) t in
+ let rec aux n avoid=
+ if n=0 then [] else
+ let nid=(fresh_id avoid var_id gl) in
+ (Name nid,None,dummy_constr)::(aux (n-1) (nid::avoid)) in
+ let nt=it_mkLambda_or_LetIn revt (aux m []) in
+ let rawt=Detyping.detype (false,env) [] [] nt in
+ let rec raux n t=
+ if n=0 then t else
+ match t with
+ RLambda(loc,name,_,t0)->
+ let t1=raux (n-1) t0 in
+ RLambda(loc,name,RHole (dummy_loc,BinderType name),t1)
+ | _-> anomaly "can't happen" in
+ let ntt=Pretyping.understand evmap env (raux m rawt) in
+ Sign.decompose_lam_n_assum m ntt
+
+(* tactics *)
+
+let left_instance_tac (inst,id) continue seq=
+ match inst with
+ Phantom dom->
+ if lookup (id,None) seq then
+ tclFAIL 0 "already done"
+ else
+ tclTHENS (cut dom)
+ [tclTHENLIST
+ [introf;
+ (fun gls->generalize
+ [mkApp(constr_of_reference id,
+ [|mkVar (Tacmach.pf_nth_hyp_id gls 1)|])] gls);
+ introf;
+ tclSOLVE [wrap 1 false continue
+ (deepen (record (id,None) seq))]];
+ tclTRY assumption]
+ | Real((m,t) as c,_)->
+ if lookup (id,Some c) seq then
+ tclFAIL 0 "already done"
+ else
+ let special_generalize=
+ if m>0 then
+ fun gl->
+ let (rc,ot)= mk_open_instance id gl m t in
+ let gt=
+ it_mkLambda_or_LetIn
+ (mkApp(constr_of_reference id,[|ot|])) rc in
+ generalize [gt] gl
+ else
+ generalize [mkApp(constr_of_reference id,[|t|])]
+ in
+ tclTHENLIST
+ [special_generalize;
+ introf;
+ tclSOLVE
+ [wrap 1 false continue (deepen (record (id,Some c) seq))]]
+
+let right_instance_tac inst continue seq=
+ match inst with
+ Phantom dom ->
+ tclTHENS (cut dom)
+ [tclTHENLIST
+ [introf;
+ (fun gls->
+ split (Rawterm.ImplicitBindings
+ [mkVar (Tacmach.pf_nth_hyp_id gls 1)]) gls);
+ tclSOLVE [wrap 0 true continue (deepen seq)]];
+ tclTRY assumption]
+ | Real ((0,t),_) ->
+ (tclTHEN (split (Rawterm.ImplicitBindings [t]))
+ (tclSOLVE [wrap 0 true continue (deepen seq)]))
+ | Real ((m,t),_) ->
+ tclFAIL 0 "not implemented ... yet"
+
+let instance_tac inst=
+ if (snd inst)==dummy_id then
+ right_instance_tac (fst inst)
+ else
+ left_instance_tac inst
+
+let quantified_tac lf backtrack continue seq gl=
+ let insts=give_instances lf seq in
+ tclORELSE
+ (tclFIRST (List.map (fun inst->instance_tac inst continue seq) insts))
+ backtrack gl
+
+
diff --git a/contrib/first-order/instances.mli b/contrib/first-order/instances.mli
new file mode 100644
index 00000000..509bfc70
--- /dev/null
+++ b/contrib/first-order/instances.mli
@@ -0,0 +1,26 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: instances.mli,v 1.3.2.1 2004/07/16 19:30:10 herbelin Exp $ i*)
+
+open Term
+open Tacmach
+open Names
+open Libnames
+open Rules
+
+val collect_quantified : Sequent.t -> Formula.t list * Sequent.t
+
+val give_instances : Formula.t list -> Sequent.t ->
+ (Unify.instance * global_reference) list
+
+val quantified_tac : Formula.t list -> seqtac with_backtracking
+
+
+
+
diff --git a/contrib/first-order/rules.ml b/contrib/first-order/rules.ml
new file mode 100644
index 00000000..7fbefa37
--- /dev/null
+++ b/contrib/first-order/rules.ml
@@ -0,0 +1,214 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: rules.ml,v 1.24.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Util
+open Names
+open Term
+open Tacmach
+open Tactics
+open Tacticals
+open Termops
+open Declarations
+open Formula
+open Sequent
+open Libnames
+
+type seqtac= (Sequent.t -> tactic) -> Sequent.t -> tactic
+
+type lseqtac= global_reference -> seqtac
+
+type 'a with_backtracking = tactic -> 'a
+
+let wrap n b continue seq gls=
+ check_for_interrupt ();
+ let nc=pf_hyps gls in
+ let env=pf_env gls in
+ let rec aux i nc ctx=
+ if i<=0 then seq else
+ match nc with
+ []->anomaly "Not the expected number of hyps"
+ | ((id,_,typ) as nd)::q->
+ if occur_var env id (pf_concl gls) ||
+ List.exists (occur_var_in_decl env id) ctx then
+ (aux (i-1) q (nd::ctx))
+ else
+ add_formula Hyp (VarRef id) typ (aux (i-1) q (nd::ctx)) gls in
+ let seq1=aux n nc [] in
+ let seq2=if b then
+ add_formula Concl dummy_id (pf_concl gls) seq1 gls else seq1 in
+ continue seq2 gls
+
+let id_of_global=function
+ VarRef id->id
+ | _->assert false
+
+let clear_global=function
+ VarRef id->clear [id]
+ | _->tclIDTAC
+
+
+(* connection rules *)
+
+let axiom_tac t seq=
+ try exact_no_check (constr_of_reference (find_left t seq))
+ with Not_found->tclFAIL 0 "No axiom link"
+
+let ll_atom_tac a backtrack id continue seq=
+ tclIFTHENELSE
+ (try
+ tclTHENLIST
+ [generalize [mkApp(constr_of_reference id,
+ [|constr_of_reference (find_left a seq)|])];
+ clear_global id;
+ intro]
+ with Not_found->tclFAIL 0 "No link")
+ (wrap 1 false continue seq) backtrack
+
+(* right connectives rules *)
+
+let and_tac backtrack continue seq=
+ tclIFTHENELSE simplest_split (wrap 0 true continue seq) backtrack
+
+let or_tac backtrack continue seq=
+ tclORELSE
+ (any_constructor (Some (tclCOMPLETE (wrap 0 true continue seq))))
+ backtrack
+
+let arrow_tac backtrack continue seq=
+ tclIFTHENELSE intro (wrap 1 true continue seq)
+ (tclORELSE
+ (tclTHEN introf (tclCOMPLETE (wrap 1 true continue seq)))
+ backtrack)
+(* left connectives rules *)
+
+let left_and_tac ind backtrack id continue seq gls=
+ let n=(construct_nhyps ind gls).(0) in
+ tclIFTHENELSE
+ (tclTHENLIST
+ [simplest_elim (constr_of_reference id);
+ clear_global id;
+ tclDO n intro])
+ (wrap n false continue seq)
+ backtrack gls
+
+let left_or_tac ind backtrack id continue seq gls=
+ let v=construct_nhyps ind gls in
+ let f n=
+ tclTHENLIST
+ [clear_global id;
+ tclDO n intro;
+ wrap n false continue seq] in
+ tclIFTHENSVELSE
+ (simplest_elim (constr_of_reference id))
+ (Array.map f v)
+ backtrack gls
+
+let left_false_tac id=
+ simplest_elim (constr_of_reference id)
+
+(* left arrow connective rules *)
+
+(* We use this function for false, and, or, exists *)
+
+let ll_ind_tac ind largs backtrack id continue seq gl=
+ let rcs=ind_hyps 0 ind largs gl in
+ let vargs=Array.of_list largs in
+ (* construire le terme H->B, le generaliser etc *)
+ let myterm i=
+ let rc=rcs.(i) in
+ let p=List.length rc in
+ let cstr=mkApp ((mkConstruct (ind,(i+1))),vargs) in
+ let vars=Array.init p (fun j->mkRel (p-j)) in
+ let capply=mkApp ((lift p cstr),vars) in
+ let head=mkApp ((lift p (constr_of_reference id)),[|capply|]) in
+ Sign.it_mkLambda_or_LetIn head rc in
+ let lp=Array.length rcs in
+ let newhyps=list_tabulate myterm lp in
+ tclIFTHENELSE
+ (tclTHENLIST
+ [generalize newhyps;
+ clear_global id;
+ tclDO lp intro])
+ (wrap lp false continue seq) backtrack gl
+
+let ll_arrow_tac a b c backtrack id continue seq=
+ let cc=mkProd(Anonymous,a,(lift 1 b)) in
+ let d=mkLambda (Anonymous,b,
+ mkApp ((constr_of_reference id),
+ [|mkLambda (Anonymous,(lift 1 a),(mkRel 2))|])) in
+ tclORELSE
+ (tclTHENS (cut c)
+ [tclTHENLIST
+ [introf;
+ clear_global id;
+ wrap 1 false continue seq];
+ tclTHENS (cut cc)
+ [exact_no_check (constr_of_reference id);
+ tclTHENLIST
+ [generalize [d];
+ clear_global id;
+ introf;
+ introf;
+ tclCOMPLETE (wrap 2 true continue seq)]]])
+ backtrack
+
+(* quantifier rules (easy side) *)
+
+let forall_tac backtrack continue seq=
+ tclORELSE
+ (tclIFTHENELSE intro (wrap 0 true continue seq)
+ (tclORELSE
+ (tclTHEN introf (tclCOMPLETE (wrap 0 true continue seq)))
+ backtrack))
+ (if !qflag then
+ tclFAIL 0 "reversible in 1st order mode"
+ else
+ backtrack)
+
+let left_exists_tac ind id continue seq gls=
+ let n=(construct_nhyps ind gls).(0) in
+ tclTHENLIST
+ [simplest_elim (constr_of_reference id);
+ clear_global id;
+ tclDO n intro;
+ (wrap (n-1) false continue seq)] gls
+
+let ll_forall_tac prod backtrack id continue seq=
+ tclORELSE
+ (tclTHENS (cut prod)
+ [tclTHENLIST
+ [intro;
+ (fun gls->
+ let id0=pf_nth_hyp_id gls 1 in
+ let term=mkApp((constr_of_reference id),[|mkVar(id0)|]) in
+ tclTHEN (generalize [term]) (clear [id0]) gls);
+ clear_global id;
+ intro;
+ tclCOMPLETE (wrap 1 false continue (deepen seq))];
+ tclCOMPLETE (wrap 0 true continue (deepen seq))])
+ backtrack
+
+(* rules for instantiation with unification moved to instances.ml *)
+
+(* special for compatibility with old Intuition *)
+
+let constant str = Coqlib.gen_constant "User" ["Init";"Logic"] str
+
+let defined_connectives=lazy
+ [[],EvalConstRef (destConst (constant "not"));
+ [],EvalConstRef (destConst (constant "iff"))]
+
+let normalize_evaluables=
+ onAllClauses
+ (function
+ None->unfold_in_concl (Lazy.force defined_connectives)
+ | Some (id,_,_)->
+ unfold_in_hyp (Lazy.force defined_connectives)
+ (id,[],(Tacexpr.InHypTypeOnly,ref None)))
diff --git a/contrib/first-order/rules.mli b/contrib/first-order/rules.mli
new file mode 100644
index 00000000..eb4d81bd
--- /dev/null
+++ b/contrib/first-order/rules.mli
@@ -0,0 +1,54 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: rules.mli,v 1.11.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Term
+open Tacmach
+open Names
+open Libnames
+
+type seqtac= (Sequent.t -> tactic) -> Sequent.t -> tactic
+
+type lseqtac= global_reference -> seqtac
+
+type 'a with_backtracking = tactic -> 'a
+
+val wrap : int -> bool -> seqtac
+
+val id_of_global: global_reference -> identifier
+
+val clear_global: global_reference -> tactic
+
+val axiom_tac : constr -> Sequent.t -> tactic
+
+val ll_atom_tac : constr -> lseqtac with_backtracking
+
+val and_tac : seqtac with_backtracking
+
+val or_tac : seqtac with_backtracking
+
+val arrow_tac : seqtac with_backtracking
+
+val left_and_tac : inductive -> lseqtac with_backtracking
+
+val left_or_tac : inductive -> lseqtac with_backtracking
+
+val left_false_tac : global_reference -> tactic
+
+val ll_ind_tac : inductive -> constr list -> lseqtac with_backtracking
+
+val ll_arrow_tac : constr -> constr -> constr -> lseqtac with_backtracking
+
+val forall_tac : seqtac with_backtracking
+
+val left_exists_tac : inductive -> lseqtac
+
+val ll_forall_tac : types -> lseqtac with_backtracking
+
+val normalize_evaluables : tactic
diff --git a/contrib/first-order/sequent.ml b/contrib/first-order/sequent.ml
new file mode 100644
index 00000000..13215348
--- /dev/null
+++ b/contrib/first-order/sequent.ml
@@ -0,0 +1,303 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: sequent.ml,v 1.17.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Term
+open Util
+open Formula
+open Unify
+open Tacmach
+open Names
+open Libnames
+open Pp
+
+let newcnt ()=
+ let cnt=ref (-1) in
+ fun b->if b then incr cnt;!cnt
+
+let priority = (* pure heuristics, <=0 for non reversible *)
+ function
+ Right rf->
+ begin
+ match rf with
+ Rarrow -> 100
+ | Rand -> 40
+ | Ror -> -15
+ | Rfalse -> -50
+ | Rforall -> 100
+ | Rexists (_,_,_) -> -29
+ end
+ | Left lf ->
+ match lf with
+ Lfalse -> 999
+ | Land _ -> 90
+ | Lor _ -> 40
+ | Lforall (_,_,_) -> -30
+ | Lexists _ -> 60
+ | LA(_,lap) ->
+ match lap with
+ LLatom -> 0
+ | LLfalse (_,_) -> 100
+ | LLand (_,_) -> 80
+ | LLor (_,_) -> 70
+ | LLforall _ -> -20
+ | LLexists (_,_) -> 50
+ | LLarrow (_,_,_) -> -10
+
+let left_reversible lpat=(priority lpat)>0
+
+module OrderedFormula=
+struct
+ type t=Formula.t
+ let compare e1 e2=
+ (priority e1.pat) - (priority e2.pat)
+end
+
+(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
+ the immediate subterms of [c1] of [c2] if needed; Cast's,
+ application associativity, binders name and Cases annotations are
+ not taken into account *)
+
+let rec compare_list f l1 l2=
+ match l1,l2 with
+ [],[]-> 0
+ | [],_ -> -1
+ | _,[] -> 1
+ | (h1::q1),(h2::q2) -> (f =? (compare_list f)) h1 h2 q1 q2
+
+let compare_array f v1 v2=
+ let l=Array.length v1 in
+ let c=l - Array.length v2 in
+ if c=0 then
+ let rec comp_aux i=
+ if i<0 then 0
+ else
+ let ci=f v1.(i) v2.(i) in
+ if ci=0 then
+ comp_aux (i-1)
+ else ci
+ in comp_aux (l-1)
+ else c
+
+let compare_constr_int f t1 t2 =
+ match kind_of_term t1, kind_of_term t2 with
+ | Rel n1, Rel n2 -> n1 - n2
+ | Meta m1, Meta m2 -> m1 - m2
+ | Var id1, Var id2 -> Pervasives.compare id1 id2
+ | Sort s1, Sort s2 -> Pervasives.compare s1 s2
+ | Cast (c1,_), _ -> f c1 t2
+ | _, Cast (c2,_) -> f t1 c2
+ | Prod (_,t1,c1), Prod (_,t2,c2)
+ | Lambda (_,t1,c1), Lambda (_,t2,c2) ->
+ (f =? f) t1 t2 c1 c2
+ | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) ->
+ ((f =? f) ==? f) b1 b2 t1 t2 c1 c2
+ | App (_,_), App (_,_) ->
+ let c1,l1=decompose_app t1
+ and c2,l2=decompose_app t2 in
+ (f =? (compare_list f)) c1 c2 l1 l2
+ | Evar (e1,l1), Evar (e2,l2) ->
+ ((-) =? (compare_array f)) e1 e2 l1 l2
+ | Const c1, Const c2 -> Pervasives.compare c1 c2
+ | Ind c1, Ind c2 -> Pervasives.compare c1 c2
+ | Construct c1, Construct c2 -> Pervasives.compare c1 c2
+ | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
+ ((f =? f) ==? (compare_array f)) p1 p2 c1 c2 bl1 bl2
+ | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
+ ((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
+ ln1 ln2 tl1 tl2 bl1 bl2
+ | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
+ ((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
+ ln1 ln2 tl1 tl2 bl1 bl2
+ | _ -> Pervasives.compare t1 t2
+
+let rec compare_constr m n=
+ compare_constr_int compare_constr m n
+
+module OrderedConstr=
+struct
+ type t=constr
+ let compare=compare_constr
+end
+
+type h_item = global_reference * (int*constr) option
+
+module Hitem=
+struct
+ type t = h_item
+ let compare (id1,co1) (id2,co2)=
+ (Pervasives.compare
+ =? (fun oc1 oc2 ->
+ match oc1,oc2 with
+ Some (m1,c1),Some (m2,c2) ->
+ ((-) =? OrderedConstr.compare) m1 m2 c1 c2
+ | _,_->Pervasives.compare oc1 oc2)) id1 id2 co1 co2
+end
+
+module CM=Map.Make(OrderedConstr)
+
+module History=Set.Make(Hitem)
+
+let cm_add typ nam cm=
+ try
+ let l=CM.find typ cm in CM.add typ (nam::l) cm
+ with
+ Not_found->CM.add typ [nam] cm
+
+let cm_remove typ nam cm=
+ try
+ let l=CM.find typ cm in
+ let l0=List.filter (fun id->id<>nam) l in
+ match l0 with
+ []->CM.remove typ cm
+ | _ ->CM.add typ l0 cm
+ with Not_found ->cm
+
+module HP=Heap.Functional(OrderedFormula)
+
+type t=
+ {redexes:HP.t;
+ context:(global_reference list) CM.t;
+ latoms:constr list;
+ gl:types;
+ glatom:constr option;
+ cnt:counter;
+ history:History.t;
+ depth:int}
+
+let deepen seq={seq with depth=seq.depth-1}
+
+let record item seq={seq with history=History.add item seq.history}
+
+let lookup item seq=
+ History.mem item seq.history ||
+ match item with
+ (_,None)->false
+ | (id,Some ((m,t) as c))->
+ let p (id2,o)=
+ match o with
+ None -> false
+ | Some ((m2,t2) as c2)->id=id2 && m2>m && more_general c2 c in
+ History.exists p seq.history
+
+let rec add_formula side nam t seq gl=
+ match build_formula side nam t gl seq.cnt with
+ Left f->
+ begin
+ match side with
+ Concl ->
+ {seq with
+ redexes=HP.add f seq.redexes;
+ gl=f.constr;
+ glatom=None}
+ | _ ->
+ {seq with
+ redexes=HP.add f seq.redexes;
+ context=cm_add f.constr nam seq.context}
+ end
+ | Right t->
+ match side with
+ Concl ->
+ {seq with gl=t;glatom=Some t}
+ | _ ->
+ {seq with
+ context=cm_add t nam seq.context;
+ latoms=t::seq.latoms}
+
+let re_add_formula_list lf seq=
+ let do_one f cm=
+ if f.id == dummy_id then cm
+ else cm_add f.constr f.id cm in
+ {seq with
+ redexes=List.fold_right HP.add lf seq.redexes;
+ context=List.fold_right do_one lf seq.context}
+
+let find_left t seq=List.hd (CM.find t seq.context)
+
+(*let rev_left seq=
+ try
+ let lpat=(HP.maximum seq.redexes).pat in
+ left_reversible lpat
+ with Heap.EmptyHeap -> false
+*)
+let no_formula seq=
+ seq.redexes=HP.empty
+
+let rec take_formula seq=
+ let hd=HP.maximum seq.redexes
+ and hp=HP.remove seq.redexes in
+ if hd.id == dummy_id then
+ let nseq={seq with redexes=hp} in
+ if seq.gl==hd.constr then
+ hd,nseq
+ else
+ take_formula nseq (* discarding deprecated goal *)
+ else
+ hd,{seq with
+ redexes=hp;
+ context=cm_remove hd.constr hd.id seq.context}
+
+let empty_seq depth=
+ {redexes=HP.empty;
+ context=CM.empty;
+ latoms=[];
+ gl=(mkMeta 1);
+ glatom=None;
+ cnt=newcnt ();
+ history=History.empty;
+ depth=depth}
+
+let create_with_ref_list l depth gl=
+ let f gr seq=
+ let c=constr_of_reference gr in
+ let typ=(pf_type_of gl c) in
+ add_formula Hyp gr typ seq gl in
+ List.fold_right f l (empty_seq depth)
+
+open Auto
+
+let create_with_auto_hints l depth gl=
+ let seqref=ref (empty_seq depth) in
+ let f p_a_t =
+ match p_a_t.code with
+ Res_pf (c,_) | Give_exact c
+ | Res_pf_THEN_trivial_fail (c,_) ->
+ (try
+ let gr=reference_of_constr c in
+ let typ=(pf_type_of gl c) in
+ seqref:=add_formula Hint gr typ !seqref gl
+ with Not_found->())
+ | _-> () in
+ let g _ l=List.iter f l in
+ let h dbname=
+ let hdb=
+ try
+ Util.Stringmap.find dbname !searchtable
+ with Not_found->
+ error ("Firstorder: "^dbname^" : No such Hint database") in
+ Hint_db.iter g hdb in
+ List.iter h l;
+ !seqref
+
+let print_cmap map=
+ let print_entry c l s=
+ let xc=Constrextern.extern_constr false (Global.env ()) c in
+ str "| " ++
+ Util.prlist (Ppconstr.pr_global Idset.empty) l ++
+ str " : " ++
+ Ppconstr.pr_constr xc ++
+ cut () ++
+ s in
+ msgnl (v 0
+ (str "-----" ++
+ cut () ++
+ CM.fold print_entry map (mt ()) ++
+ str "-----"))
+
+
diff --git a/contrib/first-order/sequent.mli b/contrib/first-order/sequent.mli
new file mode 100644
index 00000000..df27d2ff
--- /dev/null
+++ b/contrib/first-order/sequent.mli
@@ -0,0 +1,66 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: sequent.mli,v 1.8.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Term
+open Util
+open Formula
+open Tacmach
+open Names
+open Libnames
+
+module OrderedConstr: Set.OrderedType with type t=constr
+
+module CM: Map.S with type key=constr
+
+type h_item = global_reference * (int*constr) option
+
+module History: Set.S with type elt = h_item
+
+val cm_add : constr -> global_reference -> global_reference list CM.t ->
+ global_reference list CM.t
+
+val cm_remove : constr -> global_reference -> global_reference list CM.t ->
+ global_reference list CM.t
+
+module HP: Heap.S with type elt=Formula.t
+
+type t = {redexes:HP.t;
+ context: global_reference list CM.t;
+ latoms:constr list;
+ gl:types;
+ glatom:constr option;
+ cnt:counter;
+ history:History.t;
+ depth:int}
+
+val deepen: t -> t
+
+val record: h_item -> t -> t
+
+val lookup: h_item -> t -> bool
+
+val add_formula : side -> global_reference -> constr -> t ->
+ Proof_type.goal sigma -> t
+
+val re_add_formula_list : Formula.t list -> t -> t
+
+val find_left : constr -> t -> global_reference
+
+val take_formula : t -> Formula.t * t
+
+val empty_seq : int -> t
+
+val create_with_ref_list : global_reference list ->
+ int -> Proof_type.goal sigma -> t
+
+val create_with_auto_hints : Auto.hint_db_name list ->
+ int -> Proof_type.goal sigma -> t
+
+val print_cmap: global_reference list CM.t -> unit
diff --git a/contrib/first-order/unify.ml b/contrib/first-order/unify.ml
new file mode 100644
index 00000000..1186fb90
--- /dev/null
+++ b/contrib/first-order/unify.ml
@@ -0,0 +1,143 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: unify.ml,v 1.10.2.1 2004/07/16 19:30:10 herbelin Exp $ i*)
+
+open Util
+open Formula
+open Tacmach
+open Term
+open Names
+open Termops
+open Reductionops
+
+exception UFAIL of constr*constr
+
+(*
+ RIGID-only Martelli-Montanari style unification for CLOSED terms
+ I repeat : t1 and t2 must NOT have ANY free deBruijn
+ sigma is kept normal with respect to itself but is lazily applied
+ to the equation set. Raises UFAIL with a pair of terms
+*)
+
+let unif t1 t2=
+ let bige=Queue.create ()
+ and sigma=ref [] in
+ let bind i t=
+ sigma:=(i,t)::
+ (List.map (function (n,tn)->(n,subst_meta [i,t] tn)) !sigma) in
+ let rec head_reduce t=
+ (* forbids non-sigma-normal meta in head position*)
+ match kind_of_term t with
+ Meta i->
+ (try
+ head_reduce (List.assoc i !sigma)
+ with Not_found->t)
+ | _->t in
+ Queue.add (t1,t2) bige;
+ try while true do
+ let t1,t2=Queue.take bige in
+ let nt1=head_reduce (whd_betaiotazeta t1)
+ and nt2=head_reduce (whd_betaiotazeta t2) in
+ match (kind_of_term nt1),(kind_of_term nt2) with
+ Meta i,Meta j->
+ if i<>j then
+ if i<j then bind j nt1
+ else bind i nt2
+ | Meta i,_ ->
+ let t=subst_meta !sigma nt2 in
+ if Intset.is_empty (free_rels t) &&
+ not (occur_term (mkMeta i) t) then
+ bind i t else raise (UFAIL(nt1,nt2))
+ | _,Meta i ->
+ let t=subst_meta !sigma nt1 in
+ if Intset.is_empty (free_rels t) &&
+ not (occur_term (mkMeta i) t) then
+ bind i t else raise (UFAIL(nt1,nt2))
+ | Cast(_,_),_->Queue.add (strip_outer_cast nt1,nt2) bige
+ | _,Cast(_,_)->Queue.add (nt1,strip_outer_cast nt2) bige
+ | (Prod(_,a,b),Prod(_,c,d))|(Lambda(_,a,b),Lambda(_,c,d))->
+ Queue.add (a,c) bige;Queue.add (pop b,pop d) bige
+ | Case (_,pa,ca,va),Case (_,pb,cb,vb)->
+ Queue.add (pa,pb) bige;
+ Queue.add (ca,cb) bige;
+ let l=Array.length va in
+ if l<>(Array.length vb) then
+ raise (UFAIL (nt1,nt2))
+ else
+ for i=0 to l-1 do
+ Queue.add (va.(i),vb.(i)) bige
+ done
+ | App(ha,va),App(hb,vb)->
+ Queue.add (ha,hb) bige;
+ let l=Array.length va in
+ if l<>(Array.length vb) then
+ raise (UFAIL (nt1,nt2))
+ else
+ for i=0 to l-1 do
+ Queue.add (va.(i),vb.(i)) bige
+ done
+ | _->if not (eq_constr nt1 nt2) then raise (UFAIL (nt1,nt2))
+ done;
+ assert false
+ (* this place is unreachable but needed for the sake of typing *)
+ with Queue.Empty-> !sigma
+
+let value i t=
+ let add x y=
+ if x<0 then y else if y<0 then x else x+y in
+ let tref=mkMeta i in
+ let rec vaux term=
+ if term=tref then 0 else
+ let f v t=add v (vaux t) in
+ let vr=fold_constr f (-1) term in
+ if vr<0 then -1 else vr+1 in
+ vaux t
+
+type instance=
+ Real of (int*constr)*int
+ | Phantom of constr
+
+let mk_rel_inst t=
+ let new_rel=ref 1 in
+ let rel_env=ref [] in
+ let rec renum_rec d t=
+ match kind_of_term t with
+ Meta n->
+ (try
+ mkRel (d+(List.assoc n !rel_env))
+ with Not_found->
+ let m= !new_rel in
+ incr new_rel;
+ rel_env:=(n,m) :: !rel_env;
+ mkRel (m+d))
+ | _ -> map_constr_with_binders succ renum_rec d t
+ in
+ let nt=renum_rec 0 t in (!new_rel - 1,nt)
+
+let unif_atoms i dom t1 t2=
+ try
+ let t=List.assoc i (unif t1 t2) in
+ if isMeta t then Some (Phantom dom)
+ else Some (Real(mk_rel_inst t,value i t1))
+ with
+ UFAIL(_,_) ->None
+ | Not_found ->Some (Phantom dom)
+
+let renum_metas_from k n t= (* requires n = max (free_rels t) *)
+ let l=list_tabulate (fun i->mkMeta (k+i)) n in
+ substl l t
+
+let more_general (m1,t1) (m2,t2)=
+ let mt1=renum_metas_from 0 m1 t1
+ and mt2=renum_metas_from m1 m2 t2 in
+ try
+ let sigma=unif mt1 mt2 in
+ let p (n,t)= n<m1 || isMeta t in
+ List.for_all p sigma
+ with UFAIL(_,_)->false
diff --git a/contrib/first-order/unify.mli b/contrib/first-order/unify.mli
new file mode 100644
index 00000000..dd9dbdec
--- /dev/null
+++ b/contrib/first-order/unify.mli
@@ -0,0 +1,23 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: unify.mli,v 1.7.2.1 2004/07/16 19:30:10 herbelin Exp $ *)
+
+open Term
+
+exception UFAIL of constr*constr
+
+val unif : constr -> constr -> (int*constr) list
+
+type instance=
+ Real of (int*constr)*int (* nb trous*terme*valeur heuristique *)
+ | Phantom of constr (* domaine de quantification *)
+
+val unif_atoms : metavariable -> constr -> constr -> constr -> instance option
+
+val more_general : (int*constr) -> (int*constr) -> bool
diff --git a/contrib/fourier/Fourier.v b/contrib/fourier/Fourier.v
new file mode 100644
index 00000000..f6faf94c
--- /dev/null
+++ b/contrib/fourier/Fourier.v
@@ -0,0 +1,25 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Fourier.v,v 1.4.2.1 2004/07/16 19:30:11 herbelin Exp $ *)
+
+(* "Fourier's method to solve linear inequations/equations systems.".*)
+
+Declare ML Module "quote".
+Declare ML Module "ring".
+Declare ML Module "fourier".
+Declare ML Module "fourierR".
+Declare ML Module "field".
+
+Require Export Fourier_util.
+Require Export Field.
+Require Export DiscrR.
+
+Ltac fourier := abstract (fourierz; field; discrR).
+
+Ltac fourier_eq := apply Rge_antisym; fourier.
diff --git a/contrib/fourier/Fourier_util.v b/contrib/fourier/Fourier_util.v
new file mode 100644
index 00000000..abcd4449
--- /dev/null
+++ b/contrib/fourier/Fourier_util.v
@@ -0,0 +1,222 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Fourier_util.v,v 1.4.2.1 2004/07/16 19:30:11 herbelin Exp $ *)
+
+Require Export Rbase.
+Comments "Lemmas used by the tactic Fourier".
+
+Open Scope R_scope.
+
+Lemma Rfourier_lt : forall x1 y1 a:R, x1 < y1 -> 0 < a -> a * x1 < a * y1.
+intros; apply Rmult_lt_compat_l; assumption.
+Qed.
+
+Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
+red in |- *.
+intros.
+case H; auto with real.
+Qed.
+
+Lemma Rfourier_lt_lt :
+ forall x1 y1 x2 y2 a:R,
+ x1 < y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+apply Rplus_lt_compat.
+try exact H.
+apply Rfourier_lt.
+try exact H0.
+try exact H1.
+Qed.
+
+Lemma Rfourier_lt_le :
+ forall x1 y1 x2 y2 a:R,
+ x1 < y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H0; intros.
+apply Rplus_lt_compat.
+try exact H.
+apply Rfourier_lt; auto with real.
+rewrite H2.
+rewrite (Rplus_comm y1 (a * y2)).
+rewrite (Rplus_comm x1 (a * y2)).
+apply Rplus_lt_compat_l.
+try exact H.
+Qed.
+
+Lemma Rfourier_le_lt :
+ forall x1 y1 x2 y2 a:R,
+ x1 <= y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H; intros.
+apply Rfourier_lt_le; auto with real.
+rewrite H2.
+apply Rplus_lt_compat_l.
+apply Rfourier_lt; auto with real.
+Qed.
+
+Lemma Rfourier_le_le :
+ forall x1 y1 x2 y2 a:R,
+ x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H0; intros.
+red in |- *.
+left; try assumption.
+apply Rfourier_le_lt; auto with real.
+rewrite H2.
+case H; intros.
+red in |- *.
+left; try assumption.
+rewrite (Rplus_comm x1 (a * y2)).
+rewrite (Rplus_comm y1 (a * y2)).
+apply Rplus_lt_compat_l.
+try exact H3.
+rewrite H3.
+red in |- *.
+right; try assumption.
+auto with real.
+Qed.
+
+Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
+intros x H; try assumption.
+rewrite Rplus_comm.
+apply Rle_lt_0_plus_1.
+red in |- *; auto with real.
+Qed.
+
+Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
+intros x y H H0; try assumption.
+replace 0 with (x * 0).
+apply Rmult_lt_compat_l; auto with real.
+ring.
+Qed.
+
+Lemma Rlt_zero_1 : 0 < 1.
+exact Rlt_0_1.
+Qed.
+
+Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
+intros x H; try assumption.
+case H; intros.
+red in |- *.
+left; try assumption.
+apply Rlt_zero_pos_plus1; auto with real.
+rewrite <- H0.
+replace (1 + 0) with 1.
+red in |- *; left.
+exact Rlt_zero_1.
+ring.
+Qed.
+
+Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
+intros x y H H0; try assumption.
+case H; intros.
+red in |- *; left.
+apply Rlt_mult_inv_pos; auto with real.
+rewrite <- H1.
+red in |- *; right; ring.
+Qed.
+
+Lemma Rle_zero_1 : 0 <= 1.
+red in |- *; left.
+exact Rlt_zero_1.
+Qed.
+
+Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
+intros n d H; red in |- *; intros H0; try exact H0.
+generalize (Rgt_not_le 0 (n * / d)).
+intros H1; elim H1; try assumption.
+replace (n * / d) with (- - (n * / d)).
+replace 0 with (- -0).
+replace (- (n * / d)) with (- n * / d).
+replace (-0) with 0.
+red in |- *.
+apply Ropp_gt_lt_contravar.
+red in |- *.
+exact H0.
+ring.
+ring.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_lt0 : forall x:R, ~ 0 < 0 * x.
+intros x; try assumption.
+replace (0 * x) with 0.
+apply Rlt_irrefl.
+ring.
+Qed.
+
+Lemma Rlt_not_le : forall n d:R, 0 < n * / d -> ~ 0 <= - n * / d.
+intros n d H; try assumption.
+apply Rgt_not_le.
+replace 0 with (-0).
+replace (- n * / d) with (- (n * / d)).
+apply Ropp_lt_gt_contravar.
+try exact H.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
+unfold not in |- *; intros.
+apply H.
+apply Rplus_lt_reg_r with x.
+replace (x + 0) with x.
+replace (x + (y - x)) with y.
+try exact H0.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
+unfold not in |- *; intros.
+apply H.
+case H0; intros.
+left.
+apply Rplus_lt_reg_r with x.
+replace (x + 0) with x.
+replace (x + (y - x)) with y.
+try exact H1.
+ring.
+ring.
+right.
+rewrite H1; ring.
+Qed.
+
+Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
+unfold Rgt in |- *; intros; assumption.
+Qed.
+
+Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
+intros x y; exact (Rge_le y x).
+Qed.
+
+Lemma Rfourier_eqLR_to_le : forall x y:R, x = y -> x <= y.
+exact Req_le.
+Qed.
+
+Lemma Rfourier_eqRL_to_le : forall x y:R, y = x -> x <= y.
+exact Req_le_sym.
+Qed.
+
+Lemma Rfourier_not_ge_lt : forall x y:R, (x >= y -> False) -> x < y.
+exact Rnot_ge_lt.
+Qed.
+
+Lemma Rfourier_not_gt_le : forall x y:R, (x > y -> False) -> x <= y.
+exact Rnot_gt_le.
+Qed.
+
+Lemma Rfourier_not_le_gt : forall x y:R, (x <= y -> False) -> x > y.
+exact Rnot_le_lt.
+Qed.
+
+Lemma Rfourier_not_lt_ge : forall x y:R, (x < y -> False) -> x >= y.
+exact Rnot_lt_ge.
+Qed.
diff --git a/contrib/fourier/fourier.ml b/contrib/fourier/fourier.ml
new file mode 100644
index 00000000..f5763c34
--- /dev/null
+++ b/contrib/fourier/fourier.ml
@@ -0,0 +1,205 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: fourier.ml,v 1.2.16.1 2004/07/16 19:30:11 herbelin Exp $ *)
+
+(* Méthode d'élimination de Fourier *)
+(* Référence:
+Auteur(s) : Fourier, Jean-Baptiste-Joseph
+
+Titre(s) : Oeuvres de Fourier [Document électronique]. Tome second. Mémoires publiés dans divers recueils / publ. par les soins de M. Gaston Darboux,...
+
+Publication : Numérisation BnF de l'édition de Paris : Gauthier-Villars, 1890
+
+Pages: 326-327
+
+http://gallica.bnf.fr/
+*)
+
+(* Un peu de calcul sur les rationnels...
+Les opérations rendent des rationnels normalisés,
+i.e. le numérateur et le dénominateur sont premiers entre eux.
+*)
+type rational = {num:int;
+ den:int}
+;;
+let print_rational x =
+ print_int x.num;
+ print_string "/";
+ print_int x.den
+;;
+
+let rec pgcd x y = if y = 0 then x else pgcd y (x mod y);;
+
+
+let r0 = {num=0;den=1};;
+let r1 = {num=1;den=1};;
+
+let rnorm x = let x = (if x.den<0 then {num=(-x.num);den=(-x.den)} else x) in
+ if x.num=0 then r0
+ else (let d=pgcd x.num x.den in
+ let d= (if d<0 then -d else d) in
+ {num=(x.num)/d;den=(x.den)/d});;
+
+let rop x = rnorm {num=(-x.num);den=x.den};;
+
+let rplus x y = rnorm {num=x.num*y.den + y.num*x.den;den=x.den*y.den};;
+
+let rminus x y = rnorm {num=x.num*y.den - y.num*x.den;den=x.den*y.den};;
+
+let rmult x y = rnorm {num=x.num*y.num;den=x.den*y.den};;
+
+let rinv x = rnorm {num=x.den;den=x.num};;
+
+let rdiv x y = rnorm {num=x.num*y.den;den=x.den*y.num};;
+
+let rinf x y = x.num*y.den < y.num*x.den;;
+let rinfeq x y = x.num*y.den <= y.num*x.den;;
+
+(* {coef;hist;strict}, où coef=[c1; ...; cn; d], représente l'inéquation
+c1x1+...+cnxn < d si strict=true, <= sinon,
+hist donnant les coefficients (positifs) d'une combinaison linéaire qui permet d'obtenir l'inéquation à partir de celles du départ.
+*)
+
+type ineq = {coef:rational list;
+ hist:rational list;
+ strict:bool};;
+
+let pop x l = l:=x::(!l);;
+
+(* sépare la liste d'inéquations s selon que leur premier coefficient est
+négatif, nul ou positif. *)
+let partitionne s =
+ let lpos=ref [] in
+ let lneg=ref [] in
+ let lnul=ref [] in
+ List.iter (fun ie -> match ie.coef with
+ [] -> raise (Failure "empty ineq")
+ |(c::r) -> if rinf c r0
+ then pop ie lneg
+ else if rinf r0 c then pop ie lpos
+ else pop ie lnul)
+ s;
+ [!lneg;!lnul;!lpos]
+;;
+(* initialise les histoires d'une liste d'inéquations données par leurs listes de coefficients et leurs strictitudes (!):
+(add_hist [(equation 1, s1);...;(équation n, sn)])
+=
+[{équation 1, [1;0;...;0], s1};
+ {équation 2, [0;1;...;0], s2};
+ ...
+ {équation n, [0;0;...;1], sn}]
+*)
+let add_hist le =
+ let n = List.length le in
+ let i=ref 0 in
+ List.map (fun (ie,s) ->
+ let h =ref [] in
+ for k=1 to (n-(!i)-1) do pop r0 h; done;
+ pop r1 h;
+ for k=1 to !i do pop r0 h; done;
+ i:=!i+1;
+ {coef=ie;hist=(!h);strict=s})
+ le
+;;
+(* additionne deux inéquations *)
+let ie_add ie1 ie2 = {coef=List.map2 rplus ie1.coef ie2.coef;
+ hist=List.map2 rplus ie1.hist ie2.hist;
+ strict=ie1.strict || ie2.strict}
+;;
+(* multiplication d'une inéquation par un rationnel (positif) *)
+let ie_emult a ie = {coef=List.map (fun x -> rmult a x) ie.coef;
+ hist=List.map (fun x -> rmult a x) ie.hist;
+ strict= ie.strict}
+;;
+(* on enlève le premier coefficient *)
+let ie_tl ie = {coef=List.tl ie.coef;hist=ie.hist;strict=ie.strict}
+;;
+(* le premier coefficient: "tête" de l'inéquation *)
+let hd_coef ie = List.hd ie.coef
+;;
+
+(* calcule toutes les combinaisons entre inéquations de tête négative et inéquations de tête positive qui annulent le premier coefficient.
+*)
+let deduce_add lneg lpos =
+ let res=ref [] in
+ List.iter (fun i1 ->
+ List.iter (fun i2 ->
+ let a = rop (hd_coef i1) in
+ let b = hd_coef i2 in
+ pop (ie_tl (ie_add (ie_emult b i1)
+ (ie_emult a i2))) res)
+ lpos)
+ lneg;
+ !res
+;;
+(* élimination de la première variable à partir d'une liste d'inéquations:
+opération qu'on itère dans l'algorithme de Fourier.
+*)
+let deduce1 s =
+ match (partitionne s) with
+ [lneg;lnul;lpos] ->
+ let lnew = deduce_add lneg lpos in
+ (List.map ie_tl lnul)@lnew
+ |_->assert false
+;;
+(* algorithme de Fourier: on élimine successivement toutes les variables.
+*)
+let deduce lie =
+ let n = List.length (fst (List.hd lie)) in
+ let lie=ref (add_hist lie) in
+ for i=1 to n-1 do
+ lie:= deduce1 !lie;
+ done;
+ !lie
+;;
+
+(* donne [] si le système a des solutions,
+sinon donne [c,s,lc]
+où lc est la combinaison linéaire des inéquations de départ
+qui donne 0 < c si s=true
+ ou 0 <= c sinon
+cette inéquation étant absurde.
+*)
+let unsolvable lie =
+ let lr = deduce lie in
+ let res = ref [] in
+ (try (List.iter (fun e ->
+ match e with
+ {coef=[c];hist=lc;strict=s} ->
+ if (rinf c r0 && (not s)) || (rinfeq c r0 && s)
+ then (res := [c,s,lc];
+ raise (Failure "contradiction found"))
+ |_->assert false)
+ lr)
+ with _ -> ());
+ !res
+;;
+
+(* Exemples:
+
+let test1=[[r1;r1;r0],true;[rop r1;r1;r1],false;[r0;rop r1;rop r1],false];;
+deduce test1;;
+unsolvable test1;;
+
+let test2=[
+[r1;r1;r0;r0;r0],false;
+[r0;r1;r1;r0;r0],false;
+[r0;r0;r1;r1;r0],false;
+[r0;r0;r0;r1;r1],false;
+[r1;r0;r0;r0;r1],false;
+[rop r1;rop r1;r0;r0;r0],false;
+[r0;rop r1;rop r1;r0;r0],false;
+[r0;r0;rop r1;rop r1;r0],false;
+[r0;r0;r0;rop r1;rop r1],false;
+[rop r1;r0;r0;r0;rop r1],false
+];;
+deduce test2;;
+unsolvable test2;;
+
+*) \ No newline at end of file
diff --git a/contrib/fourier/fourierR.ml b/contrib/fourier/fourierR.ml
new file mode 100644
index 00000000..49fa35da
--- /dev/null
+++ b/contrib/fourier/fourierR.ml
@@ -0,0 +1,630 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: fourierR.ml,v 1.14.2.2 2004/07/19 13:28:28 herbelin Exp $ *)
+
+
+
+(* La tactique Fourier ne fonctionne de manière sûre que si les coefficients
+des inéquations et équations sont entiers. En attendant la tactique Field.
+*)
+
+open Term
+open Tactics
+open Clenv
+open Names
+open Libnames
+open Tacticals
+open Tacmach
+open Fourier
+open Contradiction
+
+(******************************************************************************
+Opérations sur les combinaisons linéaires affines.
+La partie homogène d'une combinaison linéaire est en fait une table de hash
+qui donne le coefficient d'un terme du calcul des constructions,
+qui est zéro si le terme n'y est pas.
+*)
+
+type flin = {fhom:(constr , rational)Hashtbl.t;
+ fcste:rational};;
+
+let flin_zero () = {fhom=Hashtbl.create 50;fcste=r0};;
+
+let flin_coef f x = try (Hashtbl.find f.fhom x) with _-> r0;;
+
+let flin_add f x c =
+ let cx = flin_coef f x in
+ Hashtbl.remove f.fhom x;
+ Hashtbl.add f.fhom x (rplus cx c);
+ f
+;;
+let flin_add_cste f c =
+ {fhom=f.fhom;
+ fcste=rplus f.fcste c}
+;;
+
+let flin_one () = flin_add_cste (flin_zero()) r1;;
+
+let flin_plus f1 f2 =
+ let f3 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
+ flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste;
+;;
+
+let flin_minus f1 f2 =
+ let f3 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
+ flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste);
+;;
+let flin_emult a f =
+ let f2 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
+ flin_add_cste f2 (rmult a f.fcste);
+;;
+
+(*****************************************************************************)
+open Vernacexpr
+
+type ineq = Rlt | Rle | Rgt | Rge
+
+let string_of_R_constant kn =
+ match Names.repr_kn kn with
+ | MPfile dir, sec_dir, id when
+ sec_dir = empty_dirpath &&
+ string_of_dirpath dir = "Coq.Reals.Rdefinitions"
+ -> string_of_label id
+ | _ -> "constant_not_of_R"
+
+let rec string_of_R_constr c =
+ match kind_of_term c with
+ Cast (c,t) -> string_of_R_constr c
+ |Const c -> string_of_R_constant c
+ | _ -> "not_of_constant"
+
+let rec rational_of_constr c =
+ match kind_of_term c with
+ | Cast (c,t) -> (rational_of_constr c)
+ | App (c,args) ->
+ (match (string_of_R_constr c) with
+ | "Ropp" ->
+ rop (rational_of_constr args.(0))
+ | "Rinv" ->
+ rinv (rational_of_constr args.(0))
+ | "Rmult" ->
+ rmult (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | "Rdiv" ->
+ rdiv (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | "Rplus" ->
+ rplus (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | "Rminus" ->
+ rminus (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | _ -> failwith "not a rational")
+ | Const kn ->
+ (match (string_of_R_constant kn) with
+ "R1" -> r1
+ |"R0" -> r0
+ | _ -> failwith "not a rational")
+ | _ -> failwith "not a rational"
+;;
+
+let rec flin_of_constr c =
+ try(
+ match kind_of_term c with
+ | Cast (c,t) -> (flin_of_constr c)
+ | App (c,args) ->
+ (match (string_of_R_constr c) with
+ "Ropp" ->
+ flin_emult (rop r1) (flin_of_constr args.(0))
+ | "Rplus"->
+ flin_plus (flin_of_constr args.(0))
+ (flin_of_constr args.(1))
+ | "Rminus"->
+ flin_minus (flin_of_constr args.(0))
+ (flin_of_constr args.(1))
+ | "Rmult"->
+ (try (let a=(rational_of_constr args.(0)) in
+ try (let b = (rational_of_constr args.(1)) in
+ (flin_add_cste (flin_zero()) (rmult a b)))
+ with _-> (flin_add (flin_zero())
+ args.(1)
+ a))
+ with _-> (flin_add (flin_zero())
+ args.(0)
+ (rational_of_constr args.(1))))
+ | "Rinv"->
+ let a=(rational_of_constr args.(0)) in
+ flin_add_cste (flin_zero()) (rinv a)
+ | "Rdiv"->
+ (let b=(rational_of_constr args.(1)) in
+ try (let a = (rational_of_constr args.(0)) in
+ (flin_add_cste (flin_zero()) (rdiv a b)))
+ with _-> (flin_add (flin_zero())
+ args.(0)
+ (rinv b)))
+ |_->assert false)
+ | Const c ->
+ (match (string_of_R_constant c) with
+ "R1" -> flin_one ()
+ |"R0" -> flin_zero ()
+ |_-> assert false)
+ |_-> assert false)
+ with _ -> flin_add (flin_zero())
+ c
+ r1
+;;
+
+let flin_to_alist f =
+ let res=ref [] in
+ Hashtbl.iter (fun x c -> res:=(c,x)::(!res)) f;
+ !res
+;;
+
+(* Représentation des hypothèses qui sont des inéquations ou des équations.
+*)
+type hineq={hname:constr; (* le nom de l'hypothèse *)
+ htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *)
+ hleft:constr;
+ hright:constr;
+ hflin:flin;
+ hstrict:bool}
+;;
+
+(* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0
+*)
+let ineq1_of_constr (h,t) =
+ match (kind_of_term t) with
+ App (f,args) ->
+ (match kind_of_term f with
+ Const c when Array.length args = 2 ->
+ let t1= args.(0) in
+ let t2= args.(1) in
+ (match (string_of_R_constant c) with
+ "Rlt" -> [{hname=h;
+ htype="Rlt";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=true}]
+ |"Rgt" -> [{hname=h;
+ htype="Rgt";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=true}]
+ |"Rle" -> [{hname=h;
+ htype="Rle";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=false}]
+ |"Rge" -> [{hname=h;
+ htype="Rge";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=false}]
+ |_->assert false)
+ | Ind (kn,i) ->
+ if IndRef(kn,i) = Coqlib.glob_eqT then
+ let t0= args.(0) in
+ let t1= args.(1) in
+ let t2= args.(2) in
+ (match (kind_of_term t0) with
+ Const c ->
+ (match (string_of_R_constant c) with
+ "R"->
+ [{hname=h;
+ htype="eqTLR";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=false};
+ {hname=h;
+ htype="eqTRL";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=false}]
+ |_-> assert false)
+ |_-> assert false)
+ else
+ assert false
+ |_-> assert false)
+ |_-> assert false
+;;
+
+(* Applique la méthode de Fourier à une liste d'hypothèses (type hineq)
+*)
+
+let fourier_lineq lineq1 =
+ let nvar=ref (-1) in
+ let hvar=Hashtbl.create 50 in (* la table des variables des inéquations *)
+ List.iter (fun f ->
+ Hashtbl.iter (fun x c ->
+ try (Hashtbl.find hvar x;())
+ with _-> nvar:=(!nvar)+1;
+ Hashtbl.add hvar x (!nvar))
+ f.hflin.fhom)
+ lineq1;
+ let sys= List.map (fun h->
+ let v=Array.create ((!nvar)+1) r0 in
+ Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x)<-c)
+ h.hflin.fhom;
+ ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
+ lineq1 in
+ unsolvable sys
+;;
+
+(*********************************************************************)
+(* Defined constants *)
+
+let get = Lazy.force
+let constant = Coqlib.gen_constant "Fourier"
+
+(* Standard library *)
+open Coqlib
+let coq_sym_eqT = lazy (build_coq_sym_eqT ())
+let coq_False = lazy (build_coq_False ())
+let coq_not = lazy (build_coq_not ())
+let coq_eq = lazy (build_coq_eq ())
+
+(* Rdefinitions *)
+let constant_real = constant ["Reals";"Rdefinitions"]
+
+let coq_Rlt = lazy (constant_real "Rlt")
+let coq_Rgt = lazy (constant_real "Rgt")
+let coq_Rle = lazy (constant_real "Rle")
+let coq_Rge = lazy (constant_real "Rge")
+let coq_R = lazy (constant_real "R")
+let coq_Rminus = lazy (constant_real "Rminus")
+let coq_Rmult = lazy (constant_real "Rmult")
+let coq_Rplus = lazy (constant_real "Rplus")
+let coq_Ropp = lazy (constant_real "Ropp")
+let coq_Rinv = lazy (constant_real "Rinv")
+let coq_R0 = lazy (constant_real "R0")
+let coq_R1 = lazy (constant_real "R1")
+
+(* RIneq *)
+let coq_Rinv_R1 = lazy (constant ["Reals";"RIneq"] "Rinv_R1")
+
+(* Fourier_util *)
+let constant_fourier = constant ["fourier";"Fourier_util"]
+
+let coq_Rlt_zero_1 = lazy (constant_fourier "Rlt_zero_1")
+let coq_Rlt_zero_pos_plus1 = lazy (constant_fourier "Rlt_zero_pos_plus1")
+let coq_Rle_zero_pos_plus1 = lazy (constant_fourier "Rle_zero_pos_plus1")
+let coq_Rlt_mult_inv_pos = lazy (constant_fourier "Rlt_mult_inv_pos")
+let coq_Rle_zero_zero = lazy (constant_fourier "Rle_zero_zero")
+let coq_Rle_zero_1 = lazy (constant_fourier "Rle_zero_1")
+let coq_Rle_mult_inv_pos = lazy (constant_fourier "Rle_mult_inv_pos")
+let coq_Rnot_lt0 = lazy (constant_fourier "Rnot_lt0")
+let coq_Rle_not_lt = lazy (constant_fourier "Rle_not_lt")
+let coq_Rfourier_gt_to_lt = lazy (constant_fourier "Rfourier_gt_to_lt")
+let coq_Rfourier_ge_to_le = lazy (constant_fourier "Rfourier_ge_to_le")
+let coq_Rfourier_eqLR_to_le = lazy (constant_fourier "Rfourier_eqLR_to_le")
+let coq_Rfourier_eqRL_to_le = lazy (constant_fourier "Rfourier_eqRL_to_le")
+
+let coq_Rfourier_not_ge_lt = lazy (constant_fourier "Rfourier_not_ge_lt")
+let coq_Rfourier_not_gt_le = lazy (constant_fourier "Rfourier_not_gt_le")
+let coq_Rfourier_not_le_gt = lazy (constant_fourier "Rfourier_not_le_gt")
+let coq_Rfourier_not_lt_ge = lazy (constant_fourier "Rfourier_not_lt_ge")
+let coq_Rfourier_lt = lazy (constant_fourier "Rfourier_lt")
+let coq_Rfourier_le = lazy (constant_fourier "Rfourier_le")
+let coq_Rfourier_lt_lt = lazy (constant_fourier "Rfourier_lt_lt")
+let coq_Rfourier_lt_le = lazy (constant_fourier "Rfourier_lt_le")
+let coq_Rfourier_le_lt = lazy (constant_fourier "Rfourier_le_lt")
+let coq_Rfourier_le_le = lazy (constant_fourier "Rfourier_le_le")
+let coq_Rnot_lt_lt = lazy (constant_fourier "Rnot_lt_lt")
+let coq_Rnot_le_le = lazy (constant_fourier "Rnot_le_le")
+let coq_Rlt_not_le = lazy (constant_fourier "Rlt_not_le")
+
+(******************************************************************************
+Construction de la preuve en cas de succès de la méthode de Fourier,
+i.e. on obtient une contradiction.
+*)
+let is_int x = (x.den)=1
+;;
+
+(* fraction = couple (num,den) *)
+let rec rational_to_fraction x= (x.num,x.den)
+;;
+
+(* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1)))
+*)
+let int_to_real n =
+ let nn=abs n in
+ if nn=0
+ then get coq_R0
+ else
+ (let s=ref (get coq_R1) in
+ for i=1 to (nn-1) do s:=mkApp (get coq_Rplus,[|get coq_R1;!s|]) done;
+ if n<0 then mkApp (get coq_Ropp, [|!s|]) else !s)
+;;
+(* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1)))
+*)
+let rational_to_real x =
+ let (n,d)=rational_to_fraction x in
+ mkApp (get coq_Rmult,
+ [|int_to_real n;mkApp(get coq_Rinv,[|int_to_real d|])|])
+;;
+
+(* preuve que 0<n*1/d
+*)
+let tac_zero_inf_pos gl (n,d) =
+ let tacn=ref (apply (get coq_Rlt_zero_1)) in
+ let tacd=ref (apply (get coq_Rlt_zero_1)) in
+ for i=1 to n-1 do
+ tacn:=(tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacn); done;
+ for i=1 to d-1 do
+ tacd:=(tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done;
+ (tclTHENS (apply (get coq_Rlt_mult_inv_pos)) [!tacn;!tacd])
+;;
+
+(* preuve que 0<=n*1/d
+*)
+let tac_zero_infeq_pos gl (n,d)=
+ let tacn=ref (if n=0
+ then (apply (get coq_Rle_zero_zero))
+ else (apply (get coq_Rle_zero_1))) in
+ let tacd=ref (apply (get coq_Rlt_zero_1)) in
+ for i=1 to n-1 do
+ tacn:=(tclTHEN (apply (get coq_Rle_zero_pos_plus1)) !tacn); done;
+ for i=1 to d-1 do
+ tacd:=(tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done;
+ (tclTHENS (apply (get coq_Rle_mult_inv_pos)) [!tacn;!tacd])
+;;
+
+(* preuve que 0<(-n)*(1/d) => False
+*)
+let tac_zero_inf_false gl (n,d) =
+ if n=0 then (apply (get coq_Rnot_lt0))
+ else
+ (tclTHEN (apply (get coq_Rle_not_lt))
+ (tac_zero_infeq_pos gl (-n,d)))
+;;
+
+(* preuve que 0<=(-n)*(1/d) => False
+*)
+let tac_zero_infeq_false gl (n,d) =
+ (tclTHEN (apply (get coq_Rlt_not_le))
+ (tac_zero_inf_pos gl (-n,d)))
+;;
+
+let create_meta () = mkMeta(new_meta());;
+
+let my_cut c gl=
+ let concl = pf_concl gl in
+ apply_type (mkProd(Anonymous,c,concl)) [create_meta()] gl
+;;
+
+let exact = exact_check;;
+
+let tac_use h = match h.htype with
+ "Rlt" -> exact h.hname
+ |"Rle" -> exact h.hname
+ |"Rgt" -> (tclTHEN (apply (get coq_Rfourier_gt_to_lt))
+ (exact h.hname))
+ |"Rge" -> (tclTHEN (apply (get coq_Rfourier_ge_to_le))
+ (exact h.hname))
+ |"eqTLR" -> (tclTHEN (apply (get coq_Rfourier_eqLR_to_le))
+ (exact h.hname))
+ |"eqTRL" -> (tclTHEN (apply (get coq_Rfourier_eqRL_to_le))
+ (exact h.hname))
+ |_->assert false
+;;
+
+(*
+let is_ineq (h,t) =
+ match (kind_of_term t) with
+ App (f,args) ->
+ (match (string_of_R_constr f) with
+ "Rlt" -> true
+ | "Rgt" -> true
+ | "Rle" -> true
+ | "Rge" -> true
+(* Wrong:not in Rdefinitions: *) | "eqT" ->
+ (match (string_of_R_constr args.(0)) with
+ "R" -> true
+ | _ -> false)
+ | _ ->false)
+ |_->false
+;;
+*)
+
+let list_of_sign s = List.map (fun (x,_,z)->(x,z)) s;;
+
+let mkAppL a =
+ let l = Array.to_list a in
+ mkApp(List.hd l, Array.of_list (List.tl l))
+;;
+
+(* Résolution d'inéquations linéaires dans R *)
+let rec fourier gl=
+ Library.check_required_library ["Coq";"fourier";"Fourier"];
+ let goal = strip_outer_cast (pf_concl gl) in
+ let fhyp=id_of_string "new_hyp_for_fourier" in
+ (* si le but est une inéquation, on introduit son contraire,
+ et le but à prouver devient False *)
+ try (let tac =
+ match (kind_of_term goal) with
+ App (f,args) ->
+ (match (string_of_R_constr f) with
+ "Rlt" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_ge_lt))
+ (intro_using fhyp))
+ fourier)
+ |"Rle" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_gt_le))
+ (intro_using fhyp))
+ fourier)
+ |"Rgt" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_le_gt))
+ (intro_using fhyp))
+ fourier)
+ |"Rge" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_lt_ge))
+ (intro_using fhyp))
+ fourier)
+ |_->assert false)
+ |_->assert false
+ in tac gl)
+ with _ ->
+ (* les hypothèses *)
+ let hyps = List.map (fun (h,t)-> (mkVar h,(body_of_type t)))
+ (list_of_sign (pf_hyps gl)) in
+ let lineq =ref [] in
+ List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq))
+ with _ -> ())
+ hyps;
+ (* lineq = les inéquations découlant des hypothèses *)
+ if !lineq=[] then Util.error "No inequalities";
+ let res=fourier_lineq (!lineq) in
+ let tac=ref tclIDTAC in
+ if res=[]
+ then (print_string "Tactic Fourier fails.\n";
+ flush stdout)
+ (* l'algorithme de Fourier a réussi: on va en tirer une preuve Coq *)
+ else (match res with
+ [(cres,sres,lc)]->
+ (* lc=coefficients multiplicateurs des inéquations
+ qui donnent 0<cres ou 0<=cres selon sres *)
+ (*print_string "Fourier's method can prove the goal...";flush stdout;*)
+ let lutil=ref [] in
+ List.iter
+ (fun (h,c) ->
+ if c<>r0
+ then (lutil:=(h,c)::(!lutil)(*;
+ print_rational(c);print_string " "*)))
+ (List.combine (!lineq) lc);
+ (* on construit la combinaison linéaire des inéquation *)
+ (match (!lutil) with
+ (h1,c1)::lutil ->
+ let s=ref (h1.hstrict) in
+ let t1=ref (mkAppL [|get coq_Rmult;
+ rational_to_real c1;
+ h1.hleft|]) in
+ let t2=ref (mkAppL [|get coq_Rmult;
+ rational_to_real c1;
+ h1.hright|]) in
+ List.iter (fun (h,c) ->
+ s:=(!s)||(h.hstrict);
+ t1:=(mkAppL [|get coq_Rplus;
+ !t1;
+ mkAppL [|get coq_Rmult;
+ rational_to_real c;
+ h.hleft|] |]);
+ t2:=(mkAppL [|get coq_Rplus;
+ !t2;
+ mkAppL [|get coq_Rmult;
+ rational_to_real c;
+ h.hright|] |]))
+ lutil;
+ let ineq=mkAppL [|if (!s) then get coq_Rlt else get coq_Rle;
+ !t1;
+ !t2 |] in
+ let tc=rational_to_real cres in
+ (* puis sa preuve *)
+ let tac1=ref (if h1.hstrict
+ then (tclTHENS (apply (get coq_Rfourier_lt))
+ [tac_use h1;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c1)])
+ else (tclTHENS (apply (get coq_Rfourier_le))
+ [tac_use h1;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c1)])) in
+ s:=h1.hstrict;
+ List.iter (fun (h,c)->
+ (if (!s)
+ then (if h.hstrict
+ then tac1:=(tclTHENS (apply (get coq_Rfourier_lt_lt))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])
+ else tac1:=(tclTHENS (apply (get coq_Rfourier_lt_le))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)]))
+ else (if h.hstrict
+ then tac1:=(tclTHENS (apply (get coq_Rfourier_le_lt))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])
+ else tac1:=(tclTHENS (apply (get coq_Rfourier_le_le))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])));
+ s:=(!s)||(h.hstrict))
+ lutil;
+ let tac2= if sres
+ then tac_zero_inf_false gl (rational_to_fraction cres)
+ else tac_zero_infeq_false gl (rational_to_fraction cres)
+ in
+ tac:=(tclTHENS (my_cut ineq)
+ [tclTHEN (change_in_concl None
+ (mkAppL [| get coq_not; ineq|]
+ ))
+ (tclTHEN (apply (if sres then get coq_Rnot_lt_lt
+ else get coq_Rnot_le_le))
+ (tclTHENS (Equality.replace
+ (mkAppL [|get coq_Rminus;!t2;!t1|]
+ )
+ tc)
+ [tac2;
+ (tclTHENS
+ (Equality.replace
+ (mkApp (get coq_Rinv,
+ [|get coq_R1|]))
+ (get coq_R1))
+(* en attendant Field, ça peut aider Ring de remplacer 1/1 par 1 ... *)
+
+ [tclORELSE
+ (Ring.polynom [])
+ tclIDTAC;
+ (tclTHEN (apply (get coq_sym_eqT))
+ (apply (get coq_Rinv_R1)))]
+
+ )
+ ]));
+ !tac1]);
+ tac:=(tclTHENS (cut (get coq_False))
+ [tclTHEN intro (contradiction None);
+ !tac])
+ |_-> assert false) |_-> assert false
+ );
+(* ((tclTHEN !tac (tclFAIL 1 (* 1 au hasard... *))) gl) *)
+ (!tac gl)
+(* ((tclABSTRACT None !tac) gl) *)
+
+;;
+
+(*
+let fourier_tac x gl =
+ fourier gl
+;;
+
+let v_fourier = add_tactic "Fourier" fourier_tac
+*)
+
diff --git a/contrib/fourier/g_fourier.ml4 b/contrib/fourier/g_fourier.ml4
new file mode 100644
index 00000000..05c3adbd
--- /dev/null
+++ b/contrib/fourier/g_fourier.ml4
@@ -0,0 +1,17 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: g_fourier.ml4,v 1.1.12.1 2004/07/16 19:30:11 herbelin Exp $ *)
+
+open FourierR
+
+TACTIC EXTEND Fourier
+ [ "FourierZ" (* constr_list(l) *) ] -> [ fourier (* l *) ]
+END
diff --git a/contrib/funind/tacinv.ml4 b/contrib/funind/tacinv.ml4
new file mode 100644
index 00000000..d2ae12d6
--- /dev/null
+++ b/contrib/funind/tacinv.ml4
@@ -0,0 +1,853 @@
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(*s FunInv Tactic: inversion following the shape of a function. *)
+(* Use:
+ \begin{itemize}
+ \item The Tacinv directory must be in the path (-I <path> option)
+ \item use the bytecode version of coqtop or coqc (-byte option), or make a
+ coqtop
+ \item Do [Require Tacinv] to be able to use it.
+ \item For syntax see Tacinv.v
+ \end{itemize}
+*)
+
+
+(*i*)
+open Termops
+open Equality
+open Names
+open Pp
+open Tacmach
+open Proof_type
+open Tacinterp
+open Tactics
+open Tacticals
+open Term
+open Util
+open Printer
+open Reductionops
+open Inductiveops
+open Coqlib
+open Refine
+open Typing
+open Declare
+open Decl_kinds
+open Safe_typing
+open Vernacinterp
+open Evd
+open Environ
+open Entries
+open Setoid_replace
+open Tacinvutils
+(*i*)
+
+module Smap = Map.Make(struct type t = constr let compare = compare end)
+let smap_to_list m = Smap.fold (fun c cb l -> (c,cb)::l) m []
+let merge_smap m1 m2 = Smap.fold (fun c cb m -> Smap.add c cb m) m1 m2
+let rec listsuf i l = if i<=0 then l else listsuf (i-1) (List.tl l)
+let rec listpref i l = if i<=0 then [] else List.hd l :: listpref (i-1) (List.tl l)
+
+let mkthesort = mkProp (* would like to put Type here, but with which index? *)
+
+(* this is the prefix used to name equality hypothesis generated by
+ case analysis*)
+let equality_hyp_string = "_eg_"
+
+(* bug de refine: on doit ssavoir sur quelle hypothese on se trouve. valeur
+ initiale au debut de l'appel a la fonction proofPrinc: 1. *)
+let nthhyp = ref 1
+ (*debugging*)
+ (* let rewrules = ref [] *)
+ (*debugging*)
+let debug i = prstr ("DEBUG "^ string_of_int i ^"\n")
+let pr2constr = (fun c1 c2 -> prconstr c1; prstr " <---> "; prconstr c2)
+(* Operations on names *)
+let id_of_name = function
+ Anonymous -> id_of_string "H"
+ | Name id -> id;;
+let string_of_name nme = string_of_id (id_of_name nme)
+ (*end debugging *)
+
+let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c
+
+let rec collect_cases l =
+ match l with
+ | [||] -> [||],[],[],[||],[||],[]
+ | arr ->
+ let (a,c,d,f,e,g)= arr.(0) in
+ let aa,lc,ld,_,_,_ =
+ collect_cases (Array.sub arr 1 ((Array.length arr)-1)) in
+ Array.append [|a|] aa , (c@lc) , (d@ld) , f , e, g
+
+let rec collect_pred l =
+ match l with
+ | [] -> [],[],[]
+ | (e1,e2,e3)::l' -> let a,b,c = collect_pred l' in (e1::a),(e2::b),(e3::c)
+
+
+(*s specific manipulations on constr *)
+let lift1_leqs leq=
+ List.map
+ (function (r,(typofg,g,d))
+ -> lift 1 r, (lift 1 typofg, lift 1 g , lift 1 d)) leq
+
+let lift1_relleqs leq= List.map (function (r,x) -> lift 1 r,x) leq
+
+(* WARNING: In the types, we don't lift the rels in the type. This is
+ intentional. Use with care. *)
+let lift1_lvars lvars= List.map
+ (function x,(nme,c) -> lift 1 x, (nme, (*lift 1*) c)) lvars
+
+let pop1_levar levars = List.map (function ev,tev -> ev, popn 1 tev) levars
+
+
+let rec add_n_dummy_prod t n =
+ if n<=0 then t
+ else add_n_dummy_prod (mkNamedProd (id_of_string "DUMMY") mkthesort t) (n-1)
+
+(* [add_lambdas t gl [csr1;csr2...]] returns [[x1:type of csr1]
+ [x2:type of csr2] t [csr <- x1 ...]], names of abstracted variables
+ are not specified *)
+let rec add_lambdas t gl lcsr =
+ match lcsr with
+ | [] -> t
+ | csr::lcsr' ->
+ let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in
+ lambda_id hyp_csr hyptyp (add_lambdas t gl lcsr')
+
+(* [add_pis t gl [csr1;csr2...]] returns ([x1] :type of [csr1]
+ [x2]:type of csr2) [t]*)
+let rec add_pis t gl lcsr =
+ match lcsr with
+ | [] -> t
+ | csr::lcsr' ->
+ let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in
+ prod_id hyp_csr hyptyp (add_pis t gl lcsr')
+
+let mkProdEg teq eql eqr concl =
+ mkProd (name_of_string "eg", mkEq teq eql eqr, lift 1 concl)
+
+let eqs_of_beqs x =
+ List.map (function (_,(a,b,c)) -> (Anonymous, mkEq a b c)) x
+
+
+let rec eqs_of_beqs_named_aux s i l =
+ match l with
+ | [] -> []
+ | (r,(a,b,c))::l' ->
+ (Name(id_of_string (s^ string_of_int i)), mkEq a b c)
+ ::eqs_of_beqs_named_aux s (i-1) l'
+
+
+let eqs_of_beqs_named s l = eqs_of_beqs_named_aux s (List.length l) l
+
+let rec patternify ltypes c nme =
+ match ltypes with
+ | [] -> c
+ | (mv,t)::ltypes' ->
+ let c'= substitterm 0 mv (mkRel 1) c in
+ let tlift = lift (List.length ltypes') t in
+ let res =
+ patternify ltypes' (mkLambda (newname_append nme "rec", tlift, c')) nme in
+ res
+
+let rec npatternify ltypes c =
+ match ltypes with
+ | [] -> c
+ | (mv,nme,t)::ltypes' ->
+ let c'= substitterm 0 mv (mkRel 1) c in
+(* let _ = prconstr c' in *)
+ let tlift = lift (List.length ltypes') t in
+ let res =
+ npatternify ltypes' (mkLambda (newname_append nme "", tlift, c')) in
+(* let _ = prconstr res in *)
+ res
+
+let rec apply_levars c lmetav =
+ match lmetav with
+ | [] -> [],c
+ | (i,typ) :: lmetav' ->
+ let levars,trm = apply_levars c lmetav' in
+ let exkey = mknewexist() in
+ ((exkey,typ)::levars), applistc trm [mkEvar exkey]
+ (* EXPERIMENT le refine est plus long si on met un cast:
+ ((exkey,typ)::levars), mkCast ((applistc trm [mkEvar exkey]),typ) *)
+
+
+let prod_change_concl c newconcl =
+ let lv,_ = decompose_prod c in prod_it newconcl lv
+
+let lam_change_concl c newconcl =
+ let lv,_ = decompose_prod c in lam_it newconcl lv
+
+
+let rec mkAppRel c largs n =
+ match largs with
+ | [] -> c
+ | arg::largs' ->
+ let newc = mkApp (c,[|(mkRel n)|]) in mkAppRel newc largs' (n-1)
+
+let applFull c typofc =
+ let lv,t = decompose_prod typofc in
+ let ltyp = List.map fst lv in
+ let res = mkAppRel c ltyp (List.length ltyp) in
+ res
+
+
+let rec build_rel_map typ type_of_b =
+ match (kind_of_term typ), (kind_of_term type_of_b) with
+ Evar _ , Evar _ -> Smap.empty
+ | Rel i, Rel j -> if i=j then Smap.empty
+ else Smap.add typ type_of_b Smap.empty
+ | Prod (name,c1,c2), Prod (nameb,c1b,c2b) ->
+ let map1 = build_rel_map c1 c1b in
+ let map2 = build_rel_map (pop c2) (pop c2b) in
+ merge_smap map1 map2
+ | App (f,args), App (fb,argsb) ->
+ (try build_rel_map_list (Array.to_list args) (Array.to_list argsb)
+ with Invalid_argument _ ->
+ failwith ("Could not generate case annotation. "^
+ "Two application with different length"))
+ | Const c1, Const c2 -> if c1=c2 then Smap.empty
+ else failwith ("Could not generate case annotation. "^
+ "Two different constants in a case annotation.")
+ | Ind c1, Ind c2 -> if c1=c2 then Smap.empty
+ else failwith ("Could not generate case annotation. "^
+ "Two different constants in a case annotation.")
+ | _,_ -> failwith ("Could not generate case annotation. "^
+ "Incompatibility between annotation and actual type")
+and build_rel_map_list ltyp ltype_of_b =
+ List.fold_left2 (fun a b c -> merge_smap a (build_rel_map b c))
+ Smap.empty ltyp ltype_of_b
+
+
+(*s Use (and proof) of the principle *)
+
+(*
+ \begin {itemize}
+ \item [concl] ([constr]): conclusions, cad (xi:ti)gl, ou gl est le but a
+ prouver, et xi:ti correspondent aux arguments donnés à la tactique. On
+ enlève un produit à chaque fois qu'on rencontre un binder, sans lift ou pop.
+ Initialement: une seule conclusion, puis specifique a chaque branche.
+ \item[absconcl] ([constr array]): les conclusions (un predicat pour chaque
+ fixp. mutuel) patternisées pour pouvoir être appliquées.
+ \item [mimick] ([constr]): le terme qu'on imite. On plonge dedans au fur et
+ à mesure, sans lift ni pop.
+ \item [nmefonc] ([constr array]): la constante correspondant à la fonction
+ appelée, permet de remplacer les appels recursifs par des appels à la
+ constante correspondante (non pertinent (et inutile) si on permet l'appel de
+ la tactique sur une terme donné directement (au lieu d'une constante comme
+ pour l'instant)).
+ \item [fonc] ([int*int]) : bornes des indices des variable correspondant aux
+ appels récursifs (plusieurs car fixp. mutuels), utile pour reconnaître les
+ appels récursifs (ATTENTION: initialement vide, reste vide tant qu'on n'est
+ pas dans un fix).
+ \end{itemize}
+*)
+
+type mimickinfo =
+ {
+ concl: constr;
+ absconcl: constr array;
+ mimick: constr;
+ env: env;
+ sigma: Evd.evar_map;
+ nmefonc: constr array;
+ fonc: int * int;
+ doeqs: bool; (* this reference is to toggle building of equalities during
+ the building of the principle (default is true) *)
+ fix: bool (* did I already went through a fix or case constr? lambdas
+ found before a case or a fix are treated as parameters of
+ the induction principle *)
+ }
+
+(*
+ \begin{itemize}
+ \item [lst_vars] ([(constr*(name*constr)) list]): liste des variables
+ rencontrées jusqu'à maintenant.
+ \item [lst_eqs] ([constr list]): liste d'équations engendrées au cours du
+ parcours, cette liste grandit à chaque case, et il faut lifter le tout à
+ chaque binder.
+ \item [lst_recs] ([constr list]): listes des appels récursifs rencontrés
+ jusque là.
+ \end{itemize}
+
+ Cette fonction rends un nuplet de la forme:
+
+ [t,
+ [(ev1,tev1);(ev2,tev2)..],
+ [(i1,j1,k1);(i2,j2,k2)..],
+ [|c1;c2..|],
+ [|typ1;typ2..|],
+ [(param,tparam)..]]
+
+ *)
+
+(* This could be the return type of [proofPrinc], but not yet *)
+type funind =
+ {
+ princ:constr;
+ evarlist: (constr*Term.types) list;
+ hypnum: (int*int*int) list;
+ mutfixmetas: constr array ;
+ conclarray: types array;
+ params:(constr*name*constr) list
+ }
+
+(*
+ où:
+
+ \begin{itemize}
+
+ \item[t] est le principe demandé, il contient des meta variables
+ représentant soit des trous à prouver plus tard, soit les conclusions à
+ compléter avant de rendre le terme (suivant qu'on utilise le principe pour
+ faire refine ou functional scheme). Il y plusieurs conclusions si plusieurs
+ fonction mutuellement récursives) voir la suite.
+
+ \item[[(ev1,tev1);(ev2,tev2)...]] est l'ensemble des méta variables
+ correspondant à des trous. [evi] est la meta variable, [tevi] est son type.
+
+ \item[(in,jn,kn)] sont les nombres respectivement de variables, d'équations,
+ et d'hypothèses de récurrence pour le but n. Permet de faire le bon nombre
+ d'intros et des rewrite au bons endroits dans la suite.
+
+ \item[[|c1;c2...|]] est un tableau de meta variables correspondant à chacun
+ des prédicats mutuellement récursifs construits.
+
+ \item[[|typ1;typ2...|]] est un tableau contenant les conclusions respectives
+ de chacun des prédicats mutuellement récursifs. Permet de finir la
+ construction du principe.
+
+ \item[[(param,tparam)..]] est la liste des paramètres (les lambda au-dessus
+ du fix) du fixpoint si fixpoint il y a.
+
+ \end{itemize}
+*)
+let heq_prefix = "H_eq_"
+
+type kind_of_hyp = Var | Eq (*| Rec*)
+
+let rec proofPrinc mi lst_vars lst_eqs lst_recs:
+ constr * (constr*Term.types) list * (int*int*int) list
+ * constr array * types array * (constr*name*constr) list =
+ match kind_of_term mi.mimick with
+ (* Fixpoint: we reproduce the Fix, fonc becomes (1,nbofmutf) to point on
+ the name of recursive calls *)
+ | Fix((iarr,i),(narr,tarr,carr)) ->
+
+ (* We construct the right predicates for each mutual fixpt *)
+ let rec build_pred n =
+ if n >= Array.length iarr then []
+ else
+ let ftyp = Array.get tarr n in
+ let gl = mknewmeta() in
+ let gl_app = applFull gl ftyp in
+ let pis = prod_change_concl ftyp gl_app in
+ let gl_abstr = lam_change_concl ftyp gl_app in
+ (gl,gl_abstr,pis):: build_pred (n+1) in
+
+ let evarl,predl,pisl = collect_pred (build_pred 0) in
+ let newabsconcl = Array.of_list predl in
+ let evararr = Array.of_list evarl in
+ let pisarr = Array.of_list pisl in
+ let newenv = push_rec_types (narr,tarr,carr) mi.env in
+
+ let rec collect_fix n =
+ if n >= Array.length iarr then [],[],[],[]
+ else
+ let nme = Array.get narr n in
+ let c = Array.get carr n in
+ (* rappelle sur le sous-terme, on ajoute un niveau de
+ profondeur (lift) parce que Fix est un binder. *)
+ let newmi = {mi with concl=(pisarr.(n)); absconcl=newabsconcl;
+ mimick=c; fonc=(1,((Array.length iarr)));env=newenv;fix=true} in
+ let appel_rec,levar,lposeq,_,evarrarr,parms =
+ proofPrinc newmi (lift1_lvars lst_vars)
+ (lift1_leqs lst_eqs) (lift1L lst_recs) in
+ let lnme,lappel_rec,llevar,llposeq = collect_fix (n+1) in
+ (nme::lnme),(appel_rec::lappel_rec),(levar@llevar), (lposeq@llposeq) in
+
+ let lnme,lappel_rec,llevar,llposeq =collect_fix 0 in
+ let lnme' = List.map (fun nme -> newname_append nme "_ind") lnme in
+ let anme = Array.of_list lnme' in
+ let aappel_rec = Array.of_list lappel_rec in
+ (* llevar are put outside the fix, so one level of rel must be removed *)
+ mkFix((iarr,i),(anme, pisarr,aappel_rec)),(pop1_levar llevar),llposeq,evararr,pisarr,[]
+
+ (* <pcase> Cases b of arrPt end.*)
+ | Case(cinfo, pcase, b, arrPt) ->
+
+ let prod_pcase,_ = decompose_lam pcase in
+ let nmeb,lastprod_pcase = List.hd prod_pcase in
+ let b'= apply_leqtrpl_t b lst_eqs in
+ let type_of_b = Typing.type_of mi.env mi.sigma b in
+ let new_lst_recs = lst_recs @ hdMatchSub_cpl b mi.fonc in
+ (* Replace the calls to the function (recursive calls) by calls to the
+ corresponding constant: *)
+ let d,f = mi.fonc in
+ let res = ref b' in
+ let _ = for i = d to f do
+ res := substitterm 0 (mkRel i) mi.nmefonc.(f-i) !res done in
+ let newb = !res in
+
+ (* [fold_proof t l n] rend le resultat de l'appel recursif sur les
+ elements de la liste l (correpsondant a arrPt), appele avec les bons
+ arguments: [concl] devient [(DUMMY1:t1;...;DUMMY:tn)concl'], ou [n]
+ est le nombre d'arguments du constructeur considéré (FIX: Hormis les
+ parametres!!), et [concl'] est concl ou l'on a réécrit [b] en ($c_n$
+ [rel1]...).*)
+
+ let rec fold_proof nth_construct eltPt' =
+ (* mise a jour de concl pour l'interieur du case, concl'= concl[b <- C x3
+ x2 x1... ], sans quoi les annotations ne sont plus coherentes *)
+ let cstr_appl,nargs = nth_dep_constructor type_of_b nth_construct in
+ let concl'' =
+ substitterm 0 (lift nargs b) cstr_appl (lift nargs mi.concl) in
+ let neweq = mkEq type_of_b newb (popn nargs cstr_appl) in
+ let concl_dummy = add_n_dummy_prod concl'' nargs in
+ let lsteqs_rew = apply_eq_leqtrpl lst_eqs neweq in
+ let new_lsteqs =
+ (mkRel (0-nargs),(type_of_b,newb, popn nargs cstr_appl))::lsteqs_rew in
+ let a',a'' = decompose_lam_n nargs eltPt' in
+ let newa'' =
+ if mi.doeqs
+ then mkLambda (name_of_string heq_prefix,lift nargs neweq,lift 1 a'')
+ else a'' in
+ let newmimick = lamn nargs a' newa'' in
+ let b',b'' = decompose_prod_n nargs concl_dummy in
+ let newb'' =
+ if mi.doeqs
+ then mkProd (name_of_string heq_prefix,lift nargs neweq,lift 1 b'')
+ else b'' in
+ let newconcl = prodn nargs b' newb'' in
+ let newmi = {mi with mimick=newmimick; concl=newconcl; fix=true} in
+ let a,b,c,d,e,p = proofPrinc newmi lst_vars new_lsteqs new_lst_recs in
+ a,b,c,d,e,p
+ in
+
+ let arrPt_proof,levar,lposeq,evararr,absc,_ =
+ collect_cases (Array.mapi fold_proof arrPt) in
+ let prod_pcase,concl_pcase = decompose_lam pcase in
+ let nme,typ = List.hd prod_pcase in
+ let suppllam_pcase = List.tl prod_pcase in
+ (* je remplace b par rel1 (apres avoir lifte un coup) dans la
+ future annotation du futur case: ensuite je mettrai un lambda devant *)
+ let typesofeqs' = eqs_of_beqs_named equality_hyp_string lst_eqs in
+ (* let typesofeqs = prod_it_lift typesofeqs' mi.concl in *)
+ let typesofeqs = mi.concl in
+ let typeof_case'' =
+ substitterm 0 (lift 1 b) (mkRel 1) (lift 1 typesofeqs) in
+
+ (* C'est un peu compliqué ici: en cas de type inductif vraiment dépendant
+ le piquant du case [pcase] contient des lambdas supplémentaires en tête
+ je les ai dans la variable [suppllam_pcase]. Le problème est que la
+ conclusion du piquant doit faire référence à ces variables plutôt qu'à
+ celle de l'exterieur. Ce qui suit permet de changer les reference de
+ newpacse' pour pointer vers les lambda du piquant. On procède comme
+ suit: on repère les rels qui pointent à l'interieur du piquant dans la
+ fonction imitée, pour ça on parcourt le dernier lambda du piquant (qui
+ contient le type de l'argument du case), et on remplace les rels
+ correspondant dans la preuve construite. *)
+
+ (* typ vient du piquant, type_of_b vient du typage de b.*)
+
+ let rel_smap =
+ if List.length suppllam_pcase=0 then Smap.empty else
+ build_rel_map (lift (List.length suppllam_pcase) type_of_b) typ in
+ let rel_map = smap_to_list rel_smap in
+ let rec substL l c =
+ match l with
+ [] -> c
+ | ((e,e') ::l') -> substL l' (substitterm 0 e (lift 1 e') c) in
+ let newpcase' = substL rel_map typeof_case'' in
+ let neweq = mkEq (lift (List.length suppllam_pcase + 1) type_of_b)
+ (lift (List.length suppllam_pcase + 1) newb) (mkRel 1) in
+ let newpcase =
+ if mi.doeqs then
+ mkProd (name_of_string "eg", neweq, lift 1 newpcase') else newpcase'
+ in
+ (* construction du dernier lambda du piquant. *)
+ let typeof_case' = mkLambda (newname_append nme "_ind" ,typ, newpcase) in
+ (* ajout des lambdas supplémentaires (type dépendant) du piquant. *)
+ let typeof_case =
+ lamn (List.length suppllam_pcase) suppllam_pcase typeof_case' in
+ let trm' = mkCase (cinfo,typeof_case,newb, arrPt_proof) in
+ let trm =
+ if mi.doeqs then mkApp (trm',[|(mkRefl type_of_b newb)|])
+ else trm' in
+ trm,levar,lposeq,evararr,absc,[] (* fix parms here (fix inside case)*)
+
+ | Lambda(nme, typ, cstr) ->
+ let _, _, cconcl = destProd mi.concl in
+ let d,f=mi.fonc in
+ let newenv = push_rel (nme,None,typ) mi.env in
+ let newmi = {mi with concl=cconcl; mimick=cstr; env=newenv;
+ fonc=((if d > 0 then d+1 else 0),(if f > 0 then f+1 else 0))} in
+ let newlst_var = (* if this lambda is a param, then don't add it here *)
+ if mi.fix then (mkRel 1,(nme,typ)) :: lift1_lvars lst_vars
+ else (*(mkRel 1,(nme,typ)) :: *) lift1_lvars lst_vars in
+ let rec_call,levar,lposeq,evararr,absc,parms =
+ proofPrinc newmi newlst_var (lift1_leqs lst_eqs) (lift1L lst_recs) in
+ (* are we inside a fixpoint or a case? then this is a normal lambda *)
+ if mi.fix then mkLambda (nme,typ,rec_call) , levar, lposeq,evararr,absc,[]
+ else (* otherwise this is a parameter *)
+ let metav = mknewmeta() in
+ let substmeta t = popn 1 (substitterm 0 (mkRel 1) metav t) in
+ let newrec_call = substmeta rec_call in
+ let newlevar = List.map (fun ev,tev -> ev, substmeta tev) levar in
+ let newabsc = Array.map substmeta absc in
+ newrec_call,newlevar,lposeq,evararr,newabsc,((metav,nme, typ)::parms)
+
+ | LetIn(nme,cstr1, typ, cstr) ->
+ failwith ("I don't deal with let ins yet. "^
+ "Please expand them before applying this function.")
+
+ | u ->
+ let varrels = List.rev (List.map fst lst_vars) in
+ let varnames = List.map snd lst_vars in
+ let nb_vars = (List.length varnames) in
+ let nb_eqs = (List.length lst_eqs) in
+ let eqrels = List.map fst lst_eqs in
+ (* [terms_recs]: appel rec du fixpoint, On concatène les appels recs
+ trouvés dans les let in et les Cases. *)
+ (* TODO: il faudra gérer plusieurs pt fixes imbriqués ? *)
+ let terms_recs = lst_recs @ (hdMatchSub_cpl mi.mimick mi.fonc) in
+
+ (*c construction du terme: application successive des variables, des
+ egalites et des appels rec, a la variable existentielle correspondant a
+ l'hypothese de recurrence en cours. *)
+ (* d'abord, on fabrique les types des appels recursifs en replacant le nom
+ de des fonctions par les predicats dans [terms_recs]: [(f_i t u v)]
+ devient [(P_i t u v)] *)
+ (* TODO optimiser ici: *)
+ let appsrecpred = exchange_reli_arrayi_L mi.absconcl mi.fonc terms_recs in
+ let typeofhole'' = prod_it_anonym_lift mi.concl appsrecpred in
+ let typeofhole = prodn nb_vars varnames typeofhole'' in
+
+ (* Un bug de refine m'oblige à mettre ici un H (meta variable à ce point,
+ mais remplacé par H avant le refine) au lieu d'un '?', je mettrai les
+ '?' à la fin comme ça [(([H1,H2,H3...] ...) ? ? ?)] *)
+
+ let newmeta = mknewmeta() in
+ let concl_with_var = applistc newmeta varrels in
+ let conclrecs = applistc concl_with_var terms_recs in
+ conclrecs,[newmeta,typeofhole], [nb_vars,(List.length terms_recs)
+ ,nb_eqs],[||],mi.absconcl,[]
+
+
+
+let mkevarmap_aux ex = let x,y = ex in (mkevarmap_from_listex x),y
+
+(* Interpretation of constr's *)
+let constr_of_Constr c = Constrintern.interp_constr Evd.empty (Global.env()) c
+
+
+(* TODO: deal with any term, not only a constant. *)
+let interp_fonc_tacarg fonctac gl =
+ (* [fonc] is the constr corresponding to fontact not unfolded,
+ if [fonctac] is a (qualified) name then this is a [const] ?. *)
+(* let fonc = constr_of_Constr fonctac in *)
+ (* TODO: replace the [with _ -> ] by something more precise in
+ the following. *)
+ (* [def_fonc] is the definition of fonc. TODO: We should do this only
+ if [fonc] is a const, and take [fonc] otherwise.*)
+ try fonctac, pf_const_value gl (destConst fonctac)
+ with _ -> failwith ("don't know how to deal with this function "
+ ^"(DEBUG:is it a constante?)")
+
+
+
+
+(* [invfun_proof fonc def_fonc gl_abstr pis] builds the principle,
+ following the shape of [def_fonc], [fonc] is the constant
+ corresponding to [def_func] (or a reduced form of it ?), gl_abstr and
+ pis are the goal to be proved, of the form [x,y...]g and (x.y...)g.
+
+ This function calls the big function proofPrinc. *)
+
+let invfun_proof fonc def_fonc gl_abstr pis env sigma =
+ let mi = {concl=pis; absconcl=gl_abstr; mimick=def_fonc; env=env;
+ sigma=sigma; nmefonc=fonc; fonc=(0,0); doeqs=true; fix=false} in
+ let princ_proof,levar,lposeq,evararr,absc,parms = proofPrinc mi [] [] [] in
+ princ_proof,levar,lposeq,evararr,absc,parms
+
+(* Do intros [i] times, then do rewrite on all introduced hyps which are called
+ like [heq_prefix], FIX: have another filter than the name. *)
+let rec iterintro i =
+ if i<=0 then tclIDTAC else
+ tclTHEN
+ (tclTHEN
+ intro
+ (iterintro (i-1)))
+ (fun gl ->
+ (tclREPEAT
+ (tclNTH_HYP i
+ (fun hyp ->
+ let hypname = (string_of_id (destVar hyp)) in
+ let sub =
+ try String.sub hypname 0 (String.length heq_prefix)
+ with _ -> "" (* different than [heq_prefix] *) in
+ if sub=heq_prefix then rewriteLR hyp else tclFAIL 0 "Cannot rewrite")
+ )) gl)
+
+
+(*
+ (fun hyp gl ->
+ let _ = print_string ("nthhyp= "^ string_of_int i) in
+ if isConst hyp && ((name_of_const hyp)==heq_prefix) then
+ let _ = print_string "YES\n" in
+ rewriteLR hyp gl
+ else
+ let _ = print_string "NO\n" in
+ tclIDTAC gl)
+ *)
+
+(* [invfun_basic C listargs_ids gl dorew lposeq] builds the tactic
+ which:
+ \begin{itemize}
+ \item Do refine on C (the induction principle),
+ \item try to Clear listargs_ids
+ \item if boolean dorew is true, then intro all new hypothesis, and
+ try rewrite on those hypothesis that are equalities.
+ \end{itemize}
+*)
+
+let invfun_basic open_princ_proof_applied listargs_ids gl dorew lposeq =
+ (tclTHEN_i
+ (tclTHEN
+ (tclTHEN
+ (* Refine on the right term (following the sheme of the
+ given function) *)
+ (fun gl -> refine open_princ_proof_applied gl)
+ (* Clear the hypothesis given as arguments of the tactic
+ (because they are generalized) *)
+ (tclTHEN simpl_in_concl (tclTRY (clear listargs_ids))))
+ (* Now we introduce the created hypothesis, and try rewrite on
+ equalities due to case analysis *)
+ (fun gl -> (tclIDTAC gl)))
+ (fun i gl ->
+ if not dorew then tclIDTAC gl
+ else
+ (* d,m,f correspond respectively to vars, induction hyps and
+ equalities*)
+ let d,m,f = List.nth lposeq (i-1) in
+ tclTHEN (iterintro (d)) (tclDO m (tclTRY intro)) gl)
+ )
+ gl
+
+
+
+
+(* This function trys to reduce instanciated arguments, provided they
+ are of the form [(C t u v...)] where [C] is a constructor, and
+ provided that the argument is not the argument of a fixpoint (i.e. the
+ argument corresponds to a simple lambda) . *)
+let rec applistc_iota cstr lcstr env sigma =
+ match lcstr with
+ | [] -> cstr,[]
+ | arg::lcstr' ->
+ let arghd =
+ if isApp arg then let x,_ = destApplication arg in x else arg in
+ if isConstruct arghd (* of the form [(C ...)]*)
+ then
+ applistc_iota (Tacred.nf env sigma (nf_beta (applistc cstr [arg])))
+ lcstr' env sigma
+ else
+ try
+ let nme,typ,suite = destLambda cstr in
+ let c, l = applistc_iota suite lcstr' env sigma in
+ mkLambda (nme,typ,c), arg::l
+ with _ -> cstr,arg::lcstr' (* the arg does not correspond to a lambda*)
+
+
+
+(* TODO: ne plus mettre les sous-but à l'exterieur, mais à l'intérieur (le bug
+ de refine est normalement resolu). Ca permettra 2 choses: d'une part que
+ les preuves soient plus simple, et d'autre part de fabriquer un terme de
+ refine qui pourra s'aapliquer SANS FAIRE LES INTROS AVANT, ce qui est bcp
+ mieux car fonctionne comme induction et plus comme inversion (pas de perte
+ de connexion entre les hypothèse et les variables). *)
+
+(*s Tactic that makes induction and case analysis following the shape
+ of a function (idf) given with arguments (listargs) *)
+let invfun c l dorew gl =
+(* \begin{itemize}
+ \item [fonc] = the constant corresponding to the function
+ (necessary for equalities of the form [(f x1 x2 ...)=...] where
+ [f] is the recursive function).
+ \item [def_fonc] = body of the function, where let ins have
+ been expanded. *)
+ let fonc, def_fonc' = interp_fonc_tacarg c gl in
+ let def_fonc'',listargs' =
+ applistc_iota def_fonc' l (pf_env gl) (project gl) in
+ let def_fonc = expand_letins def_fonc'' in
+ (* quantifies on previously generalized arguments.
+ [(x1:T1)...g[arg1 <- x1 ...]] *)
+ let pis = add_pis (pf_concl gl) gl listargs' in
+ (* princ_proof builds the principle *)
+ let _ = resetmeta() in
+ let princ_proof,levar, lposeq,evararr,_,parms =
+ invfun_proof [|fonc|] def_fonc [||] pis (pf_env gl) (project gl) in
+
+ (* Generalize the goal. [[x1:T1][x2:T2]... g[arg1 <- x1 ...]]. *)
+ let gl_abstr' = add_lambdas (pf_concl gl) gl listargs' in
+ (* apply parameters immediately *)
+ let gl_abstr = applistc gl_abstr' (List.map (fun x,y,z -> x) (List.rev parms)) in
+
+ (* we apply args of the fix now, the parameters will be applied later *)
+ let princ_proof_applied_args =
+ applistc princ_proof (listsuf (List.length parms) listargs') in
+
+ (* parameters are still there so patternify must not take them -> lift *)
+ let princ_proof_applied_lift =
+ lift (List.length levar) princ_proof_applied_args in
+
+ let princ_applied_hyps'' = patternify (List.rev levar)
+ princ_proof_applied_lift (Name (id_of_string "Hyp")) in
+ (* if there was a fix, we will not add "Q" as in funscheme, so we make a pop,
+ TODO: find were we made the lift in proofPrinc instead and supress it here,
+ and add lift in funscheme. *)
+ let princ_applied_hyps' =
+ if Array.length evararr > 0 then popn 1 princ_applied_hyps''
+ else princ_applied_hyps'' in
+
+ let princ_applied_hyps =
+ if Array.length evararr > 0 then (* mutual Fixpoint not treated in the tactic *)
+ (substit_red 0 (evararr.(0)) gl_abstr princ_applied_hyps')
+ else princ_applied_hyps' (* No Fixpoint *) in
+ let _ = prNamedConstr "princ_applied_hyps" princ_applied_hyps in
+
+ (* replace params metavar by real args *)
+ let rec replace_parms lparms largs t =
+ match lparms, largs with
+ [], _ -> t
+ | ((p,_,_)::lp), (a::la) -> let t'= substitterm 0 p a t in replace_parms lp la t'
+ | _, _ -> error "problem with number of args." in
+ let princ_proof_applied = replace_parms parms listargs' princ_applied_hyps in
+
+
+(*
+ (* replace params metavar by abstracted variables *)
+ let princ_proof_params = npatternify (List.rev parms) princ_applied_hyps in
+ (* we apply now the real parameters *)
+ let princ_proof_applied =
+ applistc princ_proof_params (listpref (List.length parms) listargs') in
+*)
+
+
+
+ let princ_applied_evars = apply_levars princ_proof_applied levar in
+ let open_princ_proof_applied = princ_applied_evars in
+ let listargs_ids = List.map destVar (List.filter isVar listargs') in
+ invfun_basic (mkevarmap_aux open_princ_proof_applied) listargs_ids
+ gl dorew lposeq
+
+(* function must be a constant, all arguments must be given. *)
+let invfun_verif c l dorew gl =
+ if not (isConst c) then error "given function is not a constant"
+ else
+ let x,_ = decompose_prod (pf_type_of gl c) in
+ if List.length x = List.length l then
+ try invfun c l dorew gl
+ with
+ UserError (x,y) -> raise (UserError (x,y))
+ else error "wrong number of arguments for the function"
+
+
+TACTIC EXTEND FunctionalInduction
+ [ "Functional" "Induction" constr(c) ne_constr_list(l) ]
+ -> [ invfun_verif c l true ]
+END
+
+
+
+(* Construction of the functional scheme. *)
+let buildFunscheme fonc mutflist =
+ let def_fonc = expand_letins (def_of_const fonc) in
+ let ftyp = type_of (Global.env ()) Evd.empty fonc in
+ let _ = resetmeta() in
+ let gl = mknewmeta() in
+ let gl_app = applFull gl ftyp in
+ let pis = prod_change_concl ftyp gl_app in
+ (* Here we call the function invfun_proof, that effectively
+ builds the scheme *)
+ let princ_proof,levar,_,evararr,absc,parms =
+ invfun_proof mutflist def_fonc [||] pis (Global.env()) Evd.empty in
+ (* parameters are still there (unboud rel), and patternify must not take them
+ -> lift*)
+ let princ_proof_lift = lift (List.length levar) princ_proof in
+ let princ_proof_hyps =
+ patternify (List.rev levar) princ_proof_lift (Name (id_of_string "Hyp")) in
+ let rec princ_replace_metas ev abs i t =
+ if i>= Array.length ev then t
+ else (* fix? *)
+ princ_replace_metas ev abs (i+1)
+ (mkLambda (
+ (Name (id_of_string ("Q"^(string_of_int i)))),
+ prod_change_concl (lift 0 abs.(i)) mkthesort,
+ (substitterm 0 ev.(i) (mkRel 1) (lift 0 t))))
+ in
+ let rec princ_replace_params params t =
+ List.fold_left (
+ fun acc ev,nam,typ ->
+ mkLambda (Name (id_of_name nam) , typ,
+ substitterm 0 ev (mkRel 1) (lift 0 acc)))
+ t (List.rev params) in
+ if Array.length evararr = 0 (* Is there a Fixpoint? *)
+ then (* No Fixpoint *)
+ princ_replace_params parms (mkLambda ((Name (id_of_string "Q")),
+ prod_change_concl ftyp mkthesort,
+ (substitterm 0 gl (mkRel 1) princ_proof_hyps)))
+ else (* there is a fix -> add parameters + replace metas *)
+ let princ_rpl = princ_replace_metas evararr absc 0 princ_proof_hyps in
+ princ_replace_params parms princ_rpl
+
+
+
+(* Declaration of the functional scheme. *)
+let declareFunScheme f fname mutflist =
+ let scheme =
+ buildFunscheme (constr_of f)
+ (Array.of_list (List.map constr_of (f::mutflist))) in
+ let _ = prstr "Principe:" in
+ let _ = prconstr scheme in
+ let ce = {
+ const_entry_body = scheme;
+ const_entry_type = None;
+ const_entry_opaque = false } in
+ let _= ignore (declare_constant fname (DefinitionEntry ce,IsDefinition)) in
+ ()
+
+
+
+VERNAC COMMAND EXTEND FunctionalScheme
+ [ "Functional" "Scheme" ident(na) ":=" "Induction" "for"
+ constr(c) "with" ne_constr_list(l) ]
+ -> [ declareFunScheme c na l ]
+| [ "Functional" "Scheme" ident(na) ":=" "Induction" "for" constr(c) ]
+ -> [ declareFunScheme c na [] ]
+END
+
+
+
+
+
+(*
+*** Local Variables: ***
+*** compile-command: "make -C ../.. contrib/funind/tacinv.cmo" ***
+*** tab-width: 1 ***
+*** tuareg-default-indent:1 ***
+*** tuareg-begin-indent:1 ***
+*** tuareg-let-indent:1 ***
+*** tuareg-match-indent:-1 ***
+*** tuareg-try-indent:1 ***
+*** tuareg-with-indent:1 ***
+*** tuareg-if-then-else-inden:1 ***
+*** fill-column: 78 ***
+*** indent-tabs-mode: nil ***
+*** test-tactic: "../../bin/coqtop -translate -q -batch -load-vernac-source ../../test-suite/success/Funind.v" ***
+*** End: ***
+*)
+
+
diff --git a/contrib/funind/tacinvutils.ml b/contrib/funind/tacinvutils.ml
new file mode 100644
index 00000000..758071ba
--- /dev/null
+++ b/contrib/funind/tacinvutils.ml
@@ -0,0 +1,277 @@
+(* tacinvutils.ml *)
+(*s utilities *)
+
+(*i*)
+open Names
+open Util
+open Term
+open Termops
+open Coqlib
+open Pp
+open Printer
+open Inductiveops
+open Environ
+open Declarations
+open Nameops
+open Evd
+open Sign
+open Reductionops
+(*i*)
+
+(*s printing of constr -- debugging *)
+
+let msg x = () ;; let prterm c = str "" (* comment this to see debug msgs *)
+ (* uncomment this to see debugging *)
+let prconstr c = msg (str" " ++ prterm c ++ str"\n")
+let prlistconstr lc = List.iter prconstr lc
+let prstr s = msg(str s)
+
+let prchr () = msg (str" (ret) \n")
+let prNamedConstr s c =
+ begin
+ msg(str "");
+ msg(str(s^"==>\n ") ++ prterm c ++ str "\n<==\n");
+ msg(str "");
+ end
+
+let prNamedLConstr_aux lc =
+ List.iter (prNamedConstr "#>") lc
+
+let prNamedLConstr s lc =
+ begin
+ prstr s;
+ prNamedLConstr_aux lc
+ end
+
+
+(* FIXME: ref 1, pas bon, si? *)
+let evarcpt = ref 0
+let metacpt = ref 0
+let mknewexist ()=
+ begin
+ evarcpt := !evarcpt+1;
+ !evarcpt,[||]
+ end
+
+let resetexist ()= evarcpt := 0
+
+let mknewmeta ()=
+ begin
+ metacpt := !metacpt+1;
+ mkMeta (!metacpt)
+ end
+
+let resetmeta () = metacpt := 0
+
+let rec mkevarmap_from_listex lex =
+ match lex with
+ | [] -> Evd.empty
+ | ((ex,_),typ)::lex' ->
+ let info ={
+ evar_concl = typ;
+ evar_hyps = empty_named_context;
+ evar_body = Evar_empty} in
+ Evd.add (mkevarmap_from_listex lex') ex info
+
+let mkEq typ c1 c2 =
+ mkApp (build_coq_eq(),[| typ; c1; c2|])
+
+let mkRefl typ c1 =
+ mkApp ((build_coq_eq_data()).refl, [| typ; c1|])
+
+let rec popn i c = if i<=0 then c else pop (popn (i-1) c)
+
+
+(* Operations on names *)
+let id_of_name = function
+ Anonymous -> id_of_string "H"
+ | Name id -> id;;
+let string_of_name nme = string_of_id (id_of_name nme)
+let name_of_string str = Name (id_of_string str)
+let newname_append nme str =
+ Name(id_of_string ((string_of_id (id_of_name nme))^str))
+
+(* Substitutions in constr *)
+
+let compare_constr_nosub t1 t2 =
+ if compare_constr (fun _ _ -> false) t1 t2
+ then true
+ else false
+
+let rec compare_constr' t1 t2 =
+ if compare_constr_nosub t1 t2
+ then true
+ else (compare_constr (compare_constr') t1 t2)
+
+let rec substitterm prof t by_t in_u =
+ if (compare_constr' (lift prof t) in_u)
+ then (lift prof by_t)
+ else map_constr_with_binders succ
+ (fun i -> substitterm i t by_t) prof in_u
+
+
+let apply_eqtrpl eq t =
+ let r,(tb,b,by_t) = eq in
+ substitterm 0 b by_t t
+
+let apply_eqtrpl_lt lt eq = List.map (apply_eqtrpl eq) lt
+
+let apply_leqtrpl_t t leq =
+ List.fold_left (fun x y -> apply_eqtrpl y x) t leq
+
+
+let apply_refl_term eq t =
+ let _,arr = destApplication eq in
+ let reli= (Array.get arr 1) in
+ let by_t= (Array.get arr 2) in
+ substitterm 0 reli by_t t
+
+let apply_eq_leqtrpl leq eq =
+ List.map
+ (function (r,(tb,b,t)) ->
+ r,(tb,
+ (if isRel b then b else (apply_refl_term eq b)), apply_refl_term eq t))
+ leq
+
+
+
+(* [(a b c) a] -> true *)
+let constr_head_match u t=
+ if isApp u
+ then
+ let uhd,args= destApplication u in
+ uhd=t
+ else false
+
+(* My operations on constr *)
+let lift1L l = (List.map (lift 1) l)
+let mkArrow_lift t1 t2 = mkArrow t1 (lift 1 t2)
+let mkProd_liftc nme c1 c2 = mkProd (nme,c1,(lift 1 c2))
+(* prod_it_lift x [a1 a2 ...] *)
+let prod_it_lift ini lcpl =
+ List.fold_right (function a,b -> (fun c -> mkProd_liftc a b c)) ini lcpl;;
+
+let prod_it_anonym_lift trm lst = List.fold_right mkArrow_lift lst trm
+
+let lam_it_anonymous trm lst =
+ List.fold_right
+ (fun elt res -> mkLambda(Name(id_of_string "Hrec"),elt,res)) lst trm
+
+let lambda_id id typeofid cstr =
+ let cstr' = mkNamedLambda (id_of_string "FUNX") typeofid cstr in
+ substitterm 0 id (mkRel 0) cstr'
+
+let prod_id id typeofid cstr =
+ let cstr' = mkNamedProd (id_of_string "FUNX") typeofid cstr in
+ substitterm 0 id (mkRel 0) cstr'
+
+
+
+
+
+let nth_dep_constructor indtype n =
+ let sigma = Evd.empty and env = Global.env() in
+ let indtypedef = find_rectype env sigma indtype in
+ let indfam,_ = dest_ind_type indtypedef in
+ let arr_cstr_summary = get_constructors env indfam in
+ let cstr_sum = Array.get arr_cstr_summary n in
+ build_dependent_constructor cstr_sum, cstr_sum.cs_nargs
+
+
+let rec buildrefl_from_eqs eqs =
+ match eqs with
+ | [] -> []
+ | cstr::eqs' ->
+ let eq,args = destApplication cstr in
+ (mkRefl (Array.get args 0) (Array.get args 2))
+ :: (buildrefl_from_eqs eqs')
+
+
+
+
+(* list of occurrences of a term inside another, no imbricated
+ occurrence are considered (ie we stop looking inside a termthat is
+ an occurrence). *)
+let rec hdMatchSub u t=
+ if constr_head_match u t then
+ u::(fold_constr (fun l cstr -> l@(hdMatchSub cstr t))
+ []
+ u)
+ else
+ fold_constr (fun l cstr -> l@(hdMatchSub cstr t))
+ []
+ u
+
+(* let hdMatchSub_list u lt = List.flatten (List.map (hdMatchSub u) lt) *)
+let hdMatchSub_cpl u (d,f) =
+ let res = ref [] in
+ begin
+ for i = d to f do res := (hdMatchSub u (mkRel i)) @ !res done;
+ !res
+ end
+
+
+(* destApplication raises an exception if [t] is not an application *)
+let exchange_hd_prod subst_hd t =
+ let (hd,args)= destApplication t in mkApp (subst_hd,args)
+
+(* substitute t by by_t in head of products inside in_u, reduces each
+ product found *)
+let rec substit_red prof t by_t in_u =
+ if constr_head_match in_u (lift prof t)
+ then
+ let _ = prNamedConstr "in_u" in_u in
+ let x = whd_beta (exchange_hd_prod (lift prof by_t) in_u) in
+ let _ = prNamedConstr "xx " x in
+ let _ = prstr "\n\n" in
+ x
+ else
+ map_constr_with_binders succ (fun i u -> substit_red i t by_t u)
+ prof in_u
+
+(* [exchange_reli_arrayi t=(reli x y ...) tarr (d,f)] exchange each
+ reli by tarr.(f-i). *)
+let exchange_reli_arrayi tarr (d,f) t =
+ let hd,args= destApplication t in
+ let i = destRel hd in
+ whd_beta (mkApp (tarr.(f-i) ,args))
+
+let exchange_reli_arrayi_L tarr (d,f) =
+ List.map (exchange_reli_arrayi tarr (d,f))
+
+
+(* expand all letins in a term, before building the principle. *)
+let rec expand_letins mimick =
+ match kind_of_term mimick with
+ | LetIn(nme,cstr1, typ, cstr) ->
+ let cstr' = substitterm 0 (mkRel 1) (lift 1 cstr1) cstr in
+ expand_letins (pop cstr')
+ | x -> map_constr expand_letins mimick
+
+
+(* Valeur d'une constante, or identity *)
+let def_of_const t =
+ match kind_of_term t with
+ | Const sp ->
+ (try
+ match Global.lookup_constant sp with
+ {const_body=Some c} -> force c
+ |_ -> assert false
+ with _ -> assert false)
+ | _ -> t
+
+(* nom d'une constante. Must be a constante. x*)
+let name_of_const t =
+ match (kind_of_term t) with
+ Const cst -> Names.string_of_label (Names.label cst)
+ |_ -> assert false
+ ;;
+
+
+(*i
+*** Local Variables:
+*** compile-command: "make -k tacinvutils.cmo"
+*** test-tactic: "../../bin/coqtop -translate -q -batch -load-vernac-source ../../test-suite/success/Funind.v"
+*** End:
+i*)
+
diff --git a/contrib/funind/tacinvutils.mli b/contrib/funind/tacinvutils.mli
new file mode 100644
index 00000000..2fc37b2c
--- /dev/null
+++ b/contrib/funind/tacinvutils.mli
@@ -0,0 +1,79 @@
+(* tacinvutils.ml *)
+(*s utilities *)
+
+(*i*)
+open Termops
+open Equality
+open Names
+open Pp
+open Tacmach
+open Proof_type
+open Tacinterp
+open Tactics
+open Tacticals
+open Term
+open Util
+open Printer
+open Reductionops
+open Inductiveops
+open Coqlib
+open Refine
+open Evd
+(*i*)
+
+(* printing debugging *)
+val prconstr: constr -> unit
+val prlistconstr: constr list -> unit
+val prNamedConstr:string -> constr -> unit
+val prNamedLConstr:string -> constr list -> unit
+val prstr: string -> unit
+
+
+val mknewmeta: unit -> constr
+val mknewexist: unit -> existential
+val resetmeta: unit -> unit (* safe *)
+val resetexist: unit -> unit (* be careful with this one *)
+val mkevarmap_from_listex: (Term.existential * Term.types) list -> evar_map
+val mkEq: types -> constr -> constr -> constr
+(* let mkEq typ c1 c2 = mkApp (build_coq_eq_data.eq(),[| typ; c1; c2|]) *)
+val mkRefl: types -> constr -> constr
+val buildrefl_from_eqs: constr list -> constr list
+(* typ c1 = mkApp ((constant ["Coq"; "Init"; "Logic"] "refl_equal"), [| typ; c1|]) *)
+
+val nth_dep_constructor: constr -> int -> (constr*int)
+
+val prod_it_lift: (name*constr) list -> constr -> constr
+val prod_it_anonym_lift: constr -> constr list -> constr
+val lam_it_anonymous: constr -> constr list -> constr
+val lift1L: (constr list) -> constr list
+val popn: int -> constr -> constr
+val lambda_id: constr -> constr -> constr -> constr
+val prod_id: constr -> constr -> constr -> constr
+
+
+val name_of_string : string -> name
+val newname_append: name -> string -> name
+
+val apply_eqtrpl: constr*(constr*constr*constr) -> constr -> constr
+val substitterm: int -> constr -> constr -> constr -> constr
+val apply_leqtrpl_t:
+ constr -> (constr*(constr*constr*constr)) list -> constr
+val apply_eq_leqtrpl:
+ (constr*(constr*constr*constr)) list -> constr -> (constr*(constr*constr*constr)) list
+(* val apply_leq_lt: constr list -> constr list -> constr list *)
+
+val hdMatchSub: constr -> constr -> constr list
+val hdMatchSub_cpl: constr -> int*int -> constr list
+val exchange_hd_prod: constr -> constr -> constr
+val exchange_reli_arrayi_L: constr array -> int*int -> constr list -> constr list
+val substit_red: int -> constr -> constr -> constr -> constr
+val expand_letins: constr -> constr
+
+val def_of_const: constr -> constr
+val name_of_const: constr -> string
+(*i
+ Local Variables:
+ compile-command: "make -k tacinvutils.cmi"
+ End:
+i*)
+
diff --git a/contrib/interface/COPYRIGHT b/contrib/interface/COPYRIGHT
new file mode 100644
index 00000000..2fb11c6b
--- /dev/null
+++ b/contrib/interface/COPYRIGHT
@@ -0,0 +1,19 @@
+(*****************************************************************************)
+(* *)
+(* Coq support for the Pcoq Graphical Interface of Coq *)
+(* *)
+(* Copyright (C) 1999-2004 INRIA Sophia-Antipolis (Lemme team) *)
+(* *)
+(*****************************************************************************)
+
+The current directory contrib/interface implements Coq support for the
+Pcoq Graphical Interface of Coq. It has been developed by Yves Bertot
+with contributions from Loïc Pottier and Laurence Rideau.
+
+The Pcoq Graphical Interface (see http://www-sop.inria.fr/lemme/pcoq)
+is developed by the Lemme team at INRIA Sophia-Antipolis (see
+http://www-sop.inria.fr/lemme)
+
+The files of the current directory are distributed under the terms of
+the GNU Lesser General Public License Version 2.1.
+
diff --git a/contrib/interface/ascent.mli b/contrib/interface/ascent.mli
new file mode 100644
index 00000000..61d0d5a3
--- /dev/null
+++ b/contrib/interface/ascent.mli
@@ -0,0 +1,784 @@
+type ct_AST =
+ CT_coerce_ID_OR_INT_to_AST of ct_ID_OR_INT
+ | CT_coerce_ID_OR_STRING_to_AST of ct_ID_OR_STRING
+ | CT_coerce_SINGLE_OPTION_VALUE_to_AST of ct_SINGLE_OPTION_VALUE
+ | CT_astnode of ct_ID * ct_AST_LIST
+ | CT_astpath of ct_ID_LIST
+ | CT_astslam of ct_ID_OPT * ct_AST
+and ct_AST_LIST =
+ CT_ast_list of ct_AST list
+and ct_BINARY =
+ CT_binary of int
+and ct_BINDER =
+ CT_coerce_DEF_to_BINDER of ct_DEF
+ | CT_binder of ct_ID_OPT_NE_LIST * ct_FORMULA
+ | CT_binder_coercion of ct_ID_OPT_NE_LIST * ct_FORMULA
+and ct_BINDER_LIST =
+ CT_binder_list of ct_BINDER list
+and ct_BINDER_NE_LIST =
+ CT_binder_ne_list of ct_BINDER * ct_BINDER list
+and ct_BINDING =
+ CT_binding of ct_ID_OR_INT * ct_FORMULA
+and ct_BINDING_LIST =
+ CT_binding_list of ct_BINDING list
+and ct_BOOL =
+ CT_false
+ | CT_true
+and ct_CASE =
+ CT_case of string
+and ct_CLAUSE =
+ CT_clause of ct_HYP_LOCATION_LIST_OR_STAR * ct_STAR_OPT
+and ct_COERCION_OPT =
+ CT_coerce_NONE_to_COERCION_OPT of ct_NONE
+ | CT_coercion_atm
+and ct_COFIXTAC =
+ CT_cofixtac of ct_ID * ct_FORMULA
+and ct_COFIX_REC =
+ CT_cofix_rec of ct_ID * ct_BINDER_LIST * ct_FORMULA * ct_FORMULA
+and ct_COFIX_REC_LIST =
+ CT_cofix_rec_list of ct_COFIX_REC * ct_COFIX_REC list
+and ct_COFIX_TAC_LIST =
+ CT_cofix_tac_list of ct_COFIXTAC list
+and ct_COMMAND =
+ CT_coerce_COMMAND_LIST_to_COMMAND of ct_COMMAND_LIST
+ | CT_coerce_EVAL_CMD_to_COMMAND of ct_EVAL_CMD
+ | CT_coerce_SECTION_BEGIN_to_COMMAND of ct_SECTION_BEGIN
+ | CT_coerce_THEOREM_GOAL_to_COMMAND of ct_THEOREM_GOAL
+ | CT_abort of ct_ID_OPT_OR_ALL
+ | CT_abstraction of ct_ID * ct_FORMULA * ct_INT_LIST
+ | CT_add_field of ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_FORMULA * ct_BINDING_LIST
+ | CT_add_natural_feature of ct_NATURAL_FEATURE * ct_ID
+ | CT_addpath of ct_STRING * ct_ID_OPT
+ | CT_arguments_scope of ct_ID * ct_ID_OPT_LIST
+ | CT_bind_scope of ct_ID * ct_ID_NE_LIST
+ | CT_cd of ct_STRING_OPT
+ | CT_check of ct_FORMULA
+ | CT_class of ct_ID
+ | CT_close_scope of ct_ID
+ | CT_coercion of ct_LOCAL_OPT * ct_IDENTITY_OPT * ct_ID * ct_ID * ct_ID
+ | CT_cofix_decl of ct_COFIX_REC_LIST
+ | CT_compile_module of ct_VERBOSE_OPT * ct_ID * ct_STRING_OPT
+ | CT_declare_module of ct_ID * ct_MODULE_BINDER_LIST * ct_MODULE_TYPE_CHECK * ct_MODULE_EXPR
+ | CT_define_notation of ct_STRING * ct_FORMULA * ct_MODIFIER_LIST * ct_ID_OPT
+ | CT_definition of ct_DEFN * ct_ID * ct_BINDER_LIST * ct_DEF_BODY * ct_FORMULA_OPT
+ | CT_delim_scope of ct_ID * ct_ID
+ | CT_delpath of ct_STRING
+ | CT_derive_depinversion of ct_INV_TYPE * ct_ID * ct_FORMULA * ct_SORT_TYPE
+ | CT_derive_inversion of ct_INV_TYPE * ct_INT_OPT * ct_ID * ct_ID
+ | CT_derive_inversion_with of ct_INV_TYPE * ct_ID * ct_FORMULA * ct_SORT_TYPE
+ | CT_explain_proof of ct_INT_LIST
+ | CT_explain_prooftree of ct_INT_LIST
+ | CT_export_id of ct_ID_NE_LIST
+ | CT_extract_to_file of ct_STRING * ct_ID_NE_LIST
+ | CT_extraction of ct_ID_OPT
+ | CT_fix_decl of ct_FIX_REC_LIST
+ | CT_focus of ct_INT_OPT
+ | CT_go of ct_INT_OR_LOCN
+ | CT_guarded
+ | CT_hint_destruct of ct_ID * ct_INT * ct_DESTRUCT_LOCATION * ct_FORMULA * ct_TACTIC_COM * ct_ID_LIST
+ | CT_hint_extern of ct_INT * ct_FORMULA * ct_TACTIC_COM * ct_ID_LIST
+ | CT_hintrewrite of ct_ORIENTATION * ct_FORMULA_NE_LIST * ct_ID * ct_TACTIC_COM
+ | CT_hints of ct_ID * ct_ID_NE_LIST * ct_ID_LIST
+ | CT_hints_immediate of ct_FORMULA_NE_LIST * ct_ID_LIST
+ | CT_hints_resolve of ct_FORMULA_NE_LIST * ct_ID_LIST
+ | CT_hyp_search_pattern of ct_FORMULA * ct_IN_OR_OUT_MODULES
+ | CT_implicits of ct_ID * ct_ID_LIST_OPT
+ | CT_import_id of ct_ID_NE_LIST
+ | CT_ind_scheme of ct_SCHEME_SPEC_LIST
+ | CT_infix of ct_STRING * ct_ID * ct_MODIFIER_LIST * ct_ID_OPT
+ | CT_inline of ct_ID_NE_LIST
+ | CT_inspect of ct_INT
+ | CT_kill_node of ct_INT
+ | CT_load of ct_VERBOSE_OPT * ct_ID_OR_STRING
+ | CT_local_close_scope of ct_ID
+ | CT_local_define_notation of ct_STRING * ct_FORMULA * ct_MODIFIER_LIST * ct_ID_OPT
+ | CT_local_hint_destruct of ct_ID * ct_INT * ct_DESTRUCT_LOCATION * ct_FORMULA * ct_TACTIC_COM * ct_ID_LIST
+ | CT_local_hint_extern of ct_INT * ct_FORMULA * ct_TACTIC_COM * ct_ID_LIST
+ | CT_local_hints of ct_ID * ct_ID_NE_LIST * ct_ID_LIST
+ | CT_local_hints_immediate of ct_FORMULA_NE_LIST * ct_ID_LIST
+ | CT_local_hints_resolve of ct_FORMULA_NE_LIST * ct_ID_LIST
+ | CT_local_infix of ct_STRING * ct_ID * ct_MODIFIER_LIST * ct_ID_OPT
+ | CT_local_open_scope of ct_ID
+ | CT_local_reserve_notation of ct_STRING * ct_MODIFIER_LIST
+ | CT_locate of ct_ID
+ | CT_locate_file of ct_STRING
+ | CT_locate_lib of ct_ID
+ | CT_locate_notation of ct_STRING
+ | CT_mind_decl of ct_CO_IND * ct_IND_SPEC_LIST
+ | CT_ml_add_path of ct_STRING
+ | CT_ml_declare_modules of ct_STRING_NE_LIST
+ | CT_ml_print_modules
+ | CT_ml_print_path
+ | CT_module of ct_ID * ct_MODULE_BINDER_LIST * ct_MODULE_TYPE_CHECK * ct_MODULE_EXPR
+ | CT_module_type_decl of ct_ID * ct_MODULE_BINDER_LIST * ct_MODULE_TYPE_OPT
+ | CT_no_inline of ct_ID_NE_LIST
+ | CT_omega_flag of ct_OMEGA_MODE * ct_OMEGA_FEATURE
+ | CT_opaque of ct_ID_NE_LIST
+ | CT_open_scope of ct_ID
+ | CT_print
+ | CT_print_about of ct_ID
+ | CT_print_all
+ | CT_print_classes
+ | CT_print_coercions
+ | CT_print_grammar of ct_GRAMMAR
+ | CT_print_graph
+ | CT_print_hint of ct_ID_OPT
+ | CT_print_hintdb of ct_ID_OR_STAR
+ | CT_print_id of ct_ID
+ | CT_print_implicit of ct_ID
+ | CT_print_loadpath
+ | CT_print_module of ct_ID
+ | CT_print_module_type of ct_ID
+ | CT_print_modules
+ | CT_print_natural of ct_ID
+ | CT_print_natural_feature of ct_NATURAL_FEATURE
+ | CT_print_opaqueid of ct_ID
+ | CT_print_path of ct_ID * ct_ID
+ | CT_print_proof of ct_ID
+ | CT_print_scope of ct_ID
+ | CT_print_scopes
+ | CT_print_section of ct_ID
+ | CT_print_states
+ | CT_print_tables
+ | CT_print_universes of ct_STRING_OPT
+ | CT_print_visibility of ct_ID_OPT
+ | CT_proof of ct_FORMULA
+ | CT_proof_no_op
+ | CT_proof_with of ct_TACTIC_COM
+ | CT_pwd
+ | CT_quit
+ | CT_read_module of ct_ID
+ | CT_rec_ml_add_path of ct_STRING
+ | CT_recaddpath of ct_STRING * ct_ID_OPT
+ | CT_record of ct_COERCION_OPT * ct_ID * ct_BINDER_LIST * ct_FORMULA * ct_ID_OPT * ct_RECCONSTR_LIST
+ | CT_remove_natural_feature of ct_NATURAL_FEATURE * ct_ID
+ | CT_require of ct_IMPEXP * ct_SPEC_OPT * ct_ID_NE_LIST_OR_STRING
+ | CT_reserve of ct_ID_NE_LIST * ct_FORMULA
+ | CT_reserve_notation of ct_STRING * ct_MODIFIER_LIST
+ | CT_reset of ct_ID
+ | CT_reset_section of ct_ID
+ | CT_restart
+ | CT_restore_state of ct_ID
+ | CT_resume of ct_ID_OPT
+ | CT_save of ct_THM_OPT * ct_ID_OPT
+ | CT_scomments of ct_SCOMMENT_CONTENT_LIST
+ | CT_search of ct_ID * ct_IN_OR_OUT_MODULES
+ | CT_search_about of ct_ID_OR_STRING_NE_LIST * ct_IN_OR_OUT_MODULES
+ | CT_search_pattern of ct_FORMULA * ct_IN_OR_OUT_MODULES
+ | CT_search_rewrite of ct_FORMULA * ct_IN_OR_OUT_MODULES
+ | CT_section_end of ct_ID
+ | CT_section_struct of ct_SECTION_BEGIN * ct_SECTION_BODY * ct_COMMAND
+ | CT_set_natural of ct_ID
+ | CT_set_natural_default
+ | CT_set_option of ct_TABLE
+ | CT_set_option_value of ct_TABLE * ct_SINGLE_OPTION_VALUE
+ | CT_set_option_value2 of ct_TABLE * ct_ID_OR_STRING_NE_LIST
+ | CT_sethyp of ct_INT
+ | CT_setundo of ct_INT
+ | CT_show_existentials
+ | CT_show_goal of ct_INT_OPT
+ | CT_show_implicit of ct_INT
+ | CT_show_intro
+ | CT_show_intros
+ | CT_show_node
+ | CT_show_proof
+ | CT_show_proofs
+ | CT_show_script
+ | CT_show_tree
+ | CT_solve of ct_INT * ct_TACTIC_COM * ct_DOTDOT_OPT
+ | CT_suspend
+ | CT_syntax_macro of ct_ID * ct_FORMULA * ct_INT_OPT
+ | CT_tactic_definition of ct_TAC_DEF_NE_LIST
+ | CT_test_natural_feature of ct_NATURAL_FEATURE * ct_ID
+ | CT_theorem_struct of ct_THEOREM_GOAL * ct_PROOF_SCRIPT
+ | CT_time of ct_COMMAND
+ | CT_transparent of ct_ID_NE_LIST
+ | CT_undo of ct_INT_OPT
+ | CT_unfocus
+ | CT_unset_option of ct_TABLE
+ | CT_unsethyp
+ | CT_unsetundo
+ | CT_user_vernac of ct_ID * ct_VARG_LIST
+ | CT_variable of ct_VAR * ct_BINDER_NE_LIST
+ | CT_write_module of ct_ID * ct_STRING_OPT
+and ct_COMMAND_LIST =
+ CT_command_list of ct_COMMAND * ct_COMMAND list
+and ct_COMMENT =
+ CT_comment of string
+and ct_COMMENT_S =
+ CT_comment_s of ct_COMMENT list
+and ct_CONSTR =
+ CT_constr of ct_ID * ct_FORMULA
+ | CT_constr_coercion of ct_ID * ct_FORMULA
+and ct_CONSTR_LIST =
+ CT_constr_list of ct_CONSTR list
+and ct_CONTEXT_HYP_LIST =
+ CT_context_hyp_list of ct_PREMISE_PATTERN list
+and ct_CONTEXT_PATTERN =
+ CT_coerce_FORMULA_to_CONTEXT_PATTERN of ct_FORMULA
+ | CT_context of ct_ID_OPT * ct_FORMULA
+and ct_CONTEXT_RULE =
+ CT_context_rule of ct_CONTEXT_HYP_LIST * ct_CONTEXT_PATTERN * ct_TACTIC_COM
+ | CT_def_context_rule of ct_TACTIC_COM
+and ct_CONVERSION_FLAG =
+ CT_beta
+ | CT_delta
+ | CT_evar
+ | CT_iota
+ | CT_zeta
+and ct_CONVERSION_FLAG_LIST =
+ CT_conversion_flag_list of ct_CONVERSION_FLAG list
+and ct_CONV_SET =
+ CT_unf of ct_ID list
+ | CT_unfbut of ct_ID list
+and ct_CO_IND =
+ CT_co_ind of string
+and ct_DECL_NOTATION_OPT =
+ CT_coerce_NONE_to_DECL_NOTATION_OPT of ct_NONE
+ | CT_decl_notation of ct_STRING * ct_FORMULA * ct_ID_OPT
+and ct_DEF =
+ CT_def of ct_ID_OPT * ct_FORMULA
+and ct_DEFN =
+ CT_defn of string
+and ct_DEFN_OR_THM =
+ CT_coerce_DEFN_to_DEFN_OR_THM of ct_DEFN
+ | CT_coerce_THM_to_DEFN_OR_THM of ct_THM
+and ct_DEF_BODY =
+ CT_coerce_CONTEXT_PATTERN_to_DEF_BODY of ct_CONTEXT_PATTERN
+ | CT_coerce_EVAL_CMD_to_DEF_BODY of ct_EVAL_CMD
+ | CT_type_of of ct_FORMULA
+and ct_DEF_BODY_OPT =
+ CT_coerce_DEF_BODY_to_DEF_BODY_OPT of ct_DEF_BODY
+ | CT_coerce_FORMULA_OPT_to_DEF_BODY_OPT of ct_FORMULA_OPT
+and ct_DEP =
+ CT_dep of string
+and ct_DESTRUCTING =
+ CT_coerce_NONE_to_DESTRUCTING of ct_NONE
+ | CT_destructing
+and ct_DESTRUCT_LOCATION =
+ CT_conclusion_location
+ | CT_discardable_hypothesis
+ | CT_hypothesis_location
+and ct_DOTDOT_OPT =
+ CT_coerce_NONE_to_DOTDOT_OPT of ct_NONE
+ | CT_dotdot
+and ct_EQN =
+ CT_eqn of ct_MATCH_PATTERN_NE_LIST * ct_FORMULA
+and ct_EQN_LIST =
+ CT_eqn_list of ct_EQN list
+and ct_EVAL_CMD =
+ CT_eval of ct_INT_OPT * ct_RED_COM * ct_FORMULA
+and ct_FIXTAC =
+ CT_fixtac of ct_ID * ct_INT * ct_FORMULA
+and ct_FIX_BINDER =
+ CT_coerce_FIX_REC_to_FIX_BINDER of ct_FIX_REC
+ | CT_fix_binder of ct_ID * ct_INT * ct_FORMULA * ct_FORMULA
+and ct_FIX_BINDER_LIST =
+ CT_fix_binder_list of ct_FIX_BINDER * ct_FIX_BINDER list
+and ct_FIX_REC =
+ CT_fix_rec of ct_ID * ct_BINDER_NE_LIST * ct_ID_OPT *
+ ct_FORMULA * ct_FORMULA
+and ct_FIX_REC_LIST =
+ CT_fix_rec_list of ct_FIX_REC * ct_FIX_REC list
+and ct_FIX_TAC_LIST =
+ CT_fix_tac_list of ct_FIXTAC list
+and ct_FORMULA =
+ CT_coerce_BINARY_to_FORMULA of ct_BINARY
+ | CT_coerce_ID_to_FORMULA of ct_ID
+ | CT_coerce_NUM_to_FORMULA of ct_NUM
+ | CT_coerce_SORT_TYPE_to_FORMULA of ct_SORT_TYPE
+ | CT_coerce_TYPED_FORMULA_to_FORMULA of ct_TYPED_FORMULA
+ | CT_appc of ct_FORMULA * ct_FORMULA_NE_LIST
+ | CT_arrowc of ct_FORMULA * ct_FORMULA
+ | CT_bang of ct_FORMULA
+ | CT_cases of ct_MATCHED_FORMULA_NE_LIST * ct_FORMULA_OPT * ct_EQN_LIST
+ | CT_cofixc of ct_ID * ct_COFIX_REC_LIST
+ | CT_elimc of ct_CASE * ct_FORMULA_OPT * ct_FORMULA * ct_FORMULA_LIST
+ | CT_existvarc
+ | CT_fixc of ct_ID * ct_FIX_BINDER_LIST
+ | CT_if of ct_FORMULA * ct_RETURN_INFO * ct_FORMULA * ct_FORMULA
+ | CT_inductive_let of ct_FORMULA_OPT * ct_ID_OPT_NE_LIST * ct_FORMULA * ct_FORMULA
+ | CT_labelled_arg of ct_ID * ct_FORMULA
+ | CT_lambdac of ct_BINDER_NE_LIST * ct_FORMULA
+ | CT_let_tuple of ct_ID_OPT_NE_LIST * ct_RETURN_INFO * ct_FORMULA * ct_FORMULA
+ | CT_letin of ct_DEF * ct_FORMULA
+ | CT_notation of ct_STRING * ct_FORMULA_LIST
+ | CT_num_encapsulator of ct_NUM_TYPE * ct_FORMULA
+ | CT_prodc of ct_BINDER_NE_LIST * ct_FORMULA
+ | CT_proj of ct_FORMULA * ct_FORMULA_NE_LIST
+and ct_FORMULA_LIST =
+ CT_formula_list of ct_FORMULA list
+and ct_FORMULA_NE_LIST =
+ CT_formula_ne_list of ct_FORMULA * ct_FORMULA list
+and ct_FORMULA_OPT =
+ CT_coerce_FORMULA_to_FORMULA_OPT of ct_FORMULA
+ | CT_coerce_ID_OPT_to_FORMULA_OPT of ct_ID_OPT
+and ct_FORMULA_OR_INT =
+ CT_coerce_FORMULA_to_FORMULA_OR_INT of ct_FORMULA
+ | CT_coerce_ID_OR_INT_to_FORMULA_OR_INT of ct_ID_OR_INT
+and ct_GRAMMAR =
+ CT_grammar_none
+and ct_HYP_LOCATION =
+ CT_coerce_UNFOLD_to_HYP_LOCATION of ct_UNFOLD
+ | CT_intype of ct_ID * ct_INT_LIST
+ | CT_invalue of ct_ID * ct_INT_LIST
+and ct_HYP_LOCATION_LIST_OR_STAR =
+ CT_coerce_STAR_to_HYP_LOCATION_LIST_OR_STAR of ct_STAR
+ | CT_hyp_location_list of ct_HYP_LOCATION list
+and ct_ID =
+ CT_ident of string
+ | CT_metac of ct_INT
+ | CT_metaid of string
+and ct_IDENTITY_OPT =
+ CT_coerce_NONE_to_IDENTITY_OPT of ct_NONE
+ | CT_identity
+and ct_ID_LIST =
+ CT_id_list of ct_ID list
+and ct_ID_LIST_LIST =
+ CT_id_list_list of ct_ID_LIST list
+and ct_ID_LIST_OPT =
+ CT_coerce_ID_LIST_to_ID_LIST_OPT of ct_ID_LIST
+ | CT_coerce_NONE_to_ID_LIST_OPT of ct_NONE
+and ct_ID_NE_LIST =
+ CT_id_ne_list of ct_ID * ct_ID list
+and ct_ID_NE_LIST_OR_STAR =
+ CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR of ct_ID_NE_LIST
+ | CT_coerce_STAR_to_ID_NE_LIST_OR_STAR of ct_STAR
+and ct_ID_NE_LIST_OR_STRING =
+ CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STRING of ct_ID_NE_LIST
+ | CT_coerce_STRING_to_ID_NE_LIST_OR_STRING of ct_STRING
+and ct_ID_OPT =
+ CT_coerce_ID_to_ID_OPT of ct_ID
+ | CT_coerce_NONE_to_ID_OPT of ct_NONE
+and ct_ID_OPT_LIST =
+ CT_id_opt_list of ct_ID_OPT list
+and ct_ID_OPT_NE_LIST =
+ CT_id_opt_ne_list of ct_ID_OPT * ct_ID_OPT list
+and ct_ID_OPT_OR_ALL =
+ CT_coerce_ID_OPT_to_ID_OPT_OR_ALL of ct_ID_OPT
+ | CT_all
+and ct_ID_OR_INT =
+ CT_coerce_ID_to_ID_OR_INT of ct_ID
+ | CT_coerce_INT_to_ID_OR_INT of ct_INT
+and ct_ID_OR_INT_OPT =
+ CT_coerce_ID_OPT_to_ID_OR_INT_OPT of ct_ID_OPT
+ | CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT of ct_ID_OR_INT
+ | CT_coerce_INT_OPT_to_ID_OR_INT_OPT of ct_INT_OPT
+and ct_ID_OR_STAR =
+ CT_coerce_ID_to_ID_OR_STAR of ct_ID
+ | CT_coerce_STAR_to_ID_OR_STAR of ct_STAR
+and ct_ID_OR_STRING =
+ CT_coerce_ID_to_ID_OR_STRING of ct_ID
+ | CT_coerce_STRING_to_ID_OR_STRING of ct_STRING
+and ct_ID_OR_STRING_NE_LIST =
+ CT_id_or_string_ne_list of ct_ID_OR_STRING * ct_ID_OR_STRING list
+and ct_IMPEXP =
+ CT_coerce_NONE_to_IMPEXP of ct_NONE
+ | CT_export
+ | CT_import
+and ct_IND_SPEC =
+ CT_ind_spec of ct_ID * ct_BINDER_LIST * ct_FORMULA * ct_CONSTR_LIST * ct_DECL_NOTATION_OPT
+and ct_IND_SPEC_LIST =
+ CT_ind_spec_list of ct_IND_SPEC list
+and ct_INT =
+ CT_int of int
+and ct_INTRO_PATT =
+ CT_coerce_ID_to_INTRO_PATT of ct_ID
+ | CT_disj_pattern of ct_INTRO_PATT_LIST * ct_INTRO_PATT_LIST list
+and ct_INTRO_PATT_LIST =
+ CT_intro_patt_list of ct_INTRO_PATT list
+and ct_INTRO_PATT_OPT =
+ CT_coerce_ID_OPT_to_INTRO_PATT_OPT of ct_ID_OPT
+ | CT_coerce_INTRO_PATT_to_INTRO_PATT_OPT of ct_INTRO_PATT
+and ct_INT_LIST =
+ CT_int_list of ct_INT list
+and ct_INT_NE_LIST =
+ CT_int_ne_list of ct_INT * ct_INT list
+and ct_INT_OPT =
+ CT_coerce_INT_to_INT_OPT of ct_INT
+ | CT_coerce_NONE_to_INT_OPT of ct_NONE
+and ct_INT_OR_LOCN =
+ CT_coerce_INT_to_INT_OR_LOCN of ct_INT
+ | CT_coerce_LOCN_to_INT_OR_LOCN of ct_LOCN
+and ct_INT_OR_NEXT =
+ CT_coerce_INT_to_INT_OR_NEXT of ct_INT
+ | CT_next_level
+and ct_INV_TYPE =
+ CT_inv_clear
+ | CT_inv_regular
+ | CT_inv_simple
+and ct_IN_OR_OUT_MODULES =
+ CT_coerce_NONE_to_IN_OR_OUT_MODULES of ct_NONE
+ | CT_in_modules of ct_ID_NE_LIST
+ | CT_out_modules of ct_ID_NE_LIST
+and ct_LET_CLAUSE =
+ CT_let_clause of ct_ID * ct_TACTIC_OPT * ct_LET_VALUE
+and ct_LET_CLAUSES =
+ CT_let_clauses of ct_LET_CLAUSE * ct_LET_CLAUSE list
+and ct_LET_VALUE =
+ CT_coerce_DEF_BODY_to_LET_VALUE of ct_DEF_BODY
+ | CT_coerce_TACTIC_COM_to_LET_VALUE of ct_TACTIC_COM
+and ct_LOCAL_OPT =
+ CT_coerce_NONE_to_LOCAL_OPT of ct_NONE
+ | CT_local
+and ct_LOCN =
+ CT_locn of string
+and ct_MATCHED_FORMULA =
+ CT_coerce_FORMULA_to_MATCHED_FORMULA of ct_FORMULA
+ | CT_formula_as of ct_FORMULA * ct_ID_OPT
+ | CT_formula_as_in of ct_FORMULA * ct_ID_OPT * ct_FORMULA
+ | CT_formula_in of ct_FORMULA * ct_FORMULA
+and ct_MATCHED_FORMULA_NE_LIST =
+ CT_matched_formula_ne_list of ct_MATCHED_FORMULA * ct_MATCHED_FORMULA list
+and ct_MATCH_PATTERN =
+ CT_coerce_ID_OPT_to_MATCH_PATTERN of ct_ID_OPT
+ | CT_coerce_NUM_to_MATCH_PATTERN of ct_NUM
+ | CT_pattern_app of ct_MATCH_PATTERN * ct_MATCH_PATTERN_NE_LIST
+ | CT_pattern_as of ct_MATCH_PATTERN * ct_ID_OPT
+ | CT_pattern_delimitors of ct_NUM_TYPE * ct_MATCH_PATTERN
+ | CT_pattern_notation of ct_STRING * ct_MATCH_PATTERN_LIST
+and ct_MATCH_PATTERN_LIST =
+ CT_match_pattern_list of ct_MATCH_PATTERN list
+and ct_MATCH_PATTERN_NE_LIST =
+ CT_match_pattern_ne_list of ct_MATCH_PATTERN * ct_MATCH_PATTERN list
+and ct_MATCH_TAC_RULE =
+ CT_match_tac_rule of ct_CONTEXT_PATTERN * ct_LET_VALUE
+and ct_MATCH_TAC_RULES =
+ CT_match_tac_rules of ct_MATCH_TAC_RULE * ct_MATCH_TAC_RULE list
+and ct_MODIFIER =
+ CT_entry_type of ct_ID * ct_ID
+ | CT_format of ct_STRING
+ | CT_lefta
+ | CT_nona
+ | CT_only_parsing
+ | CT_righta
+ | CT_set_item_level of ct_ID_NE_LIST * ct_INT_OR_NEXT
+ | CT_set_level of ct_INT
+and ct_MODIFIER_LIST =
+ CT_modifier_list of ct_MODIFIER list
+and ct_MODULE_BINDER =
+ CT_module_binder of ct_ID_NE_LIST * ct_MODULE_TYPE
+and ct_MODULE_BINDER_LIST =
+ CT_module_binder_list of ct_MODULE_BINDER list
+and ct_MODULE_EXPR =
+ CT_coerce_ID_OPT_to_MODULE_EXPR of ct_ID_OPT
+ | CT_module_app of ct_MODULE_EXPR * ct_MODULE_EXPR
+and ct_MODULE_TYPE =
+ CT_coerce_ID_to_MODULE_TYPE of ct_ID
+ | CT_module_type_with_def of ct_MODULE_TYPE * ct_ID * ct_FORMULA
+ | CT_module_type_with_mod of ct_MODULE_TYPE * ct_ID * ct_ID
+and ct_MODULE_TYPE_CHECK =
+ CT_coerce_MODULE_TYPE_OPT_to_MODULE_TYPE_CHECK of ct_MODULE_TYPE_OPT
+ | CT_only_check of ct_MODULE_TYPE
+and ct_MODULE_TYPE_OPT =
+ CT_coerce_ID_OPT_to_MODULE_TYPE_OPT of ct_ID_OPT
+ | CT_coerce_MODULE_TYPE_to_MODULE_TYPE_OPT of ct_MODULE_TYPE
+and ct_NATURAL_FEATURE =
+ CT_contractible
+ | CT_implicit
+ | CT_nat_transparent
+and ct_NONE =
+ CT_none
+and ct_NUM =
+ CT_int_encapsulator of string
+and ct_NUM_TYPE =
+ CT_num_type of string
+and ct_OMEGA_FEATURE =
+ CT_coerce_STRING_to_OMEGA_FEATURE of ct_STRING
+ | CT_flag_action
+ | CT_flag_system
+ | CT_flag_time
+and ct_OMEGA_MODE =
+ CT_set
+ | CT_switch
+ | CT_unset
+and ct_ORIENTATION =
+ CT_lr
+ | CT_rl
+and ct_PATTERN =
+ CT_pattern_occ of ct_INT_LIST * ct_FORMULA
+and ct_PATTERN_NE_LIST =
+ CT_pattern_ne_list of ct_PATTERN * ct_PATTERN list
+and ct_PATTERN_OPT =
+ CT_coerce_NONE_to_PATTERN_OPT of ct_NONE
+ | CT_coerce_PATTERN_to_PATTERN_OPT of ct_PATTERN
+and ct_PREMISE =
+ CT_coerce_TYPED_FORMULA_to_PREMISE of ct_TYPED_FORMULA
+ | CT_eval_result of ct_FORMULA * ct_FORMULA * ct_FORMULA
+ | CT_premise of ct_ID * ct_FORMULA
+and ct_PREMISES_LIST =
+ CT_premises_list of ct_PREMISE list
+and ct_PREMISE_PATTERN =
+ CT_premise_pattern of ct_ID_OPT * ct_CONTEXT_PATTERN
+and ct_PROOF_SCRIPT =
+ CT_proof_script of ct_COMMAND list
+and ct_RECCONSTR =
+ CT_defrecconstr of ct_ID_OPT * ct_FORMULA * ct_FORMULA_OPT
+ | CT_defrecconstr_coercion of ct_ID_OPT * ct_FORMULA * ct_FORMULA_OPT
+ | CT_recconstr of ct_ID_OPT * ct_FORMULA
+ | CT_recconstr_coercion of ct_ID_OPT * ct_FORMULA
+and ct_RECCONSTR_LIST =
+ CT_recconstr_list of ct_RECCONSTR list
+and ct_REC_TACTIC_FUN =
+ CT_rec_tactic_fun of ct_ID * ct_ID_OPT_NE_LIST * ct_TACTIC_COM
+and ct_REC_TACTIC_FUN_LIST =
+ CT_rec_tactic_fun_list of ct_REC_TACTIC_FUN * ct_REC_TACTIC_FUN list
+and ct_RED_COM =
+ CT_cbv of ct_CONVERSION_FLAG_LIST * ct_CONV_SET
+ | CT_fold of ct_FORMULA_LIST
+ | CT_hnf
+ | CT_lazy of ct_CONVERSION_FLAG_LIST * ct_CONV_SET
+ | CT_pattern of ct_PATTERN_NE_LIST
+ | CT_red
+ | CT_simpl of ct_PATTERN_OPT
+ | CT_unfold of ct_UNFOLD_NE_LIST
+and ct_RETURN_INFO =
+ CT_coerce_NONE_to_RETURN_INFO of ct_NONE
+ | CT_as_and_return of ct_ID_OPT * ct_FORMULA
+ | CT_return of ct_FORMULA
+and ct_RULE =
+ CT_rule of ct_PREMISES_LIST * ct_FORMULA
+and ct_RULE_LIST =
+ CT_rule_list of ct_RULE list
+and ct_SCHEME_SPEC =
+ CT_scheme_spec of ct_ID * ct_DEP * ct_FORMULA * ct_SORT_TYPE
+and ct_SCHEME_SPEC_LIST =
+ CT_scheme_spec_list of ct_SCHEME_SPEC * ct_SCHEME_SPEC list
+and ct_SCOMMENT_CONTENT =
+ CT_coerce_FORMULA_to_SCOMMENT_CONTENT of ct_FORMULA
+ | CT_coerce_ID_OR_STRING_to_SCOMMENT_CONTENT of ct_ID_OR_STRING
+and ct_SCOMMENT_CONTENT_LIST =
+ CT_scomment_content_list of ct_SCOMMENT_CONTENT list
+and ct_SECTION_BEGIN =
+ CT_section of ct_ID
+and ct_SECTION_BODY =
+ CT_section_body of ct_COMMAND list
+and ct_SIGNED_INT =
+ CT_coerce_INT_to_SIGNED_INT of ct_INT
+ | CT_minus of ct_INT
+and ct_SIGNED_INT_LIST =
+ CT_signed_int_list of ct_SIGNED_INT list
+and ct_SINGLE_OPTION_VALUE =
+ CT_coerce_INT_to_SINGLE_OPTION_VALUE of ct_INT
+ | CT_coerce_STRING_to_SINGLE_OPTION_VALUE of ct_STRING
+and ct_SORT_TYPE =
+ CT_sortc of string
+and ct_SPEC_LIST =
+ CT_coerce_BINDING_LIST_to_SPEC_LIST of ct_BINDING_LIST
+ | CT_coerce_FORMULA_LIST_to_SPEC_LIST of ct_FORMULA_LIST
+and ct_SPEC_OPT =
+ CT_coerce_NONE_to_SPEC_OPT of ct_NONE
+ | CT_spec
+and ct_STAR =
+ CT_star
+and ct_STAR_OPT =
+ CT_coerce_NONE_to_STAR_OPT of ct_NONE
+ | CT_coerce_STAR_to_STAR_OPT of ct_STAR
+and ct_STRING =
+ CT_string of string
+and ct_STRING_NE_LIST =
+ CT_string_ne_list of ct_STRING * ct_STRING list
+and ct_STRING_OPT =
+ CT_coerce_NONE_to_STRING_OPT of ct_NONE
+ | CT_coerce_STRING_to_STRING_OPT of ct_STRING
+and ct_TABLE =
+ CT_coerce_ID_to_TABLE of ct_ID
+ | CT_table of ct_ID * ct_ID
+and ct_TACTIC_ARG =
+ CT_coerce_EVAL_CMD_to_TACTIC_ARG of ct_EVAL_CMD
+ | CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG of ct_FORMULA_OR_INT
+ | CT_coerce_TACTIC_COM_to_TACTIC_ARG of ct_TACTIC_COM
+ | CT_coerce_TERM_CHANGE_to_TACTIC_ARG of ct_TERM_CHANGE
+ | CT_void
+and ct_TACTIC_ARG_LIST =
+ CT_tactic_arg_list of ct_TACTIC_ARG * ct_TACTIC_ARG list
+and ct_TACTIC_COM =
+ CT_abstract of ct_ID_OPT * ct_TACTIC_COM
+ | CT_absurd of ct_FORMULA
+ | CT_any_constructor of ct_TACTIC_OPT
+ | CT_apply of ct_FORMULA * ct_SPEC_LIST
+ | CT_assert of ct_ID_OPT * ct_FORMULA
+ | CT_assumption
+ | CT_auto of ct_INT_OPT
+ | CT_auto_with of ct_INT_OPT * ct_ID_NE_LIST_OR_STAR
+ | CT_autorewrite of ct_ID_NE_LIST * ct_TACTIC_OPT
+ | CT_autotdb of ct_INT_OPT
+ | CT_case_type of ct_FORMULA
+ | CT_casetac of ct_FORMULA * ct_SPEC_LIST
+ | CT_cdhyp of ct_ID
+ | CT_change of ct_FORMULA * ct_CLAUSE
+ | CT_change_local of ct_PATTERN * ct_FORMULA * ct_CLAUSE
+ | CT_clear of ct_ID_NE_LIST
+ | CT_clear_body of ct_ID_NE_LIST
+ | CT_cofixtactic of ct_ID_OPT * ct_COFIX_TAC_LIST
+ | CT_condrewrite_lr of ct_TACTIC_COM * ct_FORMULA * ct_SPEC_LIST * ct_ID_OPT
+ | CT_condrewrite_rl of ct_TACTIC_COM * ct_FORMULA * ct_SPEC_LIST * ct_ID_OPT
+ | CT_constructor of ct_INT * ct_SPEC_LIST
+ | CT_contradiction
+ | CT_contradiction_thm of ct_FORMULA * ct_SPEC_LIST
+ | CT_cut of ct_FORMULA
+ | CT_cutrewrite_lr of ct_FORMULA * ct_ID_OPT
+ | CT_cutrewrite_rl of ct_FORMULA * ct_ID_OPT
+ | CT_dauto of ct_INT_OPT * ct_INT_OPT
+ | CT_dconcl
+ | CT_decompose_list of ct_ID_NE_LIST * ct_FORMULA
+ | CT_decompose_record of ct_FORMULA
+ | CT_decompose_sum of ct_FORMULA
+ | CT_depinversion of ct_INV_TYPE * ct_ID_OR_INT * ct_INTRO_PATT_OPT * ct_FORMULA_OPT
+ | CT_deprewrite_lr of ct_ID
+ | CT_deprewrite_rl of ct_ID
+ | CT_destruct of ct_ID_OR_INT
+ | CT_dhyp of ct_ID
+ | CT_discriminate_eq of ct_ID_OR_INT_OPT
+ | CT_do of ct_ID_OR_INT * ct_TACTIC_COM
+ | CT_eapply of ct_FORMULA * ct_SPEC_LIST
+ | CT_eauto of ct_ID_OR_INT_OPT * ct_ID_OR_INT_OPT
+ | CT_eauto_with of ct_ID_OR_INT_OPT * ct_ID_OR_INT_OPT * ct_ID_NE_LIST_OR_STAR
+ | CT_elim of ct_FORMULA * ct_SPEC_LIST * ct_USING
+ | CT_elim_type of ct_FORMULA
+ | CT_exact of ct_FORMULA
+ | CT_exists of ct_SPEC_LIST
+ | CT_fail of ct_ID_OR_INT * ct_STRING_OPT
+ | CT_first of ct_TACTIC_COM * ct_TACTIC_COM list
+ | CT_firstorder of ct_TACTIC_OPT
+ | CT_firstorder_using of ct_TACTIC_OPT * ct_ID_NE_LIST
+ | CT_firstorder_with of ct_TACTIC_OPT * ct_ID_NE_LIST
+ | CT_fixtactic of ct_ID_OPT * ct_INT * ct_FIX_TAC_LIST
+ | CT_formula_marker of ct_FORMULA
+ | CT_fresh of ct_STRING_OPT
+ | CT_generalize of ct_FORMULA_NE_LIST
+ | CT_generalize_dependent of ct_FORMULA
+ | CT_idtac of ct_STRING_OPT
+ | CT_induction of ct_ID_OR_INT
+ | CT_info of ct_TACTIC_COM
+ | CT_injection_eq of ct_ID_OR_INT_OPT
+ | CT_instantiate of ct_INT * ct_FORMULA * ct_CLAUSE
+ | CT_intro of ct_ID_OPT
+ | CT_intro_after of ct_ID_OPT * ct_ID
+ | CT_intros of ct_INTRO_PATT_LIST
+ | CT_intros_until of ct_ID_OR_INT
+ | CT_inversion of ct_INV_TYPE * ct_ID_OR_INT * ct_INTRO_PATT_OPT * ct_ID_LIST
+ | CT_left of ct_SPEC_LIST
+ | CT_let_ltac of ct_LET_CLAUSES * ct_LET_VALUE
+ | CT_lettac of ct_ID_OPT * ct_FORMULA * ct_CLAUSE
+ | CT_match_context of ct_CONTEXT_RULE * ct_CONTEXT_RULE list
+ | CT_match_context_reverse of ct_CONTEXT_RULE * ct_CONTEXT_RULE list
+ | CT_match_tac of ct_TACTIC_COM * ct_MATCH_TAC_RULES
+ | CT_move_after of ct_ID * ct_ID
+ | CT_new_destruct of ct_FORMULA_OR_INT * ct_USING * ct_INTRO_PATT_OPT
+ | CT_new_induction of ct_FORMULA_OR_INT * ct_USING * ct_INTRO_PATT_OPT
+ | CT_omega
+ | CT_orelse of ct_TACTIC_COM * ct_TACTIC_COM
+ | CT_parallel of ct_TACTIC_COM * ct_TACTIC_COM list
+ | CT_pose of ct_ID_OPT * ct_FORMULA
+ | CT_progress of ct_TACTIC_COM
+ | CT_prolog of ct_FORMULA_LIST * ct_INT
+ | CT_rec_tactic_in of ct_REC_TACTIC_FUN_LIST * ct_TACTIC_COM
+ | CT_reduce of ct_RED_COM * ct_CLAUSE
+ | CT_refine of ct_FORMULA
+ | CT_reflexivity
+ | CT_rename of ct_ID * ct_ID
+ | CT_repeat of ct_TACTIC_COM
+ | CT_replace_with of ct_FORMULA * ct_FORMULA
+ | CT_rewrite_lr of ct_FORMULA * ct_SPEC_LIST * ct_ID_OPT
+ | CT_rewrite_rl of ct_FORMULA * ct_SPEC_LIST * ct_ID_OPT
+ | CT_right of ct_SPEC_LIST
+ | CT_ring of ct_FORMULA_LIST
+ | CT_simple_user_tac of ct_ID * ct_TACTIC_ARG_LIST
+ | CT_simplify_eq of ct_ID_OR_INT_OPT
+ | CT_specialize of ct_INT_OPT * ct_FORMULA * ct_SPEC_LIST
+ | CT_split of ct_SPEC_LIST
+ | CT_subst of ct_ID_LIST
+ | CT_superauto of ct_INT_OPT * ct_ID_LIST * ct_DESTRUCTING * ct_USINGTDB
+ | CT_symmetry of ct_CLAUSE
+ | CT_tac_double of ct_ID_OR_INT * ct_ID_OR_INT
+ | CT_tacsolve of ct_TACTIC_COM * ct_TACTIC_COM list
+ | CT_tactic_fun of ct_ID_OPT_NE_LIST * ct_TACTIC_COM
+ | CT_then of ct_TACTIC_COM * ct_TACTIC_COM list
+ | CT_transitivity of ct_FORMULA
+ | CT_trivial
+ | CT_trivial_with of ct_ID_NE_LIST_OR_STAR
+ | CT_truecut of ct_ID_OPT * ct_FORMULA
+ | CT_try of ct_TACTIC_COM
+ | CT_use of ct_FORMULA
+ | CT_use_inversion of ct_ID_OR_INT * ct_FORMULA * ct_ID_LIST
+ | CT_user_tac of ct_ID * ct_TARG_LIST
+and ct_TACTIC_OPT =
+ CT_coerce_NONE_to_TACTIC_OPT of ct_NONE
+ | CT_coerce_TACTIC_COM_to_TACTIC_OPT of ct_TACTIC_COM
+and ct_TAC_DEF =
+ CT_tac_def of ct_ID * ct_TACTIC_COM
+and ct_TAC_DEF_NE_LIST =
+ CT_tac_def_ne_list of ct_TAC_DEF * ct_TAC_DEF list
+and ct_TARG =
+ CT_coerce_BINDING_to_TARG of ct_BINDING
+ | CT_coerce_COFIXTAC_to_TARG of ct_COFIXTAC
+ | CT_coerce_FIXTAC_to_TARG of ct_FIXTAC
+ | CT_coerce_FORMULA_OR_INT_to_TARG of ct_FORMULA_OR_INT
+ | CT_coerce_PATTERN_to_TARG of ct_PATTERN
+ | CT_coerce_SCOMMENT_CONTENT_to_TARG of ct_SCOMMENT_CONTENT
+ | CT_coerce_SIGNED_INT_LIST_to_TARG of ct_SIGNED_INT_LIST
+ | CT_coerce_SINGLE_OPTION_VALUE_to_TARG of ct_SINGLE_OPTION_VALUE
+ | CT_coerce_SPEC_LIST_to_TARG of ct_SPEC_LIST
+ | CT_coerce_TACTIC_COM_to_TARG of ct_TACTIC_COM
+ | CT_coerce_TARG_LIST_to_TARG of ct_TARG_LIST
+ | CT_coerce_UNFOLD_to_TARG of ct_UNFOLD
+ | CT_coerce_UNFOLD_NE_LIST_to_TARG of ct_UNFOLD_NE_LIST
+and ct_TARG_LIST =
+ CT_targ_list of ct_TARG list
+and ct_TERM_CHANGE =
+ CT_check_term of ct_FORMULA
+ | CT_inst_term of ct_ID * ct_FORMULA
+and ct_TEXT =
+ CT_coerce_ID_to_TEXT of ct_ID
+ | CT_text_formula of ct_FORMULA
+ | CT_text_h of ct_TEXT list
+ | CT_text_hv of ct_TEXT list
+ | CT_text_op of ct_TEXT list
+ | CT_text_path of ct_SIGNED_INT_LIST
+ | CT_text_v of ct_TEXT list
+and ct_THEOREM_GOAL =
+ CT_goal of ct_FORMULA
+ | CT_theorem_goal of ct_DEFN_OR_THM * ct_ID * ct_BINDER_LIST * ct_FORMULA
+and ct_THM =
+ CT_thm of string
+and ct_THM_OPT =
+ CT_coerce_NONE_to_THM_OPT of ct_NONE
+ | CT_coerce_THM_to_THM_OPT of ct_THM
+and ct_TYPED_FORMULA =
+ CT_typed_formula of ct_FORMULA * ct_FORMULA
+and ct_UNFOLD =
+ CT_coerce_ID_to_UNFOLD of ct_ID
+ | CT_unfold_occ of ct_ID * ct_INT_NE_LIST
+and ct_UNFOLD_NE_LIST =
+ CT_unfold_ne_list of ct_UNFOLD * ct_UNFOLD list
+and ct_USING =
+ CT_coerce_NONE_to_USING of ct_NONE
+ | CT_using of ct_FORMULA * ct_SPEC_LIST
+and ct_USINGTDB =
+ CT_coerce_NONE_to_USINGTDB of ct_NONE
+ | CT_usingtdb
+and ct_VAR =
+ CT_var of string
+and ct_VARG =
+ CT_coerce_AST_to_VARG of ct_AST
+ | CT_coerce_AST_LIST_to_VARG of ct_AST_LIST
+ | CT_coerce_BINDER_to_VARG of ct_BINDER
+ | CT_coerce_BINDER_LIST_to_VARG of ct_BINDER_LIST
+ | CT_coerce_BINDER_NE_LIST_to_VARG of ct_BINDER_NE_LIST
+ | CT_coerce_FORMULA_LIST_to_VARG of ct_FORMULA_LIST
+ | CT_coerce_FORMULA_OPT_to_VARG of ct_FORMULA_OPT
+ | CT_coerce_FORMULA_OR_INT_to_VARG of ct_FORMULA_OR_INT
+ | CT_coerce_ID_OPT_OR_ALL_to_VARG of ct_ID_OPT_OR_ALL
+ | CT_coerce_ID_OR_INT_OPT_to_VARG of ct_ID_OR_INT_OPT
+ | CT_coerce_INT_LIST_to_VARG of ct_INT_LIST
+ | CT_coerce_SCOMMENT_CONTENT_to_VARG of ct_SCOMMENT_CONTENT
+ | CT_coerce_STRING_OPT_to_VARG of ct_STRING_OPT
+ | CT_coerce_TACTIC_OPT_to_VARG of ct_TACTIC_OPT
+ | CT_coerce_VARG_LIST_to_VARG of ct_VARG_LIST
+and ct_VARG_LIST =
+ CT_varg_list of ct_VARG list
+and ct_VERBOSE_OPT =
+ CT_coerce_NONE_to_VERBOSE_OPT of ct_NONE
+ | CT_verbose
+;;
diff --git a/contrib/interface/blast.ml b/contrib/interface/blast.ml
new file mode 100755
index 00000000..d5236a7a
--- /dev/null
+++ b/contrib/interface/blast.ml
@@ -0,0 +1,628 @@
+(* Une tactique qui tente de démontrer toute seule le but courant,
+ interruptible par pcoq (si dans le fichier C:\WINDOWS\free il y a un A)
+*)
+open Ctast;;
+open Termops;;
+open Nameops;;
+open Auto;;
+open Clenv;;
+open Command;;
+open Ctast;;
+open Declarations;;
+open Declare;;
+open Eauto;;
+open Environ;;
+open Equality;;
+open Evd;;
+open Hipattern;;
+open Inductive;;
+open Names;;
+open Pattern;;
+open Pbp;;
+open Pfedit;;
+open Pp;;
+open Printer
+open Proof_trees;;
+open Proof_type;;
+open Rawterm;;
+open Reduction;;
+open Refiner;;
+open Sign;;
+open String;;
+open Tacmach;;
+open Tacred;;
+open Tacticals;;
+open Tactics;;
+open Term;;
+open Typing;;
+open Util;;
+open Vernacentries;;
+open Vernacinterp;;
+open Evar_refiner;;
+
+
+let parse_com = Pcoq.parse_string Pcoq.Constr.constr;;
+let parse_tac t =
+ try (Pcoq.parse_string Pcoq.Tactic.tactic t)
+ with _ -> (msgnl (hov 0 (str"pas parsé: " ++ str t));
+ failwith "tactic")
+;;
+
+let is_free () =
+ let st =open_in_bin ((Sys.getenv "HOME")^"/.free") in
+ let c=input_char st in
+ close_in st;
+ c = 'A'
+;;
+
+(* marche pas *)
+(*
+let is_free () =
+ msgnl (hov 0 [< 'str"Isfree========= "; 'fNL >]);
+ let s = Stream.of_channel stdin in
+ msgnl (hov 0 [< 'str"Isfree s "; 'fNL >]);
+ try (Stream.empty s;
+ msgnl (hov 0 [< 'str"Isfree empty "; 'fNL >]);
+ true)
+ with _ -> (msgnl (hov 0 [< 'str"Isfree not empty "; 'fNL >]);
+ false)
+;;
+*)
+let free_try tac g =
+ if is_free()
+ then (tac g)
+ else (failwith "not free")
+;;
+let adrel (x,t) e =
+ match x with
+ Name(xid) -> Environ.push_rel (x,None,t) e
+ | Anonymous -> Environ.push_rel (x,None,t) e
+(* les constantes ayant une définition apparaissant dans x *)
+let rec def_const_in_term_rec vl x =
+ match (kind_of_term x) with
+ Prod(n,t,c)->
+ let vl = (adrel (n,t) vl) in def_const_in_term_rec vl c
+ | Lambda(n,t,c) ->
+ let vl = (adrel (n,t) vl) in def_const_in_term_rec vl c
+ | App(f,args) -> def_const_in_term_rec vl f
+ | Sort(Prop(Null)) -> Prop(Null)
+ | Sort(c) -> c
+ | Ind(ind) ->
+ let (mib, mip) = Global.lookup_inductive ind in
+ mip.mind_sort
+ | Construct(c) ->
+ def_const_in_term_rec vl (mkInd (inductive_of_constructor c))
+ | Case(_,x,t,a)
+ -> def_const_in_term_rec vl x
+ | Cast(x,t)-> def_const_in_term_rec vl t
+ | Const(c) -> def_const_in_term_rec vl (lookup_constant c vl).const_type
+ | _ -> def_const_in_term_rec vl (type_of vl Evd.empty x)
+;;
+let def_const_in_term_ x =
+ def_const_in_term_rec (Global.env()) (strip_outer_cast x)
+;;
+(*************************************************************************
+ recopiés de refiner.ml, car print_subscript pas exportée dans refiner.mli
+ modif de print_info_script avec pr_bar
+*)
+
+let pr_bar () = str "|"
+
+let rec print_info_script sigma osign pf =
+ let {evar_hyps=sign; evar_concl=cl} = pf.goal in
+ match pf.ref with
+ | None -> (mt ())
+ | Some(r,spfl) ->
+ pr_rule r ++
+ match spfl with
+ | [] ->
+ (str " " ++ fnl())
+ | [pf1] ->
+ if pf1.ref = None then
+ (str " " ++ fnl())
+ else
+ (str";" ++ brk(1,3) ++
+ print_info_script sigma sign pf1)
+ | _ -> ( str";[" ++ fnl() ++
+ prlist_with_sep pr_bar
+ (print_info_script sigma sign) spfl ++
+ str"]")
+
+let format_print_info_script sigma osign pf =
+ hov 0 (print_info_script sigma osign pf)
+
+let print_subscript sigma sign pf =
+ (* if is_tactic_proof pf then
+ format_print_info_script sigma sign (subproof_of_proof pf)
+ else *)
+ format_print_info_script sigma sign pf
+(****************)
+
+let pp_string x =
+ msgnl_with Format.str_formatter x;
+ Format.flush_str_formatter ()
+;;
+
+(***********************************************************************
+ copié de tactics/eauto.ml
+*)
+
+(***************************************************************************)
+(* A tactic similar to Auto, but using EApply, Assumption and e_give_exact *)
+(***************************************************************************)
+
+let unify_e_resolve (c,clenv) gls =
+ let (wc,kONT) = startWalk gls in
+ let clenv' = connect_clenv wc clenv in
+ let _ = clenv_unique_resolver false clenv' gls in
+ vernac_e_resolve_constr c gls
+
+let rec e_trivial_fail_db db_list local_db goal =
+ let tacl =
+ registered_e_assumption ::
+ (tclTHEN Tactics.intro
+ (function g'->
+ let d = pf_last_hyp g' in
+ let hintl = make_resolve_hyp (pf_env g') (project g') d in
+ (e_trivial_fail_db db_list
+ (Hint_db.add_list hintl local_db) g'))) ::
+ (List.map fst (e_trivial_resolve db_list local_db (pf_concl goal)) )
+ in
+ tclFIRST (List.map tclCOMPLETE tacl) goal
+
+and e_my_find_search db_list local_db hdc concl =
+ let hdc = head_of_constr_reference hdc in
+ let hintl =
+ if occur_existential concl then
+ list_map_append (Hint_db.map_all hdc) (local_db::db_list)
+ else
+ list_map_append (Hint_db.map_auto (hdc,concl)) (local_db::db_list)
+ in
+ let tac_of_hint =
+ fun ({pri=b; pat = p; code=t} as patac) ->
+ (b,
+ let tac =
+ match t with
+ | Res_pf (term,cl) -> unify_resolve (term,cl)
+ | ERes_pf (term,cl) -> unify_e_resolve (term,cl)
+ | Give_exact (c) -> e_give_exact_constr c
+ | Res_pf_THEN_trivial_fail (term,cl) ->
+ tclTHEN (unify_e_resolve (term,cl))
+ (e_trivial_fail_db db_list local_db)
+ | Unfold_nth c -> unfold_constr c
+ | Extern tacast -> Auto.conclPattern concl
+ (out_some p) tacast
+ in
+ (free_try tac,fmt_autotactic t))
+ (*i
+ fun gls -> pPNL (fmt_autotactic t); Format.print_flush ();
+ try tac gls
+ with e when Logic.catchable_exception(e) ->
+ (Format.print_string "Fail\n";
+ Format.print_flush ();
+ raise e)
+ i*)
+ in
+ List.map tac_of_hint hintl
+
+and e_trivial_resolve db_list local_db gl =
+ try
+ Auto.priority
+ (e_my_find_search db_list local_db
+ (List.hd (head_constr_bound gl [])) gl)
+ with Bound | Not_found -> []
+
+let e_possible_resolve db_list local_db gl =
+ try List.map snd (e_my_find_search db_list local_db
+ (List.hd (head_constr_bound gl [])) gl)
+ with Bound | Not_found -> []
+
+let assumption_tac_list id = apply_tac_list (e_give_exact_constr (mkVar id))
+
+let find_first_goal gls =
+ try first_goal gls with UserError _ -> assert false
+
+(*s The following module [SearchProblem] is used to instantiate the generic
+ exploration functor [Explore.Make]. *)
+
+module MySearchProblem = struct
+
+ type state = {
+ depth : int; (*r depth of search before failing *)
+ tacres : goal list sigma * validation;
+ last_tactic : std_ppcmds;
+ dblist : Auto.Hint_db.t list;
+ localdb : Auto.Hint_db.t list }
+
+ let success s = (sig_it (fst s.tacres)) = []
+
+ let rec filter_tactics (glls,v) = function
+ | [] -> []
+ | (tac,pptac) :: tacl ->
+ try
+ let (lgls,ptl) = apply_tac_list tac glls in
+ let v' p = v (ptl p) in
+ ((lgls,v'),pptac) :: filter_tactics (glls,v) tacl
+ with e when Logic.catchable_exception e ->
+ filter_tactics (glls,v) tacl
+
+ let rec list_addn n x l =
+ if n = 0 then l else x :: (list_addn (pred n) x l)
+
+ (* Ordering of states is lexicographic on depth (greatest first) then
+ number of remaining goals. *)
+ let compare s s' =
+ let d = s'.depth - s.depth in
+ let nbgoals s = List.length (sig_it (fst s.tacres)) in
+ if d <> 0 then d else nbgoals s - nbgoals s'
+
+ let branching s =
+ if s.depth = 0 then
+ []
+ else
+ let lg = fst s.tacres in
+ let nbgl = List.length (sig_it lg) in
+ assert (nbgl > 0);
+ let g = find_first_goal lg in
+ let assumption_tacs =
+ let l =
+ filter_tactics s.tacres
+ (List.map
+ (fun id -> (e_give_exact_constr (mkVar id),
+ (str "Exact" ++ spc()++ pr_id id)))
+ (pf_ids_of_hyps g))
+ in
+ List.map (fun (res,pp) -> { depth = s.depth; tacres = res;
+ last_tactic = pp; dblist = s.dblist;
+ localdb = List.tl s.localdb }) l
+ in
+ let intro_tac =
+ List.map
+ (fun ((lgls,_) as res,pp) ->
+ let g' = first_goal lgls in
+ let hintl =
+ make_resolve_hyp (pf_env g') (project g') (pf_last_hyp g')
+ in
+ let ldb = Hint_db.add_list hintl (List.hd s.localdb) in
+ { depth = s.depth; tacres = res;
+ last_tactic = pp; dblist = s.dblist;
+ localdb = ldb :: List.tl s.localdb })
+ (filter_tactics s.tacres [Tactics.intro,(str "Intro" )])
+ in
+ let rec_tacs =
+ let l =
+ filter_tactics s.tacres
+ (e_possible_resolve s.dblist (List.hd s.localdb) (pf_concl g))
+ in
+ List.map
+ (fun ((lgls,_) as res, pp) ->
+ let nbgl' = List.length (sig_it lgls) in
+ if nbgl' < nbgl then
+ { depth = s.depth; tacres = res; last_tactic = pp;
+ dblist = s.dblist; localdb = List.tl s.localdb }
+ else
+ { depth = pred s.depth; tacres = res;
+ dblist = s.dblist; last_tactic = pp;
+ localdb =
+ list_addn (nbgl'-nbgl) (List.hd s.localdb) s.localdb })
+ l
+ in
+ List.sort compare (assumption_tacs @ intro_tac @ rec_tacs)
+
+ let pp s =
+ msg (hov 0 (str " depth="++ int s.depth ++ spc() ++
+ s.last_tactic ++ str "\n"))
+
+end
+
+module MySearch = Explore.Make(MySearchProblem)
+
+let make_initial_state n gl dblist localdb =
+ { MySearchProblem.depth = n;
+ MySearchProblem.tacres = tclIDTAC gl;
+ MySearchProblem.last_tactic = (mt ());
+ MySearchProblem.dblist = dblist;
+ MySearchProblem.localdb = [localdb] }
+
+let e_depth_search debug p db_list local_db gl =
+ try
+ let tac = if debug then MySearch.debug_depth_first else MySearch.depth_first in
+ let s = tac (make_initial_state p gl db_list local_db) in
+ s.MySearchProblem.tacres
+ with Not_found -> error "EAuto: depth first search failed"
+
+let e_breadth_search debug n db_list local_db gl =
+ try
+ let tac =
+ if debug then MySearch.debug_breadth_first else MySearch.breadth_first
+ in
+ let s = tac (make_initial_state n gl db_list local_db) in
+ s.MySearchProblem.tacres
+ with Not_found -> error "EAuto: breadth first search failed"
+
+let e_search_auto debug (n,p) db_list gl =
+ let local_db = make_local_hint_db gl in
+ if n = 0 then
+ e_depth_search debug p db_list local_db gl
+ else
+ e_breadth_search debug n db_list local_db gl
+
+let eauto debug np dbnames =
+ let db_list =
+ List.map
+ (fun x ->
+ try Stringmap.find x !searchtable
+ with Not_found -> error ("EAuto: "^x^": No such Hint database"))
+ ("core"::dbnames)
+ in
+ tclTRY (e_search_auto debug np db_list)
+
+let full_eauto debug n gl =
+ let dbnames = stringmap_dom !searchtable in
+ let dbnames = list_subtract dbnames ["v62"] in
+ let db_list = List.map (fun x -> Stringmap.find x !searchtable) dbnames in
+ let local_db = make_local_hint_db gl in
+ tclTRY (e_search_auto debug n db_list) gl
+
+let my_full_eauto n gl = full_eauto false (n,0) gl
+
+(**********************************************************************
+ copié de tactics/auto.ml on a juste modifié search_gen
+*)
+let searchtable_map name =
+ Stringmap.find name !searchtable
+
+(* local_db is a Hint database containing the hypotheses of current goal *)
+(* Papageno : cette fonction a été pas mal simplifiée depuis que la base
+ de Hint impérative a été remplacée par plusieurs bases fonctionnelles *)
+
+let rec trivial_fail_db db_list local_db gl =
+ let intro_tac =
+ tclTHEN intro
+ (fun g'->
+ let hintl = make_resolve_hyp (pf_env g') (project g') (pf_last_hyp g')
+ in trivial_fail_db db_list (Hint_db.add_list hintl local_db) g')
+ in
+ tclFIRST
+ (assumption::intro_tac::
+ (List.map tclCOMPLETE
+ (trivial_resolve db_list local_db (pf_concl gl)))) gl
+
+and my_find_search db_list local_db hdc concl =
+ let tacl =
+ if occur_existential concl then
+ list_map_append (fun db -> Hint_db.map_all hdc db) (local_db::db_list)
+ else
+ list_map_append (fun db -> Hint_db.map_auto (hdc,concl) db)
+ (local_db::db_list)
+ in
+ List.map
+ (fun ({pri=b; pat=p; code=t} as patac) ->
+ (b,
+ match t with
+ | Res_pf (term,cl) -> unify_resolve (term,cl)
+ | ERes_pf (_,c) -> (fun gl -> error "eres_pf")
+ | Give_exact c -> exact_check c
+ | Res_pf_THEN_trivial_fail (term,cl) ->
+ tclTHEN
+ (unify_resolve (term,cl))
+ (trivial_fail_db db_list local_db)
+ | Unfold_nth c -> unfold_constr c
+ | Extern tacast ->
+ conclPattern concl (out_some p) tacast))
+ tacl
+
+and trivial_resolve db_list local_db cl =
+ try
+ let hdconstr = List.hd (head_constr_bound cl []) in
+ priority
+ (my_find_search db_list local_db (head_of_constr_reference hdconstr) cl)
+ with Bound | Not_found ->
+ []
+
+(**************************************************************************)
+(* The classical Auto tactic *)
+(**************************************************************************)
+
+let possible_resolve db_list local_db cl =
+ try
+ let hdconstr = List.hd (head_constr_bound cl []) in
+ List.map snd
+ (my_find_search db_list local_db (head_of_constr_reference hdconstr) cl)
+ with Bound | Not_found ->
+ []
+
+let decomp_unary_term c gls =
+ let typc = pf_type_of gls c in
+ let hd = List.hd (head_constr typc) in
+ if Hipattern.is_conjunction hd then
+ simplest_case c gls
+ else
+ errorlabstrm "Auto.decomp_unary_term" (str "not a unary type")
+
+let decomp_empty_term c gls =
+ let typc = pf_type_of gls c in
+ let (hd,_) = decompose_app typc in
+ if Hipattern.is_empty_type hd then
+ simplest_case c gls
+ else
+ errorlabstrm "Auto.decomp_empty_term" (str "not an empty type")
+
+
+(* decomp is an natural number giving an indication on decomposition
+ of conjunction in hypotheses, 0 corresponds to no decomposition *)
+(* n is the max depth of search *)
+(* local_db contains the local Hypotheses *)
+
+let rec search_gen decomp n db_list local_db extra_sign goal =
+ if n=0 then error "BOUND 2";
+ let decomp_tacs = match decomp with
+ | 0 -> []
+ | p ->
+ (tclTRY_sign decomp_empty_term extra_sign)
+ ::
+ (List.map
+ (fun id -> tclTHEN (decomp_unary_term (mkVar id))
+ (tclTHEN
+ (clear [id])
+ (free_try (search_gen decomp p db_list local_db []))))
+ (pf_ids_of_hyps goal))
+ in
+ let intro_tac =
+ tclTHEN intro
+ (fun g' ->
+ let (hid,_,htyp as d) = pf_last_hyp g' in
+ let hintl =
+ try
+ [make_apply_entry (pf_env g') (project g')
+ (true,false)
+ hid (mkVar hid,body_of_type htyp)]
+ with Failure _ -> []
+ in
+ (free_try
+ (search_gen decomp n db_list (Hint_db.add_list hintl local_db) [d])
+ g'))
+ in
+ let rec_tacs =
+ List.map
+ (fun ntac ->
+ tclTHEN ntac
+ (free_try
+ (search_gen decomp (n-1) db_list local_db empty_named_context)))
+ (possible_resolve db_list local_db (pf_concl goal))
+ in
+ tclFIRST (assumption::(decomp_tacs@(intro_tac::rec_tacs))) goal
+
+
+let search = search_gen 0
+
+let default_search_depth = ref 5
+
+let full_auto n gl =
+ let dbnames = stringmap_dom !searchtable in
+ let dbnames = list_subtract dbnames ["v62"] in
+ let db_list = List.map (fun x -> searchtable_map x) dbnames in
+ let hyps = pf_hyps gl in
+ tclTRY (search n db_list (make_local_hint_db gl) hyps) gl
+
+let default_full_auto gl = full_auto !default_search_depth gl
+(************************************************************************)
+
+let blast_tactic = ref (free_try default_full_auto)
+;;
+
+let blast_auto = (free_try default_full_auto)
+(* (tclTHEN (free_try default_full_auto)
+ (free_try (my_full_eauto 2)))
+*)
+;;
+let blast_simpl = (free_try (reduce (Simpl None) onConcl))
+;;
+let blast_induction1 =
+ (free_try (tclTHEN (tclTRY intro)
+ (tclTRY (tclLAST_HYP simplest_elim))))
+;;
+let blast_induction2 =
+ (free_try (tclTHEN (tclTRY (tclTHEN intro intro))
+ (tclTRY (tclLAST_HYP simplest_elim))))
+;;
+let blast_induction3 =
+ (free_try (tclTHEN (tclTRY (tclTHEN intro (tclTHEN intro intro)))
+ (tclTRY (tclLAST_HYP simplest_elim))))
+;;
+
+blast_tactic :=
+ (tclORELSE (tclCOMPLETE blast_auto)
+ (tclORELSE (tclCOMPLETE (tclTHEN blast_simpl blast_auto))
+ (tclORELSE (tclCOMPLETE (tclTHEN blast_induction1
+ (tclTHEN blast_simpl blast_auto)))
+ (tclORELSE (tclCOMPLETE (tclTHEN blast_induction2
+ (tclTHEN blast_simpl blast_auto)))
+ (tclCOMPLETE (tclTHEN blast_induction3
+ (tclTHEN blast_simpl blast_auto)))))))
+;;
+(*
+blast_tactic := (tclTHEN (free_try default_full_auto)
+ (free_try (my_full_eauto 4)))
+;;
+*)
+
+let vire_extvar s =
+ let interro = ref false in
+ let interro_pos = ref 0 in
+ for i=0 to (length s)-1 do
+ if get s i = '?'
+ then (interro := true;
+ interro_pos := i)
+ else if (!interro &&
+ (List.mem (get s i)
+ ['0';'1';'2';'3';'4';'5';'6';'7';'8';'9']))
+ then set s i ' '
+ else interro:=false
+ done;
+ s
+;;
+
+let blast gls =
+ let leaf g = {
+ open_subgoals = 1;
+ goal = g;
+ ref = None } in
+ try (let (sgl,v) as res = !blast_tactic gls in
+ let {it=lg} = sgl in
+ if lg = []
+ then (let pf = v (List.map leaf (sig_it sgl)) in
+ let sign = (sig_it gls).evar_hyps in
+ let x = print_subscript
+ (sig_sig gls) sign pf in
+ msgnl (hov 0 (str"Blast ==> " ++ x));
+ let x = print_subscript
+ (sig_sig gls) sign pf in
+ let tac_string =
+ pp_string (hov 0 x ) in
+ (* on remplace les ?1 ?2 ... de refine par ? *)
+ parse_tac ((vire_extvar tac_string)
+ ^ ".")
+ )
+ else (msgnl (hov 0 (str"Blast failed to prove the goal..."));
+ failwith "echec de blast"))
+ with _ -> failwith "echec de blast"
+;;
+
+let blast_tac display_function = function
+ | (n::_) as l ->
+ (function g ->
+ let exp_ast = (blast g) in
+ (display_function exp_ast;
+ tclIDTAC g))
+ | _ -> failwith "expecting other arguments";;
+
+let blast_tac_txt =
+ blast_tac
+ (function x -> msgnl(Pptactic.pr_glob_tactic (Tacinterp.glob_tactic x)));;
+
+(* Obsolète ?
+overwriting_add_tactic "Blast1" blast_tac_txt;;
+*)
+
+(*
+Grammar tactic ne_numarg_list : list :=
+ ne_numarg_single [numarg($n)] ->[$n]
+| ne_numarg_cons [numarg($n) ne_numarg_list($ns)] -> [ $n ($LIST $ns) ].
+Grammar tactic simple_tactic : ast :=
+ blast1 [ "Blast1" ne_numarg_list($ns) ] ->
+ [ (Blast1 ($LIST $ns)) ].
+
+
+
+PATH=/usr/local/bin:/usr/bin:$PATH
+COQTOP=d:/Tools/coq-7.0-3mai
+CAMLLIB=/usr/local/lib/ocaml
+CAMLP4LIB=/usr/local/lib/camlp4
+export CAMLLIB
+export COQTOP
+export CAMLP4LIB
+d:/Tools/coq-7.0-3mai/bin/coqtop.byte.exe
+Drop.
+#use "/cygdrive/D/Tools/coq-7.0-3mai/dev/base_include";;
+*)
diff --git a/contrib/interface/blast.mli b/contrib/interface/blast.mli
new file mode 100644
index 00000000..21c29bc9
--- /dev/null
+++ b/contrib/interface/blast.mli
@@ -0,0 +1,5 @@
+val blast_tac : (Tacexpr.raw_tactic_expr -> 'a) ->
+ int list ->
+ Proof_type.goal Tacmach.sigma ->
+ Proof_type.goal list Proof_type.sigma * Proof_type.validation;;
+
diff --git a/contrib/interface/centaur.ml4 b/contrib/interface/centaur.ml4
new file mode 100644
index 00000000..7bf12f3b
--- /dev/null
+++ b/contrib/interface/centaur.ml4
@@ -0,0 +1,700 @@
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(*Toplevel loop for the communication between Coq and Centaur *)
+open Names;;
+open Nameops;;
+open Util;;
+open Ast;;
+open Term;;
+open Pp;;
+open Libnames;;
+open Libobject;;
+open Library;;
+open Vernacinterp;;
+open Evd;;
+open Proof_trees;;
+open Termast;;
+open Tacmach;;
+open Pfedit;;
+open Proof_type;;
+open Parsing;;
+open Environ;;
+open Declare;;
+open Declarations;;
+open Rawterm;;
+open Reduction;;
+open Classops;;
+open Vernacinterp;;
+open Vernac;;
+open Command;;
+open Protectedtoplevel;;
+open Coqast;;
+open Line_oriented_parser;;
+open Xlate;;
+open Vtp;;
+open Ascent;;
+open Translate;;
+open Name_to_ast;;
+open Pbp;;
+open Blast;;
+(* open Dad;; *)
+open Debug_tac;;
+open Search;;
+open Constrintern;;
+open Nametab;;
+open Showproof;;
+open Showproof_ct;;
+open Tacexpr;;
+open Vernacexpr;;
+
+let pcoq_started = ref None;;
+
+let if_pcoq f a =
+ if !pcoq_started <> None then f a else error "Pcoq is not started";;
+
+let text_proof_flag = ref "en";;
+
+let current_proof_name () =
+ try
+ string_of_id (get_current_proof_name ())
+ with
+ UserError("Pfedit.get_proof", _) -> "";;
+
+let current_goal_index = ref 0;;
+
+let guarded_force_eval_stream (s : std_ppcmds) =
+ let l = ref [] in
+ let f elt = l:= elt :: !l in
+ (try Stream.iter f s with
+ | _ -> f (Stream.next (str "error guarded_force_eval_stream")));
+ Stream.of_list (List.rev !l);;
+
+
+let rec string_of_path p =
+ match p with [] -> "\n"
+ | i::p -> (string_of_int i)^" "^ (string_of_path p)
+;;
+let print_path p =
+ output_results_nl (str "Path:" ++ str (string_of_path p))
+;;
+
+let kill_proof_node index =
+ let paths = History.historical_undo (current_proof_name()) index in
+ let _ = List.iter
+ (fun path -> (traverse_to path;
+ Pfedit.mutate weak_undo_pftreestate;
+ traverse_to []))
+ paths in
+ History.border_length (current_proof_name());;
+
+
+(*Message functions, the text of these messages is recognized by the protocols *)
+(*of CtCoq *)
+let ctf_header message_name request_id =
+ fnl () ++ str "message" ++ fnl() ++ str message_name ++ fnl() ++
+ int request_id ++ fnl();;
+
+let ctf_acknowledge_command request_id command_count opt_exn =
+ let goal_count, goal_index =
+ if refining() then
+ let g_count =
+ List.length
+ (fst (frontier (proof_of_pftreestate (get_pftreestate ())))) in
+ g_count, (min g_count !current_goal_index)
+ else
+ (0, 0) in
+ (ctf_header "acknowledge" request_id ++
+ int command_count ++ fnl() ++
+ int goal_count ++ fnl () ++
+ int goal_index ++ fnl () ++
+ str (current_proof_name()) ++ fnl() ++
+ (match opt_exn with
+ Some e -> Cerrors.explain_exn e
+ | None -> mt ()) ++ fnl() ++ str "E-n-d---M-e-s-s-a-g-e" ++ fnl ());;
+
+let ctf_undoResults = ctf_header "undo_results";;
+
+let ctf_TextMessage = ctf_header "text_proof";;
+
+let ctf_SearchResults = ctf_header "search_results";;
+
+let ctf_OtherGoal = ctf_header "other_goal";;
+
+let ctf_Location = ctf_header "location";;
+
+let ctf_StateMessage = ctf_header "state";;
+
+let ctf_PathGoalMessage () =
+ fnl () ++ str "message" ++ fnl () ++ str "single_goal" ++ fnl ();;
+
+let ctf_GoalReqIdMessage = ctf_header "single_goal_state";;
+
+let ctf_NewStateMessage = ctf_header "fresh_state";;
+
+let ctf_SavedMessage () = fnl () ++ str "message" ++ fnl () ++
+ str "saved" ++ fnl();;
+
+let ctf_KilledMessage req_id ngoals =
+ ctf_header "killed" req_id ++ int ngoals ++ fnl ();;
+
+let ctf_AbortedAllMessage () =
+ fnl() ++ str "message" ++ fnl() ++ str "aborted_all" ++ fnl();;
+
+let ctf_AbortedMessage request_id na =
+ ctf_header "aborted_proof" request_id ++ str na ++ fnl () ++
+ str "E-n-d---M-e-s-s-a-g-e" ++ fnl ();;
+
+let ctf_UserErrorMessage request_id stream =
+ let stream = guarded_force_eval_stream stream in
+ ctf_header "user_error" request_id ++ stream ++ fnl() ++
+ str "E-n-d---M-e-s-s-a-g-e" ++ fnl();;
+
+let ctf_ResetInitialMessage () =
+ fnl () ++ str "message" ++ fnl () ++ str "reset_initial" ++ fnl ();;
+
+let ctf_ResetIdentMessage request_id s =
+ ctf_header "reset_ident" request_id ++ str s ++ fnl () ++
+ str "E-n-d---M-e-s-s-a-g-e" ++ fnl();;
+
+type vtp_tree =
+ | P_rl of ct_RULE_LIST
+ | P_r of ct_RULE
+ | P_s_int of ct_SIGNED_INT_LIST
+ | P_pl of ct_PREMISES_LIST
+ | P_cl of ct_COMMAND_LIST
+ | P_t of ct_TACTIC_COM
+ | P_text of ct_TEXT
+ | P_ids of ct_ID_LIST;;
+
+let print_tree t =
+ (match t with
+ | P_rl x -> fRULE_LIST x
+ | P_r x -> fRULE x
+ | P_s_int x -> fSIGNED_INT_LIST x
+ | P_pl x -> fPREMISES_LIST x
+ | P_cl x -> fCOMMAND_LIST x
+ | P_t x -> fTACTIC_COM x
+ | P_text x -> fTEXT x
+ | P_ids x -> fID_LIST x);
+ print_string "e\nblabla\n";;
+
+
+
+let break_happened = ref false;;
+
+let output_results stream vtp_tree =
+ let _ = Sys.signal Sys.sigint
+ (Sys.Signal_handle(fun i -> (break_happened := true;()))) in
+ msg stream;
+ match vtp_tree with
+ Some t -> print_tree t
+ | None -> ();;
+
+let output_results_nl stream =
+ let _ = Sys.signal Sys.sigint
+ (Sys.Signal_handle(fun i -> break_happened := true;()))
+ in
+ msgnl stream;;
+
+
+let rearm_break () =
+ let _ = Sys.signal Sys.sigint (Sys.Signal_handle(fun i -> raise Sys.Break))
+ in ();;
+
+let check_break () =
+ if (!break_happened) then
+ begin
+ break_happened := false;
+ raise Sys.Break
+ end
+ else ();;
+
+let print_past_goal index =
+ let path = History.get_path_for_rank (current_proof_name()) index in
+ try traverse_to path;
+ let pf = proof_of_pftreestate (get_pftreestate ()) in
+ output_results (ctf_PathGoalMessage ())
+ (Some (P_r (translate_goal pf.goal)))
+ with
+ | Invalid_argument s ->
+ ((try traverse_to [] with _ -> ());
+ error "No focused proof (No proof-editing in progress)")
+ | e -> (try traverse_to [] with _ -> ()); raise e
+;;
+
+let show_nth n =
+ try
+ let pf = proof_of_pftreestate (get_pftreestate()) in
+ if (!text_proof_flag<>"off") then
+ (if n=0
+ then output_results (ctf_TextMessage !global_request_id)
+ (Some (P_text (show_proof !text_proof_flag [])))
+ else
+ let path = History.get_nth_open_path (current_proof_name()) n in
+ output_results (ctf_TextMessage !global_request_id)
+ (Some (P_text (show_proof !text_proof_flag path))))
+ else
+ output_results (ctf_GoalReqIdMessage !global_request_id)
+ (let goal = List.nth (fst (frontier pf))
+ (n - 1) in
+ (Some (P_r (translate_goal goal))))
+ with
+ | Invalid_argument s ->
+ error "No focused proof (No proof-editing in progress)";;
+
+(* The rest of the file contains commands that are changed from the plain
+ Coq distribution *)
+
+let ctv_SEARCH_LIST = ref ([] : ct_PREMISE list);;
+
+(*
+let filter_by_module_from_varg_list l =
+ let dir_list, b = Vernacentries.interp_search_restriction l in
+ Search.filter_by_module_from_list (dir_list, b);;
+*)
+
+let add_search (global_reference:global_reference) assumptions cstr =
+ try
+ let id_string =
+ string_of_qualid (Nametab.shortest_qualid_of_global Idset.empty
+ global_reference) in
+ let ast =
+ try
+ CT_premise (CT_ident id_string, translate_constr false assumptions cstr)
+ with Not_found ->
+ CT_premise (CT_ident id_string,
+ CT_coerce_ID_to_FORMULA(
+ CT_ident ("Error printing" ^ id_string))) in
+ ctv_SEARCH_LIST:= ast::!ctv_SEARCH_LIST
+ with e -> msgnl (str "add_search raised an exception"); raise e;;
+
+(*
+let make_error_stream node_string =
+ str "The syntax of " ++ str node_string ++
+ str " is inconsistent with the vernac interpreter entry";;
+*)
+
+let ctf_EmptyGoalMessage id =
+ fnl () ++ str "Empty Goal is a no-op. Fun oh fun." ++ fnl ();;
+
+
+let print_check judg =
+ let {uj_val=value; uj_type=typ} = judg in
+ let value_ct_ast =
+ (try translate_constr false (Global.env()) value
+ with UserError(f,str) ->
+ raise(UserError(f,
+ Ast.print_ast
+ (ast_of_constr true (Global.env()) value) ++
+ fnl () ++ str ))) in
+ let type_ct_ast =
+ (try translate_constr false (Global.env()) typ
+ with UserError(f,str) ->
+ raise(UserError(f, Ast.print_ast (ast_of_constr true (Global.env())
+ value) ++ fnl() ++ str))) in
+ ((ctf_SearchResults !global_request_id),
+ (Some (P_pl
+ (CT_premises_list
+ [CT_coerce_TYPED_FORMULA_to_PREMISE
+ (CT_typed_formula(value_ct_ast,type_ct_ast)
+ )]))));;
+
+let ct_print_eval ast red_fun env judg =
+((if refining() then traverse_to []);
+let {uj_val=value; uj_type=typ} = judg in
+let nvalue = red_fun value
+(* // Attention , ici il faut peut être utiliser des environnemenst locaux *)
+and ntyp = nf_betaiota typ in
+(ctf_SearchResults !global_request_id,
+ Some (P_pl
+ (CT_premises_list
+ [CT_eval_result
+ (xlate_formula ast,
+ translate_constr false env nvalue,
+ translate_constr false env ntyp)]))));;
+
+
+
+(* The following function is copied from globpr in env/printer.ml *)
+let globcv x =
+ match x with
+ | Node(_,"MUTIND", (Path(_,sp))::(Num(_,tyi))::_) ->
+ convert_qualid
+ (Nametab.shortest_qualid_of_global Idset.empty (IndRef(sp,tyi)))
+ | Node(_,"MUTCONSTRUCT",(Path(_,sp))::(Num(_,tyi))::(Num(_,i))::_) ->
+ convert_qualid
+ (Nametab.shortest_qualid_of_global Idset.empty
+ (ConstructRef ((sp, tyi), i)))
+ | _ -> failwith "globcv : unexpected value";;
+
+let pbp_tac_pcoq =
+ pbp_tac (function (x:raw_tactic_expr) ->
+ output_results
+ (ctf_header "pbp_results" !global_request_id)
+ (Some (P_t(xlate_tactic x))));;
+
+let blast_tac_pcoq =
+ blast_tac (function (x:raw_tactic_expr) ->
+ output_results
+ (ctf_header "pbp_results" !global_request_id)
+ (Some (P_t(xlate_tactic x))));;
+
+(* <\cpa>
+let dad_tac_pcoq =
+ dad_tac(function x ->
+ output_results
+ (ctf_header "pbp_results" !global_request_id)
+ (Some (P_t(xlate_tactic x))));;
+</cpa> *)
+
+let search_output_results () =
+ output_results
+ (ctf_SearchResults !global_request_id)
+ (Some (P_pl (CT_premises_list
+ (List.rev !ctv_SEARCH_LIST))));;
+
+
+let debug_tac2_pcoq tac =
+ (fun g ->
+ let the_goal = ref (None : goal sigma option) in
+ let the_ast = ref tac in
+ let the_path = ref ([] : int list) in
+ try
+ let result = report_error tac the_goal the_ast the_path [] g in
+ (errorlabstrm "DEBUG TACTIC"
+ (str "no error here " ++ fnl () ++ pr_goal (sig_it g) ++
+ fnl () ++ str "the tactic is" ++ fnl () ++
+ Pptactic.pr_glob_tactic tac);
+ result)
+ with
+ e ->
+ match !the_goal with
+ None -> raise e
+ | Some g ->
+ (output_results
+ (ctf_Location !global_request_id)
+ (Some (P_s_int
+ (CT_signed_int_list
+ (List.map
+ (fun n -> CT_coerce_INT_to_SIGNED_INT
+ (CT_int n))
+ (clean_path tac
+ (List.rev !the_path)))))));
+ (output_results
+ (ctf_OtherGoal !global_request_id)
+ (Some (P_r (translate_goal (sig_it g)))));
+ raise e);;
+
+let rec selectinspect n env =
+ match env with
+ [] -> []
+ | a::tl ->
+ if n = 0 then
+ []
+ else
+ match a with
+ (sp, Lib.Leaf lobj) -> a::(selectinspect (n -1 ) tl)
+ | _ -> (selectinspect n tl);;
+
+open Term;;
+
+let inspect n =
+ let env = Global.env() in
+ let add_search2 x y = add_search x env y in
+ let l = selectinspect n (Lib.contents_after None) in
+ ctv_SEARCH_LIST := [];
+ List.iter
+ (fun a ->
+ try
+ (match a with
+ oname, Lib.Leaf lobj ->
+ (match oname, object_tag lobj with
+ (sp,_), "VARIABLE" ->
+ let (_, _, v) = get_variable (basename sp) in
+ add_search2 (Nametab.locate (qualid_of_sp sp)) v
+ | (sp,kn), "CONSTANT" ->
+ let {const_type=typ} = Global.lookup_constant kn in
+ add_search2 (Nametab.locate (qualid_of_sp sp)) typ
+ | (sp,kn), "MUTUALINDUCTIVE" ->
+ add_search2 (Nametab.locate (qualid_of_sp sp))
+ (Pretyping.understand Evd.empty (Global.env())
+ (RRef(dummy_loc, IndRef(kn,0))))
+ | _ -> failwith ("unexpected value 1 for "^
+ (string_of_id (basename (fst oname)))))
+ | _ -> failwith "unexpected value")
+ with e -> ())
+ l;
+ output_results
+ (ctf_SearchResults !global_request_id)
+ (Some
+ (P_pl (CT_premises_list (List.rev !ctv_SEARCH_LIST))));;
+
+let ct_int_to_TARG n =
+ CT_coerce_FORMULA_OR_INT_to_TARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_INT_to_ID_OR_INT (CT_int n)));;
+
+let pair_list_to_ct l =
+ CT_user_tac(CT_ident "pair_int_list",
+ CT_targ_list
+ (List.map (fun (a,b) ->
+ CT_coerce_TACTIC_COM_to_TARG
+ (CT_user_tac
+ (CT_ident "pair_int",
+ CT_targ_list
+ [ct_int_to_TARG a; ct_int_to_TARG b])))
+ l));;
+
+(* Annule toutes les commandes qui s'appliquent sur les sous-buts du
+ but auquel a été appliquée la n-ième tactique *)
+let logical_kill n =
+ let path = History.get_path_for_rank (current_proof_name()) n in
+ begin
+ traverse_to path;
+ Pfedit.mutate weak_undo_pftreestate;
+ (let kept_cmds, undone_cmds, remaining_goals, current_goal =
+ History.logical_undo (current_proof_name()) n in
+ output_results (ctf_undoResults !global_request_id)
+ (Some
+ (P_t
+ (CT_user_tac
+ (CT_ident "log_undo_result",
+ CT_targ_list
+ [CT_coerce_TACTIC_COM_to_TARG (pair_list_to_ct kept_cmds);
+ CT_coerce_TACTIC_COM_to_TARG(pair_list_to_ct undone_cmds);
+ ct_int_to_TARG remaining_goals;
+ ct_int_to_TARG current_goal])))));
+ traverse_to []
+ end;;
+
+let simulate_solve n tac =
+ let path = History.get_nth_open_path (current_proof_name()) n in
+ solve_nth n (Tacinterp.hide_interp tac (get_end_tac()));
+ traverse_to path;
+ Pfedit.mutate weak_undo_pftreestate;
+ traverse_to []
+
+let kill_node_verbose n =
+ let ngoals = kill_proof_node n in
+ output_results_nl (ctf_KilledMessage !global_request_id ngoals)
+
+let set_text_mode s = text_proof_flag := s
+
+let pcoq_reset_initial() =
+ output_results(ctf_AbortedAllMessage()) None;
+ Vernacentries.abort_refine Lib.reset_initial ();
+ output_results(ctf_ResetInitialMessage()) None;;
+
+let pcoq_reset x =
+ if refining() then
+ output_results (ctf_AbortedAllMessage ()) None;
+ Vernacentries.abort_refine Lib.reset_name (dummy_loc,x);
+ output_results
+ (ctf_ResetIdentMessage !global_request_id (string_of_id x)) None;;
+
+
+VERNAC ARGUMENT EXTEND text_mode
+| [ "fr" ] -> [ "fr" ]
+| [ "en" ] -> [ "en" ]
+| [ "Off" ] -> [ "off" ]
+END
+
+VERNAC COMMAND EXTEND TextMode
+| [ "Text" "Mode" text_mode(s) ] -> [ set_text_mode s ]
+END
+
+VERNAC COMMAND EXTEND OutputGoal
+ [ "Goal" ] -> [ output_results_nl(ctf_EmptyGoalMessage "") ]
+END
+
+VERNAC COMMAND EXTEND OutputGoal
+ [ "Goal" "Cmd" natural(n) "with" tactic(tac) ] -> [ simulate_solve n tac ]
+END
+
+VERNAC COMMAND EXTEND KillProofAfter
+| [ "Kill" "Proof" "after" natural(n) ] -> [ kill_node_verbose n ]
+END
+
+VERNAC COMMAND EXTEND KillProofAt
+| [ "Kill" "Proof" "at" natural(n) ] -> [ kill_node_verbose n ]
+END
+
+VERNAC COMMAND EXTEND KillSubProof
+ [ "Kill" "SubProof" natural(n) ] -> [ logical_kill n ]
+END
+
+VERNAC COMMAND EXTEND PcoqReset
+ [ "Pcoq" "Reset" ident(x) ] -> [ pcoq_reset x ]
+END
+
+VERNAC COMMAND EXTEND PcoqResetInitial
+ [ "Pcoq" "ResetInitial" ] -> [ pcoq_reset_initial() ]
+END
+
+let start_proof_hook () =
+ History.start_proof (current_proof_name());
+ current_goal_index := 1
+
+let solve_hook n =
+ let name = current_proof_name () in
+ let old_n_count = History.border_length name in
+ let pf = proof_of_pftreestate (get_pftreestate ()) in
+ let n_goals = (List.length (fst (frontier pf))) + 1 - old_n_count in
+ begin
+ current_goal_index := n;
+ History.push_command name n n_goals
+ end
+
+let abort_hook s = output_results_nl (ctf_AbortedMessage !global_request_id s)
+
+let interp_search_about_item = function
+ | SearchRef qid -> GlobSearchRef (Nametab.global qid)
+ | SearchString s -> GlobSearchString s
+
+let pcoq_search s l =
+ ctv_SEARCH_LIST:=[];
+ begin match s with
+ | SearchAbout sl ->
+ raw_search_about (filter_by_module_from_list l) add_search
+ (List.map interp_search_about_item sl)
+ | SearchPattern c ->
+ let _,pat = interp_constrpattern Evd.empty (Global.env()) c in
+ raw_pattern_search (filter_by_module_from_list l) add_search pat
+ | SearchRewrite c ->
+ let _,pat = interp_constrpattern Evd.empty (Global.env()) c in
+ raw_search_rewrite (filter_by_module_from_list l) add_search pat;
+ | SearchHead locqid ->
+ filtered_search
+ (filter_by_module_from_list l) add_search (Nametab.global locqid)
+ end;
+ search_output_results()
+
+(* Check sequentially whether the pattern is one of the premises *)
+let rec hyp_pattern_filter pat name a c =
+ let c1 = strip_outer_cast c in
+ match kind_of_term c with
+ | Prod(_, hyp, c2) ->
+ (try
+(* let _ = msgnl ((str "WHOLE ") ++ (Printer.prterm c)) in
+ let _ = msgnl ((str "PAT ") ++ (Printer.pr_pattern pat)) in *)
+ if Matching.is_matching pat hyp then
+ (msgnl (str "ok"); true)
+ else
+ false
+ with UserError _ -> false) or
+ hyp_pattern_filter pat name a c2
+ | _ -> false;;
+
+let hyp_search_pattern c l =
+ let _, pat = interp_constrpattern Evd.empty (Global.env()) c in
+ ctv_SEARCH_LIST := [];
+ gen_filtered_search
+ (fun s a c -> (filter_by_module_from_list l s a c &&
+ (if hyp_pattern_filter pat s a c then
+ (msgnl (str "ok2"); true) else false)))
+ (fun s a c -> (msgnl (str "ok3"); add_search s a c));
+ output_results
+ (ctf_SearchResults !global_request_id)
+ (Some
+ (P_pl (CT_premises_list (List.rev !ctv_SEARCH_LIST))));;
+let pcoq_print_name ref =
+ let results = xlate_vernac_list (name_to_ast ref) in
+ output_results
+ (fnl () ++ str "message" ++ fnl () ++ str "PRINT_VALUE" ++ fnl ())
+ (Some (P_cl results))
+
+let pcoq_print_check j =
+ let a,b = print_check j in output_results a b
+
+let pcoq_print_eval redfun env c j =
+ let strm, vtp = ct_print_eval c redfun env j in
+ output_results strm vtp;;
+
+open Vernacentries
+
+let pcoq_show_goal = function
+ | Some n -> show_nth n
+ | None ->
+ if !pcoq_started = Some true (* = debug *) then
+ msg (Pfedit.pr_open_subgoals ())
+ else errorlabstrm "show_goal"
+ (str "Show must be followed by an integer in Centaur mode");;
+
+let pcoq_hook = {
+ start_proof = start_proof_hook;
+ solve = solve_hook;
+ abort = abort_hook;
+ search = pcoq_search;
+ print_name = pcoq_print_name;
+ print_check = pcoq_print_check;
+ print_eval = pcoq_print_eval;
+ show_goal = pcoq_show_goal
+}
+
+
+TACTIC EXTEND Pbp
+| [ "Pbp" ident_opt(idopt) natural_list(nl) ] ->
+ [ if_pcoq pbp_tac_pcoq idopt nl ]
+END
+
+TACTIC EXTEND CtDebugTac
+| [ "DebugTac" tactic(t) ] -> [ if_pcoq debug_tac2_pcoq (fst t) ]
+END
+
+TACTIC EXTEND CtDebugTac2
+| [ "DebugTac2" tactic(t) ] -> [ if_pcoq debug_tac2_pcoq (fst t) ]
+END
+
+
+let start_pcoq_mode debug =
+ begin
+ pcoq_started := Some debug;
+(* <\cpa>
+ start_dad();
+</cpa> *)
+ declare_in_coq();
+(* The following ones are added to enable rich comments in pcoq *)
+(* TODO ...
+ add_tactic "Image" (fun _ -> tclIDTAC);
+*)
+(* "Comments" moved to Vernacentries, other obsolete ?
+ List.iter (fun (a,b) -> vinterp_add a b) command_creations;
+*)
+(* Now hooks in Vernacentries
+ List.iter (fun (a,b) -> overwriting_vinterp_add a b) command_changes;
+ if not debug then
+ List.iter (fun (a,b) -> overwriting_vinterp_add a b) non_debug_changes;
+*)
+ set_pcoq_hook pcoq_hook;
+ end;;
+
+
+let start_pcoq () =
+ start_pcoq_mode false;
+ set_acknowledge_command ctf_acknowledge_command;
+ set_start_marker "CENTAUR_RESERVED_TOKEN_start_command";
+ set_end_marker "CENTAUR_RESERVED_TOKEN_end_command";
+ raise Vernacexpr.ProtectedLoop;;
+
+let start_pcoq_debug () =
+ start_pcoq_mode true;
+ set_acknowledge_command ctf_acknowledge_command;
+ set_start_marker "--->";
+ set_end_marker "<---";
+ raise Vernacexpr.ProtectedLoop;;
+
+VERNAC COMMAND EXTEND HypSearchPattern
+ [ "HypSearchPattern" constr(pat) ] -> [ hyp_search_pattern pat ([], false) ]
+END
+
+VERNAC COMMAND EXTEND StartPcoq
+ [ "Start" "Pcoq" "Mode" ] -> [ start_pcoq () ]
+END
+
+VERNAC COMMAND EXTEND Pcoq_inspect
+ [ "Pcoq_inspect" ] -> [ inspect 15 ]
+END
+
+VERNAC COMMAND EXTEND StartPcoqDebug
+| [ "Start" "Pcoq" "Debug" "Mode" ] -> [ start_pcoq_debug () ]
+END
diff --git a/contrib/interface/ctast.ml b/contrib/interface/ctast.ml
new file mode 100644
index 00000000..67279bb8
--- /dev/null
+++ b/contrib/interface/ctast.ml
@@ -0,0 +1,76 @@
+(* A copy of pre V7 ast *)
+
+open Names
+open Libnames
+
+type loc = Util.loc
+
+type t =
+ | Node of loc * string * t list
+ | Nvar of loc * string
+ | Slam of loc * string option * t
+ | Num of loc * int
+ | Id of loc * string
+ | Str of loc * string
+ | Path of loc * string list
+ | Dynamic of loc * Dyn.t
+
+let section_path sl =
+ match List.rev sl with
+ | s::pa ->
+ Libnames.encode_kn
+ (make_dirpath (List.map id_of_string pa))
+ (id_of_string s)
+ | [] -> invalid_arg "section_path"
+
+let is_meta s = String.length s > 0 && s.[0] == '$'
+
+let purge_str s =
+ if String.length s == 0 || s.[0] <> '$' then s
+ else String.sub s 1 (String.length s - 1)
+
+let rec ct_to_ast = function
+ | Node (loc,a,b) -> Coqast.Node (loc,a,List.map ct_to_ast b)
+ | Nvar (loc,a) ->
+ if is_meta a then Coqast.Nmeta (loc,purge_str a)
+ else Coqast.Nvar (loc,id_of_string a)
+ | Slam (loc,Some a,b) ->
+ if is_meta a then Coqast.Smetalam (loc,purge_str a,ct_to_ast b)
+ else Coqast.Slam (loc,Some (id_of_string a),ct_to_ast b)
+ | Slam (loc,None,b) -> Coqast.Slam (loc,None,ct_to_ast b)
+ | Num (loc,a) -> Coqast.Num (loc,a)
+ | Id (loc,a) -> Coqast.Id (loc,a)
+ | Str (loc,a) -> Coqast.Str (loc,a)
+ | Path (loc,sl) -> Coqast.Path (loc,section_path sl)
+ | Dynamic (loc,a) -> Coqast.Dynamic (loc,a)
+
+let rec ast_to_ct = function x -> failwith "ast_to_ct: not TODO?"
+(*
+ | Coqast.Node (loc,a,b) -> Node (loc,a,List.map ast_to_ct b)
+ | Coqast.Nvar (loc,a) -> Nvar (loc,string_of_id a)
+ | Coqast.Nmeta (loc,a) -> Nvar (loc,"$"^a)
+ | Coqast.Slam (loc,Some a,b) ->
+ Slam (loc,Some (string_of_id a),ast_to_ct b)
+ | Coqast.Slam (loc,None,b) -> Slam (loc,None,ast_to_ct b)
+ | Coqast.Smetalam (loc,a,b) -> Slam (loc,Some ("$"^a),ast_to_ct b)
+ | Coqast.Num (loc,a) -> Num (loc,a)
+ | Coqast.Id (loc,a) -> Id (loc,a)
+ | Coqast.Str (loc,a) -> Str (loc,a)
+ | Coqast.Path (loc,a) ->
+ let (sl,bn) = Libnames.decode_kn a in
+ Path(loc, (List.map string_of_id
+ (List.rev (repr_dirpath sl))) @ [string_of_id bn])
+ | Coqast.Dynamic (loc,a) -> Dynamic (loc,a)
+*)
+
+let loc = function
+ | Node (loc,_,_) -> loc
+ | Nvar (loc,_) -> loc
+ | Slam (loc,_,_) -> loc
+ | Num (loc,_) -> loc
+ | Id (loc,_) -> loc
+ | Str (loc,_) -> loc
+ | Path (loc,_) -> loc
+ | Dynamic (loc,_) -> loc
+
+let str s = Str(Util.dummy_loc,s)
diff --git a/contrib/interface/dad.ml b/contrib/interface/dad.ml
new file mode 100644
index 00000000..ec989296
--- /dev/null
+++ b/contrib/interface/dad.ml
@@ -0,0 +1,382 @@
+(* This file contains an ml version of drag-and-drop. *)
+
+(* #use "/net/home/bertot/experiments/pcoq/src/dad/dad.ml" *)
+
+open Names;;
+open Term;;
+open Rawterm;;
+open Util;;
+open Environ;;
+open Tactics;;
+open Tacticals;;
+open Pattern;;
+open Matching;;
+open Reduction;;
+open Constrextern;;
+open Constrintern;;
+open Vernacinterp;;
+open Libnames;;
+open Nametab
+
+open Proof_type;;
+open Proof_trees;;
+open Tacmach;;
+open Typing;;
+open Pp;;
+
+open Paths;;
+
+open Topconstr;;
+open Genarg;;
+open Tacexpr;;
+open Rawterm;;
+
+(* In a first approximation, drag-and-drop rules are like in CtCoq
+ 1/ a pattern,
+ 2,3/ Two paths: start and end positions,
+ 4/ the degree: the number of steps the algorithm should go up from the
+ longest common prefix,
+ 5/ the tail path: the suffix of the longest common prefix of length the
+ degree,
+ 6/ the command pattern, where meta variables are represented by objects
+ of the form Node(_,"META"; [Num(_,i)])
+*)
+
+
+type dad_rule =
+ constr_expr * int list * int list * int * int list
+ * raw_atomic_tactic_expr;;
+
+(* This value will be used systematically when constructing objects *)
+
+let zz = Util.dummy_loc;;
+
+(* This function receives a length n, a path p, and a term and returns a
+ couple whose first component is the subterm designated by the prefix
+ of p of length n, and the second component is the rest of the path *)
+
+let rec get_subterm (depth:int) (path: int list) (constr:constr) =
+ match depth, path, kind_of_term constr with
+ 0, l, c -> (constr,l)
+ | n, 2::a::tl, App(func,arr) ->
+ get_subterm (n - 2) tl arr.(a-1)
+ | _,l,_ -> failwith (int_list_to_string
+ "wrong path or wrong form of term"
+ l);;
+
+(* This function maps a substitution on an abstract syntax tree. The
+ first argument, an object of type env, is necessary to
+ transform constr terms into abstract syntax trees. The second argument is
+ the substitution, a list of pairs linking an integer and a constr term. *)
+
+let rec map_subst (env :env) (subst:patvar_map) = function
+ | CPatVar (_,(_,i)) ->
+ let constr = List.assoc i subst in
+ extern_constr false env constr
+ | x -> map_constr_expr_with_binders (map_subst env) (fun _ x -> x) subst x;;
+
+let map_subst_tactic env subst = function
+ | TacExtend (loc,("Rewrite" as x),[b;cbl]) ->
+ let c,bl = out_gen rawwit_constr_with_bindings cbl in
+ assert (bl = NoBindings);
+ let c = (map_subst env subst c,NoBindings) in
+ TacExtend (loc,x,[b;in_gen rawwit_constr_with_bindings c])
+ | _ -> failwith "map_subst_tactic: unsupported tactic"
+
+(* This function is really the one that is important. *)
+let rec find_cmd (l:(string * dad_rule) list) env constr p p1 p2 =
+ match l with
+ [] -> failwith "nothing happens"
+ | (name, (pat, p_f, p_l, deg, p_r, cmd))::tl ->
+ let length = List.length p in
+ try
+ if deg > length then
+ failwith "internal"
+ else
+ let term_to_match, p_r =
+ try
+ get_subterm (length - deg) p constr
+ with
+ Failure s -> failwith "internal" in
+ let _, constr_pat =
+ interp_constrpattern Evd.empty (Global.env())
+ ((*ct_to_ast*) pat) in
+ let subst = matches constr_pat term_to_match in
+ if (is_prefix p_f (p_r@p1)) & (is_prefix p_l (p_r@p2)) then
+ TacAtom (zz, map_subst_tactic env subst cmd)
+ else
+ failwith "internal"
+ with
+ Failure "internal" -> find_cmd tl env constr p p1 p2
+ | PatternMatchingFailure -> find_cmd tl env constr p p1 p2;;
+
+
+let dad_rule_list = ref ([]: (string * dad_rule) list);;
+
+(*
+(* \\ This function is also used in pbp. *)
+let rec tactic_args_to_ints = function
+ [] -> []
+ | (Integer n)::l -> n::(tactic_args_to_ints l)
+ | _ -> failwith "expecting only numbers";;
+
+(* We assume that the two lists of integers for the tactic are simply
+ given in one list, separated by a dummy tactic. *)
+let rec part_tac_args l = function
+ [] -> l,[]
+ | (Tacexp a)::tl -> l, (tactic_args_to_ints tl)
+ | (Integer n)::tl -> part_tac_args (n::l) tl
+ | _ -> failwith "expecting only numbers and the word \"to\"";;
+
+
+(* The dad_tac tactic takes a display_function as argument. This makes
+ it possible to use it in pcoq, but also in other contexts, just by
+ changing the output routine. *)
+let dad_tac display_function = function
+ l -> let p1, p2 = part_tac_args [] l in
+ (function g ->
+ let (p_a, p1prime, p2prime) = decompose_path (List.rev p1,p2) in
+ (display_function
+ (find_cmd (!dad_rule_list) (pf_env g)
+ (pf_concl g) p_a p1prime p2prime));
+ tclIDTAC g);;
+*)
+let dad_tac display_function p1 p2 g =
+ let (p_a, p1prime, p2prime) = decompose_path (p1,p2) in
+ (display_function
+ (find_cmd (!dad_rule_list) (pf_env g) (pf_concl g) p_a p1prime p2prime));
+ tclIDTAC g;;
+
+(* Now we enter dad rule list management. *)
+
+let add_dad_rule name patt p1 p2 depth pr command =
+ dad_rule_list := (name,
+ (patt, p1, p2, depth, pr, command))::!dad_rule_list;;
+
+let rec remove_if_exists name = function
+ [] -> false, []
+ | ((a,b) as rule1)::tl -> if a = name then
+ let result1, l = (remove_if_exists name tl) in
+ true, l
+ else
+ let result1, l = remove_if_exists name tl in
+ result1, (rule1::l);;
+
+let remove_dad_rule name =
+ let result1, result2 = remove_if_exists name !dad_rule_list in
+ if result1 then
+ failwith("No such name among the drag and drop rules " ^ name)
+ else
+ dad_rule_list := result2;;
+
+let dad_rule_names () =
+ List.map (function (s,_) -> s) !dad_rule_list;;
+
+(* this function is inspired from matches_core in pattern.ml *)
+let constrain ((n : patvar),(pat : constr_pattern)) sigma =
+ if List.mem_assoc n sigma then
+ if pat = (List.assoc n sigma) then sigma
+ else failwith "internal"
+ else
+ (n,pat)::sigma
+
+(* This function is inspired from matches_core in pattern.ml *)
+let more_general_pat pat1 pat2 =
+ let rec match_rec sigma p1 p2 =
+ match p1, p2 with
+ | PMeta (Some n), m -> constrain (n,m) sigma
+
+ | PMeta None, m -> sigma
+
+ | PRef (VarRef sp1), PRef(VarRef sp2) when sp1 = sp2 -> sigma
+
+ | PVar v1, PVar v2 when v1 = v2 -> sigma
+
+ | PRef ref1, PRef ref2 when ref1 = ref2 -> sigma
+
+ | PRel n1, PRel n2 when n1 = n2 -> sigma
+
+ | PSort (RProp c1), PSort (RProp c2) when c1 = c2 -> sigma
+
+ | PSort (RType _), PSort (RType _) -> sigma
+
+ | PApp (c1,arg1), PApp (c2,arg2) ->
+ (try array_fold_left2 match_rec (match_rec sigma c1 c2) arg1 arg2
+ with Invalid_argument _ -> failwith "internal")
+ | _ -> failwith "unexpected case in more_general_pat" in
+ try let _ = match_rec [] pat1 pat2 in true
+ with Failure "internal" -> false;;
+
+let more_general r1 r2 =
+ match r1,r2 with
+ (_,(patt1,p11,p12,_,_,_)),
+ (_,(patt2,p21,p22,_,_,_)) ->
+ (more_general_pat patt1 patt2) &
+ (is_prefix p11 p21) & (is_prefix p12 p22);;
+
+let not_less_general r1 r2 =
+ not (match r1,r2 with
+ (_,(patt1,p11,p12,_,_,_)),
+ (_,(patt2,p21,p22,_,_,_)) ->
+ (more_general_pat patt1 patt2) &
+ (is_prefix p21 p11) & (is_prefix p22 p12));;
+
+let rec add_in_list_sorting rule1 = function
+ [] -> [rule1]
+ | (b::tl) as this_list ->
+ if more_general rule1 b then
+ b::(add_in_list_sorting rule1 tl)
+ else if not_less_general rule1 b then
+ let tl2 = add_in_list_sorting_aux rule1 tl in
+ (match tl2 with
+ [] -> rule1::this_list
+ | _ -> b::tl2)
+ else
+ rule1::this_list
+and add_in_list_sorting_aux rule1 = function
+ [] -> []
+ | b::tl ->
+ if more_general rule1 b then
+ b::(add_in_list_sorting rule1 tl)
+ else
+ let tl2 = add_in_list_sorting_aux rule1 tl in
+ (match tl2 with
+ [] -> []
+ | _ -> rule1::tl2);;
+
+let rec sort_list = function
+ [] -> []
+ | a::l -> add_in_list_sorting a (sort_list l);;
+
+let mk_dad_meta n = CPatVar (zz,(true,Nameops.make_ident "DAD" (Some n)));;
+let mk_rewrite lr ast =
+ let b = in_gen rawwit_bool lr in
+ let cb = in_gen rawwit_constr_with_bindings ((*Ctast.ct_to_ast*) ast,NoBindings) in
+ TacExtend (zz,"Rewrite",[b;cb])
+
+open Vernacexpr
+
+let dad_status = ref false;;
+
+let start_dad () = dad_status := true;;
+
+let add_dad_rule_fn name pat p1 p2 tac =
+ let pr = match decompose_path (p1, p2) with pr, _, _ -> pr in
+ add_dad_rule name pat p1 p2 (List.length pr) pr tac;;
+
+(* To be parsed by camlp4
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+VERNAC COMMAND EXTEND AddDadRule
+ [ "Add" "Dad" "Rule" string(name) constr(pat)
+ "From" natural_list(p1) "To" natural_list(p2) tactic(tac) ] ->
+ [ add_dad_rule_fn name pat p1 p2 tac ]
+END
+
+*)
+
+let mk_id s = mkIdentC (id_of_string s);;
+let mkMetaC = mk_dad_meta;;
+
+add_dad_rule "distributivity-inv"
+(mkAppC(mk_id("mult"),[mkAppC(mk_id("plus"),[mkMetaC(4);mkMetaC(3)]);mkMetaC(2)]))
+[2; 2]
+[2; 1]
+1
+[2]
+(mk_rewrite true (mkAppC(mk_id( "mult_plus_distr"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "distributivity1-r"
+(mkAppC(mk_id("plus"),[mkAppC(mk_id("mult"),[mkMetaC(4);mkMetaC(2)]);mkAppC(mk_id("mult"),[mkMetaC(3);mkMetaC(2)])]))
+[2; 2; 2; 2]
+[]
+0
+[]
+(mk_rewrite false (mkAppC(mk_id("mult_plus_distr"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "distributivity1-l"
+(mkAppC(mk_id("plus"),[mkAppC(mk_id("mult"),[mkMetaC(4);mkMetaC(2)]);mkAppC(mk_id("mult"),[mkMetaC(3);mkMetaC(2)])]))
+[2; 1; 2; 2]
+[]
+0
+[]
+(mk_rewrite false (mkAppC(mk_id( "mult_plus_distr"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "associativity"
+(mkAppC(mk_id("plus"),[mkAppC(mk_id("plus"),[mkMetaC(4);mkMetaC(3)]);mkMetaC(2)]))
+[2; 1]
+[]
+0
+[]
+(mk_rewrite true (mkAppC(mk_id( "plus_assoc_r"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "minus-identity-lr"
+(mkAppC(mk_id("minus"),[mkMetaC(2);mkMetaC(2)]))
+[2; 1]
+[2; 2]
+1
+[2]
+(mk_rewrite false (mkAppC(mk_id( "minus_n_n"),[(mk_dad_meta 2) ])));
+
+add_dad_rule "minus-identity-rl"
+(mkAppC(mk_id("minus"),[mkMetaC(2);mkMetaC(2)]))
+[2; 2]
+[2; 1]
+1
+[2]
+(mk_rewrite false (mkAppC(mk_id( "minus_n_n"),[(mk_dad_meta 2) ])));
+
+add_dad_rule "plus-sym-rl"
+(mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)]))
+[2; 2]
+[2; 1]
+1
+[2]
+(mk_rewrite true (mkAppC(mk_id( "plus_sym"),[(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "plus-sym-lr"
+(mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)]))
+[2; 1]
+[2; 2]
+1
+[2]
+(mk_rewrite true (mkAppC(mk_id( "plus_sym"),[(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "absorb-0-r-rl"
+(mkAppC(mk_id("plus"),[mkMetaC(2);mk_id("O")]))
+[2; 2]
+[1]
+0
+[]
+(mk_rewrite false (mkAppC(mk_id( "plus_n_O"),[(mk_dad_meta 2) ])));
+
+add_dad_rule "absorb-0-r-lr"
+(mkAppC(mk_id("plus"),[mkMetaC(2);mk_id("O")]))
+[1]
+[2; 2]
+0
+[]
+(mk_rewrite false (mkAppC(mk_id( "plus_n_O"),[(mk_dad_meta 2) ])));
+
+add_dad_rule "plus-permute-lr"
+(mkAppC(mk_id("plus"),[mkMetaC(4);mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)])]))
+[2; 1]
+[2; 2; 2; 1]
+1
+[2]
+(mk_rewrite true (mkAppC(mk_id( "plus_permute"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
+
+add_dad_rule "plus-permute-rl"
+(mkAppC(mk_id("plus"),[mkMetaC(4);mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)])]))
+[2; 2; 2; 1]
+[2; 1]
+1
+[2]
+(mk_rewrite true (mkAppC(mk_id( "plus_permute"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));;
+
+vinterp_add "StartDad"
+ (function
+ | [] ->
+ (function () -> start_dad())
+ | _ -> errorlabstrm "StartDad" (mt()));;
diff --git a/contrib/interface/dad.mli b/contrib/interface/dad.mli
new file mode 100644
index 00000000..f556c192
--- /dev/null
+++ b/contrib/interface/dad.mli
@@ -0,0 +1,10 @@
+open Proof_type;;
+open Tacmach;;
+open Topconstr;;
+
+val dad_rule_names : unit -> string list;;
+val start_dad : unit -> unit;;
+val dad_tac : (Tacexpr.raw_tactic_expr -> 'a) -> int list -> int list -> goal sigma ->
+ goal list sigma * validation;;
+val add_dad_rule : string -> constr_expr -> (int list) -> (int list) ->
+ int -> (int list) -> Tacexpr.raw_atomic_tactic_expr -> unit;;
diff --git a/contrib/interface/debug_tac.ml4 b/contrib/interface/debug_tac.ml4
new file mode 100644
index 00000000..bf596b28
--- /dev/null
+++ b/contrib/interface/debug_tac.ml4
@@ -0,0 +1,570 @@
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Ast;;
+open Coqast;;
+open Tacmach;;
+open Tacticals;;
+open Proof_trees;;
+open Pp;;
+open Pptactic;;
+open Util;;
+open Proof_type;;
+open Tacexpr;;
+open Genarg;;
+
+(* Compacting and uncompacting proof commands *)
+
+type report_tree =
+ Report_node of bool *int * report_tree list
+ | Mismatch of int * int
+ | Tree_fail of report_tree
+ | Failed of int;;
+
+type report_card =
+ Ngoals of int
+ | Goals_mismatch of int
+ | Recursive_fail of report_tree
+ | Fail;;
+
+type card_holder = report_card ref;;
+type report_holder = report_tree list ref;;
+
+(* This tactical receives an integer and a tactic and checks that the
+ tactic produces that number of goals. It never fails but signals failure
+ by updating the boolean reference given as third argument to false.
+ It is especially suited for use in checked_thens below. *)
+
+let check_subgoals_count : card_holder -> int -> bool ref -> tactic -> tactic =
+ fun card_holder count flag t g ->
+ try
+ let (gls, v) as result = t g in
+ let len = List.length (sig_it gls) in
+ card_holder :=
+ (if len = count then
+ (flag := true;
+ Ngoals count)
+ else
+ (flag := false;
+ Goals_mismatch len));
+ result
+ with
+ e -> card_holder := Fail;
+ flag := false;
+ tclIDTAC g;;
+
+let no_failure = function
+ [Report_node(true,_,_)] -> true
+ | _ -> false;;
+
+let check_subgoals_count2
+ : card_holder -> int -> bool ref -> (report_holder -> tactic) -> tactic =
+ fun card_holder count flag t g ->
+ let new_report_holder = ref ([] : report_tree list) in
+ let (gls, v) as result = t new_report_holder g in
+ let succeeded = no_failure !new_report_holder in
+ let len = List.length (sig_it gls) in
+ card_holder :=
+ (if (len = count) & succeeded then
+ (flag := true;
+ Ngoals count)
+ else
+ (flag := false;
+ Recursive_fail (List.hd !new_report_holder)));
+ result;;
+
+(*
+let traceable = function
+ Node(_, "TACTICLIST", a::b::tl) -> true
+ | _ -> false;;
+*)
+let traceable = function
+ | TacThen _ | TacThens _ -> true
+ | _ -> false;;
+
+let rec collect_status = function
+ Report_node(true,_,_)::tl -> collect_status tl
+ | [] -> true
+ | _ -> false;;
+
+(* This tactical receives a tactic and executes it, reporting information
+ about success in the report holder and a boolean reference. *)
+
+let count_subgoals : card_holder -> bool ref -> tactic -> tactic =
+ fun card_holder flag t g ->
+ try
+ let (gls, _) as result = t g in
+ card_holder := (Ngoals(List.length (sig_it gls)));
+ flag := true;
+ result
+ with
+ e -> card_holder := Fail;
+ flag := false;
+ tclIDTAC g;;
+
+let count_subgoals2
+ : card_holder -> bool ref -> (report_holder -> tactic) -> tactic =
+ fun card_holder flag t g ->
+ let new_report_holder = ref([] : report_tree list) in
+ let (gls, v) as result = t new_report_holder g in
+ let succeeded = no_failure !new_report_holder in
+ if succeeded then
+ (flag := true;
+ card_holder := Ngoals (List.length (sig_it gls)))
+ else
+ (flag := false;
+ card_holder := Recursive_fail(List.hd !new_report_holder));
+ result;;
+
+let rec local_interp : glob_tactic_expr -> report_holder -> tactic = function
+(*
+ Node(_, "TACTICLIST", [a;Node(_, "TACLIST", l)]) ->
+ (fun report_holder -> checked_thens report_holder a l)
+ | Node(_, "TACTICLIST", a::((Node(_, "TACLIST", l))as b)::c::tl) ->
+ local_interp(ope ("TACTICLIST", (ope("TACTICLIST", [a;b]))::c::tl))
+ | Node(_, "TACTICLIST", [a;b]) ->
+ (fun report_holder -> checked_then report_holder a b)
+ | Node(_, "TACTICLIST", a::b::c::tl) ->
+ local_interp(ope ("TACTICLIST", (ope("TACTICLIST", [a;b]))::c::tl))
+ | ast ->
+ (fun report_holder g ->
+ try
+ let (gls, _) as result = Tacinterp.interp ast g in
+ report_holder := (Report_node(true, List.length (sig_it gls), []))
+ ::!report_holder;
+ result
+ with e -> (report_holder := (Failed 1)::!report_holder;
+ tclIDTAC g))
+*)
+ TacThens (a,l) ->
+ (fun report_holder -> checked_thens report_holder a l)
+ | TacThen (a,b) ->
+ (fun report_holder -> checked_then report_holder a b)
+ | t ->
+ (fun report_holder g ->
+ try
+ let (gls, _) as result = Tacinterp.eval_tactic t g in
+ report_holder := (Report_node(true, List.length (sig_it gls), []))
+ ::!report_holder;
+ result
+ with e -> (report_holder := (Failed 1)::!report_holder;
+ tclIDTAC g))
+
+
+(* This tactical receives a tactic and a list of tactics as argument.
+ It applies the first tactic and then maps the list of tactics to
+ various produced sub-goals. This tactic will never fail, but reports
+ are added in the report_holder in the following way:
+ - In case of partial success, a new report_tree is added to the report_holder
+ - In case of failure of the first tactic, with no more indications
+ then Failed 0 is added to the report_holder,
+ - In case of partial failure of the first tactic then (Failed n) is added to
+ the report holder.
+ - In case of success of the first tactic, but count mismatch, then
+ Mismatch n is added to the report holder. *)
+
+and checked_thens: report_holder -> glob_tactic_expr -> glob_tactic_expr list -> tactic =
+ (fun report_holder t1 l g ->
+ let flag = ref true in
+ let traceable_t1 = traceable t1 in
+ let card_holder = ref Fail in
+ let new_holder = ref ([]:report_tree list) in
+ let tac_t1 =
+ if traceable_t1 then
+ (check_subgoals_count2 card_holder (List.length l)
+ flag (local_interp t1))
+ else
+ (check_subgoals_count card_holder (List.length l)
+ flag (Tacinterp.eval_tactic t1)) in
+ let (gls, _) as result =
+ tclTHEN_i tac_t1
+ (fun i ->
+ if !flag then
+ (fun g ->
+ let tac_i = (List.nth l i) in
+ if traceable tac_i then
+ local_interp tac_i new_holder g
+ else
+ try
+ let (gls,_) as result = Tacinterp.eval_tactic tac_i g in
+ let len = List.length (sig_it gls) in
+ new_holder :=
+ (Report_node(true, len, []))::!new_holder;
+ result
+ with
+ e -> (new_holder := (Failed 1)::!new_holder;
+ tclIDTAC g))
+ else
+ tclIDTAC) g in
+ let new_goal_list = sig_it gls in
+ (if !flag then
+ report_holder :=
+ (Report_node(collect_status !new_holder,
+ (List.length new_goal_list),
+ List.rev !new_holder))::!report_holder
+ else
+ report_holder :=
+ (match !card_holder with
+ Goals_mismatch(n) -> Mismatch(n, List.length l)
+ | Recursive_fail tr -> Tree_fail tr
+ | Fail -> Failed 1
+ | _ -> errorlabstrm "check_thens"
+ (str "this case should not happen in check_thens"))::
+ !report_holder);
+ result)
+
+(* This tactical receives two tactics as argument, it executes the
+ first tactic and applies the second one to all the produced goals,
+ reporting information about the success of all tactics in the report
+ holder. It never fails. *)
+
+and checked_then: report_holder -> glob_tactic_expr -> glob_tactic_expr -> tactic =
+ (fun report_holder t1 t2 g ->
+ let flag = ref true in
+ let card_holder = ref Fail in
+ let tac_t1 =
+ if traceable t1 then
+ (count_subgoals2 card_holder flag (local_interp t1))
+ else
+ (count_subgoals card_holder flag (Tacinterp.eval_tactic t1)) in
+ let new_tree_holder = ref ([] : report_tree list) in
+ let (gls, _) as result =
+ tclTHEN tac_t1
+ (fun (g:goal sigma) ->
+ if !flag then
+ if traceable t2 then
+ local_interp t2 new_tree_holder g
+ else
+ try
+ let (gls, _) as result = Tacinterp.eval_tactic t2 g in
+ new_tree_holder :=
+ (Report_node(true, List.length (sig_it gls),[]))::
+ !new_tree_holder;
+ result
+ with
+ e ->
+ (new_tree_holder := ((Failed 1)::!new_tree_holder);
+ tclIDTAC g)
+ else
+ tclIDTAC g) g in
+ (if !flag then
+ report_holder :=
+ (Report_node(collect_status !new_tree_holder,
+ List.length (sig_it gls),
+ List.rev !new_tree_holder))::!report_holder
+ else
+ report_holder :=
+ (match !card_holder with
+ Recursive_fail tr -> Tree_fail tr
+ | Fail -> Failed 1
+ | _ -> error "this case should not happen in check_then")::!report_holder);
+ result);;
+
+(* This tactic applies the given tactic only to those subgoals designated
+ by the list of integers given as extra arguments.
+ *)
+
+let on_then = function [t1;t2;l] ->
+ let t1 = out_gen wit_tactic t1 in
+ let t2 = out_gen wit_tactic t2 in
+ let l = out_gen (wit_list0 wit_int) l in
+ tclTHEN_i (Tacinterp.eval_tactic t1)
+ (fun i ->
+ if List.mem (i + 1) l then
+ (Tacinterp.eval_tactic t2)
+ else
+ tclIDTAC)
+ | _ -> anomaly "bad arguments for on_then";;
+
+let mkOnThen t1 t2 selected_indices =
+ let a = in_gen rawwit_tactic t1 in
+ let b = in_gen rawwit_tactic t2 in
+ let l = in_gen (wit_list0 rawwit_int) selected_indices in
+ TacAtom (dummy_loc, TacExtend (dummy_loc, "OnThen", [a;b;l]));;
+
+(* Analyzing error reports *)
+
+(*
+let rec select_success n = function
+ [] -> []
+ | Report_node(true,_,_)::tl -> (Num((0,0),n))::select_success (n+1) tl
+ | _::tl -> select_success (n+1) tl;;
+*)
+let rec select_success n = function
+ [] -> []
+ | Report_node(true,_,_)::tl -> n::select_success (n+1) tl
+ | _::tl -> select_success (n+1) tl;;
+
+(*
+let rec expand_tactic = function
+ Node(loc1, "TACTICLIST", [a;Node(loc2,"TACLIST", l)]) ->
+ Node(loc1, "TACTICLIST",
+ [expand_tactic a;
+ Node(loc2, "TACLIST", List.map expand_tactic l)])
+ | Node(loc1, "TACTICLIST", a::((Node(loc2, "TACLIST", l))as b)::c::tl) ->
+ expand_tactic (Node(loc1, "TACTICLIST",
+ (Node(loc1, "TACTICLIST", [a;b]))::c::tl))
+ | Node(loc1, "TACTICLIST", [a;b]) ->
+ Node(loc1, "TACTICLIST",[expand_tactic a;expand_tactic b])
+ | Node(loc1, "TACTICLIST", a::b::c::tl) ->
+ expand_tactic (Node(loc1, "TACTICLIST",
+ (Node(loc1, "TACTICLIST", [a;b]))::c::tl))
+ | any -> any;;
+*)
+(* Useless: already in binary form...
+let rec expand_tactic = function
+ TacThens (a,l) -> TacThens (expand_tactic a, List.map expand_tactic l)
+ | TacThen (a,b) -> TacThen (expand_tactic a, expand_tactic b)
+ | any -> any;;
+*)
+
+(*
+let rec reconstruct_success_tac ast =
+ match ast with
+ Node(_, "TACTICLIST", [a;Node(_,"TACLIST",l)]) ->
+ (function
+ Report_node(true, n, l) -> ast
+ | Report_node(false, n, rl) ->
+ ope("TACTICLIST",[a;ope("TACLIST",
+ List.map2 reconstruct_success_tac l rl)])
+ | Failed n -> ope("Idtac",[])
+ | Tree_fail r -> reconstruct_success_tac a r
+ | Mismatch (n,p) -> a)
+ | Node(_, "TACTICLIST", [a;b]) ->
+ (function
+ Report_node(true, n, l) -> ast
+ | Report_node(false, n, rl) ->
+ let selected_indices = select_success 1 rl in
+ ope("OnThen", a::b::selected_indices)
+ | Failed n -> ope("Idtac",[])
+ | Tree_fail r -> reconstruct_success_tac a r
+ | _ -> error "this error case should not happen in a THEN tactic")
+ | _ ->
+ (function
+ Report_node(true, n, l) -> ast
+ | Failed n -> ope("Idtac",[])
+ | _ ->
+ errorlabstrm
+ "this error case should not happen on an unknown tactic"
+ (str "error in reconstruction with " ++ fnl () ++
+ (gentacpr ast)));;
+*)
+let rec reconstruct_success_tac (tac:glob_tactic_expr) =
+ match tac with
+ TacThens (a,l) ->
+ (function
+ Report_node(true, n, l) -> tac
+ | Report_node(false, n, rl) ->
+ TacThens (a,List.map2 reconstruct_success_tac l rl)
+ | Failed n -> TacId ""
+ | Tree_fail r -> reconstruct_success_tac a r
+ | Mismatch (n,p) -> a)
+ | TacThen (a,b) ->
+ (function
+ Report_node(true, n, l) -> tac
+ | Report_node(false, n, rl) ->
+ let selected_indices = select_success 1 rl in
+ TacAtom (dummy_loc,TacExtend (dummy_loc,"OnThen",
+ [in_gen globwit_tactic a;
+ in_gen globwit_tactic b;
+ in_gen (wit_list0 globwit_int) selected_indices]))
+ | Failed n -> TacId ""
+ | Tree_fail r -> reconstruct_success_tac a r
+ | _ -> error "this error case should not happen in a THEN tactic")
+ | _ ->
+ (function
+ Report_node(true, n, l) -> tac
+ | Failed n -> TacId ""
+ | _ ->
+ errorlabstrm
+ "this error case should not happen on an unknown tactic"
+ (str "error in reconstruction with " ++ fnl () ++
+ (pr_glob_tactic tac)));;
+
+
+let rec path_to_first_error = function
+| Report_node(true, _, l) ->
+ let rec find_first_error n = function
+ | (Report_node(true, _, _))::tl -> find_first_error (n + 1) tl
+ | it::tl -> n, it
+ | [] -> error "no error detected" in
+ let p, t = find_first_error 1 l in
+ p::(path_to_first_error t)
+| _ -> [];;
+
+(*
+let rec flatten_then_list tail = function
+ | Node(_, "TACTICLIST", [a;b]) ->
+ flatten_then_list ((flatten_then b)::tail) a
+ | ast -> ast::tail
+and flatten_then = function
+ Node(_, "TACTICLIST", [a;b]) ->
+ ope("TACTICLIST", flatten_then_list [flatten_then b] a)
+ | Node(_, "TACLIST", l) ->
+ ope("TACLIST", List.map flatten_then l)
+ | Node(_, "OnThen", t1::t2::l) ->
+ ope("OnThen", (flatten_then t1)::(flatten_then t2)::l)
+ | ast -> ast;;
+*)
+
+let debug_tac = function
+ [(Tacexp ast)] ->
+ (fun g ->
+ let report = ref ([] : report_tree list) in
+ let result = local_interp ast report g in
+ let clean_ast = (* expand_tactic *) ast in
+ let report_tree =
+ try List.hd !report with
+ Failure "hd" -> (msgnl (str "report is empty"); Failed 1) in
+ let success_tac =
+ reconstruct_success_tac clean_ast report_tree in
+ let compact_success_tac = (* flatten_then *) success_tac in
+ msgnl (fnl () ++
+ str "========= Successful tactic =============" ++
+ fnl () ++
+ pr_glob_tactic compact_success_tac ++ fnl () ++
+ str "========= End of successful tactic ============");
+ result)
+ | _ -> error "wrong arguments for debug_tac";;
+
+(* TODO ... used ?
+add_tactic "DebugTac" debug_tac;;
+*)
+
+(*
+hide_tactic "OnThen" on_then;;
+*)
+Refiner.add_tactic "OnThen" on_then;;
+
+(*
+let rec clean_path p ast l =
+ match ast, l with
+ Node(_, "TACTICLIST", ([_;_] as tacs)), fst::tl ->
+ fst::(clean_path 0 (List.nth tacs (fst - 1)) tl)
+ | Node(_, "TACTICLIST", tacs), 2::tl ->
+ let rank = (List.length tacs) - p in
+ rank::(clean_path 0 (List.nth tacs (rank - 1)) tl)
+ | Node(_, "TACTICLIST", tacs), 1::tl ->
+ clean_path (p+1) ast tl
+ | Node(_, "TACLIST", tacs), fst::tl ->
+ fst::(clean_path 0 (List.nth tacs (fst - 1)) tl)
+ | _, [] -> []
+ | _, _ -> failwith "this case should not happen in clean_path";;
+*)
+let rec clean_path tac l =
+ match tac, l with
+ | TacThen (a,b), fst::tl ->
+ fst::(clean_path (if fst = 1 then a else b) tl)
+ | TacThens (a,l), 1::tl ->
+ 1::(clean_path a tl)
+ | TacThens (a,tacs), 2::fst::tl ->
+ 2::fst::(clean_path (List.nth tacs (fst - 1)) tl)
+ | _, [] -> []
+ | _, _ -> failwith "this case should not happen in clean_path";;
+
+let rec report_error
+ : glob_tactic_expr -> goal sigma option ref -> glob_tactic_expr ref -> int list ref ->
+ int list -> tactic =
+ fun tac the_goal the_ast returned_path path ->
+ match tac with
+ TacThens (a,l) ->
+ let the_card_holder = ref Fail in
+ let the_flag = ref false in
+ let the_exn = ref (Failure "") in
+ tclTHENS
+ (fun g ->
+ let result =
+ check_subgoals_count
+ the_card_holder
+ (List.length l)
+ the_flag
+ (fun g2 ->
+ try
+ (report_error a the_goal the_ast returned_path (1::path) g2)
+ with
+ e -> (the_exn := e; raise e))
+ g in
+ if !the_flag then
+ result
+ else
+ (match !the_card_holder with
+ Fail ->
+ the_ast := TacThens (!the_ast, l);
+ raise !the_exn
+ | Goals_mismatch p ->
+ the_ast := tac;
+ returned_path := path;
+ error ("Wrong number of tactics: expected " ^
+ (string_of_int (List.length l)) ^ " received " ^
+ (string_of_int p))
+ | _ -> error "this should not happen"))
+ (let rec fold_num n = function
+ [] -> []
+ | t::tl -> (report_error t the_goal the_ast returned_path (n::2::path))::
+ (fold_num (n + 1) tl) in
+ fold_num 1 l)
+ | TacThen (a,b) ->
+ let the_count = ref 1 in
+ tclTHEN
+ (fun g ->
+ try
+ report_error a the_goal the_ast returned_path (1::path) g
+ with
+ e ->
+ (the_ast := TacThen (!the_ast, b);
+ raise e))
+ (fun g ->
+ try
+ let result =
+ report_error b the_goal the_ast returned_path (2::path) g in
+ the_count := !the_count + 1;
+ result
+ with
+ e ->
+ if !the_count > 1 then
+ msgnl
+ (str "in branch no " ++ int !the_count ++
+ str " after tactic " ++ pr_glob_tactic a);
+ raise e)
+ | tac ->
+ (fun g ->
+ try
+ Tacinterp.eval_tactic tac g
+ with
+ e ->
+ (the_ast := tac;
+ the_goal := Some g;
+ returned_path := path;
+ raise e));;
+
+let strip_some = function
+ Some n -> n
+ | None -> failwith "No optional value";;
+
+let descr_first_error tac =
+ (fun g ->
+ let the_goal = ref (None : goal sigma option) in
+ let the_ast = ref tac in
+ let the_path = ref ([] : int list) in
+ try
+ let result = report_error tac the_goal the_ast the_path [] g in
+ msgnl (str "no Error here");
+ result
+ with
+ e ->
+ (msgnl (str "Execution of this tactic raised message " ++ fnl () ++
+ fnl () ++ Cerrors.explain_exn e ++ fnl () ++
+ fnl () ++ str "on goal" ++ fnl () ++
+ pr_goal (sig_it (strip_some !the_goal)) ++ fnl () ++
+ str "faulty tactic is" ++ fnl () ++ fnl () ++
+ pr_glob_tactic ((*flatten_then*) !the_ast) ++ fnl ());
+ tclIDTAC g))
+
+(* TODO ... used ??
+add_tactic "DebugTac2" descr_first_error;;
+*)
+
+(*
+TACTIC EXTEND DebugTac2
+ [ ??? ] -> [ descr_first_error tac ]
+END
+*)
diff --git a/contrib/interface/debug_tac.mli b/contrib/interface/debug_tac.mli
new file mode 100644
index 00000000..ded714b6
--- /dev/null
+++ b/contrib/interface/debug_tac.mli
@@ -0,0 +1,6 @@
+
+val report_error : Tacexpr.glob_tactic_expr ->
+ Proof_type.goal Proof_type.sigma option ref ->
+ Tacexpr.glob_tactic_expr ref -> int list ref -> int list -> Tacmach.tactic;;
+
+val clean_path : Tacexpr.glob_tactic_expr -> int list -> int list;;
diff --git a/contrib/interface/history.ml b/contrib/interface/history.ml
new file mode 100644
index 00000000..f73c2084
--- /dev/null
+++ b/contrib/interface/history.ml
@@ -0,0 +1,373 @@
+open Paths;;
+
+type tree = {mutable index : int;
+ parent : tree option;
+ path_to_root : int list;
+ mutable is_open : bool;
+ mutable sub_proofs : tree list};;
+
+type prf_info = {
+ mutable prf_length : int;
+ mutable ranks_and_goals : (int * int * tree) list;
+ mutable border : tree list;
+ prf_struct : tree};;
+
+let theorem_proofs = ((Hashtbl.create 17):
+ (string, prf_info) Hashtbl.t);;
+
+
+let rec mk_trees_for_goals path tree rank k n =
+ if k = (n + 1) then
+ []
+ else
+ { index = rank;
+ parent = tree;
+ path_to_root = k::path;
+ is_open = true;
+ sub_proofs = [] } ::(mk_trees_for_goals path tree rank (k+1) n);;
+
+
+let push_command s rank ngoals =
+ let ({prf_length = this_length;
+ ranks_and_goals = these_ranks;
+ border = this_border} as proof_info) =
+ Hashtbl.find theorem_proofs s in
+ let rec push_command_aux n = function
+ [] -> failwith "the given rank was too large"
+ | a::l ->
+ if n = 1 then
+ let {path_to_root = p} = a in
+ let new_trees = mk_trees_for_goals p (Some a) (this_length + 1) 1 ngoals in
+ new_trees,(new_trees@l),a
+ else
+ let new_trees, res, this_tree = push_command_aux (n-1) l in
+ new_trees,(a::res),this_tree in
+ let new_trees, new_border, this_tree =
+ push_command_aux rank this_border in
+ let new_length = this_length + 1 in
+ begin
+ proof_info.border <- new_border;
+ proof_info.prf_length <- new_length;
+ proof_info.ranks_and_goals <- (rank, ngoals, this_tree)::these_ranks;
+ this_tree.index <- new_length;
+ this_tree.is_open <- false;
+ this_tree.sub_proofs <- new_trees
+ end;;
+
+let get_tree_for_rank thm_name rank =
+ let {ranks_and_goals=l;prf_length=n} =
+ Hashtbl.find theorem_proofs thm_name in
+ let rec get_tree_aux = function
+ [] ->
+ failwith
+ "inconsistent values for thm_name and rank in get_tree_for_rank"
+ | (_,_,({index=i} as tree))::tl ->
+ if i = rank then
+ tree
+ else
+ get_tree_aux tl in
+ get_tree_aux l;;
+
+let get_path_for_rank thm_name rank =
+ let {path_to_root=l}=get_tree_for_rank thm_name rank in
+ l;;
+
+let rec list_descendants_aux l tree =
+ let {index = i; is_open = open_status; sub_proofs = tl} = tree in
+ let res = (List.fold_left list_descendants_aux l tl) in
+ if open_status then i::res else res;;
+
+let list_descendants thm_name rank =
+ list_descendants_aux [] (get_tree_for_rank thm_name rank);;
+
+let parent_from_rank thm_name rank =
+ let {parent=mommy} = get_tree_for_rank thm_name rank in
+ match mommy with
+ Some x -> Some x.index
+ | None -> None;;
+
+let first_child_command thm_name rank =
+ let {sub_proofs = l} = get_tree_for_rank thm_name rank in
+ let rec first_child_rec = function
+ [] -> None
+ | {index=i;is_open=b}::l ->
+ if b then
+ (first_child_rec l)
+ else
+ Some i in
+ first_child_rec l;;
+
+type index_or_rank = Is_index of int | Is_rank of int;;
+
+let first_child_command_or_goal thm_name rank =
+ let proof_info = Hashtbl.find theorem_proofs thm_name in
+ let {sub_proofs=l}=get_tree_for_rank thm_name rank in
+ match l with
+ [] -> None
+ | ({index=i;is_open=b} as t)::_ ->
+ if b then
+ let rec get_rank n = function
+ [] -> failwith "A goal is lost in first_child_command_or_goal"
+ | a::l ->
+ if a==t then
+ n
+ else
+ get_rank (n + 1) l in
+ Some(Is_rank(get_rank 1 proof_info.border))
+ else
+ Some(Is_index i);;
+
+let next_sibling thm_name rank =
+ let ({parent=mommy} as t)=get_tree_for_rank thm_name rank in
+ match mommy with
+ None -> None
+ | Some real_mommy ->
+ let {sub_proofs=l}=real_mommy in
+ let rec next_sibling_aux b = function
+ (opt_first, []) ->
+ if b then
+ opt_first
+ else
+ failwith "inconsistency detected in next_sibling"
+ | (opt_first, {is_open=true}::l) ->
+ next_sibling_aux b (opt_first, l)
+ | (Some(first),({index=i; is_open=false} as t')::l) ->
+ if b then
+ Some i
+ else
+ next_sibling_aux (t == t') (Some first,l)
+ | None,({index=i;is_open=false} as t')::l ->
+ next_sibling_aux (t == t') ((Some i), l)
+ in
+ Some (next_sibling_aux false (None, l));;
+
+
+let prefix l1 l2 =
+ let l1rev = List.rev l1 in
+ let l2rev = List.rev l2 in
+ is_prefix l1rev l2rev;;
+
+let rec remove_all_prefixes p = function
+ [] -> []
+ | a::l ->
+ if is_prefix p a then
+ (remove_all_prefixes p l)
+ else
+ a::(remove_all_prefixes p l);;
+
+let recompute_border tree =
+ let rec recompute_border_aux tree acc =
+ let {is_open=b;sub_proofs=l}=tree in
+ if b then
+ tree::acc
+ else
+ List.fold_right recompute_border_aux l acc in
+ recompute_border_aux tree [];;
+
+
+let historical_undo thm_name rank =
+ let ({ranks_and_goals=l} as proof_info)=
+ Hashtbl.find theorem_proofs thm_name in
+ let rec undo_aux acc = function
+ [] -> failwith "bad rank provided for undoing in historical_undo"
+ | (r, n, ({index=i} as tree))::tl ->
+ let this_path_reversed = List.rev tree.path_to_root in
+ let res = remove_all_prefixes this_path_reversed acc in
+ if i = rank then
+ begin
+ proof_info.prf_length <- i-1;
+ proof_info.ranks_and_goals <- tl;
+ tree.is_open <- true;
+ tree.sub_proofs <- [];
+ proof_info.border <- recompute_border proof_info.prf_struct;
+ this_path_reversed::res
+ end
+ else
+ begin
+ tree.is_open <- true;
+ tree.sub_proofs <- [];
+ undo_aux (this_path_reversed::res) tl
+ end
+ in
+ List.map List.rev (undo_aux [] l);;
+
+(* The following function takes a list of trees and compute the
+ number of elements whose path is lexically smaller or a suffixe of
+ the path given as a first argument. This works under the precondition that
+ the list is lexicographically order. *)
+
+let rec logical_undo_on_border the_tree rev_path = function
+ [] -> (0,[the_tree])
+ | ({path_to_root=p}as tree)::tl ->
+ let p_rev = List.rev p in
+ if is_prefix rev_path p_rev then
+ let (k,res) = (logical_undo_on_border the_tree rev_path tl) in
+ (k+1,res)
+ else if lex_smaller p_rev rev_path then
+ let (k,res) = (logical_undo_on_border the_tree rev_path tl) in
+ (k,tree::res)
+ else
+ (0, the_tree::tree::tl);;
+
+
+let logical_undo thm_name rank =
+ let ({ranks_and_goals=l; border=last_border} as proof_info)=
+ Hashtbl.find theorem_proofs thm_name in
+ let ({path_to_root=ref_path} as ref_tree)=get_tree_for_rank thm_name rank in
+ let rev_ref_path = List.rev ref_path in
+ let rec logical_aux lex_smaller_offset family_width = function
+ [] -> failwith "this case should never happen in logical_undo"
+ | (r,n,({index=i;path_to_root=this_path; sub_proofs=these_goals} as tree))::
+ tl ->
+ let this_path_rev = List.rev this_path in
+ let new_rank, new_offset, new_width, kept =
+ if is_prefix rev_ref_path this_path_rev then
+ (r + lex_smaller_offset), lex_smaller_offset,
+ (family_width + 1 - n), false
+ else if lex_smaller this_path_rev rev_ref_path then
+ r, (lex_smaller_offset - 1 + n), family_width, true
+ else
+ (r + 1 - family_width+ lex_smaller_offset),
+ lex_smaller_offset, family_width, true in
+ if i=rank then
+ [i,new_rank],[], tl, rank
+ else
+ let ranks_undone, ranks_kept, ranks_and_goals, current_rank =
+ (logical_aux new_offset new_width tl) in
+ begin
+ if kept then
+ begin
+ tree.index <- current_rank;
+ ranks_undone, ((i,new_rank)::ranks_kept),
+ ((new_rank, n, tree)::ranks_and_goals),
+ (current_rank + 1)
+ end
+ else
+ ((i,new_rank)::ranks_undone), ranks_kept,
+ ranks_and_goals, current_rank
+ end in
+ let number_suffix, new_border =
+ logical_undo_on_border ref_tree rev_ref_path last_border in
+ let changed_ranks_undone, changed_ranks_kept, new_ranks_and_goals,
+ new_length_plus_one = logical_aux 0 number_suffix l in
+ let the_goal_index =
+ let rec compute_goal_index n = function
+ [] -> failwith "this case should never happen in logical undo (2)"
+ | {path_to_root=path}::tl ->
+ if List.rev path = (rev_ref_path) then
+ n
+ else
+ compute_goal_index (n+1) tl in
+ compute_goal_index 1 new_border in
+ begin
+ ref_tree.is_open <- true;
+ ref_tree.sub_proofs <- [];
+ proof_info.border <- new_border;
+ proof_info.ranks_and_goals <- new_ranks_and_goals;
+ proof_info.prf_length <- new_length_plus_one - 1;
+ changed_ranks_undone, changed_ranks_kept, proof_info.prf_length,
+ the_goal_index
+ end;;
+
+let start_proof thm_name =
+ let the_tree =
+ {index=0;parent=None;path_to_root=[];is_open=true;sub_proofs=[]} in
+ Hashtbl.add theorem_proofs thm_name
+ {prf_length=0;
+ ranks_and_goals=[];
+ border=[the_tree];
+ prf_struct=the_tree};;
+
+let dump_sequence chan s =
+ match (Hashtbl.find theorem_proofs s) with
+ {ranks_and_goals=l}->
+ let rec dump_rec = function
+ [] -> ()
+ | (r,n,_)::tl ->
+ dump_rec tl;
+ output_string chan (string_of_int r);
+ output_string chan ",";
+ output_string chan (string_of_int n);
+ output_string chan "\n" in
+ begin
+ dump_rec l;
+ output_string chan "end\n"
+ end;;
+
+
+let proof_info_as_string s =
+ let res = ref "" in
+ match (Hashtbl.find theorem_proofs s) with
+ {prf_struct=tree} ->
+ let open_goal_counter = ref 0 in
+ let rec dump_rec = function
+ {index=i;sub_proofs=trees;parent=the_parent;is_open=op} ->
+ begin
+ (match the_parent with
+ None ->
+ if op then
+ res := !res ^ "\"open goal\"\n"
+ | Some {index=j} ->
+ begin
+ res := !res ^ (string_of_int j);
+ res := !res ^ " -> ";
+ if op then
+ begin
+ res := !res ^ "\"open goal ";
+ open_goal_counter := !open_goal_counter + 1;
+ res := !res ^ (string_of_int !open_goal_counter);
+ res := !res ^ "\"\n";
+ end
+ else
+ begin
+ res := !res ^ (string_of_int i);
+ res := !res ^ "\n"
+ end
+ end);
+ List.iter dump_rec trees
+ end in
+ dump_rec tree;
+ !res;;
+
+
+let dump_proof_info chan s =
+ match (Hashtbl.find theorem_proofs s) with
+ {prf_struct=tree} ->
+ let open_goal_counter = ref 0 in
+ let rec dump_rec = function
+ {index=i;sub_proofs=trees;parent=the_parent;is_open=op} ->
+ begin
+ (match the_parent with
+ None ->
+ if op then
+ output_string chan "\"open goal\"\n"
+ | Some {index=j} ->
+ begin
+ output_string chan (string_of_int j);
+ output_string chan " -> ";
+ if op then
+ begin
+ output_string chan "\"open goal ";
+ open_goal_counter := !open_goal_counter + 1;
+ output_string chan (string_of_int !open_goal_counter);
+ output_string chan "\"\n";
+ end
+ else
+ begin
+ output_string chan (string_of_int i);
+ output_string chan "\n"
+ end
+ end);
+ List.iter dump_rec trees
+ end in
+ dump_rec tree;;
+
+let get_nth_open_path s n =
+ match Hashtbl.find theorem_proofs s with
+ {border=l} ->
+ let {path_to_root=p}=List.nth l (n - 1) in
+ p;;
+
+let border_length s =
+ match Hashtbl.find theorem_proofs s with
+ {border=l} -> List.length l;;
diff --git a/contrib/interface/history.mli b/contrib/interface/history.mli
new file mode 100644
index 00000000..053883f0
--- /dev/null
+++ b/contrib/interface/history.mli
@@ -0,0 +1,12 @@
+type prf_info;;
+
+val start_proof : string -> unit;;
+val historical_undo : string -> int -> int list list
+val logical_undo : string -> int -> (int * int) list * (int * int) list * int * int
+val dump_sequence : out_channel -> string -> unit
+val proof_info_as_string : string -> string
+val dump_proof_info : out_channel -> string -> unit
+val push_command : string -> int -> int -> unit
+val get_path_for_rank : string -> int -> int list
+val get_nth_open_path : string -> int -> int list
+val border_length : string -> int
diff --git a/contrib/interface/line_parser.ml4 b/contrib/interface/line_parser.ml4
new file mode 100755
index 00000000..b5669351
--- /dev/null
+++ b/contrib/interface/line_parser.ml4
@@ -0,0 +1,241 @@
+(* line-oriented Syntactic analyser for a Coq parser *)
+(* This parser expects a very small number of commands, each given on a complete
+line. Some of these commands are then followed by a text fragment terminated
+by a precise keyword, which is also expected to appear alone on a line. *)
+
+(* The main parsing loop procedure is "parser_loop", given at the end of this
+file. It read lines one by one and checks whether they can be parsed using
+a very simple parser. This very simple parser uses a lexer, which is also given
+in this file.
+
+The lexical analyser:
+ There are only 5 sorts of tokens *)
+type simple_tokens = Tspace | Tid of string | Tint of int | Tstring of string |
+ Tlbracket | Trbracket;;
+
+(* When recognizing identifiers or strings, the lexical analyser accumulates
+ the characters in a buffer, using the command add_in_buff. To recuperate
+ the characters, one can use get_buff (this code was inspired by the
+ code in src/meta/lexer.ml of Coq revision 6.1) *)
+let add_in_buff,get_buff =
+ let buff = ref (String.create 80) in
+ (fun i x ->
+ let len = String.length !buff in
+ if i >= len then (buff := !buff ^ (String.create len);());
+ String.set !buff i x;
+ succ i),
+ (fun len -> String.sub !buff 0 len);;
+
+(* Identifiers are [a-zA-Z_][.a-zA-Z0-9_]*. When arriving here the first
+ character has already been recognized. *)
+let rec ident len = parser
+ [<''_' | '.' | 'a'..'z' | 'A'..'Z' | '0'..'9' as c; s >] ->
+ ident (add_in_buff len c) s
+| [< >] -> let str = get_buff len in Tid(str);;
+
+(* While recognizing integers, one constructs directly the integer value.
+ The ascii code of '0' is important for this. *)
+let code0 = Char.code '0';;
+
+let get_digit c = Char.code c - code0;;
+
+(* Integers are [0-9]*
+ The variable intval is the integer value of the text that has already
+ been recognized. As for identifiers, the first character has already been
+ recognized. *)
+
+let rec parse_int intval = parser
+ [< ''0'..'9' as c ; i=parse_int (10 * intval + get_digit c)>] -> i
+| [< >] -> Tint intval;;
+
+(* The string lexer is borrowed from the string parser of Coq V6.1
+ This may be a problem if convention have changed in Coq,
+ However this parser is only used to recognize file names which should
+ not contain too many special characters *)
+
+let rec spec_char = parser
+ [< ''n' >] -> '\n'
+| [< ''t' >] -> '\t'
+| [< ''b' >] -> '\008'
+| [< ''r' >] -> '\013'
+| [< ''0'..'9' as c; v= (spec1 (get_digit c)) >] ->
+ Char.chr v
+| [< 'x >] -> x
+
+and spec1 v = parser
+ [< ''0'..'9' as c; s >] -> spec1 (10*v+(get_digit c)) s
+| [< >] -> v
+;;
+
+(* This is the actual string lexical analyser. Strings are
+ QUOT([^QUOT\\]|\\[0-9]*|\\[^0-9])QUOT (the word QUOT is used
+ to represents double quotation characters, that cannot be used
+ freely, even inside comments. *)
+
+let rec string len = parser
+ [< ''"' >] -> len
+| [<''\\' ;
+ len = (parser [< ''\n' >] -> len
+ | [< c=spec_char >] -> add_in_buff len c);
+ s >] -> string len s
+| [< 'x; s >] -> string (add_in_buff len x) s;;
+
+(* The lexical analyser repeats the recognized given by next_token:
+ spaces and tabulations are ignored, identifiers, integers,
+ strings, opening and closing square brackets. Lexical errors are
+ ignored ! *)
+let rec next_token = parser count
+ [< '' ' | '\t'; tok = next_token >] -> tok
+| [< ''_' | 'a'..'z' | 'A'..'Z' as c;i = (ident (add_in_buff 0 c))>] -> i
+| [< ''0'..'9' as c ; i = (parse_int (get_digit c))>] -> i
+| [< ''"' ; len = (string 0) >] -> Tstring (get_buff len)
+| [< ''[' >] -> Tlbracket
+| [< '']' >] -> Trbracket
+| [< '_ ; x = next_token >] -> x;;
+
+(* A very simple lexical analyser to recognize a integer value behind
+ blank characters *)
+
+let rec next_int = parser count
+ [< '' ' | '\t'; v = next_int >] -> v
+| [< ''0'..'9' as c; i = (parse_int (get_digit c))>] ->
+ (match i with
+ Tint n -> n
+ | _ -> failwith "unexpected branch in next_int");;
+
+(* This is the actual lexical analyser, implemented as a function on a stream.
+ It will be used with the Stream.from primitive to construct a function
+ of type char Stream.t -> simple_token option Stream.t *)
+let token_stream cs _ =
+ try let tok = next_token cs in
+ Some tok
+ with Stream.Failure -> None;;
+
+(* Two of the actions of the parser request that one reads the rest of
+ the input up to a specific string stop_string. This is done
+ with a function that transform the input_channel into a pair of
+ char Stream.t, reading from the input_channel all the lines to
+ the stop_string first. *)
+
+
+let rec gather_strings stop_string input_channel =
+ let buff = input_line input_channel in
+ if buff = stop_string then
+ []
+ else
+ (buff::(gather_strings stop_string input_channel));;
+
+
+(* the result of this function is supposed to be used in a Stream.from
+ construction. *)
+
+let line_list_to_stream string_list =
+ let count = ref 0 in
+ let buff = ref "" in
+ let reserve = ref string_list in
+ let current_length = ref 0 in
+ (fun i -> if (i - !count) >= !current_length then
+ begin
+ count := !count + !current_length + 1;
+ match !reserve with
+ | [] -> None
+ | s1::rest ->
+ begin
+ buff := s1;
+ current_length := String.length !buff;
+ reserve := rest;
+ Some '\n'
+ end
+ end
+ else
+ Some(String.get !buff (i - !count)));;
+
+
+(* In older revisions of this file you would find a function that
+ does line oriented breakdown of the input channel without resorting to
+ a list of lines. However, the need for the list of line appeared when
+ we wanted to have a channel and a list of strings describing the same
+ data, one for regular parsing and the other for error recovery. *)
+
+let channel_to_stream_and_string_list stop_string input_channel =
+ let string_list = gather_strings stop_string input_channel in
+ (line_list_to_stream string_list, string_list);;
+
+let flush_until_end_of_stream char_stream =
+ Stream.iter (function _ -> ()) char_stream;;
+
+(* There are only 5 kinds of lines recognized by our little parser.
+ Unrecognized lines are ignored. *)
+type parser_request =
+ | PRINT_VERSION
+ | PARSE_STRING of string
+ (* parse_string <int> [<ident>] then text and && END--OF--DATA *)
+ | QUIET_PARSE_STRING
+ (* quiet_parse_string then text and && END--OF--DATA *)
+ | PARSE_FILE of string
+ (* parse_file <int> <string> *)
+ | ADD_PATH of string
+ (* add_path <int> <string> *)
+ | ADD_REC_PATH of string * string
+ (* add_rec_path <int> <string> <ident> *)
+ | LOAD_SYNTAX of string
+ (* load_syntax_file <int> <ident> *)
+ | GARBAGE
+;;
+
+(* The procedure parser_loop should never terminate while the input_channel is
+ not closed. This procedure receives the functions called for each sentence
+ as arguments. Thus the code is completely independent from the Coq sources. *)
+let parser_loop functions input_channel =
+ let print_version_action,
+ parse_string_action,
+ quiet_parse_string_action,
+ parse_file_action,
+ add_path_action,
+ add_rec_path_action,
+ load_syntax_action = functions in
+ let rec parser_loop_rec input_channel =
+ (let line = input_line input_channel in
+ let reqid, parser_request =
+ try
+ (match Stream.from (token_stream (Stream.of_string line)) with
+ parser
+ | [< 'Tid "print_version" >] ->
+ 0, PRINT_VERSION
+ | [< 'Tid "parse_string" ; 'Tint reqid ; 'Tlbracket ;
+ 'Tid phylum ; 'Trbracket >]
+ -> reqid,PARSE_STRING phylum
+ | [< 'Tid "quiet_parse_string" >] ->
+ 0,QUIET_PARSE_STRING
+ | [< 'Tid "parse_file" ; 'Tint reqid ; 'Tstring fname >] ->
+ reqid, PARSE_FILE fname
+ | [< 'Tid "add_rec_path"; 'Tint reqid ; 'Tstring directory ; 'Tid alias >]
+ -> reqid, ADD_REC_PATH(directory, alias)
+ | [< 'Tid "add_path"; 'Tint reqid ; 'Tstring directory >]
+ -> reqid, ADD_PATH directory
+ | [< 'Tid "load_syntax_file"; 'Tint reqid; 'Tid module_name >] ->
+ reqid, LOAD_SYNTAX module_name
+ | [< 'Tid "quit_parser" >] -> raise End_of_file
+ | [< >] -> 0, GARBAGE)
+ with
+ Stream.Failure | Stream.Error _ -> 0,GARBAGE in
+ match parser_request with
+ PRINT_VERSION -> print_version_action ()
+ | PARSE_STRING phylum ->
+ let regular_stream, string_list =
+ channel_to_stream_and_string_list "&& END--OF--DATA" input_channel in
+ parse_string_action reqid phylum (Stream.from regular_stream)
+ string_list;()
+ | QUIET_PARSE_STRING ->
+ let regular_stream, string_list =
+ channel_to_stream_and_string_list "&& END--OF--DATA" input_channel in
+ quiet_parse_string_action
+ (Stream.from regular_stream);()
+ | PARSE_FILE file_name ->
+ parse_file_action reqid file_name
+ | ADD_PATH path -> add_path_action reqid path
+ | ADD_REC_PATH(path, alias) -> add_rec_path_action reqid path alias
+ | LOAD_SYNTAX syn -> load_syntax_action reqid syn
+ | GARBAGE -> ());
+ parser_loop_rec input_channel in
+ parser_loop_rec input_channel;;
diff --git a/contrib/interface/line_parser.mli b/contrib/interface/line_parser.mli
new file mode 100644
index 00000000..b0b043c7
--- /dev/null
+++ b/contrib/interface/line_parser.mli
@@ -0,0 +1,5 @@
+val parser_loop :
+ (unit -> unit) * (int -> string -> char Stream.t -> string list -> 'a) *
+ (char Stream.t -> 'b) * (int -> string -> unit) * (int -> string -> unit) *
+ (int -> string -> string -> unit) * (int -> string -> unit) -> in_channel -> 'c
+val flush_until_end_of_stream : 'a Stream.t -> unit
diff --git a/contrib/interface/name_to_ast.ml b/contrib/interface/name_to_ast.ml
new file mode 100644
index 00000000..eaff0968
--- /dev/null
+++ b/contrib/interface/name_to_ast.ml
@@ -0,0 +1,252 @@
+open Sign;;
+open Classops;;
+open Names;;
+open Nameops
+open Coqast;;
+open Ast;;
+open Termast;;
+open Term;;
+open Impargs;;
+open Reduction;;
+open Libnames;;
+open Libobject;;
+open Environ;;
+open Declarations;;
+open Prettyp;;
+open Inductive;;
+open Util;;
+open Pp;;
+open Declare;;
+open Nametab
+open Vernacexpr;;
+open Decl_kinds;;
+open Constrextern;;
+open Topconstr;;
+
+(* This function converts the parameter binders of an inductive definition,
+ in particular you have to be careful to handle each element in the
+ context containing all previously defined variables. This squeleton
+ of this procedure is taken from the function print_env in pretty.ml *)
+let convert_env =
+ let convert_binder env (na, b, c) =
+ match b with
+ | Some b -> LocalRawDef ((dummy_loc,na), extern_constr true env b)
+ | None -> LocalRawAssum ([dummy_loc,na], extern_constr true env c) in
+ let rec cvrec env = function
+ [] -> []
+ | b::rest -> (convert_binder env b)::(cvrec (push_rel b env) rest) in
+ cvrec (Global.env());;
+
+(* let mib string =
+ let sp = Nametab.sp_of_id CCI (id_of_string string) in
+ let lobj = Lib.map_leaf (objsp_of sp) in
+ let (cmap, _) = outMutualInductive lobj in
+ Listmap.map cmap CCI;; *)
+
+(* This function is directly inspired by print_impl_args in pretty.ml *)
+
+let impl_args_to_string_by_pos = function
+ [] -> None
+ | [i] -> Some(" position " ^ (string_of_int i) ^ " is implicit.")
+ | l -> Some (" positions " ^
+ (List.fold_right (fun i s -> (string_of_int i) ^ " " ^ s)
+ l
+ " are implicit."));;
+
+(* This function is directly inspired by implicit_args_id in pretty.ml *)
+
+let impl_args_to_string l =
+ impl_args_to_string_by_pos (positions_of_implicits l)
+
+let implicit_args_id_to_ast_list id l ast_list =
+ (match impl_args_to_string l with
+ None -> ast_list
+ | Some(s) -> CommentString s::
+ CommentString ("For " ^ (string_of_id id))::
+ ast_list);;
+
+(* This function construct an ast to enumerate the implicit positions for an
+ inductive type and its constructors. It is obtained directly from
+ implicit_args_msg in pretty.ml. *)
+
+let implicit_args_to_ast_list sp mipv =
+ let implicit_args_descriptions =
+ let ast_list = ref [] in
+ (Array.iteri
+ (fun i mip ->
+ let imps = implicits_of_global (IndRef (sp, i)) in
+ (ast_list :=
+ implicit_args_id_to_ast_list mip.mind_typename imps !ast_list;
+ Array.iteri
+ (fun j idc ->
+ let impls = implicits_of_global
+ (ConstructRef ((sp,i),j+1)) in
+ ast_list :=
+ implicit_args_id_to_ast_list idc impls !ast_list)
+ mip.mind_consnames))
+ mipv;
+ !ast_list) in
+ match implicit_args_descriptions with
+ [] -> []
+ | _ -> [VernacComments (List.rev implicit_args_descriptions)];;
+
+let convert_qualid qid =
+ let d, id = Libnames.repr_qualid qid in
+ match repr_dirpath d with
+ [] -> nvar id
+ | d -> ope("QUALID", List.fold_left (fun l s -> (nvar s)::l)
+ [nvar id] d);;
+
+(* This function converts constructors for an inductive definition to a
+ Coqast.t. It is obtained directly from print_constructors in pretty.ml *)
+
+let convert_constructors envpar names types =
+ let array_idC =
+ array_map2
+ (fun n t ->
+ let coercion_flag = false (* arbitrary *) in
+ (coercion_flag, ((dummy_loc,n), extern_constr true envpar t)))
+ names types in
+ Array.to_list array_idC;;
+
+(* this function converts one inductive type in a possibly multiple inductive
+ definition *)
+
+let convert_one_inductive sp tyi =
+ let (ref, params, arity, cstrnames, cstrtypes) = build_inductive sp tyi in
+ let env = Global.env () in
+ let envpar = push_rel_context params env in
+ let sp = sp_of_global (IndRef (sp, tyi)) in
+ ((dummy_loc,basename sp), None,
+ convert_env(List.rev params),
+ (extern_constr true envpar arity),
+ convert_constructors envpar cstrnames cstrtypes);;
+
+(* This function converts a Mutual inductive definition to a Coqast.t.
+ It is obtained directly from print_mutual in pretty.ml. However, all
+ references to kinds have been removed and it treats only CCI stuff. *)
+
+let mutual_to_ast_list sp mib =
+ let mipv = (Global.lookup_mind sp).mind_packets in
+ let _, l =
+ Array.fold_right
+ (fun mi (n,l) -> (n+1, (convert_one_inductive sp n)::l)) mipv (0, []) in
+ VernacInductive (mib.mind_finite, l)
+ :: (implicit_args_to_ast_list sp mipv);;
+
+let constr_to_ast v =
+ extern_constr true (Global.env()) v;;
+
+let implicits_to_ast_list implicits =
+ match (impl_args_to_string implicits) with
+ | None -> []
+ | Some s -> [VernacComments [CommentString s]];;
+
+(*
+let make_variable_ast name typ implicits =
+ (ope("VARIABLE",
+ [string "VARIABLE";
+ ope("BINDERLIST",
+ [ope("BINDER",
+ [(constr_to_ast (body_of_type typ));
+ nvar name])])]))::(implicits_to_ast_list implicits)
+ ;;
+*)
+let make_variable_ast name typ implicits =
+ (VernacAssumption
+ ((Local,Definitional),
+ [false,([dummy_loc,name], constr_to_ast (body_of_type typ))]))
+ ::(implicits_to_ast_list implicits);;
+
+
+let make_definition_ast name c typ implicits =
+ VernacDefinition ((Global,Definition), (dummy_loc,name), DefineBody ([], None,
+ (constr_to_ast c), Some (constr_to_ast (body_of_type typ))),
+ (fun _ _ -> ()))
+ ::(implicits_to_ast_list implicits);;
+
+(* This function is inspired by print_constant *)
+let constant_to_ast_list kn =
+ let cb = Global.lookup_constant kn in
+ let c = cb.const_body in
+ let typ = cb.const_type in
+ let l = implicits_of_global (ConstRef kn) in
+ (match c with
+ None ->
+ make_variable_ast (id_of_label (label kn)) typ l
+ | Some c1 ->
+ make_definition_ast (id_of_label (label kn)) (Declarations.force c1) typ l)
+
+let variable_to_ast_list sp =
+ let (id, c, v) = get_variable sp in
+ let l = implicits_of_global (VarRef sp) in
+ (match c with
+ None ->
+ make_variable_ast id v l
+ | Some c1 ->
+ make_definition_ast id c1 v l);;
+
+(* this function is taken from print_inductive in file pretty.ml *)
+
+let inductive_to_ast_list sp =
+ let mib = Global.lookup_mind sp in
+ mutual_to_ast_list sp mib
+
+(* this function is inspired by print_leaf_entry from pretty.ml *)
+
+let leaf_entry_to_ast_list ((sp,kn),lobj) =
+ let tag = object_tag lobj in
+ match tag with
+ | "VARIABLE" -> variable_to_ast_list (basename sp)
+ | "CONSTANT" -> constant_to_ast_list kn
+ | "INDUCTIVE" -> inductive_to_ast_list kn
+ | s ->
+ errorlabstrm
+ "print" (str ("printing of unrecognized object " ^
+ s ^ " has been required"));;
+
+
+
+
+(* this function is inspired by print_name *)
+let name_to_ast ref =
+ let (loc,qid) = qualid_of_reference ref in
+ let l =
+ try
+ let sp = Nametab.locate_obj qid in
+ let (sp,lobj) =
+ let (sp,entry) =
+ List.find (fun en -> (fst (fst en)) = sp) (Lib.contents_after None)
+ in
+ match entry with
+ | Lib.Leaf obj -> (sp,obj)
+ | _ -> raise Not_found
+ in
+ leaf_entry_to_ast_list (sp,lobj)
+ with Not_found ->
+ try
+ match Nametab.locate qid with
+ | ConstRef sp -> constant_to_ast_list sp
+ | IndRef (sp,_) -> inductive_to_ast_list sp
+ | ConstructRef ((sp,_),_) -> inductive_to_ast_list sp
+ | VarRef sp -> variable_to_ast_list sp
+ with Not_found ->
+ try (* Var locale de but, pas var de section... donc pas d'implicits *)
+ let dir,name = repr_qualid qid in
+ if (repr_dirpath dir) <> [] then raise Not_found;
+ let (_,c,typ) = Global.lookup_named name in
+ (match c with
+ None -> make_variable_ast name typ []
+ | Some c1 -> make_definition_ast name c1 typ [])
+ with Not_found ->
+ try
+ let sp = Nametab.locate_syntactic_definition qid in
+ errorlabstrm "print"
+ (str "printing of syntax definitions not implemented")
+ with Not_found ->
+ errorlabstrm "print"
+ (pr_qualid qid ++
+ spc () ++ str "not a defined object")
+ in
+ VernacList (List.map (fun x -> (dummy_loc,x)) l)
+
diff --git a/contrib/interface/name_to_ast.mli b/contrib/interface/name_to_ast.mli
new file mode 100644
index 00000000..0eca0a1e
--- /dev/null
+++ b/contrib/interface/name_to_ast.mli
@@ -0,0 +1,2 @@
+val name_to_ast : Libnames.reference -> Vernacexpr.vernac_expr;;
+val convert_qualid : Libnames.qualid -> Coqast.t;;
diff --git a/contrib/interface/parse.ml b/contrib/interface/parse.ml
new file mode 100644
index 00000000..3f0b2d2e
--- /dev/null
+++ b/contrib/interface/parse.ml
@@ -0,0 +1,488 @@
+open Util;;
+open System;;
+open Pp;;
+open Libnames;;
+open Library;;
+open Ascent;;
+open Vtp;;
+open Xlate;;
+open Line_parser;;
+open Pcoq;;
+open Vernacexpr;;
+open Mltop;;
+
+type parsed_tree =
+ | P_cl of ct_COMMAND_LIST
+ | P_c of ct_COMMAND
+ | P_t of ct_TACTIC_COM
+ | P_f of ct_FORMULA
+ | P_id of ct_ID
+ | P_s of ct_STRING
+ | P_i of ct_INT;;
+
+let print_parse_results n msg =
+ print_string "message\nparsed\n";
+ print_int n;
+ print_string "\n";
+ (match msg with
+ | P_cl x -> fCOMMAND_LIST x
+ | P_c x -> fCOMMAND x
+ | P_t x -> fTACTIC_COM x
+ | P_f x -> fFORMULA x
+ | P_id x -> fID x
+ | P_s x -> fSTRING x
+ | P_i x -> fINT x);
+ print_string "e\nblabla\n";
+ flush stdout;;
+
+let ctf_SyntaxErrorMessage reqid pps =
+ fnl () ++ str "message" ++ fnl () ++ str "syntax_error" ++ fnl () ++
+ int reqid ++ fnl () ++
+ pps ++ fnl () ++ str "E-n-d---M-e-s-s-a-g-e" ++ fnl ();;
+let ctf_SyntaxWarningMessage reqid pps =
+ fnl () ++ str "message" ++ fnl () ++ str "syntax_warning" ++ fnl () ++
+ int reqid ++ fnl () ++ pps ++ fnl () ++ str "E-n-d---M-e-s-s-a-g-e" ++ fnl();;
+
+let ctf_FileErrorMessage reqid pps =
+ fnl () ++ str "message" ++ fnl () ++ str "file_error" ++ fnl () ++
+ int reqid ++ fnl () ++ pps ++ fnl () ++ str "E-n-d---M-e-s-s-a-g-e" ++
+ fnl ();;
+
+(*
+(*In the code for CoqV6.2, the require_module call is encapsulated in
+ a function "without_mes_ambig". Here I have supposed that this
+ function has no effect on parsing *)
+let try_require_module import specif names =
+ try Library.require_module
+ (if specif = "UNSPECIFIED" then None
+ else Some (specif = "SPECIFICATION"))
+ (List.map
+ (fun name ->
+ (dummy_loc,Libnames.make_short_qualid (Names.id_of_string name)))
+ names)
+ (import = "IMPORT")
+ with
+ | e -> msgnl (str "Reinterning of " ++ prlist str names ++ str " failed");;
+*)
+(*
+let try_require_module_from_file import specif name fname =
+ try Library.require_module_from_file (if specif = "UNSPECIFIED" then None
+ else Some (specif = "SPECIFICATION")) (Some (Names.id_of_string name)) fname (import = "IMPORT")
+ with
+ | e -> msgnl (str "Reinterning of " ++ str name ++ str " failed");;
+*)
+(*
+let execute_when_necessary ast =
+ (match ast with
+ | Node (_, "GRAMMAR", ((Nvar (_, s)) :: ((Node (_, "ASTLIST", al)) :: []))) ->
+ Metasyntax.add_grammar_obj s (List.map Ctast.ct_to_ast al)
+(* Obsolete
+ | Node (_, "TOKEN", ((Str (_, s)) :: [])) -> Metasyntax.add_token_obj s
+*)
+ | Node (_, "Require",
+ ((Str (_, import)) ::
+ ((Str (_, specif)) :: l))) ->
+ let mnames = List.map (function
+ | (Nvar (_, m)) -> m
+ | _ -> error "parse_string_action : bad require expression") l in
+ try_require_module import specif mnames
+ | Node (_, "RequireFrom",
+ ((Str (_, import)) ::
+ ((Str (_, specif)) ::
+ ((Nvar (_, mname)) :: ((Str (_, file_name)) :: []))))) ->
+ try_require_module_from_file import specif mname file_name
+ | _ -> ()); ast;;
+*)
+
+let execute_when_necessary v =
+ (match v with
+ | VernacGrammar _ -> Vernacentries.interp v
+ | VernacOpenCloseScope sc -> Vernacentries.interp v
+ | VernacRequire (_,_,l) ->
+ (try
+ Vernacentries.interp v
+ with _ ->
+ let l=prlist_with_sep spc pr_reference l in
+ msgnl (str "Reinterning of " ++ l ++ str " failed"))
+ | VernacRequireFrom (_,_,f) ->
+ (try
+ Vernacentries.interp v
+ with _ ->
+ msgnl (str "Reinterning of " ++ Util.pr_str f ++ str " failed"))
+ | _ -> ()); v;;
+
+let parse_to_dot =
+ let rec dot st = match Stream.next st with
+ | ("", ".") -> ()
+ | ("EOI", "") -> raise End_of_file
+ | _ -> dot st in
+ Gram.Entry.of_parser "Coqtoplevel.dot" dot;;
+
+let rec discard_to_dot stream =
+ try Gram.Entry.parse parse_to_dot (Gram.parsable stream) with
+ | Stdpp.Exc_located(_, Token.Error _) -> discard_to_dot stream;;
+
+let rec decompose_string_aux s n =
+ try let index = String.index_from s n '\n' in
+ (String.sub s n (index - n))::
+ (decompose_string_aux s (index + 1))
+ with Not_found -> [String.sub s n ((String.length s) - n)];;
+
+let decompose_string s n =
+ match decompose_string_aux s n with
+ ""::tl -> tl
+ | a -> a;;
+
+let make_string_list file_chan fst_pos snd_pos =
+ let len = (snd_pos - fst_pos) in
+ let s = String.create len in
+ begin
+ seek_in file_chan fst_pos;
+ really_input file_chan s 0 len;
+ decompose_string s 0;
+ end;;
+
+let rec get_sub_aux string_list snd_pos =
+ match string_list with
+ [] -> []
+ | s::l ->
+ let len = String.length s in
+ if len >= snd_pos then
+ if snd_pos < 0 then
+ []
+ else
+ [String.sub s 0 snd_pos]
+ else
+ s::(get_sub_aux l (snd_pos - len - 1));;
+
+let rec get_substring_list string_list fst_pos snd_pos =
+ match string_list with
+ [] -> []
+ | s::l ->
+ let len = String.length s in
+ if fst_pos > len then
+ get_substring_list l (fst_pos - len - 1) (snd_pos - len - 1)
+ else
+ (* take into account the fact that carriage returns are not in the *)
+ (* strings. *)
+ let fst_pos2 = if fst_pos = 0 then 1 else fst_pos in
+ if snd_pos > len then
+ String.sub s (fst_pos2 - 1) (len + 1 - fst_pos2)::
+ (get_sub_aux l (snd_pos - len - 2))
+ else
+ let gap = (snd_pos - fst_pos2) in
+ if gap < 0 then
+ []
+ else
+ [String.sub s (fst_pos2 - 1) gap];;
+
+(* When parsing a list of commands, we try to recover error messages for
+ each individual command. *)
+
+type parse_result =
+ | ParseOK of Vernacexpr.vernac_expr located option
+ | ParseError of string * string list
+
+let embed_string s =
+ CT_coerce_STRING_OPT_to_VARG (CT_coerce_STRING_to_STRING_OPT (CT_string s))
+
+let make_parse_error_item s l =
+ CT_user_vernac (CT_ident s, CT_varg_list (List.map embed_string l))
+
+let parse_command_list reqid stream string_list =
+ let rec parse_whole_stream () =
+ let this_pos = Stream.count stream in
+ let first_ast =
+ try ParseOK (Gram.Entry.parse Pcoq.main_entry (Gram.parsable stream))
+ with
+ | (Stdpp.Exc_located(l, Stream.Error txt)) as e ->
+ begin
+ msgnl (ctf_SyntaxWarningMessage reqid (Cerrors.explain_exn e));
+ try
+ discard_to_dot stream;
+ msgnl (str "debug" ++ fnl () ++ int this_pos ++ fnl () ++
+ int (Stream.count stream));
+(*
+ Some( Node(l, "PARSING_ERROR",
+ List.map Ctast.str
+ (get_substring_list string_list this_pos
+ (Stream.count stream))))
+*)
+ ParseError ("PARSING_ERROR",
+ get_substring_list string_list this_pos
+ (Stream.count stream))
+ with End_of_file -> ParseOK None
+ end
+ | e->
+ begin
+ discard_to_dot stream;
+(*
+ Some(Node((0,0), "PARSING_ERROR2",
+ List.map Ctast.str
+ (get_substring_list string_list this_pos
+ (Stream.count stream))))
+*)
+ ParseError ("PARSING_ERROR2",
+ get_substring_list string_list this_pos (Stream.count stream))
+ end in
+ match first_ast with
+ | ParseOK (Some (loc,ast)) ->
+ let ast0 = (execute_when_necessary ast) in
+ (try xlate_vernac ast
+ with e ->
+(*
+ xlate_vernac
+ (Node((0,0), "PARSING_ERROR2",
+ List.map Ctast.str
+ (get_substring_list string_list this_pos
+ (Stream.count stream)))))::parse_whole_stream()
+*)
+ make_parse_error_item "PARSING_ERROR2"
+ (get_substring_list string_list this_pos
+ (Stream.count stream)))::parse_whole_stream()
+ | ParseOK None -> []
+ | ParseError (s,l) ->
+ (make_parse_error_item s l)::parse_whole_stream()
+ in
+ match parse_whole_stream () with
+ | first_one::tail -> (P_cl (CT_command_list(first_one, tail)))
+ | [] -> raise (UserError ("parse_string", (str "empty text.")));;
+
+(*When parsing a string using a phylum, the string is first transformed
+ into a Coq Ast using the regular Coq parser, then it is transformed into
+ the right ascent term using xlate functions, then it is transformed into
+ a stream, using the right vtp function. There is a special case for commands,
+ since some of these must be executed!*)
+let parse_string_action reqid phylum char_stream string_list =
+ try let msg =
+ match phylum with
+ | "COMMAND_LIST" ->
+ parse_command_list reqid char_stream string_list
+ | "COMMAND" ->
+ P_c
+ (xlate_vernac
+ (execute_when_necessary
+ (Gram.Entry.parse Pcoq.Vernac_.vernac_eoi (Gram.parsable char_stream))))
+ | "TACTIC_COM" ->
+ P_t
+ (xlate_tactic (Gram.Entry.parse Pcoq.Tactic.tactic_eoi
+ (Gram.parsable char_stream)))
+ | "FORMULA" ->
+ P_f
+ (xlate_formula
+ (Gram.Entry.parse
+ (Pcoq.eoi_entry Pcoq.Constr.lconstr) (Gram.parsable char_stream)))
+ | "ID" -> P_id (CT_ident
+ (Libnames.string_of_qualid
+ (snd
+ (Gram.Entry.parse (Pcoq.eoi_entry Pcoq.Prim.qualid)
+ (Gram.parsable char_stream)))))
+ | "STRING" ->
+ P_s
+ (CT_string (Gram.Entry.parse Pcoq.Prim.string
+ (Gram.parsable char_stream)))
+ | "INT" ->
+ P_i (CT_int (Gram.Entry.parse Pcoq.Prim.natural
+ (Gram.parsable char_stream)))
+ | _ -> error "parse_string_action : bad phylum" in
+ print_parse_results reqid msg
+ with
+ | Stdpp.Exc_located(l,Match_failure(_,_,_)) ->
+ flush_until_end_of_stream char_stream;
+ msgnl (ctf_SyntaxErrorMessage reqid
+ (Cerrors.explain_exn
+ (Stdpp.Exc_located(l,Stream.Error "match failure"))))
+ | e ->
+ flush_until_end_of_stream char_stream;
+ msgnl (ctf_SyntaxErrorMessage reqid (Cerrors.explain_exn e));;
+
+
+let quiet_parse_string_action char_stream =
+ try let _ =
+ Gram.Entry.parse Pcoq.Vernac_.vernac_eoi (Gram.parsable char_stream) in
+ ()
+ with
+ | _ -> flush_until_end_of_stream char_stream; ();;
+
+
+let parse_file_action reqid file_name =
+ try let file_chan = open_in file_name in
+ (* file_chan_err, stream_err are the channel and stream used to
+ get the text when a syntax error occurs *)
+ let file_chan_err = open_in file_name in
+ let stream = Stream.of_channel file_chan in
+ let stream_err = Stream.of_channel file_chan_err in
+ let rec discard_to_dot () =
+ try Gram.Entry.parse parse_to_dot (Gram.parsable stream)
+ with Stdpp.Exc_located(_,Token.Error _) -> discard_to_dot() in
+ match let rec parse_whole_file () =
+ let this_pos = Stream.count stream in
+ match
+ try
+ ParseOK(Gram.Entry.parse Pcoq.main_entry (Gram.parsable stream))
+ with
+ | Stdpp.Exc_located(l,Stream.Error txt) ->
+ msgnl (ctf_SyntaxWarningMessage reqid
+ (str "Error with file" ++ spc () ++
+ str file_name ++ fnl () ++
+ Cerrors.explain_exn
+ (Stdpp.Exc_located(l,Stream.Error txt))));
+ (try
+ begin
+ discard_to_dot ();
+ ParseError ("PARSING_ERROR",
+ (make_string_list file_chan_err this_pos
+ (Stream.count stream)))
+ end
+ with End_of_file -> ParseOK None)
+ | e ->
+ begin
+ Gram.Entry.parse parse_to_dot (Gram.parsable stream);
+ ParseError ("PARSING_ERROR2",
+ (make_string_list file_chan this_pos
+ (Stream.count stream)))
+ end
+
+ with
+ | ParseOK (Some (_,ast)) ->
+ let ast0=(execute_when_necessary ast) in
+ let term =
+ (try xlate_vernac ast
+ with e ->
+ print_string ("translation error between " ^
+ (string_of_int this_pos) ^
+ " " ^
+ (string_of_int (Stream.count stream)) ^
+ "\n");
+ make_parse_error_item "PARSING_ERROR2"
+ (make_string_list file_chan_err this_pos
+ (Stream.count stream))) in
+ term::parse_whole_file ()
+ | ParseOK None -> []
+ | ParseError (s,l) ->
+ (make_parse_error_item s l)::parse_whole_file () in
+ parse_whole_file () with
+ | first_one :: tail ->
+ print_parse_results reqid
+ (P_cl (CT_command_list (first_one, tail)))
+ | [] -> raise (UserError ("parse_file_action", str "empty file."))
+ with
+ | Stdpp.Exc_located(l,Match_failure(_,_,_)) ->
+ msgnl
+ (ctf_SyntaxErrorMessage reqid
+ (str "Error with file" ++ spc () ++ str file_name ++
+ fnl () ++
+ Cerrors.explain_exn
+ (Stdpp.Exc_located(l,Stream.Error "match failure"))))
+ | e ->
+ msgnl
+ (ctf_SyntaxErrorMessage reqid
+ (str "Error with file" ++ spc () ++ str file_name ++
+ fnl () ++ Cerrors.explain_exn e));;
+
+let add_rec_path_action reqid string_arg ident_arg =
+ let directory_name = glob string_arg in
+ begin
+ add_rec_path directory_name (Libnames.dirpath_of_string ident_arg)
+ end;;
+
+
+let add_path_action reqid string_arg =
+ let directory_name = glob string_arg in
+ begin
+ add_path directory_name Names.empty_dirpath
+ end;;
+
+let print_version_action () =
+ msgnl (mt ());
+ msgnl (str "$Id: parse.ml,v 1.22 2004/04/21 08:36:58 barras Exp $");;
+
+let load_syntax_action reqid module_name =
+ msg (str "loading " ++ str module_name ++ str "... ");
+ try
+ (let qid = Libnames.make_short_qualid (Names.id_of_string module_name) in
+ read_library (dummy_loc,qid);
+ msg (str "opening... ");
+ Declaremods.import_module false (Nametab.locate_module qid);
+ msgnl (str "done" ++ fnl ());
+ ())
+ with
+ | UserError (label, pp_stream) ->
+ (*This one may be necessary to make sure that the message won't be indented *)
+ msgnl (mt ());
+ msgnl
+ (fnl () ++ str "error while loading syntax module " ++ str module_name ++
+ str ": " ++ str label ++ fnl () ++ pp_stream)
+ | e ->
+ msgnl (mt ());
+ msgnl
+ (fnl () ++ str "message" ++ fnl () ++ str "load_error" ++ fnl () ++
+ int reqid ++ fnl ());
+ ();;
+
+let coqparser_loop inchan =
+ (parser_loop : (unit -> unit) *
+ (int -> string -> char Stream.t -> string list -> unit) *
+ (char Stream.t -> unit) * (int -> string -> unit) *
+ (int -> string -> unit) * (int -> string -> string -> unit) *
+ (int -> string -> unit) -> in_channel -> unit)
+ (print_version_action, parse_string_action, quiet_parse_string_action, parse_file_action,
+ add_path_action, add_rec_path_action, load_syntax_action) inchan;;
+
+if !Sys.interactive then ()
+ else
+Libobject.relax true;
+(let coqdir =
+ try Sys.getenv "COQDIR"
+ with Not_found ->
+ let coqdir = Coq_config.coqlib in
+ if Sys.file_exists coqdir then
+ coqdir
+ else
+ (msgnl (str "could not find the value of COQDIR"); exit 1) in
+ begin
+ add_rec_path (Filename.concat coqdir "theories")
+ (Names.make_dirpath [Nameops.coq_root]);
+ add_rec_path (Filename.concat coqdir "contrib")
+ (Names.make_dirpath [Nameops.coq_root])
+ end;
+(let vernacrc =
+ try
+ Sys.getenv "VERNACRC"
+ with
+ Not_found ->
+ List.fold_left
+ (fun s1 s2 -> (Filename.concat s1 s2))
+ coqdir [ "contrib"; "interface"; "vernacrc"] in
+ try
+ (Gramext.warning_verbose := false;
+ Esyntax.warning_verbose := false;
+ coqparser_loop (open_in vernacrc))
+ with
+ | End_of_file -> ()
+ | e ->
+ (msgnl (Cerrors.explain_exn e);
+ msgnl (str "could not load the VERNACRC file"));
+ try
+ msgnl (str vernacrc)
+ with
+ e -> ());
+(try let user_vernacrc =
+ try Some(Sys.getenv "USERVERNACRC")
+ with
+ | Not_found as e ->
+ msgnl (str "no .vernacrc file"); None in
+ (match user_vernacrc with
+ Some f -> coqparser_loop (open_in f)
+ | None -> ())
+ with
+ | End_of_file -> ()
+ | e ->
+ msgnl (Cerrors.explain_exn e);
+ msgnl (str "error in your .vernacrc file"));
+msgnl (str "Starting Centaur Specialized Parser Loop");
+try
+ coqparser_loop stdin
+with
+ | End_of_file -> ()
+ | e -> msgnl(Cerrors.explain_exn e))
diff --git a/contrib/interface/paths.ml b/contrib/interface/paths.ml
new file mode 100644
index 00000000..b1244d15
--- /dev/null
+++ b/contrib/interface/paths.ml
@@ -0,0 +1,26 @@
+let int_list_to_string s l =
+ List.fold_left
+ (fun s -> (fun v -> s ^ " " ^ (string_of_int v)))
+ s
+ l;;
+
+(* Given two paths, this function returns the longest common prefix and the
+ two suffixes. *)
+let rec decompose_path
+ : (int list * int list) -> (int list * int list * int list) =
+ function
+ (a::l,b::m) when a = b ->
+ let (c,p1,p2) = decompose_path (l,m) in
+ (a::c,p1,p2)
+ | p1,p2 -> [], p1, p2;;
+
+let rec is_prefix p1 p2 = match p1,p2 with
+ [], _ -> true
+| a::tl1, b::tl2 when a = b -> is_prefix tl1 tl2
+| _ -> false;;
+
+let rec lex_smaller p1 p2 = match p1,p2 with
+ [], _ -> true
+| a::tl1, b::tl2 when a < b -> true
+| a::tl1, b::tl2 when a = b -> lex_smaller tl1 tl2
+| _ -> false;; \ No newline at end of file
diff --git a/contrib/interface/paths.mli b/contrib/interface/paths.mli
new file mode 100644
index 00000000..26620723
--- /dev/null
+++ b/contrib/interface/paths.mli
@@ -0,0 +1,4 @@
+val decompose_path : (int list * int list) -> (int list * int list * int list);;
+val int_list_to_string : string -> int list -> string;;
+val is_prefix : int list -> int list -> bool;;
+val lex_smaller : int list -> int list -> bool;;
diff --git a/contrib/interface/pbp.ml b/contrib/interface/pbp.ml
new file mode 100644
index 00000000..e0f88ba6
--- /dev/null
+++ b/contrib/interface/pbp.ml
@@ -0,0 +1,758 @@
+(* A proof by pointing algorithm. *)
+open Util;;
+open Names;;
+open Term;;
+open Tactics;;
+open Tacticals;;
+open Hipattern;;
+open Pattern;;
+open Matching;;
+open Reduction;;
+open Rawterm;;
+open Environ;;
+
+open Proof_trees;;
+open Proof_type;;
+open Tacmach;;
+open Tacexpr;;
+open Typing;;
+open Pp;;
+open Libnames;;
+open Genarg;;
+open Topconstr;;
+open Termops;;
+
+let zz = Util.dummy_loc;;
+
+let hyp_radix = id_of_string "H";;
+
+let next_global_ident = next_global_ident_away true
+
+(* get_hyp_by_name : goal sigma -> string -> constr,
+ looks up for an hypothesis (or a global constant), from its name *)
+let get_hyp_by_name g name =
+ let evd = project g in
+ let env = pf_env g in
+ try (let judgment =
+ Pretyping.understand_judgment
+ evd env (RVar(zz, name)) in
+ ("hyp",judgment.uj_type))
+(* je sais, c'est pas beau, mais je ne sais pas trop me servir de look_up...
+ Loïc *)
+ with _ -> (let c = Nametab.global (Ident (zz,name)) in
+ ("cste",type_of (Global.env()) Evd.empty (constr_of_reference c)))
+;;
+
+type pbp_atom =
+ | PbpTryAssumption of identifier option
+ | PbpTryClear of identifier list
+ | PbpGeneralize of identifier * identifier list
+ | PbpLApply of identifier (* = CutAndApply *)
+ | PbpIntros of intro_pattern_expr list
+ | PbpSplit
+ (* Existential *)
+ | PbpExists of identifier
+ (* Or *)
+ | PbpLeft
+ | PbpRight
+ (* Head *)
+ | PbpApply of identifier
+ | PbpElim of identifier * identifier list;;
+
+(* Invariant: In PbpThens ([a1;...;an],[t1;...;tp]), all tactics
+ [a1]..[an-1] are atomic (or try of an atomic) tactic and produce
+ exactly one goal, and [an] produces exactly p subgoals
+
+ In [PbpThen [a1;..an]], all tactics are (try of) atomic tactics and
+ produces exactly one subgoal, except the last one which may complete the
+ goal
+
+ Convention: [PbpThen []] is Idtac and [PbpThen t] is a coercion
+ from atomic to composed tactic
+*)
+
+type pbp_sequence =
+ | PbpThens of pbp_atom list * pbp_sequence list
+ | PbpThen of pbp_atom list
+
+(* This flattens sequences of tactics producing just one subgoal *)
+let chain_tactics tl1 = function
+ | PbpThens (tl2, tl3) -> PbpThens (tl1@tl2, tl3)
+ | PbpThen tl2 -> PbpThen (tl1@tl2)
+
+type pbp_rule = (identifier list *
+ identifier list *
+ bool *
+ identifier option *
+ (types, constr) kind_of_term *
+ int list *
+ (identifier list ->
+ identifier list ->
+ bool ->
+ identifier option -> (types, constr) kind_of_term -> int list -> pbp_sequence)) ->
+ pbp_sequence option;;
+
+
+let make_named_intro id = PbpIntros [IntroIdentifier id];;
+
+let make_clears str_list = PbpThen [PbpTryClear str_list]
+
+let add_clear_names_if_necessary tactic clear_names =
+ match clear_names with
+ [] -> tactic
+ | l -> chain_tactics [PbpTryClear l] tactic;;
+
+let make_final_cmd f optname clear_names constr path =
+ add_clear_names_if_necessary (f optname constr path) clear_names;;
+
+let (rem_cast:pbp_rule) = function
+ (a,c,cf,o, Cast(f,_), p, func) ->
+ Some(func a c cf o (kind_of_term f) p)
+ | _ -> None;;
+
+let (forall_intro: pbp_rule) = function
+ (avoid,
+ clear_names,
+ clear_flag,
+ None,
+ Prod(Name x, _, body),
+ (2::path),
+ f) ->
+ let x' = next_global_ident x avoid in
+ Some(chain_tactics [make_named_intro x']
+ (f (x'::avoid)
+ clear_names clear_flag None (kind_of_term body) path))
+| _ -> None;;
+
+let (imply_intro2: pbp_rule) = function
+ avoid, clear_names,
+ clear_flag, None, Prod(Anonymous, _, body), 2::path, f ->
+ let h' = next_global_ident hyp_radix avoid in
+ Some(chain_tactics [make_named_intro h']
+ (f (h'::avoid) clear_names clear_flag None (kind_of_term body) path))
+ | _ -> None;;
+
+
+(*
+let (imply_intro1: pbp_rule) = function
+ avoid, clear_names,
+ clear_flag, None, Prod(Anonymous, prem, body), 1::path, f ->
+ let h' = next_global_ident hyp_radix avoid in
+ let str_h' = h' in
+ Some(chain_tactics [make_named_intro str_h']
+ (f (h'::avoid) clear_names clear_flag (Some str_h')
+ (kind_of_term prem) path))
+ | _ -> None;;
+*)
+
+let make_var id = CRef (Ident(zz, id))
+
+let make_app f l = CApp (zz,(None,f),List.map (fun x -> (x,None)) l)
+
+let make_pbp_pattern x =
+ make_app (make_var (id_of_string "PBP_META"))
+ [make_var (id_of_string ("Value_for_" ^ (string_of_id x)))]
+
+let rec make_then = function
+ | [] -> TacId ""
+ | [t] -> t
+ | t1::t2::l -> make_then (TacThen (t1,t2)::l)
+
+let make_pbp_atomic_tactic = function
+ | PbpTryAssumption None -> TacTry (TacAtom (zz, TacAssumption))
+ | PbpTryAssumption (Some a) ->
+ TacTry (TacAtom (zz, TacExact (make_var a)))
+ | PbpExists x ->
+ TacAtom (zz, TacSplit (true,ImplicitBindings [make_pbp_pattern x]))
+ | PbpGeneralize (h,args) ->
+ let l = List.map make_pbp_pattern args in
+ TacAtom (zz, TacGeneralize [make_app (make_var h) l])
+ | PbpLeft -> TacAtom (zz, TacLeft NoBindings)
+ | PbpRight -> TacAtom (zz, TacRight NoBindings)
+ | PbpIntros l -> TacAtom (zz, TacIntroPattern l)
+ | PbpLApply h -> TacAtom (zz, TacLApply (make_var h))
+ | PbpApply h -> TacAtom (zz, TacApply (make_var h,NoBindings))
+ | PbpElim (hyp_name, names) ->
+ let bind = List.map (fun s ->(zz,NamedHyp s,make_pbp_pattern s)) names in
+ TacAtom
+ (zz, TacElim ((make_var hyp_name,ExplicitBindings bind),None))
+ | PbpTryClear l ->
+ TacTry (TacAtom (zz, TacClear (List.map (fun s -> AI (zz,s)) l)))
+ | PbpSplit -> TacAtom (zz, TacSplit (false,NoBindings));;
+
+let rec make_pbp_tactic = function
+ | PbpThen tl -> make_then (List.map make_pbp_atomic_tactic tl)
+ | PbpThens (l,tl) ->
+ TacThens
+ (make_then (List.map make_pbp_atomic_tactic l),
+ List.map make_pbp_tactic tl)
+
+let (forall_elim: pbp_rule) = function
+ avoid, clear_names, clear_flag,
+ Some h, Prod(Name x, _, body), 2::path, f ->
+ let h' = next_global_ident hyp_radix avoid in
+ let clear_names' = if clear_flag then h::clear_names else clear_names in
+ Some
+ (chain_tactics [PbpGeneralize (h,[x]); make_named_intro h']
+ (f (h'::avoid) clear_names' true (Some h') (kind_of_term body) path))
+ | _ -> None;;
+
+
+let (imply_elim1: pbp_rule) = function
+ avoid, clear_names, clear_flag,
+ Some h, Prod(Anonymous, prem, body), 1::path, f ->
+ let clear_names' = if clear_flag then h::clear_names else clear_names in
+ let h' = next_global_ident hyp_radix avoid in
+ let str_h' = (string_of_id h') in
+ Some(PbpThens
+ ([PbpLApply h],
+ [chain_tactics [make_named_intro h'] (make_clears (h::clear_names));
+ f avoid clear_names' false None (kind_of_term prem) path]))
+ | _ -> None;;
+
+
+let (imply_elim2: pbp_rule) = function
+ avoid, clear_names, clear_flag,
+ Some h, Prod(Anonymous, prem, body), 2::path, f ->
+ let clear_names' = if clear_flag then h::clear_names else clear_names in
+ let h' = next_global_ident hyp_radix avoid in
+ Some(PbpThens
+ ([PbpLApply h],
+ [chain_tactics [make_named_intro h']
+ (f (h'::avoid) clear_names' false (Some h')
+ (kind_of_term body) path);
+ make_clears clear_names]))
+ | _ -> None;;
+
+let reference dir s = Coqlib.gen_reference "Pbp" ("Init"::dir) s
+
+let constant dir s = Coqlib.gen_constant "Pbp" ("Init"::dir) s
+
+let andconstr: unit -> constr = Coqlib.build_coq_and;;
+let prodconstr () = constant ["Datatypes"] "prod";;
+let exconstr = Coqlib.build_coq_ex;;
+let sigconstr () = constant ["Specif"] "sig";;
+let sigTconstr () = (Coqlib.build_sigma_type()).Coqlib.typ;;
+let orconstr = Coqlib.build_coq_or;;
+let sumboolconstr = Coqlib.build_coq_sumbool;;
+let sumconstr() = constant ["Datatypes"] "sum";;
+let notconstr = Coqlib.build_coq_not;;
+let notTconstr () = constant ["Logic_Type"] "notT";;
+
+let is_matching_local a b = is_matching (pattern_of_constr a) b;;
+
+let rec (or_and_tree_to_intro_pattern: identifier list ->
+ constr -> int list ->
+ intro_pattern_expr * identifier list * identifier *constr
+ * int list * int * int) =
+fun avoid c path -> match kind_of_term c, path with
+ | (App(oper, [|c1; c2|]), 2::a::path)
+ when ((is_matching_local (andconstr()) oper) or
+ (is_matching_local (prodconstr()) oper)) & (a = 1 or a = 2) ->
+ let id2 = next_global_ident hyp_radix avoid in
+ let cont_expr = if a = 1 then c1 else c2 in
+ let cont_patt, avoid_names, id, c, path, rank, total_branches =
+ or_and_tree_to_intro_pattern (id2::avoid) cont_expr path in
+ let patt_list =
+ if a = 1 then
+ [cont_patt; IntroIdentifier id2]
+ else
+ [IntroIdentifier id2; cont_patt] in
+ (IntroOrAndPattern[patt_list], avoid_names, id, c, path, rank,
+ total_branches)
+ | (App(oper, [|c1; c2|]), 2::3::path)
+ when ((is_matching_local (exconstr()) oper) or
+ (is_matching_local (sigconstr()) oper)) ->
+ (match (kind_of_term c2) with
+ Lambda (Name x, _, body) ->
+ let id1 = next_global_ident x avoid in
+ let cont_patt, avoid_names, id, c, path, rank, total_branches =
+ or_and_tree_to_intro_pattern (id1::avoid) body path in
+ (IntroOrAndPattern[[IntroIdentifier id1; cont_patt]],
+ avoid_names, id, c, path, rank, total_branches)
+ | _ -> assert false)
+ | (App(oper, [|c1; c2|]), 2::a::path)
+ when ((is_matching_local (orconstr ()) oper) or
+ (is_matching_local (sumboolconstr ()) oper) or
+ (is_matching_local (sumconstr ()) oper)) & (a = 1 or a = 2) ->
+ let id2 = next_global_ident hyp_radix avoid in
+ let cont_expr = if a = 1 then c1 else c2 in
+ let cont_patt, avoid_names, id, c, path, rank, total_branches =
+ or_and_tree_to_intro_pattern (id2::avoid) cont_expr path in
+ let new_rank = if a = 1 then rank else rank+1 in
+ let patt_list =
+ if a = 1 then
+ [[cont_patt];[IntroIdentifier id2]]
+ else
+ [[IntroIdentifier id2];[cont_patt]] in
+ (IntroOrAndPattern patt_list,
+ avoid_names, id, c, path, new_rank, total_branches+1)
+ | (_, path) -> let id = next_global_ident hyp_radix avoid in
+ (IntroIdentifier id, (id::avoid), id, c, path, 1, 1);;
+
+let auxiliary_goals clear_names clear_flag this_name n_aux others =
+ let clear_cmd =
+ make_clears (if clear_flag then (this_name ::clear_names) else clear_names) in
+ let rec clear_list = function
+ 0 -> others
+ | n -> clear_cmd::(clear_list (n - 1)) in
+ clear_list n_aux;;
+
+
+let (imply_intro3: pbp_rule) = function
+ avoid, clear_names, clear_flag, None, Prod(Anonymous, prem, body),
+ 1::path, f ->
+ let intro_patt, avoid_names, id, c, p, rank, total_branches =
+ or_and_tree_to_intro_pattern avoid prem path in
+ if total_branches = 1 then
+ Some(chain_tactics [PbpIntros [intro_patt]]
+ (f avoid_names clear_names clear_flag (Some id)
+ (kind_of_term c) path))
+ else
+ Some
+ (PbpThens
+ ([PbpIntros [intro_patt]],
+ auxiliary_goals clear_names clear_flag id
+ (rank - 1)
+ ((f avoid_names clear_names clear_flag (Some id)
+ (kind_of_term c) path)::
+ auxiliary_goals clear_names clear_flag id
+ (total_branches - rank) [])))
+ | _ -> None;;
+
+
+
+let (and_intro: pbp_rule) = function
+ avoid, clear_names, clear_flag,
+ None, App(and_oper, [|c1; c2|]), 2::a::path, f
+ ->
+ if ((is_matching_local (andconstr()) and_oper) or
+ (is_matching_local (prodconstr ()) and_oper)) & (a = 1 or a = 2) then
+ let cont_term = if a = 1 then c1 else c2 in
+ let cont_cmd = f avoid clear_names false None
+ (kind_of_term cont_term) path in
+ let clear_cmd = make_clears clear_names in
+ let cmds =
+ (if a = 1
+ then [cont_cmd;clear_cmd]
+ else [clear_cmd;cont_cmd]) in
+ Some (PbpThens ([PbpSplit],cmds))
+ else None
+ | _ -> None;;
+
+let exists_from_lambda avoid clear_names clear_flag c2 path f =
+ match kind_of_term c2 with
+ Lambda(Name x, _, body) ->
+ Some (PbpThens ([PbpExists x],
+ [f avoid clear_names false None (kind_of_term body) path]))
+ | _ -> None;;
+
+
+let (ex_intro: pbp_rule) = function
+ avoid, clear_names, clear_flag, None,
+ App(oper, [| c1; c2|]), 2::3::path, f
+ when (is_matching_local (exconstr ()) oper)
+ or (is_matching_local (sigconstr ()) oper) ->
+ exists_from_lambda avoid clear_names clear_flag c2 path f
+ | _ -> None;;
+
+let (exT_intro : pbp_rule) = function
+ avoid, clear_names, clear_flag, None,
+ App(oper, [| c1; c2|]), 2::2::2::path, f
+ when (is_matching_local (sigTconstr ()) oper) ->
+ exists_from_lambda avoid clear_names clear_flag c2 path f
+ | _ -> None;;
+
+let (or_intro: pbp_rule) = function
+ avoid, clear_names, clear_flag, None,
+ App(or_oper, [|c1; c2 |]), 2::a::path, f ->
+ if ((is_matching_local (orconstr ()) or_oper) or
+ (is_matching_local (sumboolconstr ()) or_oper) or
+ (is_matching_local (sumconstr ()) or_oper))
+ & (a = 1 or a = 2) then
+ let cont_term = if a = 1 then c1 else c2 in
+ let fst_cmd = if a = 1 then PbpLeft else PbpRight in
+ let cont_cmd = f avoid clear_names false None
+ (kind_of_term cont_term) path in
+ Some(chain_tactics [fst_cmd] cont_cmd)
+ else
+ None
+ | _ -> None;;
+
+let dummy_id = id_of_string "Dummy";;
+
+let (not_intro: pbp_rule) = function
+ avoid, clear_names, clear_flag, None,
+ App(not_oper, [|c1|]), 2::1::path, f ->
+ if(is_matching_local (notconstr ()) not_oper) or
+ (is_matching_local (notTconstr ()) not_oper) then
+ let h' = next_global_ident hyp_radix avoid in
+ Some(chain_tactics [make_named_intro h']
+ (f (h'::avoid) clear_names false (Some h')
+ (kind_of_term c1) path))
+ else
+ None
+ | _ -> None;;
+
+
+
+
+let elim_with_bindings hyp_name names =
+ PbpElim (hyp_name, names);;
+
+(* This function is used to follow down a path, while staying on the spine of
+ successive products (universal quantifications or implications).
+ Arguments are the current observed constr object and the path that remains
+ to be followed, and an integer indicating how many products have already been
+ crossed.
+ Result is:
+ - a list of string indicating the names of universally quantified variables.
+ - a list of integers indicating the positions of the successive
+ universally quantified variables.
+ - an integer indicating the number of non-dependent products.
+ - the last constr object encountered during the walk down, and
+ - the remaining path.
+
+ For instance the following session should happen:
+ let tt = raw_constr_of_com (Evd.mt_evd())(gLOB(initial_sign()))
+ (parse_com "(P:nat->Prop)(x:nat)(P x)->(P x)") in
+ down_prods (tt, [2;2;2], 0)
+ ---> ["P","x"],[0;1], 1, <<(P x)>>, []
+*)
+
+
+let rec down_prods: (types, constr) kind_of_term * (int list) * int ->
+ identifier list * (int list) * int * (types, constr) kind_of_term *
+ (int list) =
+ function
+ Prod(Name x, _, body), 2::path, k ->
+ let res_sl, res_il, res_i, res_cstr, res_p
+ = down_prods (kind_of_term body, path, k+1) in
+ x::res_sl, (k::res_il), res_i, res_cstr, res_p
+ | Prod(Anonymous, _, body), 2::path, k ->
+ let res_sl, res_il, res_i, res_cstr, res_p
+ = down_prods (kind_of_term body, path, k+1) in
+ res_sl, res_il, res_i+1, res_cstr, res_p
+ | cstr, path, _ -> [], [], 0, cstr, path;;
+
+exception Pbp_internal of int list;;
+
+(* This function should be usable to check that a type can be used by the
+ Apply command. Basically, c is supposed to be the head of some
+ type, where l gives the ranks of all universally quantified variables.
+ It check that these universally quantified variables occur in the head.
+
+ The knowledge I have on constr structures is incomplete.
+*)
+let (check_apply: (types, constr) kind_of_term -> (int list) -> bool) =
+ function c -> function l ->
+ let rec delete n = function
+ | [] -> []
+ | p::tl -> if n = p then tl else p::(delete n tl) in
+ let rec check_rec l = function
+ | App(f, array) ->
+ Array.fold_left (fun l c -> check_rec l (kind_of_term c))
+ (check_rec l (kind_of_term f)) array
+ | Const _ -> l
+ | Ind _ -> l
+ | Construct _ -> l
+ | Var _ -> l
+ | Rel p ->
+ let result = delete p l in
+ if result = [] then
+ raise (Pbp_internal [])
+ else
+ result
+ | _ -> raise (Pbp_internal l) in
+ try
+ (check_rec l c) = []
+ with Pbp_internal l -> l = [];;
+
+let (mk_db_indices: int list -> int -> int list) =
+ function int_list -> function nprems ->
+ let total = (List.length int_list) + nprems in
+ let rec mk_db_aux = function
+ [] -> []
+ | a::l -> (total - a)::(mk_db_aux l) in
+ mk_db_aux int_list;;
+
+
+(* This proof-by-pointing rule is quite complicated, as it attempts to foresee
+ usages of head tactics. A first operation is to follow the path as far
+ as possible while staying on the spine of products (function down_prods)
+ and then to check whether the next step will be an elim step. If the
+ answer is true, then the built command takes advantage of the power of
+ head tactics. *)
+
+let (head_tactic_patt: pbp_rule) = function
+ avoid, clear_names, clear_flag, Some h, cstr, path, f ->
+ (match down_prods (cstr, path, 0) with
+ | (str_list, _, nprems, App(oper,[|c1; c2|]), b::a::path)
+ when (((is_matching_local (exconstr ()) oper) (* or
+ (is_matching_local (sigconstr ()) oper) *)) && a = 3) ->
+ (match (kind_of_term c2) with
+ Lambda(Name x, _,body) ->
+ Some(PbpThens
+ ([elim_with_bindings h str_list],
+ let x' = next_global_ident x avoid in
+ let cont_body =
+ Prod(Name x', c1,
+ mkProd(Anonymous, body,
+ mkVar(dummy_id))) in
+ let cont_tac
+ = f avoid (h::clear_names) false None
+ cont_body (2::1::path) in
+ cont_tac::(auxiliary_goals
+ clear_names clear_flag
+ h nprems [])))
+ | _ -> None)
+ | (str_list, _, nprems,
+ App(oper,[|c1|]), 2::1::path)
+ when
+ (is_matching_local (notconstr ()) oper) or
+ (is_matching_local (notTconstr ()) oper) ->
+ Some(chain_tactics [elim_with_bindings h str_list]
+ (f avoid clear_names false None (kind_of_term c1) path))
+ | (str_list, _, nprems,
+ App(oper, [|c1; c2|]), 2::a::path)
+ when ((is_matching_local (andconstr()) oper) or
+ (is_matching_local (prodconstr()) oper)) & (a = 1 or a = 2) ->
+ let h1 = next_global_ident hyp_radix avoid in
+ let h2 = next_global_ident hyp_radix (h1::avoid) in
+ Some(PbpThens
+ ([elim_with_bindings h str_list],
+ let cont_body =
+ if a = 1 then c1 else c2 in
+ let cont_tac =
+ f (h2::h1::avoid) (h::clear_names)
+ false (Some (if 1 = a then h1 else h2))
+ (kind_of_term cont_body) path in
+ (chain_tactics
+ [make_named_intro h1; make_named_intro h2]
+ cont_tac)::
+ (auxiliary_goals clear_names clear_flag h nprems [])))
+ | (str_list, _, nprems, App(oper,[|c1; c2|]), 2::a::path)
+ when ((is_matching_local (sigTconstr()) oper)) & a = 2 ->
+ (match (kind_of_term c2),path with
+ Lambda(Name x, _,body), (2::path) ->
+ Some(PbpThens
+ ([elim_with_bindings h str_list],
+ let x' = next_global_ident x avoid in
+ let cont_body =
+ Prod(Name x', c1,
+ mkProd(Anonymous, body,
+ mkVar(dummy_id))) in
+ let cont_tac
+ = f avoid (h::clear_names) false None
+ cont_body (2::1::path) in
+ cont_tac::(auxiliary_goals
+ clear_names clear_flag
+ h nprems [])))
+ | _ -> None)
+ | (str_list, _, nprems, App(oper,[|c1; c2|]), 2::a::path)
+ when ((is_matching_local (orconstr ()) oper) or
+ (is_matching_local (sumboolconstr ()) oper) or
+ (is_matching_local (sumconstr ()) oper)) &
+ (a = 1 or a = 2) ->
+ Some(PbpThens
+ ([elim_with_bindings h str_list],
+ let cont_body =
+ if a = 1 then c1 else c2 in
+ (* h' is the name for the new intro *)
+ let h' = next_global_ident hyp_radix avoid in
+ let cont_tac =
+ chain_tactics
+ [make_named_intro h']
+ (f
+ (* h' should not be used again *)
+ (h'::avoid)
+ (* the disjunct itself can be discarded *)
+ (h::clear_names) false (Some h')
+ (kind_of_term cont_body) path) in
+ let snd_tac =
+ chain_tactics
+ [make_named_intro h']
+ (make_clears (h::clear_names)) in
+ let tacs1 =
+ if a = 1 then
+ [cont_tac; snd_tac]
+ else
+ [snd_tac; cont_tac] in
+ tacs1@(auxiliary_goals (h::clear_names)
+ false dummy_id nprems [])))
+ | (str_list, int_list, nprems, c, [])
+ when (check_apply c (mk_db_indices int_list nprems)) &
+ (match c with Prod(_,_,_) -> false
+ | _ -> true) &
+ (List.length int_list) + nprems > 0 ->
+ Some(add_clear_names_if_necessary (PbpThen [PbpApply h]) clear_names)
+ | _ -> None)
+ | _ -> None;;
+
+
+let pbp_rules = ref [rem_cast;head_tactic_patt;forall_intro;imply_intro2;
+ forall_elim; imply_intro3; imply_elim1; imply_elim2;
+ and_intro; or_intro; not_intro; ex_intro; exT_intro];;
+
+
+let try_trace = ref true;;
+
+let traced_try (f1:tactic) g =
+ try (try_trace := true; tclPROGRESS f1 g)
+ with e when Logic.catchable_exception e ->
+ (try_trace := false; tclIDTAC g);;
+
+let traced_try_entry = function
+ [Tacexp t] ->
+ traced_try (Tacinterp.interp t)
+ | _ -> failwith "traced_try_entry received wrong arguments";;
+
+
+(* When the recursive descent along the path is over, one includes the
+ command requested by the point-and-shoot strategy. Default is
+ Try Assumption--Try Exact. *)
+
+
+let default_ast optname constr path = PbpThen [PbpTryAssumption optname]
+
+(* This is the main proof by pointing function. *)
+(* avoid: les noms a ne pas utiliser *)
+(* final_cmd: la fonction appelee par defaut *)
+(* opt_name: eventuellement le nom de l'hypothese sur laquelle on agit *)
+
+let rec pbpt final_cmd avoid clear_names clear_flag opt_name constr path =
+ let rec try_all_rules rl =
+ match rl with
+ f::tl ->
+ (match f (avoid, clear_names, clear_flag,
+ opt_name, constr, path, pbpt final_cmd) with
+ Some(ast) -> ast
+ | None -> try_all_rules tl)
+ | [] -> make_final_cmd final_cmd opt_name clear_names constr path
+ in try_all_rules (!pbp_rules);;
+
+(* these are the optimisation functions. *)
+(* This function takes care of flattening successive then commands. *)
+
+
+(* Invariant: in [flatten_sequence t], occurrences of [PbpThenCont(l,t)] enjoy
+ that t is some [PbpAtom t] *)
+
+(* This optimization function takes care of compacting successive Intro commands
+ together. *)
+
+let rec group_intros names = function
+ [] -> (match names with
+ [] -> []
+ | l -> [PbpIntros l])
+ | (PbpIntros ids)::others -> group_intros (names@ids) others
+ | t1::others ->
+ (match names with
+ [] -> t1::(group_intros [] others)
+ | l -> (PbpIntros l)::t1::(group_intros [] others))
+
+let rec optim2 = function
+ | PbpThens (tl1,tl2) -> PbpThens (group_intros [] tl1, List.map optim2 tl2)
+ | PbpThen tl -> PbpThen (group_intros [] tl)
+
+
+let rec cleanup_clears str_list = function
+ [] -> []
+ | x::tail ->
+ if List.mem x str_list then cleanup_clears str_list tail
+ else x::(cleanup_clears str_list tail);;
+
+(* This function takes care of compacting instanciations of universal
+ quantifications. *)
+
+let rec optim3_aux str_list = function
+ (PbpGeneralize (h,l1))::
+ (PbpIntros [IntroIdentifier s])::(PbpGeneralize (h',l2))::others
+ when s=h' ->
+ optim3_aux (s::str_list) (PbpGeneralize (h,l1@l2)::others)
+ | (PbpTryClear names)::other ->
+ (match cleanup_clears str_list names with
+ [] -> other
+ | l -> (PbpTryClear l)::other)
+ | a::l -> a::(optim3_aux str_list l)
+ | [] -> [];;
+
+let rec optim3 str_list = function
+ PbpThens (tl1, tl2) ->
+ PbpThens (optim3_aux str_list tl1, List.map (optim3 str_list) tl2)
+ | PbpThen tl -> PbpThen (optim3_aux str_list tl)
+
+let optim x = make_pbp_tactic (optim3 [] (optim2 x));;
+
+(* TODO
+add_tactic "Traced_Try" traced_try_entry;;
+*)
+
+let rec tactic_args_to_ints = function
+ [] -> []
+ | (Integer n)::l -> n::(tactic_args_to_ints l)
+ | _ -> failwith "expecting only numbers";;
+
+(*
+let pbp_tac display_function = function
+ (Identifier a)::l ->
+ (function g ->
+ let str = (string_of_id a) in
+ let (ou,tstr) = (get_hyp_by_name g str) in
+ let exp_ast =
+ pbpt default_ast
+ (match ou with
+ "hyp" ->(pf_ids_of_hyps g)
+ |_ -> (a::(pf_ids_of_hyps g)))
+ []
+ false
+ (Some str)
+ (kind_of_term tstr)
+ (tactic_args_to_ints l) in
+ (display_function (optim exp_ast);
+ tclIDTAC g))
+ | ((Integer n)::_) as l ->
+ (function g ->
+ let exp_ast =
+ (pbpt default_ast (pf_ids_of_hyps g) [] false
+ None (kind_of_term (pf_concl g))
+ (tactic_args_to_ints l)) in
+ (display_function (optim exp_ast);
+ tclIDTAC g))
+ | [] -> (function g ->
+ (display_function (default_ast None (pf_concl g) []);
+ tclIDTAC g))
+ | _ -> failwith "expecting other arguments";;
+
+
+*)
+let pbp_tac display_function idopt nl =
+ match idopt with
+ | Some str ->
+ (function g ->
+ let (ou,tstr) = (get_hyp_by_name g str) in
+ let exp_ast =
+ pbpt default_ast
+ (match ou with
+ "hyp" ->(pf_ids_of_hyps g)
+ |_ -> (str::(pf_ids_of_hyps g)))
+ []
+ false
+ (Some str)
+ (kind_of_term tstr)
+ nl in
+ (display_function (optim exp_ast); tclIDTAC g))
+ | None ->
+ if nl <> [] then
+ (function g ->
+ let exp_ast =
+ (pbpt default_ast (pf_ids_of_hyps g) [] false
+ None (kind_of_term (pf_concl g)) nl) in
+ (display_function (optim exp_ast); tclIDTAC g))
+ else
+ (function g ->
+ (display_function
+ (make_pbp_tactic (default_ast None (pf_concl g) []));
+ tclIDTAC g));;
+
+
diff --git a/contrib/interface/pbp.mli b/contrib/interface/pbp.mli
new file mode 100644
index 00000000..43ec1274
--- /dev/null
+++ b/contrib/interface/pbp.mli
@@ -0,0 +1,4 @@
+val pbp_tac : (Tacexpr.raw_tactic_expr -> 'a) ->
+ Names.identifier option -> int list ->
+ Proof_type.goal Tacmach.sigma ->
+ Proof_type.goal list Proof_type.sigma * Proof_type.validation;;
diff --git a/contrib/interface/showproof.ml b/contrib/interface/showproof.ml
new file mode 100644
index 00000000..5b265ec8
--- /dev/null
+++ b/contrib/interface/showproof.ml
@@ -0,0 +1,1899 @@
+(*
+#use "/cygdrive/D/Tools/coq-7avril/dev/base_include";;
+open Coqast;;
+*)
+open Environ
+open Evd
+open Names
+open Nameops
+open Libnames
+open Term
+open Termops
+open Util
+open Proof_type
+open Coqast
+open Pfedit
+open Translate
+open Term
+open Reductionops
+open Clenv
+open Typing
+open Inductive
+open Inductiveops
+open Vernacinterp
+open Declarations
+open Showproof_ct
+open Proof_trees
+open Sign
+open Pp
+open Printer
+open Rawterm
+open Tacexpr
+open Genarg
+(*****************************************************************************)
+(*
+ Arbre de preuve maison:
+
+*)
+
+(* hypotheses *)
+
+type nhyp = {hyp_name : identifier;
+ hyp_type : Term.constr;
+ hyp_full_type: Term.constr}
+;;
+
+type ntactic = tactic_expr
+;;
+
+type nproof =
+ Notproved
+ | Proof of ntactic * (ntree list)
+
+and ngoal=
+ {newhyp : nhyp list;
+ t_concl : Term.constr;
+ t_full_concl: Term.constr;
+ t_full_env: Sign.named_context}
+and ntree=
+ {t_info:string;
+ t_goal:ngoal;
+ t_proof : nproof}
+;;
+
+
+let hyps {t_info=info;
+ t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p} = lh
+;;
+
+let concl {t_info=info;
+ t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p} = g
+;;
+
+let proof {t_info=info;
+ t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p} = p
+;;
+let g_env {t_info=info;
+ t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p} = ge
+;;
+let sub_ntrees t =
+ match (proof t) with
+ Notproved -> []
+ | Proof (_,l) -> l
+;;
+
+let tactic t =
+ match (proof t) with
+ Notproved -> failwith "no tactic applied"
+ | Proof (t,_) -> t
+;;
+
+
+(*
+un arbre est clos s'il ne contient pas de sous-but non prouves,
+ou bien s'il a un cousin gauche qui n'est pas clos
+ce qui fait qu'on a au plus un sous-but non clos, le premier sous-but.
+*)
+let update_closed nt =
+ let found_not_closed=ref false in
+ let rec update {t_info=b; t_goal=g; t_proof =p} =
+ if !found_not_closed
+ then {t_info="to_prove"; t_goal=g; t_proof =p}
+ else
+ match p with
+ Notproved -> found_not_closed:=true;
+ {t_info="not_proved"; t_goal=g; t_proof =p}
+ | Proof(tac,lt) ->
+ let lt1=List.map update lt in
+ let b=ref "proved" in
+ (List.iter
+ (fun x ->
+ if x.t_info ="not_proved" then b:="not_proved") lt1;
+ {t_info=(!b);
+ t_goal=g;
+ t_proof=Proof(tac,lt1)})
+ in update nt
+ ;;
+
+
+(*
+ type complet avec les hypotheses.
+*)
+
+let long_type_hyp lh t=
+ let t=ref t in
+ List.iter (fun (n,th) ->
+ let ni = match n with Name ni -> ni | _ -> assert false in
+ t:= mkProd(n,th,subst_term (mkVar ni) !t))
+ (List.rev lh);
+ !t
+;;
+
+(* let long_type_hyp x y = y;; *)
+
+(* Expansion des tactikelles *)
+
+let seq_to_lnhyp sign sign' cl =
+ let lh= ref (List.map (fun (x,c,t) -> (Name x, t)) sign) in
+ let nh=List.map (fun (id,c,ty) ->
+ {hyp_name=id;
+ hyp_type=ty;
+ hyp_full_type=
+ let res= long_type_hyp !lh ty in
+ lh:=(!lh)@[(Name id,ty)];
+ res})
+ sign'
+ in
+ {newhyp=nh;
+ t_concl=cl;
+ t_full_concl=long_type_hyp !lh cl;
+ t_full_env = sign@sign'}
+;;
+
+
+let rule_is_complex r =
+ match r with
+ Tactic (TacArg (Tacexp t),_) -> true
+ | Tactic (TacAtom (_,TacAuto _), _) -> true
+ | Tactic (TacAtom (_,TacSymmetry _), _) -> true
+ |_ -> false
+;;
+
+let ast_of_constr = Termast.ast_of_constr true (Global.env()) ;;
+
+(*
+let rule_to_ntactic r =
+ let rast =
+ (match r with
+ Tactic (s,l) ->
+ Ast.ope (s,(List.map ast_of_cvt_arg l))
+ | Prim (Refine h) ->
+ Ast.ope ("Exact",
+ [Node ((0,0), "COMMAND", [ast_of_constr h])])
+ | _ -> Ast.ope ("Intros",[])) in
+ if rule_is_complex r
+ then (match rast with
+ Node(_,_,[Node(_,_,[Node(_,_,x)])]) ->x
+ | _ -> assert false)
+
+ else [rast ]
+;;
+*)
+let rule_to_ntactic r =
+ let rt =
+ (match r with
+ Tactic (t,_) -> t
+ | Prim (Refine h) -> TacAtom (dummy_loc,TacExact h)
+ | _ -> TacAtom (dummy_loc, TacIntroPattern [])) in
+ if rule_is_complex r
+ then (match rt with
+ TacArg (Tacexp _) as t -> t
+ | _ -> assert false)
+
+ else rt
+;;
+
+(*
+let term_of_command x =
+ match x with
+ Node(_,_,y::_) -> y
+ | _ -> x
+;;
+*)
+
+(* Attribue les preuves de la liste l aux sous-buts non-prouvés de nt *)
+
+
+let fill_unproved nt l =
+ let lnt = ref l in
+ let rec fill nt =
+ let {t_goal=g;t_proof=p}=nt in
+ match p with
+ Notproved -> let p=List.hd (!lnt) in
+ lnt:=List.tl (!lnt);
+ {t_info="to_prove";t_goal=g;t_proof=p}
+ |Proof(tac,lt) ->
+ {t_info="to_prove";t_goal=g;
+ t_proof=Proof(tac,List.map fill lt)}
+ in fill nt
+;;
+(* Differences entre signatures *)
+
+let new_sign osign sign =
+ let res=ref [] in
+ List.iter (fun (id,c,ty) ->
+ try (let (_,_,ty1)= (lookup_named id osign) in
+ ())
+ with Not_found -> res:=(id,c,ty)::(!res))
+ sign;
+ !res
+;;
+
+let old_sign osign sign =
+ let res=ref [] in
+ List.iter (fun (id,c,ty) ->
+ try (let (_,_,ty1) = (lookup_named id osign) in
+ if ty1 = ty then res:=(id,c,ty)::(!res))
+ with Not_found -> ())
+ sign;
+ !res
+;;
+
+(* convertit l'arbre de preuve courant en ntree *)
+let to_nproof sigma osign pf =
+ let rec to_nproof_rec sigma osign pf =
+ let {evar_hyps=sign;evar_concl=cl} = pf.goal in
+ let nsign = new_sign osign sign in
+ let oldsign = old_sign osign sign in
+ match pf.ref with
+
+ None -> {t_info="to_prove";
+ t_goal=(seq_to_lnhyp oldsign nsign cl);
+ t_proof=Notproved}
+ | Some(r,spfl) ->
+ if rule_is_complex r
+ then (
+ let p1= to_nproof_rec sigma sign (subproof_of_proof pf) in
+ let ntree= fill_unproved p1
+ (List.map (fun x -> (to_nproof_rec sigma sign x).t_proof)
+ spfl) in
+ (match r with
+ Tactic (TacAtom (_, TacAuto _),_) ->
+ if spfl=[]
+ then
+ {t_info="to_prove";
+ t_goal= {newhyp=[];
+ t_concl=concl ntree;
+ t_full_concl=ntree.t_goal.t_full_concl;
+ t_full_env=ntree.t_goal.t_full_env};
+ t_proof= Proof (TacAtom (dummy_loc,TacExtend (dummy_loc,"InfoAuto",[])), [ntree])}
+ else ntree
+ | _ -> ntree))
+ else
+ {t_info="to_prove";
+ t_goal=(seq_to_lnhyp oldsign nsign cl);
+ t_proof=(Proof (rule_to_ntactic r,
+ List.map (fun x -> to_nproof_rec sigma sign x) spfl))}
+ in update_closed (to_nproof_rec sigma osign pf)
+ ;;
+
+(*
+ recupere l'arbre de preuve courant.
+*)
+
+let get_nproof () =
+ to_nproof (Global.env()) []
+ (Tacmach.proof_of_pftreestate (get_pftreestate()))
+;;
+
+
+(*****************************************************************************)
+(*
+ Pprinter
+*)
+
+let pr_void () = sphs "";;
+
+let list_rem l = match l with [] -> [] |x::l1->l1;;
+
+(* liste de chaines *)
+let prls l =
+ let res = ref (sps (List.hd l)) in
+ List.iter (fun s ->
+ res:= sphv [ !res; spb; sps s]) (list_rem l);
+ !res
+;;
+
+let prphrases f l =
+ spv (List.map (fun s -> sphv [f s; sps ","]) l)
+;;
+
+(* indentation *)
+let spi = spnb 3;;
+
+(* en colonne *)
+let prl f l =
+ if l=[] then spe else spv (List.map f l);;
+(*en colonne, avec indentation *)
+let prli f l =
+ if l=[] then spe else sph [spi; spv (List.map f l)];;
+
+(*
+ Langues.
+*)
+
+let rand l =
+ List.nth l (Random.int (List.length l))
+;;
+
+type natural_languages = French | English;;
+let natural_language = ref French;;
+
+(*****************************************************************************)
+(*
+ Les liens html pour proof-by-pointing
+*)
+
+(* le path du but en cours. *)
+
+let path=ref[1];;
+
+let ftag_apply =ref (fun (n:string) t -> spt t);;
+
+let ftag_case =ref (fun n -> sps n);;
+
+let ftag_elim =ref (fun n -> sps n);;
+
+let ftag_hypt =ref (fun h t -> sphypt (translate_path !path) h t);;
+
+let ftag_hyp =ref (fun h t -> sphyp (translate_path !path) h t);;
+
+let ftag_uselemma =ref (fun h t ->
+ let intro = match !natural_language with
+ French -> "par"
+ | English -> "by"
+ in
+ spuselemma intro h t);;
+
+let ftag_toprove =ref (fun t -> sptoprove (translate_path !path) t);;
+
+let tag_apply = !ftag_apply;;
+
+let tag_case = !ftag_case;;
+
+let tag_elim = !ftag_elim;;
+
+let tag_uselemma = !ftag_uselemma;;
+
+let tag_hyp = !ftag_hyp;;
+
+let tag_hypt = !ftag_hypt;;
+
+let tag_toprove = !ftag_toprove;;
+
+(*****************************************************************************)
+
+(* pluriel *)
+let txtn n s =
+ if n=1 then s
+ else match s with
+ |"un" -> "des"
+ |"a" -> ""
+ |"an" -> ""
+ |"une" -> "des"
+ |"Soit" -> "Soient"
+ |"Let" -> "Let"
+ | s -> s^"s"
+;;
+
+let _et () = match !natural_language with
+ French -> sps "et"
+| English -> sps "and"
+;;
+
+let name_count = ref 0;;
+let new_name () =
+ name_count:=(!name_count)+1;
+ string_of_int !name_count
+;;
+
+let enumerate f ln =
+ match ln with
+ [] -> []
+ | [x] -> [f x]
+ |ln ->
+ let rec enum_rec f ln =
+ (match ln with
+ [x;y] -> [f x; spb; sph [_et ();spb;f y]]
+ |x::l -> [sph [(f x);sps ","];spb]@(enum_rec f l)
+ | _ -> assert false)
+ in enum_rec f ln
+;;
+
+
+let constr_of_ast = Constrintern.interp_constr Evd.empty (Global.env());;
+
+(*
+let sp_tac tac =
+ try spt (constr_of_ast (term_of_command tac))
+ with _ -> (* let Node(_,t,_) = tac in *)
+ spe (* sps ("error in sp_tac " ^ t) *)
+;;
+*)
+let sp_tac tac = failwith "TODO"
+
+let soit_A_une_proposition nh ln t= match !natural_language with
+ French ->
+ sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
+ @[spb; prls [txtn nh "une";txtn nh "proposition"]])
+| English ->
+ sphv ([sps "Let";spb]@(enumerate (fun x -> tag_hyp x t) ln)
+ @[spb; prls ["be"; txtn nh "a";txtn nh "proposition"]])
+;;
+
+let on_a ()= match !natural_language with
+ French -> rand ["on a "]
+| English ->rand ["we have "]
+;;
+
+let bon_a ()= match !natural_language with
+ French -> rand ["On a "]
+| English ->rand ["We have "]
+;;
+
+let soit_X_un_element_de_T nh ln t = match !natural_language with
+ French ->
+ sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
+ @[spb; prls [txtn nh "un";txtn nh "élément";"de"]]
+ @[spb; spt t])
+| English ->
+ sphv ([sps (txtn nh "Let");spb]@(enumerate (fun x -> tag_hyp x t) ln)
+ @[spb; prls ["be";txtn nh "an";txtn nh "element";"of"]]
+ @[spb; spt t])
+;;
+
+let soit_F_une_fonction_de_type_T nh ln t = match !natural_language with
+ French ->
+ sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
+ @[spb; prls [txtn nh "une";txtn nh "fonction";"de";"type"]]
+ @[spb; spt t])
+| English ->
+ sphv ([sps (txtn nh "Let");spb]@(enumerate (fun x -> tag_hyp x t) ln)
+ @[spb; prls ["be";txtn nh "a";txtn nh "function";"of";"type"]]
+ @[spb; spt t])
+;;
+
+
+let telle_que nh = match !natural_language with
+ French -> [prls [" ";txtn nh "telle";"que";" "]]
+| English -> [prls [" "; "such";"that";" "]]
+;;
+
+let tel_que nh = match !natural_language with
+ French -> [prls [" ";txtn nh "tel";"que";" "]]
+| English -> [prls [" ";"such";"that";" "]]
+;;
+
+let supposons () = match !natural_language with
+ French -> "Supposons "
+| English -> "Suppose "
+;;
+
+let cas () = match !natural_language with
+ French -> "Cas"
+| English -> "Case"
+;;
+
+let donnons_une_proposition () = match !natural_language with
+ French -> sph[ (prls ["Donnons";"une";"proposition"])]
+| English -> sph[ (prls ["Let us give";"a";"proposition"])]
+;;
+
+let montrons g = match !natural_language with
+ French -> sph[ sps (rand ["Prouvons";"Montrons";"Démontrons"]);
+ spb; spt g; sps ". "]
+| English -> sph[ sps (rand ["Let us";"Now"]);spb;
+ sps (rand ["prove";"show"]);
+ spb; spt g; sps ". "]
+;;
+
+let calculons_un_element_de g = match !natural_language with
+ French -> sph[ (prls ["Calculons";"un";"élément";"de"]);
+ spb; spt g; sps ". "]
+| English -> sph[ (prls ["Let us";"compute";"an";"element";"of"]);
+ spb; spt g; sps ". "]
+;;
+
+let calculons_une_fonction_de_type g = match !natural_language with
+ French -> sphv [ (prls ["Calculons";"une";"fonction";"de";"type"]);
+ spb; spt g; sps ". "]
+| English -> sphv [ (prls ["Let";"us";"compute";"a";"function";"of";"type"]);
+ spb; spt g; sps ". "];;
+
+let en_simplifiant_on_obtient g = match !natural_language with
+ French ->
+ sphv [ (prls [rand ["Après simplification,"; "En simplifiant,"];
+ rand ["on doit";"il reste à"];
+ rand ["prouver";"montrer";"démontrer"]]);
+ spb; spt g; sps ". "]
+| English ->
+ sphv [ (prls [rand ["After simplification,"; "Simplifying,"];
+ rand ["we must";"it remains to"];
+ rand ["prove";"show"]]);
+ spb; spt g; sps ". "] ;;
+
+let on_obtient g = match !natural_language with
+ French -> sph[ (prls [rand ["on doit";"il reste à"];
+ rand ["prouver";"montrer";"démontrer"]]);
+ spb; spt g; sps ". "]
+| English ->sph[ (prls [rand ["we must";"it remains to"];
+ rand ["prove";"show"]]);
+ spb; spt g; sps ". "]
+;;
+
+let reste_a_montrer g = match !natural_language with
+ French -> sph[ (prls ["Reste";"à";
+ rand ["prouver";"montrer";"démontrer"]]);
+ spb; spt g; sps ". "]
+| English -> sph[ (prls ["It remains";"to";
+ rand ["prove";"show"]]);
+ spb; spt g; sps ". "]
+;;
+
+let discutons_avec_A type_arg = match !natural_language with
+ French -> sphv [sps "Discutons"; spb; sps "avec"; spb;
+ spt type_arg; sps ":"]
+| English -> sphv [sps "Let us discuss"; spb; sps "with"; spb;
+ spt type_arg; sps ":"]
+;;
+
+let utilisons_A arg1 = match !natural_language with
+ French -> sphv [sps (rand ["Utilisons";"Avec";"A l'aide de"]);
+ spb; spt arg1; sps ":"]
+| English -> sphv [sps (rand ["Let us use";"With";"With the help of"]);
+ spb; spt arg1; sps ":"]
+;;
+
+let selon_les_valeurs_de_A arg1 = match !natural_language with
+ French -> sphv [ (prls ["Selon";"les";"valeurs";"de"]);
+ spb; spt arg1; sps ":"]
+| English -> sphv [ (prls ["According";"values";"of"]);
+ spb; spt arg1; sps ":"]
+;;
+
+let de_A_on_a arg1 = match !natural_language with
+ French -> sphv [ sps (rand ["De";"Avec";"Grâce à"]); spb; spt arg1; spb;
+ sps (rand ["on a:";"on déduit:";"on obtient:"])]
+| English -> sphv [ sps (rand ["From";"With";"Thanks to"]); spb;
+ spt arg1; spb;
+ sps (rand ["we have:";"we deduce:";"we obtain:"])]
+;;
+
+
+let procedons_par_recurrence_sur_A arg1 = match !natural_language with
+ French -> sphv [ (prls ["Procédons";"par";"récurrence";"sur"]);
+ spb; spt arg1; sps ":"]
+| English -> sphv [ (prls ["By";"induction";"on"]);
+ spb; spt arg1; sps ":"]
+;;
+
+
+let calculons_la_fonction_F_de_type_T_par_recurrence_sur_son_argument_A
+ nfun tfun narg = match !natural_language with
+ French -> sphv [
+ sphv [ prls ["Calculons";"la";"fonction"];
+ spb; sps (string_of_id nfun);spb;
+ prls ["de";"type"];
+ spb; spt tfun;spb;
+ prls ["par";"récurrence";"sur";"son";"argument"];
+ spb; sps (string_of_int narg); sps ":"]
+ ]
+| English -> sphv [
+ sphv [ prls ["Let us compute";"the";"function"];
+ spb; sps (string_of_id nfun);spb;
+ prls ["of";"type"];
+ spb; spt tfun;spb;
+ prls ["by";"induction";"on";"its";"argument"];
+ spb; sps (string_of_int narg); sps ":"]
+ ]
+
+;;
+let pour_montrer_G_la_valeur_recherchee_est_A g arg1 =
+ match !natural_language with
+ French -> sph [sps "Pour";spb;sps "montrer"; spt g; spb;
+ sps ","; spb; sps "choisissons";spb;
+ spt arg1;sps ". " ]
+| English -> sph [sps "In order to";spb;sps "show"; spt g; spb;
+ sps ","; spb; sps "let us choose";spb;
+ spt arg1;sps ". " ]
+;;
+
+let on_se_sert_de_A arg1 = match !natural_language with
+ French -> sph [sps "On se sert de";spb ;spt arg1;sps ":" ]
+| English -> sph [sps "We use";spb ;spt arg1;sps ":" ]
+;;
+
+
+let d_ou_A g = match !natural_language with
+ French -> sph [spi; sps "d'où";spb ;spt g;sps ". " ]
+| English -> sph [spi; sps "then";spb ;spt g;sps ". " ]
+;;
+
+
+let coq_le_demontre_seul () = match !natural_language with
+ French -> rand [prls ["Coq";"le";"démontre"; "seul."];
+ sps "Fastoche.";
+ sps "Trop cool"]
+| English -> rand [prls ["Coq";"shows";"it"; "alone."];
+ sps "Fingers in the nose."]
+;;
+
+let de_A_on_deduit_donc_B arg g = match !natural_language with
+ French -> sph
+ [ sps "De"; spb; spt arg; spb; sps "on";spb;
+ sps "déduit";spb; sps "donc";spb; spt g ]
+| English -> sph
+ [ sps "From"; spb; spt arg; spb; sps "we";spb;
+ sps "deduce";spb; sps "then";spb; spt g ]
+;;
+
+let _A_est_immediat_par_B g arg = match !natural_language with
+ French -> sph [ spt g; spb; (prls ["est";"immédiat";"par"]);
+ spb; spt arg ]
+| English -> sph [ spt g; spb; (prls ["is";"immediate";"from"]);
+ spb; spt arg ]
+;;
+
+let le_resultat_est arg = match !natural_language with
+ French -> sph [ (prls ["le";"résultat";"est"]);
+ spb; spt arg ]
+| English -> sph [ (prls ["the";"result";"is"]);
+ spb; spt arg ];;
+
+let on_applique_la_tactique tactic tac = match !natural_language with
+ French -> sphv
+ [ sps "on applique";spb;sps "la tactique"; spb;tactic;spb;tac]
+| English -> sphv
+ [ sps "we apply";spb;sps "the tactic"; spb;tactic;spb;tac]
+;;
+
+let de_A_il_vient_B arg g = match !natural_language with
+ French -> sph
+ [ sps "De"; spb; spt arg; spb;
+ sps "il";spb; sps "vient";spb; spt g; sps ". " ]
+| English -> sph
+ [ sps "From"; spb; spt arg; spb;
+ sps "it";spb; sps "comes";spb; spt g; sps ". " ]
+;;
+
+let ce_qui_est_trivial () = match !natural_language with
+ French -> sps "Trivial."
+| English -> sps "Trivial."
+;;
+
+let en_utilisant_l_egalite_A arg = match !natural_language with
+ French -> sphv [ sps "En"; spb;sps "utilisant"; spb;
+ sps "l'egalite"; spb; spt arg; sps ","
+ ]
+| English -> sphv [ sps "Using"; spb;
+ sps "the equality"; spb; spt arg; sps ","
+ ]
+;;
+
+let simplifions_H_T hyp thyp = match !natural_language with
+ French -> sphv [sps"En simplifiant";spb;sps hyp;spb;sps "on obtient:";
+ spb;spt thyp;sps "."]
+| English -> sphv [sps"Simplifying";spb;sps hyp;spb;sps "we get:";
+ spb;spt thyp;sps "."]
+;;
+
+let grace_a_A_il_suffit_de_montrer_LA arg lg=
+ match !natural_language with
+ French -> sphv ([sps (rand ["Grâce à";"Avec";"A l'aide de"]);spb;
+ spt arg;sps ",";spb;
+ sps "il suffit";spb; sps "de"; spb;
+ sps (rand["prouver";"montrer";"démontrer"]); spb]
+ @[spv (enumerate (fun x->x) lg)])
+| English -> sphv ([sps (rand ["Thanks to";"With"]);spb;
+ spt arg;sps ",";spb;
+ sps "it suffices";spb; sps "to"; spb;
+ sps (rand["prove";"show"]); spb]
+ @[spv (enumerate (fun x->x) lg)])
+;;
+let reste_a_montrer_LA lg=
+ match !natural_language with
+ French -> sphv ([ sps "Il reste";spb; sps "à"; spb;
+ sps (rand["prouver";"montrer";"démontrer"]); spb]
+ @[spv (enumerate (fun x->x) lg)])
+| English -> sphv ([ sps "It remains";spb; sps "to"; spb;
+ sps (rand["prove";"show"]); spb]
+ @[spv (enumerate (fun x->x) lg)])
+;;
+(*****************************************************************************)
+(*
+ Traduction des hypothèses.
+*)
+
+type n_sort=
+ Nprop
+ | Nformula
+ | Ntype
+ | Nfunction
+;;
+
+
+let sort_of_type t ts =
+ let t=(strip_outer_cast t) in
+ if is_Prop t
+ then Nprop
+ else
+ match ts with
+ Prop(Null) -> Nformula
+ |_ -> (match (kind_of_term t) with
+ Prod(_,_,_) -> Nfunction
+ |_ -> Ntype)
+;;
+
+let adrel (x,t) e =
+ match x with
+ Name(xid) -> Environ.push_rel (x,None,t) e
+ | Anonymous -> Environ.push_rel (x,None,t) e
+
+let rec nsortrec vl x =
+ match (kind_of_term x) with
+ Prod(n,t,c)->
+ let vl = (adrel (n,t) vl) in nsortrec vl c
+ | Lambda(n,t,c) ->
+ let vl = (adrel (n,t) vl) in nsortrec vl c
+ | App(f,args) -> nsortrec vl f
+ | Sort(Prop(Null)) -> Prop(Null)
+ | Sort(c) -> c
+ | Ind(ind) ->
+ let (mib,mip) = lookup_mind_specif vl ind in
+ mip.mind_sort
+ | Construct(c) ->
+ nsortrec vl (mkInd (inductive_of_constructor c))
+ | Case(_,x,t,a)
+ -> nsortrec vl x
+ | Cast(x,t)-> nsortrec vl t
+ | Const c -> nsortrec vl (lookup_constant c vl).const_type
+ | _ -> nsortrec vl (type_of vl Evd.empty x)
+;;
+let nsort x =
+ nsortrec (Global.env()) (strip_outer_cast x)
+;;
+
+let sort_of_hyp h =
+ (sort_of_type h.hyp_type (nsort h.hyp_full_type))
+;;
+
+(* grouper les hypotheses successives de meme type, ou logiques.
+ donne une liste de liste *)
+let rec group_lhyp lh =
+ match lh with
+ [] -> []
+ |[h] -> [[h]]
+ |h::lh ->
+ match group_lhyp lh with
+ (h1::lh1)::lh2 ->
+ if h.hyp_type=h1.hyp_type
+ || ((sort_of_hyp h)=(sort_of_hyp h1) && (sort_of_hyp h1)=Nformula)
+ then (h::(h1::lh1))::lh2
+ else [h]::((h1::lh1)::lh2)
+ |_-> assert false
+;;
+
+(* ln noms des hypotheses, lt leurs types *)
+let natural_ghyp (sort,ln,lt) intro =
+ let t=List.hd lt in
+ let nh=List.length ln in
+ let ns=List.hd ln in
+ match sort with
+ Nprop -> soit_A_une_proposition nh ln t
+ | Ntype -> soit_X_un_element_de_T nh ln t
+ | Nfunction -> soit_F_une_fonction_de_type_T nh ln t
+ | Nformula ->
+ sphv ((sps intro)::(enumerate (fun (n,t) -> tag_hypt n t)
+ (List.combine ln lt)))
+;;
+
+(* Cas d'une hypothese *)
+let natural_hyp h =
+ let ns= string_of_id h.hyp_name in
+ let t=h.hyp_type in
+ let ts= (nsort h.hyp_full_type) in
+ natural_ghyp ((sort_of_type t ts),[ns],[t]) (supposons ())
+;;
+
+let rec pr_ghyp lh intro=
+ match lh with
+ [] -> []
+ | [(sort,ln,t)]->
+ (match sort with
+ Nformula -> [natural_ghyp(sort,ln,t) intro; sps ". "]
+ | _ -> [natural_ghyp(sort,ln,t) ""; sps ". "])
+ | (sort,ln,t)::lh ->
+ let hp=
+ ([natural_ghyp(sort,ln,t) intro]
+ @(match lh with
+ [] -> [sps ". "]
+ |(sort1,ln1,t1)::lh1 ->
+ match sort1 with
+ Nformula ->
+ (let nh=List.length ln in
+ match sort with
+ Nprop -> telle_que nh
+ |Nfunction -> telle_que nh
+ |Ntype -> tel_que nh
+ |Nformula -> [sps ". "])
+ | _ -> [sps ". "])) in
+ (sphv hp)::(pr_ghyp lh "")
+;;
+
+(* traduction d'une liste d'hypotheses groupees. *)
+let prnatural_ghyp llh intro=
+ if llh=[]
+ then spe
+ else
+ sphv (pr_ghyp (List.map
+ (fun lh ->
+ let h=(List.hd lh) in
+ let sh = sort_of_hyp h in
+ let lhname = (List.map (fun h ->
+ string_of_id h.hyp_name) lh) in
+ let lhtype = (List.map (fun h -> h.hyp_type) lh) in
+ (sh,lhname,lhtype))
+ llh) intro)
+;;
+
+
+(*****************************************************************************)
+(*
+ Liste des hypotheses.
+*)
+type type_info_subgoals_hyp=
+ All_subgoals_hyp
+ | Reduce_hyp
+ | No_subgoals_hyp
+ | Case_subgoals_hyp of string (* word for introduction *)
+ * Term.constr (* variable *)
+ * string (* constructor *)
+ * int (* arity *)
+ * int (* number of constructors *)
+ | Case_prop_subgoals_hyp of string (* word for introduction *)
+ * Term.constr (* variable *)
+ * int (* index of constructor *)
+ * int (* arity *)
+ * int (* number of constructors *)
+ | Elim_subgoals_hyp of Term.constr (* variable *)
+ * string (* constructor *)
+ * int (* arity *)
+ * (string list) (* rec hyp *)
+ * int (* number of constructors *)
+ | Elim_prop_subgoals_hyp of Term.constr (* variable *)
+ * int (* index of constructor *)
+ * int (* arity *)
+ * (string list) (* rec hyp *)
+ * int (* number of constructors *)
+;;
+let rec nrem l n =
+ if n<=0 then l else nrem (list_rem l) (n-1)
+;;
+
+let rec nhd l n =
+ if n<=0 then [] else (List.hd l)::(nhd (list_rem l) (n-1))
+;;
+
+let par_hypothese_de_recurrence () = match !natural_language with
+ French -> sphv [(prls ["par";"hypothèse";"de";"récurrence";","])]
+| English -> sphv [(prls ["by";"induction";"hypothesis";","])]
+;;
+
+let natural_lhyp lh hi =
+ match hi with
+ All_subgoals_hyp ->
+ ( match lh with
+ [] -> spe
+ |_-> prnatural_ghyp (group_lhyp lh) (supposons ()))
+ | Reduce_hyp ->
+ (match lh with
+ [h] -> simplifions_H_T (string_of_id h.hyp_name) h.hyp_type
+ | _-> spe)
+ | No_subgoals_hyp -> spe
+ |Case_subgoals_hyp (sintro,var,c,a,ncase) -> (* sintro pas encore utilisee *)
+ let s=ref c in
+ for i=1 to a do
+ let nh=(List.nth lh (i-1)) in
+ s:=(!s)^" "^(string_of_id nh.hyp_name);
+ done;
+ if a>0 then s:="("^(!s)^")";
+ sphv [ (if ncase>1
+ then sph[ sps ("-"^(cas ()));spb]
+ else spe);
+ (* spt var;sps "="; *) sps !s; sps ":";
+ (prphrases (natural_hyp) (nrem lh a))]
+ |Case_prop_subgoals_hyp (sintro,var,c,a,ncase) ->
+ prnatural_ghyp (group_lhyp lh) sintro
+ |Elim_subgoals_hyp (var,c,a,lhci,ncase) ->
+ let nlh = List.length lh in
+ let nlhci = List.length lhci in
+ let lh0 = ref [] in
+ for i=1 to (nlh-nlhci) do
+ lh0:=(!lh0)@[List.nth lh (i-1)];
+ done;
+ let lh=nrem lh (nlh-nlhci) in
+ let s=ref c in
+ let lh1=ref [] in
+ for i=1 to nlhci do
+ let targ=(List.nth lhci (i-1))in
+ let nh=(List.nth lh (i-1)) in
+ if targ="arg" || targ="argrec"
+ then
+ (s:=(!s)^" "^(string_of_id nh.hyp_name);
+ lh0:=(!lh0)@[nh])
+ else lh1:=(!lh1)@[nh];
+ done;
+ let introhyprec=
+ (if (!lh1)=[] then spe
+ else par_hypothese_de_recurrence () )
+ in
+ if a>0 then s:="("^(!s)^")";
+ spv [sphv [(if ncase>1
+ then sph[ sps ("-"^(cas ()));spb]
+ else spe);
+ sps !s; sps ":"];
+ prnatural_ghyp (group_lhyp !lh0) (supposons ());
+ introhyprec;
+ prl (natural_hyp) !lh1]
+ |Elim_prop_subgoals_hyp (var,c,a,lhci,ncase) ->
+ sphv [ (if ncase>1
+ then sph[ sps ("-"^(cas ()));spb;sps (string_of_int c);
+ sps ":";spb]
+ else spe);
+ (prphrases (natural_hyp) lh )]
+
+;;
+
+(*****************************************************************************)
+(*
+ Analyse des tactiques.
+*)
+
+(*
+let name_tactic tac =
+ match tac with
+ (Node(_,"Interp",
+ (Node(_,_,
+ (Node(_,t,_))::_))::_))::_ -> t
+ |(Node(_,t,_))::_ -> t
+ | _ -> assert false
+;;
+*)
+let name_tactic = function
+ | TacIntroPattern _ -> "Intro"
+ | TacAssumption -> "Assumption"
+ | _ -> failwith "TODO"
+;;
+
+(*
+let arg1_tactic tac =
+ match tac with
+ (Node(_,"Interp",
+ (Node(_,_,
+ (Node(_,_,x::_))::_))::_))::_ ->x
+ | (Node(_,_,x::_))::_ -> x
+ | x::_ -> x
+ | _ -> assert false
+;;
+*)
+
+let arg1_tactic tac = failwith "TODO"
+
+let arg2_tactic tac =
+ match tac with
+ (Node(_,"Interp",
+ (Node(_,_,
+ (Node(_,_,_::x::_))::_))::_))::_ -> x
+ | (Node(_,_,_::x::_))::_ -> x
+ | _ -> assert false
+;;
+
+(*
+type nat_tactic =
+ Split of (Coqast.t list)
+ | Generalize of (Coqast.t list)
+ | Reduce of string*(Coqast.t list)
+ | Other of string*(Coqast.t list)
+;;
+
+let analyse_tac tac =
+ match tac with
+ [Node (_, "Split", [Node (_, "BINDINGS", [])])]
+ -> Split []
+ | [Node (_, "Split",[Node(_, "BINDINGS",[Node(_, "BINDING",
+ [Node (_, "COMMAND", x)])])])]
+ -> Split x
+ | [Node (_, "Generalize", [Node (_, "COMMAND", x)])]
+ ->Generalize x
+ | [Node (_, "Reduce", [Node (_, "REDEXP", [Node (_, mode, _)]);
+ Node (_, "CLAUSE", lhyp)])]
+ -> Reduce(mode,lhyp)
+ | [Node (_, x,la)] -> Other (x,la)
+ | _ -> assert false
+;;
+*)
+
+
+
+
+
+let id_of_command x =
+ match x with
+ Node(_,_,Node(_,_,y::_)::_) -> y
+ |_ -> assert false
+;;
+type type_info_subgoals =
+ {ihsg: type_info_subgoals_hyp;
+ isgintro : string}
+;;
+
+let rec show_goal lh ig g gs =
+ match ig with
+ "intros" ->
+ if lh = []
+ then spe
+ else show_goal lh "standard" g gs
+ |"standard" ->
+ (match (sort_of_type g gs) with
+ Nprop -> donnons_une_proposition ()
+ | Nformula -> montrons g
+ | Ntype -> calculons_un_element_de g
+ | Nfunction ->calculons_une_fonction_de_type g)
+ | "apply" -> show_goal lh "" g gs
+ | "simpl" ->en_simplifiant_on_obtient g
+ | "rewrite" -> on_obtient g
+ | "equality" -> reste_a_montrer g
+ | "trivial_equality" -> reste_a_montrer g
+ | "" -> spe
+ |_ -> sph[ sps "A faire ..."; spb; spt g; sps ". " ]
+;;
+
+let show_goal2 lh {ihsg=hi;isgintro=ig} g gs s =
+ if ig="" && lh = []
+ then spe
+ else sphv [ show_goal lh ig g gs; sps s]
+;;
+
+let imaginez_une_preuve_de () = match !natural_language with
+ French -> "Imaginez une preuve de"
+| English -> "Imagine a proof of"
+;;
+
+let donnez_un_element_de () = match !natural_language with
+ French -> "Donnez un element de"
+| English -> "Give an element of";;
+
+let intro_not_proved_goal gs =
+ match gs with
+ Prop(Null) -> imaginez_une_preuve_de ()
+ |_ -> donnez_un_element_de ()
+;;
+
+let first_name_hyp_of_ntree {t_goal={newhyp=lh}}=
+ match lh with
+ {hyp_name=n}::_ -> n
+ | _ -> assert false
+;;
+
+let rec find_type x t=
+ match (kind_of_term (strip_outer_cast t)) with
+ Prod(y,ty,t) ->
+ (match y with
+ Name y ->
+ if x=(string_of_id y) then ty
+ else find_type x t
+ | _ -> find_type x t)
+ |_-> assert false
+;;
+
+(***********************************************************************
+Traitement des égalités
+*)
+(*
+let is_equality e =
+ match (kind_of_term e) with
+ AppL args ->
+ (match (kind_of_term args.(0)) with
+ Const (c,_) ->
+ (match (string_of_sp c) with
+ "Equal" -> true
+ | "eq" -> true
+ | "eqT" -> true
+ | "identityT" -> true
+ | _ -> false)
+ | _ -> false)
+ | _ -> false
+;;
+*)
+
+let is_equality e =
+ let e= (strip_outer_cast e) in
+ match (kind_of_term e) with
+ App (f,args) -> (Array.length args) >= 3
+ | _ -> false
+;;
+
+let terms_of_equality e =
+ let e= (strip_outer_cast e) in
+ match (kind_of_term e) with
+ App (f,args) -> (args.(1) , args.(2))
+ | _ -> assert false
+;;
+
+let eq_term = eq_constr;;
+
+let is_equality_tac = function
+ | TacAtom (_,
+ (TacExtend
+ (_,("ERewriteLR"|"ERewriteRL"|"ERewriteLRocc"|"ERewriteRLocc"
+ |"ERewriteParallel"|"ERewriteNormal"
+ |"RewriteLR"|"RewriteRL"|"Replace"),_)
+ | TacReduce _
+ | TacSymmetry _ | TacReflexivity
+ | TacExact _ | TacIntroPattern _ | TacIntroMove _ | TacAuto _)) -> true
+ | _ -> false
+
+let equalities_ntree ig ntree =
+ let rec equalities_ntree ig ntree =
+ if not (is_equality (concl ntree))
+ then []
+ else
+ match (proof ntree) with
+ Notproved -> [(ig,ntree)]
+ | Proof (tac,ltree) ->
+ if is_equality_tac tac
+ then (match ltree with
+ [] -> [(ig,ntree)]
+ | t::_ -> let res=(equalities_ntree ig t) in
+ if eq_term (concl ntree) (concl t)
+ then res
+ else (ig,ntree)::res)
+ else [(ig,ntree)]
+ in
+ equalities_ntree ig ntree
+;;
+
+let remove_seq_of_terms l =
+ let rec remove_seq_of_terms l = match l with
+ a::b::l -> if (eq_term (fst a) (fst b))
+ then remove_seq_of_terms (b::l)
+ else a::(remove_seq_of_terms (b::l))
+ | _ -> l
+ in remove_seq_of_terms l
+;;
+
+let list_to_eq l o=
+ let switch = fun h h' -> (if o then h else h') in
+ match l with
+ [a] -> spt (fst a)
+ | (a,h)::(b,h')::l ->
+ let rec list_to_eq h l =
+ match l with
+ [] -> []
+ | (b,h')::l ->
+ (sph [sps "="; spb; spt b; spb;tag_uselemma (switch h h') spe])
+ :: (list_to_eq (switch h' h) l)
+ in sph [spt a; spb;
+ spv ((sph [sps "="; spb; spt b; spb;
+ tag_uselemma (switch h h') spe])
+ ::(list_to_eq (switch h' h) l))]
+ | _ -> assert false
+;;
+
+let stde = Global.env;;
+
+let dbize env = Constrintern.interp_constr Evd.empty env;;
+
+(**********************************************************************)
+let rec natural_ntree ig ntree =
+ let {t_info=info;
+ t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p} = ntree in
+ let leq = List.rev (equalities_ntree ig ntree) in
+ if List.length leq > 1
+ then (* Several equalities to treate ... *)
+ (
+ print_string("Several equalities to treate ...\n");
+ let l1 = ref [] in
+ let l2 = ref [] in
+ List.iter
+ (fun (_,ntree) ->
+ let lemma = match (proof ntree) with
+ Proof (tac,ltree) ->
+ (try (sph [spt (dbize (gLOB ge) (arg1_tactic tac));(* TODO *)
+ (match ltree with
+ [] ->spe
+ | [_] -> spe
+ | _::l -> sphv[sps ": ";
+ prli (natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="standard"})
+ l])])
+ with _ -> sps "simplification" )
+ | Notproved -> spe
+ in
+ let (t1,t2)= terms_of_equality (concl ntree) in
+ l2:=(t2,lemma)::(!l2);
+ l1:=(t1,lemma)::(!l1))
+ leq;
+ l1:=remove_seq_of_terms !l1;
+ l2:=remove_seq_of_terms !l2;
+ l2:=List.rev !l2;
+ let ltext=ref [] in
+ if List.length !l1 > 1
+ then (ltext:=(!ltext)@[list_to_eq !l1 true];
+ if List.length !l2 > 1 then
+ (ltext:=(!ltext)@[_et()];
+ ltext:=(!ltext)@[list_to_eq !l2 false]))
+ else if List.length !l2 > 1 then ltext:=(!ltext)@[list_to_eq !l2 false];
+ if !ltext<>[] then ltext:=[sps (bon_a ()); spv !ltext];
+ let (ig,ntree)=(List.hd leq) in
+ spv [(natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g (nsort gf) "");
+ sph !ltext;
+
+ natural_ntree {ihsg=All_subgoals_hyp;
+ isgintro=
+ let (t1,t2)= terms_of_equality (concl ntree) in
+ if eq_term t1 t2
+ then "trivial_equality"
+ else "equality"}
+ ntree]
+ )
+ else
+ let ntext =
+ let gs=nsort gf in
+ match p with
+ Notproved -> spv [ (natural_lhyp lh ig.ihsg);
+ sph [spi; sps (intro_not_proved_goal gs); spb;
+ tag_toprove g ]
+ ]
+
+ | Proof (TacId _,ltree) -> natural_ntree ig (List.hd ltree)
+ | Proof (TacAtom (_,tac),ltree) ->
+ (let ntext =
+ match tac with
+(* Pas besoin de l'argument éventuel de la tactique *)
+ TacIntroPattern _ -> natural_intros ig lh g gs ltree
+ | TacIntroMove _ -> natural_intros ig lh g gs ltree
+ | TacFix (_,n) -> natural_fix ig lh g gs n ltree
+ | TacSplit (_,NoBindings) -> natural_split ig lh g gs ge [] ltree
+ | TacSplit(_,ImplicitBindings l) -> natural_split ig lh g gs ge l ltree
+ | TacGeneralize l -> natural_generalize ig lh g gs ge l ltree
+ | TacRight _ -> natural_right ig lh g gs ltree
+ | TacLeft _ -> natural_left ig lh g gs ltree
+ | (* "Simpl" *)TacReduce (r,cl) ->
+ natural_reduce ig lh g gs ge r cl ltree
+ | TacExtend (_,"InfoAuto",[]) -> natural_infoauto ig lh g gs ltree
+ | TacAuto _ -> natural_auto ig lh g gs ltree
+ | TacExtend (_,"EAuto",_) -> natural_auto ig lh g gs ltree
+ | TacTrivial _ -> natural_trivial ig lh g gs ltree
+ | TacAssumption -> natural_trivial ig lh g gs ltree
+ | TacClear _ -> natural_clear ig lh g gs ltree
+(* Besoin de l'argument de la tactique *)
+ | TacSimpleInduction (NamedHyp id,_) ->
+ natural_induction ig lh g gs ge id ltree false
+ | TacExtend (_,"InductionIntro",[a]) ->
+ let id=(out_gen wit_ident a) in
+ natural_induction ig lh g gs ge id ltree true
+ | TacApply (c,_) -> natural_apply ig lh g gs c ltree
+ | TacExact c -> natural_exact ig lh g gs c ltree
+ | TacCut c -> natural_cut ig lh g gs c ltree
+ | TacExtend (_,"CutIntro",[a]) ->
+ let c = out_gen wit_constr a in
+ natural_cutintro ig lh g gs a ltree
+ | TacCase (c,_) -> natural_case ig lh g gs ge c ltree false
+ | TacExtend (_,"CaseIntro",[a]) ->
+ let c = out_gen wit_constr a in
+ natural_case ig lh g gs ge c ltree true
+ | TacElim ((c,_),_) -> natural_elim ig lh g gs ge c ltree false
+ | TacExtend (_,"ElimIntro",[a]) ->
+ let c = out_gen wit_constr a in
+ natural_elim ig lh g gs ge c ltree true
+ | TacExtend (_,"Rewrite",[_;a]) ->
+ let (c,_) = out_gen wit_constr_with_bindings a in
+ natural_rewrite ig lh g gs c ltree
+ | TacExtend (_,"ERewriteRL",[a]) ->
+ let c = out_gen wit_constr a in (* TODO *)
+ natural_rewrite ig lh g gs c ltree
+ | TacExtend (_,"ERewriteLR",[a]) ->
+ let c = out_gen wit_constr a in (* TODO *)
+ natural_rewrite ig lh g gs c ltree
+ |_ -> natural_generic ig lh g gs (sps (name_tactic tac)) (prl sp_tac [tac]) ltree
+ in
+ ntext (* spwithtac ntext tactic*)
+ )
+ | Proof _ -> failwith "Don't know what to do with that"
+ in
+ if info<>"not_proved"
+ then spshrink info ntext
+ else ntext
+and natural_generic ig lh g gs tactic tac ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ on_applique_la_tactique tactic tac ;
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="standard"})
+ ltree)
+ ]
+and natural_clear ig lh g gs ltree = natural_ntree ig (List.hd ltree)
+(*
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (prl (natural_ntree ig) ltree)
+ ]
+*)
+and natural_intros ig lh g gs ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (prl (natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="intros"})
+ ltree)
+ ]
+and natural_apply ig lh g gs arg ltree =
+ let lg = List.map concl ltree in
+ match lg with
+ [] ->
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ de_A_il_vient_B arg g
+ ]
+ | [sg]->
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh
+ {ihsg=ig.ihsg; isgintro= if ig.isgintro<>"apply"
+ then "standard"
+ else ""}
+ g gs "");
+ grace_a_A_il_suffit_de_montrer_LA arg [spt sg];
+ sph [spi ; natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="apply"} (List.hd ltree)]
+ ]
+ | _ ->
+ let ln = List.map (fun _ -> new_name()) lg in
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh
+ {ihsg=ig.ihsg; isgintro= if ig.isgintro<>"apply"
+ then "standard"
+ else ""}
+ g gs "");
+ grace_a_A_il_suffit_de_montrer_LA arg
+ (List.map2 (fun g n -> sph [sps ("("^n^")"); spb; spt g])
+ lg ln);
+ sph [spi; spv (List.map2
+ (fun x n -> sph [sps ("("^n^"):"); spb;
+ natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="apply"} x])
+ ltree ln)]
+ ]
+and natural_rem_goals ltree =
+ let lg = List.map concl ltree in
+ match lg with
+ [] -> spe
+ | [sg]->
+ spv
+ [ reste_a_montrer_LA [spt sg];
+ sph [spi ; natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="apply"} (List.hd ltree)]
+ ]
+ | _ ->
+ let ln = List.map (fun _ -> new_name()) lg in
+ spv
+ [ reste_a_montrer_LA
+ (List.map2 (fun g n -> sph [sps ("("^n^")"); spb; spt g])
+ lg ln);
+ sph [spi; spv (List.map2
+ (fun x n -> sph [sps ("("^n^"):"); spb;
+ natural_ntree
+ {ihsg=All_subgoals_hyp;
+ isgintro="apply"} x])
+ ltree ln)]
+ ]
+and natural_exact ig lh g gs arg ltree =
+spv
+ [
+ (natural_lhyp lh ig.ihsg);
+ (let {ihsg=pi;isgintro=ig}= ig in
+ (show_goal2 lh {ihsg=pi;isgintro=""}
+ g gs ""));
+ (match gs with
+ Prop(Null) -> _A_est_immediat_par_B g arg
+ |_ -> le_resultat_est arg)
+
+ ]
+and natural_cut ig lh g gs arg ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="standard"})
+ (List.rev ltree));
+ de_A_on_deduit_donc_B arg g
+ ]
+and natural_cutintro ig lh g gs arg ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ sph [spi;
+ (natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro=""}
+ (List.nth ltree 1))];
+ sph [spi;
+ (natural_ntree
+ {ihsg=No_subgoals_hyp;isgintro=""}
+ (List.nth ltree 0))]
+ ]
+and whd_betadeltaiota x = whd_betaiotaevar (Global.env()) Evd.empty x
+and type_of_ast s c = type_of (Global.env()) Evd.empty (constr_of_ast c)
+and prod_head t =
+ match (kind_of_term (strip_outer_cast t)) with
+ Prod(_,_,c) -> prod_head c
+(* |App(f,a) -> f *)
+ | _ -> t
+and string_of_sp sp = string_of_id (basename sp)
+and constr_of_mind mip i =
+ (string_of_id mip.mind_consnames.(i-1))
+and arity_of_constr_of_mind env indf i =
+ (get_constructors env indf).(i-1).cs_nargs
+and gLOB ge = Global.env_of_context ge (* (Global.env()) *)
+
+and natural_case ig lh g gs ge arg1 ltree with_intros =
+ let env= (gLOB ge) in
+ let targ1 = prod_head (type_of env Evd.empty arg1) in
+ let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
+ let ncti= Array.length(get_constructors env indf) in
+ let (ind,_) = dest_ind_family indf in
+ let (mib,mip) = lookup_mind_specif env ind in
+ let ti =(string_of_id mip.mind_typename) in
+ let type_arg= targ1 (* List.nth targ (mis_index dmi)*) in
+ if ncti<>1
+(* Zéro ou Plusieurs constructeurs *)
+ then (
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (match (nsort targ1) with
+ Prop(Null) ->
+ (match ti with
+ "or" -> discutons_avec_A type_arg
+ | _ -> utilisons_A arg1)
+ |_ -> selon_les_valeurs_de_A arg1);
+ (let ci=ref 0 in
+ (prli
+ (fun treearg -> ci:=!ci+1;
+ let nci=(constr_of_mind mip !ci) in
+ let aci=if with_intros
+ then (arity_of_constr_of_mind env indf !ci)
+ else 0 in
+ let ici= (!ci) in
+ sph[ (natural_ntree
+ {ihsg=
+ (match (nsort targ1) with
+ Prop(Null) ->
+ Case_prop_subgoals_hyp (supposons (),arg1,ici,aci,
+ (List.length ltree))
+ |_-> Case_subgoals_hyp ("",arg1,nci,aci,
+ (List.length ltree)));
+ isgintro= if with_intros then "" else "standard"}
+ treearg)
+ ])
+ (nrem ltree ((List.length ltree)- ncti))));
+ (sph [spi; (natural_rem_goals
+ (nhd ltree ((List.length ltree)- ncti)))])
+ ] )
+(* Cas d'un seul constructeur *)
+ else (
+
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ de_A_on_a arg1;
+ (let treearg=List.hd ltree in
+ let nci=(constr_of_mind mip 1) in
+ let aci=
+ if with_intros
+ then (arity_of_constr_of_mind env indf 1)
+ else 0 in
+ let ici= 1 in
+ sph[ (natural_ntree
+ {ihsg=
+ (match (nsort targ1) with
+ Prop(Null) ->
+ Case_prop_subgoals_hyp ("",arg1,1,aci,
+ (List.length ltree))
+ |_-> Case_subgoals_hyp ("",arg1,nci,aci,
+ (List.length ltree)));
+ isgintro=""}
+ treearg)
+ ]);
+ (sph [spi; (natural_rem_goals
+ (nhd ltree ((List.length ltree)- 1)))])
+ ]
+ )
+(* with _ ->natural_generic ig lh g gs (sps "Case") (spt arg1) ltree *)
+
+(*****************************************************************************)
+(*
+ Elim
+*)
+and prod_list_var t =
+ match (kind_of_term (strip_outer_cast t)) with
+ Prod(_,t,c) -> t::(prod_list_var c)
+ |_ -> []
+and hd_is_mind t ti =
+ try (let env = Global.env() in
+ let IndType (indf,targ) = find_rectype env Evd.empty t in
+ let ncti= Array.length(get_constructors env indf) in
+ let (ind,_) = dest_ind_family indf in
+ let (mib,mip) = lookup_mind_specif env ind in
+ (string_of_id mip.mind_typename) = ti)
+ with _ -> false
+and mind_ind_info_hyp_constr indf c =
+ let env = Global.env() in
+ let (ind,_) = dest_ind_family indf in
+ let (mib,mip) = lookup_mind_specif env ind in
+ let p = mip.mind_nparams in
+ let a = arity_of_constr_of_mind env indf c in
+ let lp=ref (get_constructors env indf).(c).cs_args in
+ let lr=ref [] in
+ let ti = (string_of_id mip.mind_typename) in
+ for i=1 to a do
+ match !lp with
+ ((_,_,t)::lp1)->
+ if hd_is_mind t ti
+ then (lr:=(!lr)@["argrec";"hyprec"]; lp:=List.tl lp1)
+ else (lr:=(!lr)@["arg"];lp:=lp1)
+ | _ -> raise (Failure "mind_ind_info_hyp_constr")
+ done;
+ !lr
+(*
+ mind_ind_info_hyp_constr "le" 2;;
+donne ["arg"; "argrec"]
+mind_ind_info_hyp_constr "le" 1;;
+donne []
+ mind_ind_info_hyp_constr "nat" 2;;
+donne ["argrec"]
+*)
+
+and natural_elim ig lh g gs ge arg1 ltree with_intros=
+ let env= (gLOB ge) in
+ let targ1 = prod_head (type_of env Evd.empty arg1) in
+ let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
+ let ncti= Array.length(get_constructors env indf) in
+ let (ind,_) = dest_ind_family indf in
+ let (mib,mip) = lookup_mind_specif env ind in
+ let ti =(string_of_id mip.mind_typename) in
+ let type_arg=targ1 (* List.nth targ (mis_index dmi) *) in
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (match (nsort targ1) with
+ Prop(Null) -> utilisons_A arg1
+ |_ ->procedons_par_recurrence_sur_A arg1);
+ (let ci=ref 0 in
+ (prli
+ (fun treearg -> ci:=!ci+1;
+ let nci=(constr_of_mind mip !ci) in
+ let aci=(arity_of_constr_of_mind env indf !ci) in
+ let hci=
+ if with_intros
+ then mind_ind_info_hyp_constr indf !ci
+ else [] in
+ let ici= (!ci) in
+ sph[ (natural_ntree
+ {ihsg=
+ (match (nsort targ1) with
+ Prop(Null) ->
+ Elim_prop_subgoals_hyp (arg1,ici,aci,hci,
+ (List.length ltree))
+ |_-> Elim_subgoals_hyp (arg1,nci,aci,hci,
+ (List.length ltree)));
+ isgintro= ""}
+ treearg)
+ ])
+ (nhd ltree ncti)));
+ (sph [spi; (natural_rem_goals (nrem ltree ncti))])
+ ]
+(* )
+ with _ ->natural_generic ig lh g gs (sps "Elim") (spt arg1) ltree *)
+
+(*****************************************************************************)
+(*
+ InductionIntro n
+*)
+and natural_induction ig lh g gs ge arg2 ltree with_intros=
+ let env = (gLOB (g_env (List.hd ltree))) in
+ let arg1= mkVar arg2 in
+ let targ1 = prod_head (type_of env Evd.empty arg1) in
+ let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
+ let ncti= Array.length(get_constructors env indf) in
+ let (ind,_) = dest_ind_family indf in
+ let (mib,mip) = lookup_mind_specif env ind in
+ let ti =(string_of_id mip.mind_typename) in
+ let type_arg= targ1(*List.nth targ (mis_index dmi)*) in
+
+ let lh1= hyps (List.hd ltree) in (* la liste des hyp jusqu'a n *)
+ (* on les enleve des hypotheses des sous-buts *)
+ let ltree = List.map
+ (fun {t_info=info;
+ t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p} ->
+ {t_info=info;
+ t_goal={newhyp=(nrem lh (List.length lh1));
+ t_concl=g;t_full_concl=gf;t_full_env=ge};
+ t_proof=p}) ltree in
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (natural_lhyp lh1 All_subgoals_hyp);
+ (match (print_string "targ1------------\n";(nsort targ1)) with
+ Prop(Null) -> utilisons_A arg1
+ |_ -> procedons_par_recurrence_sur_A arg1);
+ (let ci=ref 0 in
+ (prli
+ (fun treearg -> ci:=!ci+1;
+ let nci=(constr_of_mind mip !ci) in
+ let aci=(arity_of_constr_of_mind env indf !ci) in
+ let hci=
+ if with_intros
+ then mind_ind_info_hyp_constr indf !ci
+ else [] in
+ let ici= (!ci) in
+ sph[ (natural_ntree
+ {ihsg=
+ (match (nsort targ1) with
+ Prop(Null) ->
+ Elim_prop_subgoals_hyp (arg1,ici,aci,hci,
+ (List.length ltree))
+ |_-> Elim_subgoals_hyp (arg1,nci,aci,hci,
+ (List.length ltree)));
+ isgintro= "standard"}
+ treearg)
+ ])
+ ltree))
+ ]
+(************************************************************************)
+(* Points fixes *)
+
+and natural_fix ig lh g gs narg ltree =
+ let {t_info=info;
+ t_goal={newhyp=lh1;t_concl=g1;t_full_concl=gf1;
+ t_full_env=ge1};t_proof=p1}=(List.hd ltree) in
+ match lh1 with
+ {hyp_name=nfun;hyp_type=tfun}::lh2 ->
+ let ltree=[{t_info=info;
+ t_goal={newhyp=lh2;t_concl=g1;t_full_concl=gf1;
+ t_full_env=ge1};
+ t_proof=p1}] in
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ calculons_la_fonction_F_de_type_T_par_recurrence_sur_son_argument_A nfun tfun narg;
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro=""})
+ ltree)
+ ]
+ | _ -> assert false
+and natural_reduce ig lh g gs ge mode la ltree =
+ match la with
+ {onhyps=Some[];onconcl=true} ->
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (prl (natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="simpl"})
+ ltree)
+ ]
+ | {onhyps=Some[hyp]; onconcl=false} ->
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (prl (natural_ntree
+ {ihsg=Reduce_hyp;isgintro=""})
+ ltree)
+ ]
+ | _ -> assert false
+and natural_split ig lh g gs ge la ltree =
+ match la with
+ [arg] ->
+ let env= (gLOB ge) in
+ let arg1= (*dbize env*) arg in
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ pour_montrer_G_la_valeur_recherchee_est_A g arg1;
+ (prl (natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="standard"})
+ ltree)
+ ]
+ | [] ->
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="standard"})
+ ltree)
+ ]
+ | _ -> assert false
+and natural_generalize ig lh g gs ge la ltree =
+ match la with
+ [arg] ->
+ let env= (gLOB ge) in
+ let arg1= (*dbize env*) arg in
+ let type_arg=type_of (Global.env()) Evd.empty arg in
+(* let type_arg=type_of_ast ge arg in*)
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ on_se_sert_de_A arg1;
+ (prl (natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro=""})
+ ltree)
+ ]
+ | _ -> assert false
+and natural_right ig lh g gs ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="standard"})
+ ltree);
+ d_ou_A g
+ ]
+and natural_left ig lh g gs ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="standard"})
+ ltree);
+ d_ou_A g
+ ]
+and natural_auto ig lh g gs ltree =
+ match ig.isgintro with
+ "trivial_equality" -> spe
+ | _ ->
+ if ltree=[]
+ then sphv [(natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ coq_le_demontre_seul ()]
+ else spv [(natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ (prli (natural_ntree {ihsg=All_subgoals_hyp;isgintro=""}
+ )
+ ltree)]
+and natural_infoauto ig lh g gs ltree =
+ match ig.isgintro with
+ "trivial_equality" ->
+ spshrink "trivial_equality"
+ (natural_ntree {ihsg=All_subgoals_hyp;isgintro="standard"}
+ (List.hd ltree))
+ | _ -> sphv [(natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ coq_le_demontre_seul ();
+ spshrink "auto"
+ (sph [spi;
+ (natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro=""}
+ (List.hd ltree))])]
+and natural_trivial ig lh g gs ltree =
+ if ltree=[]
+ then sphv [(natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ ce_qui_est_trivial () ]
+ else spv [(natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs ". ");
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="standard"})
+ ltree)]
+and natural_rewrite ig lh g gs arg ltree =
+ spv
+ [ (natural_lhyp lh ig.ihsg);
+ (show_goal2 lh ig g gs "");
+ en_utilisant_l_egalite_A arg;
+ (prli(natural_ntree
+ {ihsg=All_subgoals_hyp;isgintro="rewrite"})
+ ltree)
+ ]
+;;
+
+let natural_ntree_path ig g =
+ Random.init(0);
+ natural_ntree ig g
+;;
+
+let show_proof lang gpath =
+ (match lang with
+ "fr" -> natural_language:=French
+ |"en" -> natural_language:=English
+ | _ -> natural_language:=English);
+ path:=List.rev gpath;
+ name_count:=0;
+ let ntree=(get_nproof ()) in
+ let {t_info=i;t_goal=g;t_proof=p} =ntree in
+ root_of_text_proof
+ (sph [(natural_ntree_path {ihsg=All_subgoals_hyp;
+ isgintro="standard"}
+ {t_info="not_proved";t_goal=g;t_proof=p});
+ spr])
+ ;;
+
+let show_nproof path =
+ pp (sp_print (sph [spi; show_proof "fr" path]));;
+
+vinterp_add "ShowNaturalProof"
+ (fun _ ->
+ (fun () ->show_nproof[];()));;
+
+(***********************************************************************
+debug sous cygwin:
+
+PATH=/usr/local/bin:/usr/bin:$PATH
+COQTOP=d:/Tools/coq-7avril
+CAMLLIB=/usr/local/lib/ocaml
+CAMLP4LIB=/usr/local/lib/camlp4
+export CAMLLIB
+export COQTOP
+export CAMLP4LIB
+cd d:/Tools/pcoq/src/text
+d:/Tools/coq-7avril/bin/coqtop.byte.exe -I /cygdrive/D/Tools/pcoq/src/abs_syntax -I /cygdrive/D/Tools/pcoq/src/text -I /cygdrive/D/Tools/pcoq/src/coq -I /cygdrive/D/Tools/pcoq/src/pbp -I /cygdrive/D/Tools/pcoq/src/dad -I /cygdrive/D/Tools/pcoq/src/history
+
+
+
+Lemma l1: (A, B : Prop) A \/ B -> B -> A.
+Intros.
+Elim H.
+Auto.
+Qed.
+
+
+Drop.
+
+#use "/cygdrive/D/Tools/coq-7avril/dev/base_include";;
+#load "xlate.cmo";;
+#load "translate.cmo";;
+#load "showproof_ct.cmo";;
+#load "showproof.cmo";;
+#load "pbp.cmo";;
+#load "debug_tac.cmo";;
+#load "name_to_ast.cmo";;
+#load "paths.cmo";;
+#load "dad.cmo";;
+#load "vtp.cmo";;
+#load "history.cmo";;
+#load "centaur.cmo";;
+Xlate.set_xlate_mut_stuff Centaur.globcv;;
+Xlate.declare_in_coq();;
+
+#use "showproof.ml";;
+
+let pproof x = pP (sp_print x);;
+Pp_control.set_depth_boxes 100;;
+#install_printer pproof;;
+
+ep();;
+let bidon = ref (constr_of_string "O");;
+
+#trace to_nproof;;
+***********************************************************************)
+let ep()=show_proof "fr" [];;
diff --git a/contrib/interface/showproof.mli b/contrib/interface/showproof.mli
new file mode 100755
index 00000000..ee269458
--- /dev/null
+++ b/contrib/interface/showproof.mli
@@ -0,0 +1,23 @@
+open Environ
+open Evd
+open Names
+open Term
+open Util
+open Proof_type
+open Coqast
+open Pfedit
+open Translate
+open Term
+open Reduction
+open Clenv
+open Typing
+open Inductive
+open Vernacinterp
+open Declarations
+open Showproof_ct
+open Proof_trees
+open Sign
+open Pp
+open Printer
+
+val show_proof : string -> int list -> Ascent.ct_TEXT;;
diff --git a/contrib/interface/showproof_ct.ml b/contrib/interface/showproof_ct.ml
new file mode 100644
index 00000000..ee901c5e
--- /dev/null
+++ b/contrib/interface/showproof_ct.ml
@@ -0,0 +1,185 @@
+(*****************************************************************************)
+(*
+ Vers Ctcoq
+*)
+
+open Esyntax
+open Metasyntax
+open Printer
+open Pp
+open Translate
+open Ascent
+open Vtp
+open Xlate
+
+let ct_text x = CT_coerce_ID_to_TEXT (CT_ident x);;
+
+let sps s =
+ ct_text s
+ ;;
+
+
+let sphs s =
+ ct_text s
+ ;;
+
+let spe = sphs "";;
+let spb = sps " ";;
+let spr = sps "Retour chariot pour Show proof";;
+
+let spnb n =
+ let s = ref "" in
+ for i=1 to n do s:=(!s)^" "; done; sps !s
+;;
+
+
+let rec spclean l =
+ match l with
+ [] -> []
+ |x::l -> if x=spe then (spclean l) else x::(spclean l)
+;;
+
+
+let spnb n =
+ let s = ref "" in
+ for i=1 to n do s:=(!s)^" "; done; sps !s
+;;
+
+let ct_FORMULA_constr = Hashtbl.create 50;;
+
+let stde() = (Global.env())
+
+;;
+
+let spt t =
+ let f = (translate_constr true (stde()) t) in
+ Hashtbl.add ct_FORMULA_constr f t;
+ CT_text_formula f
+;;
+
+
+
+let root_of_text_proof t=
+ CT_text_op [ct_text "root_of_text_proof";
+ t]
+ ;;
+
+let spshrink info t =
+ CT_text_op [ct_text "shrink";
+ CT_text_op [ct_text info;
+ t]]
+;;
+
+let spuselemma intro x y =
+ CT_text_op [ct_text "uselemma";
+ ct_text intro;
+ x;y]
+;;
+
+let sptoprove p t =
+ CT_text_op [ct_text "to_prove";
+ CT_text_path p;
+ ct_text "goal";
+ (spt t)]
+;;
+let sphyp p h t =
+ CT_text_op [ct_text "hyp";
+ CT_text_path p;
+ ct_text h;
+ (spt t)]
+;;
+let sphypt p h t =
+ CT_text_op [ct_text "hyp_with_type";
+ CT_text_path p;
+ ct_text h;
+ (spt t)]
+;;
+
+let spwithtac x t =
+ CT_text_op [ct_text "with_tactic";
+ ct_text t;
+ x]
+;;
+
+
+let spv l =
+ let l= spclean l in
+ CT_text_v l
+;;
+
+let sph l =
+ let l= spclean l in
+ CT_text_h l
+;;
+
+
+let sphv l =
+ let l= spclean l in
+ CT_text_hv l
+;;
+
+let rec prlist_with_sep f g l =
+ match l with
+ [] -> hov 0 (mt ())
+ |x::l1 -> hov 0 ((g x) ++ (f ()) ++ (prlist_with_sep f g l1))
+;;
+
+let rec sp_print x =
+ match x with
+ | CT_coerce_ID_to_TEXT (CT_ident s)
+ -> (match s with
+ | "\n" -> fnl ()
+ | "Retour chariot pour Show proof" -> fnl ()
+ |_ -> str s)
+ | CT_text_formula f -> prterm (Hashtbl.find ct_FORMULA_constr f)
+ | CT_text_op [CT_coerce_ID_to_TEXT (CT_ident "to_prove");
+ CT_text_path (CT_signed_int_list p);
+ CT_coerce_ID_to_TEXT (CT_ident "goal");
+ g] ->
+ let p=(List.map (fun y -> match y with
+ (CT_coerce_INT_to_SIGNED_INT
+ (CT_int x)) -> x
+ | _ -> raise (Failure "sp_print")) p) in
+ h 0 (str "<b>" ++ sp_print g ++ str "</b>")
+ | CT_text_op [CT_coerce_ID_to_TEXT (CT_ident "uselemma");
+ CT_coerce_ID_to_TEXT (CT_ident intro);
+ l;g] ->
+ h 0 (str ("<i>("^intro^" ") ++ sp_print l ++ str ")</i>" ++ sp_print g)
+ | CT_text_op [CT_coerce_ID_to_TEXT (CT_ident "hyp");
+ CT_text_path (CT_signed_int_list p);
+ CT_coerce_ID_to_TEXT (CT_ident hyp);
+ g] ->
+ let p=(List.map (fun y -> match y with
+ (CT_coerce_INT_to_SIGNED_INT
+ (CT_int x)) -> x
+ | _ -> raise (Failure "sp_print")) p) in
+ h 0 (str hyp)
+
+ | CT_text_op [CT_coerce_ID_to_TEXT (CT_ident "hyp_with_type");
+ CT_text_path (CT_signed_int_list p);
+ CT_coerce_ID_to_TEXT (CT_ident hyp);
+ g] ->
+ let p=(List.map (fun y -> match y with
+ (CT_coerce_INT_to_SIGNED_INT
+ (CT_int x)) -> x
+ | _ -> raise (Failure "sp_print")) p) in
+ h 0 (sp_print g ++ spc () ++ str "<i>(" ++ str hyp ++ str ")</i>")
+
+ | CT_text_h l ->
+ h 0 (prlist_with_sep (fun () -> mt ())
+ (fun y -> sp_print y) l)
+ | CT_text_v l ->
+ v 0 (prlist_with_sep (fun () -> mt ())
+ (fun y -> sp_print y) l)
+ | CT_text_hv l ->
+ h 0 (prlist_with_sep (fun () -> mt ())
+ (fun y -> sp_print y) l)
+ | CT_text_op [CT_coerce_ID_to_TEXT (CT_ident "shrink");
+ CT_text_op [CT_coerce_ID_to_TEXT (CT_ident info); t]] ->
+ h 0 (str ("("^info^": ") ++ sp_print t ++ str ")")
+ | CT_text_op [CT_coerce_ID_to_TEXT (CT_ident "root_of_text_proof");
+ t]->
+ sp_print t
+ | _ -> str "..."
+;;
+
diff --git a/contrib/interface/translate.ml b/contrib/interface/translate.ml
new file mode 100644
index 00000000..e63baecf
--- /dev/null
+++ b/contrib/interface/translate.ml
@@ -0,0 +1,165 @@
+open Names;;
+open Sign;;
+open Util;;
+open Ast;;
+open Term;;
+open Pp;;
+open Libobject;;
+open Library;;
+open Vernacinterp;;
+open Termast;;
+open Tacmach;;
+open Pfedit;;
+open Parsing;;
+open Evd;;
+open Evarutil;;
+
+open Xlate;;
+open Ctast;;
+open Vtp;;
+open Ascent;;
+open Environ;;
+open Proof_type;;
+
+(* dead code: let rel_reference gt k oper =
+ if is_existential_oper oper then ope("XTRA", [str "ISEVAR"])
+ else begin
+ let id = id_of_global oper in
+ let oper', _ = global_operator (Nametab.sp_of_id k id) id in
+ if oper = oper' then nvar (string_of_id id)
+ else failwith "xlate"
+end;;
+*)
+
+(* dead code:
+let relativize relfun =
+ let rec relrec =
+ function
+ | Nvar (_, id) -> nvar id
+ | Slam (l, na, ast) -> Slam (l, na, relrec ast)
+ | Node (loc, nna, l) as ast -> begin
+ try relfun ast
+ with
+ | Failure _ -> Node (loc, nna, List.map relrec l)
+ end
+ | a -> a in
+ relrec;;
+*)
+
+(* dead code:
+let dbize_sp =
+ function
+ | Path (loc, sl, s) -> begin
+ try section_path sl s
+ with
+ | Invalid_argument _ | Failure _ ->
+ anomaly_loc
+ (loc, "Translate.dbize_sp (taken from Astterm)",
+ [< str "malformed section-path" >])
+ end
+ | ast ->
+ anomaly_loc
+ (Ast.loc ast, "Translate.dbize_sp (taken from Astterm)",
+ [< str "not a section-path" >]);;
+*)
+
+(* dead code:
+let relativize_cci gt = relativize (function
+ | Node (_, "CONST", (p :: _)) as gt ->
+ rel_reference gt CCI (Const (dbize_sp p))
+ | Node (_, "MUTIND", (p :: ((Num (_, tyi)) :: _))) as gt ->
+ rel_reference gt CCI (MutInd (dbize_sp p, tyi))
+ | Node (_, "MUTCONSTRUCT", (p :: ((Num (_, tyi)) :: ((Num (_, i)) :: _)))) as gt ->
+ rel_reference gt CCI (MutConstruct (
+ (dbize_sp p, tyi), i))
+ | _ -> failwith "caught") gt;;
+*)
+
+let coercion_description_holder = ref (function _ -> None : t -> int option);;
+
+let coercion_description t = !coercion_description_holder t;;
+
+let set_coercion_description f =
+ coercion_description_holder:=f; ();;
+
+let rec nth_tl l n = if n = 0 then l
+ else (match l with
+ | a :: b -> nth_tl b (n - 1)
+ | [] -> failwith "list too short for nth_tl");;
+
+let rec discard_coercions =
+ function
+ | Slam (l, na, ast) -> Slam (l, na, discard_coercions ast)
+ | Node (l, ("APPLIST" as nna), (f :: args as all_sons)) ->
+ (match coercion_description f with
+ | Some n ->
+ let new_args =
+ try nth_tl args n
+ with
+ | Failure "list too short for nth_tl" -> [] in
+ (match new_args with
+ | a :: (b :: c) -> Node (l, nna, List.map discard_coercions new_args)
+ | a :: [] -> discard_coercions a
+ | [] -> Node (l, nna, List.map discard_coercions all_sons))
+ | None -> Node (l, nna, List.map discard_coercions all_sons))
+ | Node (l, nna, all_sons) ->
+ Node (l, nna, List.map discard_coercions all_sons)
+ | it -> it;;
+
+(*translates a formula into a centaur-tree --> FORMULA *)
+let translate_constr at_top env c =
+ xlate_formula (Constrextern.extern_constr at_top env c);;
+
+(*translates a named_context into a centaur-tree --> PREMISES_LIST *)
+(* this code is inspired from printer.ml (function pr_named_context_of) *)
+let translate_sign env =
+ let l =
+ Environ.fold_named_context
+ (fun env (id,v,c) l ->
+ (match v with
+ None ->
+ CT_premise(CT_ident(string_of_id id), translate_constr false env c)
+ | Some v1 ->
+ CT_eval_result
+ (CT_coerce_ID_to_FORMULA (CT_ident (string_of_id id)),
+ translate_constr false env v1,
+ translate_constr false env c))::l)
+ env ~init:[]
+ in
+ CT_premises_list l;;
+
+(* the function rev_and_compact performs two operations:
+ 1- it reverses the list of integers given as argument
+ 2- it replaces sequences of "1" by a negative number that is
+ the length of the sequence. *)
+let rec rev_and_compact l = function
+ [] -> l
+ | 1::tl ->
+ (match l with
+ n::tl' ->
+ if n < 0 then
+ rev_and_compact ((n - 1)::tl') tl
+ else
+ rev_and_compact ((-1)::l) tl
+ | [] -> rev_and_compact [-1] tl)
+ | a::tl ->
+ if a < 0 then
+ (match l with
+ n::tl' ->
+ if n < 0 then
+ rev_and_compact ((n + a)::tl') tl
+ else
+ rev_and_compact (a::l) tl
+ | [] -> rev_and_compact (a::l) tl)
+ else
+ rev_and_compact (a::l) tl;;
+
+(*translates an int list into a centaur-tree --> SIGNED_INT_LIST *)
+let translate_path l =
+ CT_signed_int_list
+ (List.map (function n -> CT_coerce_INT_to_SIGNED_INT (CT_int n))
+ (rev_and_compact [] l));;
+
+(*translates a path and a goal into a centaur-tree --> RULE *)
+let translate_goal (g:goal) =
+ CT_rule(translate_sign (evar_env g), translate_constr true (evar_env g) g.evar_concl);;
diff --git a/contrib/interface/translate.mli b/contrib/interface/translate.mli
new file mode 100644
index 00000000..65d8331b
--- /dev/null
+++ b/contrib/interface/translate.mli
@@ -0,0 +1,11 @@
+open Ascent;;
+open Evd;;
+open Proof_type;;
+open Environ;;
+open Term;;
+
+val translate_goal : goal -> ct_RULE;;
+(* The boolean argument indicates whether names from the environment should *)
+(* be avoided (same interpretation as for prterm_env and ast_of_constr) *)
+val translate_constr : bool -> env -> constr -> ct_FORMULA;;
+val translate_path : int list -> ct_SIGNED_INT_LIST;;
diff --git a/contrib/interface/vernacrc b/contrib/interface/vernacrc
new file mode 100644
index 00000000..42b5e5ab
--- /dev/null
+++ b/contrib/interface/vernacrc
@@ -0,0 +1,12 @@
+# $Id: vernacrc,v 1.3 2004/01/14 14:52:59 bertot Exp $
+
+# This file is loaded initially by ./vernacparser.
+
+load_syntax_file 1 Notations
+load_syntax_file 2 Logic
+load_syntax_file 34 Omega
+load_syntax_file 27 Ring
+quiet_parse_string
+Goal a.
+&& END--OF--DATA
+print_version
diff --git a/contrib/interface/vtp.ml b/contrib/interface/vtp.ml
new file mode 100644
index 00000000..ff418523
--- /dev/null
+++ b/contrib/interface/vtp.ml
@@ -0,0 +1,1915 @@
+open Ascent;;
+
+let fNODE s n =
+ print_string "n\n";
+ print_string ("vernac$" ^ s);
+ print_string "\n";
+ print_int n;
+ print_string "\n";;
+
+let fATOM s1 =
+ print_string "a\n";
+ print_string ("vernac$" ^ s1);
+ print_string "\n";;
+
+let f_atom_string = print_string;;
+let f_atom_int = print_int;;
+let rec fAST = function
+| CT_coerce_ID_OR_INT_to_AST x -> fID_OR_INT x
+| CT_coerce_ID_OR_STRING_to_AST x -> fID_OR_STRING x
+| CT_coerce_SINGLE_OPTION_VALUE_to_AST x -> fSINGLE_OPTION_VALUE x
+| CT_astnode(x1, x2) ->
+ fID x1;
+ fAST_LIST x2;
+ fNODE "astnode" 2
+| CT_astpath(x1) ->
+ fID_LIST x1;
+ fNODE "astpath" 1
+| CT_astslam(x1, x2) ->
+ fID_OPT x1;
+ fAST x2;
+ fNODE "astslam" 2
+and fAST_LIST = function
+| CT_ast_list l ->
+ (List.iter fAST l);
+ fNODE "ast_list" (List.length l)
+and fBINARY = function
+| CT_binary x -> fATOM "binary";
+ (f_atom_int x);
+ print_string "\n"and fBINDER = function
+| CT_coerce_DEF_to_BINDER x -> fDEF x
+| CT_binder(x1, x2) ->
+ fID_OPT_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "binder" 2
+| CT_binder_coercion(x1, x2) ->
+ fID_OPT_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "binder_coercion" 2
+and fBINDER_LIST = function
+| CT_binder_list l ->
+ (List.iter fBINDER l);
+ fNODE "binder_list" (List.length l)
+and fBINDER_NE_LIST = function
+| CT_binder_ne_list(x,l) ->
+ fBINDER x;
+ (List.iter fBINDER l);
+ fNODE "binder_ne_list" (1 + (List.length l))
+and fBINDING = function
+| CT_binding(x1, x2) ->
+ fID_OR_INT x1;
+ fFORMULA x2;
+ fNODE "binding" 2
+and fBINDING_LIST = function
+| CT_binding_list l ->
+ (List.iter fBINDING l);
+ fNODE "binding_list" (List.length l)
+and fBOOL = function
+| CT_false -> fNODE "false" 0
+| CT_true -> fNODE "true" 0
+and fCASE = function
+| CT_case x -> fATOM "case";
+ (f_atom_string x);
+ print_string "\n"and fCLAUSE = function
+| CT_clause(x1, x2) ->
+ fHYP_LOCATION_LIST_OR_STAR x1;
+ fSTAR_OPT x2;
+ fNODE "clause" 2
+and fCOERCION_OPT = function
+| CT_coerce_NONE_to_COERCION_OPT x -> fNONE x
+| CT_coercion_atm -> fNODE "coercion_atm" 0
+and fCOFIXTAC = function
+| CT_cofixtac(x1, x2) ->
+ fID x1;
+ fFORMULA x2;
+ fNODE "cofixtac" 2
+and fCOFIX_REC = function
+| CT_cofix_rec(x1, x2, x3, x4) ->
+ fID x1;
+ fBINDER_LIST x2;
+ fFORMULA x3;
+ fFORMULA x4;
+ fNODE "cofix_rec" 4
+and fCOFIX_REC_LIST = function
+| CT_cofix_rec_list(x,l) ->
+ fCOFIX_REC x;
+ (List.iter fCOFIX_REC l);
+ fNODE "cofix_rec_list" (1 + (List.length l))
+and fCOFIX_TAC_LIST = function
+| CT_cofix_tac_list l ->
+ (List.iter fCOFIXTAC l);
+ fNODE "cofix_tac_list" (List.length l)
+and fCOMMAND = function
+| CT_coerce_COMMAND_LIST_to_COMMAND x -> fCOMMAND_LIST x
+| CT_coerce_EVAL_CMD_to_COMMAND x -> fEVAL_CMD x
+| CT_coerce_SECTION_BEGIN_to_COMMAND x -> fSECTION_BEGIN x
+| CT_coerce_THEOREM_GOAL_to_COMMAND x -> fTHEOREM_GOAL x
+| CT_abort(x1) ->
+ fID_OPT_OR_ALL x1;
+ fNODE "abort" 1
+| CT_abstraction(x1, x2, x3) ->
+ fID x1;
+ fFORMULA x2;
+ fINT_LIST x3;
+ fNODE "abstraction" 3
+| CT_add_field(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) ->
+ fFORMULA x1;
+ fFORMULA x2;
+ fFORMULA x3;
+ fFORMULA x4;
+ fFORMULA x5;
+ fFORMULA x6;
+ fFORMULA x7;
+ fFORMULA x8;
+ fFORMULA x9;
+ fFORMULA x10;
+ fBINDING_LIST x11;
+ fNODE "add_field" 11
+| CT_add_natural_feature(x1, x2) ->
+ fNATURAL_FEATURE x1;
+ fID x2;
+ fNODE "add_natural_feature" 2
+| CT_addpath(x1, x2) ->
+ fSTRING x1;
+ fID_OPT x2;
+ fNODE "addpath" 2
+| CT_arguments_scope(x1, x2) ->
+ fID x1;
+ fID_OPT_LIST x2;
+ fNODE "arguments_scope" 2
+| CT_bind_scope(x1, x2) ->
+ fID x1;
+ fID_NE_LIST x2;
+ fNODE "bind_scope" 2
+| CT_cd(x1) ->
+ fSTRING_OPT x1;
+ fNODE "cd" 1
+| CT_check(x1) ->
+ fFORMULA x1;
+ fNODE "check" 1
+| CT_class(x1) ->
+ fID x1;
+ fNODE "class" 1
+| CT_close_scope(x1) ->
+ fID x1;
+ fNODE "close_scope" 1
+| CT_coercion(x1, x2, x3, x4, x5) ->
+ fLOCAL_OPT x1;
+ fIDENTITY_OPT x2;
+ fID x3;
+ fID x4;
+ fID x5;
+ fNODE "coercion" 5
+| CT_cofix_decl(x1) ->
+ fCOFIX_REC_LIST x1;
+ fNODE "cofix_decl" 1
+| CT_compile_module(x1, x2, x3) ->
+ fVERBOSE_OPT x1;
+ fID x2;
+ fSTRING_OPT x3;
+ fNODE "compile_module" 3
+| CT_declare_module(x1, x2, x3, x4) ->
+ fID x1;
+ fMODULE_BINDER_LIST x2;
+ fMODULE_TYPE_CHECK x3;
+ fMODULE_EXPR x4;
+ fNODE "declare_module" 4
+| CT_define_notation(x1, x2, x3, x4) ->
+ fSTRING x1;
+ fFORMULA x2;
+ fMODIFIER_LIST x3;
+ fID_OPT x4;
+ fNODE "define_notation" 4
+| CT_definition(x1, x2, x3, x4, x5) ->
+ fDEFN x1;
+ fID x2;
+ fBINDER_LIST x3;
+ fDEF_BODY x4;
+ fFORMULA_OPT x5;
+ fNODE "definition" 5
+| CT_delim_scope(x1, x2) ->
+ fID x1;
+ fID x2;
+ fNODE "delim_scope" 2
+| CT_delpath(x1) ->
+ fSTRING x1;
+ fNODE "delpath" 1
+| CT_derive_depinversion(x1, x2, x3, x4) ->
+ fINV_TYPE x1;
+ fID x2;
+ fFORMULA x3;
+ fSORT_TYPE x4;
+ fNODE "derive_depinversion" 4
+| CT_derive_inversion(x1, x2, x3, x4) ->
+ fINV_TYPE x1;
+ fINT_OPT x2;
+ fID x3;
+ fID x4;
+ fNODE "derive_inversion" 4
+| CT_derive_inversion_with(x1, x2, x3, x4) ->
+ fINV_TYPE x1;
+ fID x2;
+ fFORMULA x3;
+ fSORT_TYPE x4;
+ fNODE "derive_inversion_with" 4
+| CT_explain_proof(x1) ->
+ fINT_LIST x1;
+ fNODE "explain_proof" 1
+| CT_explain_prooftree(x1) ->
+ fINT_LIST x1;
+ fNODE "explain_prooftree" 1
+| CT_export_id(x1) ->
+ fID_NE_LIST x1;
+ fNODE "export_id" 1
+| CT_extract_to_file(x1, x2) ->
+ fSTRING x1;
+ fID_NE_LIST x2;
+ fNODE "extract_to_file" 2
+| CT_extraction(x1) ->
+ fID_OPT x1;
+ fNODE "extraction" 1
+| CT_fix_decl(x1) ->
+ fFIX_REC_LIST x1;
+ fNODE "fix_decl" 1
+| CT_focus(x1) ->
+ fINT_OPT x1;
+ fNODE "focus" 1
+| CT_go(x1) ->
+ fINT_OR_LOCN x1;
+ fNODE "go" 1
+| CT_guarded -> fNODE "guarded" 0
+| CT_hint_destruct(x1, x2, x3, x4, x5, x6) ->
+ fID x1;
+ fINT x2;
+ fDESTRUCT_LOCATION x3;
+ fFORMULA x4;
+ fTACTIC_COM x5;
+ fID_LIST x6;
+ fNODE "hint_destruct" 6
+| CT_hint_extern(x1, x2, x3, x4) ->
+ fINT x1;
+ fFORMULA x2;
+ fTACTIC_COM x3;
+ fID_LIST x4;
+ fNODE "hint_extern" 4
+| CT_hintrewrite(x1, x2, x3, x4) ->
+ fORIENTATION x1;
+ fFORMULA_NE_LIST x2;
+ fID x3;
+ fTACTIC_COM x4;
+ fNODE "hintrewrite" 4
+| CT_hints(x1, x2, x3) ->
+ fID x1;
+ fID_NE_LIST x2;
+ fID_LIST x3;
+ fNODE "hints" 3
+| CT_hints_immediate(x1, x2) ->
+ fFORMULA_NE_LIST x1;
+ fID_LIST x2;
+ fNODE "hints_immediate" 2
+| CT_hints_resolve(x1, x2) ->
+ fFORMULA_NE_LIST x1;
+ fID_LIST x2;
+ fNODE "hints_resolve" 2
+| CT_hyp_search_pattern(x1, x2) ->
+ fFORMULA x1;
+ fIN_OR_OUT_MODULES x2;
+ fNODE "hyp_search_pattern" 2
+| CT_implicits(x1, x2) ->
+ fID x1;
+ fID_LIST_OPT x2;
+ fNODE "implicits" 2
+| CT_import_id(x1) ->
+ fID_NE_LIST x1;
+ fNODE "import_id" 1
+| CT_ind_scheme(x1) ->
+ fSCHEME_SPEC_LIST x1;
+ fNODE "ind_scheme" 1
+| CT_infix(x1, x2, x3, x4) ->
+ fSTRING x1;
+ fID x2;
+ fMODIFIER_LIST x3;
+ fID_OPT x4;
+ fNODE "infix" 4
+| CT_inline(x1) ->
+ fID_NE_LIST x1;
+ fNODE "inline" 1
+| CT_inspect(x1) ->
+ fINT x1;
+ fNODE "inspect" 1
+| CT_kill_node(x1) ->
+ fINT x1;
+ fNODE "kill_node" 1
+| CT_load(x1, x2) ->
+ fVERBOSE_OPT x1;
+ fID_OR_STRING x2;
+ fNODE "load" 2
+| CT_local_close_scope(x1) ->
+ fID x1;
+ fNODE "local_close_scope" 1
+| CT_local_define_notation(x1, x2, x3, x4) ->
+ fSTRING x1;
+ fFORMULA x2;
+ fMODIFIER_LIST x3;
+ fID_OPT x4;
+ fNODE "local_define_notation" 4
+| CT_local_hint_destruct(x1, x2, x3, x4, x5, x6) ->
+ fID x1;
+ fINT x2;
+ fDESTRUCT_LOCATION x3;
+ fFORMULA x4;
+ fTACTIC_COM x5;
+ fID_LIST x6;
+ fNODE "local_hint_destruct" 6
+| CT_local_hint_extern(x1, x2, x3, x4) ->
+ fINT x1;
+ fFORMULA x2;
+ fTACTIC_COM x3;
+ fID_LIST x4;
+ fNODE "local_hint_extern" 4
+| CT_local_hints(x1, x2, x3) ->
+ fID x1;
+ fID_NE_LIST x2;
+ fID_LIST x3;
+ fNODE "local_hints" 3
+| CT_local_hints_immediate(x1, x2) ->
+ fFORMULA_NE_LIST x1;
+ fID_LIST x2;
+ fNODE "local_hints_immediate" 2
+| CT_local_hints_resolve(x1, x2) ->
+ fFORMULA_NE_LIST x1;
+ fID_LIST x2;
+ fNODE "local_hints_resolve" 2
+| CT_local_infix(x1, x2, x3, x4) ->
+ fSTRING x1;
+ fID x2;
+ fMODIFIER_LIST x3;
+ fID_OPT x4;
+ fNODE "local_infix" 4
+| CT_local_open_scope(x1) ->
+ fID x1;
+ fNODE "local_open_scope" 1
+| CT_local_reserve_notation(x1, x2) ->
+ fSTRING x1;
+ fMODIFIER_LIST x2;
+ fNODE "local_reserve_notation" 2
+| CT_locate(x1) ->
+ fID x1;
+ fNODE "locate" 1
+| CT_locate_file(x1) ->
+ fSTRING x1;
+ fNODE "locate_file" 1
+| CT_locate_lib(x1) ->
+ fID x1;
+ fNODE "locate_lib" 1
+| CT_locate_notation(x1) ->
+ fSTRING x1;
+ fNODE "locate_notation" 1
+| CT_mind_decl(x1, x2) ->
+ fCO_IND x1;
+ fIND_SPEC_LIST x2;
+ fNODE "mind_decl" 2
+| CT_ml_add_path(x1) ->
+ fSTRING x1;
+ fNODE "ml_add_path" 1
+| CT_ml_declare_modules(x1) ->
+ fSTRING_NE_LIST x1;
+ fNODE "ml_declare_modules" 1
+| CT_ml_print_modules -> fNODE "ml_print_modules" 0
+| CT_ml_print_path -> fNODE "ml_print_path" 0
+| CT_module(x1, x2, x3, x4) ->
+ fID x1;
+ fMODULE_BINDER_LIST x2;
+ fMODULE_TYPE_CHECK x3;
+ fMODULE_EXPR x4;
+ fNODE "module" 4
+| CT_module_type_decl(x1, x2, x3) ->
+ fID x1;
+ fMODULE_BINDER_LIST x2;
+ fMODULE_TYPE_OPT x3;
+ fNODE "module_type_decl" 3
+| CT_no_inline(x1) ->
+ fID_NE_LIST x1;
+ fNODE "no_inline" 1
+| CT_omega_flag(x1, x2) ->
+ fOMEGA_MODE x1;
+ fOMEGA_FEATURE x2;
+ fNODE "omega_flag" 2
+| CT_opaque(x1) ->
+ fID_NE_LIST x1;
+ fNODE "opaque" 1
+| CT_open_scope(x1) ->
+ fID x1;
+ fNODE "open_scope" 1
+| CT_print -> fNODE "print" 0
+| CT_print_about(x1) ->
+ fID x1;
+ fNODE "print_about" 1
+| CT_print_all -> fNODE "print_all" 0
+| CT_print_classes -> fNODE "print_classes" 0
+| CT_print_coercions -> fNODE "print_coercions" 0
+| CT_print_grammar(x1) ->
+ fGRAMMAR x1;
+ fNODE "print_grammar" 1
+| CT_print_graph -> fNODE "print_graph" 0
+| CT_print_hint(x1) ->
+ fID_OPT x1;
+ fNODE "print_hint" 1
+| CT_print_hintdb(x1) ->
+ fID_OR_STAR x1;
+ fNODE "print_hintdb" 1
+| CT_print_id(x1) ->
+ fID x1;
+ fNODE "print_id" 1
+| CT_print_implicit(x1) ->
+ fID x1;
+ fNODE "print_implicit" 1
+| CT_print_loadpath -> fNODE "print_loadpath" 0
+| CT_print_module(x1) ->
+ fID x1;
+ fNODE "print_module" 1
+| CT_print_module_type(x1) ->
+ fID x1;
+ fNODE "print_module_type" 1
+| CT_print_modules -> fNODE "print_modules" 0
+| CT_print_natural(x1) ->
+ fID x1;
+ fNODE "print_natural" 1
+| CT_print_natural_feature(x1) ->
+ fNATURAL_FEATURE x1;
+ fNODE "print_natural_feature" 1
+| CT_print_opaqueid(x1) ->
+ fID x1;
+ fNODE "print_opaqueid" 1
+| CT_print_path(x1, x2) ->
+ fID x1;
+ fID x2;
+ fNODE "print_path" 2
+| CT_print_proof(x1) ->
+ fID x1;
+ fNODE "print_proof" 1
+| CT_print_scope(x1) ->
+ fID x1;
+ fNODE "print_scope" 1
+| CT_print_scopes -> fNODE "print_scopes" 0
+| CT_print_section(x1) ->
+ fID x1;
+ fNODE "print_section" 1
+| CT_print_states -> fNODE "print_states" 0
+| CT_print_tables -> fNODE "print_tables" 0
+| CT_print_universes(x1) ->
+ fSTRING_OPT x1;
+ fNODE "print_universes" 1
+| CT_print_visibility(x1) ->
+ fID_OPT x1;
+ fNODE "print_visibility" 1
+| CT_proof(x1) ->
+ fFORMULA x1;
+ fNODE "proof" 1
+| CT_proof_no_op -> fNODE "proof_no_op" 0
+| CT_proof_with(x1) ->
+ fTACTIC_COM x1;
+ fNODE "proof_with" 1
+| CT_pwd -> fNODE "pwd" 0
+| CT_quit -> fNODE "quit" 0
+| CT_read_module(x1) ->
+ fID x1;
+ fNODE "read_module" 1
+| CT_rec_ml_add_path(x1) ->
+ fSTRING x1;
+ fNODE "rec_ml_add_path" 1
+| CT_recaddpath(x1, x2) ->
+ fSTRING x1;
+ fID_OPT x2;
+ fNODE "recaddpath" 2
+| CT_record(x1, x2, x3, x4, x5, x6) ->
+ fCOERCION_OPT x1;
+ fID x2;
+ fBINDER_LIST x3;
+ fFORMULA x4;
+ fID_OPT x5;
+ fRECCONSTR_LIST x6;
+ fNODE "record" 6
+| CT_remove_natural_feature(x1, x2) ->
+ fNATURAL_FEATURE x1;
+ fID x2;
+ fNODE "remove_natural_feature" 2
+| CT_require(x1, x2, x3) ->
+ fIMPEXP x1;
+ fSPEC_OPT x2;
+ fID_NE_LIST_OR_STRING x3;
+ fNODE "require" 3
+| CT_reserve(x1, x2) ->
+ fID_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "reserve" 2
+| CT_reserve_notation(x1, x2) ->
+ fSTRING x1;
+ fMODIFIER_LIST x2;
+ fNODE "reserve_notation" 2
+| CT_reset(x1) ->
+ fID x1;
+ fNODE "reset" 1
+| CT_reset_section(x1) ->
+ fID x1;
+ fNODE "reset_section" 1
+| CT_restart -> fNODE "restart" 0
+| CT_restore_state(x1) ->
+ fID x1;
+ fNODE "restore_state" 1
+| CT_resume(x1) ->
+ fID_OPT x1;
+ fNODE "resume" 1
+| CT_save(x1, x2) ->
+ fTHM_OPT x1;
+ fID_OPT x2;
+ fNODE "save" 2
+| CT_scomments(x1) ->
+ fSCOMMENT_CONTENT_LIST x1;
+ fNODE "scomments" 1
+| CT_search(x1, x2) ->
+ fID x1;
+ fIN_OR_OUT_MODULES x2;
+ fNODE "search" 2
+| CT_search_about(x1, x2) ->
+ fID_OR_STRING_NE_LIST x1;
+ fIN_OR_OUT_MODULES x2;
+ fNODE "search_about" 2
+| CT_search_pattern(x1, x2) ->
+ fFORMULA x1;
+ fIN_OR_OUT_MODULES x2;
+ fNODE "search_pattern" 2
+| CT_search_rewrite(x1, x2) ->
+ fFORMULA x1;
+ fIN_OR_OUT_MODULES x2;
+ fNODE "search_rewrite" 2
+| CT_section_end(x1) ->
+ fID x1;
+ fNODE "section_end" 1
+| CT_section_struct(x1, x2, x3) ->
+ fSECTION_BEGIN x1;
+ fSECTION_BODY x2;
+ fCOMMAND x3;
+ fNODE "section_struct" 3
+| CT_set_natural(x1) ->
+ fID x1;
+ fNODE "set_natural" 1
+| CT_set_natural_default -> fNODE "set_natural_default" 0
+| CT_set_option(x1) ->
+ fTABLE x1;
+ fNODE "set_option" 1
+| CT_set_option_value(x1, x2) ->
+ fTABLE x1;
+ fSINGLE_OPTION_VALUE x2;
+ fNODE "set_option_value" 2
+| CT_set_option_value2(x1, x2) ->
+ fTABLE x1;
+ fID_OR_STRING_NE_LIST x2;
+ fNODE "set_option_value2" 2
+| CT_sethyp(x1) ->
+ fINT x1;
+ fNODE "sethyp" 1
+| CT_setundo(x1) ->
+ fINT x1;
+ fNODE "setundo" 1
+| CT_show_existentials -> fNODE "show_existentials" 0
+| CT_show_goal(x1) ->
+ fINT_OPT x1;
+ fNODE "show_goal" 1
+| CT_show_implicit(x1) ->
+ fINT x1;
+ fNODE "show_implicit" 1
+| CT_show_intro -> fNODE "show_intro" 0
+| CT_show_intros -> fNODE "show_intros" 0
+| CT_show_node -> fNODE "show_node" 0
+| CT_show_proof -> fNODE "show_proof" 0
+| CT_show_proofs -> fNODE "show_proofs" 0
+| CT_show_script -> fNODE "show_script" 0
+| CT_show_tree -> fNODE "show_tree" 0
+| CT_solve(x1, x2, x3) ->
+ fINT x1;
+ fTACTIC_COM x2;
+ fDOTDOT_OPT x3;
+ fNODE "solve" 3
+| CT_suspend -> fNODE "suspend" 0
+| CT_syntax_macro(x1, x2, x3) ->
+ fID x1;
+ fFORMULA x2;
+ fINT_OPT x3;
+ fNODE "syntax_macro" 3
+| CT_tactic_definition(x1) ->
+ fTAC_DEF_NE_LIST x1;
+ fNODE "tactic_definition" 1
+| CT_test_natural_feature(x1, x2) ->
+ fNATURAL_FEATURE x1;
+ fID x2;
+ fNODE "test_natural_feature" 2
+| CT_theorem_struct(x1, x2) ->
+ fTHEOREM_GOAL x1;
+ fPROOF_SCRIPT x2;
+ fNODE "theorem_struct" 2
+| CT_time(x1) ->
+ fCOMMAND x1;
+ fNODE "time" 1
+| CT_transparent(x1) ->
+ fID_NE_LIST x1;
+ fNODE "transparent" 1
+| CT_undo(x1) ->
+ fINT_OPT x1;
+ fNODE "undo" 1
+| CT_unfocus -> fNODE "unfocus" 0
+| CT_unset_option(x1) ->
+ fTABLE x1;
+ fNODE "unset_option" 1
+| CT_unsethyp -> fNODE "unsethyp" 0
+| CT_unsetundo -> fNODE "unsetundo" 0
+| CT_user_vernac(x1, x2) ->
+ fID x1;
+ fVARG_LIST x2;
+ fNODE "user_vernac" 2
+| CT_variable(x1, x2) ->
+ fVAR x1;
+ fBINDER_NE_LIST x2;
+ fNODE "variable" 2
+| CT_write_module(x1, x2) ->
+ fID x1;
+ fSTRING_OPT x2;
+ fNODE "write_module" 2
+and fCOMMAND_LIST = function
+| CT_command_list(x,l) ->
+ fCOMMAND x;
+ (List.iter fCOMMAND l);
+ fNODE "command_list" (1 + (List.length l))
+and fCOMMENT = function
+| CT_comment x -> fATOM "comment";
+ (f_atom_string x);
+ print_string "\n"and fCOMMENT_S = function
+| CT_comment_s l ->
+ (List.iter fCOMMENT l);
+ fNODE "comment_s" (List.length l)
+and fCONSTR = function
+| CT_constr(x1, x2) ->
+ fID x1;
+ fFORMULA x2;
+ fNODE "constr" 2
+| CT_constr_coercion(x1, x2) ->
+ fID x1;
+ fFORMULA x2;
+ fNODE "constr_coercion" 2
+and fCONSTR_LIST = function
+| CT_constr_list l ->
+ (List.iter fCONSTR l);
+ fNODE "constr_list" (List.length l)
+and fCONTEXT_HYP_LIST = function
+| CT_context_hyp_list l ->
+ (List.iter fPREMISE_PATTERN l);
+ fNODE "context_hyp_list" (List.length l)
+and fCONTEXT_PATTERN = function
+| CT_coerce_FORMULA_to_CONTEXT_PATTERN x -> fFORMULA x
+| CT_context(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "context" 2
+and fCONTEXT_RULE = function
+| CT_context_rule(x1, x2, x3) ->
+ fCONTEXT_HYP_LIST x1;
+ fCONTEXT_PATTERN x2;
+ fTACTIC_COM x3;
+ fNODE "context_rule" 3
+| CT_def_context_rule(x1) ->
+ fTACTIC_COM x1;
+ fNODE "def_context_rule" 1
+and fCONVERSION_FLAG = function
+| CT_beta -> fNODE "beta" 0
+| CT_delta -> fNODE "delta" 0
+| CT_evar -> fNODE "evar" 0
+| CT_iota -> fNODE "iota" 0
+| CT_zeta -> fNODE "zeta" 0
+and fCONVERSION_FLAG_LIST = function
+| CT_conversion_flag_list l ->
+ (List.iter fCONVERSION_FLAG l);
+ fNODE "conversion_flag_list" (List.length l)
+and fCONV_SET = function
+| CT_unf l ->
+ (List.iter fID l);
+ fNODE "unf" (List.length l)
+| CT_unfbut l ->
+ (List.iter fID l);
+ fNODE "unfbut" (List.length l)
+and fCO_IND = function
+| CT_co_ind x -> fATOM "co_ind";
+ (f_atom_string x);
+ print_string "\n"and fDECL_NOTATION_OPT = function
+| CT_coerce_NONE_to_DECL_NOTATION_OPT x -> fNONE x
+| CT_decl_notation(x1, x2, x3) ->
+ fSTRING x1;
+ fFORMULA x2;
+ fID_OPT x3;
+ fNODE "decl_notation" 3
+and fDEF = function
+| CT_def(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "def" 2
+and fDEFN = function
+| CT_defn x -> fATOM "defn";
+ (f_atom_string x);
+ print_string "\n"and fDEFN_OR_THM = function
+| CT_coerce_DEFN_to_DEFN_OR_THM x -> fDEFN x
+| CT_coerce_THM_to_DEFN_OR_THM x -> fTHM x
+and fDEF_BODY = function
+| CT_coerce_CONTEXT_PATTERN_to_DEF_BODY x -> fCONTEXT_PATTERN x
+| CT_coerce_EVAL_CMD_to_DEF_BODY x -> fEVAL_CMD x
+| CT_type_of(x1) ->
+ fFORMULA x1;
+ fNODE "type_of" 1
+and fDEF_BODY_OPT = function
+| CT_coerce_DEF_BODY_to_DEF_BODY_OPT x -> fDEF_BODY x
+| CT_coerce_FORMULA_OPT_to_DEF_BODY_OPT x -> fFORMULA_OPT x
+and fDEP = function
+| CT_dep x -> fATOM "dep";
+ (f_atom_string x);
+ print_string "\n"and fDESTRUCTING = function
+| CT_coerce_NONE_to_DESTRUCTING x -> fNONE x
+| CT_destructing -> fNODE "destructing" 0
+and fDESTRUCT_LOCATION = function
+| CT_conclusion_location -> fNODE "conclusion_location" 0
+| CT_discardable_hypothesis -> fNODE "discardable_hypothesis" 0
+| CT_hypothesis_location -> fNODE "hypothesis_location" 0
+and fDOTDOT_OPT = function
+| CT_coerce_NONE_to_DOTDOT_OPT x -> fNONE x
+| CT_dotdot -> fNODE "dotdot" 0
+and fEQN = function
+| CT_eqn(x1, x2) ->
+ fMATCH_PATTERN_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "eqn" 2
+and fEQN_LIST = function
+| CT_eqn_list l ->
+ (List.iter fEQN l);
+ fNODE "eqn_list" (List.length l)
+and fEVAL_CMD = function
+| CT_eval(x1, x2, x3) ->
+ fINT_OPT x1;
+ fRED_COM x2;
+ fFORMULA x3;
+ fNODE "eval" 3
+and fFIXTAC = function
+| CT_fixtac(x1, x2, x3) ->
+ fID x1;
+ fINT x2;
+ fFORMULA x3;
+ fNODE "fixtac" 3
+and fFIX_BINDER = function
+| CT_coerce_FIX_REC_to_FIX_BINDER x -> fFIX_REC x
+| CT_fix_binder(x1, x2, x3, x4) ->
+ fID x1;
+ fINT x2;
+ fFORMULA x3;
+ fFORMULA x4;
+ fNODE "fix_binder" 4
+and fFIX_BINDER_LIST = function
+| CT_fix_binder_list(x,l) ->
+ fFIX_BINDER x;
+ (List.iter fFIX_BINDER l);
+ fNODE "fix_binder_list" (1 + (List.length l))
+and fFIX_REC = function
+| CT_fix_rec(x1, x2, x3, x4, x5) ->
+ fID x1;
+ fBINDER_NE_LIST x2;
+ fID_OPT x3;
+ fFORMULA x4;
+ fFORMULA x5;
+ fNODE "fix_rec" 5
+and fFIX_REC_LIST = function
+| CT_fix_rec_list(x,l) ->
+ fFIX_REC x;
+ (List.iter fFIX_REC l);
+ fNODE "fix_rec_list" (1 + (List.length l))
+and fFIX_TAC_LIST = function
+| CT_fix_tac_list l ->
+ (List.iter fFIXTAC l);
+ fNODE "fix_tac_list" (List.length l)
+and fFORMULA = function
+| CT_coerce_BINARY_to_FORMULA x -> fBINARY x
+| CT_coerce_ID_to_FORMULA x -> fID x
+| CT_coerce_NUM_to_FORMULA x -> fNUM x
+| CT_coerce_SORT_TYPE_to_FORMULA x -> fSORT_TYPE x
+| CT_coerce_TYPED_FORMULA_to_FORMULA x -> fTYPED_FORMULA x
+| CT_appc(x1, x2) ->
+ fFORMULA x1;
+ fFORMULA_NE_LIST x2;
+ fNODE "appc" 2
+| CT_arrowc(x1, x2) ->
+ fFORMULA x1;
+ fFORMULA x2;
+ fNODE "arrowc" 2
+| CT_bang(x1) ->
+ fFORMULA x1;
+ fNODE "bang" 1
+| CT_cases(x1, x2, x3) ->
+ fMATCHED_FORMULA_NE_LIST x1;
+ fFORMULA_OPT x2;
+ fEQN_LIST x3;
+ fNODE "cases" 3
+| CT_cofixc(x1, x2) ->
+ fID x1;
+ fCOFIX_REC_LIST x2;
+ fNODE "cofixc" 2
+| CT_elimc(x1, x2, x3, x4) ->
+ fCASE x1;
+ fFORMULA_OPT x2;
+ fFORMULA x3;
+ fFORMULA_LIST x4;
+ fNODE "elimc" 4
+| CT_existvarc -> fNODE "existvarc" 0
+| CT_fixc(x1, x2) ->
+ fID x1;
+ fFIX_BINDER_LIST x2;
+ fNODE "fixc" 2
+| CT_if(x1, x2, x3, x4) ->
+ fFORMULA x1;
+ fRETURN_INFO x2;
+ fFORMULA x3;
+ fFORMULA x4;
+ fNODE "if" 4
+| CT_inductive_let(x1, x2, x3, x4) ->
+ fFORMULA_OPT x1;
+ fID_OPT_NE_LIST x2;
+ fFORMULA x3;
+ fFORMULA x4;
+ fNODE "inductive_let" 4
+| CT_labelled_arg(x1, x2) ->
+ fID x1;
+ fFORMULA x2;
+ fNODE "labelled_arg" 2
+| CT_lambdac(x1, x2) ->
+ fBINDER_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "lambdac" 2
+| CT_let_tuple(x1, x2, x3, x4) ->
+ fID_OPT_NE_LIST x1;
+ fRETURN_INFO x2;
+ fFORMULA x3;
+ fFORMULA x4;
+ fNODE "let_tuple" 4
+| CT_letin(x1, x2) ->
+ fDEF x1;
+ fFORMULA x2;
+ fNODE "letin" 2
+| CT_notation(x1, x2) ->
+ fSTRING x1;
+ fFORMULA_LIST x2;
+ fNODE "notation" 2
+| CT_num_encapsulator(x1, x2) ->
+ fNUM_TYPE x1;
+ fFORMULA x2;
+ fNODE "num_encapsulator" 2
+| CT_prodc(x1, x2) ->
+ fBINDER_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "prodc" 2
+| CT_proj(x1, x2) ->
+ fFORMULA x1;
+ fFORMULA_NE_LIST x2;
+ fNODE "proj" 2
+and fFORMULA_LIST = function
+| CT_formula_list l ->
+ (List.iter fFORMULA l);
+ fNODE "formula_list" (List.length l)
+and fFORMULA_NE_LIST = function
+| CT_formula_ne_list(x,l) ->
+ fFORMULA x;
+ (List.iter fFORMULA l);
+ fNODE "formula_ne_list" (1 + (List.length l))
+and fFORMULA_OPT = function
+| CT_coerce_FORMULA_to_FORMULA_OPT x -> fFORMULA x
+| CT_coerce_ID_OPT_to_FORMULA_OPT x -> fID_OPT x
+and fFORMULA_OR_INT = function
+| CT_coerce_FORMULA_to_FORMULA_OR_INT x -> fFORMULA x
+| CT_coerce_ID_OR_INT_to_FORMULA_OR_INT x -> fID_OR_INT x
+and fGRAMMAR = function
+| CT_grammar_none -> fNODE "grammar_none" 0
+and fHYP_LOCATION = function
+| CT_coerce_UNFOLD_to_HYP_LOCATION x -> fUNFOLD x
+| CT_intype(x1, x2) ->
+ fID x1;
+ fINT_LIST x2;
+ fNODE "intype" 2
+| CT_invalue(x1, x2) ->
+ fID x1;
+ fINT_LIST x2;
+ fNODE "invalue" 2
+and fHYP_LOCATION_LIST_OR_STAR = function
+| CT_coerce_STAR_to_HYP_LOCATION_LIST_OR_STAR x -> fSTAR x
+| CT_hyp_location_list l ->
+ (List.iter fHYP_LOCATION l);
+ fNODE "hyp_location_list" (List.length l)
+and fID = function
+| CT_ident x -> fATOM "ident";
+ (f_atom_string x);
+ print_string "\n"| CT_metac(x1) ->
+ fINT x1;
+ fNODE "metac" 1
+| CT_metaid x -> fATOM "metaid";
+ (f_atom_string x);
+ print_string "\n"and fIDENTITY_OPT = function
+| CT_coerce_NONE_to_IDENTITY_OPT x -> fNONE x
+| CT_identity -> fNODE "identity" 0
+and fID_LIST = function
+| CT_id_list l ->
+ (List.iter fID l);
+ fNODE "id_list" (List.length l)
+and fID_LIST_LIST = function
+| CT_id_list_list l ->
+ (List.iter fID_LIST l);
+ fNODE "id_list_list" (List.length l)
+and fID_LIST_OPT = function
+| CT_coerce_ID_LIST_to_ID_LIST_OPT x -> fID_LIST x
+| CT_coerce_NONE_to_ID_LIST_OPT x -> fNONE x
+and fID_NE_LIST = function
+| CT_id_ne_list(x,l) ->
+ fID x;
+ (List.iter fID l);
+ fNODE "id_ne_list" (1 + (List.length l))
+and fID_NE_LIST_OR_STAR = function
+| CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR x -> fID_NE_LIST x
+| CT_coerce_STAR_to_ID_NE_LIST_OR_STAR x -> fSTAR x
+and fID_NE_LIST_OR_STRING = function
+| CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STRING x -> fID_NE_LIST x
+| CT_coerce_STRING_to_ID_NE_LIST_OR_STRING x -> fSTRING x
+and fID_OPT = function
+| CT_coerce_ID_to_ID_OPT x -> fID x
+| CT_coerce_NONE_to_ID_OPT x -> fNONE x
+and fID_OPT_LIST = function
+| CT_id_opt_list l ->
+ (List.iter fID_OPT l);
+ fNODE "id_opt_list" (List.length l)
+and fID_OPT_NE_LIST = function
+| CT_id_opt_ne_list(x,l) ->
+ fID_OPT x;
+ (List.iter fID_OPT l);
+ fNODE "id_opt_ne_list" (1 + (List.length l))
+and fID_OPT_OR_ALL = function
+| CT_coerce_ID_OPT_to_ID_OPT_OR_ALL x -> fID_OPT x
+| CT_all -> fNODE "all" 0
+and fID_OR_INT = function
+| CT_coerce_ID_to_ID_OR_INT x -> fID x
+| CT_coerce_INT_to_ID_OR_INT x -> fINT x
+and fID_OR_INT_OPT = function
+| CT_coerce_ID_OPT_to_ID_OR_INT_OPT x -> fID_OPT x
+| CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT x -> fID_OR_INT x
+| CT_coerce_INT_OPT_to_ID_OR_INT_OPT x -> fINT_OPT x
+and fID_OR_STAR = function
+| CT_coerce_ID_to_ID_OR_STAR x -> fID x
+| CT_coerce_STAR_to_ID_OR_STAR x -> fSTAR x
+and fID_OR_STRING = function
+| CT_coerce_ID_to_ID_OR_STRING x -> fID x
+| CT_coerce_STRING_to_ID_OR_STRING x -> fSTRING x
+and fID_OR_STRING_NE_LIST = function
+| CT_id_or_string_ne_list(x,l) ->
+ fID_OR_STRING x;
+ (List.iter fID_OR_STRING l);
+ fNODE "id_or_string_ne_list" (1 + (List.length l))
+and fIMPEXP = function
+| CT_coerce_NONE_to_IMPEXP x -> fNONE x
+| CT_export -> fNODE "export" 0
+| CT_import -> fNODE "import" 0
+and fIND_SPEC = function
+| CT_ind_spec(x1, x2, x3, x4, x5) ->
+ fID x1;
+ fBINDER_LIST x2;
+ fFORMULA x3;
+ fCONSTR_LIST x4;
+ fDECL_NOTATION_OPT x5;
+ fNODE "ind_spec" 5
+and fIND_SPEC_LIST = function
+| CT_ind_spec_list l ->
+ (List.iter fIND_SPEC l);
+ fNODE "ind_spec_list" (List.length l)
+and fINT = function
+| CT_int x -> fATOM "int";
+ (f_atom_int x);
+ print_string "\n"and fINTRO_PATT = function
+| CT_coerce_ID_to_INTRO_PATT x -> fID x
+| CT_disj_pattern(x,l) ->
+ fINTRO_PATT_LIST x;
+ (List.iter fINTRO_PATT_LIST l);
+ fNODE "disj_pattern" (1 + (List.length l))
+and fINTRO_PATT_LIST = function
+| CT_intro_patt_list l ->
+ (List.iter fINTRO_PATT l);
+ fNODE "intro_patt_list" (List.length l)
+and fINTRO_PATT_OPT = function
+| CT_coerce_ID_OPT_to_INTRO_PATT_OPT x -> fID_OPT x
+| CT_coerce_INTRO_PATT_to_INTRO_PATT_OPT x -> fINTRO_PATT x
+and fINT_LIST = function
+| CT_int_list l ->
+ (List.iter fINT l);
+ fNODE "int_list" (List.length l)
+and fINT_NE_LIST = function
+| CT_int_ne_list(x,l) ->
+ fINT x;
+ (List.iter fINT l);
+ fNODE "int_ne_list" (1 + (List.length l))
+and fINT_OPT = function
+| CT_coerce_INT_to_INT_OPT x -> fINT x
+| CT_coerce_NONE_to_INT_OPT x -> fNONE x
+and fINT_OR_LOCN = function
+| CT_coerce_INT_to_INT_OR_LOCN x -> fINT x
+| CT_coerce_LOCN_to_INT_OR_LOCN x -> fLOCN x
+and fINT_OR_NEXT = function
+| CT_coerce_INT_to_INT_OR_NEXT x -> fINT x
+| CT_next_level -> fNODE "next_level" 0
+and fINV_TYPE = function
+| CT_inv_clear -> fNODE "inv_clear" 0
+| CT_inv_regular -> fNODE "inv_regular" 0
+| CT_inv_simple -> fNODE "inv_simple" 0
+and fIN_OR_OUT_MODULES = function
+| CT_coerce_NONE_to_IN_OR_OUT_MODULES x -> fNONE x
+| CT_in_modules(x1) ->
+ fID_NE_LIST x1;
+ fNODE "in_modules" 1
+| CT_out_modules(x1) ->
+ fID_NE_LIST x1;
+ fNODE "out_modules" 1
+and fLET_CLAUSE = function
+| CT_let_clause(x1, x2, x3) ->
+ fID x1;
+ fTACTIC_OPT x2;
+ fLET_VALUE x3;
+ fNODE "let_clause" 3
+and fLET_CLAUSES = function
+| CT_let_clauses(x,l) ->
+ fLET_CLAUSE x;
+ (List.iter fLET_CLAUSE l);
+ fNODE "let_clauses" (1 + (List.length l))
+and fLET_VALUE = function
+| CT_coerce_DEF_BODY_to_LET_VALUE x -> fDEF_BODY x
+| CT_coerce_TACTIC_COM_to_LET_VALUE x -> fTACTIC_COM x
+and fLOCAL_OPT = function
+| CT_coerce_NONE_to_LOCAL_OPT x -> fNONE x
+| CT_local -> fNODE "local" 0
+and fLOCN = function
+| CT_locn x -> fATOM "locn";
+ (f_atom_string x);
+ print_string "\n"and fMATCHED_FORMULA = function
+| CT_coerce_FORMULA_to_MATCHED_FORMULA x -> fFORMULA x
+| CT_formula_as(x1, x2) ->
+ fFORMULA x1;
+ fID_OPT x2;
+ fNODE "formula_as" 2
+| CT_formula_as_in(x1, x2, x3) ->
+ fFORMULA x1;
+ fID_OPT x2;
+ fFORMULA x3;
+ fNODE "formula_as_in" 3
+| CT_formula_in(x1, x2) ->
+ fFORMULA x1;
+ fFORMULA x2;
+ fNODE "formula_in" 2
+and fMATCHED_FORMULA_NE_LIST = function
+| CT_matched_formula_ne_list(x,l) ->
+ fMATCHED_FORMULA x;
+ (List.iter fMATCHED_FORMULA l);
+ fNODE "matched_formula_ne_list" (1 + (List.length l))
+and fMATCH_PATTERN = function
+| CT_coerce_ID_OPT_to_MATCH_PATTERN x -> fID_OPT x
+| CT_coerce_NUM_to_MATCH_PATTERN x -> fNUM x
+| CT_pattern_app(x1, x2) ->
+ fMATCH_PATTERN x1;
+ fMATCH_PATTERN_NE_LIST x2;
+ fNODE "pattern_app" 2
+| CT_pattern_as(x1, x2) ->
+ fMATCH_PATTERN x1;
+ fID_OPT x2;
+ fNODE "pattern_as" 2
+| CT_pattern_delimitors(x1, x2) ->
+ fNUM_TYPE x1;
+ fMATCH_PATTERN x2;
+ fNODE "pattern_delimitors" 2
+| CT_pattern_notation(x1, x2) ->
+ fSTRING x1;
+ fMATCH_PATTERN_LIST x2;
+ fNODE "pattern_notation" 2
+and fMATCH_PATTERN_LIST = function
+| CT_match_pattern_list l ->
+ (List.iter fMATCH_PATTERN l);
+ fNODE "match_pattern_list" (List.length l)
+and fMATCH_PATTERN_NE_LIST = function
+| CT_match_pattern_ne_list(x,l) ->
+ fMATCH_PATTERN x;
+ (List.iter fMATCH_PATTERN l);
+ fNODE "match_pattern_ne_list" (1 + (List.length l))
+and fMATCH_TAC_RULE = function
+| CT_match_tac_rule(x1, x2) ->
+ fCONTEXT_PATTERN x1;
+ fLET_VALUE x2;
+ fNODE "match_tac_rule" 2
+and fMATCH_TAC_RULES = function
+| CT_match_tac_rules(x,l) ->
+ fMATCH_TAC_RULE x;
+ (List.iter fMATCH_TAC_RULE l);
+ fNODE "match_tac_rules" (1 + (List.length l))
+and fMODIFIER = function
+| CT_entry_type(x1, x2) ->
+ fID x1;
+ fID x2;
+ fNODE "entry_type" 2
+| CT_format(x1) ->
+ fSTRING x1;
+ fNODE "format" 1
+| CT_lefta -> fNODE "lefta" 0
+| CT_nona -> fNODE "nona" 0
+| CT_only_parsing -> fNODE "only_parsing" 0
+| CT_righta -> fNODE "righta" 0
+| CT_set_item_level(x1, x2) ->
+ fID_NE_LIST x1;
+ fINT_OR_NEXT x2;
+ fNODE "set_item_level" 2
+| CT_set_level(x1) ->
+ fINT x1;
+ fNODE "set_level" 1
+and fMODIFIER_LIST = function
+| CT_modifier_list l ->
+ (List.iter fMODIFIER l);
+ fNODE "modifier_list" (List.length l)
+and fMODULE_BINDER = function
+| CT_module_binder(x1, x2) ->
+ fID_NE_LIST x1;
+ fMODULE_TYPE x2;
+ fNODE "module_binder" 2
+and fMODULE_BINDER_LIST = function
+| CT_module_binder_list l ->
+ (List.iter fMODULE_BINDER l);
+ fNODE "module_binder_list" (List.length l)
+and fMODULE_EXPR = function
+| CT_coerce_ID_OPT_to_MODULE_EXPR x -> fID_OPT x
+| CT_module_app(x1, x2) ->
+ fMODULE_EXPR x1;
+ fMODULE_EXPR x2;
+ fNODE "module_app" 2
+and fMODULE_TYPE = function
+| CT_coerce_ID_to_MODULE_TYPE x -> fID x
+| CT_module_type_with_def(x1, x2, x3) ->
+ fMODULE_TYPE x1;
+ fID x2;
+ fFORMULA x3;
+ fNODE "module_type_with_def" 3
+| CT_module_type_with_mod(x1, x2, x3) ->
+ fMODULE_TYPE x1;
+ fID x2;
+ fID x3;
+ fNODE "module_type_with_mod" 3
+and fMODULE_TYPE_CHECK = function
+| CT_coerce_MODULE_TYPE_OPT_to_MODULE_TYPE_CHECK x -> fMODULE_TYPE_OPT x
+| CT_only_check(x1) ->
+ fMODULE_TYPE x1;
+ fNODE "only_check" 1
+and fMODULE_TYPE_OPT = function
+| CT_coerce_ID_OPT_to_MODULE_TYPE_OPT x -> fID_OPT x
+| CT_coerce_MODULE_TYPE_to_MODULE_TYPE_OPT x -> fMODULE_TYPE x
+and fNATURAL_FEATURE = function
+| CT_contractible -> fNODE "contractible" 0
+| CT_implicit -> fNODE "implicit" 0
+| CT_nat_transparent -> fNODE "nat_transparent" 0
+and fNONE = function
+| CT_none -> fNODE "none" 0
+and fNUM = function
+| CT_int_encapsulator x -> fATOM "int_encapsulator";
+ (f_atom_string x);
+ print_string "\n"and fNUM_TYPE = function
+| CT_num_type x -> fATOM "num_type";
+ (f_atom_string x);
+ print_string "\n"and fOMEGA_FEATURE = function
+| CT_coerce_STRING_to_OMEGA_FEATURE x -> fSTRING x
+| CT_flag_action -> fNODE "flag_action" 0
+| CT_flag_system -> fNODE "flag_system" 0
+| CT_flag_time -> fNODE "flag_time" 0
+and fOMEGA_MODE = function
+| CT_set -> fNODE "set" 0
+| CT_switch -> fNODE "switch" 0
+| CT_unset -> fNODE "unset" 0
+and fORIENTATION = function
+| CT_lr -> fNODE "lr" 0
+| CT_rl -> fNODE "rl" 0
+and fPATTERN = function
+| CT_pattern_occ(x1, x2) ->
+ fINT_LIST x1;
+ fFORMULA x2;
+ fNODE "pattern_occ" 2
+and fPATTERN_NE_LIST = function
+| CT_pattern_ne_list(x,l) ->
+ fPATTERN x;
+ (List.iter fPATTERN l);
+ fNODE "pattern_ne_list" (1 + (List.length l))
+and fPATTERN_OPT = function
+| CT_coerce_NONE_to_PATTERN_OPT x -> fNONE x
+| CT_coerce_PATTERN_to_PATTERN_OPT x -> fPATTERN x
+and fPREMISE = function
+| CT_coerce_TYPED_FORMULA_to_PREMISE x -> fTYPED_FORMULA x
+| CT_eval_result(x1, x2, x3) ->
+ fFORMULA x1;
+ fFORMULA x2;
+ fFORMULA x3;
+ fNODE "eval_result" 3
+| CT_premise(x1, x2) ->
+ fID x1;
+ fFORMULA x2;
+ fNODE "premise" 2
+and fPREMISES_LIST = function
+| CT_premises_list l ->
+ (List.iter fPREMISE l);
+ fNODE "premises_list" (List.length l)
+and fPREMISE_PATTERN = function
+| CT_premise_pattern(x1, x2) ->
+ fID_OPT x1;
+ fCONTEXT_PATTERN x2;
+ fNODE "premise_pattern" 2
+and fPROOF_SCRIPT = function
+| CT_proof_script l ->
+ (List.iter fCOMMAND l);
+ fNODE "proof_script" (List.length l)
+and fRECCONSTR = function
+| CT_defrecconstr(x1, x2, x3) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fFORMULA_OPT x3;
+ fNODE "defrecconstr" 3
+| CT_defrecconstr_coercion(x1, x2, x3) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fFORMULA_OPT x3;
+ fNODE "defrecconstr_coercion" 3
+| CT_recconstr(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "recconstr" 2
+| CT_recconstr_coercion(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "recconstr_coercion" 2
+and fRECCONSTR_LIST = function
+| CT_recconstr_list l ->
+ (List.iter fRECCONSTR l);
+ fNODE "recconstr_list" (List.length l)
+and fREC_TACTIC_FUN = function
+| CT_rec_tactic_fun(x1, x2, x3) ->
+ fID x1;
+ fID_OPT_NE_LIST x2;
+ fTACTIC_COM x3;
+ fNODE "rec_tactic_fun" 3
+and fREC_TACTIC_FUN_LIST = function
+| CT_rec_tactic_fun_list(x,l) ->
+ fREC_TACTIC_FUN x;
+ (List.iter fREC_TACTIC_FUN l);
+ fNODE "rec_tactic_fun_list" (1 + (List.length l))
+and fRED_COM = function
+| CT_cbv(x1, x2) ->
+ fCONVERSION_FLAG_LIST x1;
+ fCONV_SET x2;
+ fNODE "cbv" 2
+| CT_fold(x1) ->
+ fFORMULA_LIST x1;
+ fNODE "fold" 1
+| CT_hnf -> fNODE "hnf" 0
+| CT_lazy(x1, x2) ->
+ fCONVERSION_FLAG_LIST x1;
+ fCONV_SET x2;
+ fNODE "lazy" 2
+| CT_pattern(x1) ->
+ fPATTERN_NE_LIST x1;
+ fNODE "pattern" 1
+| CT_red -> fNODE "red" 0
+| CT_simpl(x1) ->
+ fPATTERN_OPT x1;
+ fNODE "simpl" 1
+| CT_unfold(x1) ->
+ fUNFOLD_NE_LIST x1;
+ fNODE "unfold" 1
+and fRETURN_INFO = function
+| CT_coerce_NONE_to_RETURN_INFO x -> fNONE x
+| CT_as_and_return(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "as_and_return" 2
+| CT_return(x1) ->
+ fFORMULA x1;
+ fNODE "return" 1
+and fRULE = function
+| CT_rule(x1, x2) ->
+ fPREMISES_LIST x1;
+ fFORMULA x2;
+ fNODE "rule" 2
+and fRULE_LIST = function
+| CT_rule_list l ->
+ (List.iter fRULE l);
+ fNODE "rule_list" (List.length l)
+and fSCHEME_SPEC = function
+| CT_scheme_spec(x1, x2, x3, x4) ->
+ fID x1;
+ fDEP x2;
+ fFORMULA x3;
+ fSORT_TYPE x4;
+ fNODE "scheme_spec" 4
+and fSCHEME_SPEC_LIST = function
+| CT_scheme_spec_list(x,l) ->
+ fSCHEME_SPEC x;
+ (List.iter fSCHEME_SPEC l);
+ fNODE "scheme_spec_list" (1 + (List.length l))
+and fSCOMMENT_CONTENT = function
+| CT_coerce_FORMULA_to_SCOMMENT_CONTENT x -> fFORMULA x
+| CT_coerce_ID_OR_STRING_to_SCOMMENT_CONTENT x -> fID_OR_STRING x
+and fSCOMMENT_CONTENT_LIST = function
+| CT_scomment_content_list l ->
+ (List.iter fSCOMMENT_CONTENT l);
+ fNODE "scomment_content_list" (List.length l)
+and fSECTION_BEGIN = function
+| CT_section(x1) ->
+ fID x1;
+ fNODE "section" 1
+and fSECTION_BODY = function
+| CT_section_body l ->
+ (List.iter fCOMMAND l);
+ fNODE "section_body" (List.length l)
+and fSIGNED_INT = function
+| CT_coerce_INT_to_SIGNED_INT x -> fINT x
+| CT_minus(x1) ->
+ fINT x1;
+ fNODE "minus" 1
+and fSIGNED_INT_LIST = function
+| CT_signed_int_list l ->
+ (List.iter fSIGNED_INT l);
+ fNODE "signed_int_list" (List.length l)
+and fSINGLE_OPTION_VALUE = function
+| CT_coerce_INT_to_SINGLE_OPTION_VALUE x -> fINT x
+| CT_coerce_STRING_to_SINGLE_OPTION_VALUE x -> fSTRING x
+and fSORT_TYPE = function
+| CT_sortc x -> fATOM "sortc";
+ (f_atom_string x);
+ print_string "\n"and fSPEC_LIST = function
+| CT_coerce_BINDING_LIST_to_SPEC_LIST x -> fBINDING_LIST x
+| CT_coerce_FORMULA_LIST_to_SPEC_LIST x -> fFORMULA_LIST x
+and fSPEC_OPT = function
+| CT_coerce_NONE_to_SPEC_OPT x -> fNONE x
+| CT_spec -> fNODE "spec" 0
+and fSTAR = function
+| CT_star -> fNODE "star" 0
+and fSTAR_OPT = function
+| CT_coerce_NONE_to_STAR_OPT x -> fNONE x
+| CT_coerce_STAR_to_STAR_OPT x -> fSTAR x
+and fSTRING = function
+| CT_string x -> fATOM "string";
+ (f_atom_string x);
+ print_string "\n"and fSTRING_NE_LIST = function
+| CT_string_ne_list(x,l) ->
+ fSTRING x;
+ (List.iter fSTRING l);
+ fNODE "string_ne_list" (1 + (List.length l))
+and fSTRING_OPT = function
+| CT_coerce_NONE_to_STRING_OPT x -> fNONE x
+| CT_coerce_STRING_to_STRING_OPT x -> fSTRING x
+and fTABLE = function
+| CT_coerce_ID_to_TABLE x -> fID x
+| CT_table(x1, x2) ->
+ fID x1;
+ fID x2;
+ fNODE "table" 2
+and fTACTIC_ARG = function
+| CT_coerce_EVAL_CMD_to_TACTIC_ARG x -> fEVAL_CMD x
+| CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG x -> fFORMULA_OR_INT x
+| CT_coerce_TACTIC_COM_to_TACTIC_ARG x -> fTACTIC_COM x
+| CT_coerce_TERM_CHANGE_to_TACTIC_ARG x -> fTERM_CHANGE x
+| CT_void -> fNODE "void" 0
+and fTACTIC_ARG_LIST = function
+| CT_tactic_arg_list(x,l) ->
+ fTACTIC_ARG x;
+ (List.iter fTACTIC_ARG l);
+ fNODE "tactic_arg_list" (1 + (List.length l))
+and fTACTIC_COM = function
+| CT_abstract(x1, x2) ->
+ fID_OPT x1;
+ fTACTIC_COM x2;
+ fNODE "abstract" 2
+| CT_absurd(x1) ->
+ fFORMULA x1;
+ fNODE "absurd" 1
+| CT_any_constructor(x1) ->
+ fTACTIC_OPT x1;
+ fNODE "any_constructor" 1
+| CT_apply(x1, x2) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fNODE "apply" 2
+| CT_assert(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "assert" 2
+| CT_assumption -> fNODE "assumption" 0
+| CT_auto(x1) ->
+ fINT_OPT x1;
+ fNODE "auto" 1
+| CT_auto_with(x1, x2) ->
+ fINT_OPT x1;
+ fID_NE_LIST_OR_STAR x2;
+ fNODE "auto_with" 2
+| CT_autorewrite(x1, x2) ->
+ fID_NE_LIST x1;
+ fTACTIC_OPT x2;
+ fNODE "autorewrite" 2
+| CT_autotdb(x1) ->
+ fINT_OPT x1;
+ fNODE "autotdb" 1
+| CT_case_type(x1) ->
+ fFORMULA x1;
+ fNODE "case_type" 1
+| CT_casetac(x1, x2) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fNODE "casetac" 2
+| CT_cdhyp(x1) ->
+ fID x1;
+ fNODE "cdhyp" 1
+| CT_change(x1, x2) ->
+ fFORMULA x1;
+ fCLAUSE x2;
+ fNODE "change" 2
+| CT_change_local(x1, x2, x3) ->
+ fPATTERN x1;
+ fFORMULA x2;
+ fCLAUSE x3;
+ fNODE "change_local" 3
+| CT_clear(x1) ->
+ fID_NE_LIST x1;
+ fNODE "clear" 1
+| CT_clear_body(x1) ->
+ fID_NE_LIST x1;
+ fNODE "clear_body" 1
+| CT_cofixtactic(x1, x2) ->
+ fID_OPT x1;
+ fCOFIX_TAC_LIST x2;
+ fNODE "cofixtactic" 2
+| CT_condrewrite_lr(x1, x2, x3, x4) ->
+ fTACTIC_COM x1;
+ fFORMULA x2;
+ fSPEC_LIST x3;
+ fID_OPT x4;
+ fNODE "condrewrite_lr" 4
+| CT_condrewrite_rl(x1, x2, x3, x4) ->
+ fTACTIC_COM x1;
+ fFORMULA x2;
+ fSPEC_LIST x3;
+ fID_OPT x4;
+ fNODE "condrewrite_rl" 4
+| CT_constructor(x1, x2) ->
+ fINT x1;
+ fSPEC_LIST x2;
+ fNODE "constructor" 2
+| CT_contradiction -> fNODE "contradiction" 0
+| CT_contradiction_thm(x1, x2) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fNODE "contradiction_thm" 2
+| CT_cut(x1) ->
+ fFORMULA x1;
+ fNODE "cut" 1
+| CT_cutrewrite_lr(x1, x2) ->
+ fFORMULA x1;
+ fID_OPT x2;
+ fNODE "cutrewrite_lr" 2
+| CT_cutrewrite_rl(x1, x2) ->
+ fFORMULA x1;
+ fID_OPT x2;
+ fNODE "cutrewrite_rl" 2
+| CT_dauto(x1, x2) ->
+ fINT_OPT x1;
+ fINT_OPT x2;
+ fNODE "dauto" 2
+| CT_dconcl -> fNODE "dconcl" 0
+| CT_decompose_list(x1, x2) ->
+ fID_NE_LIST x1;
+ fFORMULA x2;
+ fNODE "decompose_list" 2
+| CT_decompose_record(x1) ->
+ fFORMULA x1;
+ fNODE "decompose_record" 1
+| CT_decompose_sum(x1) ->
+ fFORMULA x1;
+ fNODE "decompose_sum" 1
+| CT_depinversion(x1, x2, x3, x4) ->
+ fINV_TYPE x1;
+ fID_OR_INT x2;
+ fINTRO_PATT_OPT x3;
+ fFORMULA_OPT x4;
+ fNODE "depinversion" 4
+| CT_deprewrite_lr(x1) ->
+ fID x1;
+ fNODE "deprewrite_lr" 1
+| CT_deprewrite_rl(x1) ->
+ fID x1;
+ fNODE "deprewrite_rl" 1
+| CT_destruct(x1) ->
+ fID_OR_INT x1;
+ fNODE "destruct" 1
+| CT_dhyp(x1) ->
+ fID x1;
+ fNODE "dhyp" 1
+| CT_discriminate_eq(x1) ->
+ fID_OR_INT_OPT x1;
+ fNODE "discriminate_eq" 1
+| CT_do(x1, x2) ->
+ fID_OR_INT x1;
+ fTACTIC_COM x2;
+ fNODE "do" 2
+| CT_eapply(x1, x2) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fNODE "eapply" 2
+| CT_eauto(x1, x2) ->
+ fID_OR_INT_OPT x1;
+ fID_OR_INT_OPT x2;
+ fNODE "eauto" 2
+| CT_eauto_with(x1, x2, x3) ->
+ fID_OR_INT_OPT x1;
+ fID_OR_INT_OPT x2;
+ fID_NE_LIST_OR_STAR x3;
+ fNODE "eauto_with" 3
+| CT_elim(x1, x2, x3) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fUSING x3;
+ fNODE "elim" 3
+| CT_elim_type(x1) ->
+ fFORMULA x1;
+ fNODE "elim_type" 1
+| CT_exact(x1) ->
+ fFORMULA x1;
+ fNODE "exact" 1
+| CT_exists(x1) ->
+ fSPEC_LIST x1;
+ fNODE "exists" 1
+| CT_fail(x1, x2) ->
+ fID_OR_INT x1;
+ fSTRING_OPT x2;
+ fNODE "fail" 2
+| CT_first(x,l) ->
+ fTACTIC_COM x;
+ (List.iter fTACTIC_COM l);
+ fNODE "first" (1 + (List.length l))
+| CT_firstorder(x1) ->
+ fTACTIC_OPT x1;
+ fNODE "firstorder" 1
+| CT_firstorder_using(x1, x2) ->
+ fTACTIC_OPT x1;
+ fID_NE_LIST x2;
+ fNODE "firstorder_using" 2
+| CT_firstorder_with(x1, x2) ->
+ fTACTIC_OPT x1;
+ fID_NE_LIST x2;
+ fNODE "firstorder_with" 2
+| CT_fixtactic(x1, x2, x3) ->
+ fID_OPT x1;
+ fINT x2;
+ fFIX_TAC_LIST x3;
+ fNODE "fixtactic" 3
+| CT_formula_marker(x1) ->
+ fFORMULA x1;
+ fNODE "formula_marker" 1
+| CT_fresh(x1) ->
+ fSTRING_OPT x1;
+ fNODE "fresh" 1
+| CT_generalize(x1) ->
+ fFORMULA_NE_LIST x1;
+ fNODE "generalize" 1
+| CT_generalize_dependent(x1) ->
+ fFORMULA x1;
+ fNODE "generalize_dependent" 1
+| CT_idtac(x1) ->
+ fSTRING_OPT x1;
+ fNODE "idtac" 1
+| CT_induction(x1) ->
+ fID_OR_INT x1;
+ fNODE "induction" 1
+| CT_info(x1) ->
+ fTACTIC_COM x1;
+ fNODE "info" 1
+| CT_injection_eq(x1) ->
+ fID_OR_INT_OPT x1;
+ fNODE "injection_eq" 1
+| CT_instantiate(x1, x2, x3) ->
+ fINT x1;
+ fFORMULA x2;
+ fCLAUSE x3;
+ fNODE "instantiate" 3
+| CT_intro(x1) ->
+ fID_OPT x1;
+ fNODE "intro" 1
+| CT_intro_after(x1, x2) ->
+ fID_OPT x1;
+ fID x2;
+ fNODE "intro_after" 2
+| CT_intros(x1) ->
+ fINTRO_PATT_LIST x1;
+ fNODE "intros" 1
+| CT_intros_until(x1) ->
+ fID_OR_INT x1;
+ fNODE "intros_until" 1
+| CT_inversion(x1, x2, x3, x4) ->
+ fINV_TYPE x1;
+ fID_OR_INT x2;
+ fINTRO_PATT_OPT x3;
+ fID_LIST x4;
+ fNODE "inversion" 4
+| CT_left(x1) ->
+ fSPEC_LIST x1;
+ fNODE "left" 1
+| CT_let_ltac(x1, x2) ->
+ fLET_CLAUSES x1;
+ fLET_VALUE x2;
+ fNODE "let_ltac" 2
+| CT_lettac(x1, x2, x3) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fCLAUSE x3;
+ fNODE "lettac" 3
+| CT_match_context(x,l) ->
+ fCONTEXT_RULE x;
+ (List.iter fCONTEXT_RULE l);
+ fNODE "match_context" (1 + (List.length l))
+| CT_match_context_reverse(x,l) ->
+ fCONTEXT_RULE x;
+ (List.iter fCONTEXT_RULE l);
+ fNODE "match_context_reverse" (1 + (List.length l))
+| CT_match_tac(x1, x2) ->
+ fTACTIC_COM x1;
+ fMATCH_TAC_RULES x2;
+ fNODE "match_tac" 2
+| CT_move_after(x1, x2) ->
+ fID x1;
+ fID x2;
+ fNODE "move_after" 2
+| CT_new_destruct(x1, x2, x3) ->
+ fFORMULA_OR_INT x1;
+ fUSING x2;
+ fINTRO_PATT_OPT x3;
+ fNODE "new_destruct" 3
+| CT_new_induction(x1, x2, x3) ->
+ fFORMULA_OR_INT x1;
+ fUSING x2;
+ fINTRO_PATT_OPT x3;
+ fNODE "new_induction" 3
+| CT_omega -> fNODE "omega" 0
+| CT_orelse(x1, x2) ->
+ fTACTIC_COM x1;
+ fTACTIC_COM x2;
+ fNODE "orelse" 2
+| CT_parallel(x,l) ->
+ fTACTIC_COM x;
+ (List.iter fTACTIC_COM l);
+ fNODE "parallel" (1 + (List.length l))
+| CT_pose(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "pose" 2
+| CT_progress(x1) ->
+ fTACTIC_COM x1;
+ fNODE "progress" 1
+| CT_prolog(x1, x2) ->
+ fFORMULA_LIST x1;
+ fINT x2;
+ fNODE "prolog" 2
+| CT_rec_tactic_in(x1, x2) ->
+ fREC_TACTIC_FUN_LIST x1;
+ fTACTIC_COM x2;
+ fNODE "rec_tactic_in" 2
+| CT_reduce(x1, x2) ->
+ fRED_COM x1;
+ fCLAUSE x2;
+ fNODE "reduce" 2
+| CT_refine(x1) ->
+ fFORMULA x1;
+ fNODE "refine" 1
+| CT_reflexivity -> fNODE "reflexivity" 0
+| CT_rename(x1, x2) ->
+ fID x1;
+ fID x2;
+ fNODE "rename" 2
+| CT_repeat(x1) ->
+ fTACTIC_COM x1;
+ fNODE "repeat" 1
+| CT_replace_with(x1, x2) ->
+ fFORMULA x1;
+ fFORMULA x2;
+ fNODE "replace_with" 2
+| CT_rewrite_lr(x1, x2, x3) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fID_OPT x3;
+ fNODE "rewrite_lr" 3
+| CT_rewrite_rl(x1, x2, x3) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fID_OPT x3;
+ fNODE "rewrite_rl" 3
+| CT_right(x1) ->
+ fSPEC_LIST x1;
+ fNODE "right" 1
+| CT_ring(x1) ->
+ fFORMULA_LIST x1;
+ fNODE "ring" 1
+| CT_simple_user_tac(x1, x2) ->
+ fID x1;
+ fTACTIC_ARG_LIST x2;
+ fNODE "simple_user_tac" 2
+| CT_simplify_eq(x1) ->
+ fID_OR_INT_OPT x1;
+ fNODE "simplify_eq" 1
+| CT_specialize(x1, x2, x3) ->
+ fINT_OPT x1;
+ fFORMULA x2;
+ fSPEC_LIST x3;
+ fNODE "specialize" 3
+| CT_split(x1) ->
+ fSPEC_LIST x1;
+ fNODE "split" 1
+| CT_subst(x1) ->
+ fID_LIST x1;
+ fNODE "subst" 1
+| CT_superauto(x1, x2, x3, x4) ->
+ fINT_OPT x1;
+ fID_LIST x2;
+ fDESTRUCTING x3;
+ fUSINGTDB x4;
+ fNODE "superauto" 4
+| CT_symmetry(x1) ->
+ fCLAUSE x1;
+ fNODE "symmetry" 1
+| CT_tac_double(x1, x2) ->
+ fID_OR_INT x1;
+ fID_OR_INT x2;
+ fNODE "tac_double" 2
+| CT_tacsolve(x,l) ->
+ fTACTIC_COM x;
+ (List.iter fTACTIC_COM l);
+ fNODE "tacsolve" (1 + (List.length l))
+| CT_tactic_fun(x1, x2) ->
+ fID_OPT_NE_LIST x1;
+ fTACTIC_COM x2;
+ fNODE "tactic_fun" 2
+| CT_then(x,l) ->
+ fTACTIC_COM x;
+ (List.iter fTACTIC_COM l);
+ fNODE "then" (1 + (List.length l))
+| CT_transitivity(x1) ->
+ fFORMULA x1;
+ fNODE "transitivity" 1
+| CT_trivial -> fNODE "trivial" 0
+| CT_trivial_with(x1) ->
+ fID_NE_LIST_OR_STAR x1;
+ fNODE "trivial_with" 1
+| CT_truecut(x1, x2) ->
+ fID_OPT x1;
+ fFORMULA x2;
+ fNODE "truecut" 2
+| CT_try(x1) ->
+ fTACTIC_COM x1;
+ fNODE "try" 1
+| CT_use(x1) ->
+ fFORMULA x1;
+ fNODE "use" 1
+| CT_use_inversion(x1, x2, x3) ->
+ fID_OR_INT x1;
+ fFORMULA x2;
+ fID_LIST x3;
+ fNODE "use_inversion" 3
+| CT_user_tac(x1, x2) ->
+ fID x1;
+ fTARG_LIST x2;
+ fNODE "user_tac" 2
+and fTACTIC_OPT = function
+| CT_coerce_NONE_to_TACTIC_OPT x -> fNONE x
+| CT_coerce_TACTIC_COM_to_TACTIC_OPT x -> fTACTIC_COM x
+and fTAC_DEF = function
+| CT_tac_def(x1, x2) ->
+ fID x1;
+ fTACTIC_COM x2;
+ fNODE "tac_def" 2
+and fTAC_DEF_NE_LIST = function
+| CT_tac_def_ne_list(x,l) ->
+ fTAC_DEF x;
+ (List.iter fTAC_DEF l);
+ fNODE "tac_def_ne_list" (1 + (List.length l))
+and fTARG = function
+| CT_coerce_BINDING_to_TARG x -> fBINDING x
+| CT_coerce_COFIXTAC_to_TARG x -> fCOFIXTAC x
+| CT_coerce_FIXTAC_to_TARG x -> fFIXTAC x
+| CT_coerce_FORMULA_OR_INT_to_TARG x -> fFORMULA_OR_INT x
+| CT_coerce_PATTERN_to_TARG x -> fPATTERN x
+| CT_coerce_SCOMMENT_CONTENT_to_TARG x -> fSCOMMENT_CONTENT x
+| CT_coerce_SIGNED_INT_LIST_to_TARG x -> fSIGNED_INT_LIST x
+| CT_coerce_SINGLE_OPTION_VALUE_to_TARG x -> fSINGLE_OPTION_VALUE x
+| CT_coerce_SPEC_LIST_to_TARG x -> fSPEC_LIST x
+| CT_coerce_TACTIC_COM_to_TARG x -> fTACTIC_COM x
+| CT_coerce_TARG_LIST_to_TARG x -> fTARG_LIST x
+| CT_coerce_UNFOLD_to_TARG x -> fUNFOLD x
+| CT_coerce_UNFOLD_NE_LIST_to_TARG x -> fUNFOLD_NE_LIST x
+and fTARG_LIST = function
+| CT_targ_list l ->
+ (List.iter fTARG l);
+ fNODE "targ_list" (List.length l)
+and fTERM_CHANGE = function
+| CT_check_term(x1) ->
+ fFORMULA x1;
+ fNODE "check_term" 1
+| CT_inst_term(x1, x2) ->
+ fID x1;
+ fFORMULA x2;
+ fNODE "inst_term" 2
+and fTEXT = function
+| CT_coerce_ID_to_TEXT x -> fID x
+| CT_text_formula(x1) ->
+ fFORMULA x1;
+ fNODE "text_formula" 1
+| CT_text_h l ->
+ (List.iter fTEXT l);
+ fNODE "text_h" (List.length l)
+| CT_text_hv l ->
+ (List.iter fTEXT l);
+ fNODE "text_hv" (List.length l)
+| CT_text_op l ->
+ (List.iter fTEXT l);
+ fNODE "text_op" (List.length l)
+| CT_text_path(x1) ->
+ fSIGNED_INT_LIST x1;
+ fNODE "text_path" 1
+| CT_text_v l ->
+ (List.iter fTEXT l);
+ fNODE "text_v" (List.length l)
+and fTHEOREM_GOAL = function
+| CT_goal(x1) ->
+ fFORMULA x1;
+ fNODE "goal" 1
+| CT_theorem_goal(x1, x2, x3, x4) ->
+ fDEFN_OR_THM x1;
+ fID x2;
+ fBINDER_LIST x3;
+ fFORMULA x4;
+ fNODE "theorem_goal" 4
+and fTHM = function
+| CT_thm x -> fATOM "thm";
+ (f_atom_string x);
+ print_string "\n"and fTHM_OPT = function
+| CT_coerce_NONE_to_THM_OPT x -> fNONE x
+| CT_coerce_THM_to_THM_OPT x -> fTHM x
+and fTYPED_FORMULA = function
+| CT_typed_formula(x1, x2) ->
+ fFORMULA x1;
+ fFORMULA x2;
+ fNODE "typed_formula" 2
+and fUNFOLD = function
+| CT_coerce_ID_to_UNFOLD x -> fID x
+| CT_unfold_occ(x1, x2) ->
+ fID x1;
+ fINT_NE_LIST x2;
+ fNODE "unfold_occ" 2
+and fUNFOLD_NE_LIST = function
+| CT_unfold_ne_list(x,l) ->
+ fUNFOLD x;
+ (List.iter fUNFOLD l);
+ fNODE "unfold_ne_list" (1 + (List.length l))
+and fUSING = function
+| CT_coerce_NONE_to_USING x -> fNONE x
+| CT_using(x1, x2) ->
+ fFORMULA x1;
+ fSPEC_LIST x2;
+ fNODE "using" 2
+and fUSINGTDB = function
+| CT_coerce_NONE_to_USINGTDB x -> fNONE x
+| CT_usingtdb -> fNODE "usingtdb" 0
+and fVAR = function
+| CT_var x -> fATOM "var";
+ (f_atom_string x);
+ print_string "\n"and fVARG = function
+| CT_coerce_AST_to_VARG x -> fAST x
+| CT_coerce_AST_LIST_to_VARG x -> fAST_LIST x
+| CT_coerce_BINDER_to_VARG x -> fBINDER x
+| CT_coerce_BINDER_LIST_to_VARG x -> fBINDER_LIST x
+| CT_coerce_BINDER_NE_LIST_to_VARG x -> fBINDER_NE_LIST x
+| CT_coerce_FORMULA_LIST_to_VARG x -> fFORMULA_LIST x
+| CT_coerce_FORMULA_OPT_to_VARG x -> fFORMULA_OPT x
+| CT_coerce_FORMULA_OR_INT_to_VARG x -> fFORMULA_OR_INT x
+| CT_coerce_ID_OPT_OR_ALL_to_VARG x -> fID_OPT_OR_ALL x
+| CT_coerce_ID_OR_INT_OPT_to_VARG x -> fID_OR_INT_OPT x
+| CT_coerce_INT_LIST_to_VARG x -> fINT_LIST x
+| CT_coerce_SCOMMENT_CONTENT_to_VARG x -> fSCOMMENT_CONTENT x
+| CT_coerce_STRING_OPT_to_VARG x -> fSTRING_OPT x
+| CT_coerce_TACTIC_OPT_to_VARG x -> fTACTIC_OPT x
+| CT_coerce_VARG_LIST_to_VARG x -> fVARG_LIST x
+and fVARG_LIST = function
+| CT_varg_list l ->
+ (List.iter fVARG l);
+ fNODE "varg_list" (List.length l)
+and fVERBOSE_OPT = function
+| CT_coerce_NONE_to_VERBOSE_OPT x -> fNONE x
+| CT_verbose -> fNODE "verbose" 0
+;;
diff --git a/contrib/interface/vtp.mli b/contrib/interface/vtp.mli
new file mode 100644
index 00000000..fe30b317
--- /dev/null
+++ b/contrib/interface/vtp.mli
@@ -0,0 +1,15 @@
+open Ascent;;
+
+val fCOMMAND_LIST : ct_COMMAND_LIST -> unit;;
+val fCOMMAND : ct_COMMAND -> unit;;
+val fTACTIC_COM : ct_TACTIC_COM -> unit;;
+val fFORMULA : ct_FORMULA -> unit;;
+val fID : ct_ID -> unit;;
+val fSTRING : ct_STRING -> unit;;
+val fINT : ct_INT -> unit;;
+val fRULE_LIST : ct_RULE_LIST -> unit;;
+val fRULE : ct_RULE -> unit;;
+val fSIGNED_INT_LIST : ct_SIGNED_INT_LIST -> unit;;
+val fPREMISES_LIST : ct_PREMISES_LIST -> unit;;
+val fID_LIST : ct_ID_LIST -> unit;;
+val fTEXT : ct_TEXT -> unit;; \ No newline at end of file
diff --git a/contrib/interface/xlate.ml b/contrib/interface/xlate.ml
new file mode 100644
index 00000000..ed51b9cb
--- /dev/null
+++ b/contrib/interface/xlate.ml
@@ -0,0 +1,2118 @@
+(** Translation from coq abstract syntax trees to centaur vernac
+ *)
+open String;;
+open Char;;
+open Util;;
+open Ast;;
+open Names;;
+open Ascent;;
+open Genarg;;
+open Rawterm;;
+open Tacexpr;;
+open Vernacexpr;;
+open Decl_kinds;;
+open Topconstr;;
+open Libnames;;
+open Goptions;;
+
+
+let in_coq_ref = ref false;;
+
+let declare_in_coq () = in_coq_ref:=true;;
+
+let in_coq () = !in_coq_ref;;
+
+(* // Verify whether this is dead code, as of coq version 7 *)
+(* The following three sentences have been added to cope with a change
+of strategy from the Coq team in the way rules construct ast's. The
+problem is that now grammar rules will refer to identifiers by giving
+their absolute name, using the mutconstruct when needed. Unfortunately,
+when you have a mutconstruct structure, you don't have a way to guess
+the corresponding identifier without an environment, and the parser
+does not have an environment. We add one, only for the constructs
+that are always loaded. *)
+let type_table = ((Hashtbl.create 17) :
+ (string, ((string array) array)) Hashtbl.t);;
+
+Hashtbl.add type_table "Coq.Init.Logic.and"
+ [|[|"dummy";"conj"|]|];;
+
+Hashtbl.add type_table "Coq.Init.Datatypes.prod"
+ [|[|"dummy";"pair"|]|];;
+
+Hashtbl.add type_table "Coq.Init.Datatypes.nat"
+ [|[|"";"O"; "S"|]|];;
+
+Hashtbl.add type_table "Coq.ZArith.fast_integer.Z"
+[|[|"";"ZERO";"POS";"NEG"|]|];;
+
+
+Hashtbl.add type_table "Coq.ZArith.fast_integer.positive"
+[|[|"";"xI";"xO";"xH"|]|];;
+
+(*The following two codes are added to cope with the distinction
+ between ocaml and caml-light syntax while using ctcaml to
+ manipulate the program *)
+let code_plus = code (get "+" 0);;
+
+let code_minus = code (get "-" 0);;
+
+let coercion_description_holder = ref (function _ -> None : t -> int option);;
+
+let coercion_description t = !coercion_description_holder t;;
+
+let set_coercion_description f =
+ coercion_description_holder:=f; ();;
+
+let string_of_node_loc the_node =
+ match Util.unloc (loc the_node) with
+ (a,b) -> "(" ^ (string_of_int a) ^ ", " ^ (string_of_int b) ^ ")";;
+
+let xlate_error s = failwith ("Translation error: " ^ s);;
+
+let ctf_STRING_OPT_NONE = CT_coerce_NONE_to_STRING_OPT CT_none;;
+
+let ctf_STRING_OPT_SOME s = CT_coerce_STRING_to_STRING_OPT s;;
+
+let ctf_STRING_OPT = function
+ | None -> ctf_STRING_OPT_NONE
+ | Some s -> ctf_STRING_OPT_SOME (CT_string s)
+
+let ctv_ID_OPT_NONE = CT_coerce_NONE_to_ID_OPT CT_none;;
+
+let ctf_ID_OPT_SOME s = CT_coerce_ID_to_ID_OPT s;;
+
+let ctv_ID_OPT_OR_ALL_NONE =
+ CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (CT_coerce_NONE_to_ID_OPT CT_none);;
+
+let ctv_FORMULA_OPT_NONE =
+ CT_coerce_ID_OPT_to_FORMULA_OPT(CT_coerce_NONE_to_ID_OPT CT_none);;
+
+let ctv_PATTERN_OPT_NONE = CT_coerce_NONE_to_PATTERN_OPT CT_none;;
+
+let ctv_DEF_BODY_OPT_NONE = CT_coerce_FORMULA_OPT_to_DEF_BODY_OPT
+ ctv_FORMULA_OPT_NONE;;
+
+let ctf_ID_OPT_OR_ALL_SOME s =
+ CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (ctf_ID_OPT_SOME s);;
+
+let ctv_ID_OPT_OR_ALL_ALL = CT_all;;
+
+let ctv_SPEC_OPT_NONE = CT_coerce_NONE_to_SPEC_OPT CT_none;;
+
+let ct_coerce_FORMULA_to_DEF_BODY x =
+ CT_coerce_CONTEXT_PATTERN_to_DEF_BODY
+ (CT_coerce_FORMULA_to_CONTEXT_PATTERN x);;
+
+let castc x = CT_coerce_TYPED_FORMULA_to_FORMULA x;;
+
+let varc x = CT_coerce_ID_to_FORMULA x;;
+
+let xlate_ident id = CT_ident (string_of_id id)
+
+let ident_tac s = CT_user_tac (xlate_ident s, CT_targ_list []);;
+
+let ident_vernac s = CT_user_vernac (CT_ident s, CT_varg_list []);;
+
+let nums_to_int_list_aux l = List.map (fun x -> CT_int x) l;;
+
+let nums_to_int_list l = CT_int_list(nums_to_int_list_aux l);;
+
+let nums_to_int_ne_list n l =
+ CT_int_ne_list(CT_int n, nums_to_int_list_aux l);;
+
+type iTARG = Targ_command of ct_FORMULA
+ | Targ_intropatt of ct_INTRO_PATT_LIST
+ | Targ_id_list of ct_ID_LIST
+ | Targ_spec_list of ct_SPEC_LIST
+ | Targ_binding_com of ct_FORMULA
+ | Targ_ident of ct_ID
+ | Targ_int of ct_INT
+ | Targ_binding of ct_BINDING
+ | Targ_pattern of ct_PATTERN
+ | Targ_unfold of ct_UNFOLD
+ | Targ_unfold_ne_list of ct_UNFOLD_NE_LIST
+ | Targ_string of ct_STRING
+ | Targ_fixtac of ct_FIXTAC
+ | Targ_cofixtac of ct_COFIXTAC
+ | Targ_tacexp of ct_TACTIC_COM
+ | Targ_redexp of ct_RED_COM;;
+
+type iVARG = Varg_binder of ct_BINDER
+ | Varg_binderlist of ct_BINDER_LIST
+ | Varg_bindernelist of ct_BINDER_NE_LIST
+ | Varg_call of ct_ID * iVARG list
+ | Varg_constr of ct_FORMULA
+ | Varg_sorttype of ct_SORT_TYPE
+ | Varg_constrlist of ct_FORMULA list
+ | Varg_ident of ct_ID
+ | Varg_int of ct_INT
+ | Varg_intlist of ct_INT_LIST
+ | Varg_none
+ | Varg_string of ct_STRING
+ | Varg_tactic of ct_TACTIC_COM
+ | Varg_ast of ct_AST
+ | Varg_astlist of ct_AST_LIST
+ | Varg_tactic_arg of iTARG
+ | Varg_varglist of iVARG list;;
+
+
+let coerce_iVARG_to_FORMULA =
+ function
+ | Varg_constr x -> x
+ | Varg_sorttype x -> CT_coerce_SORT_TYPE_to_FORMULA x
+ | Varg_ident id -> CT_coerce_ID_to_FORMULA id
+ | _ -> xlate_error "coerce_iVARG_to_FORMULA: unexpected argument";;
+
+let coerce_iVARG_to_ID =
+ function Varg_ident id -> id
+ | _ -> xlate_error "coerce_iVARG_to_ID";;
+
+let coerce_VARG_to_ID =
+ function
+ | CT_coerce_ID_OPT_OR_ALL_to_VARG (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (CT_coerce_ID_to_ID_OPT x)) ->
+ x
+ | _ -> xlate_error "coerce_VARG_to_ID";;
+
+let xlate_ident_opt =
+ function
+ | None -> ctv_ID_OPT_NONE
+ | Some id -> ctf_ID_OPT_SOME (xlate_ident id)
+
+let xlate_id_to_id_or_int_opt s =
+ CT_coerce_ID_OPT_to_ID_OR_INT_OPT
+ (CT_coerce_ID_to_ID_OPT (CT_ident (string_of_id s)));;
+
+let xlate_int_to_id_or_int_opt n =
+ CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT
+ (CT_coerce_INT_to_ID_OR_INT (CT_int n));;
+
+let none_in_id_or_int_opt =
+ CT_coerce_ID_OPT_to_ID_OR_INT_OPT
+ (CT_coerce_NONE_to_ID_OPT(CT_none));;
+
+let xlate_int_opt = function
+ | Some n -> CT_coerce_INT_to_INT_OPT (CT_int n)
+ | None -> CT_coerce_NONE_to_INT_OPT CT_none
+
+let tac_qualid_to_ct_ID ref =
+ CT_ident (Libnames.string_of_qualid (snd (qualid_of_reference ref)))
+
+let loc_qualid_to_ct_ID ref =
+ CT_ident (Libnames.string_of_qualid (snd (qualid_of_reference ref)))
+
+let int_of_meta n = int_of_string (string_of_id n)
+let is_int_meta n = try let _ = int_of_meta n in true with _ -> false
+
+let xlate_qualid_list l = CT_id_list (List.map loc_qualid_to_ct_ID l)
+
+let reference_to_ct_ID = function
+ | Ident (_,id) -> CT_ident (Names.string_of_id id)
+ | Qualid (_,qid) -> CT_ident (Libnames.string_of_qualid qid)
+
+let xlate_class = function
+ | FunClass -> CT_ident "FUNCLASS"
+ | SortClass -> CT_ident "SORTCLASS"
+ | RefClass qid -> loc_qualid_to_ct_ID qid
+
+let id_to_pattern_var ctid =
+ match ctid with
+ | CT_metaid _ -> xlate_error "metaid not expected in pattern_var"
+ | CT_ident "_" ->
+ CT_coerce_ID_OPT_to_MATCH_PATTERN (CT_coerce_NONE_to_ID_OPT CT_none)
+ | CT_ident id_string ->
+ CT_coerce_ID_OPT_to_MATCH_PATTERN
+ (CT_coerce_ID_to_ID_OPT (CT_ident id_string))
+ | CT_metac _ -> assert false;;
+
+exception Not_natural;;
+
+let xlate_sort =
+ function
+ | RProp Term.Pos -> CT_sortc "Set"
+ | RProp Term.Null -> CT_sortc "Prop"
+ | RType None -> CT_sortc "Type"
+ | RType (Some u) -> xlate_error "xlate_sort";;
+
+
+let xlate_qualid a =
+ let d,i = Libnames.repr_qualid a in
+ let l = Names.repr_dirpath d in
+ List.fold_left (fun s i1 -> (string_of_id i1) ^ "." ^ s) (string_of_id i) l;;
+
+(* // The next two functions should be modified to make direct reference
+ to a notation operator *)
+let notation_to_formula s l = CT_notation(CT_string s, CT_formula_list l);;
+
+let xlate_reference = function
+ Ident(_,i) -> CT_ident (string_of_id i)
+ | Qualid(_, q) -> CT_ident (xlate_qualid q);;
+let rec xlate_match_pattern =
+ function
+ | CPatAtom(_, Some s) -> id_to_pattern_var (xlate_reference s)
+ | CPatAtom(_, None) -> id_to_pattern_var (CT_ident "_")
+ | CPatCstr(_, f, []) -> id_to_pattern_var (xlate_reference f)
+ | CPatCstr (_, f1 , (arg1 :: args)) ->
+ CT_pattern_app
+ (id_to_pattern_var (xlate_reference f1),
+ CT_match_pattern_ne_list
+ (xlate_match_pattern arg1,
+ List.map xlate_match_pattern args))
+ | CPatAlias (_, pattern, id) ->
+ CT_pattern_as
+ (xlate_match_pattern pattern, CT_coerce_ID_to_ID_OPT (xlate_ident id))
+ | CPatDelimiters(_, key, p) ->
+ CT_pattern_delimitors(CT_num_type key, xlate_match_pattern p)
+ | CPatNumeral(_,n) ->
+ CT_coerce_NUM_to_MATCH_PATTERN
+ (CT_int_encapsulator(Bignat.bigint_to_string n))
+ | CPatNotation(_, s, l) ->
+ CT_pattern_notation(CT_string s,
+ CT_match_pattern_list(List.map xlate_match_pattern l))
+;;
+
+
+let xlate_id_opt_aux = function
+ Name id -> ctf_ID_OPT_SOME(CT_ident (string_of_id id))
+ | Anonymous -> ctv_ID_OPT_NONE;;
+
+let xlate_id_opt (_, v) = xlate_id_opt_aux v;;
+
+let xlate_id_opt_ne_list = function
+ [] -> assert false
+ | a::l -> CT_id_opt_ne_list(xlate_id_opt a, List.map xlate_id_opt l);;
+
+
+let rec last = function
+ [] -> assert false
+ | [a] -> a
+ | a::tl -> last tl;;
+
+let rec decompose_last = function
+ [] -> assert false
+ | [a] -> [], a
+ | a::tl -> let rl, b = decompose_last tl in (a::rl), b;;
+
+let make_fix_struct (n,bl) =
+ let names = names_of_local_assums bl in
+ let nn = List.length names in
+ if nn = 1 then ctv_ID_OPT_NONE
+ else if n < nn then xlate_id_opt(List.nth names n)
+ else xlate_error "unexpected result of parsing for Fixpoint";;
+
+
+let rec xlate_binder = function
+ (l,t) -> CT_binder(xlate_id_opt_ne_list l, xlate_formula t)
+and xlate_return_info = function
+| (Some Anonymous, None) | (None, None) ->
+ CT_coerce_NONE_to_RETURN_INFO CT_none
+| (None, Some t) -> CT_return(xlate_formula t)
+| (Some x, Some t) -> CT_as_and_return(xlate_id_opt_aux x, xlate_formula t)
+| (Some _, None) -> assert false
+and xlate_formula_opt =
+ function
+ | None -> ctv_FORMULA_OPT_NONE
+ | Some e -> CT_coerce_FORMULA_to_FORMULA_OPT (xlate_formula e)
+
+and xlate_binder_l = function
+ LocalRawAssum(l,t) -> CT_binder(xlate_id_opt_ne_list l, xlate_formula t)
+ | LocalRawDef(n,v) -> CT_coerce_DEF_to_BINDER(CT_def(xlate_id_opt n,
+ xlate_formula v))
+and
+ xlate_match_pattern_ne_list = function
+ [] -> assert false
+ | a::l -> CT_match_pattern_ne_list(xlate_match_pattern a,
+ List.map xlate_match_pattern l)
+and translate_one_equation = function
+ (_,lp, a) -> CT_eqn ( xlate_match_pattern_ne_list lp,
+ xlate_formula a)
+and
+ xlate_binder_ne_list = function
+ [] -> assert false
+ | a::l -> CT_binder_ne_list(xlate_binder a, List.map xlate_binder l)
+and
+ xlate_binder_list = function
+ l -> CT_binder_list( List.map xlate_binder_l l)
+and (xlate_formula:Topconstr.constr_expr -> Ascent.ct_FORMULA) = function
+
+ CRef r -> varc (xlate_reference r)
+ | CArrow(_,a,b)-> CT_arrowc (xlate_formula a, xlate_formula b)
+ | CProdN(_,ll,b) as whole_term ->
+ let rec gather_binders = function
+ CProdN(_, ll, b) ->
+ ll@(gather_binders b)
+ | _ -> [] in
+ let rec fetch_ultimate_body = function
+ CProdN(_, _, b) -> fetch_ultimate_body b
+ | a -> a in
+ CT_prodc(xlate_binder_ne_list (gather_binders whole_term),
+ xlate_formula (fetch_ultimate_body b))
+ | CLambdaN(_,ll,b)-> CT_lambdac(xlate_binder_ne_list ll, xlate_formula b)
+ | CLetIn(_, v, a, b) ->
+ CT_letin(CT_def(xlate_id_opt v, xlate_formula a), xlate_formula b)
+ | CAppExpl(_, (Some n, r), l) ->
+ let l', last = decompose_last l in
+ CT_proj(xlate_formula last,
+ CT_formula_ne_list
+ (CT_bang(varc (xlate_reference r)),
+ List.map xlate_formula l'))
+ | CAppExpl(_, (None, r), []) -> CT_bang(varc(xlate_reference r))
+ | CAppExpl(_, (None, r), l) ->
+ CT_appc(CT_bang(varc (xlate_reference r)),
+ xlate_formula_ne_list l)
+ | CApp(_, (Some n,f), l) ->
+ let l', last = decompose_last l in
+ CT_proj(xlate_formula_expl last,
+ CT_formula_ne_list
+ (xlate_formula f, List.map xlate_formula_expl l'))
+ | CApp(_, (_,f), l) ->
+ CT_appc(xlate_formula f, xlate_formula_expl_ne_list l)
+ | CCases (_, _, [], _) -> assert false
+ | CCases (_, (Some _, _), _, _) -> xlate_error "NOT parsed: Cases with Some"
+ | CCases (_,(None, ret_type), tm::tml, eqns)->
+ CT_cases(CT_matched_formula_ne_list(xlate_matched_formula tm,
+ List.map xlate_matched_formula tml),
+ xlate_formula_opt ret_type,
+ CT_eqn_list (List.map (fun x -> translate_one_equation x) eqns))
+ | COrderedCase (_,Term.IfStyle,po,c,[b1;b2]) ->
+ xlate_error "No more COrderedCase"
+ | CLetTuple (_,a::l, ret_info, c, b) ->
+ CT_let_tuple(CT_id_opt_ne_list(xlate_id_opt_aux a,
+ List.map xlate_id_opt_aux l),
+ xlate_return_info ret_info,
+ xlate_formula c,
+ xlate_formula b)
+ | CLetTuple (_, [], _, _, _) -> xlate_error "NOT parsed: Let with ()"
+ | CIf (_,c, ret_info, b1, b2) ->
+ CT_if
+ (xlate_formula c, xlate_return_info ret_info,
+ xlate_formula b1, xlate_formula b2)
+
+ | COrderedCase (_,Term.LetStyle, po, c, [CLambdaN(_,[l,_],b)]) ->
+ CT_inductive_let(xlate_formula_opt po,
+ xlate_id_opt_ne_list l,
+ xlate_formula c, xlate_formula b)
+ | COrderedCase (_,c,v,e,l) ->
+ let case_string = match c with
+ Term.MatchStyle -> "Match"
+ | _ -> "Case" in
+ CT_elimc(CT_case "Case", xlate_formula_opt v, xlate_formula e,
+ CT_formula_list(List.map xlate_formula l))
+ | CSort(_, s) -> CT_coerce_SORT_TYPE_to_FORMULA(xlate_sort s)
+ | CNotation(_, s, l) -> notation_to_formula s (List.map xlate_formula l)
+ | CNumeral(_, i) ->
+ CT_coerce_NUM_to_FORMULA(CT_int_encapsulator(Bignat.bigint_to_string i))
+ | CHole _ -> CT_existvarc
+(* I assume CDynamic has been inserted to make free form extension of
+ the language possible, but this would go agains the logic of pcoq anyway. *)
+ | CDynamic (_, _) -> assert false
+ | CDelimiters (_, key, num) ->
+ CT_num_encapsulator(CT_num_type key , xlate_formula num)
+ | CCast (_, e, t) ->
+ CT_coerce_TYPED_FORMULA_to_FORMULA
+ (CT_typed_formula(xlate_formula e, xlate_formula t))
+ | CPatVar (_, (_,i)) when is_int_meta i ->
+ CT_coerce_ID_to_FORMULA(CT_metac (CT_int (int_of_meta i)))
+ | CPatVar (_, (false, s)) ->
+ CT_coerce_ID_to_FORMULA(CT_metaid (string_of_id s))
+ | CPatVar (_, (true, s)) ->
+ xlate_error "Second order variable not supported"
+ | CEvar (_, _) -> xlate_error "CEvar not supported"
+ | CCoFix (_, (_, id), lm::lmi) ->
+ let strip_mutcorec (fid, bl,arf, ardef) =
+ CT_cofix_rec (xlate_ident fid, xlate_binder_list bl,
+ xlate_formula arf, xlate_formula ardef) in
+ CT_cofixc(xlate_ident id,
+ (CT_cofix_rec_list (strip_mutcorec lm, List.map strip_mutcorec lmi)))
+ | CFix (_, (_, id), lm::lmi) ->
+ let strip_mutrec (fid, n, bl, arf, ardef) =
+ let (struct_arg,bl,arf,ardef) =
+ if bl = [] then
+ let (bl,arf,ardef) = Ppconstr.split_fix (n+1) arf ardef in
+ let bl = List.map (fun(nal,ty)->LocalRawAssum(nal,ty)) bl in
+ (xlate_id_opt(List.nth (names_of_local_assums bl) n),bl,arf,ardef)
+ else (make_fix_struct (n, bl),bl,arf,ardef) in
+ let arf = xlate_formula arf in
+ let ardef = xlate_formula ardef in
+ match xlate_binder_list bl with
+ | CT_binder_list (b :: bl) ->
+ CT_fix_rec (xlate_ident fid, CT_binder_ne_list (b, bl),
+ struct_arg, arf, ardef)
+ | _ -> xlate_error "mutual recursive" in
+ CT_fixc (xlate_ident id,
+ CT_fix_binder_list
+ (CT_coerce_FIX_REC_to_FIX_BINDER
+ (strip_mutrec lm), List.map
+ (fun x-> CT_coerce_FIX_REC_to_FIX_BINDER (strip_mutrec x))
+ lmi))
+ | CCoFix _ -> assert false
+ | CFix _ -> assert false
+and xlate_matched_formula = function
+ (f, (Some x, Some y)) ->
+ CT_formula_as_in(xlate_formula f, xlate_id_opt_aux x, xlate_formula y)
+ | (f, (None, Some y)) ->
+ CT_formula_in(xlate_formula f, xlate_formula y)
+ | (f, (Some x, None)) ->
+ CT_formula_as(xlate_formula f, xlate_id_opt_aux x)
+ | (f, (None, None)) ->
+ CT_coerce_FORMULA_to_MATCHED_FORMULA(xlate_formula f)
+and xlate_formula_expl = function
+ (a, None) -> xlate_formula a
+ | (a, Some (_,ExplByPos i)) ->
+ xlate_error "explicitation of implicit by rank not supported"
+ | (a, Some (_,ExplByName i)) ->
+ CT_labelled_arg(CT_ident (string_of_id i), xlate_formula a)
+and xlate_formula_expl_ne_list = function
+ [] -> assert false
+ | a::l -> CT_formula_ne_list(xlate_formula_expl a, List.map xlate_formula_expl l)
+and xlate_formula_ne_list = function
+ [] -> assert false
+ | a::l -> CT_formula_ne_list(xlate_formula a, List.map xlate_formula l);;
+
+let (xlate_ident_or_metaid:
+ Names.identifier Util.located Tacexpr.or_metaid -> ct_ID) = function
+ AI (_, x) -> xlate_ident x
+ | MetaId(_, x) -> CT_metaid x;;
+
+let xlate_hyp = function
+ | AI (_,id) -> xlate_ident id
+ | MetaId _ -> xlate_error "MetaId should occur only in quotations"
+
+let xlate_hyp_location =
+ function
+ | AI (_,id), nums, (InHypTypeOnly,_) ->
+ CT_intype(xlate_ident id, nums_to_int_list nums)
+ | AI (_,id), nums, (InHypValueOnly,_) ->
+ CT_invalue(xlate_ident id, nums_to_int_list nums)
+ | AI (_,id), [], (InHyp,_) ->
+ CT_coerce_UNFOLD_to_HYP_LOCATION
+ (CT_coerce_ID_to_UNFOLD (xlate_ident id))
+ | AI (_,id), a::l, (InHyp,_) ->
+ CT_coerce_UNFOLD_to_HYP_LOCATION
+ (CT_unfold_occ (xlate_ident id,
+ CT_int_ne_list(CT_int a, nums_to_int_list_aux l)))
+ | MetaId _, _,_ ->
+ xlate_error "MetaId not supported in xlate_hyp_location (should occur only in quotations)"
+
+let xlate_clause cls =
+ let hyps_info =
+ match cls.onhyps with
+ None -> CT_coerce_STAR_to_HYP_LOCATION_LIST_OR_STAR CT_star
+ | Some l -> CT_hyp_location_list(List.map xlate_hyp_location l) in
+ CT_clause
+ (hyps_info,
+ if cls.onconcl then
+ CT_coerce_STAR_to_STAR_OPT CT_star
+ else
+ CT_coerce_NONE_to_STAR_OPT CT_none)
+
+(** Tactics
+ *)
+let strip_targ_spec_list =
+ function
+ | Targ_spec_list x -> x
+ | _ -> xlate_error "strip tactic: non binding-list argument";;
+
+let strip_targ_binding =
+ function
+ | Targ_binding x -> x
+ | _ -> xlate_error "strip tactic: non-binding argument";;
+
+let strip_targ_command =
+ function
+ | Targ_command x -> x
+ | Targ_binding_com x -> x
+ | _ -> xlate_error "strip tactic: non-command argument";;
+
+let strip_targ_ident =
+ function
+ | Targ_ident x -> x
+ | _ -> xlate_error "strip tactic: non-ident argument";;
+
+let strip_targ_int =
+ function
+ | Targ_int x -> x
+ | _ -> xlate_error "strip tactic: non-int argument";;
+
+let strip_targ_pattern =
+ function
+ | Targ_pattern x -> x
+ | _ -> xlate_error "strip tactic: non-pattern argument";;
+
+let strip_targ_unfold =
+ function
+ | Targ_unfold x -> x
+ | _ -> xlate_error "strip tactic: non-unfold argument";;
+
+let strip_targ_fixtac =
+ function
+ | Targ_fixtac x -> x
+ | _ -> xlate_error "strip tactic: non-fixtac argument";;
+
+let strip_targ_cofixtac =
+ function
+ | Targ_cofixtac x -> x
+ | _ -> xlate_error "strip tactic: non-cofixtac argument";;
+
+(*Need to transform formula to id for "Prolog" tactic problem *)
+let make_ID_from_FORMULA =
+ function
+ | CT_coerce_ID_to_FORMULA id -> id
+ | _ -> xlate_error "make_ID_from_FORMULA: non-formula argument";;
+
+let make_ID_from_iTARG_FORMULA x = make_ID_from_FORMULA (strip_targ_command x);;
+
+let xlate_quantified_hypothesis = function
+ | AnonHyp n -> CT_coerce_INT_to_ID_OR_INT (CT_int n)
+ | NamedHyp id -> CT_coerce_ID_to_ID_OR_INT (xlate_ident id)
+
+let xlate_quantified_hypothesis_opt = function
+ | None ->
+ CT_coerce_ID_OPT_to_ID_OR_INT_OPT ctv_ID_OPT_NONE
+ | Some (AnonHyp n) -> xlate_int_to_id_or_int_opt n
+ | Some (NamedHyp id) -> xlate_id_to_id_or_int_opt id;;
+
+let xlate_id_or_int = function
+ ArgArg n -> CT_coerce_INT_to_ID_OR_INT(CT_int n)
+ | ArgVar(_, s) -> CT_coerce_ID_to_ID_OR_INT(xlate_ident s);;
+
+let xlate_explicit_binding (loc,h,c) =
+ CT_binding (xlate_quantified_hypothesis h, xlate_formula c)
+
+let xlate_bindings = function
+ | ImplicitBindings l ->
+ CT_coerce_FORMULA_LIST_to_SPEC_LIST
+ (CT_formula_list (List.map xlate_formula l))
+ | ExplicitBindings l ->
+ CT_coerce_BINDING_LIST_to_SPEC_LIST
+ (CT_binding_list (List.map xlate_explicit_binding l))
+ | NoBindings ->
+ CT_coerce_FORMULA_LIST_to_SPEC_LIST (CT_formula_list [])
+
+let strip_targ_spec_list =
+ function
+ | Targ_spec_list x -> x
+ | _ -> xlate_error "strip_tar_spec_list";;
+
+let strip_targ_intropatt =
+ function
+ | Targ_intropatt x -> x
+ | _ -> xlate_error "strip_targ_intropatt";;
+
+let get_flag r =
+ let conv_flags, red_ids =
+ if r.rDelta then
+ [CT_delta], CT_unfbut (List.map tac_qualid_to_ct_ID r.rConst)
+ else
+ (if r.rConst = []
+ then (* probably useless: just for compatibility *) []
+ else [CT_delta]),
+ CT_unf (List.map tac_qualid_to_ct_ID r.rConst) in
+ let conv_flags = if r.rBeta then CT_beta::conv_flags else conv_flags in
+ let conv_flags = if r.rIota then CT_iota::conv_flags else conv_flags in
+ let conv_flags = if r.rZeta then CT_zeta::conv_flags else conv_flags in
+ (* Rem: EVAR flag obsolète *)
+ conv_flags, red_ids
+
+let rec xlate_intro_pattern =
+ function
+ | IntroOrAndPattern [] -> assert false
+ | IntroOrAndPattern (fp::ll) ->
+ CT_disj_pattern
+ (CT_intro_patt_list(List.map xlate_intro_pattern fp),
+ List.map
+ (fun l ->
+ CT_intro_patt_list(List.map xlate_intro_pattern l))
+ ll)
+ | IntroWildcard -> CT_coerce_ID_to_INTRO_PATT(CT_ident "_" )
+ | IntroIdentifier c -> CT_coerce_ID_to_INTRO_PATT(xlate_ident c)
+
+let compute_INV_TYPE = function
+ FullInversionClear -> CT_inv_clear
+ | SimpleInversion -> CT_inv_simple
+ | FullInversion -> CT_inv_regular
+
+let is_tactic_special_case = function
+ "AutoRewrite" -> true
+ | _ -> false;;
+
+let xlate_context_pattern = function
+ | Term v ->
+ CT_coerce_FORMULA_to_CONTEXT_PATTERN (xlate_formula v)
+ | Subterm (idopt, v) ->
+ CT_context(xlate_ident_opt idopt, xlate_formula v)
+
+
+let xlate_match_context_hyps = function
+ | Hyp (na,b) -> CT_premise_pattern(xlate_id_opt na, xlate_context_pattern b);;
+
+let xlate_arg_to_id_opt = function
+ Some id -> CT_coerce_ID_to_ID_OPT(CT_ident (string_of_id id))
+ | None -> ctv_ID_OPT_NONE;;
+
+let xlate_largs_to_id_opt largs =
+ match List.map xlate_arg_to_id_opt largs with
+ fst::rest -> fst, rest
+ | _ -> assert false;;
+
+let xlate_int_or_constr = function
+ ElimOnConstr a -> CT_coerce_FORMULA_to_FORMULA_OR_INT(xlate_formula a)
+ | ElimOnIdent(_,i) ->
+ CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_ID_to_ID_OR_INT(xlate_ident i))
+ | ElimOnAnonHyp i ->
+ CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_INT_to_ID_OR_INT(CT_int i));;
+
+let xlate_using = function
+ None -> CT_coerce_NONE_to_USING(CT_none)
+ | Some (c2,sl2) -> CT_using (xlate_formula c2, xlate_bindings sl2);;
+
+let xlate_one_unfold_block = function
+ ([],qid) -> CT_coerce_ID_to_UNFOLD(tac_qualid_to_ct_ID qid)
+ | (n::nums, qid) ->
+ CT_unfold_occ(tac_qualid_to_ct_ID qid, nums_to_int_ne_list n nums);;
+
+let xlate_intro_patt_opt = function
+ None -> CT_coerce_ID_OPT_to_INTRO_PATT_OPT ctv_ID_OPT_NONE
+ | Some fp -> CT_coerce_INTRO_PATT_to_INTRO_PATT_OPT (xlate_intro_pattern fp)
+
+let rec (xlate_tacarg:raw_tactic_arg -> ct_TACTIC_ARG) =
+ function
+ | TacVoid ->
+ CT_void
+ | Tacexp t ->
+ CT_coerce_TACTIC_COM_to_TACTIC_ARG(xlate_tactic t)
+ | Integer n ->
+ CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_INT_to_ID_OR_INT (CT_int n)))
+ | Reference r ->
+ CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_ID_to_ID_OR_INT (reference_to_ct_ID r)))
+ | TacDynamic _ ->
+ failwith "Dynamics not treated in xlate_ast"
+ | ConstrMayEval (ConstrTerm c) ->
+ CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG
+ (CT_coerce_FORMULA_to_FORMULA_OR_INT (xlate_formula c))
+ | ConstrMayEval(ConstrEval(r,c)) ->
+ CT_coerce_EVAL_CMD_to_TACTIC_ARG
+ (CT_eval(CT_coerce_NONE_to_INT_OPT CT_none, xlate_red_tactic r,
+ xlate_formula c))
+ | ConstrMayEval(ConstrTypeOf(c)) ->
+ CT_coerce_TERM_CHANGE_to_TACTIC_ARG(CT_check_term(xlate_formula c))
+ | MetaIdArg _ ->
+ xlate_error "MetaIdArg should only be used in quotations"
+ | t ->
+ CT_coerce_TACTIC_COM_to_TACTIC_ARG(xlate_call_or_tacarg t)
+
+and (xlate_call_or_tacarg:raw_tactic_arg -> ct_TACTIC_COM) =
+ function
+ (* Moved from xlate_tactic *)
+ | TacCall (_, r, a::l) ->
+ CT_simple_user_tac
+ (reference_to_ct_ID r,
+ CT_tactic_arg_list(xlate_tacarg a,List.map xlate_tacarg l))
+ | Reference (Ident (_,s)) -> ident_tac s
+ | ConstrMayEval(ConstrTerm a) ->
+ CT_formula_marker(xlate_formula a)
+ | TacFreshId s -> CT_fresh(ctf_STRING_OPT s)
+ | t -> xlate_error "TODO LATER: result other than tactic or constr"
+
+and xlate_red_tactic =
+ function
+ | Red true -> xlate_error ""
+ | Red false -> CT_red
+ | Hnf -> CT_hnf
+ | Simpl None -> CT_simpl ctv_PATTERN_OPT_NONE
+ | Simpl (Some (l,c)) ->
+ CT_simpl
+ (CT_coerce_PATTERN_to_PATTERN_OPT
+ (CT_pattern_occ
+ (CT_int_list(List.map (fun n -> CT_int n) l), xlate_formula c)))
+ | Cbv flag_list ->
+ let conv_flags, red_ids = get_flag flag_list in
+ CT_cbv (CT_conversion_flag_list conv_flags, red_ids)
+ | Lazy flag_list ->
+ let conv_flags, red_ids = get_flag flag_list in
+ CT_lazy (CT_conversion_flag_list conv_flags, red_ids)
+ | Unfold unf_list ->
+ let ct_unf_list = List.map xlate_one_unfold_block unf_list in
+ (match ct_unf_list with
+ | first :: others -> CT_unfold (CT_unfold_ne_list (first, others))
+ | [] -> error "there should be at least one thing to unfold")
+ | Fold formula_list ->
+ CT_fold(CT_formula_list(List.map xlate_formula formula_list))
+ | Pattern l ->
+ let pat_list = List.map (fun (nums,c) ->
+ CT_pattern_occ
+ (CT_int_list (List.map (fun x -> CT_int x) nums),
+ xlate_formula c)) l in
+ (match pat_list with
+ | first :: others -> CT_pattern (CT_pattern_ne_list (first, others))
+ | [] -> error "Expecting at least one pattern in a Pattern command")
+ | ExtraRedExpr _ -> xlate_error "TODO LATER: ExtraRedExpr (probably dead code)"
+
+and xlate_local_rec_tac = function
+ (* TODO LATER: local recursive tactics and global ones should be handled in
+ the same manner *)
+ | ((_,x),(argl,tac)) ->
+ let fst, rest = xlate_largs_to_id_opt argl in
+ CT_rec_tactic_fun(xlate_ident x,
+ CT_id_opt_ne_list(fst, rest),
+ xlate_tactic tac)
+
+and xlate_tactic =
+ function
+ | TacFun (largs, t) ->
+ let fst, rest = xlate_largs_to_id_opt largs in
+ CT_tactic_fun (CT_id_opt_ne_list(fst, rest), xlate_tactic t)
+ | TacThen (t1,t2) ->
+ (match xlate_tactic t1 with
+ CT_then(a,l) -> CT_then(a,l@[xlate_tactic t2])
+ | t -> CT_then (t,[xlate_tactic t2]))
+ | TacThens(t1,[]) -> assert false
+ | TacThens(t1,t::l) ->
+ let ct = xlate_tactic t in
+ let cl = List.map xlate_tactic l in
+ (match xlate_tactic t1 with
+ CT_then(ct1,cl1) -> CT_then(ct1, cl1@[CT_parallel(ct, cl)])
+ | ct1 -> CT_then(ct1,[CT_parallel(ct, cl)]))
+ | TacFirst([]) -> assert false
+ | TacFirst(t1::l)-> CT_first(xlate_tactic t1, List.map xlate_tactic l)
+ | TacSolve([]) -> assert false
+ | TacSolve(t1::l)-> CT_tacsolve(xlate_tactic t1, List.map xlate_tactic l)
+ | TacDo(count, t) -> CT_do(xlate_id_or_int count, xlate_tactic t)
+ | TacTry t -> CT_try (xlate_tactic t)
+ | TacRepeat t -> CT_repeat(xlate_tactic t)
+ | TacAbstract(t,id_opt) ->
+ CT_abstract((match id_opt with
+ None -> ctv_ID_OPT_NONE
+ | Some id -> ctf_ID_OPT_SOME (CT_ident (string_of_id id))),
+ xlate_tactic t)
+ | TacProgress t -> CT_progress(xlate_tactic t)
+ | TacOrelse(t1,t2) -> CT_orelse(xlate_tactic t1, xlate_tactic t2)
+ | TacMatch (exp, rules) ->
+ CT_match_tac(xlate_tactic exp,
+ match List.map
+ (function
+ | Pat ([],p,tac) ->
+ CT_match_tac_rule(xlate_context_pattern p,
+ mk_let_value tac)
+ | Pat (_,p,tac) -> xlate_error"No hyps in pure Match"
+ | All tac ->
+ CT_match_tac_rule
+ (CT_coerce_FORMULA_to_CONTEXT_PATTERN
+ CT_existvarc,
+ mk_let_value tac)) rules with
+ | [] -> assert false
+ | fst::others ->
+ CT_match_tac_rules(fst, others))
+ | TacMatchContext (_,[]) -> failwith ""
+ | TacMatchContext (false,rule1::rules) ->
+ CT_match_context(xlate_context_rule rule1,
+ List.map xlate_context_rule rules)
+ | TacMatchContext (true,rule1::rules) ->
+ CT_match_context_reverse(xlate_context_rule rule1,
+ List.map xlate_context_rule rules)
+ | TacLetIn (l, t) ->
+ let cvt_clause =
+ function
+ ((_,s),None,ConstrMayEval v) ->
+ CT_let_clause(xlate_ident s,
+ CT_coerce_NONE_to_TACTIC_OPT CT_none,
+ CT_coerce_DEF_BODY_to_LET_VALUE
+ (formula_to_def_body v))
+ | ((_,s),None,Tacexp t) ->
+ CT_let_clause(xlate_ident s,
+ CT_coerce_NONE_to_TACTIC_OPT CT_none,
+ CT_coerce_TACTIC_COM_to_LET_VALUE
+ (xlate_tactic t))
+ | ((_,s),None,t) ->
+ CT_let_clause(xlate_ident s,
+ CT_coerce_NONE_to_TACTIC_OPT CT_none,
+ CT_coerce_TACTIC_COM_to_LET_VALUE
+ (xlate_call_or_tacarg t))
+ | ((_,s),Some c,t) ->
+ CT_let_clause(xlate_ident s,
+ CT_coerce_TACTIC_COM_to_TACTIC_OPT(xlate_tactic c),
+ CT_coerce_TACTIC_COM_to_LET_VALUE
+ (xlate_call_or_tacarg t)) in
+ let cl_l = List.map cvt_clause l in
+ (match cl_l with
+ | [] -> assert false
+ | fst::others ->
+ CT_let_ltac (CT_let_clauses(fst, others), mk_let_value t))
+ | TacLetRecIn([], _) -> xlate_error "recursive definition with no definition"
+ | TacLetRecIn(f1::l, t) ->
+ let tl = CT_rec_tactic_fun_list
+ (xlate_local_rec_tac f1, List.map xlate_local_rec_tac l) in
+ CT_rec_tactic_in(tl, xlate_tactic t)
+ | TacAtom (_, t) -> xlate_tac t
+ | TacFail (count, "") -> CT_fail(xlate_id_or_int count, ctf_STRING_OPT_NONE)
+ | TacFail (count, s) -> CT_fail(xlate_id_or_int count,
+ ctf_STRING_OPT_SOME (CT_string s))
+ | TacId "" -> CT_idtac ctf_STRING_OPT_NONE
+ | TacId s -> CT_idtac(ctf_STRING_OPT_SOME (CT_string s))
+ | TacInfo t -> CT_info(xlate_tactic t)
+ | TacArg a -> xlate_call_or_tacarg a
+
+and xlate_tac =
+ function
+ | TacExtend (_, "firstorder", tac_opt::l) ->
+ let t1 = match out_gen (wit_opt rawwit_tactic) tac_opt with
+ | None -> CT_coerce_NONE_to_TACTIC_OPT CT_none
+ | Some t2 -> CT_coerce_TACTIC_COM_to_TACTIC_OPT (xlate_tactic t2) in
+ (match l with
+ [] -> CT_firstorder t1
+ | [l1] ->
+ (match genarg_tag l1 with
+ List1ArgType PreIdentArgType ->
+ let l2 = List.map
+ (fun x -> CT_ident x)
+ (out_gen (wit_list1 rawwit_pre_ident) l1) in
+ let fst,l3 =
+ match l2 with fst::l3 -> fst,l3 | [] -> assert false in
+ CT_firstorder_using(t1, CT_id_ne_list(fst, l3))
+ | List1ArgType RefArgType ->
+ let l2 = List.map reference_to_ct_ID
+ (out_gen (wit_list1 rawwit_ref) l1) in
+ let fst,l3 =
+ match l2 with fst::l3 -> fst, l3 | [] -> assert false in
+ CT_firstorder_with(t1, CT_id_ne_list(fst, l3))
+ | _ -> assert false)
+ | _ -> assert false)
+ | TacExtend (_, "refine", [c]) ->
+ CT_refine (xlate_formula (out_gen rawwit_casted_open_constr c))
+ | TacExtend (_,"absurd",[c]) ->
+ CT_absurd (xlate_formula (out_gen rawwit_constr c))
+ | TacExtend (_,"contradiction",[opt_c]) ->
+ (match out_gen (wit_opt rawwit_constr_with_bindings) opt_c with
+ None -> CT_contradiction
+ | Some(c, b) ->
+ let c1 = xlate_formula c in
+ let bindings = xlate_bindings b in
+ CT_contradiction_thm(c1, bindings))
+ | TacChange (None, f, b) -> CT_change (xlate_formula f, xlate_clause b)
+ | TacChange (Some(l,c), f, b) ->
+ (* TODO LATER: combine with other constructions of pattern_occ *)
+ CT_change_local(
+ CT_pattern_occ(CT_int_list(List.map (fun n -> CT_int n) l),
+ xlate_formula c),
+ xlate_formula f,
+ xlate_clause b)
+ | TacExtend (_,"contradiction",[]) -> CT_contradiction
+ | TacDoubleInduction (n1, n2) ->
+ CT_tac_double (xlate_quantified_hypothesis n1, xlate_quantified_hypothesis n2)
+ | TacExtend (_,"discriminate", [idopt]) ->
+ CT_discriminate_eq
+ (xlate_quantified_hypothesis_opt
+ (out_gen (wit_opt rawwit_quant_hyp) idopt))
+ | TacExtend (_,"deq", [idopt]) ->
+ let idopt1 = out_gen (wit_opt rawwit_quant_hyp) idopt in
+ let idopt2 = match idopt1 with
+ None -> CT_coerce_ID_OPT_to_ID_OR_INT_OPT
+ (CT_coerce_NONE_to_ID_OPT CT_none)
+ | Some v ->
+ CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT
+ (xlate_quantified_hypothesis v) in
+ CT_simplify_eq idopt2
+ | TacExtend (_,"injection", [idopt]) ->
+ CT_injection_eq
+ (xlate_quantified_hypothesis_opt
+ (out_gen (wit_opt rawwit_quant_hyp) idopt))
+ | TacFix (idopt, n) ->
+ CT_fixtactic (xlate_ident_opt idopt, CT_int n, CT_fix_tac_list [])
+ | TacMutualFix (id, n, fixtac_list) ->
+ let f (id,n,c) = CT_fixtac (xlate_ident id, CT_int n, xlate_formula c) in
+ CT_fixtactic
+ (ctf_ID_OPT_SOME (xlate_ident id), CT_int n,
+ CT_fix_tac_list (List.map f fixtac_list))
+ | TacCofix idopt ->
+ CT_cofixtactic (xlate_ident_opt idopt, CT_cofix_tac_list [])
+ | TacMutualCofix (id, cofixtac_list) ->
+ let f (id,c) = CT_cofixtac (xlate_ident id, xlate_formula c) in
+ CT_cofixtactic
+ (CT_coerce_ID_to_ID_OPT (xlate_ident id),
+ CT_cofix_tac_list (List.map f cofixtac_list))
+ | TacIntrosUntil (NamedHyp id) ->
+ CT_intros_until (CT_coerce_ID_to_ID_OR_INT (xlate_ident id))
+ | TacIntrosUntil (AnonHyp n) ->
+ CT_intros_until (CT_coerce_INT_to_ID_OR_INT (CT_int n))
+ | TacIntroMove (Some id1, Some (_,id2)) ->
+ CT_intro_after(CT_coerce_ID_to_ID_OPT (xlate_ident id1),xlate_ident id2)
+ | TacIntroMove (None, Some (_,id2)) ->
+ CT_intro_after(CT_coerce_NONE_to_ID_OPT CT_none, xlate_ident id2)
+ | TacMove (true, id1, id2) ->
+ CT_move_after(xlate_hyp id1, xlate_hyp id2)
+ | TacMove (false, id1, id2) -> xlate_error "Non dep Move is only internal"
+ | TacIntroPattern patt_list ->
+ CT_intros
+ (CT_intro_patt_list (List.map xlate_intro_pattern patt_list))
+ | TacIntroMove (Some id, None) ->
+ CT_intros (CT_intro_patt_list[CT_coerce_ID_to_INTRO_PATT(xlate_ident id)])
+ | TacIntroMove (None, None) -> CT_intro (CT_coerce_NONE_to_ID_OPT CT_none)
+ | TacLeft bindl -> CT_left (xlate_bindings bindl)
+ | TacRight bindl -> CT_right (xlate_bindings bindl)
+ | TacSplit (false,bindl) -> CT_split (xlate_bindings bindl)
+ | TacSplit (true,bindl) -> CT_exists (xlate_bindings bindl)
+ | TacExtend (_,"replace", [c1; c2]) ->
+ let c1 = xlate_formula (out_gen rawwit_constr c1) in
+ let c2 = xlate_formula (out_gen rawwit_constr c2) in
+ CT_replace_with (c1, c2)
+ | TacExtend (_,"rewrite", [b; cbindl]) ->
+ let b = out_gen Extraargs.rawwit_orient b in
+ let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
+ let c = xlate_formula c and bindl = xlate_bindings bindl in
+ if b then CT_rewrite_lr (c, bindl, ctv_ID_OPT_NONE)
+ else CT_rewrite_rl (c, bindl, ctv_ID_OPT_NONE)
+ | TacExtend (_,"rewritein", [b; cbindl; id]) ->
+ let b = out_gen Extraargs.rawwit_orient b in
+ let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
+ let c = xlate_formula c and bindl = xlate_bindings bindl in
+ let id = ctf_ID_OPT_SOME (xlate_ident (out_gen rawwit_ident id)) in
+ if b then CT_rewrite_lr (c, bindl, id)
+ else CT_rewrite_rl (c, bindl, id)
+ | TacExtend (_,"conditionalrewrite", [t; b; cbindl]) ->
+ let t = out_gen rawwit_tactic t in
+ let b = out_gen Extraargs.rawwit_orient b in
+ let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
+ let c = xlate_formula c and bindl = xlate_bindings bindl in
+ if b then CT_condrewrite_lr (xlate_tactic t, c, bindl, ctv_ID_OPT_NONE)
+ else CT_condrewrite_rl (xlate_tactic t, c, bindl, ctv_ID_OPT_NONE)
+ | TacExtend (_,"conditionalrewritein", [t; b; cbindl; id]) ->
+ let t = out_gen rawwit_tactic t in
+ let b = out_gen Extraargs.rawwit_orient b in
+ let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
+ let c = xlate_formula c and bindl = xlate_bindings bindl in
+ let id = ctf_ID_OPT_SOME (xlate_ident (out_gen rawwit_ident id)) in
+ if b then CT_condrewrite_lr (xlate_tactic t, c, bindl, id)
+ else CT_condrewrite_rl (xlate_tactic t, c, bindl, id)
+ | TacExtend (_,"dependentrewrite", [b; id_or_constr]) ->
+ let b = out_gen Extraargs.rawwit_orient b in
+ (match genarg_tag id_or_constr with
+ | IdentArgType -> (*Dependent Rewrite/SubstHypInConcl*)
+ let id = xlate_ident (out_gen rawwit_ident id_or_constr) in
+ if b then CT_deprewrite_lr id else CT_deprewrite_rl id
+ | ConstrArgType -> (*CutRewrite/SubstConcl*)
+ let c = xlate_formula (out_gen rawwit_constr id_or_constr) in
+ if b then CT_cutrewrite_lr (c, ctv_ID_OPT_NONE)
+ else CT_cutrewrite_rl (c, ctv_ID_OPT_NONE)
+ | _ -> xlate_error "")
+ | TacExtend (_,"dependentrewrite", [b; c; id]) -> (*CutRewrite in/SubstHyp*)
+ let b = out_gen Extraargs.rawwit_orient b in
+ let c = xlate_formula (out_gen rawwit_constr c) in
+ let id = xlate_ident (out_gen rawwit_ident id) in
+ if b then CT_cutrewrite_lr (c, ctf_ID_OPT_SOME id)
+ else CT_cutrewrite_lr (c, ctf_ID_OPT_SOME id)
+ | TacExtend(_, "subst", [l]) ->
+ CT_subst
+ (CT_id_list
+ (List.map (fun x -> CT_ident (string_of_id x))
+ (out_gen (wit_list1 rawwit_ident) l)))
+ | TacReflexivity -> CT_reflexivity
+ | TacSymmetry cls -> CT_symmetry(xlate_clause cls)
+ | TacTransitivity c -> CT_transitivity (xlate_formula c)
+ | TacAssumption -> CT_assumption
+ | TacExact c -> CT_exact (xlate_formula c)
+ | TacDestructHyp (true, (_,id)) -> CT_cdhyp (xlate_ident id)
+ | TacDestructHyp (false, (_,id)) -> CT_dhyp (xlate_ident id)
+ | TacDestructConcl -> CT_dconcl
+ | TacSuperAuto (nopt,l,a3,a4) ->
+ CT_superauto(
+ xlate_int_opt nopt,
+ xlate_qualid_list l,
+ (if a3 then CT_destructing else CT_coerce_NONE_to_DESTRUCTING CT_none),
+ (if a4 then CT_usingtdb else CT_coerce_NONE_to_USINGTDB CT_none))
+ | TacAutoTDB nopt -> CT_autotdb (xlate_int_opt nopt)
+ | TacAuto (nopt, Some []) -> CT_auto (xlate_int_opt nopt)
+ | TacAuto (nopt, None) ->
+ CT_auto_with (xlate_int_opt nopt,
+ CT_coerce_STAR_to_ID_NE_LIST_OR_STAR CT_star)
+ | TacAuto (nopt, Some (id1::idl)) ->
+ CT_auto_with(xlate_int_opt nopt,
+ CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR(
+ CT_id_ne_list(CT_ident id1, List.map (fun x -> CT_ident x) idl)))
+ |TacExtend(_, ("autorewritev7"|"autorewritev8"), l::t) ->
+ let (id_list:ct_ID list) =
+ List.map (fun x -> CT_ident x) (out_gen (wit_list1 rawwit_pre_ident) l) in
+ let fst, (id_list1: ct_ID list) =
+ match id_list with [] -> assert false | a::tl -> a,tl in
+ let t1 =
+ match t with
+ [t0] ->
+ CT_coerce_TACTIC_COM_to_TACTIC_OPT
+ (xlate_tactic(out_gen rawwit_tactic t0))
+ | [] -> CT_coerce_NONE_to_TACTIC_OPT CT_none
+ | _ -> assert false in
+ CT_autorewrite (CT_id_ne_list(fst, id_list1), t1)
+ | TacExtend (_,"eauto", [nopt; popt; idl]) ->
+ let first_n =
+ match out_gen (wit_opt rawwit_int_or_var) nopt with
+ | Some (ArgVar(_, s)) -> xlate_id_to_id_or_int_opt s
+ | Some ArgArg n -> xlate_int_to_id_or_int_opt n
+ | None -> none_in_id_or_int_opt in
+ let second_n =
+ match out_gen (wit_opt rawwit_int_or_var) popt with
+ | Some (ArgVar(_, s)) -> xlate_id_to_id_or_int_opt s
+ | Some ArgArg n -> xlate_int_to_id_or_int_opt n
+ | None -> none_in_id_or_int_opt in
+ let idl = out_gen Eauto.rawwit_hintbases idl in
+ (match idl with
+ None -> CT_eauto_with(first_n,
+ second_n,
+ CT_coerce_STAR_to_ID_NE_LIST_OR_STAR CT_star)
+ | Some [] -> CT_eauto(first_n, second_n)
+ | Some (a::l) ->
+ CT_eauto_with(first_n, second_n,
+ CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR
+ (CT_id_ne_list
+ (CT_ident a,
+ List.map (fun x -> CT_ident x) l))))
+ | TacExtend (_,"prolog", [cl; n]) ->
+ let cl = List.map xlate_formula (out_gen (wit_list0 rawwit_constr) cl) in
+ (match out_gen wit_int_or_var n with
+ | ArgVar _ -> xlate_error ""
+ | ArgArg n -> CT_prolog (CT_formula_list cl, CT_int n))
+ | TacExtend (_,"eapply", [cbindl]) ->
+ let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
+ let c = xlate_formula c and bindl = xlate_bindings bindl in
+ CT_eapply (c, bindl)
+ | TacTrivial (Some []) -> CT_trivial
+ | TacTrivial None ->
+ CT_trivial_with(CT_coerce_STAR_to_ID_NE_LIST_OR_STAR CT_star)
+ | TacTrivial (Some (id1::idl)) ->
+ CT_trivial_with(CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR(
+ (CT_id_ne_list(CT_ident id1,List.map (fun x -> CT_ident x) idl))))
+ | TacReduce (red, l) ->
+ CT_reduce (xlate_red_tactic red, xlate_clause l)
+ | TacApply (c,bindl) ->
+ CT_apply (xlate_formula c, xlate_bindings bindl)
+ | TacConstructor (n_or_meta, bindl) ->
+ let n = match n_or_meta with AI n -> n | MetaId _ -> xlate_error ""
+ in CT_constructor (CT_int n, xlate_bindings bindl)
+ | TacSpecialize (nopt, (c,sl)) ->
+ CT_specialize (xlate_int_opt nopt, xlate_formula c, xlate_bindings sl)
+ | TacGeneralize [] -> xlate_error ""
+ | TacGeneralize (first :: cl) ->
+ CT_generalize
+ (CT_formula_ne_list (xlate_formula first, List.map xlate_formula cl))
+ | TacGeneralizeDep c ->
+ CT_generalize_dependent (xlate_formula c)
+ | TacElimType c -> CT_elim_type (xlate_formula c)
+ | TacCaseType c -> CT_case_type (xlate_formula c)
+ | TacElim ((c1,sl), u) ->
+ CT_elim (xlate_formula c1, xlate_bindings sl, xlate_using u)
+ | TacCase (c1,sl) ->
+ CT_casetac (xlate_formula c1, xlate_bindings sl)
+ | TacSimpleInduction (h,_) -> CT_induction (xlate_quantified_hypothesis h)
+ | TacSimpleDestruct h -> CT_destruct (xlate_quantified_hypothesis h)
+ | TacCut c -> CT_cut (xlate_formula c)
+ | TacLApply c -> CT_use (xlate_formula c)
+ | TacDecompose ([],c) ->
+ xlate_error "Decompose : empty list of identifiers?"
+ | TacDecompose (id::l,c) ->
+ let id' = tac_qualid_to_ct_ID id in
+ let l' = List.map tac_qualid_to_ct_ID l in
+ CT_decompose_list(CT_id_ne_list(id',l'),xlate_formula c)
+ | TacDecomposeAnd c -> CT_decompose_record (xlate_formula c)
+ | TacDecomposeOr c -> CT_decompose_sum(xlate_formula c)
+ | TacClear [] ->
+ xlate_error "Clear expects a non empty list of identifiers"
+ | TacClear (id::idl) ->
+ let idl' = List.map xlate_hyp idl in
+ CT_clear (CT_id_ne_list (xlate_hyp id, idl'))
+ | (*For translating tactics/Inv.v *)
+ TacInversion (NonDepInversion (k,idl,l),quant_hyp) ->
+ CT_inversion(compute_INV_TYPE k, xlate_quantified_hypothesis quant_hyp,
+ xlate_intro_patt_opt l,
+ CT_id_list (List.map xlate_hyp idl))
+ | TacInversion (DepInversion (k,copt,l),quant_hyp) ->
+ let id = xlate_quantified_hypothesis quant_hyp in
+ CT_depinversion (compute_INV_TYPE k, id,
+ xlate_intro_patt_opt l, xlate_formula_opt copt)
+ | TacInversion (InversionUsing (c,idlist), id) ->
+ let id = xlate_quantified_hypothesis id in
+ CT_use_inversion (id, xlate_formula c,
+ CT_id_list (List.map xlate_hyp idlist))
+ | TacExtend (_,"omega", []) -> CT_omega
+ | TacRename (id1, id2) -> CT_rename(xlate_hyp id1, xlate_hyp id2)
+ | TacClearBody([]) -> assert false
+ | TacClearBody(a::l) ->
+ CT_clear_body (CT_id_ne_list (xlate_hyp a, List.map xlate_hyp l))
+ | TacDAuto (a, b) -> CT_dauto(xlate_int_opt a, xlate_int_opt b)
+ | TacNewDestruct(a,b,(c,_)) ->
+ CT_new_destruct
+ (xlate_int_or_constr a, xlate_using b,
+ xlate_intro_patt_opt c)
+ | TacNewInduction(a,b,(c,_)) ->
+ CT_new_induction
+ (xlate_int_or_constr a, xlate_using b,
+ xlate_intro_patt_opt c)
+ | TacInstantiate (a, b, cl) ->
+ CT_instantiate(CT_int a, xlate_formula b,
+ xlate_clause cl)
+ | TacLetTac (na, c, cl) ->
+ CT_lettac(xlate_id_opt ((0,0),na), xlate_formula c,
+ (* TODO LATER: This should be shared with Unfold,
+ but the structures are different *)
+ xlate_clause cl)
+ | TacForward (true, name, c) ->
+ CT_pose(xlate_id_opt_aux name, xlate_formula c)
+ | TacForward (false, name, c) ->
+ CT_assert(xlate_id_opt ((0,0),name), xlate_formula c)
+ | TacTrueCut (na, c) ->
+ CT_truecut(xlate_id_opt ((0,0),na), xlate_formula c)
+ | TacAnyConstructor(Some tac) ->
+ CT_any_constructor
+ (CT_coerce_TACTIC_COM_to_TACTIC_OPT(xlate_tactic tac))
+ | TacAnyConstructor(None) ->
+ CT_any_constructor(CT_coerce_NONE_to_TACTIC_OPT CT_none)
+ | TacExtend(_, "ring", [args]) ->
+ CT_ring
+ (CT_formula_list
+ (List.map xlate_formula
+ (out_gen (wit_list0 rawwit_constr) args)))
+ | TacExtend (_,id, l) ->
+ CT_user_tac (CT_ident id, CT_targ_list (List.map coerce_genarg_to_TARG l))
+ | TacAlias _ -> xlate_error "Alias not supported"
+
+and coerce_genarg_to_TARG x =
+ match Genarg.genarg_tag x with
+ (* Basic types *)
+ | BoolArgType -> xlate_error "TODO: generic boolean argument"
+ | IntArgType ->
+ let n = out_gen rawwit_int x in
+ CT_coerce_FORMULA_OR_INT_to_TARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_INT_to_ID_OR_INT (CT_int n)))
+ | IntOrVarArgType ->
+ let x = match out_gen rawwit_int_or_var x with
+ | ArgArg n -> CT_coerce_INT_to_ID_OR_INT (CT_int n)
+ | ArgVar (_,id) -> CT_coerce_ID_to_ID_OR_INT (xlate_ident id) in
+ CT_coerce_FORMULA_OR_INT_to_TARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT x)
+ | StringArgType ->
+ let s = CT_string (out_gen rawwit_string x) in
+ CT_coerce_SCOMMENT_CONTENT_to_TARG
+ (CT_coerce_ID_OR_STRING_to_SCOMMENT_CONTENT
+ (CT_coerce_STRING_to_ID_OR_STRING s))
+ | PreIdentArgType ->
+ let id = CT_ident (out_gen rawwit_pre_ident x) in
+ CT_coerce_FORMULA_OR_INT_to_TARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_ID_to_ID_OR_INT id))
+ | IntroPatternArgType ->
+ xlate_error "TODO"
+ | IdentArgType ->
+ let id = xlate_ident (out_gen rawwit_ident x) in
+ CT_coerce_FORMULA_OR_INT_to_TARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_ID_to_ID_OR_INT id))
+ | HypArgType ->
+ xlate_error "TODO (similar to IdentArgType)"
+ | RefArgType ->
+ let id = tac_qualid_to_ct_ID (out_gen rawwit_ref x) in
+ CT_coerce_FORMULA_OR_INT_to_TARG
+ (CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
+ (CT_coerce_ID_to_ID_OR_INT id))
+ (* Specific types *)
+ | SortArgType ->
+ CT_coerce_SCOMMENT_CONTENT_to_TARG
+ (CT_coerce_FORMULA_to_SCOMMENT_CONTENT
+ (CT_coerce_SORT_TYPE_to_FORMULA (xlate_sort (out_gen rawwit_sort x))))
+ | ConstrArgType ->
+ CT_coerce_SCOMMENT_CONTENT_to_TARG
+ (CT_coerce_FORMULA_to_SCOMMENT_CONTENT (xlate_formula (out_gen rawwit_constr x)))
+ | ConstrMayEvalArgType -> xlate_error"TODO: generic constr-may-eval argument"
+ | QuantHypArgType ->xlate_error"TODO: generic quantified hypothesis argument"
+ | TacticArgType ->
+ let t = xlate_tactic (out_gen rawwit_tactic x) in
+ CT_coerce_TACTIC_COM_to_TARG t
+ | CastedOpenConstrArgType ->
+ CT_coerce_SCOMMENT_CONTENT_to_TARG
+ (CT_coerce_FORMULA_to_SCOMMENT_CONTENT(xlate_formula
+ (out_gen
+ rawwit_casted_open_constr x)))
+ | ConstrWithBindingsArgType -> xlate_error "TODO: generic constr with bindings"
+ | BindingsArgType -> xlate_error "TODO: generic with bindings"
+ | RedExprArgType -> xlate_error "TODO: generic red expr"
+ | List0ArgType l -> xlate_error "TODO: lists of generic arguments"
+ | List1ArgType l -> xlate_error "TODO: non empty lists of generic arguments"
+ | OptArgType x -> xlate_error "TODO: optional generic arguments"
+ | PairArgType (u,v) -> xlate_error "TODO: pairs of generic arguments"
+ | ExtraArgType s -> xlate_error "Cannot treat extra generic arguments"
+and xlate_context_rule =
+ function
+ | Pat (hyps, concl_pat, tactic) ->
+ CT_context_rule
+ (CT_context_hyp_list (List.map xlate_match_context_hyps hyps),
+ xlate_context_pattern concl_pat, xlate_tactic tactic)
+ | All tactic ->
+ CT_def_context_rule (xlate_tactic tactic)
+and formula_to_def_body =
+ function
+ | ConstrEval (red, f) ->
+ CT_coerce_EVAL_CMD_to_DEF_BODY(
+ CT_eval(CT_coerce_NONE_to_INT_OPT CT_none,
+ xlate_red_tactic red, xlate_formula f))
+ | ConstrContext((_, id), f) ->
+ CT_coerce_CONTEXT_PATTERN_to_DEF_BODY
+ (CT_context
+ (CT_coerce_ID_to_ID_OPT (CT_ident (string_of_id id)),
+ xlate_formula f))
+ | ConstrTypeOf f -> CT_type_of (xlate_formula f)
+ | ConstrTerm c -> ct_coerce_FORMULA_to_DEF_BODY(xlate_formula c)
+
+and mk_let_value = function
+ TacArg (ConstrMayEval v) ->
+ CT_coerce_DEF_BODY_to_LET_VALUE(formula_to_def_body v)
+ | v -> CT_coerce_TACTIC_COM_to_LET_VALUE(xlate_tactic v);;
+
+let coerce_genarg_to_VARG x =
+ match Genarg.genarg_tag x with
+ (* Basic types *)
+ | BoolArgType -> xlate_error "TODO: generic boolean argument"
+ | IntArgType ->
+ let n = out_gen rawwit_int x in
+ CT_coerce_ID_OR_INT_OPT_to_VARG
+ (CT_coerce_INT_OPT_to_ID_OR_INT_OPT
+ (CT_coerce_INT_to_INT_OPT (CT_int n)))
+ | IntOrVarArgType ->
+ (match out_gen rawwit_int_or_var x with
+ | ArgArg n ->
+ CT_coerce_ID_OR_INT_OPT_to_VARG
+ (CT_coerce_INT_OPT_to_ID_OR_INT_OPT
+ (CT_coerce_INT_to_INT_OPT (CT_int n)))
+ | ArgVar (_,id) ->
+ CT_coerce_ID_OPT_OR_ALL_to_VARG
+ (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
+ (CT_coerce_ID_to_ID_OPT (xlate_ident id))))
+ | StringArgType ->
+ let s = CT_string (out_gen rawwit_string x) in
+ CT_coerce_STRING_OPT_to_VARG (CT_coerce_STRING_to_STRING_OPT s)
+ | PreIdentArgType ->
+ let id = CT_ident (out_gen rawwit_pre_ident x) in
+ CT_coerce_ID_OPT_OR_ALL_to_VARG
+ (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
+ (CT_coerce_ID_to_ID_OPT id))
+ | IntroPatternArgType ->
+ xlate_error "TODO"
+ | IdentArgType ->
+ let id = xlate_ident (out_gen rawwit_ident x) in
+ CT_coerce_ID_OPT_OR_ALL_to_VARG
+ (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
+ (CT_coerce_ID_to_ID_OPT id))
+ | HypArgType ->
+ xlate_error "TODO (similar to IdentArgType)"
+ | RefArgType ->
+ let id = tac_qualid_to_ct_ID (out_gen rawwit_ref x) in
+ CT_coerce_ID_OPT_OR_ALL_to_VARG
+ (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
+ (CT_coerce_ID_to_ID_OPT id))
+ (* Specific types *)
+ | SortArgType ->
+ CT_coerce_FORMULA_OPT_to_VARG
+ (CT_coerce_FORMULA_to_FORMULA_OPT
+ (CT_coerce_SORT_TYPE_to_FORMULA (xlate_sort (out_gen rawwit_sort x))))
+ | ConstrArgType ->
+ CT_coerce_FORMULA_OPT_to_VARG
+ (CT_coerce_FORMULA_to_FORMULA_OPT (xlate_formula (out_gen rawwit_constr x)))
+ | ConstrMayEvalArgType -> xlate_error"TODO: generic constr-may-eval argument"
+ | QuantHypArgType ->xlate_error"TODO: generic quantified hypothesis argument"
+ | TacticArgType ->
+ let t = xlate_tactic (out_gen rawwit_tactic x) in
+ CT_coerce_TACTIC_OPT_to_VARG (CT_coerce_TACTIC_COM_to_TACTIC_OPT t)
+ | CastedOpenConstrArgType -> xlate_error "TODO: generic open constr"
+ | ConstrWithBindingsArgType -> xlate_error "TODO: generic constr with bindings"
+ | BindingsArgType -> xlate_error "TODO: generic with bindings"
+ | RedExprArgType -> xlate_error "TODO: red expr as generic argument"
+ | List0ArgType l -> xlate_error "TODO: lists of generic arguments"
+ | List1ArgType l -> xlate_error "TODO: non empty lists of generic arguments"
+ | OptArgType x -> xlate_error "TODO: optional generic arguments"
+ | PairArgType (u,v) -> xlate_error "TODO: pairs of generic arguments"
+ | ExtraArgType s -> xlate_error "Cannot treat extra generic arguments"
+
+
+let xlate_thm x = CT_thm (match x with
+ | Theorem -> "Theorem"
+ | Remark -> "Remark"
+ | Lemma -> "Lemma"
+ | Fact -> "Fact")
+
+
+let xlate_defn x = CT_defn (match x with
+ | (Local, Definition) -> "Local"
+ | (Global, Definition) -> "Definition"
+ | (Global, SubClass) -> "SubClass"
+ | (Global, Coercion) -> "Coercion"
+ | (Local, SubClass) -> "Local SubClass"
+ | (Local, Coercion) -> "Local Coercion"
+ | (Global,CanonicalStructure) -> "Canonical Structure"
+ | (Local, CanonicalStructure) ->
+ xlate_error "Local CanonicalStructure not parsed")
+
+let xlate_var x = CT_var (match x with
+ | (Global,Definitional) -> "Parameter"
+ | (Global,Logical) -> "Axiom"
+ | (Local,Definitional) -> "Variable"
+ | (Local,Logical) -> "Hypothesis"
+ | (Global,Conjectural) -> "Conjecture"
+ | (Local,Conjectural) -> xlate_error "No local conjecture");;
+
+
+let xlate_dep =
+ function
+ | true -> CT_dep "Induction for"
+ | false -> CT_dep "Minimality for";;
+
+let xlate_locn =
+ function
+ | GoTo n -> CT_coerce_INT_to_INT_OR_LOCN (CT_int n)
+ | GoTop -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "top")
+ | GoPrev -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "prev")
+ | GoNext -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "next")
+
+let xlate_search_restr =
+ function
+ | SearchOutside [] -> CT_coerce_NONE_to_IN_OR_OUT_MODULES CT_none
+ | SearchInside (m1::l1) ->
+ CT_in_modules (CT_id_ne_list(loc_qualid_to_ct_ID m1,
+ List.map loc_qualid_to_ct_ID l1))
+ | SearchOutside (m1::l1) ->
+ CT_out_modules (CT_id_ne_list(loc_qualid_to_ct_ID m1,
+ List.map loc_qualid_to_ct_ID l1))
+ | SearchInside [] -> xlate_error "bad extra argument for Search"
+
+let xlate_check =
+ function
+ | "CHECK" -> "Check"
+ | "PRINTTYPE" -> "Type"
+ | _ -> xlate_error "xlate_check";;
+
+let build_constructors l =
+ let f (coe,((_,id),c)) =
+ if coe then CT_constr_coercion (xlate_ident id, xlate_formula c)
+ else CT_constr (xlate_ident id, xlate_formula c) in
+ CT_constr_list (List.map f l)
+
+let build_record_field_list l =
+ let build_record_field (coe,d) = match d with
+ | AssumExpr (id,c) ->
+ if coe then CT_recconstr_coercion (xlate_id_opt id, xlate_formula c)
+ else
+ CT_recconstr(xlate_id_opt id, xlate_formula c)
+ | DefExpr (id,c,topt) ->
+ if coe then
+ CT_defrecconstr_coercion(xlate_id_opt id, xlate_formula c,
+ xlate_formula_opt topt)
+ else
+ CT_defrecconstr(xlate_id_opt id, xlate_formula c, xlate_formula_opt topt) in
+ CT_recconstr_list (List.map build_record_field l);;
+
+let get_require_flags impexp spec =
+ let ct_impexp =
+ match impexp with
+ | None -> CT_coerce_NONE_to_IMPEXP CT_none
+ | Some false -> CT_import
+ | Some true -> CT_export in
+ let ct_spec =
+ match spec with
+ | None -> ctv_SPEC_OPT_NONE
+ | Some true -> CT_spec
+ | Some false -> ctv_SPEC_OPT_NONE in
+ ct_impexp, ct_spec;;
+
+let cvt_optional_eval_for_definition c1 optional_eval =
+ match optional_eval with
+ None -> ct_coerce_FORMULA_to_DEF_BODY (xlate_formula c1)
+ | Some red ->
+ CT_coerce_EVAL_CMD_to_DEF_BODY(
+ CT_eval(CT_coerce_NONE_to_INT_OPT CT_none,
+ xlate_red_tactic red,
+ xlate_formula c1))
+
+let cvt_vernac_binder = function
+ | b,(id::idl,c) ->
+ let l,t =
+ CT_id_opt_ne_list
+ (xlate_ident_opt (Some (snd id)),
+ List.map (fun id -> xlate_ident_opt (Some (snd id))) idl),
+ xlate_formula c in
+ if b then
+ CT_binder_coercion(l,t)
+ else
+ CT_binder(l,t)
+ | _, _ -> xlate_error "binder with no left part, rejected";;
+
+let cvt_vernac_binders = function
+ a::args -> CT_binder_ne_list(cvt_vernac_binder a, List.map cvt_vernac_binder args)
+ | [] -> assert false;;
+
+
+let xlate_comment = function
+ CommentConstr c -> CT_coerce_FORMULA_to_SCOMMENT_CONTENT(xlate_formula c)
+ | CommentString s -> CT_coerce_ID_OR_STRING_to_SCOMMENT_CONTENT
+ (CT_coerce_STRING_to_ID_OR_STRING(CT_string s))
+ | CommentInt n ->
+ CT_coerce_FORMULA_to_SCOMMENT_CONTENT
+ (CT_coerce_NUM_to_FORMULA(CT_int_encapsulator (string_of_int n)));;
+
+let translate_opt_notation_decl = function
+ None -> CT_coerce_NONE_to_DECL_NOTATION_OPT(CT_none)
+ | Some(s, f, sc) ->
+ let tr_sc =
+ match sc with
+ None -> ctv_ID_OPT_NONE
+ | Some id -> CT_coerce_ID_to_ID_OPT (CT_ident id) in
+ CT_decl_notation(CT_string s, xlate_formula f, tr_sc);;
+
+let xlate_level = function
+ Extend.NumLevel n -> CT_coerce_INT_to_INT_OR_NEXT(CT_int n)
+ | Extend.NextLevel -> CT_next_level;;
+
+let xlate_syntax_modifier = function
+ Extend.SetItemLevel((s::sl), level) ->
+ CT_set_item_level
+ (CT_id_ne_list(CT_ident s, List.map (fun s -> CT_ident s) sl),
+ xlate_level level)
+ | Extend.SetItemLevel([], _) -> assert false
+ | Extend.SetLevel level -> CT_set_level (CT_int level)
+ | Extend.SetAssoc Gramext.LeftA -> CT_lefta
+ | Extend.SetAssoc Gramext.RightA -> CT_righta
+ | Extend.SetAssoc Gramext.NonA -> CT_nona
+ | Extend.SetEntryType(x,typ) ->
+ CT_entry_type(CT_ident x,
+ match typ with
+ Extend.ETIdent -> CT_ident "ident"
+ | Extend.ETReference -> CT_ident "global"
+ | Extend.ETBigint -> CT_ident "bigint"
+ | _ -> xlate_error "syntax_type not parsed")
+ | Extend.SetOnlyParsing -> CT_only_parsing
+ | Extend.SetFormat(_,s) -> CT_format(CT_string s);;
+
+
+let rec xlate_module_type = function
+ | CMTEident(_, qid) ->
+ CT_coerce_ID_to_MODULE_TYPE(CT_ident (xlate_qualid qid))
+ | CMTEwith(mty, decl) ->
+ let mty1 = xlate_module_type mty in
+ (match decl with
+ CWith_Definition((_, id), c) ->
+ CT_module_type_with_def(xlate_module_type mty,
+ xlate_ident id, xlate_formula c)
+ | CWith_Module((_, id), (_, qid)) ->
+ CT_module_type_with_mod(xlate_module_type mty,
+ xlate_ident id,
+ CT_ident (xlate_qualid qid)));;
+
+let xlate_module_binder_list (l:module_binder list) =
+ CT_module_binder_list
+ (List.map (fun (idl, mty) ->
+ let idl1 =
+ List.map (fun (_, x) -> CT_ident (string_of_id x)) idl in
+ let fst,idl2 = match idl1 with
+ [] -> assert false
+ | fst::idl2 -> fst,idl2 in
+ CT_module_binder
+ (CT_id_ne_list(fst, idl2), xlate_module_type mty)) l);;
+
+let xlate_module_type_check_opt = function
+ None -> CT_coerce_MODULE_TYPE_OPT_to_MODULE_TYPE_CHECK
+ (CT_coerce_ID_OPT_to_MODULE_TYPE_OPT ctv_ID_OPT_NONE)
+ | Some(mty, true) -> CT_only_check(xlate_module_type mty)
+ | Some(mty, false) ->
+ CT_coerce_MODULE_TYPE_OPT_to_MODULE_TYPE_CHECK
+ (CT_coerce_MODULE_TYPE_to_MODULE_TYPE_OPT
+ (xlate_module_type mty));;
+
+let rec xlate_module_expr = function
+ CMEident (_, qid) -> CT_coerce_ID_OPT_to_MODULE_EXPR
+ (CT_coerce_ID_to_ID_OPT (CT_ident (xlate_qualid qid)))
+ | CMEapply (me1, me2) -> CT_module_app(xlate_module_expr me1,
+ xlate_module_expr me2)
+
+let rec xlate_vernac =
+ function
+ | VernacDeclareTacticDefinition (true, tacs) ->
+ (match List.map
+ (function
+ ((_, id), body) ->
+ CT_tac_def(CT_ident (string_of_id id), xlate_tactic body))
+ tacs with
+ [] -> assert false
+ | fst::tacs1 ->
+ CT_tactic_definition
+ (CT_tac_def_ne_list(fst, tacs1)))
+ | VernacDeclareTacticDefinition(false, _) ->
+ xlate_error "obsolete tactic definition not handled"
+ | VernacLoad (verbose,s) ->
+ CT_load (
+ (match verbose with
+ | false -> CT_coerce_NONE_to_VERBOSE_OPT CT_none
+ | true -> CT_verbose),
+ CT_coerce_STRING_to_ID_OR_STRING (CT_string s))
+ | VernacCheckMayEval (Some red, numopt, f) ->
+ let red = xlate_red_tactic red in
+ CT_coerce_EVAL_CMD_to_COMMAND
+ (CT_eval (xlate_int_opt numopt, red, xlate_formula f))
+ |VernacChdir opt_s -> CT_cd (ctf_STRING_OPT opt_s)
+ | VernacAddLoadPath (false,str,None) ->
+ CT_addpath (CT_string str, ctv_ID_OPT_NONE)
+ | VernacAddLoadPath (false,str,Some x) ->
+ CT_addpath (CT_string str,
+ CT_coerce_ID_to_ID_OPT (CT_ident (string_of_dirpath x)))
+ | VernacAddLoadPath (true,str,None) ->
+ CT_recaddpath (CT_string str, ctv_ID_OPT_NONE)
+ | VernacAddLoadPath (_,str, Some x) ->
+ CT_recaddpath (CT_string str,
+ CT_coerce_ID_to_ID_OPT (CT_ident (string_of_dirpath x)))
+ | VernacRemoveLoadPath str -> CT_delpath (CT_string str)
+ | VernacToplevelControl Quit -> CT_quit
+ | VernacToplevelControl _ -> xlate_error "Drop/ProtectedToplevel not supported"
+ (*ML commands *)
+ | VernacAddMLPath (false,str) -> CT_ml_add_path (CT_string str)
+ | VernacAddMLPath (true,str) -> CT_rec_ml_add_path (CT_string str)
+ | VernacDeclareMLModule [] -> failwith ""
+ | VernacDeclareMLModule (str :: l) ->
+ CT_ml_declare_modules
+ (CT_string_ne_list (CT_string str, List.map (fun x -> CT_string x) l))
+ | VernacGoal c ->
+ CT_coerce_THEOREM_GOAL_to_COMMAND (CT_goal (xlate_formula c))
+ | VernacAbort (Some (_,id)) ->
+ CT_abort(ctf_ID_OPT_OR_ALL_SOME(xlate_ident id))
+ | VernacAbort None -> CT_abort ctv_ID_OPT_OR_ALL_NONE
+ | VernacAbortAll -> CT_abort ctv_ID_OPT_OR_ALL_ALL
+ | VernacRestart -> CT_restart
+ | VernacSolve (n, tac, b) ->
+ CT_solve (CT_int n, xlate_tactic tac,
+ if b then CT_dotdot
+ else CT_coerce_NONE_to_DOTDOT_OPT CT_none)
+ | VernacFocus nopt -> CT_focus (xlate_int_opt nopt)
+ | VernacUnfocus -> CT_unfocus
+ |VernacExtend("Extraction", [f;l]) ->
+ let file = out_gen rawwit_string f in
+ let l1 = out_gen (wit_list1 rawwit_ref) l in
+ let fst,l2 = match l1 with [] -> assert false | fst::l2 -> fst, l2 in
+ CT_extract_to_file(CT_string file,
+ CT_id_ne_list(loc_qualid_to_ct_ID fst,
+ List.map loc_qualid_to_ct_ID l2))
+ | VernacExtend("ExtractionInline", [l]) ->
+ let l1 = out_gen (wit_list1 rawwit_ref) l in
+ let fst, l2 = match l1 with [] -> assert false | fst ::l2 -> fst, l2 in
+ CT_inline(CT_id_ne_list(loc_qualid_to_ct_ID fst,
+ List.map loc_qualid_to_ct_ID l2))
+ | VernacExtend("ExtractionNoInline", [l]) ->
+ let l1 = out_gen (wit_list1 rawwit_ref) l in
+ let fst, l2 = match l1 with [] -> assert false | fst ::l2 -> fst, l2 in
+ CT_no_inline(CT_id_ne_list(loc_qualid_to_ct_ID fst,
+ List.map loc_qualid_to_ct_ID l2))
+ | VernacExtend("Field",
+ [a;aplus;amult;aone;azero;aopp;aeq;ainv;fth;ainvl;minusdiv]) ->
+ (match List.map (fun v -> xlate_formula(out_gen rawwit_constr v))
+ [a;aplus;amult;aone;azero;aopp;aeq;ainv;fth;ainvl]
+ with
+ [a1;aplus1;amult1;aone1;azero1;aopp1;aeq1;ainv1;fth1;ainvl1] ->
+ let bind =
+ match out_gen Field.rawwit_minus_div_arg minusdiv with
+ None, None ->
+ CT_binding_list[]
+ | Some m, None ->
+ CT_binding_list[
+ CT_binding(CT_coerce_ID_to_ID_OR_INT (CT_ident "minus"), xlate_formula m)]
+ | None, Some d ->
+ CT_binding_list[
+ CT_binding(CT_coerce_ID_to_ID_OR_INT (CT_ident "div"), xlate_formula d)]
+ | Some m, Some d ->
+ CT_binding_list[
+ CT_binding(CT_coerce_ID_to_ID_OR_INT (CT_ident "minus"), xlate_formula m);
+ CT_binding(CT_coerce_ID_to_ID_OR_INT (CT_ident "div"), xlate_formula d)] in
+ CT_add_field(a1, aplus1, amult1, aone1, azero1, aopp1, aeq1,
+ ainv1, fth1, ainvl1, bind)
+ |_ -> assert false)
+ | VernacExtend (("HintRewriteV7"|"HintRewriteV8") as key, largs) ->
+ let in_v8 = (key = "HintRewriteV8") in
+ let orient = out_gen Extraargs.rawwit_orient (List.nth largs 0) in
+ let formula_list = out_gen (wit_list1 rawwit_constr) (List.nth largs 1) in
+ let t =
+ if List.length largs = 4 then
+ out_gen rawwit_tactic (List.nth largs (if in_v8 then 2 else 3))
+ else
+ TacId "" in
+ let base =
+ out_gen rawwit_pre_ident
+ (if in_v8 then last largs else List.nth largs 2) in
+ let ct_orient = match orient with
+ | true -> CT_lr
+ | false -> CT_rl in
+ let f_ne_list = match List.map xlate_formula formula_list with
+ (fst::rest) -> CT_formula_ne_list(fst,rest)
+ | _ -> assert false in
+ CT_hintrewrite(ct_orient, f_ne_list, CT_ident base, xlate_tactic t)
+ | VernacHints (local,dbnames,h) ->
+ let dblist = CT_id_list(List.map (fun x -> CT_ident x) dbnames) in
+ (match h with
+ | HintsConstructors (None, l) ->
+ let n1, names = match List.map tac_qualid_to_ct_ID l with
+ n1 :: names -> n1, names
+ | _ -> failwith "" in
+ if local then
+ CT_local_hints(CT_ident "Constructors",
+ CT_id_ne_list(n1, names), dblist)
+ else
+ CT_hints(CT_ident "Constructors",
+ CT_id_ne_list(n1, names), dblist)
+ | HintsExtern (None, n, c, t) ->
+ CT_hint_extern(CT_int n, xlate_formula c, xlate_tactic t, dblist)
+ | HintsResolve l | HintsImmediate l ->
+ let l =
+ List.map
+ (function (None, f) -> xlate_formula f
+ | _ ->
+ xlate_error "obsolete Hint Resolve not supported") l in
+ let f1, formulas = match l with
+ a :: tl -> a, tl
+ | _ -> failwith "" in
+ let l' = CT_formula_ne_list(f1, formulas) in
+ if local then
+ (match h with
+ HintsResolve _ ->
+ CT_local_hints_resolve(l', dblist)
+ | HintsImmediate _ ->
+ CT_local_hints_immediate(l', dblist)
+ | _ -> assert false)
+ else
+ (match h with
+ HintsResolve _ -> CT_hints_resolve(l', dblist)
+ | HintsImmediate _ -> CT_hints_immediate(l', dblist)
+ | _ -> assert false)
+ | HintsUnfold l ->
+ let l = List.map
+ (function (None,ref) -> loc_qualid_to_ct_ID ref |
+ _ -> xlate_error "obsolete Hint Unfold not supported") l in
+ let n1, names = match l with
+ n1 :: names -> n1, names
+ | _ -> failwith "" in
+ if local then
+ CT_local_hints(CT_ident "Unfold",
+ CT_id_ne_list(n1, names), dblist)
+ else
+ CT_hints(CT_ident "Unfold", CT_id_ne_list(n1, names), dblist)
+ | HintsDestruct(id, n, loc, f, t) ->
+ let dl = match loc with
+ ConclLocation() -> CT_conclusion_location
+ | HypLocation true -> CT_discardable_hypothesis
+ | HypLocation false -> CT_hypothesis_location in
+ if local then
+ CT_local_hint_destruct
+ (xlate_ident id, CT_int n,
+ dl, xlate_formula f, xlate_tactic t, dblist)
+ else
+ CT_hint_destruct
+ (xlate_ident id, CT_int n, dl, xlate_formula f,
+ xlate_tactic t, dblist)
+ | HintsExtern(Some _, _, _, _)
+ | HintsConstructors(Some _, _) ->
+ xlate_error "obsolete Hint Constructors not supported"
+)
+ | VernacEndProof (Proved (true,None)) ->
+ CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Theorem"), ctv_ID_OPT_NONE)
+ | VernacEndProof (Proved (false,None)) ->
+ CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Definition"), ctv_ID_OPT_NONE)
+ | VernacEndProof (Proved (b,Some ((_,s), Some kind))) ->
+ CT_save (CT_coerce_THM_to_THM_OPT (xlate_thm kind),
+ ctf_ID_OPT_SOME (xlate_ident s))
+ | VernacEndProof (Proved (b,Some ((_,s),None))) ->
+ CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Theorem"),
+ ctf_ID_OPT_SOME (xlate_ident s))
+ | VernacEndProof Admitted ->
+ CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Admitted"), ctv_ID_OPT_NONE)
+ | VernacSetOpacity (false, id :: idl) ->
+ CT_transparent(CT_id_ne_list(loc_qualid_to_ct_ID id,
+ List.map loc_qualid_to_ct_ID idl))
+ | VernacSetOpacity (true, id :: idl)
+ -> CT_opaque (CT_id_ne_list(loc_qualid_to_ct_ID id,
+ List.map loc_qualid_to_ct_ID idl))
+ | VernacSetOpacity (_, []) -> xlate_error "Shouldn't occur"
+ | VernacUndo n -> CT_undo (CT_coerce_INT_to_INT_OPT (CT_int n))
+ | VernacShow (ShowGoal nopt) -> CT_show_goal (xlate_int_opt nopt)
+ | VernacShow ShowNode -> CT_show_node
+ | VernacShow ShowProof -> CT_show_proof
+ | VernacShow ShowTree -> CT_show_tree
+ | VernacShow ShowProofNames -> CT_show_proofs
+ | VernacShow (ShowIntros true) -> CT_show_intros
+ | VernacShow (ShowIntros false) -> CT_show_intro
+ | VernacShow (ShowGoalImplicitly None) -> CT_show_implicit (CT_int 1)
+ | VernacShow (ShowGoalImplicitly (Some n)) -> CT_show_implicit (CT_int n)
+ | VernacShow ShowExistentials -> CT_show_existentials
+ | VernacShow ShowScript -> CT_show_script
+ | VernacGo arg -> CT_go (xlate_locn arg)
+ | VernacShow ExplainProof l -> CT_explain_proof (nums_to_int_list l)
+ | VernacShow ExplainTree l ->
+ CT_explain_prooftree (nums_to_int_list l)
+ | VernacCheckGuard -> CT_guarded
+ | VernacPrint p ->
+ (match p with
+ PrintFullContext -> CT_print_all
+ | PrintName id -> CT_print_id (loc_qualid_to_ct_ID id)
+ | PrintOpaqueName id -> CT_print_opaqueid (loc_qualid_to_ct_ID id)
+ | PrintSectionContext id -> CT_print_section (loc_qualid_to_ct_ID id)
+ | PrintModules -> CT_print_modules
+ | PrintGrammar (phylum, name) -> CT_print_grammar CT_grammar_none
+ | PrintHintDb -> CT_print_hintdb (CT_coerce_STAR_to_ID_OR_STAR CT_star)
+ | PrintHintDbName id ->
+ CT_print_hintdb (CT_coerce_ID_to_ID_OR_STAR (CT_ident id))
+ | PrintHint id ->
+ CT_print_hint (CT_coerce_ID_to_ID_OPT (loc_qualid_to_ct_ID id))
+ | PrintHintGoal -> CT_print_hint ctv_ID_OPT_NONE
+ | PrintLoadPath -> CT_print_loadpath
+ | PrintMLLoadPath -> CT_ml_print_path
+ | PrintMLModules -> CT_ml_print_modules
+ | PrintGraph -> CT_print_graph
+ | PrintClasses -> CT_print_classes
+ | PrintCoercions -> CT_print_coercions
+ | PrintCoercionPaths (id1, id2) ->
+ CT_print_path (xlate_class id1, xlate_class id2)
+ | PrintInspect n -> CT_inspect (CT_int n)
+ | PrintUniverses opt_s -> CT_print_universes(ctf_STRING_OPT opt_s)
+ | PrintLocalContext -> CT_print
+ | PrintTables -> CT_print_tables
+ | PrintModuleType a -> CT_print_module_type (loc_qualid_to_ct_ID a)
+ | PrintModule a -> CT_print_module (loc_qualid_to_ct_ID a)
+ | PrintScopes -> CT_print_scopes
+ | PrintScope id -> CT_print_scope (CT_ident id)
+ | PrintVisibility id_opt ->
+ CT_print_visibility
+ (match id_opt with
+ Some id -> CT_coerce_ID_to_ID_OPT(CT_ident id)
+ | None -> ctv_ID_OPT_NONE)
+ | PrintAbout qid -> CT_print_about(loc_qualid_to_ct_ID qid)
+ | PrintImplicit qid -> CT_print_implicit(loc_qualid_to_ct_ID qid))
+ | VernacBeginSection (_,id) ->
+ CT_coerce_SECTION_BEGIN_to_COMMAND (CT_section (xlate_ident id))
+ | VernacEndSegment (_,id) -> CT_section_end (xlate_ident id)
+ | VernacStartTheoremProof (k, (_,s), (bl,c), _, _) ->
+ CT_coerce_THEOREM_GOAL_to_COMMAND(
+ CT_theorem_goal (CT_coerce_THM_to_DEFN_OR_THM (xlate_thm k), xlate_ident s,
+ xlate_binder_list bl, xlate_formula c))
+ | VernacSuspend -> CT_suspend
+ | VernacResume idopt -> CT_resume (xlate_ident_opt (option_app snd idopt))
+ | VernacDefinition (k,(_,s),ProveBody (bl,typ),_) ->
+ CT_coerce_THEOREM_GOAL_to_COMMAND
+ (CT_theorem_goal
+ (CT_coerce_DEFN_to_DEFN_OR_THM (xlate_defn k),
+ xlate_ident s, xlate_binder_list bl, xlate_formula typ))
+ | VernacDefinition (kind,(_,s),DefineBody(bl,red_option,c,typ_opt),_) ->
+ CT_definition
+ (xlate_defn kind, xlate_ident s, xlate_binder_list bl,
+ cvt_optional_eval_for_definition c red_option,
+ xlate_formula_opt typ_opt)
+ | VernacAssumption (kind, b) ->
+ CT_variable (xlate_var kind, cvt_vernac_binders b)
+ | VernacCheckMayEval (None, numopt, c) ->
+ CT_check (xlate_formula c)
+ | VernacSearch (s,x) ->
+ let translated_restriction = xlate_search_restr x in
+ (match s with
+ | SearchPattern c ->
+ CT_search_pattern(xlate_formula c, translated_restriction)
+ | SearchHead id ->
+ CT_search(loc_qualid_to_ct_ID id, translated_restriction)
+ | SearchRewrite c ->
+ CT_search_rewrite(xlate_formula c, translated_restriction)
+ | SearchAbout (a::l) ->
+ let xlate_search_about_item it =
+ match it with
+ SearchRef x ->
+ CT_coerce_ID_to_ID_OR_STRING(loc_qualid_to_ct_ID x)
+ | SearchString s ->
+ CT_coerce_STRING_to_ID_OR_STRING(CT_string s) in
+ CT_search_about
+ (CT_id_or_string_ne_list(xlate_search_about_item a,
+ List.map xlate_search_about_item l),
+ translated_restriction)
+ | SearchAbout [] -> assert false)
+
+ | (*Record from tactics/Record.v *)
+ VernacRecord
+ (_, (add_coercion, (_,s)), binders, c1,
+ rec_constructor_or_none, field_list) ->
+ let record_constructor =
+ xlate_ident_opt (option_app snd rec_constructor_or_none) in
+ CT_record
+ ((if add_coercion then CT_coercion_atm else
+ CT_coerce_NONE_to_COERCION_OPT(CT_none)),
+ xlate_ident s, xlate_binder_list binders,
+ xlate_formula c1, record_constructor,
+ build_record_field_list field_list)
+ | VernacInductive (isind, lmi) ->
+ let co_or_ind = if isind then "Inductive" else "CoInductive" in
+ let strip_mutind ((_,s), notopt, parameters, c, constructors) =
+ CT_ind_spec
+ (xlate_ident s, xlate_binder_list parameters, xlate_formula c,
+ build_constructors constructors,
+ translate_opt_notation_decl notopt) in
+ CT_mind_decl
+ (CT_co_ind co_or_ind, CT_ind_spec_list (List.map strip_mutind lmi))
+ | VernacFixpoint [] -> xlate_error "mutual recursive"
+ | VernacFixpoint (lm :: lmi) ->
+ let strip_mutrec ((fid, n, bl, arf, ardef), ntn) =
+ let (struct_arg,bl,arf,ardef) =
+ if bl = [] then
+ let (bl,arf,ardef) = Ppconstr.split_fix (n+1) arf ardef in
+ let bl = List.map (fun(nal,ty)->LocalRawAssum(nal,ty)) bl in
+ (xlate_id_opt(List.nth (names_of_local_assums bl) n),bl,arf,ardef)
+ else (make_fix_struct (n, bl),bl,arf,ardef) in
+ let arf = xlate_formula arf in
+ let ardef = xlate_formula ardef in
+ match xlate_binder_list bl with
+ | CT_binder_list (b :: bl) ->
+ CT_fix_rec (xlate_ident fid, CT_binder_ne_list (b, bl),
+ struct_arg, arf, ardef)
+ | _ -> xlate_error "mutual recursive" in
+ CT_fix_decl
+ (CT_fix_rec_list (strip_mutrec lm, List.map strip_mutrec lmi))
+ | VernacCoFixpoint [] -> xlate_error "mutual corecursive"
+ | VernacCoFixpoint (lm :: lmi) ->
+ let strip_mutcorec (fid, bl, arf, ardef) =
+ CT_cofix_rec (xlate_ident fid, xlate_binder_list bl,
+ xlate_formula arf, xlate_formula ardef) in
+ CT_cofix_decl
+ (CT_cofix_rec_list (strip_mutcorec lm, List.map strip_mutcorec lmi))
+ | VernacScheme [] -> xlate_error "induction scheme"
+ | VernacScheme (lm :: lmi) ->
+ let strip_ind ((_,id), depstr, inde, sort) =
+ CT_scheme_spec
+ (xlate_ident id, xlate_dep depstr,
+ CT_coerce_ID_to_FORMULA (loc_qualid_to_ct_ID inde),
+ xlate_sort sort) in
+ CT_ind_scheme
+ (CT_scheme_spec_list (strip_ind lm, List.map strip_ind lmi))
+ | VernacSyntacticDefinition (id, c, false, _) ->
+ CT_syntax_macro (xlate_ident id, xlate_formula c, xlate_int_opt None)
+ | VernacSyntacticDefinition (id, c, true, _) ->
+ xlate_error "TODO: Local abbreviations"
+ (* Modules and Module Types *)
+ | VernacDeclareModuleType((_, id), bl, mty_o) ->
+ CT_module_type_decl(xlate_ident id,
+ xlate_module_binder_list bl,
+ match mty_o with
+ None ->
+ CT_coerce_ID_OPT_to_MODULE_TYPE_OPT
+ ctv_ID_OPT_NONE
+ | Some mty1 ->
+ CT_coerce_MODULE_TYPE_to_MODULE_TYPE_OPT
+ (xlate_module_type mty1))
+ | VernacDefineModule((_, id), bl, mty_o, mexpr_o) ->
+ CT_module(xlate_ident id,
+ xlate_module_binder_list bl,
+ xlate_module_type_check_opt mty_o,
+ match mexpr_o with
+ None -> CT_coerce_ID_OPT_to_MODULE_EXPR ctv_ID_OPT_NONE
+ | Some m -> xlate_module_expr m)
+ | VernacDeclareModule((_, id), bl, mty_o, mexpr_o) ->
+ CT_declare_module(xlate_ident id,
+ xlate_module_binder_list bl,
+ xlate_module_type_check_opt mty_o,
+ match mexpr_o with
+ None -> CT_coerce_ID_OPT_to_MODULE_EXPR ctv_ID_OPT_NONE
+ | Some m -> xlate_module_expr m)
+ | VernacRequire (impexp, spec, id::idl) ->
+ let ct_impexp, ct_spec = get_require_flags impexp spec in
+ CT_require (ct_impexp, ct_spec,
+ CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STRING(
+ CT_id_ne_list(loc_qualid_to_ct_ID id,
+ List.map loc_qualid_to_ct_ID idl)))
+ | VernacRequire (_,_,[]) ->
+ xlate_error "Require should have at least one id argument"
+ | VernacRequireFrom (impexp, spec, filename) ->
+ let ct_impexp, ct_spec = get_require_flags impexp spec in
+ CT_require(ct_impexp, ct_spec,
+ CT_coerce_STRING_to_ID_NE_LIST_OR_STRING(CT_string filename))
+
+ | VernacSyntax (phylum, l) -> xlate_error "SYNTAX not implemented"
+
+ | VernacOpenCloseScope(true, true, s) -> CT_local_open_scope(CT_ident s)
+ | VernacOpenCloseScope(false, true, s) -> CT_open_scope(CT_ident s)
+ | VernacOpenCloseScope(true, false, s) -> CT_local_close_scope(CT_ident s)
+ | VernacOpenCloseScope(false, false, s) -> CT_close_scope(CT_ident s)
+ | VernacArgumentsScope(qid, l) ->
+ CT_arguments_scope(loc_qualid_to_ct_ID qid,
+ CT_id_opt_list
+ (List.map
+ (fun x ->
+ match x with
+ None -> ctv_ID_OPT_NONE
+ | Some x -> ctf_ID_OPT_SOME(CT_ident x)) l))
+ | VernacDelimiters(s1,s2) -> CT_delim_scope(CT_ident s1, CT_ident s2)
+ | VernacBindScope(id, a::l) ->
+ let xlate_class_rawexpr = function
+ FunClass -> CT_ident "Funclass" | SortClass -> CT_ident "Sortclass"
+ | RefClass qid -> loc_qualid_to_ct_ID qid in
+ CT_bind_scope(CT_ident id,
+ CT_id_ne_list(xlate_class_rawexpr a,
+ List.map xlate_class_rawexpr l))
+ | VernacBindScope(id, []) -> assert false
+ | VernacNotation(b, c, None, _, _) -> assert false
+ | VernacNotation(b, c, Some(s,modif_list), _, opt_scope) ->
+ let translated_s = CT_string s in
+ let formula = xlate_formula c in
+ let translated_modif_list =
+ CT_modifier_list(List.map xlate_syntax_modifier modif_list) in
+ let translated_scope = match opt_scope with
+ None -> ctv_ID_OPT_NONE
+ | Some x -> ctf_ID_OPT_SOME(CT_ident x) in
+ if b then
+ CT_local_define_notation
+ (translated_s, formula, translated_modif_list, translated_scope)
+ else
+ CT_define_notation(translated_s, formula,
+ translated_modif_list, translated_scope)
+ | VernacSyntaxExtension(b,Some(s,modif_list), None) ->
+ let translated_s = CT_string s in
+ let translated_modif_list =
+ CT_modifier_list(List.map xlate_syntax_modifier modif_list) in
+ if b then
+ CT_local_reserve_notation(translated_s, translated_modif_list)
+ else
+ CT_reserve_notation(translated_s, translated_modif_list)
+ | VernacSyntaxExtension(_, _, _) -> assert false
+ | VernacInfix (b,(str,modl),id,_, opt_scope) ->
+ let id1 = loc_qualid_to_ct_ID id in
+ let modl1 = CT_modifier_list(List.map xlate_syntax_modifier modl) in
+ let s = CT_string str in
+ let translated_scope = match opt_scope with
+ None -> ctv_ID_OPT_NONE
+ | Some x -> ctf_ID_OPT_SOME(CT_ident x) in
+ if b then
+ CT_local_infix(s, id1,modl1, translated_scope)
+ else
+ CT_infix(s, id1,modl1, translated_scope)
+ | VernacGrammar _ -> xlate_error "GRAMMAR not implemented"
+ | VernacCoercion (s, id1, id2, id3) ->
+ let id_opt = CT_coerce_NONE_to_IDENTITY_OPT CT_none in
+ let local_opt =
+ match s with
+ (* Cannot decide whether it is a global or a Local but at toplevel *)
+ | Global -> CT_coerce_NONE_to_LOCAL_OPT CT_none
+ | Local -> CT_local in
+ CT_coercion (local_opt, id_opt, loc_qualid_to_ct_ID id1,
+ xlate_class id2, xlate_class id3)
+
+ | VernacIdentityCoercion (s, (_,id1), id2, id3) ->
+ let id_opt = CT_identity in
+ let local_opt =
+ match s with
+ (* Cannot decide whether it is a global or a Local but at toplevel *)
+ | Global -> CT_coerce_NONE_to_LOCAL_OPT CT_none
+ | Local -> CT_local in
+ CT_coercion (local_opt, id_opt, xlate_ident id1,
+ xlate_class id2, xlate_class id3)
+ | VernacResetName id -> CT_reset (xlate_ident (snd id))
+ | VernacResetInitial -> CT_restore_state (CT_ident "Initial")
+ | VernacExtend (s, l) ->
+ CT_user_vernac
+ (CT_ident s, CT_varg_list (List.map coerce_genarg_to_VARG l))
+ | VernacDebug b -> xlate_error "Debug On/Off not supported"
+ | VernacList((_, a)::l) ->
+ CT_coerce_COMMAND_LIST_to_COMMAND
+ (CT_command_list(xlate_vernac a,
+ List.map (fun (_, x) -> xlate_vernac x) l))
+ | VernacList([]) -> assert false
+ | (VernacV7only _ | VernacV8only _) ->
+ xlate_error "Not treated here"
+ | VernacNop -> CT_proof_no_op
+ | VernacComments l ->
+ CT_scomments(CT_scomment_content_list (List.map xlate_comment l))
+ | VernacDeclareImplicits(id, opt_positions) ->
+ CT_implicits
+ (reference_to_ct_ID id,
+ match opt_positions with
+ None -> CT_coerce_NONE_to_ID_LIST_OPT CT_none
+ | Some l ->
+ CT_coerce_ID_LIST_to_ID_LIST_OPT
+ (CT_id_list
+ (List.map
+ (function ExplByPos x
+ -> xlate_error
+ "explication argument by rank is obsolete"
+ | ExplByName id -> CT_ident (string_of_id id)) l)))
+ | VernacReserve((_,a)::l, f) ->
+ CT_reserve(CT_id_ne_list(xlate_ident a,
+ List.map (fun (_,x) -> xlate_ident x) l),
+ xlate_formula f)
+ | VernacReserve([], _) -> assert false
+ | VernacLocate(LocateTerm id) -> CT_locate(reference_to_ct_ID id)
+ | VernacLocate(LocateLibrary id) -> CT_locate_lib(reference_to_ct_ID id)
+ | VernacLocate(LocateFile s) -> CT_locate_file(CT_string s)
+ | VernacLocate(LocateNotation s) -> CT_locate_notation(CT_string s)
+ | VernacTime(v) -> CT_time(xlate_vernac v)
+ | VernacSetOption (Goptions.SecondaryTable ("Implicit", "Arguments"), BoolValue true)->CT_user_vernac (CT_ident "IMPLICIT_ARGS_ON", CT_varg_list[])
+ |VernacExactProof f -> CT_proof(xlate_formula f)
+ | VernacSetOption (table, BoolValue true) ->
+ let table1 =
+ match table with
+ PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
+ | SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2) in
+ CT_set_option(table1)
+ | VernacSetOption (table, v) ->
+ let table1 =
+ match table with
+ PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
+ | SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2) in
+ let value =
+ match v with
+ | BoolValue _ -> assert false
+ | StringValue s ->
+ CT_coerce_STRING_to_SINGLE_OPTION_VALUE(CT_string s)
+ | IntValue n ->
+ CT_coerce_INT_to_SINGLE_OPTION_VALUE(CT_int n) in
+ CT_set_option_value(table1, value)
+ | VernacUnsetOption(table) ->
+ let table1 =
+ match table with
+ PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
+ | SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2) in
+ CT_unset_option(table1)
+ | VernacAddOption (table, l) ->
+ let values =
+ List.map
+ (function
+ | QualidRefValue x ->
+ CT_coerce_ID_to_ID_OR_STRING(loc_qualid_to_ct_ID x)
+ | StringRefValue x ->
+ CT_coerce_STRING_to_ID_OR_STRING(CT_string x)) l in
+ let fst, values1 =
+ match values with [] -> assert false | a::b -> (a,b) in
+ let table1 =
+ match table with
+ PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
+ | SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2) in
+ CT_set_option_value2(table1, CT_id_or_string_ne_list(fst, values1))
+ | VernacImport(true, a::l) ->
+ CT_export_id(CT_id_ne_list(reference_to_ct_ID a,
+ List.map reference_to_ct_ID l))
+ | VernacImport(false, a::l) ->
+ CT_import_id(CT_id_ne_list(reference_to_ct_ID a,
+ List.map reference_to_ct_ID l))
+ | VernacImport(_, []) -> assert false
+ | VernacProof t -> CT_proof_with(xlate_tactic t)
+ | VernacVar _ -> xlate_error "Grammar vernac obsolete"
+ | (VernacGlobalCheck _|VernacPrintOption _|
+ VernacMemOption (_, _)|VernacRemoveOption (_, _)
+ | VernacBack _|VernacRestoreState _| VernacWriteState _|
+ VernacSolveExistential (_, _)|VernacCanonical _ | VernacDistfix _|
+ VernacTacticGrammar _)
+ -> xlate_error "TODO: vernac";;
+
+let rec xlate_vernac_list =
+ function
+ | VernacList (v::l) ->
+ CT_command_list
+ (xlate_vernac (snd v), List.map (fun (_,x) -> xlate_vernac x) l)
+ | VernacV7only v ->
+ if !Options.v7 then xlate_vernac_list v
+ else xlate_error "Unknown command"
+ | VernacList [] -> xlate_error "xlate_command_list"
+ | _ -> xlate_error "Not a list of commands";;
diff --git a/contrib/interface/xlate.mli b/contrib/interface/xlate.mli
new file mode 100644
index 00000000..bedb4ac8
--- /dev/null
+++ b/contrib/interface/xlate.mli
@@ -0,0 +1,9 @@
+open Ascent;;
+
+val xlate_vernac : Vernacexpr.vernac_expr -> ct_COMMAND;;
+val xlate_tactic : Tacexpr.raw_tactic_expr -> ct_TACTIC_COM;;
+val xlate_formula : Topconstr.constr_expr -> ct_FORMULA;;
+val xlate_ident : Names.identifier -> ct_ID;;
+val xlate_vernac_list : Vernacexpr.vernac_expr -> ct_COMMAND_LIST;;
+
+val declare_in_coq : (unit -> unit);;
diff --git a/contrib/jprover/README b/contrib/jprover/README
new file mode 100644
index 00000000..ec654a03
--- /dev/null
+++ b/contrib/jprover/README
@@ -0,0 +1,76 @@
+An intuitionistic first-order theorem prover -- JProver.
+
+Usage:
+
+Require JProver.
+Jp [num].
+
+Whem [num] is provided, proof is done automatically with
+the multiplicity limit [num], otherwise no limit is forced
+and JProver may not terminate.
+
+Example:
+
+Require JProver.
+Coq < Goal (P:Prop) P->P.
+1 subgoal
+
+============================
+ (P:Prop)P->P
+
+Unnamed_thm < Jp 1.
+Proof is built.
+Subtree proved!
+-----------------------------------------
+
+Description:
+JProver is a theorem prover for first-order intuitionistic logic.
+It is originally implemented by Stephan Schmitt and then integrated into
+MetaPRL by Aleksey Nogin (see jall.ml). After this, Huang extracted the
+necessary ML-codes from MetaPRL and then integrated it into Coq.
+The MetaPRL URL is http://metaprl.org/. For more information on
+integrating JProver into interactive proof assistants, please refer to
+
+ "Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin,
+ Jprover: Integrating connection-based theorem proving into interactive
+ proof assistants. In International Joint Conference on Automated
+ Reasoning, volume 2083 of Lecture Notes in Artificial Intelligence,
+ pages 421-426. Springer-Verlag, 2001" -
+ http://www.cs.cornell.edu/nogin/papers/jprover.html
+
+
+Structure of this directory:
+This directory contains
+
+ README ------ this file
+ jall.ml ------ the main module of JProver
+ jtunify.ml ------ string unification procedures for jall.ml
+ jlogic.ml ------ interface module of jall.ml
+ jterm.ml
+ opname.ml ------ implement the infrastructure for jall.ml
+ jprover.ml4 ------ the interface of jall.ml to Coq
+ JProver.v ------ declaration for Coq
+ Makefile ------ the makefile
+ go ------ batch file to load JProver to Coq dynamically
+
+
+Comments:
+1. The original <jall.ml> is located in meta-prl/refiner/reflib of the
+MetaPRL directory. Some parts of this file are modified by Huang.
+
+2. <jtunify.ml> is also located in meta-prl/refiner/reflib with no modification.
+
+3. <jlogic.ml> is modified from meta-prl/refiner/reflib/jlogic_sig.mlz.
+
+4. <jterm.ml> and <opname.ml> are modified from the standard term module
+of MetaPRL in meta-prl/refiner/term_std.
+
+5. The Jp tactic currently cannot prove formula such as
+ ((x:nat) (P x)) -> (EX y:nat| (P y)), which requires extra constants
+in the domain when the left-All rule is applied.
+
+
+
+by Huang Guan-Shieng (Guan-Shieng.Huang@lri.fr), March 2002.
+
+
diff --git a/contrib/jprover/jall.ml b/contrib/jprover/jall.ml
new file mode 100644
index 00000000..876dc6c0
--- /dev/null
+++ b/contrib/jprover/jall.ml
@@ -0,0 +1,4701 @@
+(*
+ * JProver first-order automated prover. See the interface file
+ * for more information and a list of references for JProver.
+ *
+ * ----------------------------------------------------------------
+ *
+ * This file is part of MetaPRL, a modular, higher order
+ * logical framework that provides a logical programming
+ * environment for OCaml and other languages.
+ *
+ * See the file doc/index.html for information on Nuprl,
+ * OCaml, and more information about this system.
+ *
+ * Copyright (C) 2000 Stephan Schmitt
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * Author: Stephan Schmitt <schmitts@spmail.slu.edu>
+ * Modified by: Aleksey Nogin <nogin@cs.cornell.edu>
+ *)
+
+(*: All of Huang's modifications of this file are quoted or denoted
+ by comments followed by a colon.
+:*)
+
+(*:
+open Mp_debug
+
+open Refiner.Refiner
+open Term
+open TermType
+open TermOp
+open TermSubst
+open TermMan
+open RefineError
+open Opname
+:*)
+
+open Jterm
+open Opname
+open Jlogic
+open Jtunify
+
+let ruletable = Jlogic.ruletable
+
+(*:
+let free_var_op = make_opname ["free_variable";"Jprover"]
+let jprover_op = make_opname ["string";"Jprover"]
+:*)
+let free_var_op = make_opname ["free_variable"; "Jprover"]
+let jprover_op = make_opname ["jprover"; "string"]
+
+module JProver (JLogic : JLogicSig) =
+struct
+ type polarity = I | O
+
+ type connective = And | Or | Neg | Imp | All | Ex | At | Null
+
+ type ptype = Alpha | Beta | Gamma | Delta | Phi | Psi | PNull
+
+ type stype =
+ Alpha_1 | Alpha_2 | Beta_1 | Beta_2 | Gamma_0 | Delta_0
+ | Phi_0 | Psi_0 | PNull_0
+
+ type pos = {name : string;
+ address : int list;
+ op : connective;
+ pol : polarity;
+ pt : ptype;
+ st : stype;
+ label : term}
+
+ type 'pos ftree =
+ Empty
+ | NodeAt of 'pos
+ | NodeA of 'pos * ('pos ftree) array
+
+ type atom = {aname : string;
+ aaddress : int list;
+ aprefix : string list;
+ apredicate : operator;
+ apol : polarity;
+ ast : stype;
+ alabel : term}
+
+ type atom_relations = atom * atom list * atom list
+(* all atoms except atom occur in [alpha_set] and [beta_set] of atom*)
+
+(* beta proofs *)
+
+ type bproof = BEmpty
+ | RNode of string list * bproof
+ | CNode of (string * string)
+ | BNode of string * (string list * bproof) * (string list * bproof)
+ | AtNode of string * (string * string)
+
+(* Assume only constants for instantiations, not adapted to terms yet *)
+ type inf = rule * term * term
+
+(* proof tree for pretty print and permutation *)
+ type 'inf ptree =
+ PEmpty
+ | PNodeAx of 'inf
+ | PNodeA of 'inf * 'inf ptree
+ | PNodeB of 'inf * 'inf ptree * 'inf ptree
+
+ module OrderedAtom =
+ struct
+ type t = atom
+ let compare a1 a2 = if (a1.aname) = (a2.aname) then 0 else
+ if (a1.aname) < (a2.aname) then -1 else 1
+ end
+
+ module AtomSet = Set.Make(OrderedAtom)
+
+ module OrderedString =
+ struct
+ type t = string
+ let compare a1 a2 = if a1 = a2 then 0 else
+ if a1 < a2 then -1 else 1
+ end
+
+ module StringSet = Set.Make(OrderedString)
+
+(*i let _ =
+ show_loading "Loading Jall%t" i*)
+
+ let debug_jprover =
+ create_debug (**)
+ { debug_name = "jprover";
+ debug_description = "Display Jprover operations";
+ debug_value = false
+ }
+
+ let jprover_bug = Invalid_argument "Jprover bug (Jall module)"
+
+(*****************************************************************)
+
+(************* printing function *************************************)
+
+(************ printing T-string unifiers ****************************)
+
+(* ******* printing ********** *)
+
+ let rec list_to_string s =
+ match s with
+ [] -> ""
+ | f::r ->
+ f^"."^(list_to_string r)
+
+ let rec print_eqlist eqlist =
+ match eqlist with
+ [] ->
+ print_endline ""
+ | (atnames,f)::r ->
+ let (s,t) = f in
+ let ls = list_to_string s
+ and lt = list_to_string t in
+ begin
+ print_endline ("Atom names: "^(list_to_string atnames));
+ print_endline (ls^" = "^lt);
+ print_eqlist r
+ end
+
+ let print_equations eqlist =
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ print_endline "Equations:";
+ print_eqlist eqlist;
+ Format.force_newline ();
+ end
+
+ let rec print_subst sigma =
+ match sigma with
+ [] ->
+ print_endline ""
+ | f::r ->
+ let (v,s) = f in
+ let ls = list_to_string s in
+ begin
+ print_endline (v^" = "^ls);
+ print_subst r
+ end
+
+ let print_tunify sigma =
+ let (n,subst) = sigma in
+ begin
+ print_endline " ";
+ print_endline ("MaxVar = "^(string_of_int (n-1)));
+ print_endline " ";
+ print_endline "Substitution:";
+ print_subst subst;
+ print_endline " "
+ end
+
+(*****************************************************)
+
+(********* printing atoms and their relations ***********************)
+
+ let print_stype st =
+ match st with
+ Alpha_1 -> Format.print_string "Alpha_1"
+ | Alpha_2 -> Format.print_string "Alpha_2"
+ | Beta_1 -> Format.print_string "Beta_1"
+ | Beta_2 -> Format.print_string "Beta_2"
+ | Gamma_0 -> Format.print_string "Gamma_0"
+ | Delta_0 -> Format.print_string "Delta_0"
+ | Phi_0 -> Format.print_string "Phi_0"
+ | Psi_0 -> Format.print_string "Psi_0"
+ | PNull_0 -> Format.print_string "PNull_0"
+
+ let print_pol pol =
+ if pol = O then
+ Format.print_string "O"
+ else
+ Format.print_string "I"
+
+ let rec print_address int_list =
+ match int_list with
+ [] ->
+ Format.print_string ""
+ | hd::rest ->
+ begin
+ Format.print_int hd;
+ print_address rest
+ end
+
+ let rec print_prefix prefix_list =
+ match prefix_list with
+ [] -> Format.print_string ""
+ | f::r ->
+ begin
+ Format.print_string f;
+ print_prefix r
+ end
+
+ let print_atom at tab =
+ let ({aname=x; aaddress=y; aprefix=z; apredicate=p; apol=a; ast=b; alabel=label}) = at in
+ begin
+ Format.print_string ("{aname="^x^"; address=");
+ print_address y;
+ Format.print_string "; ";
+ Format.force_newline ();
+ Format.print_break (tab+1) (tab+1);
+ Format.print_string "prefix=";
+ print_prefix z;
+ Format.print_string "; predicate=<abstr>; ";
+ Format.print_break (tab+1) (tab+1);
+ Format.print_break (tab+1) (tab+1);
+ Format.print_string "pol=";
+ print_pol a;
+ Format.print_string "; stype=";
+ print_stype b;
+ Format.print_string "; arguments=[<abstr>]";
+ Format.print_string "\n alabel=";
+ print_term stdout label;
+ Format.print_string "}"
+ end
+
+ let rec print_atom_list set tab =
+ match set with
+ [] -> Format.print_string ""
+ | (f::r) ->
+ begin
+ Format.force_newline ();
+ Format.print_break (tab) (tab);
+ print_atom f tab;
+ print_atom_list r (tab)
+ end
+
+ let rec print_atom_info atom_relation =
+ match atom_relation with
+ [] -> Format.print_string ""
+ | (a,b,c)::r ->
+ begin
+ Format.print_string "atom:";
+ Format.force_newline ();
+ Format.print_break 3 3;
+ print_atom a 3;
+ Format.force_newline ();
+ Format.print_break 0 0;
+ Format.print_string "alpha_set:";
+ print_atom_list b 3;
+ Format.force_newline ();
+ Format.print_break 0 0;
+ Format.print_string "beta_set:";
+ print_atom_list c 3;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_break 0 0;
+ print_atom_info r
+ end
+
+(*************** print formula tree, tree ordering etc. ***********)
+
+ let print_ptype pt =
+ match pt with
+ Alpha -> Format.print_string "Alpha"
+ | Beta -> Format.print_string "Beta"
+ | Gamma -> Format.print_string "Gamma"
+ | Delta -> Format.print_string "Delta"
+ | Phi -> Format.print_string "Phi"
+ | Psi -> Format.print_string "Psi"
+ | PNull -> Format.print_string "PNull"
+
+ let print_op op =
+ match op with
+ At -> Format.print_string "Atom"
+ | Neg -> Format.print_string "Neg"
+ | And -> Format.print_string "And"
+ | Or -> Format.print_string "Or"
+ | Imp -> Format.print_string "Imp"
+ | Ex -> Format.print_string "Ex"
+ | All -> Format.print_string "All"
+ | Null -> Format.print_string "Null"
+
+ let print_position position tab =
+ let ({name=x; address=y; op=z; pol=a; pt=b; st=c; label=t}) = position in
+ begin
+ Format.print_string ("{name="^x^"; address=");
+ print_address y;
+ Format.print_string "; ";
+ Format.force_newline ();
+ Format.print_break (tab+1) 0;
+(* Format.print_break 0 3; *)
+ Format.print_string "op=";
+ print_op z;
+ Format.print_string "; pol=";
+ print_pol a;
+ Format.print_string "; ptype=";
+ print_ptype b;
+ Format.print_string "; stype=";
+ print_stype c;
+ Format.print_string ";";
+ Format.force_newline ();
+ Format.print_break (tab+1) 0;
+ Format.print_string "label=";
+ Format.print_break 0 0;
+ Format.force_newline ();
+ Format.print_break tab 0;
+ print_term stdout t;
+ Format.print_string "}"
+ end
+
+ let rec pp_ftree_list tree_list tab =
+ let rec pp_ftree ftree new_tab =
+ let dummy = String.make (new_tab-2) ' ' in
+ match ftree with
+ Empty -> Format.print_string ""
+ | NodeAt(position) ->
+ begin
+ Format.force_newline ();
+ Format.print_break new_tab 0;
+ print_string (dummy^"AtomNode: ");
+(* Format.force_newline ();
+ Format.print_break 0 3;
+*)
+ print_position position new_tab;
+ Format.force_newline ();
+ Format.print_break new_tab 0
+ end
+ | NodeA(position,subtrees) ->
+ let tree_list = Array.to_list subtrees in
+ begin
+ Format.force_newline ();
+ Format.print_break new_tab 0;
+ Format.print_break 0 0;
+ print_string (dummy^"InnerNode: ");
+ print_position position new_tab;
+ Format.force_newline ();
+ Format.print_break 0 0;
+ pp_ftree_list tree_list (new_tab-3)
+ end
+ in
+ let new_tab = tab+5 in
+ match tree_list with
+ [] -> Format.print_string ""
+ | first::rest ->
+ begin
+ pp_ftree first new_tab;
+ pp_ftree_list rest tab
+ end
+
+ let print_ftree ftree =
+ begin
+ Format.open_box 0;
+ Format.print_break 3 0;
+ pp_ftree_list [ftree] 0;
+ Format.print_flush ()
+ end
+
+ let rec stringlist_to_string stringlist =
+ match stringlist with
+ [] -> "."
+ | f::r ->
+ let rest_s = stringlist_to_string r in
+ (f^"."^rest_s)
+
+ let rec print_stringlist slist =
+ match slist with
+ [] ->
+ Format.print_string ""
+ | f::r ->
+ begin
+ Format.print_string (f^".");
+ print_stringlist r
+ end
+
+ let rec pp_bproof_list tree_list tab =
+ let rec pp_bproof ftree new_tab =
+ let dummy = String.make (new_tab-2) ' ' in
+ match ftree with
+ BEmpty -> Format.print_string ""
+ | CNode((c1,c2)) ->
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_break (new_tab-10) 0;
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_string (dummy^"CloseNode: connection = ("^c1^","^c2^")");
+ Format.print_flush();
+(* Format.force_newline ();
+ Format.print_break 0 3;
+*)
+ Format.open_box 0;
+ Format.print_break new_tab 0;
+ Format.print_flush()
+ end
+ | AtNode(posname,(c1,c2)) ->
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_break (new_tab-10) 0;
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_string (dummy^"AtNode: pos = "^posname^" conneciton = ("^c1^","^c2^")");
+ Format.print_flush();
+(* Format.force_newline ();
+ Format.print_break 0 3;
+*)
+ Format.open_box 0;
+ Format.print_break new_tab 0;
+ Format.print_flush()
+ end
+ | RNode(alpha_layer,bproof) ->
+ let alpha_string = stringlist_to_string alpha_layer in
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_break new_tab 0;
+ Format.print_break 0 0;
+ Format.force_newline ();
+ Format.print_flush();
+ Format.open_box 0;
+ print_string (dummy^"RootNode: "^alpha_string);
+ Format.print_flush();
+ Format.open_box 0;
+ Format.print_break 0 0;
+ Format.print_flush();
+ pp_bproof_list [bproof] (new_tab-3)
+ end
+ | BNode(posname,(alph1,bproof1),(alph2,bproof2)) ->
+ let alpha_string1 = stringlist_to_string alph1
+ and alpha_string2 = stringlist_to_string alph2 in
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_break new_tab 0;
+ Format.print_break 0 0;
+ Format.force_newline ();
+ Format.print_flush();
+ Format.open_box 0;
+ print_string (dummy^"BetaNode: pos = "^posname^" layer1 = "^alpha_string1^" layer2 = "^alpha_string2);
+ Format.print_flush();
+ Format.open_box 0;
+ Format.print_break 0 0;
+ Format.print_flush();
+ pp_bproof_list [bproof1;bproof2] (new_tab-3)
+ end
+ in
+ let new_tab = tab+5 in
+ match tree_list with
+ [] -> Format.print_string ""
+ | first::rest ->
+ begin
+ pp_bproof first new_tab;
+ pp_bproof_list rest tab
+ end
+
+ let rec print_pairlist pairlist =
+ match pairlist with
+ [] -> Format.print_string ""
+ | (a,b)::rest ->
+ begin
+ Format.print_break 1 1;
+ Format.print_string ("("^a^","^b^")");
+ print_pairlist rest
+ end
+
+ let print_beta_proof bproof =
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_break 3 0;
+ pp_bproof_list [bproof] 0;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_flush ()
+ end
+
+ let rec print_treelist treelist =
+ match treelist with
+ [] ->
+ print_endline "END";
+ | f::r ->
+ begin
+ print_ftree f;
+ Format.open_box 0;
+ print_endline "";
+ print_endline "";
+ print_endline "NEXT TREE";
+ print_endline "";
+ print_endline "";
+ print_treelist r;
+ Format.print_flush ()
+ end
+
+ let rec print_set_list set_list =
+ match set_list with
+ [] -> ""
+ | f::r ->
+ (f.aname)^" "^(print_set_list r)
+
+ let print_set set =
+ let set_list = AtomSet.elements set in
+ if set_list = [] then "empty"
+ else
+ print_set_list set_list
+
+ let print_string_set set =
+ let set_list = StringSet.elements set in
+ print_stringlist set_list
+
+ let rec print_list_sets list_of_sets =
+ match list_of_sets with
+ [] -> Format.print_string ""
+ | (pos,fset)::r ->
+ begin
+ Format.print_string (pos^": "); (* first element = node which successors depend on *)
+ print_stringlist (StringSet.elements fset);
+ Format.force_newline ();
+ print_list_sets r
+ end
+
+ let print_ordering list_of_sets =
+ begin
+ Format.open_box 0;
+ print_list_sets list_of_sets;
+ Format.print_flush ()
+ end
+
+ let rec print_triplelist triplelist =
+ match triplelist with
+ [] -> Format.print_string ""
+ | ((a,b),i)::rest ->
+ begin
+ Format.print_break 1 1;
+ Format.print_string ("(("^a^","^b^"),"^(string_of_int i)^")");
+ print_triplelist rest
+ end
+
+ let print_pos_n pos_n =
+ Format.print_int pos_n
+
+ let print_formula_info ftree ordering pos_n =
+ begin
+ print_ftree ftree;
+ Format.open_box 0;
+ Format.force_newline ();
+ print_ordering ordering;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_string "number of positions: ";
+ print_pos_n pos_n;
+ Format.force_newline ();
+ print_endline "";
+ print_endline "";
+ Format.print_flush ()
+ end
+
+(* print sequent proof tree *)
+
+ let pp_rule (pos,r,formula,term) tab =
+ let rep = ruletable r in
+ if List.mem rep ["Alll";"Allr";"Exl";"Exr"] then
+ begin
+ Format.open_box 0;
+(* Format.force_newline (); *)
+ Format.print_break tab 0;
+ Format.print_string (pos^": "^rep^" ");
+ Format.print_flush ();
+(* Format.print_break tab 0;
+ Format.force_newline ();
+ Format.print_break tab 0;
+*)
+
+ Format.open_box 0;
+ print_term stdout formula;
+ Format.print_flush ();
+ Format.open_box 0;
+ Format.print_string " ";
+ Format.print_flush ();
+ Format.open_box 0;
+ print_term stdout term;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_flush ()
+ end
+ else
+ begin
+ Format.open_box 0;
+ Format.print_break tab 0;
+ Format.print_string (pos^": "^rep^" ");
+ Format.print_flush ();
+ Format.open_box 0;
+(* Format.print_break tab 0; *)
+ Format.force_newline ();
+(* Format.print_break tab 0; *)
+ print_term stdout formula;
+ Format.force_newline ()
+ end
+
+ let last addr =
+ if addr = ""
+ then ""
+ else
+ String.make 1 (String.get addr (String.length addr-1))
+
+ let rest addr =
+ if addr = ""
+ then ""
+ else
+ String.sub addr 0 ((String.length addr) - 1)
+
+ let rec get_r_chain addr =
+ if addr = "" then
+ 0
+ else
+ let l = last addr in
+ if l = "l" then
+ 0
+ else (* l = "r" *)
+ let rs = rest addr in
+ 1 + (get_r_chain rs)
+
+ let rec tpp seqtree tab addr =
+ match seqtree with
+ | PEmpty -> raise jprover_bug
+ | PNodeAx(rule) ->
+ let (pos,r,p,pa) = rule in
+ begin
+ pp_rule (pos,r,p,pa) tab;
+(* Format.force_newline (); *)
+(* let mult = get_r_chain addr in *)
+(* Format.print_break 100 (tab - (3 * mult)) *)
+ end
+ | PNodeA(rule,left) ->
+ let (pos,r,p,pa) = rule in
+ begin
+ pp_rule (pos,r,p,pa) tab;
+ tpp left tab addr
+ end
+ | PNodeB(rule,left,right) ->
+ let (pos,r,p,pa) = rule in
+ let newtab = tab + 3 in
+ begin
+ pp_rule (pos,r,p,pa) tab;
+(* Format.force_newline (); *)
+(* Format.print_break 100 newtab; *)
+ (tpp left newtab (addr^"l"));
+ (tpp right newtab (addr^"r"))
+ end
+
+ let tt seqtree =
+ begin
+ Format.open_box 0;
+ tpp seqtree 0 "";
+ Format.force_newline ();
+ Format.close_box ();
+ Format.print_newline ()
+ end
+
+(************ END printing functions *********************************)
+
+(************ Beta proofs and redundancy deletion **********************)
+
+ let rec remove_dups_connections connection_list =
+ match connection_list with
+ [] -> []
+ | (c1,c2)::r ->
+ if (List.mem (c1,c2) r) or (List.mem (c2,c1) r) then
+ (* only one direction variant of a connection stays *)
+ remove_dups_connections r
+ else
+ (c1,c2)::(remove_dups_connections r)
+
+ let rec remove_dups_list list =
+ match list with
+ [] -> []
+ | f::r ->
+ if List.mem f r then
+ remove_dups_list r
+ else
+ f::(remove_dups_list r)
+
+ let beta_pure alpha_layer connections beta_expansions =
+ let (l1,l2) = List.split connections in
+ let test_list = l1 @ l2 @ beta_expansions in
+ begin
+(* Format.open_box 0;
+ print_endline "";
+ print_stringlist alpha_layer;
+ Format.print_flush();
+ Format.open_box 0;
+ print_endline "";
+ print_stringlist test_list;
+ print_endline "";
+ Format.print_flush();
+*)
+ not (List.exists (fun x -> (List.mem x test_list)) alpha_layer)
+ end
+
+ let rec apply_bproof_purity bproof =
+ match bproof with
+ BEmpty ->
+ raise jprover_bug
+ | CNode((c1,c2)) ->
+ bproof,[(c1,c2)],[]
+ | AtNode(_,(c1,c2)) ->
+ bproof,[(c1,c2)],[]
+ | RNode(alpha_layer,subproof) ->
+ let (opt_subproof,min_connections,beta_expansions) =
+ apply_bproof_purity subproof in
+ (RNode(alpha_layer,opt_subproof),min_connections,beta_expansions)
+ | BNode(pos,(alph1,subp1),(alph2,subp2)) ->
+ let (opt_subp1,min_conn1,beta_exp1) = apply_bproof_purity subp1 in
+ if beta_pure alph1 min_conn1 beta_exp1 then
+ begin
+(* print_endline ("Left layer of "^pos); *)
+ (opt_subp1,min_conn1,beta_exp1)
+ end
+ else
+ let (opt_subp2,min_conn2,beta_exp2) = apply_bproof_purity subp2 in
+ if beta_pure alph2 min_conn2 beta_exp2 then
+ begin
+(* print_endline ("Right layer of "^pos); *)
+ (opt_subp2,min_conn2,beta_exp2)
+ end
+ else
+ let min_conn = remove_dups_connections (min_conn1 @ min_conn2)
+ and beta_exp = remove_dups_list ([pos] @ beta_exp1 @ beta_exp2) in
+ (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2)),min_conn,beta_exp)
+
+ let bproof_purity bproof =
+ let (opt_bproof,min_connections,_) = apply_bproof_purity bproof in
+ opt_bproof,min_connections
+
+(*********** split permutation *****************)
+
+ let rec apply_permutation bproof rep_name direction act_blayer =
+ match bproof with
+ BEmpty | RNode(_,_) ->
+ raise jprover_bug
+ | AtNode(cx,(c1,c2)) ->
+ bproof,act_blayer
+ | CNode((c1,c2)) ->
+ bproof,act_blayer
+ | BNode(pos,(alph1,subp1),(alph2,subp2)) ->
+ if rep_name = pos then
+ let (new_blayer,replace_branch) =
+ if direction = "left" then
+ (alph1,subp1)
+ else (* direciton = "right" *)
+ (alph2,subp2)
+ in
+ (match replace_branch with
+ CNode((c1,c2)) ->
+ (AtNode(c1,(c1,c2))),new_blayer (* perform atom expansion at c1 *)
+ | _ ->
+ replace_branch,new_blayer
+ )
+ else
+ let pproof1,new_blayer1 = apply_permutation subp1 rep_name direction act_blayer in
+ let pproof2,new_blayer2 = apply_permutation subp2 rep_name direction new_blayer1 in
+ (BNode(pos,(alph1,pproof1),(alph2,pproof2))),new_blayer2
+
+ let split_permutation pname opt_bproof =
+ match opt_bproof with
+ RNode(alayer,BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) ->
+ if pos = pname then
+(* if topmost beta expansion agrees with pname, then *)
+(* only split the beta proof and give back the two subproofs *)
+ let (osubp1,min_con1) = bproof_purity opt_subp1
+ and (osubp2,min_con2) = bproof_purity opt_subp2 in
+(* there will be no purity reductions in the beta subproofs. We use this *)
+(* predicate to collect the set of used leaf-connections in each subproof*)
+ ((RNode((alayer @ alph1),osubp1),min_con1),
+ (RNode((alayer @ alph2),osubp2),min_con2)
+ )
+(* we combine the branch after topmost beta expansion at pos into one root alpha layer *)
+(* -- the beta expansion node pos will not be needed in this root layer *)
+ else
+ let perm_bproof1,balph1 = apply_permutation
+ (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) pname "left" []
+ and perm_bproof2,balph2 = apply_permutation
+ (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) pname "right" [] in
+
+ begin
+(* print_endline " ";
+ print_beta_proof perm_bproof1;
+ print_endline" " ;
+ print_beta_proof perm_bproof2;
+ print_endline" ";
+*)
+ let (osubp1,min_con1) = bproof_purity perm_bproof1
+ and (osubp2,min_con2) = bproof_purity perm_bproof2 in
+ ((RNode((alayer @ balph1),osubp1),min_con1),
+ (RNode((alayer @ balph2),osubp2),min_con2)
+ )
+ end
+(* we combine the branch after the NEW topmost beta expansion at bpos *)
+(* into one root alpha layer -- the beta expansion node bpos will not be *)
+(* needed in this root layer *)
+ | _ ->
+ raise jprover_bug
+
+(*********** END split permutation *****************)
+
+ let rec list_del list_el el_list =
+ match el_list with
+ [] ->
+ raise jprover_bug
+ | f::r ->
+ if list_el = f then
+ r
+ else
+ f::(list_del list_el r)
+
+ let rec list_diff del_list check_list =
+ match del_list with
+ [] ->
+ []
+ | f::r ->
+ if List.mem f check_list then
+ list_diff r check_list
+ else
+ f::(list_diff r check_list)
+
+(* let rec compute_alpha_layer ftree_list =
+ match ftree_list with
+ [] ->
+ [],[],[]
+ | f::r ->
+ (match f with
+ Empty ->
+ raise jprover_bug
+ | NodeAt(pos) ->
+ let pn = pos.name
+ and (rnode,ratom,borderings) = compute_alpha_layer r in
+ ((pn::rnode),(pn::ratom),borderings)
+ | NodeA(pos,suctrees) ->
+ let pn = pos.name in
+ if pos.pt = Beta then
+ let (rnode,ratom,borderings) = compute_alpha_layer r in
+ ((pn::rnode),(ratom),(f::borderings))
+ else
+ let suclist = Array.to_list suctrees in
+ compute_alpha_layer (suclist @ r)
+ )
+
+ let rec compute_connection alpha_layer union_atoms connections =
+ match connections with
+ [] -> ("none","none")
+ | (c,d)::r ->
+ if (List.mem c union_atoms) & (List.mem d union_atoms) then
+ let (c1,c2) =
+ if List.mem c alpha_layer then
+ (c,d)
+ else
+ if List.mem d alpha_layer then
+ (d,c) (* then, d is supposed to occur in [alpha_layer] *)
+ else
+ raise (Invalid_argument "Jprover bug: connection match failure")
+ in
+ (c1,c2)
+ else
+ compute_connection alpha_layer union_atoms r
+
+ let get_beta_suctrees btree =
+ match btree with
+ Empty | NodeAt(_) -> raise jprover_bug
+ | NodeA(pos,suctrees) ->
+ let b1tree = suctrees.(0)
+ and b2tree = suctrees.(1) in
+ (pos.name,b1tree,b2tree)
+
+ let rec build_beta_proof alpha_layer union_atoms beta_orderings connections =
+ let (c1,c2) = compute_connection alpha_layer union_atoms connections in
+(* [c1] is supposed to occur in the lowmost alpha layer of the branch, *)
+(* i.e. [aplha_layer] *)
+ if (c1,c2) = ("none","none") then
+ (match beta_orderings with
+ [] -> raise jprover_bug
+ | btree::r ->
+ let (beta_pos,suctree1,suctree2) = get_beta_suctrees btree in
+ let (alpha_layer1, atoms1, bordering1) = compute_alpha_layer [suctree1]
+ and (alpha_layer2, atoms2, bordering2) = compute_alpha_layer [suctree2] in
+ let bproof1,beta1,closure1 =
+ build_beta_proof alpha_layer1 (atoms1 @ union_atoms)
+ (bordering1 @ r) connections
+ in
+ let bproof2,beta2,closure2 =
+ build_beta_proof alpha_layer2 (atoms2 @ union_atoms)
+ (bordering2 @ r) connections in
+ (BNode(beta_pos,(alpha_layer1,bproof1),(alpha_layer2,bproof2))),(1+beta1+beta2),(closure1+closure2)
+ )
+ else
+ CNode((c1,c2)),0,1
+
+ let construct_beta_proof ftree connections =
+ let (root_node,root_atoms,beta_orderings) = compute_alpha_layer [ftree]
+ in
+ let beta_proof,beta_exp,closures =
+ build_beta_proof root_node root_atoms beta_orderings connections in
+ (RNode(root_node,beta_proof)),beta_exp,closures
+*)
+
+
+(* *********** New Version with direct computation from extension proof **** *)
+(* follows a DIRECT step from proof histories via pr-connection orderings to opt. beta-proofs *)
+
+ let rec compute_alpha_layer ftree_list =
+ match ftree_list with
+ [] ->
+ []
+ | f::r ->
+ (match f with
+ Empty ->
+ raise jprover_bug
+ | NodeAt(pos) ->
+ let rnode = compute_alpha_layer r in
+ (pos.name::rnode)
+ | NodeA(pos,suctrees) ->
+ if pos.pt = Beta then
+ let rnode = compute_alpha_layer r in
+ (pos.name::rnode)
+ else
+ let suclist = Array.to_list suctrees in
+ compute_alpha_layer (suclist @ r)
+ )
+
+ let rec compute_beta_difference c1_context c2_context act_context =
+ match c1_context,c2_context with
+ ([],c2_context) ->
+ (list_diff c2_context act_context)
+(* both connection partners in the same submatrix; [c1] already isolated *)
+ | ((fc1::rc1),[]) ->
+ [] (* [c2] is a reduction step, i.e. isolated before [c1] *)
+ | ((fc1::rc1),(fc2::rc2)) ->
+ if fc1 = fc2 then (* common initial beta-expansions *)
+ compute_beta_difference rc1 rc2 act_context
+ else
+ (list_diff c2_context act_context)
+
+ let rec non_closed beta_proof_list =
+ match beta_proof_list with
+ [] ->
+ false
+ | bpf::rbpf ->
+ (match bpf with
+ RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | BEmpty -> true
+ | CNode(_) -> non_closed rbpf
+ | BNode(pos,(_,bp1),(_,bp2)) -> non_closed ([bp1;bp2] @ rbpf)
+ )
+
+ let rec cut_context pos context =
+ match context with
+ [] ->
+ raise (Invalid_argument "Jprover bug: invalid context element")
+ | (f,num)::r ->
+ if pos = f then
+ context
+ else
+ cut_context pos r
+
+ let compute_tree_difference beta_proof c1_context =
+ match beta_proof with
+ RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | CNode(_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | BEmpty -> c1_context
+ | BNode(pos,_,_) ->
+(* print_endline ("actual root: "^pos); *)
+ cut_context pos c1_context
+
+ let print_context conn bcontext =
+ begin
+ Format.open_box 0;
+ Format.print_string conn;
+ Format.print_string ": ";
+ List.iter (fun x -> let (pos,num) = x in Format.print_string (pos^" "^(string_of_int num)^"")) bcontext;
+ print_endline " ";
+ Format.print_flush ()
+ end
+
+ let rec build_opt_beta_proof beta_proof ext_proof beta_atoms beta_layer_list act_context =
+ let rec add_c2_tree (c1,c2) c2_diff_context =
+ match c2_diff_context with
+ [] ->
+ (CNode(c1,c2),0)
+ | (f,num)::c2_diff_r ->
+ let next_beta_proof,next_exp =
+ add_c2_tree (c1,c2) c2_diff_r in
+ let (layer1,layer2) = List.assoc f beta_layer_list in
+ let new_bproof =
+ if num = 1 then
+ BNode(f,(layer1,next_beta_proof),(layer2,BEmpty))
+ else (* num = 2*)
+ BNode(f,(layer1,BEmpty),(layer2,next_beta_proof))
+ in
+ (new_bproof,(next_exp+1))
+ in
+ let rec add_beta_expansions (c1,c2) rest_ext_proof c1_diff_context c2_diff_context new_act_context =
+ match c1_diff_context with
+ [] ->
+ let (n_c1,n_c2) =
+ if c2_diff_context = [] then (* make sure that leaf-connection is first element *)
+ (c1,c2)
+ else
+ (c2,c1)
+ in
+ let c2_bproof,c2_exp = add_c2_tree (n_c1,n_c2) c2_diff_context in
+ if c2_exp <> 0 then (* at least one open branch was generated to isloate [c2] *)
+ begin
+(* print_endline "start with new beta-proof"; *)
+ let new_bproof,new_exp,new_closures,new_rest_proof =
+ build_opt_beta_proof c2_bproof rest_ext_proof beta_atoms beta_layer_list (act_context @ new_act_context) in
+ (new_bproof,(new_exp+c2_exp),(new_closures+1),new_rest_proof)
+ end
+ else
+ begin
+(* print_endline "proceed with old beta-proof"; *)
+ (c2_bproof,c2_exp,1,rest_ext_proof)
+ end
+ | (f,num)::c1_diff_r ->
+ let (layer1,layer2) = List.assoc f beta_layer_list in
+ let next_beta_proof,next_exp,next_closures,next_ext_proof =
+ add_beta_expansions (c1,c2) rest_ext_proof c1_diff_r c2_diff_context new_act_context in
+ let new_bproof =
+ if num = 1 then
+ BNode(f,(layer1,next_beta_proof),(layer2,BEmpty))
+ else (* num = 2*)
+ BNode(f,(layer1,BEmpty),(layer2,next_beta_proof))
+ in
+ (new_bproof,(next_exp+1),next_closures,next_ext_proof)
+
+ in
+ let rec insert_connection beta_proof (c1,c2) rest_ext_proof c1_diff_context c2_diff_context act_context =
+ begin
+(* print_context c1 c1_diff_context;
+ print_endline "";
+ print_context c2 c2_diff_context;
+ print_endline "";
+*)
+ match beta_proof with
+ RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | CNode(_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | BEmpty ->
+ add_beta_expansions (c1,c2) rest_ext_proof c1_diff_context c2_diff_context act_context
+ | BNode(pos,(layer1,sproof1),(layer2,sproof2)) ->
+(* print_endline (c1^" "^c2^" "^pos); *)
+ (match c1_diff_context with
+ [] ->
+ raise (Invalid_argument "Jprover bug: invalid beta-proof")
+ | (f,num)::rest_context -> (* f = pos must hold!! *)
+ if num = 1 then
+ let (next_bproof,next_exp,next_closure,next_ext_proof) =
+ insert_connection sproof1 (c1,c2) rest_ext_proof rest_context c2_diff_context act_context in
+ (BNode(pos,(layer1,next_bproof),(layer2,sproof2)),next_exp,next_closure,next_ext_proof)
+ else (* num = 2 *)
+ let (next_bproof,next_exp,next_closure,next_ext_proof) =
+ insert_connection sproof2 (c1,c2) rest_ext_proof rest_context c2_diff_context act_context in
+ (BNode(pos,(layer1,sproof1),(layer2,next_bproof)),next_exp,next_closure,next_ext_proof)
+ )
+ end
+
+ in
+ match ext_proof with
+ [] ->
+ beta_proof,0,0,[]
+ | (c1,c2)::rproof ->
+(* print_endline ("actual connection: "^c1^" "^c2); *)
+ let c1_context = List.assoc c1 beta_atoms
+ and c2_context = List.assoc c2 beta_atoms in
+ let c2_diff_context = compute_beta_difference c1_context c2_context act_context
+ and c1_diff_context = compute_tree_difference beta_proof c1_context in (* wrt. actual beta-proof *)
+ let (next_beta_proof,next_exp,next_closures,next_ext_proof) =
+ insert_connection beta_proof (c1,c2) rproof c1_diff_context c2_diff_context c1_diff_context in
+ if non_closed [next_beta_proof] then (* at least one branch was generated to isolate [c1] *)
+ let rest_beta_proof,rest_exp,rest_closures,rest_ext_proof =
+ build_opt_beta_proof next_beta_proof next_ext_proof beta_atoms beta_layer_list act_context in
+ rest_beta_proof,(next_exp+rest_exp),(next_closures+rest_closures),rest_ext_proof
+ else
+ next_beta_proof,next_exp,next_closures,next_ext_proof
+
+ let rec annotate_atoms beta_context atlist treelist =
+ let rec annotate_tree beta_context tree atlist =
+ match tree with
+ Empty ->
+ (atlist,[],[])
+ | NodeAt(pos) ->
+ if List.mem pos.name atlist then
+ let new_atlist = list_del pos.name atlist in
+ (new_atlist,[(pos.name,beta_context)],[])
+ else
+ (atlist,[],[])
+ | NodeA(pos,suctrees) ->
+ if pos.pt = Beta then
+ let s1,s2 = suctrees.(0),suctrees.(1) in
+ let alayer1 = compute_alpha_layer [s1]
+ and alayer2 = compute_alpha_layer [s2]
+ and new_beta_context1 = beta_context @ [(pos.name,1)]
+ and new_beta_context2 = beta_context @ [(pos.name,2)] in
+ let atlist1,annotates1,blayer_list1 =
+ annotate_atoms new_beta_context1 atlist [s1] in
+ let atlist2,annotates2,blayer_list2 =
+ annotate_atoms new_beta_context2 atlist1 [s2]
+ in
+ (atlist2,(annotates1 @ annotates2),((pos.name,(alayer1,alayer2))::(blayer_list1 @ blayer_list2)))
+ else
+ annotate_atoms beta_context atlist (Array.to_list suctrees)
+ in
+ match treelist with
+ [] -> (atlist,[],[])
+ | f::r ->
+ let (next_atlist,f_annotates,f_beta_layers) = annotate_tree beta_context f atlist in
+ let (rest_atlist,rest_annotates,rest_beta_layers) = (annotate_atoms beta_context next_atlist r)
+ in
+ (rest_atlist, (f_annotates @ rest_annotates),(f_beta_layers @ rest_beta_layers))
+
+ let construct_opt_beta_proof ftree ext_proof =
+ let con1,con2 = List.split ext_proof in
+ let con_atoms = remove_dups_list (con1 @ con2) in
+ let (empty_atoms,beta_atoms,beta_layer_list) = annotate_atoms [] con_atoms [ftree] in
+ let root_node = compute_alpha_layer [ftree] in
+ let (beta_proof,beta_exp,closures,_) =
+ build_opt_beta_proof BEmpty ext_proof beta_atoms beta_layer_list [] in
+ (RNode(root_node,beta_proof)),beta_exp,closures
+
+(************* permutation ljmc -> lj *********************************)
+
+(* REAL PERMUTATION STAFF *)
+
+ let subf1 n m subrel = List.mem ((n,m),1) subrel
+ let subf2 n m subrel = List.mem ((n,m),2) subrel
+ let tsubf n m tsubrel = List.mem (n,m) tsubrel
+
+(* Transforms all normal form layers in an LJ proof *)
+
+ let rec modify prooftree (subrel,tsubrel) =
+ match prooftree with
+ PEmpty ->
+ raise jprover_bug
+ | PNodeAx((pos,inf,form,term)) ->
+ prooftree,pos
+ | PNodeA((pos,inf,form,term),left) ->
+ let t,qpos = modify left (subrel,tsubrel) in
+ if List.mem inf [Impr;Negr;Allr] then
+ PNodeA((pos,inf,form,term),t),pos (* layer bound *)
+ else if qpos = "Orl-True" then
+ PNodeA((pos,inf,form,term),t),qpos
+ else if List.mem inf [Andl;Alll;Exl] then
+ PNodeA((pos,inf,form,term),t),qpos (* simply propagation *)
+ else if inf = Exr then
+ if (subf1 pos qpos subrel) then
+ PNodeA((pos,inf,form,term),t),pos
+ else t,qpos
+ else if inf = Negl then
+ if (subf1 pos qpos subrel) then
+ PNodeA((pos,inf,form,term),t),"" (* empty string *)
+ else t,qpos
+ else (* x = Orr *)
+ if (subf1 pos qpos subrel) then
+ PNodeA((pos,Orr1,form,term),t),pos (* make Orr for LJ *)
+ else if (subf2 pos qpos subrel) then
+ PNodeA((pos,Orr2,form,term),t),pos (* make Orr for LJ *)
+ else t,qpos
+ | PNodeB((pos,inf,form,term),left,right) ->
+ let t,qpos = modify left (subrel,tsubrel) in
+ if inf = Andr then
+ if (or) (qpos = "Orl-True") (subf1 pos qpos subrel) then
+ let s,rpos = modify right (subrel,tsubrel) in (* Orl-True -> subf *)
+ if (or) (rpos = "Orl-True") (subf2 pos rpos subrel) then
+ PNodeB((pos,inf,form,term),t,s),pos
+ else s,rpos
+ else t,qpos (* not subf -> not Orl-True *)
+ else if inf = Impl then
+ if (subf1 pos qpos subrel) then
+ let s,rpos = modify right (subrel,tsubrel) in
+ PNodeB((pos,inf,form,term),t,s),"" (* empty string *)
+ else t,qpos
+ else (* x = Orl *)
+ let s,rpos = modify right (subrel,tsubrel) in
+ PNodeB((pos,inf,form,term),t,s),"Orl-True"
+
+(* transforms the subproof into an LJ proof between
+ the beta-inference rule (excluded) and
+ layer boundary in the branch ptree *)
+
+ let rec rec_modify ptree (subrel,tsubrel) =
+ match ptree with
+ PEmpty ->
+ raise jprover_bug
+ | PNodeAx((pos,inf,form,term)) ->
+ ptree,pos
+ | PNodeA((pos,inf,form,term),left) ->
+ if List.mem inf [Impr;Negr;Allr] then
+ ptree,pos (* layer bound, stop transforming! *)
+ else
+ let t,qpos = rec_modify left (subrel,tsubrel) in
+ if List.mem inf [Andl;Alll;Exl] then
+ PNodeA((pos,inf,form,term),t),qpos (* simply propagation*)
+ else if inf = Exr then
+ if (subf1 pos qpos subrel) then
+ PNodeA((pos,inf,form,term),t),pos
+ else t,qpos
+ else if inf = Negl then
+ if (subf1 pos qpos subrel) then
+ PNodeA((pos,inf,form,term),t),"" (* empty string *)
+ else t,qpos
+ else (* x = Orr *)
+ if (subf1 pos qpos subrel) then
+ PNodeA((pos,Orr1,form,term),t),pos (* make Orr for LJ *)
+ else if (subf2 pos qpos subrel) then
+ PNodeA((pos,Orr2,form,term),t),pos (* make Orr for LJ *)
+ else t,qpos
+ | PNodeB((pos,inf,form,term),left,right) ->
+ let t,qpos = rec_modify left (subrel,tsubrel) in
+ if inf = Andr then
+ if (subf1 pos qpos subrel) then
+ let s,rpos = rec_modify right (subrel,tsubrel) in
+ if (subf2 pos rpos subrel) then
+ PNodeB((pos,inf,form,term),t,s),pos
+ else s,rpos
+ else t,qpos
+ else (* x = Impl since x= Orl cannot occur in the partial layer ptree *)
+
+ if (subf1 pos qpos subrel) then
+ let s,rpos = rec_modify right (subrel,tsubrel) in
+ PNodeB((pos,inf,form,term),t,s),"" (* empty string *)
+ else t,qpos
+
+ let weak_modify rule ptree (subrel,tsubrel) = (* recall rule = or_l *)
+ let (pos,inf,formlua,term) = rule in
+ if inf = Orl then
+ ptree,true
+ else
+ let ptreem,qpos = rec_modify ptree (subrel,tsubrel) in
+ if (subf1 pos qpos subrel) then (* weak_modify will always be applied on left branches *)
+ ptreem,true
+ else
+ ptreem,false
+
+(* Now, the permutation stuff .... *)
+
+(* Permutation schemes *)
+
+(* corresponds to local permutation lemma -- Lemma 3 in the paper -- *)
+(* with eigenvariablen renaming and branch modification *)
+
+(* eigenvariablen renaming and branch modification over *)
+(* the whole proofs, i.e. over layer boundaries, too *)
+
+
+(* global variable vor eigenvariable renaming during permutations *)
+
+ let eigen_counter = ref 1
+
+(* append renamed paramater "r" to non-quantifier subformulae
+ of renamed quantifier formulae *)
+
+(*: BUG :*)
+(*:
+ let make_new_eigenvariable term =
+ let op = (dest_term term).term_op in
+ let opn = (dest_op op).op_name in
+ let opnam = dest_opname opn in
+ match opnam with
+ [] ->
+ raise jprover_bug
+ | ofirst::orest ->
+ let ofname = List.hd orest in
+ let new_eigen_var = (ofname^"_r"^(string_of_int (!eigen_counter))) in
+ eigen_counter := !eigen_counter + 1;
+(* print_endline ("New Counter :"^(string_of_int (!eigen_counter))); *)
+ mk_string_term jprover_op new_eigen_var
+:*)
+
+ let make_new_eigenvariable term =
+ let op = (dest_term term).term_op in
+ let opa = (dest_op op).op_params in
+ let oppar = dest_param opa in
+ match oppar with
+ | String ofname::_ ->
+ let new_eigen_var = (ofname^"_r"^(string_of_int (!eigen_counter))) in
+ eigen_counter := !eigen_counter + 1;
+ mk_string_term jprover_op new_eigen_var
+ | _ -> raise jprover_bug
+
+
+ let replace_subterm term oldt rept =
+ let v_term = var_subst term oldt "dummy_var" in
+ subst1 v_term "dummy_var" rept
+
+ let rec eigen_rename old_parameter new_parameter ptree =
+ match ptree with
+ PEmpty ->
+ raise jprover_bug
+ | PNodeAx((pos,inf,form,term)) ->
+ let new_form = replace_subterm form old_parameter new_parameter in
+ PNodeAx((pos,inf,new_form,term))
+ | PNodeA((pos,inf,form,term), left) ->
+ let new_form = replace_subterm form old_parameter new_parameter
+ and new_term = replace_subterm term old_parameter new_parameter in
+ let ren_left = eigen_rename old_parameter new_parameter left in
+ PNodeA((pos,inf,new_form,new_term), ren_left)
+ | PNodeB((pos,inf,form,term),left, right) ->
+ let new_form = replace_subterm form old_parameter new_parameter in
+ let ren_left = eigen_rename old_parameter new_parameter left in
+ let ren_right = eigen_rename old_parameter new_parameter right in
+ PNodeB((pos,inf,new_form,term), ren_left, ren_right)
+
+ let rec update_ptree rule subtree direction tsubrel =
+ match subtree with
+ PEmpty ->
+ raise jprover_bug
+ | PNodeAx(r) ->
+ subtree
+ | PNodeA((pos,inf,formula,term), left) ->
+ if (pos,inf,formula,term) = rule then
+ left
+ (* don't delete rule if subformula belongs to renamed instance of quantifiers; *)
+ (* but this can never occur now since (renamed) formula is part of rule *)
+ else
+ let (posn,infn,formn,termn) = rule in
+ if (&) (List.mem infn [Exl;Allr] ) (term = termn) then
+ (* this can only occur if eigenvariable rule with same term as termn has been permuted; *)
+ (* the application of the same eigenvariable introduction on the same subformula with *)
+ (* different instantiated variables might occur! *)
+ (* termn cannot occur in terms of permuted quantifier rules due to substitution split *)
+ (* during reconstruciton of the ljmc proof *)
+ let new_term = make_new_eigenvariable term in
+(* print_endline "Eigenvariable renaming!!!"; *)
+ eigen_rename termn new_term subtree
+ else
+ let left_del =
+ update_ptree rule left direction tsubrel
+ in
+ PNodeA((pos,inf,formula,term), left_del)
+ | PNodeB((pos,inf,formula,term), left, right) ->
+ if (pos,inf,formula,term) = rule then
+ if direction = "l" then
+ left
+ else
+ right (* direction = "r" *)
+ else
+ let left_del = update_ptree rule left direction tsubrel in
+ let right_del = update_ptree rule right direction tsubrel in
+ PNodeB((pos,inf,formula,term),left_del,right_del)
+
+ let permute r1 r2 ptree la tsubrel =
+(* print_endline "permute in"; *)
+ match ptree,la with
+ PNodeA(r1, PNodeA(r2,left)),la ->
+(* print_endline "1-o-1"; *)
+ PNodeA(r2, PNodeA(r1,left))
+ (* one-over-one *)
+ | PNodeA(r1, PNodeB(r2,left,right)),la ->
+(* print_endline "1-o-2"; *)
+ PNodeB(r2, PNodeA(r1,left), PNodeA(r1,right))
+ (* one-over-two *)
+ | PNodeB(r1, PNodeA(r2,left), right),"l" ->
+(* print_endline "2-o-1 left"; *)
+ let right_u = update_ptree r2 right "l" tsubrel in
+ PNodeA(r2, PNodeB(r1, left, right_u))
+ (* two-over-one left *)
+ | PNodeB(r1, left, PNodeA(r2,right)),"r" ->
+(* print_endline "2-o-1 right"; *)
+ let left_u = update_ptree r2 left "l" tsubrel in
+ PNodeA(r2, PNodeB(r1, left_u, right))
+ (* two-over-one right *)
+ | PNodeB(r1, PNodeB(r2,left2,right2), right),"l" ->
+(* print_endline "2-o-2 left"; *)
+ let right_ul = update_ptree r2 right "l" tsubrel in
+ let right_ur = update_ptree r2 right "r" tsubrel in
+ PNodeB(r2,PNodeB(r1,left2,right_ul),PNodeB(r1,right2,right_ur))
+ (* two-over-two left *)
+ | PNodeB(r1, left, PNodeB(r2,left2,right2)),"r" ->
+(* print_endline "2-o-2 right"; *)
+ let left_ul = update_ptree r2 left "l" tsubrel in
+ let left_ur = update_ptree r2 left "r" tsubrel in
+ PNodeB(r2,PNodeB(r1,left_ul,left2),PNodeB(r1,left_ur, right2))
+ (* two-over-two right *)
+ | _ -> raise jprover_bug
+
+(* permute layers, isolate addmissible branches *)
+
+(* computes if an Andr is d-generatives *)
+
+ let layer_bound rule =
+ let (pos,inf,formula,term) = rule in
+ if List.mem inf [Impr;Negr;Allr] then
+ true
+ else
+ false
+
+ let rec orl_free ptree =
+ match ptree with
+ PEmpty ->
+ raise jprover_bug
+ | PNodeAx(rule) ->
+ true
+ | PNodeA(rule,left) ->
+ if layer_bound rule then
+ true
+ else
+ orl_free left
+ | PNodeB(rule,left,right) ->
+ let (pos,inf,formula,term) = rule in
+ if inf = Orl then
+ false
+ else
+ (&) (orl_free left) (orl_free right)
+
+ let rec dgenerative rule dglist ptree tsubrel =
+ let (pos,inf,formula,term) = rule in
+ if List.mem inf [Exr;Orr;Negl] then
+ true
+ else if inf = Andr then
+ if dglist = [] then
+ false
+ else
+ let first,rest = (List.hd dglist),(List.tl dglist) in
+ let (pos1,inf1,formula1,term1) = first in
+ if tsubf pos1 pos tsubrel then
+ true
+ else
+ dgenerative rule rest ptree tsubrel
+ else if inf = Impl then
+ not (orl_free ptree)
+ else
+ false
+
+
+(* to compute a topmost addmissible pair r,o with
+ the address addr of r in the proof tree
+*)
+
+ let rec top_addmissible_pair ptree dglist act_r act_o act_addr tsubrel dummyt =
+ let rec search_pair ptree dglist act_r act_o act_addr tsubrel =
+ match ptree with
+ PEmpty -> raise jprover_bug
+ | PNodeAx(_) -> raise jprover_bug
+ | PNodeA(rule, left) ->
+(* print_endline "alpha"; *)
+ if (dgenerative rule dglist left tsubrel) then (* r = Exr,Orr,Negl *)
+ let newdg = (@) [rule] dglist in
+ search_pair left newdg act_r rule act_addr tsubrel
+ else (* Impr, Allr, Notr only for test *)
+ search_pair left dglist act_r act_o act_addr tsubrel
+ | PNodeB(rule,left,right) ->
+(* print_endline "beta"; *)
+ let (pos,inf,formula,term) = rule in
+ if List.mem inf [Andr;Impl] then
+ let bool = dgenerative rule dglist left tsubrel in
+ let newdg,newrule =
+ if bool then
+ ((@) [rule] dglist),rule
+ else
+ dglist,act_o
+ in
+ if orl_free left then
+ search_pair right newdg act_r newrule (act_addr^"r") tsubrel
+ else (* not orl_free *)
+ let left_r,left_o,left_addr =
+ search_pair left newdg act_r newrule (act_addr^"l") tsubrel in
+ if left_o = ("",Orr,dummyt,dummyt) then
+ top_addmissible_pair right dglist act_r act_o (act_addr^"r") tsubrel dummyt
+ else left_r,left_o,left_addr
+ else (* r = Orl *)
+ if orl_free left then
+ top_addmissible_pair right dglist rule act_o (act_addr^"r") tsubrel dummyt
+ else
+ let left_r,left_o,left_addr
+ = search_pair left dglist rule act_o (act_addr^"l") tsubrel in
+ if left_o = ("",Orr,dummyt,dummyt) then
+ top_addmissible_pair right dglist rule act_o (act_addr^"r") tsubrel dummyt
+ else
+ left_r,left_o,left_addr
+ in
+(* print_endline "top_addmissible_pair in"; *)
+ if orl_free ptree then (* there must be a orl BELOW an layer bound *)
+ begin
+(* print_endline "orl_free"; *)
+ act_r,act_o,act_addr
+ end
+ else
+ begin
+(* print_endline "orl_full"; *)
+ search_pair ptree dglist act_r act_o act_addr tsubrel
+ end
+
+ let next_direction addr act_addr =
+ String.make 1 (String.get addr (String.length act_addr))
+ (* get starts with count 0*)
+
+ let change_last addr d =
+ let split = (String.length addr) - 1 in
+ let prec,last =
+ (String.sub addr 0 split),(String.sub addr split 1) in
+ prec^d^last
+
+ let last addr =
+ if addr = ""
+ then ""
+ else
+ String.make 1 (String.get addr (String.length addr-1))
+
+ let rest addr =
+ if addr = ""
+ then ""
+ else
+ String.sub addr 0 ((String.length addr) - 1)
+
+ let rec permute_layer ptree dglist (subrel,tsubrel) =
+ let rec permute_branch r addr act_addr ptree dglist (subrel,tsubrel) =
+(* print_endline "pbranch in"; *)
+ let la = last act_addr in (* no ensure uniqueness at 2-over-x *)
+ match ptree,la with
+ PNodeA(o,PNodeA(rule,left)),la -> (* one-over-one *)
+(* print_endline " one-over-one "; *)
+ let permute_result = permute o rule ptree la tsubrel in
+ begin match permute_result with
+ PNodeA(r2,left2) ->
+ let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in
+ PNodeA(r2,pbleft)
+ | _ -> raise jprover_bug
+ end
+ | PNodeA(o,PNodeB(rule,left,right)),la -> (* one-over-two *)
+(* print_endline " one-over-two "; *)
+ if rule = r then (* left,right are or_l free *)
+ permute o rule ptree la tsubrel (* first termination case *)
+ else
+ let d = next_direction addr act_addr in
+ if d = "l" then
+ let permute_result = permute o rule ptree la tsubrel in
+ (match permute_result with
+ PNodeB(r2,left2,right2) ->
+ let pbleft = permute_branch r addr (act_addr^d) left2 dglist (subrel,tsubrel) in
+ let plright = permute_layer right2 dglist (subrel,tsubrel) in
+ PNodeB(r2,pbleft,plright)
+ | _ -> raise jprover_bug
+ )
+ else (* d = "r", that is left of rule is or_l free *)
+ let left1,bool = weak_modify rule left (subrel,tsubrel) in
+ if bool then (* rule is relevant *)
+ let permute_result = permute o rule (PNodeA(o,PNodeB(rule,left1,right))) la tsubrel in
+ (match permute_result with
+ PNodeB(r2,left2,right2) ->
+ let pbright = permute_branch r addr (act_addr^d) right2 dglist (subrel,tsubrel) in
+ PNodeB(r2,left2,pbright)
+ | _ -> raise jprover_bug
+ )
+ else (* rule is not relevant *)
+ PNodeA(o,left1) (* optimized termination case (1) *)
+ | PNodeB(o,PNodeA(rule,left),right1),"l" -> (* two-over-one, left *)
+(* print_endline " two-over-one, left "; *)
+ let permute_result = permute o rule ptree la tsubrel in
+ (match permute_result with
+ PNodeA(r2,left2) ->
+ let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in
+ PNodeA(r2,pbleft)
+ | _ -> raise jprover_bug
+ )
+ | PNodeB(o,left1,PNodeA(rule,left)),"r" -> (* two-over-one, right *)
+ (* left of o is or_l free *)
+(* print_endline " two-over-one, right"; *)
+ let leftm,bool = weak_modify o left1 (subrel,tsubrel) in
+ if bool then (* rule is relevant *)
+ let permute_result = permute o rule (PNodeB(o,leftm,PNodeA(rule,left))) la tsubrel in
+ (match permute_result with
+ PNodeA(r2,left2) ->
+ let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in
+ PNodeA(r2,pbleft)
+ | _ -> raise jprover_bug
+ )
+ else (* rule is not relevant *)
+ leftm (* optimized termination case (2) *)
+ | PNodeB(o,PNodeB(rule,left,right),right1),"l" -> (* two-over-two, left *)
+(* print_endline " two-over-two, left"; *)
+ if rule = r then (* left,right are or_l free *)
+ let permute_result = permute o rule ptree la tsubrel in
+ (match permute_result with
+ PNodeB(r2,PNodeB(r3,left3,right3),PNodeB(r4,left4,right4)) ->
+(* print_endline "permute 2-o-2, left ok"; *)
+ let leftm3,bool3 = weak_modify r3 left3 (subrel,tsubrel) in
+ let leftm4,bool4 = weak_modify r4 left4 (subrel,tsubrel) in
+ let plleft,plright =
+ if (&) bool3 bool4 then (* r3 and r4 are relevant *)
+ (permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)),
+ (permute_layer (PNodeB(r4,leftm4,right4)) dglist (subrel,tsubrel))
+ else if (&) bool3 (not bool4) then (* only r3 is relevant *)
+ begin
+(* print_endline "two-over-two left: bool3 and not bool4"; *)
+ (permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)),
+ leftm4
+ end
+ else if (&) (not bool3) bool4 then (* only r4 is relevant *)
+ leftm3,
+ (permute_layer (PNodeB(r4,leftm4,right4)) dglist (subrel,tsubrel))
+ else (* neither r3 nor r4 are relevant *)
+ leftm3,leftm4
+ in
+ PNodeB(r2,plleft,plright)
+ | _ -> raise jprover_bug
+ )
+ else
+ let d = next_direction addr act_addr in
+ let newadd = change_last act_addr d in
+ if d = "l" then
+ let permute_result = permute o rule ptree la tsubrel in
+ (match permute_result with
+ PNodeB(r2,left2,right2) ->
+ let pbleft = permute_branch r addr newadd left2 dglist (subrel,tsubrel) in
+ let plright = permute_layer right2 dglist (subrel,tsubrel) in
+ PNodeB(r2,pbleft,plright)
+ | _ -> raise jprover_bug
+ )
+ else (* d = "r", that is left is or_l free *)
+ let left1,bool = weak_modify rule left (subrel,tsubrel) in
+ if bool then (* rule is relevant *)
+ let permute_result =
+ permute o rule (PNodeB(o,PNodeB(rule,left1,right),right1)) la tsubrel in
+ (match permute_result with
+ PNodeB(r2,PNodeB(r3,left3,right3),right2) ->
+ let pbright = permute_branch r addr newadd right2 dglist (subrel,tsubrel) in
+ let leftm3,bool3 = weak_modify r3 left3 (subrel,tsubrel) in
+ let plleft =
+ if bool3 (* r3 relevant *) then
+ permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)
+ else (* r3 redundant *)
+ leftm3
+ in
+ PNodeB(r2,plleft,pbright) (* further opt. NOT possible *)
+ | _ -> raise jprover_bug
+ )
+ else (* rule is not relevant *)
+ permute_layer (PNodeB(o,left1,right1)) dglist (subrel,tsubrel) (* further opt. possible *)
+ (* combine with orl_free *)
+ | PNodeB(o,left1,PNodeB(rule,left,right)),"r" -> (* two-over-two, right *)
+(* print_endline " two-over-two, right"; *)
+ let leftm1,bool = weak_modify o left1 (subrel,tsubrel) in (* left1 is or_l free *)
+ if bool then (* o is relevant, even after permutations *)
+ if rule = r then (* left, right or_l free *)
+ permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel
+ else
+ let d = next_direction addr act_addr in
+ let newadd = change_last act_addr d in
+ if d = "l" then
+ let permute_result =
+ permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel in
+ (match permute_result with
+ PNodeB(r2,left2,right2) ->
+ let pbleft = permute_branch r addr newadd left2 dglist (subrel,tsubrel) in
+ let plright = permute_layer right2 dglist (subrel,tsubrel) in
+ PNodeB(r2,pbleft,plright)
+ | _ -> raise jprover_bug
+ )
+ else (* d = "r", that is left is or_l free *)
+ let leftm,bool = weak_modify rule left (subrel,tsubrel) in
+ if bool then (* rule is relevant *)
+ let permute_result =
+ permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel in
+ (match permute_result with
+ PNodeB(r2,left2,right2) ->
+ let pbright = permute_branch r addr newadd right2 dglist (subrel,tsubrel) in
+ PNodeB(r2,left2,pbright) (* left2 or_l free *)
+ | _ -> raise jprover_bug
+ )
+ else (* rule is not relevant *)
+ PNodeB(o,leftm1,leftm)
+
+ else
+ leftm1
+ | _ -> raise jprover_bug
+ in
+ let rec trans_add_branch r o addr act_addr ptree dglist (subrel,tsubrel) =
+ match ptree with
+ (PEmpty| PNodeAx(_)) -> raise jprover_bug
+ | PNodeA(rule,left) ->
+ if (dgenerative rule dglist left tsubrel) then
+ let newdg = (@) [rule] dglist in
+ if rule = o then
+ begin
+(* print_endline "one-rule is o"; *)
+ permute_branch r addr act_addr ptree dglist (subrel,tsubrel)
+ end
+ else
+ begin
+(* print_endline "alpha - but not o"; *)
+ let tptree = trans_add_branch r o addr act_addr left newdg (subrel,tsubrel) in
+ permute_layer (PNodeA(rule,tptree)) dglist (subrel,tsubrel)
+ (* r may not longer be valid for rule *)
+ end
+ else
+ let tptree = trans_add_branch r o addr act_addr left dglist (subrel,tsubrel) in
+ PNodeA(rule,tptree)
+ | PNodeB(rule,left,right) ->
+ let d = next_direction addr act_addr in
+ let bool = (dgenerative rule dglist left tsubrel) in
+ if rule = o then
+ begin
+(* print_endline "two-rule is o"; *)
+ permute_branch r addr (act_addr^d) ptree dglist (subrel,tsubrel)
+ end
+ else
+ begin
+(* print_endline ("beta - but not o: address "^d); *)
+ let dbranch =
+ if d = "l" then
+ left
+ else (* d = "r" *)
+ right
+ in
+ let tptree =
+ if bool then
+ let newdg = (@) [rule] dglist in
+ (trans_add_branch r o addr (act_addr^d) dbranch newdg (subrel,tsubrel))
+ else
+ (trans_add_branch r o addr (act_addr^d) dbranch dglist (subrel,tsubrel))
+ in
+ if d = "l" then
+ permute_layer (PNodeB(rule,tptree,right)) dglist (subrel,tsubrel)
+ else (* d = "r" *)
+ begin
+(* print_endline "prob. a redundant call"; *)
+ let back = permute_layer (PNodeB(rule,left,tptree)) dglist (subrel,tsubrel) in
+(* print_endline "SURELY a redundant call"; *)
+ back
+ end
+ end
+ in
+(* print_endline "permute_layer in"; *)
+ let dummyt = mk_var_term "dummy" in
+ let r,o,addr =
+ top_addmissible_pair ptree dglist ("",Orl,dummyt,dummyt) ("",Orr,dummyt,dummyt) "" tsubrel dummyt in
+ if r = ("",Orl,dummyt,dummyt) then
+ ptree
+ else if o = ("",Orr,dummyt,dummyt) then (* Orr is a dummy for no d-gen. rule *)
+ ptree
+ else
+ let (x1,x2,x3,x4) = r
+ and (y1,y2,y3,y4) = o in
+(* print_endline ("top or_l: "^x1);
+ print_endline ("or_l address: "^addr);
+ print_endline ("top dgen-rule: "^y1); *)
+ trans_add_branch r o addr "" ptree dglist (subrel,tsubrel)
+
+(* Isolate layer and outer recursion structure *)
+(* uses weaker layer boundaries: ONLY critical inferences *)
+
+ let rec trans_layer ptree (subrel,tsubrel) =
+ let rec isol_layer ptree (subrel,tsubrel) =
+ match ptree with
+ PEmpty -> raise jprover_bug
+ | PNodeAx(inf) ->
+ ptree
+ | PNodeA((pos,rule,formula,term),left) ->
+ if List.mem rule [Allr;Impr;Negr] then
+ let tptree = trans_layer left (subrel,tsubrel) in
+ PNodeA((pos,rule,formula,term),tptree)
+ else
+ let tptree = isol_layer left (subrel,tsubrel) in
+ PNodeA((pos,rule,formula,term),tptree)
+ | PNodeB(rule,left,right) ->
+ let tptree_l = isol_layer left (subrel,tsubrel)
+ and tptree_r = isol_layer right (subrel,tsubrel) in
+ PNodeB(rule,tptree_l,tptree_r)
+ in
+ begin
+(* print_endline "trans_layer in"; *)
+ let top_tree = isol_layer ptree (subrel,tsubrel) in
+ let back = permute_layer top_tree [] (subrel,tsubrel) in
+(* print_endline "translauer out"; *)
+ back
+ end
+
+(* REAL PERMUTATION STAFF --- End *)
+
+(* build the proof tree from a list of inference rules *)
+
+ let rec unclosed subtree =
+ match subtree with
+ PEmpty -> true
+ | PNodeAx(y) -> false
+ | PNodeA(y,left) -> (unclosed left)
+ | PNodeB(y,left,right) -> (or) (unclosed left) (unclosed right)
+
+ let rec extend prooftree element =
+ match prooftree with
+ PEmpty ->
+ let (pos,rule,formula,term) = element in
+ if rule = Ax then
+ PNodeAx(element)
+ else
+ if List.mem rule [Andr; Orl; Impl] then
+ PNodeB(element,PEmpty,PEmpty)
+ else
+ PNodeA(element,PEmpty)
+ | PNodeAx(y) ->
+ PEmpty (* that's only for exhaustive pattern matching *)
+ | PNodeA(y, left) ->
+ PNodeA(y, (extend left element))
+ | PNodeB(y, left, right) ->
+ if (unclosed left) then
+ PNodeB(y, (extend left element), right)
+ else
+ PNodeB(y, left, (extend right element))
+
+ let rec bptree prooftree nodelist nax=
+ match nodelist with
+ [] -> prooftree,nax
+ | ((_,pos),(rule,formula,term))::rest -> (* kick away the first argument *)
+ let newax =
+ if rule = Ax then
+ 1
+ else
+ 0
+ in
+ bptree (extend prooftree (pos,rule,formula,term)) rest (nax+newax)
+
+
+ let bproof nodelist =
+ bptree PEmpty nodelist 0
+
+ let rec get_successor_pos treelist =
+ match treelist with
+ [] -> []
+ | f::r ->
+ (
+ match f with
+ Empty -> get_successor_pos r
+ | NodeAt(_) -> raise jprover_bug
+ | NodeA(pos,_) ->
+ pos::(get_successor_pos r)
+ )
+
+ let rec get_formula_tree ftreelist f predflag =
+ match ftreelist with
+ [] -> raise jprover_bug
+ | ftree::rest_trees ->
+ (match ftree with
+ Empty -> get_formula_tree rest_trees f predflag
+ | NodeAt(_) -> get_formula_tree rest_trees f predflag
+ | NodeA(pos,suctrees) ->
+ if predflag = "pred" then
+ if pos.pt = Gamma then
+ let succs = get_successor_pos (Array.to_list suctrees) in
+ if List.mem f succs then
+ NodeA(pos,suctrees),succs
+ else
+ get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag
+ else
+ get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag
+ else (* predflag = "" *)
+ if pos = f then
+ NodeA(pos,suctrees),[]
+ else
+ get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag
+ )
+
+ let rec get_formula_treelist ftree po =
+ match po with
+ [] -> []
+ | f::r ->
+(* a posistion in po has either stype Gamma_0,Psi_0,Phi_0 (non-atomic), or it has *)
+(* ptype Alpha (or on the right), since there was a deadlock for proof reconstruction in LJ*)
+ if List.mem f.st [Phi_0;Psi_0] then
+ let (stree,_) = get_formula_tree [ftree] f "" in
+ stree::(get_formula_treelist ftree r)
+ else
+ if f.st = Gamma_0 then
+ let (predtree,succs) = get_formula_tree [ftree] f "pred" in
+ let new_po = list_diff r succs in
+ predtree::(get_formula_treelist ftree new_po)
+ else
+ if f.pt = Alpha then (* same as first case, or on the right *)
+ let (stree,_) = get_formula_tree [ftree] f "" in
+ stree::(get_formula_treelist ftree r)
+ else raise (Invalid_argument "Jprover bug: non-admissible open position")
+
+ let rec build_formula_rel dir_treelist slist predname =
+
+ let rec build_renamed_gamma_rel dtreelist predname posname d =
+ match dtreelist with
+ [] -> [],[]
+ | (x,ft)::rdtlist ->
+ let rest_rel,rest_ren = build_renamed_gamma_rel rdtlist predname posname d in
+ (
+ match ft with
+ Empty -> (* may have empty successors due to purity in former reconstruction steps *)
+ rest_rel,rest_ren
+ | NodeAt(_) ->
+ raise jprover_bug (* gamma_0 position never is atomic *)
+ | NodeA(spos,suctrees) ->
+ if List.mem spos.name slist then
+(* the gamma_0 position is really unsolved *)
+(* this is only relevant for the gamma_0 positions in po *)
+ let new_name = (posname^"_"^spos.name) (* make new unique gamma name *) in
+ let new_srel_el = ((predname,new_name),d)
+ and new_rename_el = (spos.name,new_name) (* gamma_0 position as key first *) in
+ let (srel,sren) = build_formula_rel [(x,ft)] slist new_name in
+ ((new_srel_el::srel) @ rest_rel),((new_rename_el::sren) @ rest_ren)
+ else
+ rest_rel,rest_ren
+ )
+
+
+ in
+ match dir_treelist with
+ [] -> [],[]
+ | (d,f)::dir_r ->
+ let (rest_rel,rest_renlist) = build_formula_rel dir_r slist predname in
+ match f with
+ Empty ->
+ print_endline "Hello, an empty subtree!!!!!!";
+ rest_rel,rest_renlist
+ | NodeAt(pos) ->
+ (((predname,pos.name),d)::rest_rel),rest_renlist
+ | NodeA(pos,suctrees) ->
+ (match pos.pt with
+ Alpha | Beta ->
+ let dtreelist =
+ if (pos.pt = Alpha) & (pos.op = Neg) then
+ [(1,suctrees.(0))]
+ else
+ let st1 = suctrees.(0)
+ and st2 = suctrees.(1) in
+ [(1,st1);(2,st2)]
+ in
+ let (srel,sren) = build_formula_rel dtreelist slist pos.name in
+ ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist)
+ | Delta ->
+ let st1 = suctrees.(0) in
+ let (srel,sren) = build_formula_rel [(1,st1)] slist pos.name in
+ ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist)
+ | Psi| Phi ->
+ let succlist = Array.to_list suctrees in
+ let dtreelist = (List.map (fun x -> (d,x)) succlist) in
+ let (srel,sren) = build_formula_rel dtreelist slist predname in
+ (srel @ rest_rel),(sren @ rest_renlist)
+ | Gamma ->
+ let n = Array.length suctrees
+ and succlist = (Array.to_list suctrees) in
+ let dtreelist = (List.map (fun x -> (1,x)) succlist) in
+(* if (nonemptys suctrees 0 n) = 1 then
+ let (srel,sren) = build_formula_rel dtreelist slist pos.name in
+ ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist)
+ else (* we have more than one gamma instance, which means renaming *)
+*)
+ let (srel,sren) = build_renamed_gamma_rel dtreelist predname pos.name d in
+ (srel @ rest_rel),(sren @ rest_renlist)
+ | PNull ->
+ raise jprover_bug
+ )
+
+ let rec rename_gamma ljmc_proof rename_list =
+ match ljmc_proof with
+ [] -> []
+ | ((inst,pos),(rule,formula,term))::r ->
+ if List.mem rule [Alll;Exr] then
+ let new_gamma = List.assoc inst rename_list in
+ ((inst,new_gamma),(rule,formula,term))::(rename_gamma r rename_list)
+ else
+ ((inst,pos),(rule,formula,term))::(rename_gamma r rename_list)
+
+ let rec compare_pair (s,sf) list =
+ if list = [] then
+ list
+ else
+ let (s_1,sf_1),restlist = (List.hd list),(List.tl list) in
+ if sf = s_1 then
+ (@) [(s,sf_1)] (compare_pair (s,sf) restlist)
+ else
+ compare_pair (s,sf) restlist
+
+ let rec compare_pairlist list1 list2 =
+ if list1 = [] then
+ list1
+ else
+ let (s1,sf1),restlist1 = (List.hd list1),(List.tl list1) in
+ (@) (compare_pair (s1,sf1) list2) (compare_pairlist restlist1 list2)
+
+ let rec trans_rec pairlist translist =
+ let tlist = compare_pairlist pairlist translist in
+ if tlist = [] then
+ translist
+ else
+ (@) (trans_rec pairlist tlist) translist
+
+ let transitive_closure subrel =
+ let pairlist,nlist = List.split subrel in
+ trans_rec pairlist pairlist
+
+ let pt ptree subrel =
+ let tsubrel = transitive_closure subrel in
+ let transptree = trans_layer ptree (subrel,tsubrel) in
+ print_endline "";
+ fst (modify transptree (subrel,tsubrel))
+(* let mtree = fst (modify transptree (subrel,tsubrel)) in *)
+(* pretty_print mtree ax *)
+
+ let rec make_node_list ljproof =
+ match ljproof with
+ PEmpty ->
+ raise jprover_bug
+ | PNodeAx((pos,inf,form,term)) ->
+ [(("",pos),(inf,form,term))]
+ | PNodeA((pos,inf,form,term),left) ->
+ let left_list = make_node_list left in
+ (("",pos),(inf,form,term))::left_list
+ | PNodeB((pos,inf,form,term),left,right) ->
+ let left_list = make_node_list left
+ and right_list = make_node_list right in
+ (("",pos),(inf,form,term))::(left_list @ right_list)
+
+ let permute_ljmc ftree po slist ljmc_proof =
+ (* ftree/po are the formula tree / open positions of the sequent that caused deadlock and permutation *)
+(* print_endline "!!!!!!!!!!!!!Permutation TO DO!!!!!!!!!"; *)
+ (* the open positions in po are either phi_0, psi_0, or gamma_0 positions *)
+ (* since proof reconstruction was a deadlock in LJ *)
+ let po_treelist = get_formula_treelist ftree po in
+ let dir_treelist = List.map (fun x -> (1,x)) po_treelist in
+ let (formula_rel,rename_list) = build_formula_rel dir_treelist slist "dummy" in
+ let renamed_ljmc_proof = rename_gamma ljmc_proof rename_list in
+ let (ptree,ax) = bproof renamed_ljmc_proof in
+ let ljproof = pt ptree formula_rel in
+ (* this is a direct formula relation, comprising left/right subformula *)
+ begin
+(* print_treelist po_treelist; *)
+(* print_endline "";
+ print_endline "";
+*)
+(* print_triplelist formula_rel; *)
+(* print_endline "";
+ print_endline "";
+ tt ljproof;
+*)
+(* print_pairlist rename_list; *)
+(* print_endline "";
+ print_endline "";
+*)
+ make_node_list ljproof
+ end
+
+(************** PROOF RECONSTRUCTION without redundancy deletion ******************************)
+
+ let rec init_unsolved treelist =
+ match treelist with
+ [] -> []
+ | f::r ->
+ begin match f with
+ Empty -> []
+ | NodeAt(pos) ->
+ (pos.name)::(init_unsolved r)
+ | NodeA(pos,suctrees) ->
+ let new_treelist = (Array.to_list suctrees) @ r in
+ (pos.name)::(init_unsolved new_treelist)
+ end
+
+(* only the unsolved positions will be represented --> skip additional root position *)
+
+ let build_unsolved ftree =
+ match ftree with
+ Empty | NodeAt _ ->
+ raise jprover_bug
+ | NodeA(pos,suctrees) ->
+ ((pos.name),init_unsolved (Array.to_list suctrees))
+
+(*
+ let rec collect_variables tree_list =
+ match tree_list with
+ [] -> []
+ | f::r ->
+ begin match f with
+ Empty -> []
+ | NodeAt(pos) ->
+ if pos.st = Gamma_0 then
+ pos.name::collect_variables r
+ else
+ collect_variables r
+ | NodeA(pos,suctrees) ->
+ let new_tree_list = (Array.to_list suctrees) @ r in
+ if pos.st = Gamma_0 then
+ pos.name::collect_variables new_tree_list
+ else
+ collect_variables new_tree_list
+ end
+
+ let rec extend_sigmaQ sigmaQ vlist =
+ match vlist with
+ [] -> []
+ | f::r ->
+ let vf = mk_var_term f in
+ if List.exists (fun x -> (fst x = vf)) sigmaQ then
+ extend_sigmaQ sigmaQ r
+ else
+(* first and second component are var terms in meta-prl *)
+ [(vf,vf)] @ (extend_sigmaQ sigmaQ r)
+
+ let build_sigmaQ sigmaQ ftree =
+ let vlist = collect_variables [ftree] in
+ sigmaQ @ (extend_sigmaQ sigmaQ vlist)
+*)
+
+(* subformula relation subrel is assumed to be represented in pairs
+ (a,b) *)
+
+ let rec delete e list = (* e must not necessarily occur in list *)
+ match list with
+ [] -> [] (* e must not necessarily occur in list *)
+ | first::rest ->
+ if e = first then
+ rest
+ else
+ first::(delete e rest)
+
+ let rec key_delete fname pos_list = (* in key_delete, f is a pos name (key) but sucs is a list of positions *)
+ match pos_list with
+ [] -> [] (* the position with name f must not necessarily occur in pos_list *)
+ | f::r ->
+ if fname = f.name then
+ r
+ else
+ f::(key_delete fname r)
+
+ let rec get_roots treelist =
+ match treelist with
+ [] -> []
+ | f::r ->
+ match f with
+ Empty -> (get_roots r) (* Empty is posible below alpha-nodes after purity *)
+ | NodeAt(pos) -> pos::(get_roots r)
+ | NodeA(pos,trees) -> pos::(get_roots r)
+
+ let rec comp_ps padd ftree =
+ match ftree with
+ Empty -> raise (Invalid_argument "Jprover bug: empty formula tree")
+ | NodeAt(pos) ->
+ []
+ | NodeA(pos,strees) ->
+ match padd with
+ [] -> get_roots (Array.to_list strees)
+ | f::r ->
+ if r = [] then
+ pos::(comp_ps r (Array.get strees (f-1)))
+ else
+ comp_ps r (Array.get strees (f-1))
+
+(* computes a list: first element predecessor, next elements successoes of p *)
+
+ let tpredsucc p ftree =
+ let padd = p.address in
+ comp_ps padd ftree
+
+(* set an element in an array, without side effects *)
+
+ let myset array int element =
+ let length = Array.length array in
+ let firstpart = Array.sub array 0 (int) in
+ let secondpart = Array.sub array (int+1) (length-(int+1)) in
+ (Array.append firstpart (Array.append [|element|] secondpart))
+
+ let rec compute_open treelist slist =
+ match treelist with
+ [] -> []
+ | first::rest ->
+ let elements =
+ match first with
+ Empty -> []
+ | NodeAt(pos) ->
+ if (List.mem (pos.name) slist) then
+ [pos]
+ else
+ []
+ | NodeA(pos,suctrees) ->
+ if (List.mem (pos.name) slist) then
+ [pos]
+ else
+ compute_open (Array.to_list suctrees) slist
+ in
+ elements @ (compute_open rest slist)
+
+ let rec select_connection pname connections slist =
+ match connections with
+ [] -> ("none","none")
+ | f::r ->
+ let partner =
+ if (fst f) = pname then
+ (snd f)
+ else
+ if (snd f) = pname then
+ (fst f)
+ else
+ "none"
+ in
+ if ((partner = "none") or (List.mem partner slist)) then
+ select_connection pname r slist
+ else
+ f
+
+ let rec replace_element element element_set redord =
+ match redord with
+ [] -> raise jprover_bug (* element occurs in redord *)
+ | (f,fset)::r ->
+ if f = element then
+ (f,element_set)::r
+ else
+ (f,fset)::(replace_element element element_set r)
+
+ let rec collect_succ_sets sucs redord =
+ match redord with
+ [] -> StringSet.empty
+ | (f,fset)::r ->
+ let new_sucs = key_delete f sucs in
+ if (List.length sucs) = (List.length new_sucs) then (* position with name f did not occur in sucs -- no deletion *)
+ (collect_succ_sets sucs r)
+ else
+ StringSet.union (StringSet.add f fset) (collect_succ_sets new_sucs r)
+
+ let replace_ordering psucc_name sucs redord =
+ let new_psucc_set = collect_succ_sets sucs redord in
+(* print_string_set new_psucc_set; *)
+ replace_element psucc_name new_psucc_set redord
+
+ let rec update pname redord =
+ match redord with
+ [] -> []
+ | (f,fset)::r ->
+ if pname=f then
+ r
+ else
+ (f,fset)::(update pname r)
+
+(* rule construction *)
+
+ let rec selectQ_rec spos_var csigmaQ =
+ match csigmaQ with
+ [] -> mk_var_term spos_var (* dynamic completion of csigmaQ *)
+ | (var,term)::r ->
+ if spos_var=var then
+ term
+ else
+ selectQ_rec spos_var r
+
+ let selectQ spos_name csigmaQ =
+ let spos_var = spos_name^"_jprover" in
+ selectQ_rec spos_var csigmaQ
+
+ let apply_sigmaQ term sigmaQ =
+ let sigma_vars,sigma_terms = List.split sigmaQ in
+ (subst term sigma_vars sigma_terms)
+
+ let build_rule pos spos csigmaQ orr_flag calculus =
+ let inst_label = apply_sigmaQ (pos.label) csigmaQ in
+ match pos.op,pos.pol with
+ Null,_ -> raise (Invalid_argument "Jprover: no rule")
+ | At,O -> Ax,(inst_label),xnil_term (* to give back a term *)
+ | At,I -> Ax,(inst_label),xnil_term
+ | And,O -> Andr,(inst_label),xnil_term
+ | And,I -> Andl,(inst_label),xnil_term
+ | Or,O ->
+ if calculus = "LJ" then
+ let or_rule =
+ if orr_flag = 1 then
+ Orr1
+ else
+ Orr2
+ in
+ or_rule,(inst_label),xnil_term
+ else
+ Orr,(inst_label),xnil_term
+ | Or,I -> Orl,(inst_label),xnil_term
+ | Neg,O -> Negr,(inst_label),xnil_term
+ | Neg,I -> Negl,(inst_label),xnil_term
+ | Imp,O -> Impr,(inst_label),xnil_term
+ | Imp,I -> Impl,(inst_label),xnil_term
+ | All,I -> Alll,(inst_label),(selectQ spos.name csigmaQ) (* elements of csigmaQ is (string * term) *)
+ | Ex,O -> Exr,(inst_label), (selectQ spos.name csigmaQ)
+ | All,O -> Allr,(inst_label),(mk_string_term jprover_op spos.name) (* must be a proper term *)
+ | Ex,I -> Exl,(inst_label),(mk_string_term jprover_op spos.name) (* must be a proper term *)
+
+
+(* %%%%%%%%%%%%%%%%%%%% Split begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *)
+
+ let rec nonemptys treearray j n =
+ if j = n then
+ 0
+ else
+ let count =
+ if (Array.get treearray j) <> Empty then
+ 1
+ else
+ 0
+ in
+ count + (nonemptys treearray (j+1) n)
+
+ let rec collect_pure ftreelist (flist,slist) =
+
+ let rec collect_itpure ftree (flist,slist) =
+ match ftree with
+ Empty -> (* assumed that not all brother trees are Empty *)
+ []
+ | NodeAt(pos) -> (* that may NOT longer be an inner node *)
+ if ((List.mem (pos.name) flist) or (List.mem (pos.name) slist)) then
+ []
+ else
+ [pos]
+ | NodeA(pos,treearray) ->
+ collect_pure (Array.to_list treearray) (flist,slist)
+ in
+ match ftreelist with
+ [] -> []
+ | f::r ->
+ (collect_itpure f (flist,slist)) @ (collect_pure r (flist,slist))
+
+ let rec update_list testlist list =
+ match testlist with
+ [] -> list
+ | f::r ->
+ let newlist = delete f list in (* f may not occur in list; then newlist=list *)
+ update_list r newlist
+
+ let rec update_pairlist p pairlist =
+ match pairlist with
+ [] -> []
+ | f::r ->
+ if ((fst f) = p) or ((snd f) = p) then
+ update_pairlist p r
+ else
+ f::(update_pairlist p r)
+
+ let rec update_connections slist connections =
+ match slist with
+ [] -> connections
+ | f::r ->
+ let connew = update_pairlist f connections in
+ update_connections r connew
+
+ let rec update_redord delset redord = (* delset is the set of positions to be deleted *)
+ match redord with
+ [] -> []
+ | (f,fset)::r ->
+ if (StringSet.mem f delset) then
+ update_redord delset r (* delete all key elements f from redord which are in delset *)
+ else
+ let new_fset = StringSet.diff fset delset in (* no successor of f from delset should remain in fset *)
+ (f,new_fset)::(update_redord delset r)
+
+ let rec get_position_names treelist =
+ match treelist with
+ [] -> []
+ | deltree::rests ->
+ match deltree with
+ Empty -> get_position_names rests
+ | NodeAt(pos) ->
+ (pos.name)::get_position_names rests
+ | NodeA(pos,strees) ->
+ (pos.name)::(get_position_names ((Array.to_list strees) @ rests))
+
+ let rec slist_to_set slist =
+ match slist with
+ [] ->
+ StringSet.empty
+ | f::r ->
+ StringSet.add f (slist_to_set r)
+
+ let rec print_purelist pr =
+ match pr with
+ [] ->
+ begin
+ print_string ".";
+ print_endline " ";
+ end
+ | f::r ->
+ print_string ((f.name)^", ");
+ print_purelist r
+
+ let update_relations deltree redord connections unsolved_list =
+ let pure_names = get_position_names [deltree] in
+ begin
+(* print_ftree deltree;
+ Format.open_box 0;
+ print_endline " ";
+ print_stringlist pure_names;
+ Format.force_newline ();
+ Format.print_flush ();
+*)
+ let rednew = update_redord (slist_to_set pure_names) redord
+ and connew = update_connections pure_names connections
+ and unsolnew = update_list pure_names unsolved_list in
+ (rednew,connew,unsolnew)
+ end
+
+ let rec collect_qpos ftreelist uslist =
+ match ftreelist with
+ [] -> [],[]
+ | ftree::rest ->
+ match ftree with
+ Empty ->
+ collect_qpos rest uslist
+ | NodeAt(pos) ->
+ let (rest_delta,rest_gamma) = collect_qpos rest uslist in
+ if (pos.st = Gamma_0) & (List.mem pos.name uslist) then
+ rest_delta,(pos.name::rest_gamma)
+ else
+ if (pos.st = Delta_0) & (List.mem pos.name uslist) then
+ (pos.name::rest_delta),rest_gamma
+ else
+ rest_delta,rest_gamma
+ | NodeA(pos,suctrees) ->
+ let (rest_delta,rest_gamma) = collect_qpos ((Array.to_list suctrees) @ rest) uslist in
+ if (pos.st = Gamma_0) & (List.mem pos.name uslist) then
+ rest_delta,(pos.name::rest_gamma)
+ else
+ if (pos.st = Delta_0) & (List.mem pos.name uslist) then
+ (pos.name::rest_delta),rest_gamma
+ else
+ rest_delta,rest_gamma
+
+ let rec do_split gamma_diff sigmaQ =
+ match sigmaQ with
+ [] -> []
+ | (v,term)::r ->
+ if (List.mem (String.sub v 0 (String.index v '_')) gamma_diff) then
+ do_split gamma_diff r
+ else
+ (v,term)::(do_split gamma_diff r)
+
+(* make a term list out of a bterm list *)
+
+ let rec collect_subterms = function
+ [] -> []
+ | bt::r ->
+ let dbt = dest_bterm bt in
+ (dbt.bterm)::(collect_subterms r)
+
+ (*: Bug! :*)
+(*: let rec collect_delta_terms = function
+ [] -> []
+ | t::r ->
+ let dt = dest_term t in
+ let top = dt.term_op
+ and tterms = dt.term_terms in
+ let dop = dest_op top in
+ let don = dest_opname dop.op_name in
+ match don with
+ [] ->
+ let sub_terms = collect_subterms tterms in
+ collect_delta_terms (sub_terms @ r)
+ | op1::opr ->
+ if op1 = "jprover" then
+ match opr with
+ [] -> raise (Invalid_argument "Jprover: delta position missing")
+ | delta::_ ->
+ delta::(collect_delta_terms r)
+ else
+ let sub_terms = collect_subterms tterms in
+ collect_delta_terms (sub_terms @ r)
+:*)
+
+ let rec collect_delta_terms = function
+ [] -> []
+ | t::r ->
+ let dt = dest_term t in
+ let top = dt.term_op
+ and tterms = dt.term_terms in
+ let dop = dest_op top in
+ let don = dest_opname dop.op_name in
+ let doa = dest_param dop.op_params in
+ match don with
+ [] ->
+ let sub_terms = collect_subterms tterms in
+ collect_delta_terms (sub_terms @ r)
+ | op1::opr ->
+ if op1 = "jprover" then
+ match doa with
+ [] -> raise (Invalid_argument "Jprover: delta position missing")
+ | String delta::_ ->
+ delta::(collect_delta_terms r)
+ | _ -> raise (Invalid_argument "Jprover: delta position error")
+ else
+ let sub_terms = collect_subterms tterms in
+ collect_delta_terms (sub_terms @ r)
+
+
+
+ let rec check_delta_terms (v,term) ass_delta_diff dterms =
+ match ass_delta_diff with
+ [] -> term,[]
+ | (var,dname)::r ->
+ if List.mem dname dterms then
+ let new_var =
+ if var = "" then
+ v
+ else
+ var
+ in
+ let replace_term = mk_string_term jprover_op dname in
+ let next_term = var_subst term replace_term new_var in
+ let (new_term,next_diffs) = check_delta_terms (v,next_term) r dterms in
+ (new_term,((new_var,dname)::next_diffs))
+ else
+ let (new_term,next_diffs) = check_delta_terms (v,term) r dterms in
+ (new_term,((var,dname)::next_diffs))
+
+
+ let rec localize_sigma zw_sigma ass_delta_diff =
+ match zw_sigma with
+ [] -> []
+ | (v,term)::r ->
+ let dterms = collect_delta_terms [term] in
+ let (new_term,new_ass_delta_diff) = check_delta_terms (v,term) ass_delta_diff dterms in
+ (v,new_term)::(localize_sigma r new_ass_delta_diff)
+
+ let subst_split ft1 ft2 ftree uslist1 uslist2 uslist sigmaQ =
+ let delta,gamma = collect_qpos [ftree] uslist
+ and delta1,gamma1 = collect_qpos [ft1] uslist1
+ and delta2,gamma2 = collect_qpos [ft2] uslist2 in
+ let delta_diff1 = list_diff delta delta1
+ and delta_diff2 = list_diff delta delta2
+ and gamma_diff1 = list_diff gamma gamma1
+ and gamma_diff2 = list_diff gamma gamma2 in
+ let zw_sigma1 = do_split gamma_diff1 sigmaQ
+ and zw_sigma2 = do_split gamma_diff2 sigmaQ in
+ let ass_delta_diff1 = List.map (fun x -> ("",x)) delta_diff1
+ and ass_delta_diff2 = List.map (fun x -> ("",x)) delta_diff2 in
+ let sigmaQ1 = localize_sigma zw_sigma1 ass_delta_diff1
+ and sigmaQ2 = localize_sigma zw_sigma2 ass_delta_diff2 in
+ (sigmaQ1,sigmaQ2)
+
+ let rec reduce_tree addr actual_node ftree beta_flag =
+ match addr with
+ [] -> (ftree,Empty,actual_node,beta_flag)
+ | a::radd ->
+ match ftree with
+ Empty ->
+ print_endline "Empty purity tree";
+ raise jprover_bug
+ | NodeAt(_) ->
+ print_endline "Atom purity tree";
+ raise jprover_bug
+ | NodeA(pos,strees) ->
+(* print_endline pos.name; *)
+ (* the associated node occurs above f (or the empty address) and hence, is neither atom nor empty tree *)
+
+ let nexttree = (Array.get strees (a-1)) in
+ if (nonemptys strees 0 (Array.length strees)) < 2 then
+ begin
+(* print_endline "strees 1 or non-empties < 2"; *)
+ let (ft,dt,an,bf) = reduce_tree radd actual_node nexttree beta_flag in
+ let nstrees = myset strees (a-1) ft in
+(* print_endline ("way back "^pos.name); *)
+ (NodeA(pos,nstrees),dt,an,bf)
+ end
+ else (* nonemptys >= 2 *)
+ begin
+(* print_endline "nonempties >= 2 "; *)
+ let (new_act,new_bf) =
+ if pos.pt = Beta then
+ (actual_node,true)
+ else
+ ((pos.name),false)
+ in
+ let (ft,dt,an,bf) = reduce_tree radd new_act nexttree new_bf in
+ if an = pos.name then
+ let nstrees = myset strees (a-1) Empty in
+(* print_endline ("way back assocnode "^pos.name); *)
+ (NodeA(pos,nstrees),nexttree,an,bf)
+ else (* has been replaced / will be replaced below / above pos *)
+ let nstrees = myset strees (a-1) ft in
+(* print_endline ("way back "^pos.name); *)
+ (NodeA(pos,nstrees),dt,an,bf)
+ end
+
+ let rec purity ftree redord connections unsolved_list =
+
+ let rec purity_reduction pr ftree redord connections unsolved_list =
+ begin
+(* Format.open_box 0;
+ print_endline " ";
+ print_purelist pr;
+ Format.force_newline ();
+ Format.print_flush ();
+*)
+ match pr with
+ [] -> (ftree,redord,connections,unsolved_list)
+ | f::r ->
+(* print_endline ("pure position "^(f.name)); *)
+ let (ftnew,deltree,assocn,beta_flag) = reduce_tree f.address "" ftree false
+ in
+(* print_endline ("assoc node "^assocn); *)
+ if assocn = "" then
+ (Empty,[],[],[]) (* should not occur in the final version *)
+ else
+ let (rednew,connew,unsolnew) = update_relations deltree redord connections unsolved_list in
+ begin
+(* Format.open_box 0;
+ print_endline " ";
+ print_pairlist connew;
+ Format.force_newline ();
+ Format.print_flush ();
+*)
+ if beta_flag = true then
+ begin
+(* print_endline "beta_flag true"; *)
+ purity ftnew rednew connew unsolnew
+ (* new pure positions may occur; old ones may not longer exist *)
+ end
+ else
+ purity_reduction r ftnew rednew connew unsolnew (* let's finish the old pure positions *)
+ end
+ end
+
+ in
+ let flist,slist = List.split connections in
+ let pr = collect_pure [ftree] (flist,slist) in
+ purity_reduction pr ftree redord connections unsolved_list
+
+ let rec betasplit addr ftree redord connections unsolved_list =
+ match ftree with
+ Empty ->
+ print_endline "bsplit Empty tree";
+ raise jprover_bug
+ | NodeAt(_) ->
+ print_endline "bsplit Atom tree";
+ raise jprover_bug (* the beta-node should actually occur! *)
+ | NodeA(pos,strees) ->
+ match addr with
+ [] -> (* we are at the beta node under consideration *)
+ let st1tree = (Array.get strees 0)
+ and st2tree = (Array.get strees 1) in
+ let (zw1red,zw1conn,zw1uslist) = update_relations st2tree redord connections unsolved_list
+ and (zw2red,zw2conn,zw2uslist) = update_relations st1tree redord connections unsolved_list in
+ ((NodeA(pos,[|st1tree;Empty|])),zw1red,zw1conn,zw1uslist),
+ ((NodeA(pos,[|Empty;st2tree|])),zw2red,zw2conn,zw2uslist)
+ | f::rest ->
+ let nexttree = Array.get strees (f-1) in
+ let (zw1ft,zw1red,zw1conn,zw1uslist),(zw2ft,zw2red,zw2conn,zw2uslist) =
+ betasplit rest nexttree redord connections unsolved_list in
+(* let scopytrees = Array.copy strees in *)
+ let zw1trees = myset strees (f-1) zw1ft
+ and zw2trees = myset strees (f-1) zw2ft in
+ (NodeA(pos,zw1trees),zw1red,zw1conn,zw1uslist),(NodeA(pos,zw2trees),zw2red,zw2conn,zw2uslist)
+
+
+
+
+ let split addr pname ftree redord connections unsolved_list opt_bproof =
+ let (opt_bp1,min_con1),(opt_bp2,min_con2) = split_permutation pname opt_bproof in
+ begin
+(*
+ print_endline "Beta proof 1: ";
+ print_endline "";
+ print_beta_proof opt_bp1;
+ print_endline "";
+ print_endline ("Beta proof 1 connections: ");
+ Format.open_box 0;
+ print_pairlist min_con1;
+ print_endline ".";
+ Format.print_flush();
+ print_endline "";
+ print_endline "";
+ print_endline "Beta proof 2: ";
+ print_endline "";
+ print_beta_proof opt_bp2;
+ print_endline "";
+ print_endline ("Beta proof 2 connections: ");
+ Format.open_box 0;
+ print_pairlist min_con2;
+ print_endline ".";
+ Format.print_flush();
+ print_endline "";
+*)
+ let (zw1ft,zw1red,zw1conn,zw1uslist),(zw2ft,zw2red,zw2conn,zw2uslist) =
+ betasplit addr ftree redord connections unsolved_list in
+(* zw1conn and zw2conn are not longer needed when using beta proofs *)
+(* print_endline "betasp_out"; *)
+ let ft1,red1,conn1,uslist1 = purity zw1ft zw1red min_con1 zw1uslist in
+(* print_endline "purity_one_out"; *)
+ let ft2,red2,conn2,uslist2 = purity zw2ft zw2red min_con2 zw2uslist in
+(* print_endline "purity_two_out"; *)
+(* again, min_con1 = conn1 and min_con2 = conn2 should hold *)
+ begin
+(* print_endline "";
+ print_endline "";
+ print_endline ("Purity 1 connections: ");
+ Format.open_box 0;
+ print_pairlist conn1;
+ print_endline ".";
+ print_endline "";
+ Format.print_flush();
+ print_endline "";
+ print_endline "";
+ print_endline ("Purity 2 connections: ");
+ Format.open_box 0;
+ print_pairlist conn2;
+ print_endline ".";
+ print_endline "";
+ Format.print_flush();
+ print_endline "";
+ print_endline "";
+*)
+ (ft1,red1,conn1,uslist1,opt_bp1),(ft2,red2,conn2,uslist2,opt_bp2)
+ end
+ end
+
+
+(* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Splitting end %%%%%%%%%%%%%%%% *)
+
+
+(* for wait labels we collect all solved atoms with pol=0 *)
+
+ let rec collect_solved_O_At ftreelist slist =
+ match ftreelist with
+ [] ->
+ []
+ | f::r ->
+ match f with
+ Empty -> (* may become possible after purity *)
+ collect_solved_O_At r slist
+ | NodeAt(pos) ->
+ if ((List.mem (pos.name) slist) or (pos.pol = I)) then (* recall slist is the unsolved list *)
+ collect_solved_O_At r slist
+ else
+ (* here, we have pos solved and pos.pol = O) *)
+ pos::(collect_solved_O_At r slist)
+ | NodeA(pos,treearray) ->
+ collect_solved_O_At ((Array.to_list treearray) @ r) slist
+
+ let rec red_ord_block pname redord =
+ match redord with
+ [] -> false
+ | (f,fset)::r ->
+ if ((f = pname) or (not (StringSet.mem pname fset))) then
+ red_ord_block pname r
+ else
+ true (* then, we have (StringSet.mem pname fset) *)
+
+ let rec check_wait_succ_LJ faddress ftree =
+ match ftree with
+ Empty -> raise jprover_bug
+ | NodeAt(pos) -> raise jprover_bug (* we have an gamma_0 position or an or-formula *)
+ | NodeA(pos,strees) ->
+ match faddress with
+ [] ->
+ if pos.op = Or then
+ match (strees.(0),strees.(1)) with
+ (Empty,Empty) -> raise (Invalid_argument "Jprover: redundancies occur")
+ | (Empty,_) -> (false,2) (* determines the Orr2 rule *)
+ | (_,Empty) -> (false,1) (* determines the Orr1 ruke *)
+ | (_,_) -> (true,0) (* wait-label is set *)
+ else
+ (false,0)
+ | f::r ->
+ if r = [] then
+ if (pos.pt = Gamma) & ((nonemptys strees 0 (Array.length strees)) > 1) then
+ (true,0) (* we are at a gamma position (exr) with one than one successor -- wait label in LJ*)
+ else
+ check_wait_succ_LJ r (Array.get strees (f-1))
+ else
+ check_wait_succ_LJ r (Array.get strees (f-1))
+
+ let blocked f po redord ftree connections slist logic calculus opt_bproof =
+(* print_endline ("Blocking check "^(f.name)); *)
+ if (red_ord_block (f.name) redord) then
+ begin
+(* print_endline "wait-1 check positive"; *)
+ true,0
+ end
+ else
+ if logic = "C" then
+ false,0 (* ready, in C only redord counts *)
+ else
+ let pa_O = collect_solved_O_At [ftree] slist (* solved atoms in ftree *)
+ and po_test = (delete f po) in
+ if calculus = "LJmc" then (* we provide dynamic wait labels for both sequent calculi *)
+(* print_endline "wait-2 check"; *)
+ if (f.st = Psi_0) & (f.pt <> PNull) &
+ ((pa_O <> []) or (List.exists (fun x -> x.pol = O) po_test)) then
+ begin
+(* print_endline "wait-2 positive"; *)
+ true,0 (* wait_2 label *)
+ end
+ else
+ begin
+(* print_endline "wait-2 negative"; *)
+ false,0
+ end
+ else (* calculus is supposed to be LJ *)
+ if calculus = "LJ" then
+ if ((f.st = Phi_0) & ((f.op=Neg) or (f.op=Imp)) &
+ ((pa_O <> []) or (List.exists (fun x -> x.pol = O) po_test))
+ )
+ (* this would cause an impl or negl rule with an non-empty succedent *)
+ then
+ if (f.op=Neg) then
+ true,0
+ else (* (f.op=Imp) *)
+ (* In case of an impl rule on A => B, the wait_label must NOT be set
+ iff all succedent formulae depend exclusively on B. For this, we
+ perform a split operation and determine, if in the A-subgoal
+ all succedent formulae are pure, i.e.~have been deleted from treds.
+ Otherwise, in case of A-dependent succedent formulae, the
+ wait_label must be set.
+ *)
+ let ((_,min_con1),_) = split_permutation f.name opt_bproof in
+ let slist_fake = delete f.name slist in
+ let ((zw1ft,zw1red,_,zw1uslist),_) =
+ betasplit (f.address) ftree redord connections slist_fake in
+ let ft1,_,_,uslist1 = purity zw1ft zw1red min_con1 zw1uslist in
+(* print_endline "wait label purity_one_out"; *)
+ let ft1_root = (List.hd (List.tl (tpredsucc f ft1))) in
+(* print_endline ("wait-root "^(ft1_root.name)); *)
+ let po_fake = compute_open [ft1] uslist1 in
+ let po_fake_test = delete ft1_root po_fake
+ and pa_O_fake = collect_solved_O_At [ft1] uslist1 in
+(* print_purelist (po_fake_test @ pa_O_fake); *)
+ if ((pa_O_fake <> []) or (List.exists (fun x -> x.pol = O) po_fake_test)) then
+ true,0
+ else
+ false,0
+ else
+ if ((f.pol=O) & ((f.st=Gamma_0) or (f.op=Or))) then
+ let (bool,orr_flag) = check_wait_succ_LJ f.address ftree in
+ (bool,orr_flag)
+ (* here is determined if orr1 or orr2 will be performed, provided bool=false) *)
+ (* orr_flag can be 1 or 2 *)
+ else
+ false,0
+ else
+ raise (Invalid_argument "Jprover: calculus should be LJmc or LJ")
+
+ let rec get_beta_preference list actual =
+ match list with
+ [] -> actual
+ | (f,int)::r ->
+ if f.op = Imp then
+ (f,int)
+ else
+(* if f.op = Or then
+ get_beta_preference r (f,int)
+ else
+*)
+ get_beta_preference r actual
+
+ exception Gamma_deadlock
+
+ let rec select_pos search_po po redord ftree connections slist logic calculus candidates
+ opt_bproof =
+ match search_po with
+ [] ->
+ (match candidates with
+ [] ->
+ if calculus = "LJ" then
+ raise Gamma_deadlock (* permutation may be necessary *)
+ else
+ raise (Invalid_argument "Jprover bug: overall deadlock") (* this case should not occur *)
+ | c::rest ->
+ get_beta_preference (c::rest) c
+ )
+ | f::r -> (* there exist an open position *)
+ let (bool,orr_flag) = (blocked f po redord ftree connections slist logic calculus
+ opt_bproof)
+ in
+ if (bool = true) then
+ select_pos r po redord ftree connections slist logic calculus candidates opt_bproof
+ else
+ if f.pt = Beta then
+ (* search for non-splitting rules first *)
+(* let beta_candidate =
+ if candidates = []
+ then
+ [(f,orr_flag)]
+ else
+ !!!! but preserve first found candidate !!!!!!!
+ candidates
+ in
+ !!!!!!! this strategy is not sure the best -- back to old !!!!!!!!!
+*)
+ select_pos r po redord ftree connections slist logic calculus
+ ((f,orr_flag)::candidates) opt_bproof
+ else
+ (f,orr_flag)
+
+(* let rec get_position_in_tree pname treelist =
+ match treelist with
+ [] -> raise jprover_bug
+ | f::r ->
+ begin match f with
+ Empty -> get_position_in_tree pname r
+ | NodeAt(pos) ->
+ if pos.name = pname then
+ pos
+ else
+ get_position_in_tree pname r
+ | NodeA(pos,suctrees) ->
+ get_position_in_tree pname ((Array.to_list suctrees) @ r)
+ end
+*)
+
+(* total corresponds to tot in the thesis,
+ tot simulates the while-loop, solve is the rest *)
+
+ let rec total ftree redord connections csigmaQ slist logic calculus opt_bproof =
+ let rec tot ftree redord connections po slist =
+ let rec solve ftree redord connections p po slist (pred,succs) orr_flag =
+ let newslist = delete (p.name) slist in
+ let rback =
+ if p.st = Gamma_0 then
+ begin
+(* print_endline "that's the gamma rule"; *)
+ [((p.name,pred.name),(build_rule pred p csigmaQ orr_flag calculus))]
+ end
+ else
+ []
+ in
+(* print_endline "gamma check finish"; *)
+ let pnew =
+ if p.pt <> Beta then
+ succs @ (delete p po)
+ else
+ po
+ in
+ match p.pt with
+ Gamma ->
+ rback @ (tot ftree redord connections pnew newslist)
+ | Psi ->
+ if p.op = At then
+ let succ = List.hd succs in
+ rback @ (solve ftree redord connections succ pnew newslist (p,[]) orr_flag) (* solve atoms immediately *)
+ else
+ rback @ (tot ftree redord connections pnew newslist)
+ | Phi ->
+ if p.op = At then
+ let succ = List.hd succs in
+ rback @ (solve ftree redord connections succ pnew newslist (p,[]) orr_flag) (* solve atoms immediately *)
+ else
+ rback @ (tot ftree redord connections pnew newslist)
+ | PNull ->
+ let new_redord = update p.name redord in
+ let (c1,c2) = select_connection (p.name) connections newslist in
+ if (c1= "none" & c2 ="none") then
+ rback @ (tot ftree new_redord connections pnew newslist)
+ else
+ let (ass_pos,inst_pos) =
+(* need the pol=O position ass_pos of the connection for later permutation *)
+(* need the pol=I position inst_pos for NuPRL instantiation *)
+ if p.name = c1 then
+ if p.pol = O then
+ (c1,c2)
+ else
+ (c2,c1)
+ else (* p.name = c2 *)
+ if p.pol = O then
+ (c2,c1)
+ else
+ (c1,c2)
+ in
+ rback @ [(("",ass_pos),(build_rule p p csigmaQ orr_flag calculus))]
+ (* one possibility of recursion end *)
+ | Alpha ->
+ rback @ ((("",p.name),(build_rule p p csigmaQ orr_flag calculus))::(tot ftree redord connections pnew newslist))
+ | Delta ->
+ let sp = List.hd succs in
+ rback @ ((("",p.name),(build_rule p sp csigmaQ orr_flag calculus))::(tot ftree redord connections pnew newslist))
+ | Beta ->
+(* print_endline "split_in"; *)
+ let (ft1,red1,conn1,uslist1,opt_bproof1),(ft2,red2,conn2,uslist2,opt_bproof2) =
+ split (p.address) (p.name) ftree redord connections newslist opt_bproof in
+ let (sigmaQ1,sigmaQ2) = subst_split ft1 ft2 ftree uslist1 uslist2 newslist csigmaQ in
+(* print_endline "split_out"; *)
+ let p1 = total ft1 red1 conn1 sigmaQ1 uslist1 logic calculus opt_bproof1 in
+(* print_endline "compute p1 out"; *)
+ let p2 = total ft2 red2 conn2 sigmaQ2 uslist2 logic calculus opt_bproof2 in
+(* print_endline "compute p2 out"; *)
+ rback @ [(("",p.name),(build_rule p p csigmaQ orr_flag calculus))] @ p1 @ p2 (* second possibility of recursion end *)
+ in
+ begin try
+ let (p,orr_flag) = select_pos po po redord ftree connections slist logic
+ calculus [] opt_bproof
+ (* last argument for guiding selection strategy *)
+ in
+(* print_endline ((p.name)^" "^(string_of_int orr_flag)); *)
+ let predsuccs = tpredsucc p ftree in
+ let pred = List.hd predsuccs
+ and succs = List.tl predsuccs in
+ let redpo = update (p.name) redord in (* deletes the entry (p,psuccset) from the redord *)
+ let rednew =
+ if (p.pt = Delta) then (* keep the tree ordering for the successor position only *)
+ let psucc = List.hd succs in
+ let ppsuccs = tpredsucc psucc ftree in
+ let pre = List.hd ppsuccs
+ and sucs = List.tl ppsuccs in
+ replace_ordering (psucc.name) sucs redpo (* union the succsets of psucc *)
+ else
+ redpo
+ in
+(* print_endline "update ok"; *)
+ solve ftree rednew connections p po slist (pred,succs) orr_flag
+ with Gamma_deadlock ->
+ let ljmc_subproof = total ftree redord connections csigmaQ slist "J" "LJmc" opt_bproof
+ in
+ eigen_counter := 1;
+ permute_ljmc ftree po slist ljmc_subproof
+ (* the permuaiton result will be appended to the lj proof constructed so far *)
+ end
+ in
+ let po = compute_open [ftree] slist in
+ tot ftree redord connections po slist
+
+ let reconstruct ftree redord sigmaQ ext_proof logic calculus =
+ let min_connections = remove_dups_connections ext_proof in
+ let (opt_bproof,beta_exp,closures) = construct_opt_beta_proof ftree ext_proof in
+(* let connections = remove_dups_connections ext_proof in
+ let bproof,beta_exp,closures = construct_beta_proof ftree connections in
+ let (opt_bproof,min_connections) = bproof_purity bproof in
+*)
+ if !debug_jprover then
+ begin
+ print_endline "";
+ print_endline ("Beta proof with number of closures = "^(string_of_int closures)^" and number of beta expansions = "^(string_of_int beta_exp));
+(* print_endline "";
+ print_endline "";
+ print_beta_proof bproof;
+ print_endline "";
+ print_endline "";
+ print_endline "Optimal beta proof: ";
+ print_endline "";
+ print_endline "";
+ print_beta_proof opt_bproof;
+ print_endline "";
+ print_endline "";
+ print_endline ("Beta proof connections: ");
+ Format.open_box 0;
+ print_pairlist min_connections;
+ print_endline ".";
+ Format.print_flush(); *)
+ print_endline "";
+ end;
+ let (newroot_name,unsolved_list) = build_unsolved ftree in
+ let redord2 = (update newroot_name redord) in (* otherwise we would have a deadlock *)
+ let (init_tree,init_redord,init_connections,init_unsolved_list) =
+ purity ftree redord2 min_connections unsolved_list in
+ begin
+(* print_endline "";
+ print_endline "";
+ print_endline ("Purity connections: ");
+ Format.open_box 0;
+ print_pairlist init_connections;
+ print_endline ".";
+ print_endline "";
+ Format.print_flush();
+ print_endline "";
+ print_endline "";
+*)
+(* it should hold: min_connections = init_connections *)
+ total init_tree init_redord init_connections sigmaQ
+ init_unsolved_list logic calculus opt_bproof
+ end
+
+(* ***************** REDUCTION ORDERING -- both types **************************** *)
+
+ exception Reflexive
+
+ let rec transitive_irreflexive_closure addset const ordering =
+ match ordering with
+ [] ->
+ []
+ | (pos,fset)::r ->
+ if (pos = const) or (StringSet.mem const fset) then
+(* check reflexsivity during transitive closure wrt. addset ONLY!!! *)
+ if StringSet.mem pos addset then
+ raise Reflexive
+ else
+ (pos,(StringSet.union fset addset))::(transitive_irreflexive_closure addset const r)
+ else
+ (pos,fset)::(transitive_irreflexive_closure addset const r)
+
+ let rec search_set var ordering =
+(* print_endline var; *)
+ match ordering with
+ [] ->
+ raise (Invalid_argument "Jprover: element in ordering missing")
+ | (pos,fset)::r ->
+ if pos = var then
+ StringSet.add pos fset
+ else
+ search_set var r
+
+ let add_sets var const ordering =
+ let addset = search_set var ordering in
+ transitive_irreflexive_closure addset const ordering
+
+(* ************* J ordering ********************************************** *)
+
+ let rec add_arrowsJ (v,vlist) ordering =
+ match vlist with
+ [] -> ordering
+ | f::r ->
+ if ((String.get f 0)='c') then
+ let new_ordering = add_sets v f ordering in
+ add_arrowsJ (v,r) new_ordering
+ else
+ add_arrowsJ (v,r) ordering
+
+ let rec add_substJ replace_vars replace_string ordering atom_rel =
+ match replace_vars with
+ [] -> ordering
+ | v::r ->
+ if (String.get v 1 = 'n') (* don't integrate new variables *)
+ or (List.exists (fun (x,_,_) -> (x.aname = v)) atom_rel) then (* no reduction ordering at atoms *)
+ (add_substJ r replace_string ordering atom_rel)
+ else
+ let next_ordering = add_arrowsJ (v,replace_string) ordering in
+ (add_substJ r replace_string next_ordering atom_rel)
+
+ let build_orderingJ replace_vars replace_string ordering atom_rel =
+ try
+ add_substJ replace_vars replace_string ordering atom_rel
+ with Reflexive -> (* only possible in the FO case *)
+ raise Not_unifiable (*search for alternative string unifiers *)
+
+ let rec build_orderingJ_list substJ ordering atom_rel =
+ match substJ with
+ [] -> ordering
+ | (v,vlist)::r ->
+ let next_ordering = build_orderingJ [v] vlist ordering atom_rel in
+ build_orderingJ_list r next_ordering atom_rel
+
+(* ************* J ordering END ********************************************** *)
+
+(* ************* quantifier ordering ********************************************** *)
+
+ let rec add_arrowsQ v clist ordering =
+ match clist with
+ [] -> ordering
+ | f::r ->
+ let new_ordering = add_sets v f ordering in
+ add_arrowsQ v r new_ordering
+
+ let rec print_sigmaQ sigmaQ =
+ match sigmaQ with
+ [] ->
+ print_endline "."
+ | (v,term)::r ->
+ begin
+ Format.open_box 0;
+ print_endline " ";
+ print_string (v^" = ");
+ print_term stdout term;
+ Format.force_newline ();
+ Format.print_flush ();
+ print_sigmaQ r
+ end
+
+ let rec print_term_list tlist =
+ match tlist with
+ [] -> print_string "."
+ | t::r ->
+ begin
+ print_term stdout t;
+ print_string " ";
+ print_term_list r
+ end
+
+ let rec add_sigmaQ new_elements ordering =
+ match new_elements with
+ [] -> ([],ordering)
+ | (v,termlist)::r ->
+ let dterms = collect_delta_terms termlist in
+ begin
+(*: print_stringlist dterms;
+ mbreak "add_sigmaQ:1\n";
+ Format.open_box 0;
+ print_endline " ";
+ print_endline "sigmaQ: ";
+ print_string (v^" = ");
+ print_term_list termlist;
+ Format.force_newline ();
+ print_stringlist dterms;
+ Format.force_newline ();
+ Format.print_flush ();
+ mbreak "add_sigmaQ:2\n";
+:*)
+ let new_ordering = add_arrowsQ v dterms ordering in
+(*: print_ordering new_ordering;
+ mbreak "add_sigmaQ:3\n";
+:*)
+ let (rest_pairs,rest_ordering) = add_sigmaQ r new_ordering in
+ ((v,dterms)::rest_pairs),rest_ordering
+ end
+
+ let build_orderingQ new_elements ordering =
+(* new_elements is of type (string * term list) list, since one variable can receive more than *)
+(* a single term due to substitution multiplication *)
+ try
+(* print_endline "build orderingQ in"; *) (* apple *)
+ add_sigmaQ new_elements ordering;
+ with Reflexive ->
+ raise Failed (* new connection, please *)
+
+
+(* ************* quantifier ordering END ********************************************** *)
+
+(* ****** Quantifier unification ************** *)
+
+(* For multiplication we assume always idempotent substitutions sigma, tau! *)
+
+ let rec collect_assoc inst_vars tauQ =
+ match inst_vars with
+ [] -> []
+ | f::r ->
+ let f_term = List.assoc f tauQ in
+ f_term::(collect_assoc r tauQ)
+
+ let rec rec_apply sigmaQ tauQ tau_vars tau_terms =
+ match sigmaQ with
+ [] -> [],[]
+ | (v,term)::r ->
+ let app_term = subst term tau_vars tau_terms in
+ let old_free = free_vars_list term
+ and new_free = free_vars_list app_term in
+ let inst_vars = list_diff old_free new_free in
+ let inst_terms = collect_assoc inst_vars tauQ in
+ let (rest_sigma,rest_sigma_ordering) = rec_apply r tauQ tau_vars tau_terms in
+ if inst_terms = [] then
+ ((v,app_term)::rest_sigma),rest_sigma_ordering
+ else
+ let ordering_v = String.sub v 0 (String.index v '_') in
+ ((v,app_term)::rest_sigma),((ordering_v,inst_terms)::rest_sigma_ordering)
+
+(* let multiply sigmaQ tauQ =
+ let tau_vars,tau_terms = List.split tauQ
+ and sigma_vars,sigma_terms = List.split sigmaQ in
+ let apply_terms = rec_apply sigma_terms tau_vars tau_terms in
+ (List.combine sigma_vars apply_terms) @ tauQ
+*)
+
+ let multiply sigmaQ tauQ =
+ let (tau_vars,tau_terms) = List.split tauQ in
+ let (new_sigmaQ,sigma_ordering) = rec_apply sigmaQ tauQ tau_vars tau_terms in
+ let tau_ordering_terms = (List.map (fun x -> [x]) tau_terms) (* for extending ordering_elements *) in
+ let tau_ordering_vars = (List.map (fun x -> String.sub x 0 (String.index x '_')) tau_vars) in
+ let tau_ordering = (List.combine tau_ordering_vars tau_ordering_terms) in
+ ((new_sigmaQ @ tauQ),
+ (sigma_ordering @ tau_ordering)
+ )
+
+ let apply_2_sigmaQ term1 term2 sigmaQ =
+ let sigma_vars,sigma_terms = List.split sigmaQ in
+ (subst term1 sigma_vars sigma_terms),(subst term2 sigma_vars sigma_terms)
+
+ let jqunify term1 term2 sigmaQ =
+ let app_term1,app_term2 = apply_2_sigmaQ term1 term2 sigmaQ in
+ try
+(*: let tauQ = unify_mm app_term1 app_term2 String_set.StringSet.empty in :*)
+ let tauQ = unify_mm app_term1 app_term2 StringSet.empty in
+ let (mult,oel) = multiply sigmaQ tauQ in
+ (mult,oel)
+ with
+ RefineError _ -> (* any unification failure *)
+(* print_endline "fo-unification fail"; *)
+ raise Failed (* new connection, please *)
+
+(* ************ T-STRING UNIFICATION ******************************** *)
+
+ let rec combine subst (ov,oslist) =
+ match subst with
+ [] -> [],[]
+ | f::r ->
+ let (v,slist) = f in
+ let rest_vlist,rest_combine = (combine r (ov,oslist)) in
+ if (List.mem ov slist) then (* subst assumed to be idemponent *)
+ let com_element = com_subst slist (ov,oslist) in
+ (v::rest_vlist),((v,com_element)::rest_combine)
+ else
+ (rest_vlist,(f::rest_combine))
+
+ let compose sigma one_subst =
+ let (n,subst)=sigma
+ and (ov,oslist) = one_subst in
+ let (trans_vars,com) = combine subst (ov,oslist)
+ in
+(* begin
+ print_endline "!!!!!!!!!test print!!!!!!!!!!";
+ print_subst [one_subst];
+ print_subst subst;
+ print_endline "!!!!!!!!! END test print!!!!!!!!!!";
+*)
+ if List.mem one_subst subst then
+ (trans_vars,(n,com))
+ else
+(* ov may multiply as variable in subst with DIFFERENT values *)
+(* in order to avoid explicit atom instances!!! *)
+ (trans_vars,(n,(com @ [one_subst])))
+(* end *)
+
+ let rec apply_element fs ft (v,slist) =
+ match (fs,ft) with
+ ([],[]) ->
+ ([],[])
+ | ([],(ft_first::ft_rest)) ->
+ let new_ft_first =
+ if ft_first = v then
+ slist
+ else
+ [ft_first]
+ in
+ let (emptylist,new_ft_rest) = apply_element [] ft_rest (v,slist) in
+ (emptylist,(new_ft_first @ new_ft_rest))
+ | ((fs_first::fs_rest),[]) ->
+ let new_fs_first =
+ if fs_first = v then
+ slist
+ else
+ [fs_first]
+ in
+ let (new_fs_rest,emptylist) = apply_element fs_rest [] (v,slist) in
+ ((new_fs_first @ new_fs_rest),emptylist)
+ | ((fs_first::fs_rest),(ft_first::ft_rest)) ->
+ let new_fs_first =
+ if fs_first = v then
+ slist
+ else
+ [fs_first]
+ and new_ft_first =
+ if ft_first = v then
+ slist
+ else
+ [ft_first]
+ in
+ let (new_fs_rest,new_ft_rest) = apply_element fs_rest ft_rest (v,slist) in
+ ((new_fs_first @ new_fs_rest),(new_ft_first @ new_ft_rest))
+
+ let rec shorten us ut =
+ match (us,ut) with
+ ([],_) -> (us,ut)
+ | (_,[]) -> (us,ut)
+ | ((fs::rs),(ft::rt)) ->
+ if fs = ft then
+ shorten rs rt
+ else
+ (us,ut)
+
+ let rec apply_subst_list eq_rest (v,slist) =
+
+ match eq_rest with
+ [] ->
+ (true,[])
+ | (atomnames,(fs,ft))::r ->
+ let (n_fs,n_ft) = apply_element fs ft (v,slist) in
+ let (new_fs,new_ft) = shorten n_fs n_ft in (* delete equal first elements *)
+ match (new_fs,new_ft) with
+ [],[] ->
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,([],[]))::new_eq_rest))
+ | [],(fft::rft) ->
+ if (is_const fft) then
+ (false,[])
+ else
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,([],new_ft))::new_eq_rest))
+ | (ffs::rfs),[] ->
+ if (is_const ffs) then
+ (false,[])
+ else
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,(new_fs,[]))::new_eq_rest))
+ | (ffs::rfs),(fft::rft) ->
+ if (is_const ffs) & (is_const fft) then
+ (false,[])
+ (* different first constants cause local fail *)
+ else
+ (* at least one of firsts is a variable *)
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,(new_fs,new_ft))::new_eq_rest))
+
+ let apply_subst eq_rest (v,slist) atomnames =
+ if (List.mem v atomnames) then (* don't apply subst to atom variables !! *)
+ (true,eq_rest)
+ else
+ apply_subst_list eq_rest (v,slist)
+
+ let all_variable_check eqlist = false (* needs some discussion with Jens! -- NOT done *)
+
+(*
+ let rec all_variable_check eqlist =
+ match eqlist with
+ [] -> true
+ | ((_,(fs,ft))::rest_eq) ->
+ if (fs <> []) & (ft <> []) then
+ let fs_first = List.hd fs
+ and ft_first = List.hd ft
+ in
+ if (is_const fs_first) or (is_const ft_first) then
+ false
+ else
+ all_variable_check rest_eq
+ else
+ false
+*)
+
+ let rec tunify_list eqlist init_sigma orderingQ atom_rel =
+
+ let rec tunify atomnames fs ft rt rest_eq sigma ordering =
+
+ let apply_r1 fs ft rt rest_eq sigma =
+(* print_endline "r1"; *)
+ tunify_list rest_eq sigma ordering atom_rel
+
+ in
+ let apply_r2 fs ft rt rest_eq sigma =
+(* print_endline "r2"; *)
+ tunify atomnames rt fs ft rest_eq sigma ordering
+
+ in
+ let apply_r3 fs ft rt rest_eq sigma =
+(* print_endline "r3"; *)
+ let rfs = (List.tl fs)
+ and rft = (List.tl rt) in
+ tunify atomnames rfs ft rft rest_eq sigma ordering
+
+ in
+ let apply_r4 fs ft rt rest_eq sigma =
+(* print_endline "r4"; *)
+ tunify atomnames rt ft fs rest_eq sigma ordering
+
+ in
+ let apply_r5 fs ft rt rest_eq sigma =
+(* print_endline "r5"; *)
+ let v = (List.hd fs) in
+ let (compose_vars,new_sigma) = compose sigma (v,ft) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,ft) atomnames in
+ if (bool=false) then
+ raise Not_unifiable
+ else
+ let new_ordering = build_orderingJ (v::compose_vars) ft ordering atom_rel in
+ tunify atomnames (List.tl fs) rt rt new_rest_eq new_sigma new_ordering
+
+ in
+ let apply_r6 fs ft rt rest_eq sigma =
+(* print_endline "r6"; *)
+ let v = (List.hd fs) in
+ let (_,new_sigma) = (compose sigma (v,[])) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,[]) atomnames in
+ if (bool=false) then
+ raise Not_unifiable
+ else
+ (* no relation update since [] has been replaced for v *)
+ tunify atomnames (List.tl fs) ft rt new_rest_eq new_sigma ordering
+
+ in
+ let apply_r7 fs ft rt rest_eq sigma =
+(* print_endline "r7"; *)
+ let v = (List.hd fs)
+ and c1 = (List.hd rt)
+ and c2t =(List.tl rt) in
+ let (compose_vars,new_sigma) = (compose sigma (v,(ft @ [c1]))) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [c1])) atomnames in
+ if bool=false then
+ raise Not_unifiable
+ else
+ let new_ordering = build_orderingJ (v::compose_vars) (ft @ [c1]) ordering atom_rel in
+ tunify atomnames (List.tl fs) [] c2t new_rest_eq new_sigma new_ordering
+
+
+ in
+ let apply_r8 fs ft rt rest_eq sigma =
+(* print_endline "r8"; *)
+ tunify atomnames rt [(List.hd fs)] (List.tl fs) rest_eq sigma ordering
+
+ in
+ let apply_r9 fs ft rt rest_eq sigma =
+(* print_endline "r9"; *)
+ let v = (List.hd fs)
+ and (max,subst) = sigma in
+ let v_new = ("vnew"^(string_of_int max)) in
+ let (compose_vars,new_sigma) = (compose ((max+1),subst) (v,(ft @ [v_new]))) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [v_new])) atomnames in
+ if (bool=false) then
+ raise Not_unifiable
+ else
+ let new_ordering =
+ build_orderingJ (v::compose_vars) (ft @ [v_new]) ordering atom_rel in
+ tunify atomnames rt [v_new] (List.tl fs) new_rest_eq new_sigma new_ordering
+
+ in
+ let apply_r10 fs ft rt rest_eq sigma =
+(* print_endline "r10"; *)
+ let x = List.hd rt in
+ tunify atomnames fs (ft @ [x]) (List.tl rt) rest_eq sigma ordering
+
+ in
+ if r_1 fs ft rt then
+ apply_r1 fs ft rt rest_eq sigma
+ else if r_2 fs ft rt then
+ apply_r2 fs ft rt rest_eq sigma
+ else if r_3 fs ft rt then
+ apply_r3 fs ft rt rest_eq sigma
+ else if r_4 fs ft rt then
+ apply_r4 fs ft rt rest_eq sigma
+ else if r_5 fs ft rt then
+ apply_r5 fs ft rt rest_eq sigma
+ else if r_6 fs ft rt then
+ (try
+ apply_r6 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ if r_7 fs ft rt then (* r7 applicable if r6 was and tr6 = C2t' *)
+ (try
+ apply_r7 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r6 was *)
+ )
+ else
+(* r10 could be represented only once if we would try it before r7.*)
+(* but looking at the transformation rules, r10 should be tried at last in any case *)
+ apply_r10 fs ft rt rest_eq sigma (* r10 always applicable r6 was *)
+ )
+ else if r_7 fs ft rt then (* not r6 and r7 possible if z <> [] *)
+ (try
+ apply_r7 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r7 was *)
+ )
+ else if r_8 fs ft rt then
+ (try
+ apply_r8 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ if r_10 fs ft rt then (* r10 applicable if r8 was and tr8 <> [] *)
+ apply_r10 fs ft rt rest_eq sigma
+ else
+ raise Not_unifiable (* simply back propagation *)
+ )
+ else if r_9 fs ft rt then
+ (try
+ apply_r9 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ if r_10 fs ft rt then (* r10 applicable if r9 was and tr9 <> [] *)
+ apply_r10 fs ft rt rest_eq sigma
+ else
+ raise Not_unifiable (* simply back propagation *)
+ )
+
+
+ else
+ if r_10 fs ft rt then (* not ri, i<10, and r10 possible if for instance *)
+ (* (s=[] and x=v1) or (z<>[] and xt=C1V1t') *)
+ apply_r10 fs ft rt rest_eq sigma
+ else (* NO rule applicable *)
+ raise Not_unifiable
+ in
+ match eqlist with
+ [] ->
+ init_sigma,orderingQ
+ | f::rest_eq ->
+ begin
+(* Format.open_box 0;
+ print_equations [f];
+ Format.print_flush ();
+*)
+ let (atomnames,(fs,ft)) = f in
+ tunify atomnames fs [] ft rest_eq init_sigma orderingQ
+ end
+
+let rec test_apply_eq atomnames eqs eqt subst =
+ match subst with
+ [] -> (eqs,eqt)
+ | (f,flist)::r ->
+ let (first_appl_eqs,first_appl_eqt) =
+ if List.mem f atomnames then
+ (eqs,eqt)
+ else
+ (apply_element eqs eqt (f,flist))
+ in
+ test_apply_eq atomnames first_appl_eqs first_appl_eqt r
+
+let rec test_apply_eqsubst eqlist subst =
+ match eqlist with
+ [] -> []
+ | f::r ->
+ let (atomnames,(eqs,eqt)) = f in
+ let applied_element = test_apply_eq atomnames eqs eqt subst in
+ (atomnames,applied_element)::(test_apply_eqsubst r subst)
+
+let ttest us ut ns nt eqlist orderingQ atom_rel =
+ let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 *)
+ (* to eliminate common beginning *)
+ let new_element = ([ns;nt],(short_us,short_ut)) in
+ let full_eqlist =
+ if List.mem new_element eqlist then
+ eqlist
+ else
+ new_element::eqlist
+ in
+ let (sigma,_) = tunify_list full_eqlist (1,[]) orderingQ atom_rel in
+ let (n,subst) = sigma in
+ let test_apply = test_apply_eqsubst full_eqlist subst in
+ begin
+ print_endline "";
+ print_endline "Final equations:";
+ print_equations full_eqlist;
+ print_endline "";
+ print_endline "Final substitution:";
+ print_tunify sigma;
+ print_endline "";
+ print_endline "Applied equations:";
+ print_equations test_apply
+ end
+
+let do_stringunify us ut ns nt equations fo_eqlist orderingQ atom_rel qmax =
+ let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 to eliminate common beginning *)
+ let new_element = ([ns;nt],(short_us,short_ut)) in
+ let full_eqlist =
+ if List.mem new_element equations then
+ equations @ fo_eqlist
+ else
+ (new_element::equations) @ fo_eqlist
+ in
+ try
+(* print_equations full_eqlist; *)
+(* max-1 new variables have been used for the domain equations *)
+ let (new_sigma,new_ordering) = tunify_list full_eqlist (1,[]) orderingQ atom_rel in
+(* sigmaQ will not be returned in eqlist *)
+ (new_sigma,(qmax,full_eqlist),new_ordering)
+ with Not_unifiable ->
+ raise Failed (* new connection please *)
+
+let rec one_equation gprefix dlist delta_0_prefixes n =
+ match dlist with
+ [] -> ([],n)
+ | f::r ->
+ let fprefix = List.assoc f delta_0_prefixes in
+ let (sf1,sg) = shorten fprefix gprefix
+ and v_new = ("vnewq"^(string_of_int n)) in
+ let fnew = sf1 @ [v_new] in
+ let (rest_equations,new_n) = one_equation gprefix r delta_0_prefixes (n+1) in
+ (([],(fnew,sg))::rest_equations),new_n
+
+let rec make_domain_equations fo_pairs (gamma_0_prefixes,delta_0_prefixes) n =
+ match fo_pairs with
+ [] -> ([],n)
+ | (g,dlist)::r ->
+ let gprefix = List.assoc g gamma_0_prefixes in
+ let (gequations,max) = one_equation gprefix dlist delta_0_prefixes n in
+ let (rest_equations,new_max) =
+ make_domain_equations r (gamma_0_prefixes,delta_0_prefixes) max in
+ (gequations @ rest_equations),new_max
+
+(* type of one unifier: int * ((string * string list) list) *)
+(* global failure: (0,[]) *)
+
+let stringunify ext_atom try_one eqlist fo_pairs logic orderingQ atom_rel qprefixes =
+ if logic = "C" then
+ ((0,[]),(0,[]),orderingQ)
+ else
+ let (qmax,equations) = eqlist
+ and us = ext_atom.aprefix
+ and ut = try_one.aprefix
+ and ns = ext_atom.aname
+ and nt = try_one.aname in
+ if qprefixes = ([],[]) then (* prop case *)
+ begin
+(* print_endline "This is the prop case"; *)
+ let (new_sigma,new_eqlist) = Jtunify.do_stringunify us ut ns nt equations
+ (* prop unification only *)
+ in
+ (new_sigma,new_eqlist,[]) (* assume the empty reduction ordering during proof search *)
+ end
+ else
+ begin
+(* print_endline "This is the FO case"; *)
+(* fo_eqlist encodes the domain condition on J quantifier substitutions *)
+(* Again, always computed for the whole substitution sigmaQ *)
+ let (fo_eqlist,new_max) = make_domain_equations fo_pairs qprefixes qmax in
+ begin
+(* Format.open_box 0;
+ print_string "domain equations in";
+ print_equations fo_eqlist;
+ print_string "domain equations out";
+ Format.print_flush ();
+*)
+ do_stringunify us ut ns nt equations fo_eqlist orderingQ atom_rel new_max
+ end
+ end
+
+(**************************************** add multiplicity *********************************)
+
+let rec subst_replace subst_list t =
+ match subst_list with
+ [] -> t
+ | (old_t,new_t)::r ->
+ let inter_term = var_subst t old_t "dummy" in
+(*: print_string "(";
+ print_term stdout old_t;
+ print_string " --> ";
+ print_term stdout new_t;
+ print_string ")\n";
+ print_term stdout t;
+ print_newline ();
+ print_term stdout inter_term;
+ print_newline (); :*)
+ let new_term = subst1 inter_term "dummy" new_t in
+(*: print_term stdout new_term;
+ print_newline ();
+ mbreak "\n+++========----- ---------..........\n"; :*)
+ subst_replace r new_term
+
+let rename_pos x m =
+ let pref = String.get x 0 in
+ (Char.escaped pref)^(string_of_int m)
+
+let update_position position m replace_n subst_list mult =
+ let ({name=x; address=y; op=z; pol=p; pt=a; st=b; label=t}) = position in
+ let nx = rename_pos x m in
+ let nsubst_list =
+ if b=Gamma_0 then
+ let vx = mk_var_term (x^"_jprover")
+ and vnx = mk_var_term (nx^"_jprover") in
+ (vx,vnx)::subst_list
+ else
+ if b=Delta_0 then
+ let sx = mk_string_term jprover_op x
+ and snx = mk_string_term jprover_op nx in
+ (sx,snx)::subst_list
+ else
+ subst_list
+ in
+ let nt = subst_replace nsubst_list t in
+ let add_array = Array.of_list y in
+ let _ = (add_array.(replace_n) <- mult) in
+ let new_add = Array.to_list add_array in
+ ({name=nx; address=new_add; op=z; pol=p; pt=a; st=b; label=nt},m,nsubst_list)
+
+let rec append_orderings list_of_lists =
+ match list_of_lists with
+ [] ->
+ []
+ | f::r ->
+ f @ (append_orderings r)
+
+let rec union_orderings first_orderings =
+ match first_orderings with
+ [] ->
+ StringSet.empty
+ | (pos,fset)::r ->
+ StringSet.union (StringSet.add pos fset) (union_orderings r)
+
+let rec select_orderings add_orderings =
+ match add_orderings with
+ [] -> []
+ | f::r ->
+ (List.hd f)::select_orderings r
+
+let combine_ordering_list add_orderings pos_name =
+ let first_orderings = select_orderings add_orderings in
+ let pos_succs = union_orderings first_orderings in
+ let rest_orderings = append_orderings add_orderings in
+ (pos_name,pos_succs)::rest_orderings
+
+let rec copy_and_rename_tree last_tree replace_n pos_n mult subst_list =
+
+ let rec rename_subtrees tree_list nposition s_pos_n nsubst_list =
+ match tree_list with
+ [] -> ([||],[],s_pos_n)
+ | f::r ->
+ let (f_subtree,f_ordering,f_pos_n) =
+ copy_and_rename_tree f replace_n s_pos_n mult nsubst_list in
+ let (r_subtrees,r_ordering_list,r_pos_n) = rename_subtrees r nposition f_pos_n nsubst_list in
+ ((Array.append [|f_subtree|] r_subtrees),(f_ordering::r_ordering_list),r_pos_n)
+
+ in
+ match last_tree with
+ Empty -> raise (Invalid_argument "Jprover: copy tree")
+ | NodeAt(position) -> (* can never be a Gamma_0 position -> no replacements *)
+ let (nposition,npos_n,_) = update_position position (pos_n+1) replace_n subst_list mult in
+ ((NodeAt(nposition)),[(nposition.name,StringSet.empty)],npos_n)
+ | NodeA(position, suctrees) ->
+ let (nposition,npos_n,nsubst_list) = update_position position (pos_n+1) replace_n subst_list mult in
+ let (new_suctrees, new_ordering_list, new_pos_n) =
+ rename_subtrees (Array.to_list suctrees) nposition npos_n nsubst_list in
+ let new_ordering = combine_ordering_list new_ordering_list (nposition.name) in
+ ((NodeA(nposition,new_suctrees)),new_ordering,new_pos_n)
+
+(* we construct for each pos a list orderings representing and correspondning to the array of succtrees *)
+
+let rec add_multiplicity ftree pos_n mult logic =
+ let rec parse_subtrees tree_list s_pos_n =
+ match tree_list with
+ [] -> ([||],[],s_pos_n)
+ | f::r ->
+ let (f_subtree,f_ordering,f_pos_n) = add_multiplicity f s_pos_n mult logic in
+ let (r_subtrees,r_ordering_list,r_pos_n) = parse_subtrees r f_pos_n in
+ ((Array.append [|f_subtree|] r_subtrees),(f_ordering::r_ordering_list),r_pos_n)
+
+ in
+ match ftree with
+ Empty -> raise (Invalid_argument "Jprover: add mult")
+ | NodeAt(pos) -> (ftree,[(pos.name,StringSet.empty)],pos_n)
+ | NodeA(pos,suctrees) ->
+ let (new_suctrees, new_ordering_list, new_pos_n) = parse_subtrees (Array.to_list suctrees) pos_n in
+ if (((pos.pt = Phi) & (((pos.op <> At) & (logic="J")) or ((pos.op = All) & (logic = "C"))))
+ (* no explicit atom-instances *)
+ or ((pos.pt = Gamma) & (pos.st <> Phi_0))) then (* universal quantifiers are copied *)
+ (* at their Phi positions *)
+ let replace_n = (List.length pos.address) (* points to the following argument in the array_of_address *)
+ and last = (Array.length new_suctrees) - 1 in (* array first element has index 0 *)
+ let last_tree = new_suctrees.(last) in
+ let (add_tree,add_ordering,final_pos_n) =
+ copy_and_rename_tree last_tree replace_n new_pos_n mult [] in
+ let final_suctrees = Array.append new_suctrees [|add_tree|]
+ and add_orderings = List.append new_ordering_list [add_ordering] in
+ let final_ordering = combine_ordering_list add_orderings (pos.name) in
+ ((NodeA(pos,final_suctrees)),final_ordering,final_pos_n)
+ else
+ let final_ordering = combine_ordering_list new_ordering_list (pos.name) in
+ ((NodeA(pos,new_suctrees)),final_ordering,new_pos_n)
+
+
+(************** Path checker ****************************************************)
+
+let rec get_sets atom atom_sets =
+ match atom_sets with
+ [] -> raise (Invalid_argument "Jprover bug: atom not found")
+ | f::r ->
+ let (a,b,c) = f in
+ if atom = a then f
+ else
+ get_sets atom r
+
+let rec get_connections a alpha tabulist =
+ match alpha with
+ [] -> []
+ | f::r ->
+ if (a.apredicate = f.apredicate) & (a.apol <> f.apol) & (not (List.mem f tabulist)) then
+ (a,f)::(get_connections a r tabulist)
+ else
+ (get_connections a r tabulist)
+
+let rec connections atom_rel tabulist =
+ match atom_rel with
+ [] -> []
+ | f::r ->
+ let (a,alpha,beta) = f in
+ (get_connections a alpha tabulist) @ (connections r (a::tabulist))
+
+let check_alpha_relation atom set atom_sets =
+ let (a,alpha,beta) = get_sets atom atom_sets in
+ AtomSet.subset set alpha
+
+let rec extset atom_sets path closed =
+ match atom_sets with
+ [] -> AtomSet.empty
+ | f::r ->
+ let (at,alpha,beta) = f in
+ if (AtomSet.subset path alpha) & (AtomSet.subset closed beta) then
+ AtomSet.add at (extset r path closed)
+ else
+ (extset r path closed)
+
+let rec check_ext_list ext_list fail_set atom_sets = (* fail_set consists of one atom only *)
+ match ext_list with
+ [] -> AtomSet.empty
+ | f::r ->
+ if (check_alpha_relation f fail_set atom_sets) then
+ AtomSet.add f (check_ext_list r fail_set atom_sets)
+ else
+ (check_ext_list r fail_set atom_sets)
+
+let fail_ext_set ext_atom ext_set atom_sets =
+ let ext_list = AtomSet.elements ext_set
+ and fail_set = AtomSet.add ext_atom AtomSet.empty in
+ check_ext_list ext_list fail_set atom_sets
+
+let rec ext_partners con path ext_atom (reduction_partners,extension_partners) atom_sets =
+ match con with
+ [] ->
+ (reduction_partners,extension_partners)
+ | f::r ->
+ let (a,b) = f in
+ if List.mem ext_atom [a;b] then
+ let ext_partner =
+ if ext_atom = a then b else a
+ in
+ let (new_red_partners,new_ext_partners) =
+(* force reduction steps first *)
+ if (AtomSet.mem ext_partner path) then
+ ((AtomSet.add ext_partner reduction_partners),extension_partners)
+ else
+ if (check_alpha_relation ext_partner path atom_sets) then
+ (reduction_partners,(AtomSet.add ext_partner extension_partners))
+ else
+ (reduction_partners,extension_partners)
+ in
+ ext_partners r path ext_atom (new_red_partners,new_ext_partners) atom_sets
+ else
+ ext_partners r path ext_atom (reduction_partners,extension_partners) atom_sets
+
+exception Failed_connections
+
+let path_checker atom_rel atom_sets qprefixes init_ordering logic =
+
+ let con = connections atom_rel [] in
+(*: print_endline "";
+ print_endline ("number of connections: "^(string_of_int (List.length con)));
+ mbreak "#connec\n";
+:*)
+ let rec provable path closed (orderingQ,reduction_ordering) eqlist (sigmaQ,sigmaJ) =
+
+ let rec check_connections (reduction_partners,extension_partners) ext_atom =
+ let try_one =
+ if reduction_partners = AtomSet.empty then
+ if extension_partners = AtomSet.empty then
+ raise Failed_connections
+ else
+ AtomSet.choose extension_partners
+ else
+ (* force reduction steps always first!! *)
+ AtomSet.choose reduction_partners
+ in
+(* print_endline ("connection partner "^(try_one.aname)); *)
+(* print_endline ("partner path "^(print_set path));
+*)
+ (try
+ let (new_sigmaQ,new_ordering_elements) = jqunify (ext_atom.alabel) (try_one.alabel) sigmaQ in
+(* build the orderingQ incrementally from the new added substitution tau of new_sigmaQ *)
+ let (relate_pairs,new_orderingQ) = build_orderingQ new_ordering_elements orderingQ in
+(* we make in incremental reflexivity test during the string unification *)
+ let (new_sigmaJ,new_eqlist,new_red_ordering) =
+(* new_red_ordering = [] in propositional case *)
+ stringunify ext_atom try_one eqlist relate_pairs logic new_orderingQ atom_rel qprefixes
+ in
+(* print_endline ("make reduction ordering "^((string_of_int (List.length new_ordering)))); *)
+ let new_closed = AtomSet.add ext_atom closed in
+ let ((next_orderingQ,next_red_ordering),next_eqlist,(next_sigmaQ,next_sigmaJ),subproof) =
+ if AtomSet.mem try_one path then
+ provable path new_closed (new_orderingQ,new_red_ordering) new_eqlist (new_sigmaQ,new_sigmaJ)
+ (* always use old first-order ordering for recursion *)
+ else
+ let new_path = AtomSet.add ext_atom path
+ and extension = AtomSet.add try_one AtomSet.empty in
+ let ((norderingQ,nredordering),neqlist,(nsigmaQ,nsigmaJ),p1) =
+ provable new_path extension (new_orderingQ,new_red_ordering) new_eqlist (new_sigmaQ,new_sigmaJ) in
+ let ((nnorderingQ,nnredordering),nneqlist,(nnsigmaQ,nnsigmaJ),p2) =
+ provable path new_closed (norderingQ,nredordering) neqlist (nsigmaQ,nsigmaJ) in
+ ((nnorderingQ,nnredordering),nneqlist,(nnsigmaQ,nnsigmaJ),(p1 @ p2))
+ (* first the extension subgoals = depth first; then other subgoals in same clause *)
+ in
+ ((next_orderingQ,next_red_ordering),next_eqlist,(next_sigmaQ,next_sigmaJ),(((ext_atom.aname),(try_one.aname))::subproof))
+ with Failed ->
+(* print_endline ("new connection for "^(ext_atom.aname)); *)
+(* print_endline ("Failed"); *)
+ check_connections ((AtomSet.remove try_one reduction_partners),
+ (AtomSet.remove try_one extension_partners)
+ ) ext_atom
+ )
+
+ in
+ let rec check_extension extset =
+ if extset = AtomSet.empty then
+ raise Failed (* go directly to a new entry connection *)
+ else
+ let select_one = AtomSet.choose extset in
+(* print_endline ("extension literal "^(select_one.aname)); *)
+(* print_endline ("extension path "^(print_set path));*)
+ let (reduction_partners,extension_partners) =
+ ext_partners con path select_one (AtomSet.empty,AtomSet.empty) atom_sets in
+ (try
+ check_connections (reduction_partners,extension_partners) select_one
+ with Failed_connections ->
+(* print_endline ("no connections for subgoal "^(select_one.aname)); *)
+(* print_endline ("Failed_connections"); *)
+ let fail_ext_set = fail_ext_set select_one extset atom_sets in
+ check_extension fail_ext_set
+ )
+
+ in
+ let extset = extset atom_sets path closed in
+ if extset = AtomSet.empty then
+ ((orderingQ,reduction_ordering),eqlist,(sigmaQ,sigmaJ),[])
+ else
+ check_extension extset
+ in
+ if qprefixes = ([],[]) then
+ begin
+(* print_endline "!!!!!!!!!!! prop prover !!!!!!!!!!!!!!!!!!"; *)
+(* in the propositional case, the reduction ordering will be computed AFTER proof search *)
+ let (_,eqlist,(_,(n,substJ)),ext_proof) =
+ provable AtomSet.empty AtomSet.empty ([],[]) (1,[]) ([],(1,[])) in
+ let orderingJ = build_orderingJ_list substJ init_ordering atom_rel in
+ ((init_ordering,orderingJ),eqlist,([],(n,substJ)),ext_proof)
+ end
+ else
+ provable AtomSet.empty AtomSet.empty (init_ordering,[]) (1,[]) ([],(1,[]))
+
+(*************************** prepare and init prover *******************************************************)
+
+let rec list_to_set list =
+ match list with
+ [] -> AtomSet.empty
+ | f::r ->
+ let rest_set = list_to_set r in
+ AtomSet.add f rest_set
+
+let rec make_atom_sets atom_rel =
+ match atom_rel with
+ [] -> []
+ | f::r ->
+ let (a,alpha,beta) = f in
+ (a,(list_to_set alpha),(list_to_set beta))::(make_atom_sets r)
+
+let rec predecessor address_1 address_2 ftree =
+ match ftree with
+ Empty -> PNull (* should not occur since every pair of atoms have a common predecessor *)
+ | NodeAt(position) -> PNull (* should not occur as above *)
+ | NodeA(position,suctrees) ->
+ match address_1,address_2 with
+ [],_ -> raise (Invalid_argument "Jprover: predecessors left")
+ | _,[] -> raise (Invalid_argument "Jprover: predecessors right")
+ | (f1::r1),(f2::r2) ->
+ if f1 = f2 then
+ predecessor r1 r2 (suctrees.(f1-1))
+ else
+ position.pt
+
+let rec compute_sets element ftree alist =
+ match alist with
+ [] -> [],[]
+ | first::rest ->
+ if first = element then
+ compute_sets element ftree rest (* element is neithes alpha- nor beta-related to itself*)
+ else
+ let (alpha_rest,beta_rest) = compute_sets element ftree rest in
+ if predecessor (element.aaddress) (first.aaddress) ftree = Beta then
+ (alpha_rest,(first::beta_rest))
+ else
+ ((first::alpha_rest),beta_rest)
+
+let rec compute_atomlist_relations worklist ftree alist = (* last version of alist for total comparison *)
+ let rec compute_atom_relations element ftree alist =
+ let alpha_set,beta_set = compute_sets element ftree alist in
+ (element,alpha_set,beta_set)
+ in
+ match worklist with
+ [] -> []
+ | first::rest ->
+ let first_relations = compute_atom_relations first ftree alist in
+ first_relations::(compute_atomlist_relations rest ftree alist)
+
+let atom_record position prefix =
+ let aname = (position.name) in
+ let aprefix = (List.append prefix [aname]) in (* atom position is last element in prefix *)
+ let aop = (dest_term position.label).term_op in
+ ({aname=aname; aaddress=(position.address); aprefix=aprefix; apredicate=aop;
+ apol=(position.pol); ast=(position.st); alabel=(position.label)})
+
+let rec select_atoms_treelist treelist prefix =
+ let rec select_atoms ftree prefix =
+ match ftree with
+ Empty -> [],[],[]
+ | NodeAt(position) ->
+ [(atom_record position prefix)],[],[]
+ | NodeA(position,suctrees) ->
+ let treelist = Array.to_list suctrees in
+ let new_prefix =
+ let prefix_element =
+ if List.mem (position.st) [Psi_0;Phi_0] then
+ [(position.name)]
+ else
+ []
+ in
+ (List.append prefix prefix_element)
+ in
+ let (gamma_0_element,delta_0_element) =
+ if position.st = Gamma_0 then
+ begin
+(* Format.open_box 0;
+ print_endline "gamma_0 prefixes ";
+ print_string (position.name^" :");
+ print_stringlist prefix;
+ print_endline " ";
+ Format.force_newline ();
+ Format.print_flush ();
+*)
+ [(position.name,prefix)],[]
+ end
+ else
+ if position.st = Delta_0 then
+ begin
+(* Format.open_box 0;
+ print_endline "delta_0 prefixes ";
+ print_string (position.name^" :");
+ print_stringlist prefix;
+ print_endline " ";
+ Format.force_newline ();
+ Format.print_flush ();
+*)
+ [],[(position.name,prefix)]
+ end
+ else
+ [],[]
+ in
+ let (rest_alist,rest_gamma_0_prefixes,rest_delta_0_prefixes) =
+ select_atoms_treelist treelist new_prefix in
+ (rest_alist,(rest_gamma_0_prefixes @ gamma_0_element),
+ (rest_delta_0_prefixes @ delta_0_element))
+
+ in
+ match treelist with
+ [] -> [],[],[]
+ | first::rest ->
+ let (first_alist,first_gprefixes,first_dprefixes) = select_atoms first prefix
+ and (rest_alist,rest_gprefixes,rest_dprefixes) = select_atoms_treelist rest prefix in
+ ((first_alist @ rest_alist),(first_gprefixes @ rest_gprefixes),
+ (first_dprefixes @ rest_dprefixes))
+
+let prepare_prover ftree =
+ let alist,gamma_0_prefixes,delta_0_prefixes = select_atoms_treelist [ftree] [] in
+ let atom_rel = compute_atomlist_relations alist ftree alist in
+ (atom_rel,(gamma_0_prefixes,delta_0_prefixes))
+
+(* ************************ Build intial formula tree and relations *********************************** *)
+(* Building a formula tree and the tree ordering from the input formula, i.e. OCaml term *)
+
+let make_position_name stype pos_n =
+ let prefix =
+ if List.mem stype [Phi_0;Gamma_0]
+ then "v"
+ else
+ if List.mem stype [Psi_0;Delta_0]
+ then "c"
+ else
+ "a"
+ in
+ prefix^(string_of_int pos_n)
+
+let dual_pol pol =
+ if pol = O then I else O
+
+let check_subst_term (variable,old_term) pos_name stype =
+ if (List.mem stype [Gamma_0;Delta_0]) then
+ let new_variable =
+ if stype = Gamma_0 then (mk_var_term (pos_name^"_jprover"))
+ else
+ (mk_string_term jprover_op pos_name)
+ in
+ (subst1 old_term variable new_variable) (* replace variable (non-empty) in t by pos_name *)
+ (* pos_name is either a variable term or a constant, f.i. a string term *)
+ (* !!! check unification module how handling eingenvariables as constants !!! *)
+ else
+ old_term
+
+let rec build_ftree (variable,old_term) pol stype address pos_n =
+ let pos_name = make_position_name stype pos_n in
+ let term = check_subst_term (variable,old_term) pos_name stype in
+ if JLogic.is_and_term term then
+ let s,t = JLogic.dest_and term in
+ let ptype,stype_1,stype_2 =
+ if pol = O
+ then Beta,Beta_1,Beta_2
+ else
+ Alpha,Alpha_1,Alpha_2
+ in
+ let position = {name=pos_name; address=address; op=And; pol=pol; pt=ptype; st=stype; label=term} in
+ let subtree_left,ordering_left,posn_left = build_ftree ("",s) pol stype_1 (address@[1]) (pos_n+1) in
+ let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[2])
+ (posn_left+1) in
+ let (succ_left,whole_left) = List.hd ordering_left
+ and (succ_right,whole_right) = List.hd ordering_right in
+ let pos_succs =
+ (StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)))
+ in
+ (NodeA(position,[|subtree_left;subtree_right|]),
+ ((position.name,pos_succs)::(ordering_left @ ordering_right)),
+ posn_right
+ )
+ else
+ if JLogic.is_or_term term then
+ let s,t = JLogic.dest_or term in
+ let ptype,stype_1,stype_2 =
+ if pol = O
+ then Alpha,Alpha_1,Alpha_2
+ else
+ Beta,Beta_1,Beta_2
+ in
+ let position = {name=pos_name; address=address; op=Or; pol=pol; pt=ptype; st=stype; label=term} in
+ let subtree_left,ordering_left,posn_left = build_ftree ("",s) pol stype_1 (address@[1]) (pos_n+1) in
+ let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[2])
+ (posn_left+1) in
+ let (succ_left,whole_left) = List.hd ordering_left
+ and (succ_right,whole_right) = List.hd ordering_right in
+ let pos_succs =
+ StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)) in
+ (NodeA(position,[|subtree_left;subtree_right|]),
+ ((position.name),pos_succs) :: (ordering_left @ ordering_right),
+ posn_right
+ )
+ else
+ if JLogic.is_implies_term term then
+ let s,t = JLogic.dest_implies term in
+ let ptype_0,stype_0,ptype,stype_1,stype_2 =
+ if pol = O
+ then Psi,Psi_0,Alpha,Alpha_1,Alpha_2
+ else
+ Phi,Phi_0,Beta,Beta_1,Beta_2
+ in
+ let pos2_name = make_position_name stype_0 (pos_n+1) in
+ let sposition = {name=pos_name; address=address; op=Imp; pol=pol; pt=ptype_0; st=stype; label=term}
+ and position = {name=pos2_name; address=address@[1]; op=Imp; pol=pol; pt=ptype; st=stype_0; label=term} in
+ let subtree_left,ordering_left,posn_left = build_ftree ("",s) (dual_pol pol) stype_1 (address@[1;1])
+ (pos_n+2) in
+ let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[1;2])
+ (posn_left+1) in
+ let (succ_left,whole_left) = List.hd ordering_left
+ and (succ_right,whole_right) = List.hd ordering_right in
+ let pos_succs =
+ StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)) in
+ let pos_ordering = (position.name,pos_succs) :: (ordering_left @ ordering_right) in
+ (NodeA(sposition,[|NodeA(position,[|subtree_left;subtree_right|])|]),
+ ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering),
+ posn_right
+ )
+ else
+ if JLogic.is_not_term term then
+ let s = JLogic.dest_not term in
+ let ptype_0,stype_0,ptype,stype_1=
+ if pol = O
+ then Psi,Psi_0,Alpha,Alpha_1
+ else
+ Phi,Phi_0,Alpha,Alpha_1
+ in
+ let pos2_name = make_position_name stype_0 (pos_n+1) in
+ let sposition = {name=pos_name; address=address; op=Neg; pol=pol; pt=ptype_0; st=stype; label=term}
+ and position = {name=pos2_name; address=address@[1]; op=Neg; pol=pol; pt=ptype; st=stype_0; label=term} in
+ let subtree_left,ordering_left,posn_left = build_ftree ("",s) (dual_pol pol) stype_1 (address@[1;1])
+ (pos_n+2) in
+ let (succ_left,whole_left) = List.hd ordering_left in
+ let pos_succs =
+ StringSet.add succ_left whole_left in
+ let pos_ordering = (position.name,pos_succs) :: ordering_left in
+ (NodeA(sposition,[|NodeA(position,[| subtree_left|])|]),
+ ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering),
+ posn_left
+ )
+ else
+ if JLogic.is_exists_term term then
+ let v,s,t = JLogic.dest_exists term in (* s is type of v and will be supressed here *)
+ let ptype,stype_1 =
+ if pol = O
+ then Gamma,Gamma_0
+ else
+ Delta,Delta_0
+ in
+ let position = {name=pos_name; address=address; op=Ex; pol=pol; pt=ptype; st=stype; label=term} in
+ let subtree_left,ordering_left,posn_left = build_ftree (v,t) pol stype_1 (address@[1]) (pos_n+1) in
+ let (succ_left,whole_left) = List.hd ordering_left in
+ let pos_succs =
+ StringSet.add succ_left whole_left in
+ (NodeA(position,[|subtree_left|]),
+ ((position.name,pos_succs) :: ordering_left),
+ posn_left
+ )
+ else
+ if JLogic.is_all_term term then
+ let v,s,t = JLogic.dest_all term in
+ (* s is type of v and will be supressed here *)
+ let ptype_0,stype_0,ptype,stype_1=
+ if pol = O
+ then Psi,Psi_0,Delta,Delta_0
+ else
+ Phi,Phi_0,Gamma,Gamma_0
+ in
+ let pos2_name = make_position_name stype_0 (pos_n+1) in
+ let sposition = {name=pos_name; address=address; op=All; pol=pol; pt=ptype_0; st=stype; label=term}
+ and position = {name=pos2_name; address=address@[1]; op=All; pol=pol; pt=ptype; st=stype_0; label=term} in
+ let subtree_left,ordering_left,posn_left = build_ftree (v,t) pol stype_1 (address@[1;1])
+ (pos_n+2) in
+ let (succ_left,whole_left) = List.hd ordering_left in
+ let pos_succs =
+ StringSet.add succ_left whole_left in
+ let pos_ordering = (position.name,pos_succs) :: ordering_left in
+ (NodeA(sposition,[|NodeA(position,[|subtree_left|])|]),
+ ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering),
+ posn_left
+ )
+ else (* finally, term is atomic *)
+ let ptype_0,stype_0 =
+ if pol = O
+ then Psi,Psi_0
+ else
+ Phi,Phi_0
+ in
+ let pos2_name = make_position_name stype_0 (pos_n+1) in
+ let sposition = {name=pos_name; address=address; op=At; pol=pol; pt=ptype_0; st=stype; label=term}
+ and position = {name=pos2_name; address=address@[1]; op=At; pol=pol; pt=PNull; st=stype_0; label=term} in
+ (NodeA(sposition,[|NodeAt(position)|]),
+ [(sposition.name,(StringSet.add position.name StringSet.empty));(position.name,StringSet.empty)],
+ pos_n+1
+ )
+
+let rec construct_ftree termlist treelist orderinglist pos_n goal =
+ match termlist with
+ [] ->
+ let new_root = {name="w"; address=[]; op=Null; pol=O; pt=Psi; st=PNull_0; label=goal}
+ and treearray = Array.of_list treelist in
+ NodeA(new_root,treearray),(("w",(union_orderings orderinglist))::orderinglist),pos_n
+ | ft::rest_terms ->
+ let next_address = [((List.length treelist)+1)]
+ and next_pol,next_goal =
+ if rest_terms = [] then
+ O,ft (* construct tree for the conclusion *)
+ else
+ I,goal
+ in
+ let new_tree,new_ordering,new_pos_n =
+ build_ftree ("",ft) next_pol Alpha_1 next_address (pos_n+1) in
+ construct_ftree rest_terms (treelist @ [new_tree])
+ (orderinglist @ new_ordering) new_pos_n next_goal
+
+(*************************** Main LOOP ************************************)
+let unprovable = RefineError ("Jprover", StringError "formula is not provable")
+let mult_limit_exn = RefineError ("Jprover", StringError "multiplicity limit reached")
+let coq_exn = RefineError ("Jprover", StringError "interface for coq: error on ")
+
+let init_prover ftree =
+ let atom_relation,qprefixes = prepare_prover ftree in
+(* print_atom_info atom_relation; *) (* apple *)
+ let atom_sets = make_atom_sets atom_relation in
+ (atom_relation,atom_sets,qprefixes)
+
+
+let rec try_multiplicity mult_limit ftree ordering pos_n mult logic =
+ try
+ let (atom_relation,atom_sets,qprefixes) = init_prover ftree in
+ let ((orderingQ,red_ordering),eqlist,unifier,ext_proof) =
+ path_checker atom_relation atom_sets qprefixes ordering logic in
+ (ftree,red_ordering,eqlist,unifier,ext_proof) (* orderingQ is not needed as return value *)
+ with Failed ->
+ match mult_limit with
+ Some m when m == mult ->
+ raise mult_limit_exn
+ | _ ->
+ let new_mult = mult+1 in
+ begin
+ Pp.msgnl (Pp.(++) (Pp.str "Multiplicity Fail: Trying new multiplicity ")
+ (Pp.int new_mult));
+(*
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.print_string "Multiplicity Fail: ";
+ Format.print_string ("Try new multiplicity "^(string_of_int new_mult));
+ Format.force_newline ();
+ Format.print_flush ();
+*)
+ let (new_ftree,new_ordering,new_pos_n) =
+ add_multiplicity ftree pos_n new_mult logic in
+ if (new_ftree = ftree) then
+ raise unprovable
+ else
+(* print_formula_info new_ftree new_ordering new_pos_n; *) (* apple *)
+ try_multiplicity mult_limit new_ftree new_ordering new_pos_n new_mult logic
+ end
+
+let prove mult_limit termlist logic =
+ let (ftree,ordering,pos_n) = construct_ftree termlist [] [] 0 (mk_var_term "dummy") in
+(* pos_n = number of positions without new root "w" *)
+(* print_formula_info ftree ordering pos_n; *) (* apple *)
+ try_multiplicity mult_limit ftree ordering pos_n 1 logic
+
+(********** first-order type theory interface *******************)
+
+let rec renam_free_vars termlist =
+ match termlist
+ with [] -> [],[]
+ | f::r ->
+ let var_names = free_vars_list f in
+ let string_terms =
+ List.map (fun x -> (mk_string_term free_var_op x)) var_names
+ in
+ let mapping = List.combine var_names string_terms
+ and new_f = subst f var_names string_terms in
+ let (rest_mapping,rest_renamed) = renam_free_vars r in
+ let unique_mapping = remove_dups_list (mapping @ rest_mapping) in
+ (unique_mapping,(new_f::rest_renamed))
+
+let rec apply_var_subst term var_subst_list =
+ match var_subst_list with
+ [] -> term
+ | (v,t)::r ->
+ let next_term = var_subst term t v in
+ apply_var_subst next_term r
+
+let rec make_equal_list n list_object =
+ if n = 0 then
+ []
+ else
+ list_object::(make_equal_list (n-1) list_object)
+
+let rec create_output rule_list input_map =
+ match rule_list with
+ [] -> JLogic.empty_inf
+ | f::r ->
+ let (pos,(rule,term1,term2)) = f in
+ let delta1_names = collect_delta_terms [term1]
+ and delta2_names = collect_delta_terms [term2] in
+ let unique_deltas = remove_dups_list (delta1_names @ delta2_names) in
+ let delta_terms =
+ List.map (fun x -> (mk_string_term jprover_op x)) unique_deltas in
+ let delta_vars = List.map (fun x -> (x^"_jprover")) unique_deltas in
+ let delta_map = List.combine delta_vars delta_terms in
+ let var_mapping = (input_map @ delta_map) in
+ let frees1 = free_vars_list term1
+ and frees2 = free_vars_list term2 in
+ let unique_object = mk_var_term "v0_jprover" in
+ let unique_list1 = make_equal_list (List.length frees1) unique_object
+ and unique_list2 = make_equal_list (List.length frees2) unique_object
+ in
+ let next_term1 = subst term1 frees1 unique_list1
+ and next_term2 = subst term2 frees2 unique_list2 in
+ let new_term1 = apply_var_subst next_term1 var_mapping
+ and new_term2 = apply_var_subst next_term2 var_mapping
+ and (a,b) = pos
+ in
+(*: print_string (a^"+++"^b^"\n"); :*)
+
+(* kick away the first argument, the position *)
+ (JLogic.append_inf (create_output r input_map) (b,new_term1) (a,new_term2) rule)
+
+let rec make_test_interface rule_list input_map =
+ match rule_list with
+ [] -> []
+ | f::r ->
+ let (pos,(rule,term1,term2)) = f in
+ let delta1_names = collect_delta_terms [term1]
+ and delta2_names = collect_delta_terms [term2] in
+ let unique_deltas = remove_dups_list (delta1_names @ delta2_names) in
+ let delta_terms =
+ List.map (fun x -> (mk_string_term jprover_op x)) unique_deltas in
+ let delta_vars = List.map (fun x -> (x^"_jprover")) unique_deltas in
+ let delta_map = List.combine delta_vars delta_terms in
+ let var_mapping = (input_map @ delta_map) in
+ let frees1 = free_vars_list term1
+ and frees2 = free_vars_list term2 in
+ let unique_object = mk_var_term "v0_jprover" in
+ let unique_list1 = make_equal_list (List.length frees1) unique_object
+ and unique_list2 = make_equal_list (List.length frees2) unique_object
+ in
+ begin
+(*
+ print_endline "";
+ print_endline "";
+ print_stringlist frees1;
+ print_endline "";
+ print_stringlist frees2;
+ print_endline "";
+ print_endline "";
+*)
+ let next_term1 = subst term1 frees1 unique_list1
+ and next_term2 = subst term2 frees2 unique_list2 in
+ let new_term1 = apply_var_subst next_term1 var_mapping
+ and new_term2 = apply_var_subst next_term2 var_mapping
+ in
+ (pos,(rule,new_term1,new_term2))::(make_test_interface r input_map)
+ end
+
+(**************************************************************)
+
+(*: modified for Coq :*)
+
+let decomp_pos pos =
+ let {name=n; address=a; label=l} = pos in
+ (n,(a,l))
+
+let rec build_formula_id ftree =
+ let rec build_fid_list = function
+ [] -> []
+ | t::rest -> (build_formula_id t)@(build_fid_list rest)
+ in
+ match ftree with
+ Empty -> []
+ | NodeAt(position) ->
+ [decomp_pos position]
+ | NodeA(position,subtrees) ->
+ let tree_list = Array.to_list subtrees in
+ (decomp_pos position)::(build_fid_list tree_list)
+
+let rec encode1 = function (* normal *)
+ [] -> ""
+ | i::r -> "_"^(string_of_int i)^(encode1 r)
+
+let rec encode2 = function (* move up *)
+ [i] -> ""
+ | i::r -> "_"^(string_of_int i)^(encode2 r)
+ | _ -> raise coq_exn
+
+let rec encode3 = function (* move down *)
+ [] -> "_1"
+ | i::r -> "_"^(string_of_int i)^(encode3 r)
+
+let lookup_coq str map =
+ try
+ let (il,t) = List.assoc str map in
+ il
+ with Not_found -> raise coq_exn
+
+let create_coq_input inf map =
+ let rec rec_coq_part inf =
+ match inf with
+ [] -> []
+ | (rule, (s1, t1), ((s2, t2) as k))::r ->
+ begin
+ match rule with
+ Andl | Andr | Orl | Orr1 | Orr2 ->
+ (rule, (encode1 (lookup_coq s1 map), t1), k)::(rec_coq_part r)
+ | Impr | Impl | Negr | Negl | Ax ->
+ (rule, (encode2 (lookup_coq s1 map), t1), k)::(rec_coq_part r)
+ | Exr ->
+ (rule, (encode1 (lookup_coq s1 map), t1),
+ (encode1 (lookup_coq s2 map), t2))::(rec_coq_part r)
+ | Exl ->
+ (rule, (encode1 (lookup_coq s1 map), t1),
+ (encode3 (lookup_coq s1 map), t2))::(rec_coq_part r)
+ | Allr | Alll ->
+ (rule, (encode2 (lookup_coq s1 map), t1),
+ (* (s2, t2))::(rec_coq_part r) *)
+ (encode3 (lookup_coq s1 map), t2))::(rec_coq_part r)
+ | _ -> raise coq_exn
+ end
+ in
+ rec_coq_part inf
+
+let gen_prover mult_limit logic calculus hyps concls =
+ let (input_map,renamed_termlist) = renam_free_vars (hyps @ concls) in
+ let (ftree,red_ordering,eqlist,(sigmaQ,sigmaJ),ext_proof) = prove mult_limit renamed_termlist logic in
+ let sequent_proof = reconstruct ftree red_ordering sigmaQ ext_proof logic calculus in
+ let (ptree,count_ax) = bproof sequent_proof in
+ let idl = build_formula_id ftree in
+(* print_ftree ftree; apple *)
+ (* transform types and rename constants *)
+ (* we can transform the eigenvariables AFTER proof reconstruction since *)
+ (* new delta_0 constants may have been constructed during rule permutation *)
+ (* from the LJmc to the LJ proof *)
+ create_coq_input (create_output sequent_proof input_map) idl
+
+(*: end of coq modification :*)
+
+let prover mult_limit hyps concl = gen_prover mult_limit "J" "LJ" hyps [concl]
+
+(************* test with propositional proof reconstruction ************)
+
+let rec count_axioms seq_list =
+ match seq_list with
+ [] -> 0
+ | f::r ->
+ let (rule,_,_) = f in
+ if rule = Ax then
+ 1 + count_axioms r
+ else
+ count_axioms r
+
+let do_prove mult_limit termlist logic calculus =
+ try begin
+ let (input_map,renamed_termlist) = renam_free_vars termlist in
+ let (ftree,red_ordering,eqlist,(sigmaQ,sigmaJ),ext_proof) = prove mult_limit renamed_termlist logic in
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_string "Extension proof ready";
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_string ("Length of Extension proof: "^((string_of_int (List.length ext_proof)))^
+ " Axioms");
+ Format.force_newline ();
+ Format.force_newline ();
+ print_endline "Extension proof:";
+ Format.open_box 0;
+ print_pairlist ext_proof; (* print list of type (string * string) list *)
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_flush ();
+ Format.print_flush ();
+ Format.open_box 0;
+ print_ordering red_ordering;
+ Format.print_flush ();
+ Format.open_box 0;
+ Format.force_newline ();
+(* ----------------------------------------------- *)
+ Format.open_box 0;
+ print_tunify sigmaJ;
+ Format.print_flush ();
+ print_endline "";
+ print_endline "";
+ print_sigmaQ sigmaQ;
+ print_endline "";
+ print_endline "";
+ Format.open_box 0;
+ let (qmax,equations) = eqlist in
+ print_endline ("number of quantifier domains : "^(string_of_int (qmax-1)));
+ print_endline "";
+ print_equations equations;
+ Format.print_flush ();
+ print_endline "";
+ print_endline "";
+ print_endline ("Length of equations : "^((string_of_int (List.length equations))));
+ print_endline "";
+ print_endline "";
+(* --------------------------------------------------------- *)
+ Format.print_string "Break ... ";
+ print_endline "";
+ print_endline "";
+ Format.print_flush ();
+(*: let _ = input_char stdin in :*)
+ let reconstr_proof = reconstruct ftree red_ordering sigmaQ ext_proof logic calculus in
+ let sequent_proof = make_test_interface reconstr_proof input_map in
+ Format.open_box 0;
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_string "Sequent proof ready";
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_flush ();
+ let (ptree,count_ax) = bproof sequent_proof in
+ Format.open_box 0;
+ Format.print_string ("Length of sequent proof: "^((string_of_int count_ax))^" Axioms");
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.force_newline ();
+ Format.print_flush ();
+ tt ptree; (*: print proof tree :*)
+ Format.print_flush ();
+ print_endline "";
+ print_endline ""
+ end with exn -> begin
+ print_endline "Jprover got an exception:";
+ print_endline (Printexc.to_string exn)
+ end
+
+let test concl logic calculus = (* calculus should be LJmc or LJ for J, and LK for C *)
+ do_prove None [concl] logic calculus
+
+(* for sequents *)
+
+let seqtest list_term logic calculus =
+ let bterms = (dest_term list_term).term_terms in
+ let termlist = collect_subterms bterms in
+ do_prove None termlist logic calculus
+
+(*****************************************************************)
+
+end (* of struct *)
diff --git a/contrib/jprover/jall.mli b/contrib/jprover/jall.mli
new file mode 100644
index 00000000..1811fe59
--- /dev/null
+++ b/contrib/jprover/jall.mli
@@ -0,0 +1,339 @@
+(* JProver provides an efficient refiner for first-order classical
+ and first-order intuitionistic logic. It consists of two main parts:
+ a proof search procedure and a proof reconstruction procedure.
+
+
+ Proof Search
+ ============
+
+ The proof search process is based on a matrix-based (connection-based)
+ proof procedure, i.e.~a non-normalform extension procedure.
+ Besides the well-known quantifier substitution (Martelli Montanari),
+ a special string unifiation procedure is used in order to
+ efficiently compute intuitionistic rule non-permutabilities.
+
+
+ Proof Reconstruction
+ ====================
+
+ The proof reconstruction process converts machine-generated matrix proofs
+ into cut-free Gentzen-style sequent proofs. For classcal logic "C",
+ Gentzen's sequent calculus "LK" is used as target calculus.
+ For intuitionistic logic "J", either Gentzen's single-conclusioned sequent
+ calculus "LJ" or Fitting's multiply-conclusioned sequent calculus "LJmc"
+ can be used. All sequent claculi are implemented in a set-based formulation
+ in order to avoid structural rules.
+
+ The proof reconstruction procedure combines three main procedures, depending
+ on the selected logics and sequent calculi. It consists of:
+
+ 1) A uniform traversal algorithm for all logics and target sequent calculi.
+ This procedure converts classical (intuitionistic) matrix proofs
+ directly into cut-free "LK" ("LJmc" or "LJ") sequent proofs.
+ However, the direct construction of "LJ" proofs may fail in some cases
+ due to proof theoretical reasons.
+
+ 2) A complete redundancy deletion algorithm, which integrates additional
+ knowledge from the proof search process into the reconstruction process.
+ This procedure is called by the traversal algorithms in order to avoid
+ search and deadlocks during proof reconstruciton.
+
+ 3) A permutation-based proof transformation for converting "LJmc" proofs
+ into "LJ" proofs.
+ This procedure is called by-need, whenever the direct reconstruction
+ of "LJ" proofs from matrix proofs fails.
+
+
+
+
+ Literature:
+ ==========
+
+ JProver system description was presented at CADE 2001:
+ @InProceedings{inp:Schmitt+01a,
+ author = "Stephan Schmitt and Lori Lorigo and Christoph Kreitz and
+ Alexey Nogin",
+ title = "{{\sf JProver}}: Integrating Connection-based Theorem
+ Proving into Interactive Proof Assistants",
+ booktitle = "International Joint Conference on Automated Reasoning",
+ year = "2001",
+ editor = "R. Gore and A. Leitsch and T. Nipkow",
+ volume = 2083,
+ series = LNAI,
+ pages = "421--426",
+ publisher = SPRINGER,
+ language = English,
+ where = OWN,
+ }
+
+ The implementation of JProver is based on the following publications:
+
+
+
+ Slides of PRL-seminar talks:
+ ---------------------------
+
+ An Efficient Refiner for First-order Intuitionistic Logic
+
+ http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar99_00/schmitt/feb28.html
+
+
+ An Efficient Refiner for First-order Intuitionistic Logic (Part II)
+
+ http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar99_00/schmitt/may22.html
+
+
+
+ Proof search:
+ -------------
+
+
+[1]
+ @InProceedings{inp:OttenKreitz96b,
+ author = "J.~Otten and C.~Kreitz",
+ title = "A uniform proof procedure for classical and
+ non-classical logics",
+ booktitle = "Proceedings of the 20$^{th}$ German Annual Conference on
+ Artificial Intelligence",
+ year = "1996",
+ editor = "G.~G{\"o}rz and S.~H{\"o}lldobler",
+ number = "1137",
+ series = LNAI,
+ pages = "307--319",
+ publisher = SPRINGER
+ }
+
+
+[2]
+ @Article{ar:KreitzOtten99,
+ author = "C.~Kreitz and J.~Otten",
+ title = "Connection-based theorem proving in classical and
+ non-classical logics",
+ journal = "Journal for Universal Computer Science,
+ Special Issue on Integration of Deductive Systems",
+ year = "1999",
+ volume = "5",
+ number = "3",
+ pages = "88--112"
+ }
+
+
+
+
+ Special string unifiation procedure:
+ ------------------------------------
+
+
+[3]
+ @InProceedings{inp:OttenKreitz96a,
+ author = "J.~Otten and C.~Kreitz",
+ titl = "T-string-unification: unifying prefixes in
+ non-classical proof methods",
+ booktitle = "Proceedings of the 5$^{th}$ Workshop on Theorem Proving
+ with Analytic Tableaux and Related Methods",
+ year = 1996,
+ editor = "U.~Moscato",
+ number = "1071",
+ series = LNAI,
+ pages = "244--260",
+ publisher = SPRINGER,
+ month = "May "
+ }
+
+
+
+ Proof reconstruction: Uniform traversal algorithm
+ -------------------------------------------------
+
+
+[4]
+ @InProceedings{inp:SchmittKreitz96a,
+ author = "S.~Schmitt and C.~Kreitz",
+ title = "Converting non-classical matrix proofs into
+ sequent-style systems",
+ booktitle = "Proceedings of the 13$^t{}^h$ Conference on
+ Automated Deduction",
+ editor = M.~A.~McRobbie and J.~K.~Slaney",
+ number = "1104",
+ series = LNAI,
+ pages = "418--432",
+ year = "1996",
+ publisher = SPRINGER,
+ month = "July/August"
+ }
+
+
+[5]
+ @Article{ar:KreitzSchmitt00,
+ author = "C.~Kreitz and S.~Schmitt",
+ title = "A uniform procedure for converting matrix proofs
+ into sequent-style systems",
+ journal = "Journal of Information and Computation",
+ year = "2000",
+ note = "(to appear)"
+ }
+
+
+[6]
+ @Book{bo:Schmitt00,
+ author = "S.~Schmitt",
+ title = "Proof reconstruction in classical and non-classical logics",
+ year = "2000",
+ publisher = "Infix",
+ series = "Dissertationen zur K{\"u}nstlichen Intelleigenz",
+ number = "(to appear)",
+ note = "(Ph.{D}.~{T}hesis, Technische Universit{\"a}t Darmstadt,
+ FG Intellektik, Germany, 1999)"
+ }
+
+ The traversal algorithm is presented in the Chapters 2 and 3 of my thesis.
+ The thesis will be made available for the Department through Christoph Kreitz,
+ Upson 4159, kreitz@cs.cornell.edu
+
+
+
+
+ Proof reconstruction: Complete redundancy deletion
+ --------------------------------------------------
+
+
+[7]
+ @Book{bo:Schmitt00,
+ author = "S.~Schmitt",
+ title = "Proof reconstruction in classical and non-classical logics",
+ year = "2000",
+ publisher = "Infix",
+ series = "Dissertationen zur K{\"u}nstlichen Intelleigenz",
+ note = "(Ph.{D}.~{T}hesis, Technische Universit{\"a}t Darmstadt,
+ FG Intellektik, Germany, 1999)"
+ note = "(to appear)",
+
+ }
+
+ The integration of proof knowledge and complete redundancy deletion is presented
+ in Chapter 4 of my thesis.
+
+
+[8]
+ @InProceedings{inp:Schmitt00,
+ author = "S.~Schmitt",
+ title = "A tableau-like representation framework for efficient
+ proof reconstruction",
+ booktitle = "Proceedings of the International Conference on Theorem Proving
+ with Analytic Tableaux and Related Methods",
+ year = "2000",
+ series = LNAI,
+ publisher = SPRINGER,
+ month = "June"
+ note = "(to appear)",
+ }
+
+
+
+
+ Proof Reconstruction: Permutation-based poof transformations "LJ" -> "LJmc"
+ ---------------------------------------------------------------------------
+
+
+[9]
+ @InProceedings{inp:EglySchmitt98,
+ author = "U.~Egly and S.~Schmitt",
+ title = "Intuitionistic proof transformations and their
+ application to constructive program synthesis",
+ booktitle = "Proceedings of the 4$^{th}$ International Conference
+ on Artificial Intelligence and Symbolic Computation",
+ year = "1998",
+ editor = "J.~Calmet and J.~Plaza",
+ number = "1476",
+ series = LNAI,
+ pages = "132--144",
+ publisher = SPRINGER,
+ month = "September"
+ }
+
+
+[10]
+ @Article{ar:EglySchmitt99,
+ author = "U.~Egly and S.~Schmitt",
+ title = "On intuitionistic proof transformations, their
+ complexity, and application to constructive program synthesis",
+ journal = "Fundamenta Informaticae,
+ Special Issue: Symbolic Computation and Artificial Intelligence",
+ year = "1999",
+ volume = "39",
+ number = "1--2",
+ pages = "59--83"
+ }
+*)
+
+(*: open Refiner.Refiner
+open Refiner.Refiner.Term
+open Refiner.Refiner.TermType
+open Refiner.Refiner.TermSubst
+
+open Jlogic_sig
+:*)
+
+open Jterm
+open Opname
+open Jlogic
+
+val ruletable : rule -> string
+
+module JProver(JLogic: JLogicSig) :
+sig
+ val test : term -> string -> string -> unit
+
+ (* Procedure call: test conclusion logic calculus
+
+ test is applied to a first-order formula. The output is some
+ formatted sequent proof for test / debugging purposes.
+
+ The arguments for test are as follows:
+
+ logic = "C"|"J"
+ i.e. first-order classical logic or first-order intuitionistic logic
+
+ calculus = "LK"|"LJ"|"LJmc"
+ i.e. "LK" for classical logic "C", and either Gentzen's single conclusioned
+ calculus "LJ" or Fittings multiply-conclusioned calculus "LJmc" for
+ intuitionistic logic "J".
+
+ term = first-order formula representing the proof goal.
+ *)
+
+
+
+ val seqtest : term -> string -> string -> unit
+
+ (* seqtest procedure is for debugging purposes only *)
+
+
+ val gen_prover : int option -> string -> string -> term list -> term list -> JLogic.inference
+
+ (* Procedure call: gen_prover mult_limit logic calculus hypothesis conclusion
+
+ The arguments for gen_prover are as follows:
+
+ mult_limit - maximal multiplicity to try, None for unlimited
+
+ logic = same as in test
+
+ calculus = same as in test
+
+ hypothesis = list of first-order terms forming the antecedent of the input sequent
+
+ conclusion = list of first-order terms forming the succedent of the input sequent
+ This list should contain only one element if logic = "J" and calculus = "LJ".
+ *)
+
+
+ val prover : int option -> term list -> term -> JLogic.inference
+
+ (* Procedure call: gen_prover mult_limit "J" "LJ" hyps [concl]
+
+ prover provides the first-order refiner for NuPRL, using
+ a single concluisoned succedent [concl] in the sequent.
+ The result is a sequent proof in the single-conclusioned calculus "LJ".
+ *)
+end
diff --git a/contrib/jprover/jlogic.ml b/contrib/jprover/jlogic.ml
new file mode 100644
index 00000000..c074e93e
--- /dev/null
+++ b/contrib/jprover/jlogic.ml
@@ -0,0 +1,106 @@
+open Opname
+open Jterm
+
+type rule =
+ | Ax | Andr | Andl | Orr | Orr1 | Orr2 | Orl | Impr | Impl | Negr | Negl
+ | Allr | Alll| Exr | Exl | Fail | Falsel | Truer
+
+let ruletable = function
+ | Fail -> "Fail"
+ | Ax -> "Ax"
+ | Negl -> "Negl"
+ | Negr -> "Negr"
+ | Andl -> "Andl"
+ | Andr -> "Andr"
+ | Orl -> "Orl"
+ | Orr -> "Orr"
+ | Orr1 -> "Orr1"
+ | Orr2 -> "Orr2"
+ | Impl -> "Impl"
+ | Impr -> "Impr"
+ | Exl -> "Exl"
+ | Exr -> "Exr"
+ | Alll -> "Alll"
+ | Allr -> "Allr"
+ | Falsel -> "Falsel"
+ | Truer -> "Truer"
+
+module type JLogicSig =
+sig
+ (* understanding the input *)
+ val is_all_term : term -> bool
+ val dest_all : term -> string * term * term
+ val is_exists_term : term -> bool
+ val dest_exists : term -> string * term * term
+ val is_and_term : term -> bool
+ val dest_and : term -> term * term
+ val is_or_term : term -> bool
+ val dest_or : term -> term * term
+ val is_implies_term : term -> bool
+ val dest_implies : term -> term * term
+ val is_not_term : term -> bool
+ val dest_not : term -> term
+
+ (* processing the output *)
+ type inf_step = rule * (string * term) * (string * term)
+ type inference = inf_step list
+(* type inference *)
+ val empty_inf : inference
+ val append_inf : inference -> (string * term) -> (string * term) -> rule -> inference
+ val print_inf : inference -> unit
+end;;
+
+(* Copy from [term_op_std.ml]: *)
+
+ let rec print_address int_list =
+ match int_list with
+ | [] ->
+ Format.print_string ""
+ | hd::rest ->
+ begin
+ Format.print_int hd;
+ print_address rest
+ end
+
+module JLogic: JLogicSig =
+struct
+ let is_all_term = Jterm.is_all_term
+ let dest_all = Jterm.dest_all
+ let is_exists_term = Jterm.is_exists_term
+ let dest_exists = Jterm.dest_exists
+ let is_and_term = Jterm.is_and_term
+ let dest_and = Jterm.dest_and
+ let is_or_term = Jterm.is_or_term
+ let dest_or = Jterm.dest_or
+ let is_implies_term = Jterm.is_implies_term
+ let dest_implies = Jterm.dest_implies
+ let is_not_term = Jterm.is_not_term
+ let dest_not = Jterm.dest_not
+
+ type inf_step = rule * (string * term) * (string * term)
+ type inference = inf_step list
+
+ let empty_inf = []
+ let append_inf inf t1 t2 rule =
+ (rule, t1, t2)::inf
+
+ let rec print_inf inf =
+ match inf with
+ | [] -> print_string "."; Format.print_flush ()
+ | (rule, (n1,t1), (n2,t2))::d ->
+ print_string (ruletable rule);
+ print_string (":("^n1^":");
+ print_term stdout t1;
+ print_string (","^n2^":");
+ print_term stdout t2;
+ print_string ")\n";
+ print_inf d
+end;;
+
+let show_loading s = print_string s
+type my_Debug = { mutable debug_name: string;
+ mutable debug_description: string;
+ debug_value: bool
+ }
+
+let create_debug x = ref false
diff --git a/contrib/jprover/jlogic.mli b/contrib/jprover/jlogic.mli
new file mode 100644
index 00000000..a9079791
--- /dev/null
+++ b/contrib/jprover/jlogic.mli
@@ -0,0 +1,40 @@
+(* The interface to manipulate [jterms], which is
+ extracted and modified from Meta-Prl. *)
+
+type rule =
+ Ax | Andr | Andl | Orr | Orr1 | Orr2 | Orl | Impr | Impl | Negr | Negl
+ | Allr | Alll| Exr | Exl | Fail | Falsel | Truer
+
+module type JLogicSig =
+ sig
+ val is_all_term : Jterm.term -> bool
+ val dest_all : Jterm.term -> string * Jterm.term * Jterm.term
+ val is_exists_term : Jterm.term -> bool
+ val dest_exists : Jterm.term -> string * Jterm.term * Jterm.term
+ val is_and_term : Jterm.term -> bool
+ val dest_and : Jterm.term -> Jterm.term * Jterm.term
+ val is_or_term : Jterm.term -> bool
+ val dest_or : Jterm.term -> Jterm.term * Jterm.term
+ val is_implies_term : Jterm.term -> bool
+ val dest_implies : Jterm.term -> Jterm.term * Jterm.term
+ val is_not_term : Jterm.term -> bool
+ val dest_not : Jterm.term -> Jterm.term
+ type inf_step = rule * (string * Jterm.term) * (string * Jterm.term)
+ type inference = inf_step list
+ val empty_inf : inference
+ val append_inf :
+ inference -> (string * Jterm.term) -> (string * Jterm.term) -> rule -> inference
+ val print_inf : inference -> unit
+ end
+
+module JLogic : JLogicSig
+
+val show_loading : string -> unit
+
+type my_Debug = {
+ mutable debug_name : string;
+ mutable debug_description : string;
+ debug_value : bool;
+}
+val create_debug : 'a -> bool ref
+val ruletable : rule -> string
diff --git a/contrib/jprover/jprover.ml4 b/contrib/jprover/jprover.ml4
new file mode 100644
index 00000000..dd76438f
--- /dev/null
+++ b/contrib/jprover/jprover.ml4
@@ -0,0 +1,565 @@
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Jlogic
+
+module JA = Jall
+module JT = Jterm
+module T = Tactics
+module TCL = Tacticals
+module TM = Tacmach
+module N = Names
+module PT = Proof_type
+module HT = Hiddentac
+module PA = Pattern
+module HP = Hipattern
+module TR = Term
+module PR = Printer
+module RO = Reductionops
+module UT = Util
+module RA = Rawterm
+
+module J=JA.JProver(JLogic) (* the JProver *)
+
+(*i
+module NO = Nameops
+module TO = Termops
+module RE = Reduction
+module CL = Coqlib
+module ID = Inductiveops
+module CV = Clenv
+module RF = Refiner
+i*)
+
+(* Interface to JProver: *)
+(* type JLogic.inf_step = rule * (string * Jterm.term) * (string * Jterm.term) *)
+type jp_inf_step = JLogic.inf_step
+type jp_inference = JLogic.inference (* simply a list of [inf_step] *)
+
+(* Definitions for rebuilding proof tree from JProver: *)
+(* leaf, one-branch, two-branch, two-branch, true, false *)
+type jpbranch = JP0 | JP1 | JP2 | JP2' | JPT | JPF
+type jptree = | JPempty (* empty tree *)
+ | JPAx of jp_inf_step (* Axiom node *)
+ | JPA of jp_inf_step * jptree
+ | JPB of jp_inf_step * jptree * jptree
+
+(* Private debugging tools: *)
+(*i*)
+let mbreak s = Format.print_flush (); print_string ("-break at: "^s);
+ Format.print_flush (); let _ = input_char stdin in ()
+(*i*)
+let jp_error re = raise (JT.RefineError ("jprover", JT.StringError re))
+
+(* print Coq constructor *)
+let print_constr ct = Pp.ppnl (PR.prterm ct); Format.print_flush ()
+
+let rec print_constr_list = function
+ | [] -> ()
+ | ct::r -> print_constr ct; print_constr_list r
+
+let print_constr_pair op c1 c2 =
+ print_string (op^"(");
+ print_constr c1;
+ print_string ",";
+ print_constr c2;
+ print_string ")\n"
+
+
+(* Parsing modules for Coq: *)
+(* [is_coq_???] : testing functions *)
+(* [dest_coq_???] : destructors *)
+
+let is_coq_true ct = (HP.is_unit_type ct) && not (HP.is_equation ct)
+
+let is_coq_false = HP.is_empty_type
+
+(* return two subterms *)
+let dest_coq_and ct =
+ match (HP.match_with_conjunction ct) with
+ | Some (hdapp,args) ->
+(*i print_constr hdapp; print_constr_list args; i*)
+ begin
+ match args with
+ | s1::s2::[] ->
+(*i print_constr_pair "and" s1 s2; i*)
+ (s1,s2)
+ | _ -> jp_error "dest_coq_and"
+ end
+ | None -> jp_error "dest_coq_and"
+
+let is_coq_or = HP.is_disjunction
+
+(* return two subterms *)
+let dest_coq_or ct =
+ match (HP.match_with_disjunction ct) with
+ | Some (hdapp,args) ->
+(*i print_constr hdapp; print_constr_list args; i*)
+ begin
+ match args with
+ | s1::s2::[] ->
+(*i print_constr_pair "or" s1 s2; i*)
+ (s1,s2)
+ | _ -> jp_error "dest_coq_or"
+ end
+ | None -> jp_error "dest_coq_or"
+
+let is_coq_not = HP.is_nottype
+
+let dest_coq_not ct =
+ match (HP.match_with_nottype ct) with
+ | Some (hdapp,arg) ->
+(*i print_constr hdapp; print_constr args; i*)
+(*i print_string "not ";
+ print_constr arg; i*)
+ arg
+ | None -> jp_error "dest_coq_not"
+
+
+let is_coq_impl ct =
+ match TR.kind_of_term ct with
+ | TR.Prod (_,_,b) -> (not (Termops.dependent (TR.mkRel 1) b))
+ | _ -> false
+
+
+let dest_coq_impl c =
+ match TR.kind_of_term c with
+ | TR.Prod (_,b,c) ->
+(*i print_constr_pair "impl" b c; i*)
+ (b, c)
+ | _ -> jp_error "dest_coq_impl"
+
+(* provide new variables for renaming of universal variables *)
+let new_counter =
+ let ctr = ref 0 in
+ fun () -> incr ctr;!ctr
+
+(* provide new symbol name for unknown Coq constructors *)
+let new_ecounter =
+ let ectr = ref 0 in
+ fun () -> incr ectr;!ectr
+
+(* provide new variables for address naming *)
+let new_acounter =
+ let actr = ref 0 in
+ fun () -> incr actr;!actr
+
+let is_coq_forall ct =
+ match TR.kind_of_term (RO.whd_betaiota ct) with
+ | TR.Prod (_,_,b) -> Termops.dependent (TR.mkRel 1) b
+ | _ -> false
+
+(* return the bounded variable (as a string) and the bounded term *)
+let dest_coq_forall ct =
+ match TR.kind_of_term (RO.whd_betaiota ct) with
+ | TR.Prod (_,_,b) ->
+ let x ="jp_"^(string_of_int (new_counter())) in
+ let v = TR.mkVar (N.id_of_string x) in
+ let c = TR.subst1 v b in (* substitute de Bruijn variable by [v] *)
+(*i print_constr_pair "forall" v c; i*)
+ (x, c)
+ | _ -> jp_error "dest_coq_forall"
+
+
+(* Apply [ct] to [t]: *)
+let sAPP ct t =
+ match TR.kind_of_term (RO.whd_betaiota ct) with
+ | TR.Prod (_,_,b) ->
+ let c = TR.subst1 t b in
+ c
+ | _ -> jp_error "sAPP"
+
+
+let is_coq_exists ct =
+ if not (HP.is_conjunction ct) then false
+ else let (hdapp,args) = TR.decompose_app ct in
+ match args with
+ | _::la::[] ->
+ begin
+ try
+ match TR.destLambda la with
+ | (N.Name _,_,_) -> true
+ | _ -> false
+ with _ -> false
+ end
+ | _ -> false
+
+(* return the bounded variable (as a string) and the bounded term *)
+let dest_coq_exists ct =
+ let (hdapp,args) = TR.decompose_app ct in
+ match args with
+ | _::la::[] ->
+ begin
+ try
+ match TR.destLambda la with
+ | (N.Name x,t1,t2) ->
+ let v = TR.mkVar x in
+ let t3 = TR.subst1 v t2 in
+(*i print_constr_pair "exists" v t3; i*)
+ (N.string_of_id x, t3)
+ | _ -> jp_error "dest_coq_exists"
+ with _ -> jp_error "dest_coq_exists"
+ end
+ | _ -> jp_error "dest_coq_exists"
+
+
+let is_coq_and ct =
+ if (HP.is_conjunction ct) && not (is_coq_exists ct)
+ && not (is_coq_true ct) then true
+ else false
+
+
+(* Parsing modules: *)
+
+let jtbl = Hashtbl.create 53 (* associate for unknown Coq constr. *)
+let rtbl = Hashtbl.create 53 (* reverse table of [jtbl] *)
+
+let dest_coq_symb ct =
+ N.string_of_id (TR.destVar ct)
+
+(* provide new names for unknown Coq constr. *)
+(* [ct] is the unknown constr., string [s] is appended to the name encoding *)
+let create_coq_name ct s =
+ try
+ Hashtbl.find jtbl ct
+ with Not_found ->
+ let t = ("jp_"^s^(string_of_int (new_ecounter()))) in
+ Hashtbl.add jtbl ct t;
+ Hashtbl.add rtbl t ct;
+ t
+
+let dest_coq_app ct s =
+ let (hd, args) = TR.decompose_app ct in
+(*i print_constr hd;
+ print_constr_list args; i*)
+ if TR.isVar hd then
+ (dest_coq_symb hd, args)
+ else (* unknown constr *)
+ (create_coq_name hd s, args)
+
+let rec parsing2 c = (* for function symbols, variables, constants *)
+ if (TR.isApp c) then (* function symbol? *)
+ let (f,args) = dest_coq_app c "fun_" in
+ JT.fun_ f (List.map parsing2 args)
+ else if TR.isVar c then (* identifiable variable or constant *)
+ JT.var_ (dest_coq_symb c)
+ else (* unknown constr *)
+ JT.var_ (create_coq_name c "var_")
+
+(* the main parsing function *)
+let rec parsing c =
+ let ct = Reduction.whd_betadeltaiota (Global.env ()) c in
+(* let ct = Reduction.whd_betaiotazeta (Global.env ()) c in *)
+ if is_coq_true ct then
+ JT.true_
+ else if is_coq_false ct then
+ JT.false_
+ else if is_coq_not ct then
+ JT.not_ (parsing (dest_coq_not ct))
+ else if is_coq_impl ct then
+ let (t1,t2) = dest_coq_impl ct in
+ JT.imp_ (parsing t1) (parsing t2)
+ else if is_coq_or ct then
+ let (t1,t2) = dest_coq_or ct in
+ JT.or_ (parsing t1) (parsing t2)
+ else if is_coq_and ct then
+ let (t1,t2) = dest_coq_and ct in
+ JT.and_ (parsing t1) (parsing t2)
+ else if is_coq_forall ct then
+ let (v,t) = dest_coq_forall ct in
+ JT.forall v (parsing t)
+ else if is_coq_exists ct then
+ let (v,t) = dest_coq_exists ct in
+ JT.exists v (parsing t)
+ else if TR.isApp ct then (* predicate symbol with arguments *)
+ let (p,args) = dest_coq_app ct "P_" in
+ JT.pred_ p (List.map parsing2 args)
+ else if TR.isVar ct then (* predicate symbol without arguments *)
+ let p = dest_coq_symb ct in
+ JT.pred_ p []
+ else (* unknown predicate *)
+ JT.pred_ (create_coq_name ct "Q_") []
+
+(*i
+ print_string "??";print_constr ct;
+ JT.const_ ("err_"^(string_of_int (new_ecounter())))
+i*)
+
+
+(* Translate JProver terms into Coq constructors: *)
+(* The idea is to retrieve it from [rtbl] if it exists indeed, otherwise
+ create one. *)
+let rec constr_of_jterm t =
+ if (JT.is_var_term t) then (* a variable *)
+ let v = JT.dest_var t in
+ try
+ Hashtbl.find rtbl v
+ with Not_found -> TR.mkVar (N.id_of_string v)
+ else if (JT.is_fun_term t) then (* a function symbol *)
+ let (f,ts) = JT.dest_fun t in
+ let f' = try Hashtbl.find rtbl f with Not_found -> TR.mkVar (N.id_of_string f) in
+ TR.mkApp (f', Array.of_list (List.map constr_of_jterm ts))
+ else jp_error "constr_of_jterm"
+
+
+(* Coq tactics for Sequent Calculus LJ: *)
+(* Note that for left-rule a name indicating the being applied rule
+ in Coq's Hints is required; for right-rule a name is also needed
+ if it will pass some subterm to the left-hand side.
+ However, all of these can be computed by the path [id] of the being
+ applied rule.
+*)
+
+let assoc_addr = Hashtbl.create 97
+
+let short_addr s =
+ let ad =
+ try
+ Hashtbl.find assoc_addr s
+ with Not_found ->
+ let t = ("jp_H"^(string_of_int (new_acounter()))) in
+ Hashtbl.add assoc_addr s t;
+ t
+ in
+ N.id_of_string ad
+
+(* and-right *)
+let dyn_andr =
+ T.split RA.NoBindings
+
+(* For example, the following implements the [and-left] rule: *)
+let dyn_andl id = (* [id1]: left child; [id2]: right child *)
+ let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
+ (TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id))) (T.intros_using [id1;id2]))
+
+let dyn_orr1 =
+ T.left RA.NoBindings
+
+let dyn_orr2 =
+ T.right RA.NoBindings
+
+let dyn_orl id =
+ let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
+ (TCL.tclTHENS (T.simplest_elim (TR.mkVar (short_addr id)))
+ [T.intro_using id1; T.intro_using id2])
+
+let dyn_negr id =
+ let id1 = id^"_1_1" in
+ HT.h_intro (short_addr id1)
+
+let dyn_negl id =
+ T.simplest_elim (TR.mkVar (short_addr id))
+
+let dyn_impr id =
+ let id1 = id^"_1_1" in
+ HT.h_intro (short_addr id1)
+
+let dyn_impl id gl =
+ let t = TM.pf_get_hyp_typ gl (short_addr id) in
+ let ct = Reduction.whd_betadeltaiota (Global.env ()) t in (* unfolding *)
+ let (_,b) = dest_coq_impl ct in
+ let id2 = (short_addr (id^"_1_2")) in
+ (TCL.tclTHENLAST
+ (TCL.tclTHENS (T.cut b) [T.intro_using id2;TCL.tclIDTAC])
+ (T.apply_term (TR.mkVar (short_addr id))
+ [TR.mkMeta (Clenv.new_meta())])) gl
+
+let dyn_allr c = (* [c] must be an eigenvariable which replaces [v] *)
+ HT.h_intro (N.id_of_string c)
+
+(* [id2] is the path of the instantiated term for [id]*)
+let dyn_alll id id2 t gl =
+ let id' = short_addr id in
+ let id2' = short_addr id2 in
+ let ct = TM.pf_get_hyp_typ gl id' in
+ let ct' = Reduction.whd_betadeltaiota (Global.env ()) ct in (* unfolding *)
+ let ta = sAPP ct' t in
+ TCL.tclTHENS (T.cut ta) [T.intro_using id2'; T.apply (TR.mkVar id')] gl
+
+let dyn_exl id id2 c = (* [c] must be an eigenvariable *)
+ (TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id)))
+ (T.intros_using [(N.id_of_string c);(short_addr id2)]))
+
+let dyn_exr t =
+ T.one_constructor 1 (RA.ImplicitBindings [t])
+
+let dyn_falsel = dyn_negl
+
+let dyn_truer =
+ T.one_constructor 1 RA.NoBindings
+
+(* Do the proof by the guidance of JProver. *)
+
+let do_one_step inf =
+ let (rule, (s1, t1), ((s2, t2) as k)) = inf in
+ begin
+(*i if not (Jterm.is_xnil_term t2) then
+ begin
+ print_string "1: "; JT.print_term stdout t2; print_string "\n";
+ print_string "2: "; print_constr (constr_of_jterm t2); print_string "\n";
+ end;
+i*)
+ match rule with
+ | Andl -> dyn_andl s1
+ | Andr -> dyn_andr
+ | Orl -> dyn_orl s1
+ | Orr1 -> dyn_orr1
+ | Orr2 -> dyn_orr2
+ | Impr -> dyn_impr s1
+ | Impl -> dyn_impl s1
+ | Negr -> dyn_negr s1
+ | Negl -> dyn_negl s1
+ | Allr -> dyn_allr (JT.dest_var t2)
+ | Alll -> dyn_alll s1 s2 (constr_of_jterm t2)
+ | Exr -> dyn_exr (constr_of_jterm t2)
+ | Exl -> dyn_exl s1 s2 (JT.dest_var t2)
+ | Ax -> T.assumption (*i TCL.tclIDTAC i*)
+ | Truer -> dyn_truer
+ | Falsel -> dyn_falsel s1
+ | _ -> jp_error "do_one_step"
+ (* this is impossible *)
+ end
+;;
+
+(* Parameter [tr] is the reconstucted proof tree from output of JProver. *)
+let do_coq_proof tr =
+ let rec rec_do trs =
+ match trs with
+ | JPempty -> TCL.tclIDTAC
+ | JPAx h -> do_one_step h
+ | JPA (h, t) -> TCL.tclTHEN (do_one_step h) (rec_do t)
+ | JPB (h, left, right) -> TCL.tclTHENS (do_one_step h) [rec_do left; rec_do right]
+ in
+ rec_do tr
+
+
+(* Rebuild the proof tree from the output of JProver: *)
+
+(* Since some universal variables are not necessarily first-order,
+ lazy substitution may happen. They are recorded in [rtbl]. *)
+let reg_unif_subst t1 t2 =
+ let (v,_,_) = JT.dest_all t1 in
+ Hashtbl.add rtbl v (TR.mkVar (N.id_of_string (JT.dest_var t2)))
+
+let count_jpbranch one_inf =
+ let (rule, (_, t1), (_, t2)) = one_inf in
+ begin
+ match rule with
+ | Ax -> JP0
+ | Orr1 | Orr2 | Negl | Impr | Alll | Exr | Exl -> JP1
+ | Andr | Orl -> JP2
+ | Negr -> if (JT.is_true_term t1) then JPT else JP1
+ | Andl -> if (JT.is_false_term t1) then JPF else JP1
+ | Impl -> JP2' (* reverse the sons of [Impl] since [dyn_impl] reverses them *)
+ | Allr -> reg_unif_subst t1 t2; JP1
+ | _ -> jp_error "count_jpbranch"
+ end
+
+let replace_by r = function
+ (rule, a, b) -> (r, a, b)
+
+let rec build_jptree inf =
+ match inf with
+ | [] -> ([], JPempty)
+ | h::r ->
+ begin
+ match count_jpbranch h with
+ | JP0 -> (r,JPAx h)
+ | JP1 -> let (r1,left) = build_jptree r in
+ (r1, JPA(h, left))
+ | JP2 -> let (r1,left) = build_jptree r in
+ let (r2,right) = build_jptree r1 in
+ (r2, JPB(h, left, right))
+ | JP2' -> let (r1,left) = build_jptree r in (* for [Impl] *)
+ let (r2,right) = build_jptree r1 in
+ (r2, JPB(h, right, left))
+ | JPT -> let (r1,left) = build_jptree r in (* right True *)
+ (r1, JPAx (replace_by Truer h))
+ | JPF -> let (r1,left) = build_jptree r in (* left False *)
+ (r1, JPAx (replace_by Falsel h))
+ end
+
+
+(* The main function: *)
+(* [limits] is the multiplicity limit. *)
+let jp limits gls =
+ let concl = TM.pf_concl gls in
+ let ct = concl in
+(*i print_constr ct; i*)
+ Hashtbl.clear jtbl; (* empty the hash tables *)
+ Hashtbl.clear rtbl;
+ Hashtbl.clear assoc_addr;
+ let t = parsing ct in
+(*i JT.print_term stdout t; i*)
+ try
+ let p = (J.prover limits [] t) in
+(*i print_string "\n";
+ JLogic.print_inf p; i*)
+ let (il,tr) = build_jptree p in
+ if (il = []) then
+ begin
+ Pp.msgnl (Pp.str "Proof is built.");
+ do_coq_proof tr gls
+ end
+ else UT.error "Cannot reconstruct proof tree from JProver."
+ with e -> Pp.msgnl (Pp.str "JProver fails to prove this:");
+ JT.print_error_msg e;
+ UT.error "JProver terminated."
+
+(* an unfailed generalization procedure *)
+let non_dep_gen b gls =
+ let concl = TM.pf_concl gls in
+ if (not (Termops.dependent b concl)) then
+ T.generalize [b] gls
+ else
+ TCL.tclIDTAC gls
+
+let rec unfail_gen = function
+ | [] -> TCL.tclIDTAC
+ | h::r ->
+ TCL.tclTHEN
+ (TCL.tclORELSE (non_dep_gen h) (TCL.tclIDTAC))
+ (unfail_gen r)
+
+(*
+(* no argument, which stands for no multiplicity limit *)
+let jp gls =
+ let ls = List.map (fst) (TM.pf_hyps_types gls) in
+(*i T.generalize (List.map TR.mkVar ls) gls i*)
+ (* generalize the context *)
+ TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
+ (TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
+ (jp None)) gls
+*)
+(*
+let dyn_jp l gls =
+ assert (l = []);
+ jp
+*)
+
+(* one optional integer argument for the multiplicity *)
+let jpn n gls =
+ let ls = List.map (fst) (TM.pf_hyps_types gls) in
+ TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
+ (TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
+ (jp n)) gls
+(*
+let dyn_jpn l gls =
+ match l with
+ | [PT.Integer n] -> jpn n
+ | _ -> jp_error "Impossible!!!"
+
+
+let h_jp = TM.hide_tactic "Jp" dyn_jp
+
+let h_jpn = TM.hide_tactic "Jpn" dyn_jpn
+*)
+
+TACTIC EXTEND Jprover
+ [ "Jp" natural_opt(n) ] -> [ jpn n ]
+END
+
+(*
+TACTIC EXTEND Andl
+ [ "Andl" ident(id)] -> [ ... (Andl id) ... ].
+END
+*)
diff --git a/contrib/jprover/jterm.ml b/contrib/jprover/jterm.ml
new file mode 100644
index 00000000..7fc923a5
--- /dev/null
+++ b/contrib/jprover/jterm.ml
@@ -0,0 +1,872 @@
+open Printf
+open Opname
+open List
+
+(* Definitions of [jterm]: *)
+type param = param'
+ and operator = operator'
+ and term = term'
+ and bound_term = bound_term'
+ and param' =
+ | Number of int
+ | String of string
+ | Token of string
+ | Var of string
+ | ParamList of param list
+ and operator' = { op_name : opname; op_params : param list }
+ and term' = { term_op : operator; term_terms : bound_term list }
+ and bound_term' = { bvars : string list; bterm : term }
+;;
+
+(* Debugging tools: *)
+(*i*)
+let mbreak s = Format.print_flush (); print_string ("-break at: "^s);
+ Format.print_flush (); let _ = input_char stdin in ()
+(*i*)
+
+type error_msg =
+ | TermMatchError of term * string
+ | StringError of string
+
+exception RefineError of string * error_msg
+
+let ref_raise = function
+ | RefineError(s,e) -> raise (RefineError(s,e))
+ | _ -> raise (RefineError ("Jterm", StringError "unexpected error"))
+
+(* Printing utilities: *)
+
+let fprint_str ostream s =
+ let _ = fprintf ostream "%s." s in ostream
+
+let fprint_str_list ostream sl =
+ ignore (List.fold_left fprint_str ostream sl);
+ Format.print_flush ()
+
+let fprint_opname ostream = function
+ { opname_token= tk; opname_name = sl } ->
+ fprint_str_list ostream sl
+
+let rec fprint_param ostream = function
+ | Number n -> fprintf ostream " %d " n
+ | String s -> fprint_str_list ostream [s]
+ | Token t -> fprint_str_list ostream [t]
+ | Var v -> fprint_str_list ostream [v]
+ | ParamList ps -> fprint_param_list ostream ps
+and fprint_param_list ostream = function
+ | [] -> ()
+ | param::r -> fprint_param ostream param;
+ fprint_param_list ostream r
+;;
+
+let print_strs = fprint_str_list stdout
+
+
+(* Interface to [Jall.ml]: *)
+(* It is extracted from Meta-Prl's standard implementation. *)
+(*c begin of the extraction *)
+
+type term_subst = (string * term) list
+let mk_term op bterms = { term_op = op; term_terms = bterms }
+let make_term x = x (* external [make_term : term' -> term] = "%identity" *)
+let dest_term x = x (* external [dest_term : term -> term'] = "%identity" *)
+let mk_op name params =
+ { op_name = name; op_params = params }
+
+let make_op x = x (* external [make_op : operator' -> operator] = "%identity" *)
+let dest_op x = x (* external [dest_op : operator -> operator'] = "%identity" *)
+let mk_bterm bvars term = { bvars = bvars; bterm = term }
+let make_bterm x = x (* external [make_bterm : bound_term' -> bound_term] = "%identity" *)
+let dest_bterm x = x (* external [dest_bterm : bound_term -> bound_term'] = "%identity" *)
+let make_param x = x (* external [make_param : param' -> param] = "%identity" *)
+let dest_param x = x (* external [dest_param : param -> param'] = "%identity" *)
+
+(*
+ * Operator names.
+ *)
+let opname_of_term = function
+ { term_op = { op_name = name } } ->
+ name
+
+(*
+ * Get the subterms.
+ * None of the subterms should be bound.
+ *)
+let subterms_of_term t =
+ List.map (fun { bterm = t } -> t) t.term_terms
+
+let subterm_count { term_terms = terms } =
+ List.length terms
+
+let subterm_arities { term_terms = terms } =
+ List.map (fun { bvars = vars } -> List.length vars) terms
+
+(*
+ * Manifest terms are injected into the "perv" module.
+ *)
+let xperv = make_opname ["Perv"]
+let sequent_opname = mk_opname "sequent" xperv
+
+(*
+ * Variables.
+ *)
+
+let var_opname = make_opname ["var"]
+
+(*
+ * See if a term is a variable.
+ *)
+let is_var_term = function
+ | { term_op = { op_name = opname; op_params = [Var v] };
+ term_terms = []
+ } when Opname.eq opname var_opname -> true
+ | _ ->
+ false
+
+(*
+ * Destructor for a variable.
+ *)
+let dest_var = function
+ | { term_op = { op_name = opname; op_params = [Var v] };
+ term_terms = []
+ } when Opname.eq opname var_opname -> v
+ | t ->
+ ref_raise(RefineError ("dest_var", TermMatchError (t, "not a variable")))
+(*
+ * Make a variable.
+ *)
+let mk_var_term v =
+ { term_op = { op_name = var_opname; op_params = [Var v] };
+ term_terms = []
+ }
+
+(*
+ * Simple terms
+ *)
+(*
+ * "Simple" terms have no parameters and no binding variables.
+ *)
+let is_simple_term_opname name = function
+ | { term_op = { op_name = name'; op_params = [] };
+ term_terms = bterms
+ } when Opname.eq name' name ->
+ let rec aux = function
+ | { bvars = []; bterm = _ }::t -> aux t
+ | _::t -> false
+ | [] -> true
+ in
+ aux bterms
+ | _ -> false
+
+let mk_any_term op terms =
+ let aux t =
+ { bvars = []; bterm = t }
+ in
+ { term_op = op; term_terms = List.map aux terms }
+
+let mk_simple_term name terms =
+ mk_any_term { op_name = name; op_params = [] } terms
+
+let dest_simple_term = function
+ | ({ term_op = { op_name = name; op_params = [] };
+ term_terms = bterms
+ } : term) as t ->
+ let aux = function
+ | { bvars = []; bterm = t } ->
+ t
+ | _ ->
+ ref_raise(RefineError ("dest_simple_term", TermMatchError (t, "binding vars exist")))
+ in
+ name, List.map aux bterms
+ | t ->
+ ref_raise(RefineError ("dest_simple_term", TermMatchError (t, "params exist")))
+
+let dest_simple_term_opname name = function
+ | ({ term_op = { op_name = name'; op_params = [] };
+ term_terms = bterms
+ } : term) as t ->
+ if Opname.eq name name' then
+ let aux = function
+ | { bvars = []; bterm = t } -> t
+ | _ -> ref_raise(RefineError ("dest_simple_term_opname", TermMatchError (t, "binding vars exist")))
+ in
+ List.map aux bterms
+ else
+ ref_raise(RefineError ("dest_simple_term_opname", TermMatchError (t, "opname mismatch")))
+ | t ->
+ ref_raise(RefineError ("dest_simple_term_opname", TermMatchError (t, "params exist")))
+
+(*
+ * Bound terms.
+ *)
+let mk_simple_bterm bterm =
+ { bvars = []; bterm = bterm }
+
+let dest_simple_bterm = function
+ | { bvars = []; bterm = bterm } ->
+ bterm
+ | _ ->
+ ref_raise(RefineError ("dest_simple_bterm", StringError ("bterm is not simple")))
+
+(* Copy from [term_op_std.ml]: *)
+(*i modified for Jprover, as a patch... i*)
+let mk_string_term opname s =
+ { term_op = { op_name = opname; op_params = [String s] }; term_terms = [] }
+
+(*i let mk_string_term opname s =
+ let new_opname={opname_token=opname.opname_token; opname_name=(List.tl opname.opname_name)@[s]} in
+ { term_op = { op_name = new_opname; op_params = [String (List.hd opname.opname_name)] }; term_terms = [] }
+i*)
+
+(* Copy from [term_subst_std.ml]: *)
+
+let rec free_vars_term gvars bvars = function
+ | { term_op = { op_name = opname; op_params = [Var v] }; term_terms = bterms } when Opname.eq opname var_opname ->
+ (* This is a variable *)
+ let gvars' =
+ if List.mem v bvars or List.mem v gvars then
+ gvars
+ else
+ v::gvars
+ in
+ free_vars_bterms gvars' bvars bterms
+ | { term_terms = bterms } ->
+ free_vars_bterms gvars bvars bterms
+ and free_vars_bterms gvars bvars = function
+ | { bvars = vars; bterm = term}::l ->
+ let bvars' = vars @ bvars in
+ let gvars' = free_vars_term gvars bvars' term in
+ free_vars_bterms gvars' bvars l
+ | [] ->
+ gvars
+
+let free_vars_list = free_vars_term [] []
+
+
+(* Termop: *)
+
+let is_no_subterms_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = []
+ } ->
+ Opname.eq opname' opname
+ | _ ->
+ false
+
+(*
+ * Terms with one subterm.
+ *)
+let is_dep0_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = [{ bvars = [] }]
+ } -> Opname.eq opname' opname
+ | _ -> false
+
+let mk_dep0_term opname t =
+ { term_op = { op_name = opname; op_params = [] };
+ term_terms = [{ bvars = []; bterm = t }]
+ }
+
+let dest_dep0_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = [{ bvars = []; bterm = t }]
+ } when Opname.eq opname' opname -> t
+ | t -> ref_raise(RefineError ("dest_dep0_term", TermMatchError (t, "not a dep0 term")))
+
+(*
+ * Terms with two subterms.
+ *)
+let is_dep0_dep0_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = [{ bvars = [] }; { bvars = [] }]
+ } -> Opname.eq opname' opname
+ | _ -> false
+
+let mk_dep0_dep0_term opname = fun
+ t1 t2 ->
+ { term_op = { op_name = opname; op_params = [] };
+ term_terms = [{ bvars = []; bterm = t1 };
+ { bvars = []; bterm = t2 }]
+ }
+
+let dest_dep0_dep0_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = [{ bvars = []; bterm = t1 };
+ { bvars = []; bterm = t2 }]
+ } when Opname.eq opname' opname -> t1, t2
+ | t -> ref_raise(RefineError ("dest_dep0_dep0_term", TermMatchError (t, "bad arity")))
+
+(*
+ * Bound term.
+ *)
+
+let is_dep0_dep1_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = [{ bvars = [] }; { bvars = [_] }]
+ } when Opname.eq opname' opname -> true
+ | _ -> false
+
+let is_dep0_dep1_any_term = function
+ | { term_op = { op_params = [] };
+ term_terms = [{ bvars = [] }; { bvars = [_] }]
+ } -> true
+ | _ -> false
+
+let mk_dep0_dep1_term opname = fun
+ v t1 t2 -> { term_op = { op_name = opname; op_params = [] };
+ term_terms = [{ bvars = []; bterm = t1 };
+ { bvars = [v]; bterm = t2 }]
+ }
+
+let dest_dep0_dep1_term opname = function
+ | { term_op = { op_name = opname'; op_params = [] };
+ term_terms = [{ bvars = []; bterm = t1 };
+ { bvars = [v]; bterm = t2 }]
+ } when Opname.eq opname' opname -> v, t1, t2
+ | t -> ref_raise(RefineError ("dest_dep0_dep1_term", TermMatchError (t, "bad arity")))
+
+let rec smap f = function
+ | [] -> []
+ | (hd::tl) as l ->
+ let hd' = f hd in
+ let tl' = smap f tl in
+ if (hd==hd')&&(tl==tl') then l else hd'::tl'
+
+let rec try_check_assoc v v' = function
+ | [] -> raise Not_found
+ | (v1,v2)::tl ->
+ begin match v=v1, v'=v2 with
+ | true, true -> true
+ | false, false -> try_check_assoc v v' tl
+ | _ -> false
+ end
+
+let rec zip_list l l1 l2 = match (l1,l2) with
+ | (h1::t1), (h2::t2) ->
+ zip_list ((h1,h2)::l) t1 t2
+ | [], [] ->
+ l
+ | _ -> raise (Failure "Term.zip_list")
+
+let rec assoc_in_range eq y = function
+ | (_, y')::tl ->
+ (eq y y') || (assoc_in_range eq y tl)
+ | [] ->
+ false
+
+let rec check_assoc v v' = function
+ | [] -> v=v'
+ | (v1,v2)::tl ->
+ begin match v=v1, v'=v2 with
+ | true, true -> true
+ | false, false -> check_assoc v v' tl
+ | _ -> false
+ end
+
+let rec zip a b = match (a,b) with
+ | (h1::t1), (h2::t2) ->
+ (h1, h2) :: zip t1 t2
+ | [], [] ->
+ []
+ |
+ _ -> raise (Failure "Term.zip")
+
+let rec for_all2 f l1 l2 =
+ match (l1,l2) with
+ | h1::t1, h2::t2 -> for_all2 f t1 t2 & f h1 h2
+ | [], [] -> true
+ | _ -> false
+
+let newname v i =
+ v ^ "_" ^ (string_of_int i)
+
+let rec new_var v avoid i =
+ let v' = newname v i in
+ if avoid v'
+ then new_var v avoid (succ i)
+ else v'
+
+let vnewname v avoid = new_var v avoid 1
+
+let rev_mem a b = List.mem b a
+
+let rec find_index_aux v i = function
+ | h::t ->
+ if h = v then
+ i
+ else
+ find_index_aux v (i + 1) t
+ | [] ->
+ raise Not_found
+
+let find_index v l = find_index_aux v 0 l
+
+let rec remove_elements l1 l2 =
+ match l1, l2 with
+ | flag::ft, h::t ->
+ if flag then
+ remove_elements ft t
+ else
+ h :: remove_elements ft t
+ | _, l ->
+ l
+
+let rec subtract l1 l2 =
+ match l1 with
+ | h::t ->
+ if List.mem h l2 then
+ subtract t l2
+ else
+ h :: subtract t l2
+ | [] ->
+ []
+
+let rec fv_mem fv v =
+ match fv with
+ | [] -> false
+ | h::t ->
+ List.mem v h || fv_mem t v
+
+let rec new_vars fv = function
+ | [] -> []
+ | v::t ->
+ (* Rename the first one, then add it to free vars *)
+ let v' = vnewname v (fv_mem fv) in
+ v'::(new_vars ([v']::fv) t)
+
+let rec fsubtract l = function
+ | [] -> l
+ | h::t ->
+ fsubtract (subtract l h) t
+
+let add_renames_fv r l =
+ let rec aux = function
+ | [] -> l
+ | v::t -> [v]::(aux t)
+ in
+ aux r
+
+let add_renames_terms r l =
+ let rec aux = function
+ | [] -> l
+ | v::t -> (mk_var_term v)::(aux t)
+ in
+ aux r
+
+(*
+ * First order simultaneous substitution.
+ *)
+let rec subst_term terms fv vars = function
+ | { term_op = { op_name = opname; op_params = [Var(v)] }; term_terms = [] } as t
+ when Opname.eq opname var_opname->
+ (* Var case *)
+ begin
+ try List.nth terms (find_index v vars) with
+ Not_found ->
+ t
+ end
+ | { term_op = op; term_terms = bterms } ->
+ (* Other term *)
+ { term_op = op; term_terms = subst_bterms terms fv vars bterms }
+
+and subst_bterms terms fv vars bterms =
+ (* When subst through bterms, catch binding occurrences *)
+ let rec subst_bterm = function
+ | { bvars = []; bterm = term } ->
+ (* Optimize the common case *)
+ { bvars = []; bterm = subst_term terms fv vars term }
+
+ | { bvars = bvars; bterm = term } ->
+ (* First subtract bound instances *)
+ let flags = List.map (function v -> List.mem v bvars) vars in
+ let vars' = remove_elements flags vars in
+ let fv' = remove_elements flags fv in
+ let terms' = remove_elements flags terms in
+
+ (* If any of the binding variables are free, rename them *)
+ let renames = subtract bvars (fsubtract bvars fv') in
+ if renames <> [] then
+ let fv'' = (free_vars_list term)::fv' in
+ let renames' = new_vars fv'' renames in
+ { bvars = subst_bvars renames' renames bvars;
+ bterm = subst_term
+ (add_renames_terms renames' terms')
+ (add_renames_fv renames' fv')
+ (renames @ vars')
+ term
+ }
+ else
+ { bvars = bvars;
+ bterm = subst_term terms' fv' vars' term
+ }
+ in
+ List.map subst_bterm bterms
+
+and subst_bvars renames' renames bvars =
+ let subst_bvar v =
+ try List.nth renames' (find_index v renames) with
+ Not_found -> v
+ in
+ List.map subst_bvar bvars
+
+let subst term vars terms =
+ subst_term terms (List.map free_vars_list terms) vars term
+
+(*i bug!!! in the [term_std] module
+ let subst1 t var term =
+ let fv = free_vars_list term in
+ if List.mem var fv then
+ subst_term [term] [fv] [var] t
+ else
+ t
+The following is the correct implementation
+i*)
+
+let subst1 t var term =
+if List.mem var (free_vars_list t) then
+ subst_term [term] [free_vars_list term] [var] t
+else
+ t
+
+let apply_subst t s =
+ let vs,ts = List.split s in
+ subst t vs ts
+
+let rec equal_params p1 p2 =
+ match p1, p2 with
+ | Number n1, Number n2 ->
+ n1 = n2
+ | ParamList pl1, ParamList pl2 ->
+ List.for_all2 equal_params pl1 pl2
+ | _ ->
+ p1 = p2
+
+let rec equal_term vars t t' =
+ match t, t' with
+ | { term_op = { op_name = opname1; op_params = [Var v] };
+ term_terms = []
+ },
+ { term_op = { op_name = opname2; op_params = [Var v'] };
+ term_terms = []
+ } when Opname.eq opname1 var_opname & Opname.eq opname2 var_opname ->
+ check_assoc v v' vars
+ | { term_op = { op_name = name1; op_params = params1 }; term_terms = bterms1 },
+ { term_op = { op_name = name2; op_params = params2 }; term_terms = bterms2 } ->
+ (Opname.eq name1 name2)
+ & (for_all2 equal_params params1 params2)
+ & (equal_bterms vars bterms1 bterms2)
+and equal_bterms vars bterms1 bterms2 =
+ let equal_bterm = fun
+ { bvars = bvars1; bterm = term1 }
+ { bvars = bvars2; bterm = term2 } ->
+ equal_term (zip_list vars bvars1 bvars2) term1 term2
+ in
+ for_all2 equal_bterm bterms1 bterms2
+
+
+let alpha_equal t1 t2 =
+ try equal_term [] t1 t2 with Failure _ -> false
+
+let var_subst t t' v =
+ let { term_op = { op_name = opname } } = t' in
+ let vt = mk_var_term v in
+ let rec subst_term = function
+ { term_op = { op_name = opname'; op_params = params };
+ term_terms = bterms
+ } as t ->
+ (* Check if this is the same *)
+ if Opname.eq opname' opname & alpha_equal t t' then
+ vt
+ else
+ { term_op = { op_name = opname'; op_params = params };
+ term_terms = List.map subst_bterm bterms
+ }
+
+ and subst_bterm { bvars = vars; bterm = term } =
+ if List.mem v vars then
+ let av = vars @ (free_vars_list term) in
+ let v' = vnewname v (fun v -> List.mem v av) in
+ let rename var = if var = v then v' else var in
+ let term = subst1 term v (mk_var_term v') in
+ { bvars = smap rename vars; bterm = subst_term term }
+ else
+ { bvars = vars; bterm = subst_term term }
+ in
+ subst_term t
+
+let xnil_opname = mk_opname "nil" xperv
+let xnil_term = mk_simple_term xnil_opname []
+let is_xnil_term = is_no_subterms_term xnil_opname
+
+(*c End of the extraction from Meta-Prl *)
+
+(* Huang's modification: *)
+let all_opname = make_opname ["quantifier";"all"]
+let is_all_term = is_dep0_dep1_term all_opname
+let dest_all = dest_dep0_dep1_term all_opname
+let mk_all_term = mk_dep0_dep1_term all_opname
+
+let exists_opname = make_opname ["quantifier";"exst"]
+let is_exists_term = is_dep0_dep1_term exists_opname
+let dest_exists = dest_dep0_dep1_term exists_opname
+let mk_exists_term = mk_dep0_dep1_term exists_opname
+
+let or_opname = make_opname ["connective";"or"]
+let is_or_term = is_dep0_dep0_term or_opname
+let dest_or = dest_dep0_dep0_term or_opname
+let mk_or_term = mk_dep0_dep0_term or_opname
+
+let and_opname = make_opname ["connective";"and"]
+let is_and_term = is_dep0_dep0_term and_opname
+let dest_and = dest_dep0_dep0_term and_opname
+let mk_and_term = mk_dep0_dep0_term and_opname
+
+let cor_opname = make_opname ["connective";"cor"]
+let is_cor_term = is_dep0_dep0_term cor_opname
+let dest_cor = dest_dep0_dep0_term cor_opname
+let mk_cor_term = mk_dep0_dep0_term cor_opname
+
+let cand_opname = make_opname ["connective";"cand"]
+let is_cand_term = is_dep0_dep0_term cand_opname
+let dest_cand = dest_dep0_dep0_term cand_opname
+let mk_cand_term = mk_dep0_dep0_term cand_opname
+
+let implies_opname = make_opname ["connective";"=>"]
+let is_implies_term = is_dep0_dep0_term implies_opname
+let dest_implies = dest_dep0_dep0_term implies_opname
+let mk_implies_term = mk_dep0_dep0_term implies_opname
+
+let iff_opname = make_opname ["connective";"iff"]
+let is_iff_term = is_dep0_dep0_term iff_opname
+let dest_iff = dest_dep0_dep0_term iff_opname
+let mk_iff_term = mk_dep0_dep0_term iff_opname
+
+let not_opname = make_opname ["connective";"not"]
+let is_not_term = is_dep0_term not_opname
+let dest_not = dest_dep0_term not_opname
+let mk_not_term = mk_dep0_term not_opname
+
+let var_ = mk_var_term
+let fun_opname = make_opname ["function"]
+let fun_ f ts = mk_any_term {op_name = fun_opname; op_params = [String f] } ts
+
+let is_fun_term = function
+ | { term_op = { op_name = opname; op_params = [String f] }}
+ when Opname.eq opname fun_opname -> true
+ | _ ->
+ false
+
+let dest_fun = function
+ | { term_op = { op_name = opname; op_params = [String f] }; term_terms = ts}
+ when Opname.eq opname fun_opname -> (f, List.map (fun { bterm = t } -> t) ts)
+ | t ->
+ ref_raise(RefineError ("dest_fun", TermMatchError (t, "not a function symbol")))
+
+let const_ c = fun_ c []
+let is_const_term = function
+ | { term_op = { op_name = opname; op_params = [String f] }; term_terms = [] }
+ when Opname.eq opname fun_opname -> true
+ | _ ->
+ false
+
+let dest_const t =
+ let (n, ts) = dest_fun t in n
+
+let pred_opname = make_opname ["predicate"]
+let pred_ p ts = mk_any_term {op_name = pred_opname; op_params = [String p] } ts
+
+let not_ = mk_not_term
+let and_ = mk_and_term
+let or_ = mk_or_term
+let imp_ = mk_implies_term
+let cand_ = mk_cand_term
+let cor_ = mk_cor_term
+let iff_ = mk_iff_term
+let nil_term = {term_op={op_name=nil_opname; op_params=[]}; term_terms=[] }
+let forall v t = mk_all_term v nil_term t
+let exists v t= mk_exists_term v nil_term t
+let rec wbin op = function
+ | [] -> raise (Failure "Term.wbin")
+ | [t] -> t
+ | t::r -> op t (wbin op r)
+
+let wand_ = wbin and_
+let wor_ = wbin or_
+let wimp_ = wbin imp_
+
+(*i let true_opname = make_opname ["bool";"true"]
+let is_true_term = is_no_subterms_term true_opname
+let true_ = mk_simple_term true_opname []
+let false_ = not_ true_
+
+let is_false_term t =
+ if is_not_term t then
+ let t1 = dest_not t in
+ is_true_term t1
+ else
+ false
+i*)
+
+let dummy_false_ = mk_simple_term (make_opname ["bool";"false"]) []
+let dummy_true_ = mk_simple_term (make_opname ["bool";"true"]) []
+let false_ = and_ (dummy_false_) (not_ dummy_false_)
+let true_ = not_ (and_ (dummy_true_) (not_ dummy_true_))
+
+let is_false_term t =
+ if (alpha_equal t false_) then true
+ else false
+
+let is_true_term t =
+ if (alpha_equal t true_) then true
+ else false
+
+(* Print a term [t] via the [ostream]: *)
+let rec fprint_term ostream t prec =
+ let l_print op_prec =
+ if (prec > op_prec) then fprintf ostream "(" in
+ let r_print op_prec =
+ if (prec > op_prec) then fprintf ostream ")" in
+ if is_false_term t then (* false *)
+ fprint_str_list ostream ["False"]
+ else if is_true_term t then (* true *)
+ fprint_str_list ostream ["True"]
+ else if is_all_term t then (* for all *)
+ let v, t1, t2 = dest_all t in
+ fprint_str_list ostream ["A."^v];
+ fprint_term ostream t2 4
+ else if is_exists_term t then (* exists *)
+ let v, t1, t2 = dest_exists t in
+ fprint_str_list ostream ["E."^v];
+ fprint_term ostream t2 4 (* implication *)
+ else if is_implies_term t then
+ let t1, t2 = dest_implies t in
+ l_print 0;
+ fprint_term ostream t1 1;
+ fprint_str_list ostream ["=>"];
+ fprint_term ostream t2 0;
+ r_print 0
+ else if is_and_term t then (* logical and *)
+ let t1, t2 = dest_and t in
+ l_print 3;
+ fprint_term ostream t1 3;
+ fprint_str_list ostream ["&"];
+ fprint_term ostream t2 3;
+ r_print 3
+ else if is_or_term t then (* logical or *)
+ let t1, t2 = dest_or t in
+ l_print 2;
+ fprint_term ostream t1 2;
+ fprint_str_list ostream ["|"];
+ fprint_term ostream t2 2;
+ r_print 2
+ else if is_not_term t then (* logical not *)
+ let t2 = dest_not t in
+ fprint_str_list ostream ["~"];
+ fprint_term ostream t2 4 (* nil term *)
+ else if is_xnil_term t then
+ fprint_str_list ostream ["NIL"]
+ else match t with (* other cases *)
+ { term_op = { op_name = opname; op_params = opparm }; term_terms = bterms} ->
+ if (Opname.eq opname pred_opname) || (Opname.eq opname fun_opname) then
+ begin
+ fprint_param_list ostream opparm;
+ if bterms != [] then
+ begin
+ fprintf ostream "(";
+ fprint_bterm_list ostream prec bterms;
+ fprintf ostream ")";
+ end
+ end else
+ begin
+ fprintf ostream "[";
+(* fprint_opname ostream opname;
+ fprintf ostream ": "; *)
+ fprint_param_list ostream opparm;
+ if bterms != [] then
+ begin
+ fprintf ostream "(";
+ fprint_bterm_list ostream prec bterms;
+ fprintf ostream ")";
+ end;
+ fprintf ostream "]"
+ end
+and fprint_bterm_list ostream prec = function
+ | [] -> ()
+ | {bvars=bv; bterm=bt}::r ->
+ fprint_str_list ostream bv;
+ fprint_term ostream bt prec;
+ if (r<>[]) then fprint_str_list ostream [","];
+ fprint_bterm_list ostream prec r
+;;
+
+
+let print_term ostream t =
+ Format.print_flush ();
+ fprint_term ostream t 0;
+ Format.print_flush ()
+
+let print_error_msg = function
+ | RefineError(s,e) -> print_string ("(module "^s^") ");
+ begin
+ match e with
+ | TermMatchError(t,s) -> print_term stdout t; print_string (s^"\n")
+ | StringError s -> print_string (s^"\n")
+ end
+ | ue -> print_string "Unexpected error for Jp.\n";
+ raise ue
+
+
+(* Naive implementation for [jterm] substitution, unification, etc.: *)
+let substitute subst term =
+ apply_subst term subst
+
+(* A naive unification algorithm: *)
+let compsubst subst1 subst2 =
+ (List.map (fun (v, t) -> (v, substitute subst1 t)) subst2) @ subst1
+;;
+
+let rec extract_terms = function
+ | [] -> []
+ | h::r -> let {bvars=_; bterm=bt}=h in bt::extract_terms r
+
+(* Occurs check: *)
+let occurs v t =
+ let rec occur_rec t =
+ if is_var_term t then v=dest_var t
+ else let { term_op = _ ; term_terms = bterms} = t in
+ let sons = extract_terms bterms in
+ List.exists occur_rec sons
+ in
+ occur_rec t
+
+(* The naive unification algorithm: *)
+let rec unify2 (term1,term2) =
+ if is_var_term term1 then
+ if equal_term [] term1 term2 then []
+ else let v1 = dest_var term1 in
+ if occurs v1 term2 then raise (RefineError ("unify1", StringError ("1")))
+ else [v1,term2]
+ else if is_var_term term2 then
+ let v2 = dest_var term2 in
+ if occurs v2 term1 then raise (RefineError ("unify2", StringError ("2")))
+ else [v2,term1]
+ else
+ let { term_op = { op_name = opname1; op_params = params1 };
+ term_terms = bterms1
+ } = term1
+ in
+ let { term_op = { op_name = opname2; op_params = params2 };
+ term_terms = bterms2
+ } = term2
+ in
+ if Opname.eq opname1 opname2 & params1 = params2 then
+ let sons1 = extract_terms bterms1
+ and sons2 = extract_terms bterms2 in
+ List.fold_left2
+ (fun s t1 t2 -> compsubst
+ (unify2 (substitute s t1, substitute s t2)) s)
+ [] sons1 sons2
+ else raise (RefineError ("unify3", StringError ("3")))
+
+let unify term1 term2 = unify2 (term1, term2)
+let unify_mm term1 term2 _ = unify2 (term1, term2)
diff --git a/contrib/jprover/jterm.mli b/contrib/jprover/jterm.mli
new file mode 100644
index 00000000..0bc42010
--- /dev/null
+++ b/contrib/jprover/jterm.mli
@@ -0,0 +1,110 @@
+(* This module is modified and extracted from Meta-Prl. *)
+
+(* Definitions of [jterm]: *)
+type param = param'
+and operator = operator'
+and term = term'
+and bound_term = bound_term'
+and param' =
+ | Number of int
+ | String of string
+ | Token of string
+ | Var of string
+ | ParamList of param list
+and operator' = { op_name : Opname.opname; op_params : param list; }
+and term' = { term_op : operator; term_terms : bound_term list; }
+and bound_term' = { bvars : string list; bterm : term; }
+type term_subst = (string * term) list
+
+type error_msg = TermMatchError of term * string | StringError of string
+
+exception RefineError of string * error_msg
+
+(* Collect free variables: *)
+val free_vars_list : term -> string list
+
+(* Substitutions: *)
+val subst_term : term list -> string list list -> string list -> term -> term
+val subst : term -> string list -> term list -> term
+val subst1 : term -> string -> term -> term
+val var_subst : term -> term -> string -> term
+val apply_subst : term -> (string * term) list -> term
+
+(* Unification: *)
+val unify_mm : term -> term -> 'a -> (string * term) list
+
+val xnil_term : term'
+
+(* Testing functions: *)
+val is_xnil_term : term' -> bool
+val is_var_term : term' -> bool
+val is_true_term : term' -> bool
+val is_false_term : term' -> bool
+val is_all_term : term' -> bool
+val is_exists_term : term' -> bool
+val is_or_term : term' -> bool
+val is_and_term : term' -> bool
+val is_cor_term : term' -> bool
+val is_cand_term : term' -> bool
+val is_implies_term : term' -> bool
+val is_iff_term : term' -> bool
+val is_not_term : term' -> bool
+val is_fun_term : term -> bool
+val is_const_term : term -> bool
+
+
+(* Constructors for [jterms]: *)
+val var_ : string -> term'
+val fun_ : string -> term list -> term'
+val const_ : string -> term'
+val pred_ : string -> term list -> term'
+val not_ : term -> term'
+val and_ : term -> term -> term'
+val or_ : term -> term -> term'
+val imp_ : term -> term -> term'
+val cand_ : term -> term -> term'
+val cor_ : term -> term -> term'
+val iff_ : term -> term -> term'
+val false_ : term'
+val true_ : term'
+val nil_term : term'
+val forall : string -> term -> term'
+val exists : string -> term -> term'
+
+
+(* Destructors for [jterm]: *)
+val dest_var : term -> string
+val dest_fun : term -> string * term list
+val dest_const : term -> string
+val dest_not : term -> term
+val dest_iff : term -> term * term
+val dest_implies : term -> term * term
+val dest_cand : term -> term * term
+val dest_cor : term -> term * term
+val dest_and : term -> term * term
+val dest_or : term -> term * term
+val dest_exists : term -> string * term * term
+val dest_all : term -> string * term * term
+
+(* Wide-logical connectives: *)
+val wand_ : term list -> term
+val wor_ : term list -> term
+val wimp_ : term list -> term
+
+(* Printing and debugging tools: *)
+val fprint_str_list : out_channel -> string list -> unit
+val mbreak : string -> unit
+val print_strs : string list -> unit
+val print_term : out_channel -> term -> unit
+val print_error_msg : exn -> unit
+
+(* Other exported functions for [jall.ml]: *)
+val make_term : 'a -> 'a
+val dest_term : 'a -> 'a
+val make_op : 'a -> 'a
+val dest_op : 'a -> 'a
+val make_bterm : 'a -> 'a
+val dest_bterm : 'a -> 'a
+val dest_param : 'a -> 'a
+val mk_var_term : string -> term'
+val mk_string_term : Opname.opname -> string -> term'
diff --git a/contrib/jprover/jtunify.ml b/contrib/jprover/jtunify.ml
new file mode 100644
index 00000000..2295e62c
--- /dev/null
+++ b/contrib/jprover/jtunify.ml
@@ -0,0 +1,507 @@
+(*
+ * Unification procedures for JProver. See jall.mli for more
+ * information on JProver.
+ *
+ * ----------------------------------------------------------------
+ *
+ * This file is part of MetaPRL, a modular, higher order
+ * logical framework that provides a logical programming
+ * environment for OCaml and other languages.
+ *
+ * See the file doc/index.html for information on Nuprl,
+ * OCaml, and more information about this system.
+ *
+ * Copyright (C) 2000 Stephan Schmitt
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * Author: Stephan Schmitt <schmitts@spmail.slu.edu>
+ * Modified by: Aleksey Nogin <nogin@cs.cornell.edu>
+ *)
+
+exception Not_unifiable
+exception Failed
+
+let jprover_bug = Invalid_argument "Jprover bug (Jtunify module)"
+
+(* ************ T-STRING UNIFICATION *********************************)
+
+
+(* ******* printing ********** *)
+
+let rec list_to_string s =
+ match s with
+ [] -> ""
+ | f::r ->
+ f^"."^(list_to_string r)
+
+let rec print_eqlist eqlist =
+ match eqlist with
+ [] ->
+ print_endline ""
+ | (atnames,f)::r ->
+ let (s,t) = f in
+ let ls = list_to_string s
+ and lt = list_to_string t in
+ begin
+ print_endline ("Atom names: "^(list_to_string atnames));
+ print_endline (ls^" = "^lt);
+ print_eqlist r
+ end
+
+let print_equations eqlist =
+ begin
+ Format.open_box 0;
+ Format.force_newline ();
+ print_endline "Equations:";
+ print_eqlist eqlist;
+ Format.force_newline ();
+ end
+
+let rec print_subst sigma =
+ match sigma with
+ [] ->
+ print_endline ""
+ | f::r ->
+ let (v,s) = f in
+ let ls = list_to_string s in
+ begin
+ print_endline (v^" = "^ls);
+ print_subst r
+ end
+
+let print_tunify sigma =
+ let (n,subst) = sigma in
+ begin
+ print_endline " ";
+ print_endline ("MaxVar = "^(string_of_int (n-1)));
+ print_endline " ";
+ print_endline "Substitution:";
+ print_subst subst;
+ print_endline " "
+ end
+
+ (*****************************************************)
+
+let is_const name =
+ (String.get name 0) = 'c'
+
+let is_var name =
+ (String.get name 0) = 'v'
+
+let r_1 s ft rt =
+ (s = []) && (ft = []) && (rt = [])
+
+let r_2 s ft rt =
+ (s = []) && (ft = []) && (List.length rt >= 1)
+
+let r_3 s ft rt =
+ ft=[] && (List.length s >= 1) && (List.length rt >= 1) && (List.hd s = List.hd rt)
+
+let r_4 s ft rt =
+ ft=[]
+ && (List.length s >= 1)
+ && (List.length rt >= 1)
+ && is_const (List.hd s)
+ && is_var (List.hd rt)
+
+let r_5 s ft rt =
+ rt=[]
+ && (List.length s >= 1)
+ && is_var (List.hd s)
+
+let r_6 s ft rt =
+ ft=[]
+ && (List.length s >= 1)
+ && (List.length rt >= 1)
+ && is_var (List.hd s)
+ && is_const (List.hd rt)
+
+let r_7 s ft rt =
+ List.length s >= 1
+ && (List.length rt >= 2)
+ && is_var (List.hd s)
+ && is_const (List.hd rt)
+ && is_const (List.hd (List.tl rt))
+
+let r_8 s ft rt =
+ ft=[]
+ && List.length s >= 2
+ && List.length rt >= 1
+ && let v = List.hd s
+ and v1 = List.hd rt in
+ (is_var v) & (is_var v1) & (v <> v1)
+
+let r_9 s ft rt =
+ (List.length s >= 2) && (List.length ft >= 1) && (List.length rt >= 1)
+ && let v = (List.hd s)
+ and v1 = (List.hd rt) in
+ (is_var v) & (is_var v1) & (v <> v1)
+
+let r_10 s ft rt =
+ (List.length s >= 1) && (List.length rt >= 1)
+ && let v = List.hd s
+ and x = List.hd rt in
+ (is_var v) && (v <> x)
+ && (((List.tl s) =[]) or (is_const x) or ((List.tl rt) <> []))
+
+let rec com_subst slist ((ov,ovlist) as one_subst) =
+ match slist with
+ [] -> raise jprover_bug
+ | f::r ->
+ if f = ov then
+ (ovlist @ r)
+ else
+ f::(com_subst r one_subst)
+
+let rec combine subst ((ov,oslist) as one_subst) =
+ match subst with
+ [] -> []
+ | ((v, slist) as f) :: r ->
+ let rest_combine = (combine r one_subst) in
+ if (List.mem ov slist) then (* subst assumed to be idemponent *)
+ let com_element = com_subst slist one_subst in
+ ((v,com_element)::rest_combine)
+ else
+ (f::rest_combine)
+
+let compose ((n,subst) as sigma) ((ov,oslist) as one_subst) =
+ let com = combine subst one_subst in
+(* begin
+ print_endline "!!!!!!!!!test print!!!!!!!!!!";
+ print_subst [one_subst];
+ print_subst subst;
+ print_endline "!!!!!!!!! END test print!!!!!!!!!!";
+*)
+ if List.mem one_subst subst then
+ (n,com)
+ else
+(* ov may multiply as variable in subst with DIFFERENT values *)
+(* in order to avoid explicit atom instances!!! *)
+ (n,(com @ [one_subst]))
+(* end *)
+
+let rec apply_element fs ft (v,slist) =
+ match (fs,ft) with
+ ([],[]) ->
+ ([],[])
+ | ([],(ft_first::ft_rest)) ->
+ let new_ft_first =
+ if ft_first = v then
+ slist
+ else
+ [ft_first]
+ in
+ let (emptylist,new_ft_rest) = apply_element [] ft_rest (v,slist) in
+ (emptylist,(new_ft_first @ new_ft_rest))
+ | ((fs_first::fs_rest),[]) ->
+ let new_fs_first =
+ if fs_first = v then
+ slist
+ else
+ [fs_first]
+ in
+ let (new_fs_rest,emptylist) = apply_element fs_rest [] (v,slist) in
+ ((new_fs_first @ new_fs_rest),emptylist)
+ | ((fs_first::fs_rest),(ft_first::ft_rest)) ->
+ let new_fs_first =
+ if fs_first = v then
+ slist
+ else
+ [fs_first]
+ and new_ft_first =
+ if ft_first = v then
+ slist
+ else
+ [ft_first]
+ in
+ let (new_fs_rest,new_ft_rest) = apply_element fs_rest ft_rest (v,slist) in
+ ((new_fs_first @ new_fs_rest),(new_ft_first @ new_ft_rest))
+
+let rec shorten us ut =
+ match (us,ut) with
+ ([],_) | (_,[]) -> (us,ut) (*raise jprover_bug*)
+ | ((fs::rs),(ft::rt)) ->
+ if fs = ft then
+ shorten rs rt
+ else
+ (us,ut)
+
+let rec apply_subst_list eq_rest (v,slist) =
+ match eq_rest with
+ [] ->
+ (true,[])
+ | (atomnames,(fs,ft))::r ->
+ let (n_fs,n_ft) = apply_element fs ft (v,slist) in
+ let (new_fs,new_ft) = shorten n_fs n_ft in (* delete equal first elements *)
+ match (new_fs,new_ft) with
+ [],[] ->
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,([],[]))::new_eq_rest))
+ | [],(fft::rft) ->
+ if (is_const fft) then
+ (false,[])
+ else
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,([],new_ft))::new_eq_rest))
+ | (ffs::rfs),[] ->
+ if (is_const ffs) then
+ (false,[])
+ else
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,(new_fs,[]))::new_eq_rest))
+ | (ffs::rfs),(fft::rft) ->
+ if (is_const ffs) & (is_const fft) then
+ (false,[])
+ (* different first constants cause local fail *)
+ else
+ (* at least one of firsts is a variable *)
+ let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
+ (bool,((atomnames,(new_fs,new_ft))::new_eq_rest))
+
+let apply_subst eq_rest (v,slist) atomnames =
+ if (List.mem v atomnames) then (* don't apply subst to atom variables !! *)
+ (true,eq_rest)
+ else
+ apply_subst_list eq_rest (v,slist)
+
+
+(* let all_variable_check eqlist = false needs some discussion with Jens! -- NOT done *)
+
+(*
+ let rec all_variable_check eqlist =
+ match eqlist with
+ [] -> true
+ | ((_,(fs,ft))::rest_eq) ->
+ if (fs <> []) & (ft <> []) then
+ let fs_first = List.hd fs
+ and ft_first = List.hd ft
+ in
+ if (is_const fs_first) or (is_const ft_first) then
+ false
+ else
+ all_variable_check rest_eq
+ else
+ false
+*)
+
+let rec tunify_list eqlist init_sigma =
+ let rec tunify atomnames fs ft rt rest_eq sigma =
+ let apply_r1 fs ft rt rest_eq sigma =
+ (* print_endline "r1"; *)
+ tunify_list rest_eq sigma
+
+ in
+ let apply_r2 fs ft rt rest_eq sigma =
+ (* print_endline "r2"; *)
+ tunify atomnames rt fs ft rest_eq sigma
+
+ in
+ let apply_r3 fs ft rt rest_eq sigma =
+ (* print_endline "r3"; *)
+ let rfs = (List.tl fs)
+ and rft = (List.tl rt) in
+ tunify atomnames rfs ft rft rest_eq sigma
+
+ in
+ let apply_r4 fs ft rt rest_eq sigma =
+ (* print_endline "r4"; *)
+ tunify atomnames rt ft fs rest_eq sigma
+
+ in
+ let apply_r5 fs ft rt rest_eq sigma =
+ (* print_endline "r5"; *)
+ let v = (List.hd fs) in
+ let new_sigma = compose sigma (v,ft) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,ft) atomnames in
+ if (bool=false) then
+ raise Not_unifiable
+ else
+ tunify atomnames (List.tl fs) rt rt new_rest_eq new_sigma
+
+ in
+ let apply_r6 fs ft rt rest_eq sigma =
+ (* print_endline "r6"; *)
+ let v = (List.hd fs) in
+ let new_sigma = (compose sigma (v,[])) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,[]) atomnames in
+ if (bool=false) then
+ raise Not_unifiable
+ else
+ tunify atomnames (List.tl fs) ft rt new_rest_eq new_sigma
+
+ in
+ let apply_r7 fs ft rt rest_eq sigma =
+ (* print_endline "r7"; *)
+ let v = (List.hd fs)
+ and c1 = (List.hd rt)
+ and c2t =(List.tl rt) in
+ let new_sigma = (compose sigma (v,(ft @ [c1]))) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [c1])) atomnames in
+ if bool=false then
+ raise Not_unifiable
+ else
+ tunify atomnames (List.tl fs) [] c2t new_rest_eq new_sigma
+ in
+ let apply_r8 fs ft rt rest_eq sigma =
+ (* print_endline "r8"; *)
+ tunify atomnames rt [(List.hd fs)] (List.tl fs) rest_eq sigma
+
+ in
+ let apply_r9 fs ft rt rest_eq sigma =
+ (* print_endline "r9"; *)
+ let v = (List.hd fs)
+ and (max,subst) = sigma in
+ let v_new = ("vnew"^(string_of_int max)) in
+ let new_sigma = (compose ((max+1),subst) (v,(ft @ [v_new]))) in
+ let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [v_new])) atomnames in
+ if (bool=false) then
+ raise Not_unifiable
+ else
+ tunify atomnames rt [v_new] (List.tl fs) new_rest_eq new_sigma
+
+ in
+ let apply_r10 fs ft rt rest_eq sigma =
+ (* print_endline "r10"; *)
+ let x = List.hd rt in
+ tunify atomnames fs (ft @ [x]) (List.tl rt) rest_eq sigma
+
+ in
+ if r_1 fs ft rt then
+ apply_r1 fs ft rt rest_eq sigma
+ else if r_2 fs ft rt then
+ apply_r2 fs ft rt rest_eq sigma
+ else if r_3 fs ft rt then
+ apply_r3 fs ft rt rest_eq sigma
+ else if r_4 fs ft rt then
+ apply_r4 fs ft rt rest_eq sigma
+ else if r_5 fs ft rt then
+ apply_r5 fs ft rt rest_eq sigma
+ else if r_6 fs ft rt then
+ (try
+ apply_r6 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ if r_7 fs ft rt then (* r7 applicable if r6 was and tr6 = C2t' *)
+ (try
+ apply_r7 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r6 was *)
+ )
+ else
+ (* r10 could be represented only once if we would try it before r7.*)
+ (* but looking at the transformation rules, r10 should be tried at last in any case *)
+ apply_r10 fs ft rt rest_eq sigma (* r10 always applicable r6 was *)
+ )
+ else if r_7 fs ft rt then (* not r6 and r7 possible if z <> [] *)
+ (try
+ apply_r7 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r7 was *)
+ )
+ else if r_8 fs ft rt then
+ (try
+ apply_r8 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ if r_10 fs ft rt then (* r10 applicable if r8 was and tr8 <> [] *)
+ apply_r10 fs ft rt rest_eq sigma
+ else
+ raise Not_unifiable (* simply back propagation *)
+ )
+ else if r_9 fs ft rt then
+ (try
+ apply_r9 fs ft rt rest_eq sigma
+ with Not_unifiable ->
+ if r_10 fs ft rt then (* r10 applicable if r9 was and tr9 <> [] *)
+ apply_r10 fs ft rt rest_eq sigma
+ else
+ raise Not_unifiable (* simply back propagation *)
+ )
+ else if r_10 fs ft rt then (* not ri, i<10, and r10 possible if for instance *)
+ (* (s=[] and x=v1) or (z<>[] and xt=C1V1t') *)
+ apply_r10 fs ft rt rest_eq sigma
+ else (* NO rule applicable *)
+ raise Not_unifiable
+ in
+ match eqlist with
+ [] ->
+ init_sigma
+ | f::rest_eq ->
+ let (atomnames,(fs,ft)) = f in
+ tunify atomnames fs [] ft rest_eq init_sigma
+
+let rec test_apply_eq atomnames eqs eqt subst =
+ match subst with
+ [] -> (eqs,eqt)
+ | (f,flist)::r ->
+ let (first_appl_eqs,first_appl_eqt) =
+ if List.mem f atomnames then
+ (eqs,eqt)
+ else
+ (apply_element eqs eqt (f,flist))
+ in
+ test_apply_eq atomnames first_appl_eqs first_appl_eqt r
+
+let rec test_apply_eqsubst eqlist subst =
+ match eqlist with
+ [] -> []
+ | f::r ->
+ let (atomnames,(eqs,eqt)) = f in
+ let applied_element = test_apply_eq atomnames eqs eqt subst in
+ (atomnames,applied_element)::(test_apply_eqsubst r subst)
+
+let ttest us ut ns nt eqlist orderingQ atom_rel =
+ let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 *)
+ (* to eliminate common beginning *)
+ let new_element = ([ns;nt],(short_us,short_ut)) in
+ let full_eqlist =
+ if List.mem new_element eqlist then
+ eqlist
+ else
+ new_element::eqlist
+ in
+ let sigma = tunify_list full_eqlist (1,[]) in
+ let (n,subst) = sigma in
+ let test_apply = test_apply_eqsubst full_eqlist subst in
+ begin
+ print_endline "";
+ print_endline "Final equations:";
+ print_equations full_eqlist;
+ print_endline "";
+ print_endline "Final substitution:";
+ print_tunify sigma;
+ print_endline "";
+ print_endline "Applied equations:";
+ print_equations test_apply
+ end
+
+let do_stringunify us ut ns nt equations =
+ let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 to eliminate common beginning *)
+ let new_element = ([ns;nt],(short_us,short_ut)) in
+ let full_eqlist =
+ if List.mem new_element equations then
+ equations
+ else
+ new_element::equations
+ in
+(* print_equations full_eqlist; *)
+ (try
+ let new_sigma = tunify_list full_eqlist (1,[]) in
+ (new_sigma,(1,full_eqlist))
+ with Not_unifiable ->
+ raise Failed (* new connection please *)
+ )
+
+
+(* type of one unifier: int * (string * string) list *)
diff --git a/contrib/jprover/jtunify.mli b/contrib/jprover/jtunify.mli
new file mode 100644
index 00000000..0aabc79e
--- /dev/null
+++ b/contrib/jprover/jtunify.mli
@@ -0,0 +1,35 @@
+exception Not_unifiable
+exception Failed
+
+(* Utilities *)
+
+val is_const : string -> bool
+val is_var : string -> bool
+val r_1 : 'a list -> 'b list -> 'c list -> bool
+val r_2 : 'a list -> 'b list -> 'c list -> bool
+val r_3 : 'a list -> 'b list -> 'a list -> bool
+val r_4 : string list -> 'a list -> string list -> bool
+val r_5 : string list -> 'a -> 'b list -> bool
+val r_6 : string list -> 'a list -> string list -> bool
+val r_7 : string list -> 'a -> string list -> bool
+val r_8 : string list -> 'a list -> string list -> bool
+val r_9 : string list -> 'a list -> string list -> bool
+val r_10 : string list -> 'a -> string list -> bool
+val com_subst : 'a list -> 'a * 'a list -> 'a list
+
+(* Debugging *)
+
+val print_equations : (string list * (string list * string list)) list -> unit
+
+val print_tunify : int * (string * string list) list -> unit
+
+(* Main function *)
+
+val do_stringunify : string list ->
+ string list ->
+ string ->
+ string ->
+ (string list * (string list * string list)) list ->
+ (int * (string * string list) list) * (* unifier *)
+ (int * ((string list * (string list * string list)) list)) (* applied new eqlist *)
+
diff --git a/contrib/jprover/opname.ml b/contrib/jprover/opname.ml
new file mode 100644
index 00000000..d0aa9046
--- /dev/null
+++ b/contrib/jprover/opname.ml
@@ -0,0 +1,90 @@
+open Printf
+
+type token = string
+type atom = string list
+
+let opname_token = String.make 4 (Char.chr 0)
+
+type opname =
+ { mutable opname_token : token;
+ mutable opname_name : string list
+ }
+
+let (optable : (string list, opname) Hashtbl.t) = Hashtbl.create 97
+
+(* * Constructors.*)
+let nil_opname = { opname_token = opname_token; opname_name = [] }
+
+let _ = Hashtbl.add optable [] nil_opname
+
+let rec mk_opname s ({ opname_token = token; opname_name = name } as opname) =
+ if token == opname_token then
+ let name = s :: name in
+ try Hashtbl.find optable name with
+ Not_found ->
+ let op = { opname_token = opname_token; opname_name = name } in
+ Hashtbl.add optable name op;
+ op
+ else
+ mk_opname s (normalize_opname opname)
+
+and make_opname = function
+ | [] ->
+ nil_opname
+ | h :: t ->
+ mk_opname h (make_opname t)
+
+and normalize_opname opname =
+ if opname.opname_token == opname_token then
+ (* This opname is already normalized *)
+ opname
+ else
+ let res = make_opname opname.opname_name
+ in
+ opname.opname_name <- res.opname_name;
+ opname.opname_token <- opname_token;
+ res
+
+(* * Atoms are the inner string list. *)
+let intern opname =
+ if opname.opname_token == opname_token then
+ opname.opname_name
+ else
+ let name = (normalize_opname opname).opname_name in
+ opname.opname_token <- opname_token;
+ opname.opname_name <- name;
+ name
+
+let eq_inner op1 op2 =
+ op1.opname_name <- (normalize_opname op1).opname_name;
+ op1.opname_token <- opname_token;
+ op2.opname_name <- (normalize_opname op2).opname_name;
+ op2.opname_token <- opname_token;
+ op1.opname_name == op2.opname_name
+
+let eq op1 op2 =
+ (op1.opname_name == op2.opname_name)
+ or ((op1.opname_token != opname_token or op2.opname_token != opname_token) & eq_inner op1 op2)
+
+(* * Destructor. *)
+let dst_opname = function
+ | { opname_name = n :: name } -> n, { opname_token = opname_token; opname_name = name }
+ | _ -> raise (Invalid_argument "dst_opname")
+
+let dest_opname { opname_name = name } =
+ name
+
+let string_of_opname op =
+ let rec flatten = function
+ | [] ->
+ ""
+ | h::t ->
+ let rec collect s = function
+ | h::t ->
+ collect (h ^ "!" ^ s) t
+ | [] ->
+ s
+ in
+ collect h t
+ in
+ flatten op.opname_name
diff --git a/contrib/jprover/opname.mli b/contrib/jprover/opname.mli
new file mode 100644
index 00000000..56bf84e2
--- /dev/null
+++ b/contrib/jprover/opname.mli
@@ -0,0 +1,15 @@
+(* This module is extracted from Meta-Prl. *)
+
+type token = string
+and atom = string list
+val opname_token : token
+type opname = {
+ mutable opname_token : token;
+ mutable opname_name : string list;
+}
+val nil_opname : opname
+val mk_opname : string -> opname -> opname
+val make_opname : string list -> opname
+val eq : opname -> opname -> bool
+val dest_opname : opname -> string list
+val string_of_opname : opname -> string
diff --git a/contrib/omega/Omega.v b/contrib/omega/Omega.v
new file mode 100755
index 00000000..e72dcec2
--- /dev/null
+++ b/contrib/omega/Omega.v
@@ -0,0 +1,57 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(* $Id: Omega.v,v 1.10.2.1 2004/07/16 19:30:12 herbelin Exp $ *)
+
+(* We do not require [ZArith] anymore, but only what's necessary for Omega *)
+Require Export ZArith_base.
+Require Export OmegaLemmas.
+
+Hint Resolve Zle_refl Zplus_comm Zplus_assoc Zmult_comm Zmult_assoc Zplus_0_l
+ Zplus_0_r Zmult_1_l Zplus_opp_l Zplus_opp_r Zmult_plus_distr_l
+ Zmult_plus_distr_r: zarith.
+
+Require Export Zhints.
+
+(*
+(* The constant minus is required in coq_omega.ml *)
+Require Minus.
+*)
+
+Hint Extern 10 (_ = _ :>nat) => abstract omega: zarith.
+Hint Extern 10 (_ <= _) => abstract omega: zarith.
+Hint Extern 10 (_ < _) => abstract omega: zarith.
+Hint Extern 10 (_ >= _) => abstract omega: zarith.
+Hint Extern 10 (_ > _) => abstract omega: zarith.
+
+Hint Extern 10 (_ <> _ :>nat) => abstract omega: zarith.
+Hint Extern 10 (~ _ <= _) => abstract omega: zarith.
+Hint Extern 10 (~ _ < _) => abstract omega: zarith.
+Hint Extern 10 (~ _ >= _) => abstract omega: zarith.
+Hint Extern 10 (~ _ > _) => abstract omega: zarith.
+
+Hint Extern 10 (_ = _ :>Z) => abstract omega: zarith.
+Hint Extern 10 (_ <= _)%Z => abstract omega: zarith.
+Hint Extern 10 (_ < _)%Z => abstract omega: zarith.
+Hint Extern 10 (_ >= _)%Z => abstract omega: zarith.
+Hint Extern 10 (_ > _)%Z => abstract omega: zarith.
+
+Hint Extern 10 (_ <> _ :>Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ <= _)%Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ < _)%Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ >= _)%Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ > _)%Z) => abstract omega: zarith.
+
+Hint Extern 10 False => abstract omega: zarith. \ No newline at end of file
diff --git a/contrib/omega/OmegaLemmas.v b/contrib/omega/OmegaLemmas.v
new file mode 100644
index 00000000..6f0ea2c6
--- /dev/null
+++ b/contrib/omega/OmegaLemmas.v
@@ -0,0 +1,269 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: OmegaLemmas.v,v 1.4.2.1 2004/07/16 19:30:12 herbelin Exp $ i*)
+
+Require Import ZArith_base.
+
+(** These are specific variants of theorems dedicated for the Omega tactic *)
+
+Lemma new_var : forall x:Z, exists y : Z, x = y.
+intros x; exists x; trivial with arith.
+Qed.
+
+Lemma OMEGA1 : forall x y:Z, x = y -> (0 <= x)%Z -> (0 <= y)%Z.
+intros x y H; rewrite H; auto with arith.
+Qed.
+
+Lemma OMEGA2 : forall x y:Z, (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x + y)%Z.
+exact Zplus_le_0_compat.
+Qed.
+
+Lemma OMEGA3 :
+ forall x y k:Z, (k > 0)%Z -> x = (y * k)%Z -> x = 0%Z -> y = 0%Z.
+
+intros x y k H1 H2 H3; apply (Zmult_integral_l k);
+ [ unfold not in |- *; intros H4; absurd (k > 0)%Z;
+ [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate
+ | assumption ]
+ | rewrite <- H2; assumption ].
+Qed.
+
+Lemma OMEGA4 : forall x y z:Z, (x > 0)%Z -> (y > x)%Z -> (z * y + x)%Z <> 0%Z.
+
+unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0)%Z;
+ [ intros H4; cut (0 <= z * y + x)%Z;
+ [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6;
+ absurd (z * y + x > 0)%Z;
+ [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate
+ | apply Zle_gt_trans with x;
+ [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x);
+ apply Zplus_le_compat_r; rewrite Zmult_comm;
+ generalize H4; unfold Zgt in |- *; case y;
+ [ simpl in |- *; intros H7; discriminate H7
+ | intros p H7; rewrite <- (Zmult_0_r (Zpos p));
+ unfold Zle in |- *; rewrite Zcompare_mult_compat;
+ exact H6
+ | simpl in |- *; intros p H7; discriminate H7 ]
+ | assumption ] ]
+ | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ]
+ | apply Zgt_trans with x; [ assumption | assumption ] ].
+Qed.
+
+Lemma OMEGA5 : forall x y z:Z, x = 0%Z -> y = 0%Z -> (x + y * z)%Z = 0%Z.
+
+intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith.
+Qed.
+
+Lemma OMEGA6 : forall x y z:Z, (0 <= x)%Z -> y = 0%Z -> (0 <= x + y * z)%Z.
+
+intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption.
+Qed.
+
+Lemma OMEGA7 :
+ forall x y z t:Z,
+ (z > 0)%Z ->
+ (t > 0)%Z -> (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x * z + y * t)%Z.
+
+intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat;
+ apply Zmult_gt_0_le_0_compat; assumption.
+Qed.
+
+Lemma OMEGA8 :
+ forall x y:Z, (0 <= x)%Z -> (0 <= y)%Z -> x = (- y)%Z -> x = 0%Z.
+
+intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1);
+ [ intros H4; absurd (0 < x)%Z;
+ [ change (0 >= x)%Z in |- *; apply Zle_ge; apply Zplus_le_reg_l with y;
+ rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r;
+ assumption
+ | assumption ]
+ | intros H4; rewrite H4; trivial with arith ].
+Qed.
+
+Lemma OMEGA9 :
+ forall x y z t:Z, y = 0%Z -> x = z -> (y + (- x + z) * t)%Z = 0%Z.
+
+intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l;
+ rewrite Zplus_0_r; assumption.
+Qed.
+
+Lemma OMEGA10 :
+ forall v c1 c2 l1 l2 k1 k2:Z,
+ ((v * c1 + l1) * k1 + (v * c2 + l2) * k2)%Z =
+ (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))%Z.
+
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith.
+Qed.
+
+Lemma OMEGA11 :
+ forall v1 c1 l1 l2 k1:Z,
+ ((v1 * c1 + l1) * k1 + l2)%Z = (v1 * (c1 * k1) + (l1 * k1 + l2))%Z.
+
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ trivial with arith.
+Qed.
+
+Lemma OMEGA12 :
+ forall v2 c2 l1 l2 k2:Z,
+ (l1 + (v2 * c2 + l2) * k2)%Z = (v2 * (c2 * k2) + (l1 + l2 * k2))%Z.
+
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ rewrite Zplus_permute; trivial with arith.
+Qed.
+
+Lemma OMEGA13 :
+ forall (v l1 l2:Z) (x:positive),
+ (v * Zpos x + l1 + (v * Zneg x + l2))%Z = (l1 + l2)%Z.
+
+intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1);
+ rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
+ rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x));
+ rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r;
+ trivial with arith.
+Qed.
+
+Lemma OMEGA14 :
+ forall (v l1 l2:Z) (x:positive),
+ (v * Zneg x + l1 + (v * Zpos x + l2))%Z = (l1 + l2)%Z.
+
+intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1);
+ rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
+ rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r;
+ rewrite Zplus_0_r; trivial with arith.
+Qed.
+Lemma OMEGA15 :
+ forall v c1 c2 l1 l2 k2:Z,
+ (v * c1 + l1 + (v * c2 + l2) * k2)%Z =
+ (v * (c1 + c2 * k2) + (l1 + l2 * k2))%Z.
+
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith.
+Qed.
+
+Lemma OMEGA16 :
+ forall v c l k:Z, ((v * c + l) * k)%Z = (v * (c * k) + l * k)%Z.
+
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ trivial with arith.
+Qed.
+
+Lemma OMEGA17 : forall x y z:Z, Zne x 0 -> y = 0%Z -> Zne (x + y * z) 0.
+
+unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1;
+ apply Zplus_reg_l with (y * z)%Z; rewrite Zplus_comm;
+ rewrite H3; rewrite H2; auto with arith.
+Qed.
+
+Lemma OMEGA18 : forall x y k:Z, x = (y * k)%Z -> Zne x 0 -> Zne y 0.
+
+unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1;
+ rewrite H3; auto with arith.
+Qed.
+
+Lemma OMEGA19 :
+ forall x:Z, Zne x 0 -> (0 <= x + -1)%Z \/ (0 <= x * -1 + -1)%Z.
+
+unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x);
+ [ intros H1; elim Zle_lt_or_eq with (1 := H1);
+ [ intros H2; left; change (0 <= Zpred x)%Z in |- *; apply Zsucc_le_reg;
+ rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption
+ | intros H2; absurd (x = 0%Z); auto with arith ]
+ | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm;
+ apply Zle_left; apply Zsucc_le_reg; simpl in |- *;
+ apply Zlt_le_succ; auto with arith ].
+Qed.
+
+Lemma OMEGA20 : forall x y z:Z, Zne x 0 -> y = 0%Z -> Zne (x + y * z) 0.
+
+unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3;
+ simpl in H3; rewrite Zplus_0_r in H3; trivial with arith.
+Qed.
+
+Definition fast_Zplus_sym (x y:Z) (P:Z -> Prop) (H:P (y + x)%Z) :=
+ eq_ind_r P H (Zplus_comm x y).
+
+Definition fast_Zplus_assoc_r (n m p:Z) (P:Z -> Prop)
+ (H:P (n + (m + p))%Z) := eq_ind_r P H (Zplus_assoc_reverse n m p).
+
+Definition fast_Zplus_assoc_l (n m p:Z) (P:Z -> Prop)
+ (H:P (n + m + p)%Z) := eq_ind_r P H (Zplus_assoc n m p).
+
+Definition fast_Zplus_permute (n m p:Z) (P:Z -> Prop)
+ (H:P (m + (n + p))%Z) := eq_ind_r P H (Zplus_permute n m p).
+
+Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2:Z) (P:Z -> Prop)
+ (H:P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))%Z) :=
+ eq_ind_r P H (OMEGA10 v c1 c2 l1 l2 k1 k2).
+
+Definition fast_OMEGA11 (v1 c1 l1 l2 k1:Z) (P:Z -> Prop)
+ (H:P (v1 * (c1 * k1) + (l1 * k1 + l2))%Z) :=
+ eq_ind_r P H (OMEGA11 v1 c1 l1 l2 k1).
+Definition fast_OMEGA12 (v2 c2 l1 l2 k2:Z) (P:Z -> Prop)
+ (H:P (v2 * (c2 * k2) + (l1 + l2 * k2))%Z) :=
+ eq_ind_r P H (OMEGA12 v2 c2 l1 l2 k2).
+
+Definition fast_OMEGA15 (v c1 c2 l1 l2 k2:Z) (P:Z -> Prop)
+ (H:P (v * (c1 + c2 * k2) + (l1 + l2 * k2))%Z) :=
+ eq_ind_r P H (OMEGA15 v c1 c2 l1 l2 k2).
+Definition fast_OMEGA16 (v c l k:Z) (P:Z -> Prop)
+ (H:P (v * (c * k) + l * k)%Z) := eq_ind_r P H (OMEGA16 v c l k).
+
+Definition fast_OMEGA13 (v l1 l2:Z) (x:positive) (P:Z -> Prop)
+ (H:P (l1 + l2)%Z) := eq_ind_r P H (OMEGA13 v l1 l2 x).
+
+Definition fast_OMEGA14 (v l1 l2:Z) (x:positive) (P:Z -> Prop)
+ (H:P (l1 + l2)%Z) := eq_ind_r P H (OMEGA14 v l1 l2 x).
+Definition fast_Zred_factor0 (x:Z) (P:Z -> Prop) (H:P (x * 1)%Z) :=
+ eq_ind_r P H (Zred_factor0 x).
+
+Definition fast_Zopp_one (x:Z) (P:Z -> Prop) (H:P (x * -1)%Z) :=
+ eq_ind_r P H (Zopp_eq_mult_neg_1 x).
+
+Definition fast_Zmult_sym (x y:Z) (P:Z -> Prop) (H:P (y * x)%Z) :=
+ eq_ind_r P H (Zmult_comm x y).
+
+Definition fast_Zopp_Zplus (x y:Z) (P:Z -> Prop) (H:P (- x + - y)%Z) :=
+ eq_ind_r P H (Zopp_plus_distr x y).
+
+Definition fast_Zopp_Zopp (x:Z) (P:Z -> Prop) (H:P x) :=
+ eq_ind_r P H (Zopp_involutive x).
+
+Definition fast_Zopp_Zmult_r (x y:Z) (P:Z -> Prop)
+ (H:P (x * - y)%Z) := eq_ind_r P H (Zopp_mult_distr_r x y).
+
+Definition fast_Zmult_plus_distr (n m p:Z) (P:Z -> Prop)
+ (H:P (n * p + m * p)%Z) := eq_ind_r P H (Zmult_plus_distr_l n m p).
+Definition fast_Zmult_Zopp_left (x y:Z) (P:Z -> Prop)
+ (H:P (x * - y)%Z) := eq_ind_r P H (Zmult_opp_comm x y).
+
+Definition fast_Zmult_assoc_r (n m p:Z) (P:Z -> Prop)
+ (H:P (n * (m * p))%Z) := eq_ind_r P H (Zmult_assoc_reverse n m p).
+
+Definition fast_Zred_factor1 (x:Z) (P:Z -> Prop) (H:P (x * 2)%Z) :=
+ eq_ind_r P H (Zred_factor1 x).
+
+Definition fast_Zred_factor2 (x y:Z) (P:Z -> Prop)
+ (H:P (x * (1 + y))%Z) := eq_ind_r P H (Zred_factor2 x y).
+Definition fast_Zred_factor3 (x y:Z) (P:Z -> Prop)
+ (H:P (x * (1 + y))%Z) := eq_ind_r P H (Zred_factor3 x y).
+
+Definition fast_Zred_factor4 (x y z:Z) (P:Z -> Prop)
+ (H:P (x * (y + z))%Z) := eq_ind_r P H (Zred_factor4 x y z).
+
+Definition fast_Zred_factor5 (x y:Z) (P:Z -> Prop)
+ (H:P y) := eq_ind_r P H (Zred_factor5 x y).
+
+Definition fast_Zred_factor6 (x:Z) (P:Z -> Prop) (H:P (x + 0)%Z) :=
+ eq_ind_r P H (Zred_factor6 x).
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml
new file mode 100644
index 00000000..7a20aeb6
--- /dev/null
+++ b/contrib/omega/coq_omega.ml
@@ -0,0 +1,1783 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(* $Id: coq_omega.ml,v 1.59.2.3 2004/07/16 19:30:12 herbelin Exp $ *)
+
+open Util
+open Pp
+open Reduction
+open Proof_type
+open Ast
+open Names
+open Nameops
+open Term
+open Termops
+open Declarations
+open Environ
+open Sign
+open Inductive
+open Tacticals
+open Tacmach
+open Evar_refiner
+open Tactics
+open Clenv
+open Logic
+open Libnames
+open Nametab
+open Omega
+open Contradiction
+
+(* Added by JCF, 09/03/98 *)
+
+let elim_id id gl = simplest_elim (pf_global gl id) gl
+let resolve_id id gl = apply (pf_global gl id) gl
+
+let timing timer_name f arg = f arg
+
+let display_time_flag = ref false
+let display_system_flag = ref false
+let display_action_flag = ref false
+let old_style_flag = ref false
+
+let read f () = !f
+let write f x = f:=x
+
+open Goptions
+
+(* Obsolete, subsumed by Time Omega
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega time displaying flag";
+ optkey = SecondaryTable ("Omega","Time");
+ optread = read display_time_flag;
+ optwrite = write display_time_flag }
+*)
+
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega system time displaying flag";
+ optkey = SecondaryTable ("Omega","System");
+ optread = read display_system_flag;
+ optwrite = write display_system_flag }
+
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega action display flag";
+ optkey = SecondaryTable ("Omega","Action");
+ optread = read display_action_flag;
+ optwrite = write display_action_flag }
+
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega old style flag";
+ optkey = SecondaryTable ("Omega","OldStyle");
+ optread = read old_style_flag;
+ optwrite = write old_style_flag }
+
+
+let all_time = timing "Omega "
+let solver_time = timing "Solver "
+let exact_time = timing "Rewrites "
+let elim_time = timing "Elim "
+let simpl_time = timing "Simpl "
+let generalize_time = timing "Generalize"
+
+let new_identifier =
+ let cpt = ref 0 in
+ (fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; id_of_string s)
+
+let new_identifier_state =
+ let cpt = ref 0 in
+ (fun () -> let s = make_ident "State" (Some !cpt) in incr cpt; s)
+
+let new_identifier_var =
+ let cpt = ref 0 in
+ (fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s)
+
+let mk_then = tclTHENLIST
+
+let exists_tac c = constructor_tac (Some 1) 1 (Rawterm.ImplicitBindings [c])
+
+let generalize_tac t = generalize_time (generalize t)
+let elim t = elim_time (simplest_elim t)
+let exact t = exact_time (Tactics.refine t)
+let unfold s = Tactics.unfold_in_concl [[], Lazy.force s]
+
+let rev_assoc k =
+ let rec loop = function
+ | [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l
+ in
+ loop
+
+let tag_hypothesis,tag_of_hyp, hyp_of_tag =
+ let l = ref ([]:(identifier * int) list) in
+ (fun h id -> l := (h,id):: !l),
+ (fun h -> try List.assoc h !l with Not_found -> failwith "tag_hypothesis"),
+ (fun h -> try rev_assoc h !l with Not_found -> failwith "tag_hypothesis")
+
+let hide_constr,find_constr,clear_tables,dump_tables =
+ let l = ref ([]:(constr * (identifier * identifier * bool)) list) in
+ (fun h id eg b -> l := (h,(id,eg,b)):: !l),
+ (fun h -> try List.assoc h !l with Not_found -> failwith "find_contr"),
+ (fun () -> l := []),
+ (fun () -> !l)
+
+(* Lazy evaluation is used for Coq constants, because this code
+ is evaluated before the compiled modules are loaded.
+ To use the constant Zplus, one must type "Lazy.force coq_Zplus"
+ This is the right way to access to Coq constants in tactics ML code *)
+
+open Coqlib
+
+let logic_dir = ["Coq";"Logic";"Decidable"]
+let coq_modules =
+ init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules
+ @ [["Coq"; "omega"; "OmegaLemmas"]]
+
+let constant = gen_constant_in_modules "Omega" coq_modules
+
+(* Zarith *)
+let coq_xH = lazy (constant "xH")
+let coq_xO = lazy (constant "xO")
+let coq_xI = lazy (constant "xI")
+let coq_ZERO = lazy (constant (if !Options.v7 then "ZERO" else "Z0"))
+let coq_POS = lazy (constant (if !Options.v7 then "POS" else "Zpos"))
+let coq_NEG = lazy (constant (if !Options.v7 then "NEG" else "Zneg"))
+let coq_Z = lazy (constant "Z")
+let coq_relation = lazy (constant (if !Options.v7 then "relation" else "comparison"))
+let coq_SUPERIEUR = lazy (constant "SUPERIEUR")
+let coq_INFEEIEUR = lazy (constant "INFERIEUR")
+let coq_EGAL = lazy (constant "EGAL")
+let coq_Zplus = lazy (constant "Zplus")
+let coq_Zmult = lazy (constant "Zmult")
+let coq_Zopp = lazy (constant "Zopp")
+let coq_Zminus = lazy (constant "Zminus")
+let coq_Zs = lazy (constant "Zs")
+let coq_Zgt = lazy (constant "Zgt")
+let coq_Zle = lazy (constant "Zle")
+let coq_inject_nat = lazy (constant "inject_nat")
+let coq_inj_plus = lazy (constant "inj_plus")
+let coq_inj_mult = lazy (constant "inj_mult")
+let coq_inj_minus1 = lazy (constant "inj_minus1")
+let coq_inj_minus2 = lazy (constant "inj_minus2")
+let coq_inj_S = lazy (constant "inj_S")
+let coq_inj_le = lazy (constant "inj_le")
+let coq_inj_lt = lazy (constant "inj_lt")
+let coq_inj_ge = lazy (constant "inj_ge")
+let coq_inj_gt = lazy (constant "inj_gt")
+let coq_inj_neq = lazy (constant "inj_neq")
+let coq_inj_eq = lazy (constant "inj_eq")
+let coq_fast_Zplus_assoc_r = lazy (constant "fast_Zplus_assoc_r")
+let coq_fast_Zplus_assoc_l = lazy (constant "fast_Zplus_assoc_l")
+let coq_fast_Zmult_assoc_r = lazy (constant "fast_Zmult_assoc_r")
+let coq_fast_Zplus_permute = lazy (constant "fast_Zplus_permute")
+let coq_fast_Zplus_sym = lazy (constant "fast_Zplus_sym")
+let coq_fast_Zmult_sym = lazy (constant "fast_Zmult_sym")
+let coq_Zmult_le_approx = lazy (constant "Zmult_le_approx")
+let coq_OMEGA1 = lazy (constant "OMEGA1")
+let coq_OMEGA2 = lazy (constant "OMEGA2")
+let coq_OMEGA3 = lazy (constant "OMEGA3")
+let coq_OMEGA4 = lazy (constant "OMEGA4")
+let coq_OMEGA5 = lazy (constant "OMEGA5")
+let coq_OMEGA6 = lazy (constant "OMEGA6")
+let coq_OMEGA7 = lazy (constant "OMEGA7")
+let coq_OMEGA8 = lazy (constant "OMEGA8")
+let coq_OMEGA9 = lazy (constant "OMEGA9")
+let coq_fast_OMEGA10 = lazy (constant "fast_OMEGA10")
+let coq_fast_OMEGA11 = lazy (constant "fast_OMEGA11")
+let coq_fast_OMEGA12 = lazy (constant "fast_OMEGA12")
+let coq_fast_OMEGA13 = lazy (constant "fast_OMEGA13")
+let coq_fast_OMEGA14 = lazy (constant "fast_OMEGA14")
+let coq_fast_OMEGA15 = lazy (constant "fast_OMEGA15")
+let coq_fast_OMEGA16 = lazy (constant "fast_OMEGA16")
+let coq_OMEGA17 = lazy (constant "OMEGA17")
+let coq_OMEGA18 = lazy (constant "OMEGA18")
+let coq_OMEGA19 = lazy (constant "OMEGA19")
+let coq_OMEGA20 = lazy (constant "OMEGA20")
+let coq_fast_Zred_factor0 = lazy (constant "fast_Zred_factor0")
+let coq_fast_Zred_factor1 = lazy (constant "fast_Zred_factor1")
+let coq_fast_Zred_factor2 = lazy (constant "fast_Zred_factor2")
+let coq_fast_Zred_factor3 = lazy (constant "fast_Zred_factor3")
+let coq_fast_Zred_factor4 = lazy (constant "fast_Zred_factor4")
+let coq_fast_Zred_factor5 = lazy (constant "fast_Zred_factor5")
+let coq_fast_Zred_factor6 = lazy (constant "fast_Zred_factor6")
+let coq_fast_Zmult_plus_distr = lazy (constant "fast_Zmult_plus_distr")
+let coq_fast_Zmult_Zopp_left = lazy (constant "fast_Zmult_Zopp_left")
+let coq_fast_Zopp_Zplus = lazy (constant "fast_Zopp_Zplus")
+let coq_fast_Zopp_Zmult_r = lazy (constant "fast_Zopp_Zmult_r")
+let coq_fast_Zopp_one = lazy (constant "fast_Zopp_one")
+let coq_fast_Zopp_Zopp = lazy (constant "fast_Zopp_Zopp")
+let coq_Zegal_left = lazy (constant "Zegal_left")
+let coq_Zne_left = lazy (constant "Zne_left")
+let coq_Zlt_left = lazy (constant "Zlt_left")
+let coq_Zge_left = lazy (constant "Zge_left")
+let coq_Zgt_left = lazy (constant "Zgt_left")
+let coq_Zle_left = lazy (constant "Zle_left")
+let coq_new_var = lazy (constant "new_var")
+let coq_intro_Z = lazy (constant "intro_Z")
+
+let coq_dec_eq = lazy (constant "dec_eq")
+let coq_dec_Zne = lazy (constant "dec_Zne")
+let coq_dec_Zle = lazy (constant "dec_Zle")
+let coq_dec_Zlt = lazy (constant "dec_Zlt")
+let coq_dec_Zgt = lazy (constant "dec_Zgt")
+let coq_dec_Zge = lazy (constant "dec_Zge")
+
+let coq_not_Zeq = lazy (constant "not_Zeq")
+let coq_not_Zle = lazy (constant "not_Zle")
+let coq_not_Zlt = lazy (constant "not_Zlt")
+let coq_not_Zge = lazy (constant "not_Zge")
+let coq_not_Zgt = lazy (constant "not_Zgt")
+let coq_neq = lazy (constant "neq")
+let coq_Zne = lazy (constant "Zne")
+let coq_Zle = lazy (constant "Zle")
+let coq_Zgt = lazy (constant "Zgt")
+let coq_Zge = lazy (constant "Zge")
+let coq_Zlt = lazy (constant "Zlt")
+
+(* Peano/Datatypes *)
+let coq_le = lazy (constant "le")
+let coq_lt = lazy (constant "lt")
+let coq_ge = lazy (constant "ge")
+let coq_gt = lazy (constant "gt")
+let coq_minus = lazy (constant "minus")
+let coq_plus = lazy (constant "plus")
+let coq_mult = lazy (constant "mult")
+let coq_pred = lazy (constant "pred")
+let coq_nat = lazy (constant "nat")
+let coq_S = lazy (constant "S")
+let coq_O = lazy (constant "O")
+
+(* Compare_dec/Peano_dec/Minus *)
+let coq_pred_of_minus = lazy (constant "pred_of_minus")
+let coq_le_gt_dec = lazy (constant "le_gt_dec")
+let coq_dec_eq_nat = lazy (constant "dec_eq_nat")
+let coq_dec_le = lazy (constant "dec_le")
+let coq_dec_lt = lazy (constant "dec_lt")
+let coq_dec_ge = lazy (constant "dec_ge")
+let coq_dec_gt = lazy (constant "dec_gt")
+let coq_not_eq = lazy (constant "not_eq")
+let coq_not_le = lazy (constant "not_le")
+let coq_not_lt = lazy (constant "not_lt")
+let coq_not_ge = lazy (constant "not_ge")
+let coq_not_gt = lazy (constant "not_gt")
+
+(* Logic/Decidable *)
+let coq_eq_ind_r = lazy (constant "eq_ind_r")
+
+let coq_dec_or = lazy (constant "dec_or")
+let coq_dec_and = lazy (constant "dec_and")
+let coq_dec_imp = lazy (constant "dec_imp")
+let coq_dec_not = lazy (constant "dec_not")
+let coq_dec_False = lazy (constant "dec_False")
+let coq_dec_not_not = lazy (constant "dec_not_not")
+let coq_dec_True = lazy (constant "dec_True")
+
+let coq_not_or = lazy (constant "not_or")
+let coq_not_and = lazy (constant "not_and")
+let coq_not_imp = lazy (constant "not_imp")
+let coq_not_not = lazy (constant "not_not")
+let coq_imp_simp = lazy (constant "imp_simp")
+
+(* uses build_coq_and, build_coq_not, build_coq_or, build_coq_ex *)
+
+(* For unfold *)
+open Closure
+let evaluable_ref_of_constr s c = match kind_of_term (Lazy.force c) with
+ | Const kn when Tacred.is_evaluable (Global.env()) (EvalConstRef kn) ->
+ EvalConstRef kn
+ | _ -> anomaly ("Coq_omega: "^s^" is not an evaluable constant")
+
+let sp_Zs = lazy (evaluable_ref_of_constr "Zs" coq_Zs)
+let sp_Zminus = lazy (evaluable_ref_of_constr "Zminus" coq_Zminus)
+let sp_Zle = lazy (evaluable_ref_of_constr "Zle" coq_Zle)
+let sp_Zgt = lazy (evaluable_ref_of_constr "Zgt" coq_Zgt)
+let sp_Zge = lazy (evaluable_ref_of_constr "Zge" coq_Zge)
+let sp_Zlt = lazy (evaluable_ref_of_constr "Zlt" coq_Zlt)
+let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ())))
+
+let mk_var v = mkVar (id_of_string v)
+let mk_plus t1 t2 = mkApp (Lazy.force coq_Zplus, [| t1; t2 |])
+let mk_times t1 t2 = mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
+let mk_minus t1 t2 = mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
+let mk_eq t1 t2 = mkApp (build_coq_eq (), [| Lazy.force coq_Z; t1; t2 |])
+let mk_le t1 t2 = mkApp (Lazy.force coq_Zle, [| t1; t2 |])
+let mk_gt t1 t2 = mkApp (Lazy.force coq_Zgt, [| t1; t2 |])
+let mk_inv t = mkApp (Lazy.force coq_Zopp, [| t |])
+let mk_and t1 t2 = mkApp (build_coq_and (), [| t1; t2 |])
+let mk_or t1 t2 = mkApp (build_coq_or (), [| t1; t2 |])
+let mk_not t = mkApp (build_coq_not (), [| t |])
+let mk_eq_rel t1 t2 = mkApp (build_coq_eq (),
+ [| Lazy.force coq_relation; t1; t2 |])
+let mk_inj t = mkApp (Lazy.force coq_inject_nat, [| t |])
+
+let mk_integer n =
+ let rec loop n =
+ if n=1 then Lazy.force coq_xH else
+ mkApp ((if n mod 2 = 0 then Lazy.force coq_xO else Lazy.force coq_xI),
+ [| loop (n/2) |])
+ in
+ if n = 0 then Lazy.force coq_ZERO
+ else mkApp ((if n > 0 then Lazy.force coq_POS else Lazy.force coq_NEG),
+ [| loop (abs n) |])
+
+type omega_constant =
+ | Zplus | Zmult | Zminus | Zs | Zopp
+ | Plus | Mult | Minus | Pred | S | O
+ | POS | NEG | ZERO | Inject_nat
+ | Eq | Neq
+ | Zne | Zle | Zlt | Zge | Zgt
+ | Z | Nat
+ | And | Or | False | True | Not
+ | Le | Lt | Ge | Gt
+ | Other of string
+
+type omega_proposition =
+ | Keq of constr * constr * constr
+ | Kn
+
+type result =
+ | Kvar of identifier
+ | Kapp of omega_constant * constr list
+ | Kimp of constr * constr
+ | Kufo
+
+let destructurate_prop t =
+ let c, args = decompose_app t in
+ match kind_of_term c, args with
+ | _, [_;_;_] when c = build_coq_eq () -> Kapp (Eq,args)
+ | _, [_;_] when c = Lazy.force coq_neq -> Kapp (Neq,args)
+ | _, [_;_] when c = Lazy.force coq_Zne -> Kapp (Zne,args)
+ | _, [_;_] when c = Lazy.force coq_Zle -> Kapp (Zle,args)
+ | _, [_;_] when c = Lazy.force coq_Zlt -> Kapp (Zlt,args)
+ | _, [_;_] when c = Lazy.force coq_Zge -> Kapp (Zge,args)
+ | _, [_;_] when c = Lazy.force coq_Zgt -> Kapp (Zgt,args)
+ | _, [_;_] when c = build_coq_and () -> Kapp (And,args)
+ | _, [_;_] when c = build_coq_or () -> Kapp (Or,args)
+ | _, [_] when c = build_coq_not () -> Kapp (Not,args)
+ | _, [] when c = build_coq_False () -> Kapp (False,args)
+ | _, [] when c = build_coq_True () -> Kapp (True,args)
+ | _, [_;_] when c = Lazy.force coq_le -> Kapp (Le,args)
+ | _, [_;_] when c = Lazy.force coq_lt -> Kapp (Lt,args)
+ | _, [_;_] when c = Lazy.force coq_ge -> Kapp (Ge,args)
+ | _, [_;_] when c = Lazy.force coq_gt -> Kapp (Gt,args)
+ | Const sp, args ->
+ Kapp (Other (string_of_id (id_of_global (ConstRef sp))),args)
+ | Construct csp , args ->
+ Kapp (Other (string_of_id (id_of_global (ConstructRef csp))), args)
+ | Ind isp, args ->
+ Kapp (Other (string_of_id (id_of_global (IndRef isp))),args)
+ | Var id,[] -> Kvar id
+ | Prod (Anonymous,typ,body), [] -> Kimp(typ,body)
+ | Prod (Name _,_,_),[] -> error "Omega: Not a quantifier-free goal"
+ | _ -> Kufo
+
+let destructurate_type t =
+ let c, args = decompose_app t in
+ match kind_of_term c, args with
+ | _, [] when c = Lazy.force coq_Z -> Kapp (Z,args)
+ | _, [] when c = Lazy.force coq_nat -> Kapp (Nat,args)
+ | _ -> Kufo
+
+let destructurate_term t =
+ let c, args = decompose_app t in
+ match kind_of_term c, args with
+ | _, [_;_] when c = Lazy.force coq_Zplus -> Kapp (Zplus,args)
+ | _, [_;_] when c = Lazy.force coq_Zmult -> Kapp (Zmult,args)
+ | _, [_;_] when c = Lazy.force coq_Zminus -> Kapp (Zminus,args)
+ | _, [_] when c = Lazy.force coq_Zs -> Kapp (Zs,args)
+ | _, [_] when c = Lazy.force coq_Zopp -> Kapp (Zopp,args)
+ | _, [_;_] when c = Lazy.force coq_plus -> Kapp (Plus,args)
+ | _, [_;_] when c = Lazy.force coq_mult -> Kapp (Mult,args)
+ | _, [_;_] when c = Lazy.force coq_minus -> Kapp (Minus,args)
+ | _, [_] when c = Lazy.force coq_pred -> Kapp (Pred,args)
+ | _, [_] when c = Lazy.force coq_S -> Kapp (S,args)
+ | _, [] when c = Lazy.force coq_O -> Kapp (O,args)
+ | _, [_] when c = Lazy.force coq_POS -> Kapp (NEG,args)
+ | _, [_] when c = Lazy.force coq_NEG -> Kapp (POS,args)
+ | _, [] when c = Lazy.force coq_ZERO -> Kapp (ZERO,args)
+ | _, [_] when c = Lazy.force coq_inject_nat -> Kapp (Inject_nat,args)
+ | Var id,[] -> Kvar id
+ | _ -> Kufo
+
+let recognize_number t =
+ let rec loop t =
+ match decompose_app t with
+ | f, [t] when f = Lazy.force coq_xI -> 1 + 2 * loop t
+ | f, [t] when f = Lazy.force coq_xO -> 2 * loop t
+ | f, [] when f = Lazy.force coq_xH -> 1
+ | _ -> failwith "not a number"
+ in
+ match decompose_app t with
+ | f, [t] when f = Lazy.force coq_POS -> loop t
+ | f, [t] when f = Lazy.force coq_NEG -> - (loop t)
+ | f, [] when f = Lazy.force coq_ZERO -> 0
+ | _ -> failwith "not a number"
+
+type constr_path =
+ | P_APP of int
+ (* Abstraction and product *)
+ | P_BODY
+ | P_TYPE
+ (* Case *)
+ | P_BRANCH of int
+ | P_ARITY
+ | P_ARG
+
+let context operation path (t : constr) =
+ let rec loop i p0 t =
+ match (p0,kind_of_term t) with
+ | (p, Cast (c,t)) -> mkCast (loop i p c,t)
+ | ([], _) -> operation i t
+ | ((P_APP n :: p), App (f,v)) ->
+(* let f,l = get_applist t in NECESSAIRE ??
+ let v' = Array.of_list (f::l) in *)
+ let v' = Array.copy v in
+ v'.(n-1) <- loop i p v'.(n-1); mkApp (f, v')
+ | ((P_BRANCH n :: p), Case (ci,q,c,v)) ->
+ (* avant, y avait mkApp... anyway, BRANCH seems nowhere used *)
+ let v' = Array.copy v in
+ v'.(n) <- loop i p v'.(n); (mkCase (ci,q,c,v'))
+ | ((P_ARITY :: p), App (f,l)) ->
+ appvect (loop i p f,l)
+ | ((P_ARG :: p), App (f,v)) ->
+ let v' = Array.copy v in
+ v'.(0) <- loop i p v'.(0); mkApp (f,v')
+ | (p, Fix ((_,n as ln),(tys,lna,v))) ->
+ let l = Array.length v in
+ let v' = Array.copy v in
+ v'.(n) <- loop (i+l) p v.(n); (mkFix (ln,(tys,lna,v')))
+ | ((P_BODY :: p), Prod (n,t,c)) ->
+ (mkProd (n,t,loop (i+1) p c))
+ | ((P_BODY :: p), Lambda (n,t,c)) ->
+ (mkLambda (n,t,loop (i+1) p c))
+ | ((P_BODY :: p), LetIn (n,b,t,c)) ->
+ (mkLetIn (n,b,t,loop (i+1) p c))
+ | ((P_TYPE :: p), Prod (n,t,c)) ->
+ (mkProd (n,loop i p t,c))
+ | ((P_TYPE :: p), Lambda (n,t,c)) ->
+ (mkLambda (n,loop i p t,c))
+ | ((P_TYPE :: p), LetIn (n,b,t,c)) ->
+ (mkLetIn (n,b,loop i p t,c))
+ | (p, _) ->
+ ppnl (Printer.prterm t);
+ failwith ("abstract_path " ^ string_of_int(List.length p))
+ in
+ loop 1 path t
+
+let occurence path (t : constr) =
+ let rec loop p0 t = match (p0,kind_of_term t) with
+ | (p, Cast (c,t)) -> loop p c
+ | ([], _) -> t
+ | ((P_APP n :: p), App (f,v)) -> loop p v.(n-1)
+ | ((P_BRANCH n :: p), Case (_,_,_,v)) -> loop p v.(n)
+ | ((P_ARITY :: p), App (f,_)) -> loop p f
+ | ((P_ARG :: p), App (f,v)) -> loop p v.(0)
+ | (p, Fix((_,n) ,(_,_,v))) -> loop p v.(n)
+ | ((P_BODY :: p), Prod (n,t,c)) -> loop p c
+ | ((P_BODY :: p), Lambda (n,t,c)) -> loop p c
+ | ((P_BODY :: p), LetIn (n,b,t,c)) -> loop p c
+ | ((P_TYPE :: p), Prod (n,term,c)) -> loop p term
+ | ((P_TYPE :: p), Lambda (n,term,c)) -> loop p term
+ | ((P_TYPE :: p), LetIn (n,b,term,c)) -> loop p term
+ | (p, _) ->
+ ppnl (Printer.prterm t);
+ failwith ("occurence " ^ string_of_int(List.length p))
+ in
+ loop path t
+
+let abstract_path typ path t =
+ let term_occur = ref (mkRel 0) in
+ let abstract = context (fun i t -> term_occur:= t; mkRel i) path t in
+ mkLambda (Name (id_of_string "x"), typ, abstract), !term_occur
+
+let focused_simpl path gl =
+ let newc = context (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in
+ convert_concl_no_check newc gl
+
+let focused_simpl path = simpl_time (focused_simpl path)
+
+type oformula =
+ | Oplus of oformula * oformula
+ | Oinv of oformula
+ | Otimes of oformula * oformula
+ | Oatom of identifier
+ | Oz of int
+ | Oufo of constr
+
+let rec oprint = function
+ | Oplus(t1,t2) ->
+ print_string "("; oprint t1; print_string "+";
+ oprint t2; print_string ")"
+ | Oinv t -> print_string "~"; oprint t
+ | Otimes (t1,t2) ->
+ print_string "("; oprint t1; print_string "*";
+ oprint t2; print_string ")"
+ | Oatom s -> print_string (string_of_id s)
+ | Oz i -> print_int i
+ | Oufo f -> print_string "?"
+
+let rec weight = function
+ | Oatom c -> intern_id c
+ | Oz _ -> -1
+ | Oinv c -> weight c
+ | Otimes(c,_) -> weight c
+ | Oplus _ -> failwith "weight"
+ | Oufo _ -> -1
+
+let rec val_of = function
+ | Oatom c -> mkVar c
+ | Oz c -> mk_integer c
+ | Oinv c -> mkApp (Lazy.force coq_Zopp, [| val_of c |])
+ | Otimes (t1,t2) -> mkApp (Lazy.force coq_Zmult, [| val_of t1; val_of t2 |])
+ | Oplus(t1,t2) -> mkApp (Lazy.force coq_Zplus, [| val_of t1; val_of t2 |])
+ | Oufo c -> c
+
+let compile name kind =
+ let rec loop accu = function
+ | Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r
+ | Oz n ->
+ let id = new_id () in
+ tag_hypothesis name id;
+ {kind = kind; body = List.rev accu; constant = n; id = id}
+ | _ -> anomaly "compile_equation"
+ in
+ loop []
+
+let rec decompile af =
+ let rec loop = function
+ | ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
+ | [] -> Oz af.constant
+ in
+ loop af.body
+
+let mkNewMeta () = mkMeta (Clenv.new_meta())
+
+let clever_rewrite_base_poly typ p result theorem gl =
+ let full = pf_concl gl in
+ let (abstracted,occ) = abstract_path typ (List.rev p) full in
+ let t =
+ applist
+ (mkLambda
+ (Name (id_of_string "P"),
+ mkArrow typ mkProp,
+ mkLambda
+ (Name (id_of_string "H"),
+ applist (mkRel 1,[result]),
+ mkApp (Lazy.force coq_eq_ind_r,
+ [| typ; result; mkRel 2; mkRel 1; occ; theorem |]))),
+ [abstracted])
+ in
+ exact (applist(t,[mkNewMeta()])) gl
+
+let clever_rewrite_base p result theorem gl =
+ clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem gl
+
+let clever_rewrite_base_nat p result theorem gl =
+ clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem gl
+
+let clever_rewrite_gen p result (t,args) =
+ let theorem = applist(t, args) in
+ clever_rewrite_base p result theorem
+
+let clever_rewrite_gen_nat p result (t,args) =
+ let theorem = applist(t, args) in
+ clever_rewrite_base_nat p result theorem
+
+let clever_rewrite p vpath t gl =
+ let full = pf_concl gl in
+ let (abstracted,occ) = abstract_path (Lazy.force coq_Z) (List.rev p) full in
+ let vargs = List.map (fun p -> occurence p occ) vpath in
+ let t' = applist(t, (vargs @ [abstracted])) in
+ exact (applist(t',[mkNewMeta()])) gl
+
+let rec shuffle p (t1,t2) =
+ match t1,t2 with
+ | Oplus(l1,r1), Oplus(l2,r2) ->
+ if weight l1 > weight l2 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
+ (clever_rewrite p [[P_APP 1;P_APP 1];
+ [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r)
+ :: tac,
+ Oplus(l1,t'))
+ else
+ let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
+ (clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_permute)
+ :: tac,
+ Oplus(l2,t'))
+ | Oplus(l1,r1), t2 ->
+ if weight l1 > weight t2 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r)
+ :: tac,
+ Oplus(l1, t')
+ else
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_sym)],
+ Oplus(t2,t1)
+ | t1,Oplus(l2,r2) ->
+ if weight l2 > weight t1 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_permute)
+ :: tac,
+ Oplus(l2,t')
+ else [],Oplus(t1,t2)
+ | Oz t1,Oz t2 ->
+ [focused_simpl p], Oz(t1+t2)
+ | t1,t2 ->
+ if weight t1 < weight t2 then
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_sym)],
+ Oplus(t2,t1)
+ else [],Oplus(t1,t2)
+
+let rec shuffle_mult p_init k1 e1 k2 e2 =
+ let rec loop p = function
+ | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ let tac =
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA10)
+ in
+ if k1*c1 + k2 * c2 = 0 then
+ let tac' =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5) in
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ loop p (l1,l2)
+ else tac :: loop (P_APP 2 :: p) (l1,l2)
+ else if v1 > v2 then
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2];
+ [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) ::
+ loop (P_APP 2 :: p) (l1,l2')
+ else
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) (l1',l2)
+ | ({c=c1;v=v1}::l1), [] ->
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2];
+ [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) ::
+ loop (P_APP 2 :: p) (l1,[])
+ | [],({c=c2;v=v2}::l2) ->
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) ([],l2)
+ | [],[] -> [focused_simpl p_init]
+ in
+ loop p_init (e1,e2)
+
+let rec shuffle_mult_right p_init e1 k2 e2 =
+ let rec loop p = function
+ | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ let tac =
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA15)
+ in
+ if c1 + k2 * c2 = 0 then
+ let tac' =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5)
+ in
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ loop p (l1,l2)
+ else tac :: loop (P_APP 2 :: p) (l1,l2)
+ else if v1 > v2 then
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r) ::
+ loop (P_APP 2 :: p) (l1,l2')
+ else
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) (l1',l2)
+ | ({c=c1;v=v1}::l1), [] ->
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r) ::
+ loop (P_APP 2 :: p) (l1,[])
+ | [],({c=c2;v=v2}::l2) ->
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) ([],l2)
+ | [],[] -> [focused_simpl p_init]
+ in
+ loop p_init (e1,e2)
+
+let rec shuffle_cancel p = function
+ | [] -> [focused_simpl p]
+ | ({c=c1}::l1) ->
+ let tac =
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2; P_APP 1]]
+ (if c1 > 0 then
+ (Lazy.force coq_fast_OMEGA13)
+ else
+ (Lazy.force coq_fast_OMEGA14))
+ in
+ tac :: shuffle_cancel p l1
+
+let rec scalar p n = function
+ | Oplus(t1,t2) ->
+ let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
+ tac2,t2' = scalar (P_APP 2 :: p) n t2 in
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_plus_distr) ::
+ (tac1 @ tac2), Oplus(t1',t2')
+ | Oinv t ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_Zopp_left);
+ focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(-n))
+ | Otimes(t1,Oz x) ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_assoc_r);
+ focused_simpl (P_APP 2 :: p)],
+ Otimes(t1,Oz (n*x))
+ | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) -> [], Otimes(t,Oz n)
+ | Oz i -> [focused_simpl p],Oz(n*i)
+ | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zmult, [| mk_integer n; c |]))
+
+let rec scalar_norm p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | (_::l) ->
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec norm_add p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | _:: l ->
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_r) ::
+ loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec scalar_norm_add p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | _ :: l ->
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec negate p = function
+ | Oplus(t1,t2) ->
+ let tac1,t1' = negate (P_APP 1 :: p) t1 and
+ tac2,t2' = negate (P_APP 2 :: p) t2 in
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zopp_Zplus) ::
+ (tac1 @ tac2),
+ Oplus(t1',t2')
+ | Oinv t ->
+ [clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_Zopp)], t
+ | Otimes(t1,Oz x) ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zopp_Zmult_r);
+ focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (-x))
+ | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) ->
+ let r = Otimes(t,Oz(-1)) in
+ [clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_one)], r
+ | Oz i -> [focused_simpl p],Oz(-i)
+ | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |]))
+
+let rec transform p t =
+ let default () =
+ try
+ let v,th,_ = find_constr t in
+ [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
+ with _ ->
+ let v = new_identifier_var ()
+ and th = new_identifier () in
+ hide_constr t v th false;
+ [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
+ in
+ try match destructurate_term t with
+ | Kapp(Zplus,[t1;t2]) ->
+ let tac1,t1' = transform (P_APP 1 :: p) t1
+ and tac2,t2' = transform (P_APP 2 :: p) t2 in
+ let tac,t' = shuffle p (t1',t2') in
+ tac1 @ tac2 @ tac, t'
+ | Kapp(Zminus,[t1;t2]) ->
+ let tac,t =
+ transform p
+ (mkApp (Lazy.force coq_Zplus,
+ [| t1; (mkApp (Lazy.force coq_Zopp, [| t2 |])) |])) in
+ unfold sp_Zminus :: tac,t
+ | Kapp(Zs,[t1]) ->
+ let tac,t = transform p (mkApp (Lazy.force coq_Zplus,
+ [| t1; mk_integer 1 |])) in
+ unfold sp_Zs :: tac,t
+ | Kapp(Zmult,[t1;t2]) ->
+ let tac1,t1' = transform (P_APP 1 :: p) t1
+ and tac2,t2' = transform (P_APP 2 :: p) t2 in
+ begin match t1',t2' with
+ | (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t'
+ | (Oz n,_) ->
+ let sym =
+ clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_sym) in
+ let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
+ | _ -> default ()
+ end
+ | Kapp((POS|NEG|ZERO),_) ->
+ (try ([],Oz(recognize_number t)) with _ -> default ())
+ | Kvar s -> [],Oatom s
+ | Kapp(Zopp,[t]) ->
+ let tac,t' = transform (P_APP 1 :: p) t in
+ let tac',t'' = negate p t' in
+ tac @ tac', t''
+ | Kapp(Inject_nat,[t']) ->
+ begin try
+ let v,th,_ = find_constr t' in
+ [clever_rewrite_base p (mkVar v) (mkVar th)],Oatom v
+ with _ ->
+ let v = new_identifier_var () and th = new_identifier () in
+ hide_constr t' v th true;
+ [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
+ end
+ | _ -> default ()
+ with e when catchable_exception e -> default ()
+
+let shrink_pair p f1 f2 =
+ match f1,f2 with
+ | Oatom v,Oatom _ ->
+ let r = Otimes(Oatom v,Oz 2) in
+ clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r
+ | Oatom v, Otimes(_,c2) ->
+ let r = Otimes(Oatom v,Oplus(c2,Oz 1)) in
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor2), r
+ | Otimes (v1,c1),Oatom v ->
+ let r = Otimes(Oatom v,Oplus(c1,Oz 1)) in
+ clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor3), r
+ | Otimes (Oatom v,c1),Otimes (v2,c2) ->
+ let r = Otimes(Oatom v,Oplus(c1,c2)) in
+ clever_rewrite p
+ [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor4),r
+ | t1,t2 ->
+ begin
+ oprint t1; print_newline (); oprint t2; print_newline ();
+ flush Pervasives.stdout; error "shrink.1"
+ end
+
+let reduce_factor p = function
+ | Oatom v ->
+ let r = Otimes(Oatom v,Oz 1) in
+ [clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor0)],r
+ | Otimes(Oatom v,Oz n) as f -> [],f
+ | Otimes(Oatom v,c) ->
+ let rec compute = function
+ | Oz n -> n
+ | Oplus(t1,t2) -> compute t1 + compute t2
+ | _ -> error "condense.1"
+ in
+ [focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
+ | t -> oprint t; error "reduce_factor.1"
+
+let rec condense p = function
+ | Oplus(f1,(Oplus(f2,r) as t)) ->
+ if weight f1 = weight f2 then begin
+ let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in
+ let assoc_tac =
+ clever_rewrite p
+ [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_l) in
+ let tac_list,t' = condense p (Oplus(t,r)) in
+ (assoc_tac :: shrink_tac :: tac_list), t'
+ end else begin
+ let tac,f = reduce_factor (P_APP 1 :: p) f1 in
+ let tac',t' = condense (P_APP 2 :: p) t in
+ (tac @ tac'), Oplus(f,t')
+ end
+ | Oplus(f1,Oz n) as t ->
+ let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n)
+ | Oplus(f1,f2) ->
+ if weight f1 = weight f2 then begin
+ let tac_shrink,t = shrink_pair p f1 f2 in
+ let tac,t' = condense p t in
+ tac_shrink :: tac,t'
+ end else begin
+ let tac,f = reduce_factor (P_APP 1 :: p) f1 in
+ let tac',t' = condense (P_APP 2 :: p) f2 in
+ (tac @ tac'),Oplus(f,t')
+ end
+ | Oz _ as t -> [],t
+ | t ->
+ let tac,t' = reduce_factor p t in
+ let final = Oplus(t',Oz 0) in
+ let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in
+ tac @ [tac'], final
+
+let rec clear_zero p = function
+ | Oplus(Otimes(Oatom v,Oz 0),r) ->
+ let tac =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5) in
+ let tac',t = clear_zero p r in
+ tac :: tac',t
+ | Oplus(f,r) ->
+ let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t)
+ | t -> [],t
+
+let replay_history tactic_normalisation =
+ let aux = id_of_string "auxiliary" in
+ let aux1 = id_of_string "auxiliary_1" in
+ let aux2 = id_of_string "auxiliary_2" in
+ let zero = mk_integer 0 in
+ let rec loop t =
+ match t with
+ | HYP e :: l ->
+ begin
+ try
+ tclTHEN
+ (List.assoc (hyp_of_tag e.id) tactic_normalisation)
+ (loop l)
+ with Not_found -> loop l end
+ | NEGATE_CONTRADICT (e2,e1,b) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2.id in
+ let k = if b then (-1) else 1 in
+ let p_initial = [P_APP 1;P_TYPE] in
+ let tac= shuffle_mult_right p_initial e1.body k e2.body in
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA17, [|
+ val_of eq1;
+ val_of eq2;
+ mk_integer k;
+ mkVar id1; mkVar id2 |])]);
+ (mk_then tac);
+ (intros_using [aux]);
+ (resolve_id aux);
+ reflexivity
+ ]
+ | CONTRADICTION (e1,e2) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac = shuffle_cancel p_initial e1.body in
+ let solve_le =
+ let superieur = Lazy.force coq_SUPERIEUR in
+ let not_sup_sup = mkApp (build_coq_eq (), [|
+ Lazy.force coq_relation;
+ Lazy.force coq_SUPERIEUR;
+ Lazy.force coq_SUPERIEUR |])
+ in
+ tclTHENS
+ (tclTHENLIST [
+ (unfold sp_Zle);
+ (simpl_in_concl);
+ intro;
+ (absurd not_sup_sup) ])
+ [ assumption ; reflexivity ]
+ in
+ let theorem =
+ mkApp (Lazy.force coq_OMEGA2, [|
+ val_of eq1; val_of eq2;
+ mkVar (hyp_of_tag e1.id);
+ mkVar (hyp_of_tag e2.id) |])
+ in
+ tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) (solve_le)
+ | DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
+ let id = hyp_of_tag e1.id in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k
+ and dd = mk_integer d in
+ let rhs = mk_plus (mk_times eq2 kk) dd in
+ let state_eg = mk_eq eq1 rhs in
+ let tac = scalar_norm_add [P_APP 3] e2.body in
+ tclTHENS
+ (cut state_eg)
+ [ tclTHENS
+ (tclTHENLIST [
+ (intros_using [aux]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA1,
+ [| eq1; rhs; mkVar aux; mkVar id |])]);
+ (clear [aux;id]);
+ (intros_using [id]);
+ (cut (mk_gt kk dd)) ])
+ [ tclTHENS
+ (cut (mk_gt kk zero))
+ [ tclTHENLIST [
+ (intros_using [aux1; aux2]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_Zmult_le_approx,
+ [| kk;eq2;dd;mkVar aux1;mkVar aux2; mkVar id |])]);
+ (clear [aux1;aux2;id]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ (simpl_in_concl);
+ reflexivity ] ];
+ tclTHENLIST [ (unfold sp_Zgt); simpl_in_concl; reflexivity ]
+ ];
+ tclTHEN (mk_then tac) reflexivity ]
+
+ | NOT_EXACT_DIVIDE (e1,k) :: l ->
+ let id = hyp_of_tag e1.id in
+ let c = floor_div e1.constant k in
+ let d = e1.constant - c * k in
+ let e2 = {id=e1.id; kind=EQUA;constant = c;
+ body = map_eq_linear (fun c -> c / k) e1.body } in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k
+ and dd = mk_integer d in
+ let rhs = mk_plus (mk_times eq2 kk) dd in
+ let state_eq = mk_eq eq1 rhs in
+ let tac = scalar_norm_add [P_APP 2] e2.body in
+ tclTHENS
+ (cut (mk_gt dd zero))
+ [ tclTHENS (cut (mk_gt kk dd))
+ [tclTHENLIST [
+ (intros_using [aux2;aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA4,
+ [| dd;kk;eq2;mkVar aux1; mkVar aux2 |])]);
+ (clear [aux1;aux2]);
+ (unfold sp_not);
+ (intros_using [aux]);
+ (resolve_id aux);
+ (mk_then tac);
+ assumption ] ;
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ]
+ | EXACT_DIVIDE (e1,k) :: l ->
+ let id = hyp_of_tag e1.id in
+ let e2 = map_eq_afine (fun c -> c / k) e1 in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k in
+ let state_eq = mk_eq eq1 (mk_times eq2 kk) in
+ if e1.kind = DISE then
+ let tac = scalar_norm [P_APP 3] e2.body in
+ tclTHENS
+ (cut state_eq)
+ [tclTHENLIST [
+ (intros_using [aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA18,
+ [| eq1;eq2;kk;mkVar aux1; mkVar id |])]);
+ (clear [aux1;id]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHEN (mk_then tac) reflexivity ]
+ else
+ let tac = scalar_norm [P_APP 3] e2.body in
+ tclTHENS (cut state_eq)
+ [
+ tclTHENS
+ (cut (mk_gt kk zero))
+ [tclTHENLIST [
+ (intros_using [aux2;aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA3,
+ [| eq1; eq2; kk; mkVar aux2; mkVar aux1;mkVar id|])]);
+ (clear [aux1;aux2;id]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ];
+ tclTHEN (mk_then tac) reflexivity ]
+ | (MERGE_EQ(e3,e1,e2)) :: l ->
+ let id = new_identifier () in
+ tag_hypothesis id e3;
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2 in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of (decompile (negate_eq e1)) in
+ let tac =
+ clever_rewrite [P_APP 3] [[P_APP 1]]
+ (Lazy.force coq_fast_Zopp_one) ::
+ scalar_norm [P_APP 3] e1.body
+ in
+ tclTHENS
+ (cut (mk_eq eq1 (mk_inv eq2)))
+ [tclTHENLIST [
+ (intros_using [aux]);
+ (generalize_tac [mkApp (Lazy.force coq_OMEGA8,
+ [| eq1;eq2;mkVar id1;mkVar id2; mkVar aux|])]);
+ (clear [id1;id2;aux]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHEN (mk_then tac) reflexivity]
+
+ | STATE(new_eq,def,orig,m,sigma) :: l ->
+ let id = new_identifier ()
+ and id2 = hyp_of_tag orig.id in
+ tag_hypothesis id new_eq.id;
+ let eq1 = val_of(decompile def)
+ and eq2 = val_of(decompile orig) in
+ let vid = unintern_id sigma in
+ let theorem =
+ mkApp (build_coq_ex (), [|
+ Lazy.force coq_Z;
+ mkLambda
+ (Name vid,
+ Lazy.force coq_Z,
+ mk_eq (mkRel 1) eq1) |])
+ in
+ let mm = mk_integer m in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let r = mk_plus eq2 (mk_times (mk_plus (mk_inv (mkVar vid)) eq1) mm) in
+ let tac =
+ clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
+ [[P_APP 1]] (Lazy.force coq_fast_Zopp_one) ::
+ shuffle_mult_right p_initial
+ orig.body m ({c= -1;v=sigma}::def.body) in
+ tclTHENS
+ (cut theorem)
+ [tclTHENLIST [
+ (intros_using [aux]);
+ (elim_id aux);
+ (clear [aux]);
+ (intros_using [vid; aux]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA9,
+ [| mkVar vid;eq2;eq1;mm; mkVar id2;mkVar aux |])]);
+ (mk_then tac);
+ (clear [aux]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHEN (exists_tac eq1) reflexivity ]
+ | SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
+ let id1 = new_identifier ()
+ and id2 = new_identifier () in
+ tag_hypothesis id1 e1; tag_hypothesis id2 e2;
+ let id = hyp_of_tag e.id in
+ let tac1 = norm_add [P_APP 2;P_TYPE] e.body in
+ let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in
+ let eq = val_of(decompile e) in
+ tclTHENS
+ (simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; mkVar id])))
+ [tclTHENLIST [ (mk_then tac1); (intros_using [id1]); (loop act1) ];
+ tclTHENLIST [ (mk_then tac2); (intros_using [id2]); (loop act2) ]]
+ | SUM(e3,(k1,e1),(k2,e2)) :: l ->
+ let id = new_identifier () in
+ tag_hypothesis id e3;
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2.id in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ if k1 = 1 & e2.kind = EQUA then
+ let tac_thm =
+ match e1.kind with
+ | EQUA -> Lazy.force coq_OMEGA5
+ | INEQ -> Lazy.force coq_OMEGA6
+ | DISE -> Lazy.force coq_OMEGA20
+ in
+ let kk = mk_integer k2 in
+ let p_initial =
+ if e1.kind=DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in
+ let tac = shuffle_mult_right p_initial e1.body k2 e2.body in
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (tac_thm, [| eq1; eq2; kk; mkVar id1; mkVar id2 |])]);
+ (mk_then tac);
+ (intros_using [id]);
+ (loop l)
+ ]
+ else
+ let kk1 = mk_integer k1
+ and kk2 = mk_integer k2 in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in
+ tclTHENS (cut (mk_gt kk1 zero))
+ [tclTHENS
+ (cut (mk_gt kk2 zero))
+ [tclTHENLIST [
+ (intros_using [aux2;aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA7, [|
+ eq1;eq2;kk1;kk2;
+ mkVar aux1;mkVar aux2;
+ mkVar id1;mkVar id2 |])]);
+ (clear [aux1;aux2]);
+ (mk_then tac);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ]
+ | CONSTANT_NOT_NUL(e,k) :: l ->
+ tclTHEN (generalize_tac [mkVar (hyp_of_tag e)]) Equality.discrConcl
+ | CONSTANT_NUL(e) :: l ->
+ tclTHEN (resolve_id (hyp_of_tag e)) reflexivity
+ | CONSTANT_NEG(e,k) :: l ->
+ tclTHENLIST [
+ (generalize_tac [mkVar (hyp_of_tag e)]);
+ (unfold sp_Zle);
+ simpl_in_concl;
+ (unfold sp_not);
+ (intros_using [aux]);
+ (resolve_id aux);
+ reflexivity
+ ]
+ | _ -> tclIDTAC
+ in
+ loop
+
+let normalize p_initial t =
+ let (tac,t') = transform p_initial t in
+ let (tac',t'') = condense p_initial t' in
+ let (tac'',t''') = clear_zero p_initial t'' in
+ tac @ tac' @ tac'' , t'''
+
+let normalize_equation id flag theorem pos t t1 t2 (tactic,defs) =
+ let p_initial = [P_APP pos ;P_TYPE] in
+ let (tac,t') = normalize p_initial t in
+ let shift_left =
+ tclTHEN
+ (generalize_tac [mkApp (theorem, [| t1; t2; mkVar id |]) ])
+ (tclTRY (clear [id]))
+ in
+ if tac <> [] then
+ let id' = new_identifier () in
+ ((id',(tclTHENLIST [ (shift_left); (mk_then tac); (intros_using [id']) ]))
+ :: tactic,
+ compile id' flag t' :: defs)
+ else
+ (tactic,defs)
+
+let destructure_omega gl tac_def (id,c) =
+ if atompart_of_id id = "State" then
+ tac_def
+ else
+ try match destructurate_prop c with
+ | Kapp(Eq,[typ;t1;t2])
+ when destructurate_type (pf_nf gl typ) = Kapp(Z,[]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def
+ | Kapp(Zne,[t1;t2]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id DISE (Lazy.force coq_Zne_left) 1 t t1 t2 tac_def
+ | Kapp(Zle,[t1;t2]) ->
+ let t = mk_plus t2 (mk_inv t1) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zle_left) 2 t t1 t2 tac_def
+ | Kapp(Zlt,[t1;t2]) ->
+ let t = mk_plus (mk_plus t2 (mk_integer (-1))) (mk_inv t1) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zlt_left) 2 t t1 t2 tac_def
+ | Kapp(Zge,[t1;t2]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zge_left) 2 t t1 t2 tac_def
+ | Kapp(Zgt,[t1;t2]) ->
+ let t = mk_plus (mk_plus t1 (mk_integer (-1))) (mk_inv t2) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zgt_left) 2 t t1 t2 tac_def
+ | _ -> tac_def
+ with e when catchable_exception e -> tac_def
+
+let reintroduce id =
+ (* [id] cannot be cleared if dependent: protect it by a try *)
+ tclTHEN (tclTRY (clear [id])) (intro_using id)
+
+let coq_omega gl =
+ clear_tables ();
+ let tactic_normalisation, system =
+ List.fold_left (destructure_omega gl) ([],[]) (pf_hyps_types gl) in
+ let prelude,sys =
+ List.fold_left
+ (fun (tac,sys) (t,(v,th,b)) ->
+ if b then
+ let id = new_identifier () in
+ let i = new_id () in
+ tag_hypothesis id i;
+ (tclTHENLIST [
+ (simplest_elim (applist (Lazy.force coq_intro_Z, [t])));
+ (intros_using [v; id]);
+ (elim_id id);
+ (clear [id]);
+ (intros_using [th;id]);
+ tac ]),
+ {kind = INEQ;
+ body = [{v=intern_id v; c=1}];
+ constant = 0; id = i} :: sys
+ else
+ (tclTHENLIST [
+ (simplest_elim (applist (Lazy.force coq_new_var, [t])));
+ (intros_using [v;th]);
+ tac ]),
+ sys)
+ (tclIDTAC,[]) (dump_tables ())
+ in
+ let system = system @ sys in
+ if !display_system_flag then display_system system;
+ if !old_style_flag then begin
+ try let _ = simplify false system in tclIDTAC gl
+ with UNSOLVABLE ->
+ let _,path = depend [] [] (history ()) in
+ if !display_action_flag then display_action path;
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ end else begin
+ try
+ let path = simplify_strong system in
+ if !display_action_flag then display_action path;
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ with NO_CONTRADICTION -> error "Omega can't solve this system"
+ end
+
+let coq_omega = solver_time coq_omega
+
+let nat_inject gl =
+ let aux = id_of_string "auxiliary" in
+ let table = Hashtbl.create 7 in
+ let rec explore p t =
+ try match destructurate_term t with
+ | Kapp(Plus,[t1;t2]) ->
+ tclTHENLIST [
+ (clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_plus),[t1;t2]));
+ (explore (P_APP 1 :: p) t1);
+ (explore (P_APP 2 :: p) t2)
+ ]
+ | Kapp(Mult,[t1;t2]) ->
+ tclTHENLIST [
+ (clever_rewrite_gen p (mk_times (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_mult),[t1;t2]));
+ (explore (P_APP 1 :: p) t1);
+ (explore (P_APP 2 :: p) t2)
+ ]
+ | Kapp(Minus,[t1;t2]) ->
+ let id = new_identifier () in
+ tclTHENS
+ (tclTHEN
+ (simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
+ (intros_using [id]))
+ [
+ tclTHENLIST [
+ (clever_rewrite_gen p
+ (mk_minus (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_minus1),[t1;t2;mkVar id]));
+ (loop [id,mkApp (Lazy.force coq_le, [| t2;t1 |])]);
+ (explore (P_APP 1 :: p) t1);
+ (explore (P_APP 2 :: p) t2) ];
+ (tclTHEN
+ (clever_rewrite_gen p (mk_integer 0)
+ ((Lazy.force coq_inj_minus2),[t1;t2;mkVar id]))
+ (loop [id,mkApp (Lazy.force coq_gt, [| t2;t1 |])]))
+ ]
+ | Kapp(S,[t']) ->
+ let rec is_number t =
+ try match destructurate_term t with
+ Kapp(S,[t]) -> is_number t
+ | Kapp(O,[]) -> true
+ | _ -> false
+ with e when catchable_exception e -> false
+ in
+ let rec loop p t =
+ try match destructurate_term t with
+ Kapp(S,[t]) ->
+ (tclTHEN
+ (clever_rewrite_gen p
+ (mkApp (Lazy.force coq_Zs, [| mk_inj t |]))
+ ((Lazy.force coq_inj_S),[t]))
+ (loop (P_APP 1 :: p) t))
+ | _ -> explore p t
+ with e when catchable_exception e -> explore p t
+ in
+ if is_number t' then focused_simpl p else loop p t
+ | Kapp(Pred,[t]) ->
+ let t_minus_one =
+ mkApp (Lazy.force coq_minus, [| t;
+ mkApp (Lazy.force coq_S, [| Lazy.force coq_O |]) |]) in
+ tclTHEN
+ (clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
+ ((Lazy.force coq_pred_of_minus),[t]))
+ (explore p t_minus_one)
+ | Kapp(O,[]) -> focused_simpl p
+ | _ -> tclIDTAC
+ with e when catchable_exception e -> tclIDTAC
+
+ and loop = function
+ | [] -> tclIDTAC
+ | (i,t)::lit ->
+ begin try match destructurate_prop t with
+ Kapp(Le,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_le, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Lt,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_lt, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Ge,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_ge, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Gt,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_gt, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Neq,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_neq, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Eq,[typ;t1;t2]) ->
+ if pf_conv_x gl typ (Lazy.force coq_nat) then
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_eq, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 2; P_TYPE] t1);
+ (explore [P_APP 3; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ else loop lit
+ | _ -> loop lit
+ with e when catchable_exception e -> loop lit end
+ in
+ loop (List.rev (pf_hyps_types gl)) gl
+
+let rec decidability gl t =
+ match destructurate_prop t with
+ | Kapp(Or,[t1;t2]) ->
+ mkApp (Lazy.force coq_dec_or, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kapp(And,[t1;t2]) ->
+ mkApp (Lazy.force coq_dec_and, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kimp(t1,t2) ->
+ mkApp (Lazy.force coq_dec_imp, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kapp(Not,[t1]) -> mkApp (Lazy.force coq_dec_not, [| t1;
+ decidability gl t1 |])
+ | Kapp(Eq,[typ;t1;t2]) ->
+ begin match destructurate_type (pf_nf gl typ) with
+ | Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |])
+ | Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |])
+ | _ -> errorlabstrm "decidability"
+ (str "Omega: Can't solve a goal with equality on " ++
+ Printer.prterm typ)
+ end
+ | Kapp(Zne,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zne, [| t1;t2 |])
+ | Kapp(Zle,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zle, [| t1;t2 |])
+ | Kapp(Zlt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zlt, [| t1;t2 |])
+ | Kapp(Zge,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zge, [| t1;t2 |])
+ | Kapp(Zgt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zgt, [| t1;t2 |])
+ | Kapp(Le, [t1;t2]) -> mkApp (Lazy.force coq_dec_le, [| t1;t2 |])
+ | Kapp(Lt, [t1;t2]) -> mkApp (Lazy.force coq_dec_lt, [| t1;t2 |])
+ | Kapp(Ge, [t1;t2]) -> mkApp (Lazy.force coq_dec_ge, [| t1;t2 |])
+ | Kapp(Gt, [t1;t2]) -> mkApp (Lazy.force coq_dec_gt, [| t1;t2 |])
+ | Kapp(False,[]) -> Lazy.force coq_dec_False
+ | Kapp(True,[]) -> Lazy.force coq_dec_True
+ | Kapp(Other t,_::_) -> error
+ ("Omega: Unrecognized predicate or connective: "^t)
+ | Kapp(Other t,[]) -> error ("Omega: Unrecognized atomic proposition: "^t)
+ | Kvar _ -> error "Omega: Can't solve a goal with proposition variables"
+ | _ -> error "Omega: Unrecognized proposition"
+
+let onClearedName id tac =
+ (* We cannot ensure that hyps can be cleared (because of dependencies), *)
+ (* so renaming may be necessary *)
+ tclTHEN
+ (tclTRY (clear [id]))
+ (fun gl ->
+ let id = fresh_id [] id gl in
+ tclTHEN (introduction id) (tac id) gl)
+
+let destructure_hyps gl =
+ let rec loop = function
+ | [] -> (tclTHEN nat_inject coq_omega)
+ | (i,body,t)::lit ->
+ begin try match destructurate_prop t with
+ | Kapp(False,[]) -> elim_id i
+ | Kapp((Zle|Zge|Zgt|Zlt|Zne),[t1;t2]) -> loop lit
+ | Kapp(Or,[t1;t2]) ->
+ (tclTHENS
+ (elim_id i)
+ [ onClearedName i (fun i -> (loop ((i,None,t1)::lit)));
+ onClearedName i (fun i -> (loop ((i,None,t2)::lit))) ])
+ | Kapp(And,[t1;t2]) ->
+ tclTHENLIST [
+ (elim_id i);
+ (tclTRY (clear [i]));
+ (fun gl ->
+ let i1 = fresh_id [] (add_suffix i "_left") gl in
+ let i2 = fresh_id [] (add_suffix i "_right") gl in
+ tclTHENLIST [
+ (introduction i1);
+ (introduction i2);
+ (loop ((i1,None,t1)::(i2,None,t2)::lit)) ] gl)
+ ]
+ | Kimp(t1,t2) ->
+ if
+ is_Prop (pf_type_of gl t1) &
+ is_Prop (pf_type_of gl t2) &
+ closed0 t2
+ then
+ tclTHENLIST [
+ (generalize_tac [mkApp (Lazy.force coq_imp_simp,
+ [| t1; t2; decidability gl t1; mkVar i|])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_or (mk_not t1) t2)::lit))))
+ ]
+ else
+ loop lit
+ | Kapp(Not,[t]) ->
+ begin match destructurate_prop t with
+ Kapp(Or,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_or,[| t1; t2; mkVar i |])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_and (mk_not t1) (mk_not t2)):: lit))))
+ ]
+ | Kapp(And,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_and, [| t1; t2;
+ decidability gl t1;mkVar i|])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_or (mk_not t1) (mk_not t2))::lit))))
+ ]
+ | Kimp(t1,t2) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_imp, [| t1; t2;
+ decidability gl t1;mkVar i |])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_and t1 (mk_not t2)) :: lit))))
+ ]
+ | Kapp(Not,[t]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_not, [| t;
+ decidability gl t; mkVar i |])]);
+ (onClearedName i (fun i -> (loop ((i,None,t)::lit))))
+ ]
+ | Kapp(Zle, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_Zle, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Zge, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_Zge, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Zlt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_Zlt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Zgt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_Zgt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Le, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_le, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Ge, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_ge, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Lt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_lt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Gt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_gt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Eq,[typ;t1;t2]) ->
+ if !old_style_flag then begin
+ match destructurate_type (pf_nf gl typ) with
+ | Kapp(Nat,_) ->
+ tclTHENLIST [
+ (simplest_elim
+ (mkApp
+ (Lazy.force coq_not_eq, [|t1;t2;mkVar i|])));
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Z,_) ->
+ tclTHENLIST [
+ (simplest_elim
+ (mkApp
+ (Lazy.force coq_not_Zeq, [|t1;t2;mkVar i|])));
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | _ -> loop lit
+ end else begin
+ match destructurate_type (pf_nf gl typ) with
+ | Kapp(Nat,_) ->
+ (tclTHEN
+ (convert_hyp_no_check
+ (i,body,
+ (mkApp (Lazy.force coq_neq, [| t1;t2|]))))
+ (loop lit))
+ | Kapp(Z,_) ->
+ (tclTHEN
+ (convert_hyp_no_check
+ (i,body,
+ (mkApp (Lazy.force coq_Zne, [| t1;t2|]))))
+ (loop lit))
+ | _ -> loop lit
+ end
+ | _ -> loop lit
+ end
+ | _ -> loop lit
+ with e when catchable_exception e -> loop lit
+ end
+ in
+ loop (pf_hyps gl) gl
+
+let destructure_goal gl =
+ let concl = pf_concl gl in
+ let rec loop t =
+ match destructurate_prop t with
+ | Kapp(Not,[t]) ->
+ (tclTHEN
+ (tclTHEN (unfold sp_not) intro)
+ destructure_hyps)
+ | Kimp(a,b) -> (tclTHEN intro (loop b))
+ | Kapp(False,[]) -> destructure_hyps
+ | _ ->
+ (tclTHEN
+ (tclTHEN
+ (Tactics.refine
+ (mkApp (Lazy.force coq_dec_not_not, [| t;
+ decidability gl t; mkNewMeta () |])))
+ intro)
+ (destructure_hyps))
+ in
+ (loop concl) gl
+
+let destructure_goal = all_time (destructure_goal)
+
+let omega_solver gl =
+ Library.check_required_library ["Coq";"omega";"Omega"];
+ let result = destructure_goal gl in
+ (* if !display_time_flag then begin text_time ();
+ flush Pervasives.stdout end; *)
+ result
diff --git a/contrib/omega/g_omega.ml4 b/contrib/omega/g_omega.ml4
new file mode 100644
index 00000000..726cf8bc
--- /dev/null
+++ b/contrib/omega/g_omega.ml4
@@ -0,0 +1,24 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: g_omega.ml4,v 1.1.12.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+open Coq_omega
+
+TACTIC EXTEND Omega
+ [ "Omega" ] -> [ omega_solver ]
+END
diff --git a/contrib/omega/omega.ml b/contrib/omega/omega.ml
new file mode 100755
index 00000000..f2eeb5fe
--- /dev/null
+++ b/contrib/omega/omega.ml
@@ -0,0 +1,663 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(* $Id: omega.ml,v 1.7.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+open Util
+open Hashtbl
+open Names
+
+let flat_map f =
+ let rec flat_map_f = function
+ | [] -> []
+ | x :: l -> f x @ flat_map_f l
+ in
+ flat_map_f
+
+let pp i = print_int i; print_newline (); flush stdout
+
+let debug = ref false
+
+let filter = List.partition
+
+let push v l = l := v :: !l
+
+let rec pgcd x y = if y = 0 then x else pgcd y (x mod y)
+
+let pgcd_l = function
+ | [] -> failwith "pgcd_l"
+ | x :: l -> List.fold_left pgcd x l
+
+let floor_div a b =
+ match a >=0 , b > 0 with
+ | true,true -> a / b
+ | false,false -> a / b
+ | true, false -> (a-1) / b - 1
+ | false,true -> (a+1) / b - 1
+
+let new_id =
+ let cpt = ref 0 in fun () -> incr cpt; ! cpt
+
+let new_var =
+ let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt)
+
+let new_var_num =
+ let cpt = ref 1000 in (fun () -> incr cpt; !cpt)
+
+type coeff = {c: int ; v: int}
+
+type linear = coeff list
+
+type eqn_kind = EQUA | INEQ | DISE
+
+type afine = {
+ (* a number uniquely identifying the equation *)
+ id: int ;
+ (* a boolean true for an eq, false for an ineq (Sigma a_i x_i >= 0) *)
+ kind: eqn_kind;
+ (* the variables and their coefficient *)
+ body: coeff list;
+ (* a constant *)
+ constant: int }
+
+type action =
+ | DIVIDE_AND_APPROX of afine * afine * int * int
+ | NOT_EXACT_DIVIDE of afine * int
+ | FORGET_C of int
+ | EXACT_DIVIDE of afine * int
+ | SUM of int * (int * afine) * (int * afine)
+ | STATE of afine * afine * afine * int * int
+ | HYP of afine
+ | FORGET of int * int
+ | FORGET_I of int * int
+ | CONTRADICTION of afine * afine
+ | NEGATE_CONTRADICT of afine * afine * bool
+ | MERGE_EQ of int * afine * int
+ | CONSTANT_NOT_NUL of int * int
+ | CONSTANT_NUL of int
+ | CONSTANT_NEG of int * int
+ | SPLIT_INEQ of afine * (int * action list) * (int * action list)
+ | WEAKEN of int * int
+
+exception UNSOLVABLE
+
+exception NO_CONTRADICTION
+
+let intern_id,unintern_id =
+ let cpt = ref 0 in
+ let table = create 7 and co_table = create 7 in
+ (fun (name : identifier) ->
+ try find table name with Not_found ->
+ let idx = !cpt in
+ add table name idx; add co_table idx name; incr cpt; idx),
+ (fun idx ->
+ try find co_table idx with Not_found ->
+ let v = new_var () in add table v idx; add co_table idx v; v)
+
+let display_eq (l,e) =
+ let _ =
+ List.fold_left
+ (fun not_first f ->
+ print_string
+ (if f.c < 0 then "- " else if not_first then "+ " else "");
+ let c = abs f.c in
+ if c = 1 then
+ Printf.printf "%s " (string_of_id (unintern_id f.v))
+ else
+ Printf.printf "%d %s " c (string_of_id (unintern_id f.v));
+ true)
+ false l
+ in
+ if e > 0 then
+ Printf.printf "+ %d " e
+ else if e < 0 then
+ Printf.printf "- %d " (abs e)
+
+let operator_of_eq = function
+ | EQUA -> "=" | DISE -> "!=" | INEQ -> ">="
+
+let kind_of = function
+ | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation"
+
+let display_system l =
+ List.iter
+ (fun { kind=b; body=e; constant=c; id=id} ->
+ print_int id; print_string ": ";
+ display_eq (e,c); print_string (operator_of_eq b);
+ print_string "0\n")
+ l;
+ print_string "------------------------\n\n"
+
+let display_inequations l =
+ List.iter (fun e -> display_eq e;print_string ">= 0\n") l;
+ print_string "------------------------\n\n"
+
+let rec display_action = function
+ | act :: l -> begin match act with
+ | DIVIDE_AND_APPROX (e1,e2,k,d) ->
+ Printf.printf
+ "Inequation E%d is divided by %d and the constant coefficient is \
+ rounded by substracting %d.\n" e1.id k d
+ | NOT_EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Constant in equation E%d is not divisible by the pgcd \
+ %d of its other coefficients.\n" e.id k
+ | EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Equation E%d is divided by the pgcd \
+ %d of its coefficients.\n" e.id k
+ | WEAKEN (e,k) ->
+ Printf.printf
+ "To ensure a solution in the dark shadow \
+ the equation E%d is weakened by %d.\n" e k
+ | SUM (e,(c1,e1),(c2,e2)) ->
+ Printf.printf
+ "We state %s E%d = %d %s E%d + %d %s E%d.\n"
+ (kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2
+ (kind_of e2.kind) e2.id
+ | STATE (e,_,_,x,_) ->
+ Printf.printf "We define a new equation %d :" e.id;
+ display_eq (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | HYP e ->
+ Printf.printf "We define %d :" e.id;
+ display_eq (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e
+ | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | FORGET_I (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | MERGE_EQ (e,e1,e2) ->
+ Printf.printf "E%d and E%d can be merged into E%d.\n" e1.id e2 e
+ | CONTRADICTION (e1,e2) ->
+ Printf.printf
+ "equations E%d and E%d implie a contradiction on their \
+ constant factors.\n" e1.id e2.id
+ | NEGATE_CONTRADICT(e1,e2,b) ->
+ Printf.printf
+ "Eqations E%d and E%d state that their body is at the same time
+ equal and different\n" e1.id e2.id
+ | CONSTANT_NOT_NUL (e,k) ->
+ Printf.printf "equation E%d states %d=0.\n" e k
+ | CONSTANT_NEG(e,k) ->
+ Printf.printf "equation E%d states %d >= 0.\n" e k
+ | CONSTANT_NUL e ->
+ Printf.printf "inequation E%d states 0 != 0.\n" e
+ | SPLIT_INEQ (e,(e1,l1),(e2,l2)) ->
+ Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2;
+ display_action l1;
+ print_newline ();
+ display_action l2;
+ print_newline ()
+ end; display_action l
+ | [] ->
+ flush stdout
+
+(*""*)
+
+let add_event, history, clear_history =
+ let accu = ref [] in
+ (fun (v : action) -> if !debug then display_action [v]; push v accu),
+ (fun () -> !accu),
+ (fun () -> accu := [])
+
+let nf_linear = Sort.list (fun x y -> x.v > y.v)
+
+let nf ((b : bool),(e,(x : int))) = (b,(nf_linear e,x))
+
+let map_eq_linear f =
+ let rec loop = function
+ | x :: l -> let c = f x.c in if c=0 then loop l else {v=x.v; c=c} :: loop l
+ | [] -> []
+ in
+ loop
+
+let map_eq_afine f e =
+ { id = e.id; kind = e.kind; body = map_eq_linear f e.body;
+ constant = f e.constant }
+
+let negate_eq = map_eq_afine (fun x -> -x)
+
+let rec sum p0 p1 = match (p0,p1) with
+ | ([], l) -> l | (l, []) -> l
+ | (((x1::l1) as l1'), ((x2::l2) as l2')) ->
+ if x1.v = x2.v then
+ let c = x1.c + x2.c in
+ if c = 0 then sum l1 l2 else {v=x1.v;c=c} :: sum l1 l2
+ else if x1.v > x2.v then
+ x1 :: sum l1 l2'
+ else
+ x2 :: sum l1' l2
+
+let sum_afine eq1 eq2 =
+ { kind = eq1.kind; id = new_id ();
+ body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant }
+
+exception FACTOR1
+
+let rec chop_factor_1 = function
+ | x :: l ->
+ if abs x.c = 1 then x,l else let (c',l') = chop_factor_1 l in (c',x::l')
+ | [] -> raise FACTOR1
+
+exception CHOPVAR
+
+let rec chop_var v = function
+ | f :: l -> if f.v = v then f,l else let (f',l') = chop_var v l in (f',f::l')
+ | [] -> raise CHOPVAR
+
+let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) =
+ if e = [] then begin
+ match eq_flag with
+ | EQUA ->
+ if x =0 then [] else begin
+ add_event (CONSTANT_NOT_NUL(id,x)); raise UNSOLVABLE
+ end
+ | DISE ->
+ if x <> 0 then [] else begin
+ add_event (CONSTANT_NUL id); raise UNSOLVABLE
+ end
+ | INEQ ->
+ if x >= 0 then [] else begin
+ add_event (CONSTANT_NEG(id,x)); raise UNSOLVABLE
+ end
+ end else
+ let gcd = pgcd_l (List.map (fun f -> abs f.c) e) in
+ if eq_flag=EQUA & x mod gcd <> 0 then begin
+ add_event (NOT_EXACT_DIVIDE (eq,gcd)); raise UNSOLVABLE
+ end else if eq_flag=DISE & x mod gcd <> 0 then begin
+ add_event (FORGET_C eq.id); []
+ end else if gcd <> 1 then begin
+ let c = floor_div x gcd in
+ let d = x - c * gcd in
+ let new_eq = {id=id; kind=eq_flag; constant=c;
+ body=map_eq_linear (fun c -> c / gcd) e} in
+ add_event (if eq_flag=EQUA or eq_flag = DISE then EXACT_DIVIDE(eq,gcd)
+ else DIVIDE_AND_APPROX(eq,new_eq,gcd,d));
+ [new_eq]
+ end else [eq]
+
+let eliminate_with_in {v=v;c=c_unite} eq2
+ ({body=e1; constant=c1} as eq1) =
+ try
+ let (f,_) = chop_var v e1 in
+ let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c
+ else failwith "eliminate_with_in" in
+ let res = sum_afine eq1 (map_eq_afine (fun c -> c * coeff) eq2) in
+ add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res
+ with CHOPVAR -> eq1
+
+let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b)
+let banerjee_step original l1 l2 =
+ let e = original.body in
+ let sigma = new_var_num () in
+ let smallest,var =
+ try
+ List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p))
+ (abs (List.hd e).c, (List.hd e).v) (List.tl e)
+ with Failure "tl" -> display_system [original] ; failwith "TL" in
+ let m = smallest + 1 in
+ let new_eq =
+ { constant = omega_mod original.constant m;
+ body = {c= -m;v=sigma} ::
+ map_eq_linear (fun a -> omega_mod a m) original.body;
+ id = new_id (); kind = EQUA } in
+ let definition =
+ { constant = - floor_div (2 * original.constant + m) (2 * m);
+ body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m))
+ original.body;
+ id = new_id (); kind = EQUA } in
+ add_event (STATE (new_eq,definition,original,m,sigma));
+ let new_eq = List.hd (normalize new_eq) in
+ let eliminated_var, def = chop_var var new_eq.body in
+ let other_equations =
+ flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e))
+ l1 in
+ let inequations =
+ flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e))
+ l2 in
+ let original' = eliminate_with_in eliminated_var new_eq original in
+ let mod_original = map_eq_afine (fun c -> c / m) original' in
+ add_event (EXACT_DIVIDE (original',m));
+ List.hd (normalize mod_original),other_equations,inequations
+
+let rec eliminate_one_equation (e,other,ineqs) =
+ if !debug then display_system (e::other);
+ try
+ let v,def = chop_factor_1 e.body in
+ (flat_map (fun e' -> normalize (eliminate_with_in v e e')) other,
+ flat_map (fun e' -> normalize (eliminate_with_in v e e')) ineqs)
+ with FACTOR1 -> eliminate_one_equation (banerjee_step e other ineqs)
+
+let rec banerjee (sys_eq,sys_ineq) =
+ let rec fst_eq_1 = function
+ (eq::l) ->
+ if List.exists (fun x -> abs x.c = 1) eq.body then eq,l
+ else let (eq',l') = fst_eq_1 l in (eq',eq::l')
+ | [] -> raise Not_found in
+ match sys_eq with
+ [] -> if !debug then display_system sys_ineq; sys_ineq
+ | (e1::rest) ->
+ let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in
+ if eq.body = [] then
+ if eq.constant = 0 then begin
+ add_event (FORGET_C eq.id); banerjee (other,sys_ineq)
+ end else begin
+ add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE
+ end
+ else banerjee (eliminate_one_equation (eq,other,sys_ineq))
+type kind = INVERTED | NORMAL
+let redundancy_elimination system =
+ let normal = function
+ ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = create 7 in
+ List.iter
+ (fun e ->
+ let ({body=ne} as nx) ,kind = normal e in
+ if ne = [] then
+ if nx.constant < 0 then begin
+ add_event (CONSTANT_NEG(nx.id,nx.constant)); raise UNSOLVABLE
+ end else add_event (FORGET_C nx.id)
+ else
+ try
+ let (optnormal,optinvert) = find table ne in
+ let final =
+ if kind = NORMAL then begin
+ match optnormal with
+ Some v ->
+ let kept =
+ if v.constant < nx.constant
+ then begin add_event (FORGET (v.id,nx.id));v end
+ else begin add_event (FORGET (nx.id,v.id));nx end in
+ (Some(kept),optinvert)
+ | None -> Some nx,optinvert
+ end else begin
+ match optinvert with
+ Some v ->
+ let kept =
+ if v.constant > nx.constant
+ then begin add_event (FORGET_I (v.id,nx.id));v end
+ else begin add_event (FORGET_I (nx.id,v.id));nx end in
+ (optnormal,Some(if v.constant > nx.constant then v else nx))
+ | None -> optnormal,Some nx
+ end in
+ begin match final with
+ (Some high, Some low) ->
+ if high.constant < low.constant then begin
+ add_event(CONTRADICTION (high,negate_eq low));
+ raise UNSOLVABLE
+ end
+ | _ -> () end;
+ remove table ne;
+ add table ne final
+ with Not_found ->
+ add table ne
+ (if kind = NORMAL then (Some nx,None) else (None,Some nx)))
+ system;
+ let accu_eq = ref [] in
+ let accu_ineq = ref [] in
+ iter
+ (fun p0 p1 -> match (p0,p1) with
+ | (e, (Some x, Some y)) when x.constant = y.constant ->
+ let id=new_id () in
+ add_event (MERGE_EQ(id,x,y.id));
+ push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq
+ | (e, (optnorm,optinvert)) ->
+ begin match optnorm with
+ Some x -> push x accu_ineq | _ -> () end;
+ begin match optinvert with
+ Some x -> push (negate_eq x) accu_ineq | _ -> () end)
+ table;
+ !accu_eq,!accu_ineq
+
+exception SOLVED_SYSTEM
+
+let select_variable system =
+ let table = create 7 in
+ let push v c=
+ try let r = find table v in r := max !r (abs c)
+ with Not_found -> add table v (ref (abs c)) in
+ List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system;
+ let vmin,cmin = ref (-1), ref 0 in
+ let var_cpt = ref 0 in
+ iter
+ (fun v ({contents = c}) ->
+ incr var_cpt;
+ if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end)
+ table;
+ if !var_cpt < 1 then raise SOLVED_SYSTEM;
+ !vmin
+
+let classify v system =
+ List.fold_left
+ (fun (not_occ,below,over) eq ->
+ try let f,eq' = chop_var v eq.body in
+ if f.c >= 0 then (not_occ,((f.c,eq) :: below),over)
+ else (not_occ,below,((-f.c,eq) :: over))
+ with CHOPVAR -> (eq::not_occ,below,over))
+ ([],[],[]) system
+
+let product dark_shadow low high =
+ List.fold_left
+ (fun accu (a,eq1) ->
+ List.fold_left
+ (fun accu (b,eq2) ->
+ let eq =
+ sum_afine (map_eq_afine (fun c -> c * b) eq1)
+ (map_eq_afine (fun c -> c * a) eq2) in
+ add_event(SUM(eq.id,(b,eq1),(a,eq2)));
+ match normalize eq with
+ | [eq] ->
+ let final_eq =
+ if dark_shadow then
+ let delta = (a - 1) * (b - 1) in
+ add_event(WEAKEN(eq.id,delta));
+ {id = eq.id; kind=INEQ; body = eq.body;
+ constant = eq.constant - delta}
+ else eq
+ in final_eq :: accu
+ | (e::_) -> failwith "Product dardk"
+ | [] -> accu)
+ accu high)
+ [] low
+
+let fourier_motzkin dark_shadow system =
+ let v = select_variable system in
+ let (ineq_out, ineq_low,ineq_high) = classify v system in
+ let expanded = ineq_out @ product dark_shadow ineq_low ineq_high in
+ if !debug then display_system expanded; expanded
+
+let simplify dark_shadow system =
+ if List.exists (fun e -> e.kind = DISE) system then
+ failwith "disequation in simplify";
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let simp_eq,simp_ineq = redundancy_elimination ineqs in
+ let system = (eqs @ simp_eq,simp_ineq) in
+ let rec loop1a system =
+ let sys_ineq = banerjee system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let simp_eq,simp_ineq = redundancy_elimination sys_ineq in
+ if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin dark_shadow system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM -> if !debug then display_system system; system
+ in
+ loop2 (loop1a system)
+
+let rec depend relie_on accu = function
+ | act :: l ->
+ begin match act with
+ | DIVIDE_AND_APPROX (e,_,_,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | EXACT_DIVIDE (e,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | WEAKEN (e,_) ->
+ if List.mem e relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | SUM (e,(_,e1),(_,e2)) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | STATE (e,_,_,_,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | HYP e ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | FORGET_C _ -> depend relie_on accu l
+ | FORGET _ -> depend relie_on accu l
+ | FORGET_I _ -> depend relie_on accu l
+ | MERGE_EQ (e,e1,e2) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | NOT_EXACT_DIVIDE (e,_) -> depend (e.id::relie_on) (act::accu) l
+ | CONTRADICTION (e1,e2) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | CONSTANT_NOT_NUL (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NEG (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NUL e -> depend (e::relie_on) (act::accu) l
+ | NEGATE_CONTRADICT (e1,e2,_) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | SPLIT_INEQ _ -> failwith "depend"
+ end
+ | [] -> relie_on, accu
+
+let solve system =
+ try let _ = simplify false system in failwith "no contradiction"
+ with UNSOLVABLE -> display_action (snd (depend [] [] (history ())))
+
+let negation (eqs,ineqs) =
+ let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in
+ let normal = function
+ | ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = create 7 in
+ List.iter (fun e ->
+ let {body=ne;constant=c} ,kind = normal e in
+ add table (ne,c) (kind,e)) diseq;
+ List.iter (fun e ->
+ if e.kind <> EQUA then pp 9999;
+ let {body=ne;constant=c},kind = normal e in
+ try
+ let (kind',e') = find table (ne,c) in
+ add_event (NEGATE_CONTRADICT (e,e',kind=kind'));
+ raise UNSOLVABLE
+ with Not_found -> ()) eqs
+
+exception FULL_SOLUTION of action list * int list
+
+let simplify_strong system =
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ (* Initial simplification phase *)
+ let rec loop1a system =
+ negation system;
+ let sys_ineq = banerjee system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in
+ let simp_eq,simp_ineq = redundancy_elimination ine in
+ if simp_eq = [] then dise @ simp_ineq
+ else loop1a (simp_eq,dise @ simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin false system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM -> if !debug then display_system system; system
+ in
+ let rec explode_diseq = function
+ | (de::diseq,ineqs,expl_map) ->
+ let id1 = new_id ()
+ and id2 = new_id () in
+ let e1 =
+ {id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in
+ let e2 =
+ {id = id2; kind=INEQ; body = map_eq_linear (fun x -> -x) de.body;
+ constant = - de.constant - 1} in
+ let new_sys =
+ List.map (fun (what,sys) -> ((de.id,id1,true)::what, e1::sys))
+ ineqs @
+ List.map (fun (what,sys) -> ((de.id,id2,false)::what,e2::sys))
+ ineqs
+ in
+ explode_diseq (diseq,new_sys,(de.id,(de,id1,id2))::expl_map)
+ | ([],ineqs,expl_map) -> ineqs,expl_map
+ in
+ try
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let dise,ine = filter (fun e -> e.kind = DISE) ineqs in
+ let simp_eq,simp_ineq = redundancy_elimination ine in
+ let system = (eqs @ simp_eq,simp_ineq @ dise) in
+ let system' = loop1a system in
+ let diseq,ineq = filter (fun e -> e.kind = DISE) system' in
+ let first_segment = history () in
+ let sys_exploded,explode_map = explode_diseq (diseq,[[],ineq],[]) in
+ let all_solutions =
+ List.map
+ (fun (decomp,sys) ->
+ clear_history ();
+ try let _ = loop2 sys in raise NO_CONTRADICTION
+ with UNSOLVABLE ->
+ let relie_on,path = depend [] [] (history ()) in
+ let dc,_ = filter (fun (_,id,_) -> List.mem id relie_on) decomp in
+ let red = List.map (fun (x,_,_) -> x) dc in
+ (red,relie_on,decomp,path))
+ sys_exploded
+ in
+ let max_count sys =
+ let tbl = create 7 in
+ let augment x =
+ try incr (find tbl x) with Not_found -> add tbl x (ref 1) in
+ let eq = ref (-1) and c = ref 0 in
+ List.iter (function
+ | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on))
+ | (l,_,_,_) -> List.iter augment l) sys;
+ iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl;
+ !eq
+ in
+ let rec solve systems =
+ try
+ let id = max_count systems in
+ let rec sign = function
+ | ((id',_,b)::l) -> if id=id' then b else sign l
+ | [] -> failwith "solve" in
+ let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in
+ let s1' =
+ List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s1 in
+ let s2' =
+ List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s2 in
+ let (r1,relie1) = solve s1'
+ and (r2,relie2) = solve s2' in
+ let (eq,id1,id2) = List.assoc id explode_map in
+ [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: list_union relie1 relie2
+ with FULL_SOLUTION (x0,x1) -> (x0,x1)
+ in
+ let act,relie_on = solve all_solutions in
+ snd(depend relie_on act first_segment)
+ with UNSOLVABLE -> snd (depend [] [] (history ()))
diff --git a/contrib/ring/ArithRing.v b/contrib/ring/ArithRing.v
new file mode 100644
index 00000000..1a6e0ba6
--- /dev/null
+++ b/contrib/ring/ArithRing.v
@@ -0,0 +1,89 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ArithRing.v,v 1.9.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+(* Instantiation of the Ring tactic for the naturals of Arith $*)
+
+Require Export Ring.
+Require Export Arith.
+Require Import Eqdep_dec.
+
+Open Local Scope nat_scope.
+
+Fixpoint nateq (n m:nat) {struct m} : bool :=
+ match n, m with
+ | O, O => true
+ | S n', S m' => nateq n' m'
+ | _, _ => false
+ end.
+
+Lemma nateq_prop : forall n m:nat, Is_true (nateq n m) -> n = m.
+Proof.
+ simple induction n; simple induction m; intros; try contradiction.
+ trivial.
+ unfold Is_true in H1.
+ rewrite (H n1 H1).
+ trivial.
+Qed.
+
+Hint Resolve nateq_prop eq2eqT: arithring.
+
+Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq.
+ split; intros; auto with arith arithring.
+ apply eq2eqT; apply (fun n m p:nat => plus_reg_l m p n) with (n := n).
+ apply eqT2eq; trivial.
+Defined.
+
+
+Add Semi Ring nat plus mult 1 0 nateq NatTheory [ 0 S ].
+
+Goal forall n:nat, S n = 1 + n.
+intro; reflexivity.
+Save S_to_plus_one.
+
+(* Replace all occurrences of (S exp) by (plus (S O) exp), except when
+ exp is already O and only for those occurrences than can be reached by going
+ down plus and mult operations *)
+Ltac rewrite_S_to_plus_term t :=
+ match constr:t with
+ | 1 => constr:1
+ | (S ?X1) =>
+ let t1 := rewrite_S_to_plus_term X1 in
+ constr:(1 + t1)
+ | (?X1 + ?X2) =>
+ let t1 := rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ constr:(t1 + t2)
+ | (?X1 * ?X2) =>
+ let t1 := rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ constr:(t1 * t2)
+ | _ => constr:t
+ end.
+
+(* Apply S_to_plus on both sides of an equality *)
+Ltac rewrite_S_to_plus :=
+ match goal with
+ | |- (?X1 = ?X2) =>
+ try
+ let t1 :=
+ (**) (**)
+ rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ change (t1 = t2) in |- *
+ | |- (?X1 = ?X2) =>
+ try
+ let t1 :=
+ (**) (**)
+ rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ change (t1 = t2) in |- *
+ end.
+
+Ltac ring_nat := rewrite_S_to_plus; ring. \ No newline at end of file
diff --git a/contrib/ring/NArithRing.v b/contrib/ring/NArithRing.v
new file mode 100644
index 00000000..cfec29ce
--- /dev/null
+++ b/contrib/ring/NArithRing.v
@@ -0,0 +1,44 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: NArithRing.v,v 1.5.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+(* Instantiation of the Ring tactic for the binary natural numbers *)
+
+Require Export Ring.
+Require Export ZArith_base.
+Require Import NArith.
+Require Import Eqdep_dec.
+
+Definition Neq (n m:N) :=
+ match (n ?= m)%N with
+ | Datatypes.Eq => true
+ | _ => false
+ end.
+
+Lemma Neq_prop : forall n m:N, Is_true (Neq n m) -> n = m.
+ intros n m H; unfold Neq in H.
+ apply Ncompare_Eq_eq.
+ destruct (n ?= m)%N; [ reflexivity | contradiction | contradiction ].
+Qed.
+
+Definition NTheory : Semi_Ring_Theory Nplus Nmult 1%N 0%N Neq.
+ split.
+ apply Nplus_comm.
+ apply Nplus_assoc.
+ apply Nmult_comm.
+ apply Nmult_assoc.
+ apply Nplus_0_l.
+ apply Nmult_1_l.
+ apply Nmult_0_l.
+ apply Nmult_plus_distr_r.
+ apply Nplus_reg_l.
+ apply Neq_prop.
+Qed.
+
+Add Semi Ring N Nplus Nmult 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ]. \ No newline at end of file
diff --git a/contrib/ring/Quote.v b/contrib/ring/Quote.v
new file mode 100644
index 00000000..b4ac5745
--- /dev/null
+++ b/contrib/ring/Quote.v
@@ -0,0 +1,84 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Quote.v,v 1.7.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+(***********************************************************************
+ The "abstract" type index is defined to represent variables.
+
+ index : Set
+ index_eq : index -> bool
+ index_eq_prop: (n,m:index)(index_eq n m)=true -> n=m
+ index_lt : index -> bool
+ varmap : Type -> Type.
+ varmap_find : (A:Type)A -> index -> (varmap A) -> A.
+
+ The first arg. of varmap_find is the default value to take
+ if the object is not found in the varmap.
+
+ index_lt defines a total well-founded order, but we don't prove that.
+
+***********************************************************************)
+
+Set Implicit Arguments.
+
+Section variables_map.
+
+Variable A : Type.
+
+Inductive varmap : Type :=
+ | Empty_vm : varmap
+ | Node_vm : A -> varmap -> varmap -> varmap.
+
+Inductive index : Set :=
+ | Left_idx : index -> index
+ | Right_idx : index -> index
+ | End_idx : index.
+
+Fixpoint varmap_find (default_value:A) (i:index) (v:varmap) {struct v} : A :=
+ match i, v with
+ | End_idx, Node_vm x _ _ => x
+ | Right_idx i1, Node_vm x v1 v2 => varmap_find default_value i1 v2
+ | Left_idx i1, Node_vm x v1 v2 => varmap_find default_value i1 v1
+ | _, _ => default_value
+ end.
+
+Fixpoint index_eq (n m:index) {struct m} : bool :=
+ match n, m with
+ | End_idx, End_idx => true
+ | Left_idx n', Left_idx m' => index_eq n' m'
+ | Right_idx n', Right_idx m' => index_eq n' m'
+ | _, _ => false
+ end.
+
+Fixpoint index_lt (n m:index) {struct m} : bool :=
+ match n, m with
+ | End_idx, Left_idx _ => true
+ | End_idx, Right_idx _ => true
+ | Left_idx n', Right_idx m' => true
+ | Right_idx n', Right_idx m' => index_lt n' m'
+ | Left_idx n', Left_idx m' => index_lt n' m'
+ | _, _ => false
+ end.
+
+Lemma index_eq_prop : forall n m:index, index_eq n m = true -> n = m.
+ simple induction n; simple induction m; simpl in |- *; intros.
+ rewrite (H i0 H1); reflexivity.
+ discriminate.
+ discriminate.
+ discriminate.
+ rewrite (H i0 H1); reflexivity.
+ discriminate.
+ discriminate.
+ discriminate.
+ reflexivity.
+Qed.
+
+End variables_map.
+
+Unset Implicit Arguments. \ No newline at end of file
diff --git a/contrib/ring/Ring.v b/contrib/ring/Ring.v
new file mode 100644
index 00000000..81497533
--- /dev/null
+++ b/contrib/ring/Ring.v
@@ -0,0 +1,36 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Ring.v,v 1.9.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Export Bool.
+Require Export Ring_theory.
+Require Export Quote.
+Require Export Ring_normalize.
+Require Export Ring_abstract.
+
+(* As an example, we provide an instantation for bool. *)
+(* Other instatiations are given in ArithRing and ZArithRing in the
+ same directory *)
+
+Definition BoolTheory :
+ Ring_Theory xorb andb true false (fun b:bool => b) eqb.
+split; simpl in |- *.
+destruct n; destruct m; reflexivity.
+destruct n; destruct m; destruct p; reflexivity.
+destruct n; destruct m; reflexivity.
+destruct n; destruct m; destruct p; reflexivity.
+destruct n; reflexivity.
+destruct n; reflexivity.
+destruct n; reflexivity.
+destruct n; destruct m; destruct p; reflexivity.
+destruct x; destruct y; reflexivity || simpl in |- *; tauto.
+Defined.
+
+Add Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory
+ [ true false ]. \ No newline at end of file
diff --git a/contrib/ring/Ring_abstract.v b/contrib/ring/Ring_abstract.v
new file mode 100644
index 00000000..de42e8c3
--- /dev/null
+++ b/contrib/ring/Ring_abstract.v
@@ -0,0 +1,704 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Ring_abstract.v,v 1.13.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Import Ring_theory.
+Require Import Quote.
+Require Import Ring_normalize.
+
+Section abstract_semi_rings.
+
+Inductive aspolynomial : Type :=
+ | ASPvar : index -> aspolynomial
+ | ASP0 : aspolynomial
+ | ASP1 : aspolynomial
+ | ASPplus : aspolynomial -> aspolynomial -> aspolynomial
+ | ASPmult : aspolynomial -> aspolynomial -> aspolynomial.
+
+Inductive abstract_sum : Type :=
+ | Nil_acs : abstract_sum
+ | Cons_acs : varlist -> abstract_sum -> abstract_sum.
+
+Fixpoint abstract_sum_merge (s1:abstract_sum) :
+ abstract_sum -> abstract_sum :=
+ match s1 with
+ | Cons_acs l1 t1 =>
+ (fix asm_aux (s2:abstract_sum) : abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ if varlist_lt l1 l2
+ then Cons_acs l1 (abstract_sum_merge t1 s2)
+ else Cons_acs l2 (asm_aux t2)
+ | Nil_acs => s1
+ end)
+ | Nil_acs => fun s2 => s2
+ end.
+
+Fixpoint abstract_varlist_insert (l1:varlist) (s2:abstract_sum) {struct s2} :
+ abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ if varlist_lt l1 l2
+ then Cons_acs l1 s2
+ else Cons_acs l2 (abstract_varlist_insert l1 t2)
+ | Nil_acs => Cons_acs l1 Nil_acs
+ end.
+
+Fixpoint abstract_sum_scalar (l1:varlist) (s2:abstract_sum) {struct s2} :
+ abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ abstract_varlist_insert (varlist_merge l1 l2)
+ (abstract_sum_scalar l1 t2)
+ | Nil_acs => Nil_acs
+ end.
+
+Fixpoint abstract_sum_prod (s1 s2:abstract_sum) {struct s1} : abstract_sum :=
+ match s1 with
+ | Cons_acs l1 t1 =>
+ abstract_sum_merge (abstract_sum_scalar l1 s2)
+ (abstract_sum_prod t1 s2)
+ | Nil_acs => Nil_acs
+ end.
+
+Fixpoint aspolynomial_normalize (p:aspolynomial) : abstract_sum :=
+ match p with
+ | ASPvar i => Cons_acs (Cons_var i Nil_var) Nil_acs
+ | ASP1 => Cons_acs Nil_var Nil_acs
+ | ASP0 => Nil_acs
+ | ASPplus l r =>
+ abstract_sum_merge (aspolynomial_normalize l)
+ (aspolynomial_normalize r)
+ | ASPmult l r =>
+ abstract_sum_prod (aspolynomial_normalize l) (aspolynomial_normalize r)
+ end.
+
+
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aeq : A -> A -> bool.
+Variable vm : varmap A.
+Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
+
+Fixpoint interp_asp (p:aspolynomial) : A :=
+ match p with
+ | ASPvar i => interp_var Azero vm i
+ | ASP0 => Azero
+ | ASP1 => Aone
+ | ASPplus l r => Aplus (interp_asp l) (interp_asp r)
+ | ASPmult l r => Amult (interp_asp l) (interp_asp r)
+ end.
+
+(* Local *) Definition iacs_aux :=
+ (fix iacs_aux (a:A) (s:abstract_sum) {struct s} : A :=
+ match s with
+ | Nil_acs => a
+ | Cons_acs l t =>
+ Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t)
+ end).
+
+Definition interp_acs (s:abstract_sum) : A :=
+ match s with
+ | Cons_acs l t => iacs_aux (interp_vl Amult Aone Azero vm l) t
+ | Nil_acs => Azero
+ end.
+
+Hint Resolve (SR_plus_comm T).
+Hint Resolve (SR_plus_assoc T).
+Hint Resolve (SR_plus_assoc2 T).
+Hint Resolve (SR_mult_comm T).
+Hint Resolve (SR_mult_assoc T).
+Hint Resolve (SR_mult_assoc2 T).
+Hint Resolve (SR_plus_zero_left T).
+Hint Resolve (SR_plus_zero_left2 T).
+Hint Resolve (SR_mult_one_left T).
+Hint Resolve (SR_mult_one_left2 T).
+Hint Resolve (SR_mult_zero_left T).
+Hint Resolve (SR_mult_zero_left2 T).
+Hint Resolve (SR_distr_left T).
+Hint Resolve (SR_distr_left2 T).
+Hint Resolve (SR_plus_reg_left T).
+Hint Resolve (SR_plus_permute T).
+Hint Resolve (SR_mult_permute T).
+Hint Resolve (SR_distr_right T).
+Hint Resolve (SR_distr_right2 T).
+Hint Resolve (SR_mult_zero_right T).
+Hint Resolve (SR_mult_zero_right2 T).
+Hint Resolve (SR_plus_zero_right T).
+Hint Resolve (SR_plus_zero_right2 T).
+Hint Resolve (SR_mult_one_right T).
+Hint Resolve (SR_mult_one_right2 T).
+Hint Resolve (SR_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
+(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Immediate T.
+
+Remark iacs_aux_ok :
+ forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
+Proof.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+Qed.
+
+Hint Extern 10 (_ = _ :>A) => rewrite iacs_aux_ok: core.
+
+Lemma abstract_varlist_insert_ok :
+ forall (l:varlist) (s:abstract_sum),
+ interp_acs (abstract_varlist_insert l s) =
+ Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s).
+
+ simple induction s.
+ trivial.
+
+ simpl in |- *; intros.
+ elim (varlist_lt l v); simpl in |- *.
+ eauto.
+ rewrite iacs_aux_ok.
+ rewrite H; auto.
+
+Qed.
+
+Lemma abstract_sum_merge_ok :
+ forall x y:abstract_sum,
+ interp_acs (abstract_sum_merge x y) = Aplus (interp_acs x) (interp_acs y).
+
+Proof.
+ simple induction x.
+ trivial.
+ simple induction y; intros.
+
+ auto.
+
+ simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
+ repeat rewrite iacs_aux_ok.
+ rewrite H; simpl in |- *; auto.
+
+ simpl in H0.
+ repeat rewrite iacs_aux_ok.
+ rewrite H0. simpl in |- *; auto.
+Qed.
+
+Lemma abstract_sum_scalar_ok :
+ forall (l:varlist) (s:abstract_sum),
+ interp_acs (abstract_sum_scalar l s) =
+ Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
+Proof.
+ simple induction s.
+ simpl in |- *; eauto.
+
+ simpl in |- *; intros.
+ rewrite iacs_aux_ok.
+ rewrite abstract_varlist_insert_ok.
+ rewrite H.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ auto.
+Qed.
+
+Lemma abstract_sum_prod_ok :
+ forall x y:abstract_sum,
+ interp_acs (abstract_sum_prod x y) = Amult (interp_acs x) (interp_acs y).
+
+Proof.
+ simple induction x.
+ intros; simpl in |- *; eauto.
+
+ destruct y as [| v0 a0]; intros.
+
+ simpl in |- *; rewrite H; eauto.
+
+ unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
+ rewrite abstract_sum_merge_ok.
+ rewrite abstract_sum_scalar_ok.
+ rewrite H; simpl in |- *; auto.
+Qed.
+
+Theorem aspolynomial_normalize_ok :
+ forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
+Proof.
+ simple induction x; simpl in |- *; intros; trivial.
+ rewrite abstract_sum_merge_ok.
+ rewrite H; rewrite H0; eauto.
+ rewrite abstract_sum_prod_ok.
+ rewrite H; rewrite H0; eauto.
+Qed.
+
+End abstract_semi_rings.
+
+Section abstract_rings.
+
+(* In abstract polynomials there is no constants other
+ than 0 and 1. An abstract ring is a ring whose operations plus,
+ and mult are not functions but constructors. In other words,
+ when c1 and c2 are closed, (plus c1 c2) doesn't reduce to a closed
+ term. "closed" mean here "without plus and mult". *)
+
+(* this section is not parametrized by a (semi-)ring.
+ Nevertheless, they are two different types for semi-rings and rings
+ and there will be 2 correction theorems *)
+
+Inductive apolynomial : Type :=
+ | APvar : index -> apolynomial
+ | AP0 : apolynomial
+ | AP1 : apolynomial
+ | APplus : apolynomial -> apolynomial -> apolynomial
+ | APmult : apolynomial -> apolynomial -> apolynomial
+ | APopp : apolynomial -> apolynomial.
+
+(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
+ Invariant : the list is sorted and there is no varlist is present
+ with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
+
+Inductive signed_sum : Type :=
+ | Nil_varlist : signed_sum
+ | Plus_varlist : varlist -> signed_sum -> signed_sum
+ | Minus_varlist : varlist -> signed_sum -> signed_sum.
+
+Fixpoint signed_sum_merge (s1:signed_sum) : signed_sum -> signed_sum :=
+ match s1 with
+ | Plus_varlist l1 t1 =>
+ (fix ssm_aux (s2:signed_sum) : signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Plus_varlist l1 (signed_sum_merge t1 s2)
+ else Plus_varlist l2 (ssm_aux t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then signed_sum_merge t1 t2
+ else
+ if varlist_lt l1 l2
+ then Plus_varlist l1 (signed_sum_merge t1 s2)
+ else Minus_varlist l2 (ssm_aux t2)
+ | Nil_varlist => s1
+ end)
+ | Minus_varlist l1 t1 =>
+ (fix ssm_aux2 (s2:signed_sum) : signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then signed_sum_merge t1 t2
+ else
+ if varlist_lt l1 l2
+ then Minus_varlist l1 (signed_sum_merge t1 s2)
+ else Plus_varlist l2 (ssm_aux2 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Minus_varlist l1 (signed_sum_merge t1 s2)
+ else Minus_varlist l2 (ssm_aux2 t2)
+ | Nil_varlist => s1
+ end)
+ | Nil_varlist => fun s2 => s2
+ end.
+
+Fixpoint plus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Plus_varlist l1 s2
+ else Plus_varlist l2 (plus_varlist_insert l1 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then t2
+ else
+ if varlist_lt l1 l2
+ then Plus_varlist l1 s2
+ else Minus_varlist l2 (plus_varlist_insert l1 t2)
+ | Nil_varlist => Plus_varlist l1 Nil_varlist
+ end.
+
+Fixpoint minus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then t2
+ else
+ if varlist_lt l1 l2
+ then Minus_varlist l1 s2
+ else Plus_varlist l2 (minus_varlist_insert l1 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Minus_varlist l1 s2
+ else Minus_varlist l2 (minus_varlist_insert l1 t2)
+ | Nil_varlist => Minus_varlist l1 Nil_varlist
+ end.
+
+Fixpoint signed_sum_opp (s:signed_sum) : signed_sum :=
+ match s with
+ | Plus_varlist l2 t2 => Minus_varlist l2 (signed_sum_opp t2)
+ | Minus_varlist l2 t2 => Plus_varlist l2 (signed_sum_opp t2)
+ | Nil_varlist => Nil_varlist
+ end.
+
+
+Fixpoint plus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ plus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
+ | Minus_varlist l2 t2 =>
+ minus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
+ | Nil_varlist => Nil_varlist
+ end.
+
+Fixpoint minus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ minus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
+ | Minus_varlist l2 t2 =>
+ plus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
+ | Nil_varlist => Nil_varlist
+ end.
+
+Fixpoint signed_sum_prod (s1 s2:signed_sum) {struct s1} : signed_sum :=
+ match s1 with
+ | Plus_varlist l1 t1 =>
+ signed_sum_merge (plus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
+ | Minus_varlist l1 t1 =>
+ signed_sum_merge (minus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
+ | Nil_varlist => Nil_varlist
+ end.
+
+Fixpoint apolynomial_normalize (p:apolynomial) : signed_sum :=
+ match p with
+ | APvar i => Plus_varlist (Cons_var i Nil_var) Nil_varlist
+ | AP1 => Plus_varlist Nil_var Nil_varlist
+ | AP0 => Nil_varlist
+ | APplus l r =>
+ signed_sum_merge (apolynomial_normalize l) (apolynomial_normalize r)
+ | APmult l r =>
+ signed_sum_prod (apolynomial_normalize l) (apolynomial_normalize r)
+ | APopp q => signed_sum_opp (apolynomial_normalize q)
+ end.
+
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aopp : A -> A.
+Variable Aeq : A -> A -> bool.
+Variable vm : varmap A.
+Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
+
+(* Local *) Definition isacs_aux :=
+ (fix isacs_aux (a:A) (s:signed_sum) {struct s} : A :=
+ match s with
+ | Nil_varlist => a
+ | Plus_varlist l t =>
+ Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t)
+ | Minus_varlist l t =>
+ Aplus a
+ (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
+ end).
+
+Definition interp_sacs (s:signed_sum) : A :=
+ match s with
+ | Plus_varlist l t => isacs_aux (interp_vl Amult Aone Azero vm l) t
+ | Minus_varlist l t => isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t
+ | Nil_varlist => Azero
+ end.
+
+Fixpoint interp_ap (p:apolynomial) : A :=
+ match p with
+ | APvar i => interp_var Azero vm i
+ | AP0 => Azero
+ | AP1 => Aone
+ | APplus l r => Aplus (interp_ap l) (interp_ap r)
+ | APmult l r => Amult (interp_ap l) (interp_ap r)
+ | APopp q => Aopp (interp_ap q)
+ end.
+
+Hint Resolve (Th_plus_comm T).
+Hint Resolve (Th_plus_assoc T).
+Hint Resolve (Th_plus_assoc2 T).
+Hint Resolve (Th_mult_sym T).
+Hint Resolve (Th_mult_assoc T).
+Hint Resolve (Th_mult_assoc2 T).
+Hint Resolve (Th_plus_zero_left T).
+Hint Resolve (Th_plus_zero_left2 T).
+Hint Resolve (Th_mult_one_left T).
+Hint Resolve (Th_mult_one_left2 T).
+Hint Resolve (Th_mult_zero_left T).
+Hint Resolve (Th_mult_zero_left2 T).
+Hint Resolve (Th_distr_left T).
+Hint Resolve (Th_distr_left2 T).
+Hint Resolve (Th_plus_reg_left T).
+Hint Resolve (Th_plus_permute T).
+Hint Resolve (Th_mult_permute T).
+Hint Resolve (Th_distr_right T).
+Hint Resolve (Th_distr_right2 T).
+Hint Resolve (Th_mult_zero_right2 T).
+Hint Resolve (Th_plus_zero_right T).
+Hint Resolve (Th_plus_zero_right2 T).
+Hint Resolve (Th_mult_one_right T).
+Hint Resolve (Th_mult_one_right2 T).
+Hint Resolve (Th_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
+(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Immediate T.
+
+Lemma isacs_aux_ok :
+ forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
+Proof.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+ reflexivity.
+Qed.
+
+Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
+
+Ltac solve1 v v0 H H0 :=
+ simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
+ [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
+
+Lemma signed_sum_merge_ok :
+ forall x y:signed_sum,
+ interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
+
+ simple induction x.
+ intro; simpl in |- *; auto.
+
+ simple induction y; intros.
+
+ auto.
+
+ solve1 v v0 H H0.
+
+ simpl in |- *; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl in |- *.
+
+ intro Heq; rewrite (Heq I).
+ rewrite H.
+ repeat rewrite isacs_aux_ok.
+ rewrite (Th_plus_permute T).
+ repeat rewrite (Th_plus_assoc T).
+ rewrite
+ (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v0))
+ (interp_vl Amult Aone Azero vm v0)).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
+
+ solve1 v v0 H H0.
+
+ simple induction y; intros.
+
+ auto.
+
+ simpl in |- *; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl in |- *.
+
+ intro Heq; rewrite (Heq I).
+ rewrite H.
+ repeat rewrite isacs_aux_ok.
+ rewrite (Th_plus_permute T).
+ repeat rewrite (Th_plus_assoc T).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
+
+ solve1 v v0 H H0.
+
+ solve1 v v0 H H0.
+
+Qed.
+
+Ltac solve2 l v H :=
+ elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
+ [ auto | rewrite H; auto ].
+
+Lemma plus_varlist_insert_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (plus_varlist_insert l s) =
+ Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s).
+Proof.
+
+ simple induction s.
+ trivial.
+
+ simpl in |- *; intros.
+ solve2 l v H.
+
+ simpl in |- *; intros.
+ generalize (varlist_eq_prop l v).
+ elim (varlist_eq l v); simpl in |- *.
+
+ intro Heq; rewrite (Heq I).
+ repeat rewrite isacs_aux_ok.
+ repeat rewrite (Th_plus_assoc T).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
+
+ solve2 l v H.
+
+Qed.
+
+Lemma minus_varlist_insert_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (minus_varlist_insert l s) =
+ Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s).
+Proof.
+
+ simple induction s.
+ trivial.
+
+ simpl in |- *; intros.
+ generalize (varlist_eq_prop l v).
+ elim (varlist_eq l v); simpl in |- *.
+
+ intro Heq; rewrite (Heq I).
+ repeat rewrite isacs_aux_ok.
+ repeat rewrite (Th_plus_assoc T).
+ rewrite
+ (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v))
+ (interp_vl Amult Aone Azero vm v)).
+ rewrite (Th_opp_def T).
+ auto.
+
+ simpl in |- *; intros.
+ solve2 l v H.
+
+ simpl in |- *; intros; solve2 l v H.
+
+Qed.
+
+Lemma signed_sum_opp_ok :
+ forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
+Proof.
+
+ simple induction s; simpl in |- *; intros.
+
+ symmetry in |- *; apply (Th_opp_zero T).
+
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite (Th_plus_opp_opp T).
+ reflexivity.
+
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite <- (Th_plus_opp_opp T).
+ rewrite (Th_opp_opp T).
+ reflexivity.
+
+Qed.
+
+Lemma plus_sum_scalar_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (plus_sum_scalar l s) =
+ Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s).
+Proof.
+
+ simple induction s.
+ trivial.
+
+ simpl in |- *; intros.
+ rewrite plus_varlist_insert_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ auto.
+
+ simpl in |- *; intros.
+ rewrite minus_varlist_insert_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite <- (Th_opp_mult_right T).
+ reflexivity.
+
+Qed.
+
+Lemma minus_sum_scalar_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (minus_sum_scalar l s) =
+ Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
+Proof.
+
+ simple induction s; simpl in |- *; intros.
+
+ rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
+
+ simpl in |- *; intros.
+ rewrite minus_varlist_insert_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite (Th_plus_opp_opp T).
+ reflexivity.
+
+ simpl in |- *; intros.
+ rewrite plus_varlist_insert_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite <- (Th_opp_mult_right T).
+ rewrite <- (Th_plus_opp_opp T).
+ rewrite (Th_opp_opp T).
+ reflexivity.
+
+Qed.
+
+Lemma signed_sum_prod_ok :
+ forall x y:signed_sum,
+ interp_sacs (signed_sum_prod x y) = Amult (interp_sacs x) (interp_sacs y).
+Proof.
+
+ simple induction x.
+
+ simpl in |- *; eauto 1.
+
+ intros; simpl in |- *.
+ rewrite signed_sum_merge_ok.
+ rewrite plus_sum_scalar_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ auto.
+
+ intros; simpl in |- *.
+ repeat rewrite isacs_aux_ok.
+ rewrite signed_sum_merge_ok.
+ rewrite minus_sum_scalar_ok.
+ rewrite H.
+ rewrite (Th_distr_left T).
+ rewrite (Th_opp_mult_left T).
+ reflexivity.
+
+Qed.
+
+Theorem apolynomial_normalize_ok :
+ forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
+Proof.
+ simple induction p; simpl in |- *; auto 1.
+ intros.
+ rewrite signed_sum_merge_ok.
+ rewrite H; rewrite H0; reflexivity.
+ intros.
+ rewrite signed_sum_prod_ok.
+ rewrite H; rewrite H0; reflexivity.
+ intros.
+ rewrite signed_sum_opp_ok.
+ rewrite H; reflexivity.
+Qed.
+
+End abstract_rings. \ No newline at end of file
diff --git a/contrib/ring/Ring_normalize.v b/contrib/ring/Ring_normalize.v
new file mode 100644
index 00000000..8c0fd5fb
--- /dev/null
+++ b/contrib/ring/Ring_normalize.v
@@ -0,0 +1,901 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Ring_normalize.v,v 1.16.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Import Ring_theory.
+Require Import Quote.
+
+Set Implicit Arguments.
+
+Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
+Proof.
+ intros.
+ apply index_eq_prop.
+ generalize H.
+ case (index_eq n m); simpl in |- *; trivial; intros.
+ contradiction.
+Qed.
+
+Section semi_rings.
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aeq : A -> A -> bool.
+
+(* Section definitions. *)
+
+
+(******************************************)
+(* Normal abtract Polynomials *)
+(******************************************)
+(* DEFINITIONS :
+- A varlist is a sorted product of one or more variables : x, x*y*z
+- A monom is a constant, a varlist or the product of a constant by a varlist
+ variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
+- A canonical sum is either a monom or an ordered sum of monoms
+ (the order on monoms is defined later)
+- A normal polynomial it either a constant or a canonical sum or a constant
+ plus a canonical sum
+*)
+
+(* varlist is isomorphic to (list var), but we built a special inductive
+ for efficiency *)
+Inductive varlist : Type :=
+ | Nil_var : varlist
+ | Cons_var : index -> varlist -> varlist.
+
+Inductive canonical_sum : Type :=
+ | Nil_monom : canonical_sum
+ | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
+ | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
+
+(* Order on monoms *)
+
+(* That's the lexicographic order on varlist, extended by :
+ - A constant is less than every monom
+ - The relation between two varlist is preserved by multiplication by a
+ constant.
+
+ Examples :
+ 3 < x < y
+ x*y < x*y*y*z
+ 2*x*y < x*y*y*z
+ x*y < 54*x*y*y*z
+ 4*x*y < 59*x*y*y*z
+*)
+
+Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Nil_var => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ andb (index_eq i j) (varlist_eq xrest yrest)
+ | _, _ => false
+ end.
+
+Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Cons_var _ _ => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ if index_lt i j
+ then true
+ else andb (index_eq i j) (varlist_lt xrest yrest)
+ | _, _ => false
+ end.
+
+(* merges two variables lists *)
+Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
+ match l1 with
+ | Cons_var v1 t1 =>
+ (fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Cons_var v2 t2 =>
+ if index_lt v1 v2
+ then Cons_var v1 (varlist_merge t1 l2)
+ else Cons_var v2 (vm_aux t2)
+ | Nil_var => l1
+ end)
+ | Nil_var => fun l2 => l2
+ end.
+
+(* returns the sum of two canonical sums *)
+Fixpoint canonical_sum_merge (s1:canonical_sum) :
+ canonical_sum -> canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ (fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux t2)
+ | Nil_monom => s1
+ end)
+ | Cons_varlist l1 t1 =>
+ (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ | Nil_monom => s1
+ end)
+ | Nil_monom => fun s2 => s2
+ end.
+
+(* Insertion of a monom in a canonical sum *)
+Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_monom c2 l2 (monom_insert c1 l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_varlist l2 (monom_insert c1 l1 t2)
+ | Nil_monom => Cons_monom c1 l1 Nil_monom
+ end.
+
+Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_monom c2 l2 (varlist_insert l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_varlist l2 (varlist_insert l1 t2)
+ | Nil_monom => Cons_varlist l1 Nil_monom
+ end.
+
+(* Computes c0*s *)
+Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
+ | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* Computes l0*s *)
+Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Cons_varlist l t =>
+ varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* Computes c0*l0*s *)
+Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
+ (s:canonical_sum) {struct s} : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert (Amult c0 c) (varlist_merge l0 l)
+ (canonical_sum_scalar3 c0 l0 t)
+ | Cons_varlist l t =>
+ monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* returns the product of two canonical sums *)
+Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
+ canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Cons_varlist l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar2 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Nil_monom => Nil_monom
+ end.
+
+(* The type to represent concrete semi-ring polynomials *)
+Inductive spolynomial : Type :=
+ | SPvar : index -> spolynomial
+ | SPconst : A -> spolynomial
+ | SPplus : spolynomial -> spolynomial -> spolynomial
+ | SPmult : spolynomial -> spolynomial -> spolynomial.
+
+Fixpoint spolynomial_normalize (p:spolynomial) : canonical_sum :=
+ match p with
+ | SPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ | SPconst c => Cons_monom c Nil_var Nil_monom
+ | SPplus l r =>
+ canonical_sum_merge (spolynomial_normalize l) (spolynomial_normalize r)
+ | SPmult l r =>
+ canonical_sum_prod (spolynomial_normalize l) (spolynomial_normalize r)
+ end.
+
+(* Deletion of useless 0 and 1 in canonical sums *)
+Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ if Aeq c Azero
+ then canonical_sum_simplify t
+ else
+ if Aeq c Aone
+ then Cons_varlist l (canonical_sum_simplify t)
+ else Cons_monom c l (canonical_sum_simplify t)
+ | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
+ | Nil_monom => Nil_monom
+ end.
+
+Definition spolynomial_simplify (x:spolynomial) :=
+ canonical_sum_simplify (spolynomial_normalize x).
+
+(* End definitions. *)
+
+(* Section interpretation. *)
+
+(*** Here a variable map is defined and the interpetation of a spolynom
+ acording to a certain variables map. Once again the choosen definition
+ is generic and could be changed ****)
+
+Variable vm : varmap A.
+
+(* Interpretation of list of variables
+ * [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
+ * The unbound variables are mapped to 0. Normally this case sould
+ * never occur. Since we want only to prove correctness theorems, which form
+ * is : for any varmap and any spolynom ... this is a safe and pain-saving
+ * choice *)
+Definition interp_var (i:index) := varmap_find Azero i vm.
+
+(* Local *) Definition ivl_aux :=
+ (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
+ match t with
+ | Nil_var => interp_var x
+ | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
+ end).
+
+Definition interp_vl (l:varlist) :=
+ match l with
+ | Nil_var => Aone
+ | Cons_var x t => ivl_aux x t
+ end.
+
+(* Local *) Definition interp_m (c:A) (l:varlist) :=
+ match l with
+ | Nil_var => c
+ | Cons_var x t => Amult c (ivl_aux x t)
+ end.
+
+(* Local *) Definition ics_aux :=
+ (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
+ match s with
+ | Nil_monom => a
+ | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
+ | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
+ end).
+
+(* Interpretation of a canonical sum *)
+Definition interp_cs (s:canonical_sum) : A :=
+ match s with
+ | Nil_monom => Azero
+ | Cons_varlist l t => ics_aux (interp_vl l) t
+ | Cons_monom c l t => ics_aux (interp_m c l) t
+ end.
+
+Fixpoint interp_sp (p:spolynomial) : A :=
+ match p with
+ | SPconst c => c
+ | SPvar i => interp_var i
+ | SPplus p1 p2 => Aplus (interp_sp p1) (interp_sp p2)
+ | SPmult p1 p2 => Amult (interp_sp p1) (interp_sp p2)
+ end.
+
+
+(* End interpretation. *)
+
+Unset Implicit Arguments.
+
+(* Section properties. *)
+
+Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
+
+Hint Resolve (SR_plus_comm T).
+Hint Resolve (SR_plus_assoc T).
+Hint Resolve (SR_plus_assoc2 T).
+Hint Resolve (SR_mult_comm T).
+Hint Resolve (SR_mult_assoc T).
+Hint Resolve (SR_mult_assoc2 T).
+Hint Resolve (SR_plus_zero_left T).
+Hint Resolve (SR_plus_zero_left2 T).
+Hint Resolve (SR_mult_one_left T).
+Hint Resolve (SR_mult_one_left2 T).
+Hint Resolve (SR_mult_zero_left T).
+Hint Resolve (SR_mult_zero_left2 T).
+Hint Resolve (SR_distr_left T).
+Hint Resolve (SR_distr_left2 T).
+Hint Resolve (SR_plus_reg_left T).
+Hint Resolve (SR_plus_permute T).
+Hint Resolve (SR_mult_permute T).
+Hint Resolve (SR_distr_right T).
+Hint Resolve (SR_distr_right2 T).
+Hint Resolve (SR_mult_zero_right T).
+Hint Resolve (SR_mult_zero_right2 T).
+Hint Resolve (SR_plus_zero_right T).
+Hint Resolve (SR_plus_zero_right2 T).
+Hint Resolve (SR_mult_one_right T).
+Hint Resolve (SR_mult_one_right2 T).
+Hint Resolve (SR_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
+(* Hints Resolve refl_eqT sym_eqT trans_eqT. *)
+Hint Immediate T.
+
+Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
+Proof.
+ simple induction x; simple induction y; contradiction || (try reflexivity).
+ simpl in |- *; intros.
+ generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
+ rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
+Qed.
+
+Remark ivl_aux_ok :
+ forall (v:varlist) (i:index),
+ ivl_aux i v = Amult (interp_var i) (interp_vl v).
+Proof.
+ simple induction v; simpl in |- *; intros.
+ trivial.
+ rewrite H; trivial.
+Qed.
+
+Lemma varlist_merge_ok :
+ forall x y:varlist,
+ interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
+Proof.
+ simple induction x.
+ simpl in |- *; trivial.
+ simple induction y.
+ simpl in |- *; trivial.
+ simpl in |- *; intros.
+ elim (index_lt i i0); simpl in |- *; intros.
+
+ repeat rewrite ivl_aux_ok.
+ rewrite H. simpl in |- *.
+ rewrite ivl_aux_ok.
+ eauto.
+
+ repeat rewrite ivl_aux_ok.
+ rewrite H0.
+ rewrite ivl_aux_ok.
+ eauto.
+Qed.
+
+Remark ics_aux_ok :
+ forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
+Proof.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+ reflexivity.
+Qed.
+
+Remark interp_m_ok :
+ forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
+Proof.
+ destruct l as [| i v].
+ simpl in |- *; trivial.
+ reflexivity.
+Qed.
+
+Lemma canonical_sum_merge_ok :
+ forall x y:canonical_sum,
+ interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
+
+simple induction x; simpl in |- *.
+trivial.
+
+simple induction y; simpl in |- *; intros.
+(* monom and nil *)
+eauto.
+
+(* monom and monom *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+(* monom and varlist *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
+rewrite (SR_mult_one_left T).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+simple induction y; simpl in |- *; intros.
+(* varlist and nil *)
+trivial.
+
+(* varlist and monom *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_one_left T).
+apply f_equal with (f := Aplus (interp_vl v0)).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+(* varlist and varlist *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_one_left T).
+apply f_equal with (f := Aplus (interp_vl v0)).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+Qed.
+
+Lemma monom_insert_ok :
+ forall (a:A) (l:varlist) (s:canonical_sum),
+ interp_cs (monom_insert a l s) =
+ Aplus (Amult a (interp_vl l)) (interp_cs s).
+intros; generalize s; simple induction s0.
+
+simpl in |- *; rewrite interp_m_ok; trivial.
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
+ eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+Qed.
+
+Lemma varlist_insert_ok :
+ forall (l:varlist) (s:canonical_sum),
+ interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
+intros; generalize s; simple induction s0.
+
+simpl in |- *; trivial.
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+Qed.
+
+Lemma canonical_sum_scalar_ok :
+ forall (a:A) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
+simple induction s.
+simpl in |- *; eauto.
+
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+reflexivity.
+
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_scalar2_ok :
+ forall (l:varlist) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
+simple induction s.
+simpl in |- *; trivial.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
+reflexivity.
+
+simpl in |- *; intros.
+rewrite varlist_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_scalar3_ok :
+ forall (c:A) (l:varlist) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar3 c l s) =
+ Amult c (Amult (interp_vl l) (interp_cs s)).
+simple induction s.
+simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
+reflexivity.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_prod_ok :
+ forall x y:canonical_sum,
+ interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
+simple induction x; simpl in |- *; intros.
+trivial.
+
+rewrite canonical_sum_merge_ok.
+rewrite canonical_sum_scalar3_ok.
+rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
+symmetry in |- *.
+eauto.
+
+rewrite canonical_sum_merge_ok.
+rewrite canonical_sum_scalar2_ok.
+rewrite ics_aux_ok.
+rewrite H.
+trivial.
+Qed.
+
+Theorem spolynomial_normalize_ok :
+ forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
+simple induction p; simpl in |- *; intros.
+
+reflexivity.
+reflexivity.
+
+rewrite canonical_sum_merge_ok.
+rewrite H; rewrite H0.
+reflexivity.
+
+rewrite canonical_sum_prod_ok.
+rewrite H; rewrite H0.
+reflexivity.
+Qed.
+
+Lemma canonical_sum_simplify_ok :
+ forall s:canonical_sum, interp_cs (canonical_sum_simplify s) = interp_cs s.
+simple induction s.
+
+reflexivity.
+
+(* cons_monom *)
+simpl in |- *; intros.
+generalize (SR_eq_prop T a Azero).
+elim (Aeq a Azero).
+intro Heq; rewrite (Heq I).
+rewrite H.
+rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite (SR_mult_zero_left T).
+trivial.
+
+intros; simpl in |- *.
+generalize (SR_eq_prop T a Aone).
+elim (Aeq a Aone).
+intro Heq; rewrite (Heq I).
+simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_mult_one_left T).
+reflexivity.
+
+simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+reflexivity.
+
+(* cons_varlist *)
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+rewrite H.
+reflexivity.
+
+Qed.
+
+Theorem spolynomial_simplify_ok :
+ forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
+intro.
+unfold spolynomial_simplify in |- *.
+rewrite canonical_sum_simplify_ok.
+apply spolynomial_normalize_ok.
+Qed.
+
+(* End properties. *)
+End semi_rings.
+
+Implicit Arguments Cons_varlist.
+Implicit Arguments Cons_monom.
+Implicit Arguments SPconst.
+Implicit Arguments SPplus.
+Implicit Arguments SPmult.
+
+Section rings.
+
+(* Here the coercion between Ring and Semi-Ring will be useful *)
+
+Set Implicit Arguments.
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aopp : A -> A.
+Variable Aeq : A -> A -> bool.
+Variable vm : varmap A.
+Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
+
+Hint Resolve (Th_plus_comm T).
+Hint Resolve (Th_plus_assoc T).
+Hint Resolve (Th_plus_assoc2 T).
+Hint Resolve (Th_mult_sym T).
+Hint Resolve (Th_mult_assoc T).
+Hint Resolve (Th_mult_assoc2 T).
+Hint Resolve (Th_plus_zero_left T).
+Hint Resolve (Th_plus_zero_left2 T).
+Hint Resolve (Th_mult_one_left T).
+Hint Resolve (Th_mult_one_left2 T).
+Hint Resolve (Th_mult_zero_left T).
+Hint Resolve (Th_mult_zero_left2 T).
+Hint Resolve (Th_distr_left T).
+Hint Resolve (Th_distr_left2 T).
+Hint Resolve (Th_plus_reg_left T).
+Hint Resolve (Th_plus_permute T).
+Hint Resolve (Th_mult_permute T).
+Hint Resolve (Th_distr_right T).
+Hint Resolve (Th_distr_right2 T).
+Hint Resolve (Th_mult_zero_right T).
+Hint Resolve (Th_mult_zero_right2 T).
+Hint Resolve (Th_plus_zero_right T).
+Hint Resolve (Th_plus_zero_right2 T).
+Hint Resolve (Th_mult_one_right T).
+Hint Resolve (Th_mult_one_right2 T).
+Hint Resolve (Th_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
+(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Immediate T.
+
+(*** Definitions *)
+
+Inductive polynomial : Type :=
+ | Pvar : index -> polynomial
+ | Pconst : A -> polynomial
+ | Pplus : polynomial -> polynomial -> polynomial
+ | Pmult : polynomial -> polynomial -> polynomial
+ | Popp : polynomial -> polynomial.
+
+Fixpoint polynomial_normalize (x:polynomial) : canonical_sum A :=
+ match x with
+ | Pplus l r =>
+ canonical_sum_merge Aplus Aone (polynomial_normalize l)
+ (polynomial_normalize r)
+ | Pmult l r =>
+ canonical_sum_prod Aplus Amult Aone (polynomial_normalize l)
+ (polynomial_normalize r)
+ | Pconst c => Cons_monom c Nil_var (Nil_monom A)
+ | Pvar i => Cons_varlist (Cons_var i Nil_var) (Nil_monom A)
+ | Popp p =>
+ canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
+ (polynomial_normalize p)
+ end.
+
+Definition polynomial_simplify (x:polynomial) :=
+ canonical_sum_simplify Aone Azero Aeq (polynomial_normalize x).
+
+Fixpoint spolynomial_of (x:polynomial) : spolynomial A :=
+ match x with
+ | Pplus l r => SPplus (spolynomial_of l) (spolynomial_of r)
+ | Pmult l r => SPmult (spolynomial_of l) (spolynomial_of r)
+ | Pconst c => SPconst c
+ | Pvar i => SPvar A i
+ | Popp p => SPmult (SPconst (Aopp Aone)) (spolynomial_of p)
+ end.
+
+(*** Interpretation *)
+
+Fixpoint interp_p (p:polynomial) : A :=
+ match p with
+ | Pconst c => c
+ | Pvar i => varmap_find Azero i vm
+ | Pplus p1 p2 => Aplus (interp_p p1) (interp_p p2)
+ | Pmult p1 p2 => Amult (interp_p p1) (interp_p p2)
+ | Popp p1 => Aopp (interp_p p1)
+ end.
+
+(*** Properties *)
+
+Unset Implicit Arguments.
+
+Lemma spolynomial_of_ok :
+ forall p:polynomial,
+ interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
+simple induction p; reflexivity || (simpl in |- *; intros).
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H.
+rewrite (Th_opp_mult_left2 T).
+rewrite (Th_mult_one_left T).
+reflexivity.
+Qed.
+
+Theorem polynomial_normalize_ok :
+ forall p:polynomial,
+ polynomial_normalize p =
+ spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
+simple induction p; reflexivity || (simpl in |- *; intros).
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; simpl in |- *.
+elim
+ (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
+ (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
+ [ reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity ].
+Qed.
+
+Theorem polynomial_simplify_ok :
+ forall p:polynomial,
+ interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
+intro.
+unfold polynomial_simplify in |- *.
+rewrite spolynomial_of_ok.
+rewrite polynomial_normalize_ok.
+rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
+rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
+reflexivity.
+Qed.
+
+End rings.
+
+Infix "+" := Pplus : ring_scope.
+Infix "*" := Pmult : ring_scope.
+Notation "- x" := (Popp x) : ring_scope.
+Notation "[ x ]" := (Pvar x) (at level 1) : ring_scope.
+
+Delimit Scope ring_scope with ring. \ No newline at end of file
diff --git a/contrib/ring/Ring_theory.v b/contrib/ring/Ring_theory.v
new file mode 100644
index 00000000..dfdfdf66
--- /dev/null
+++ b/contrib/ring/Ring_theory.v
@@ -0,0 +1,376 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Ring_theory.v,v 1.21.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Export Bool.
+
+Set Implicit Arguments.
+
+Section Theory_of_semi_rings.
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+(* There is also a "weakly decidable" equality on A. That means
+ that if (A_eq x y)=true then x=y but x=y can arise when
+ (A_eq x y)=false. On an abstract ring the function [x,y:A]false
+ is a good choice. The proof of A_eq_prop is in this case easy. *)
+Variable Aeq : A -> A -> bool.
+
+Infix "+" := Aplus (at level 50, left associativity).
+Infix "*" := Amult (at level 40, left associativity).
+Notation "0" := Azero.
+Notation "1" := Aone.
+
+Record Semi_Ring_Theory : Prop :=
+ {SR_plus_comm : forall n m:A, n + m = m + n;
+ SR_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
+ SR_mult_comm : forall n m:A, n * m = m * n;
+ SR_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
+ SR_plus_zero_left : forall n:A, 0 + n = n;
+ SR_mult_one_left : forall n:A, 1 * n = n;
+ SR_mult_zero_left : forall n:A, 0 * n = 0;
+ SR_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
+ SR_plus_reg_left : forall n m p:A, n + m = n + p -> m = p;
+ SR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
+
+Variable T : Semi_Ring_Theory.
+
+Let plus_comm := SR_plus_comm T.
+Let plus_assoc := SR_plus_assoc T.
+Let mult_comm := SR_mult_comm T.
+Let mult_assoc := SR_mult_assoc T.
+Let plus_zero_left := SR_plus_zero_left T.
+Let mult_one_left := SR_mult_one_left T.
+Let mult_zero_left := SR_mult_zero_left T.
+Let distr_left := SR_distr_left T.
+Let plus_reg_left := SR_plus_reg_left T.
+
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left mult_zero_left distr_left plus_reg_left.
+
+(* Lemmas whose form is x=y are also provided in form y=x because Auto does
+ not symmetry *)
+Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
+symmetry in |- *; eauto. Qed.
+
+Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
+symmetry in |- *; eauto. Qed.
+
+Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
+symmetry in |- *; eauto. Qed.
+
+Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
+symmetry in |- *; eauto. Qed.
+
+Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
+symmetry in |- *; eauto. Qed.
+
+Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
+symmetry in |- *; eauto. Qed.
+
+Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
+intros.
+rewrite plus_assoc.
+elim (plus_comm m n).
+rewrite <- plus_assoc.
+reflexivity.
+Qed.
+
+Lemma SR_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
+intros.
+rewrite mult_assoc.
+elim (mult_comm m n).
+rewrite <- mult_assoc.
+reflexivity.
+Qed.
+
+Hint Resolve SR_plus_permute SR_mult_permute.
+
+Lemma SR_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
+intros.
+repeat rewrite (mult_comm n).
+eauto.
+Qed.
+
+Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
+symmetry in |- *; apply SR_distr_right. Qed.
+
+Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
+intro; rewrite mult_comm; eauto.
+Qed.
+
+Lemma SR_mult_zero_right2 : forall n:A, 0 = n * 0.
+intro; rewrite mult_comm; eauto.
+Qed.
+
+Lemma SR_plus_zero_right : forall n:A, n + 0 = n.
+intro; rewrite plus_comm; eauto.
+Qed.
+Lemma SR_plus_zero_right2 : forall n:A, n = n + 0.
+intro; rewrite plus_comm; eauto.
+Qed.
+
+Lemma SR_mult_one_right : forall n:A, n * 1 = n.
+intro; elim mult_comm; auto.
+Qed.
+
+Lemma SR_mult_one_right2 : forall n:A, n = n * 1.
+intro; elim mult_comm; auto.
+Qed.
+
+Lemma SR_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
+intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n); eauto.
+Qed.
+
+End Theory_of_semi_rings.
+
+Section Theory_of_rings.
+
+Variable A : Type.
+
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aopp : A -> A.
+Variable Aeq : A -> A -> bool.
+
+Infix "+" := Aplus (at level 50, left associativity).
+Infix "*" := Amult (at level 40, left associativity).
+Notation "0" := Azero.
+Notation "1" := Aone.
+Notation "- x" := (Aopp x).
+
+Record Ring_Theory : Prop :=
+ {Th_plus_comm : forall n m:A, n + m = m + n;
+ Th_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
+ Th_mult_sym : forall n m:A, n * m = m * n;
+ Th_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
+ Th_plus_zero_left : forall n:A, 0 + n = n;
+ Th_mult_one_left : forall n:A, 1 * n = n;
+ Th_opp_def : forall n:A, n + - n = 0;
+ Th_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
+ Th_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
+
+Variable T : Ring_Theory.
+
+Let plus_comm := Th_plus_comm T.
+Let plus_assoc := Th_plus_assoc T.
+Let mult_comm := Th_mult_sym T.
+Let mult_assoc := Th_mult_assoc T.
+Let plus_zero_left := Th_plus_zero_left T.
+Let mult_one_left := Th_mult_one_left T.
+Let opp_def := Th_opp_def T.
+Let distr_left := Th_distr_left T.
+
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left opp_def distr_left.
+
+(* Lemmas whose form is x=y are also provided in form y=x because Auto does
+ not symmetry *)
+Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
+intros.
+rewrite plus_assoc.
+elim (plus_comm m n).
+rewrite <- plus_assoc.
+reflexivity.
+Qed.
+
+Lemma Th_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
+intros.
+rewrite mult_assoc.
+elim (mult_comm m n).
+rewrite <- mult_assoc.
+reflexivity.
+Qed.
+
+Hint Resolve Th_plus_permute Th_mult_permute.
+
+Lemma aux1 : forall a:A, a + a = a -> a = 0.
+intros.
+generalize (opp_def a).
+pattern a at 1 in |- *.
+rewrite <- H.
+rewrite <- plus_assoc.
+rewrite opp_def.
+elim plus_comm.
+rewrite plus_zero_left.
+trivial.
+Qed.
+
+Lemma Th_mult_zero_left : forall n:A, 0 * n = 0.
+intros.
+apply aux1.
+rewrite <- distr_left.
+rewrite plus_zero_left.
+reflexivity.
+Qed.
+Hint Resolve Th_mult_zero_left.
+
+Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
+symmetry in |- *; eauto. Qed.
+
+Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
+intros.
+rewrite <- (plus_zero_left y).
+elim H0.
+elim plus_assoc.
+elim (plus_comm y z).
+rewrite plus_assoc.
+rewrite H.
+rewrite plus_zero_left.
+reflexivity.
+Qed.
+
+Lemma Th_opp_mult_left : forall x y:A, - (x * y) = - x * y.
+intros.
+apply (aux2 (x:=(x * y)));
+ [ apply opp_def | rewrite <- distr_left; rewrite opp_def; auto ].
+Qed.
+Hint Resolve Th_opp_mult_left.
+
+Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
+intro; elim mult_comm; eauto.
+Qed.
+
+Lemma Th_mult_zero_right2 : forall n:A, 0 = n * 0.
+intro; elim mult_comm; eauto.
+Qed.
+
+Lemma Th_plus_zero_right : forall n:A, n + 0 = n.
+intro; rewrite plus_comm; eauto.
+Qed.
+
+Lemma Th_plus_zero_right2 : forall n:A, n = n + 0.
+intro; rewrite plus_comm; eauto.
+Qed.
+
+Lemma Th_mult_one_right : forall n:A, n * 1 = n.
+intro; elim mult_comm; eauto.
+Qed.
+
+Lemma Th_mult_one_right2 : forall n:A, n = n * 1.
+intro; elim mult_comm; eauto.
+Qed.
+
+Lemma Th_opp_mult_right : forall x y:A, - (x * y) = x * - y.
+intros; do 2 rewrite (mult_comm x); auto.
+Qed.
+
+Lemma Th_opp_mult_right2 : forall x y:A, x * - y = - (x * y).
+intros; do 2 rewrite (mult_comm x); auto.
+Qed.
+
+Lemma Th_plus_opp_opp : forall x y:A, - x + - y = - (x + y).
+intros.
+apply (aux2 (x:=(x + y)));
+ [ elim plus_assoc; rewrite (Th_plus_permute y (- x)); rewrite plus_assoc;
+ rewrite opp_def; rewrite plus_zero_left; auto
+ | auto ].
+Qed.
+
+Lemma Th_plus_permute_opp : forall n m p:A, - m + (n + p) = n + (- m + p).
+eauto. Qed.
+
+Lemma Th_opp_opp : forall n:A, - - n = n.
+intro; apply (aux2 (x:=(- n))); [ auto | elim plus_comm; auto ].
+Qed.
+Hint Resolve Th_opp_opp.
+
+Lemma Th_opp_opp2 : forall n:A, n = - - n.
+symmetry in |- *; eauto. Qed.
+
+Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
+intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
+Qed.
+
+Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
+symmetry in |- *; apply Th_mult_opp_opp. Qed.
+
+Lemma Th_opp_zero : - 0 = 0.
+rewrite <- (plus_zero_left (- 0)).
+auto. Qed.
+
+Lemma Th_plus_reg_left : forall n m p:A, n + m = n + p -> m = p.
+intros; generalize (f_equal (fun z => - n + z) H).
+repeat rewrite plus_assoc.
+rewrite (plus_comm (- n) n).
+rewrite opp_def.
+repeat rewrite Th_plus_zero_left; eauto.
+Qed.
+
+Lemma Th_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
+intros.
+eapply Th_plus_reg_left with n.
+rewrite (plus_comm n m).
+rewrite (plus_comm n p).
+auto.
+Qed.
+
+Lemma Th_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
+intros.
+repeat rewrite (mult_comm n).
+eauto.
+Qed.
+
+Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
+symmetry in |- *; apply Th_distr_right.
+Qed.
+
+End Theory_of_rings.
+
+Hint Resolve Th_mult_zero_left Th_plus_reg_left: core.
+
+Unset Implicit Arguments.
+
+Definition Semi_Ring_Theory_of :
+ forall (A:Type) (Aplus Amult:A -> A -> A) (Aone Azero:A)
+ (Aopp:A -> A) (Aeq:A -> A -> bool),
+ Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
+ Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
+intros until 1; case H.
+split; intros; simpl in |- *; eauto.
+Defined.
+
+(* Every ring can be viewed as a semi-ring : this property will be used
+ in Abstract_polynom. *)
+Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
+
+
+Section product_ring.
+
+End product_ring.
+
+Section power_ring.
+
+End power_ring. \ No newline at end of file
diff --git a/contrib/ring/Setoid_ring.v b/contrib/ring/Setoid_ring.v
new file mode 100644
index 00000000..c4537fe3
--- /dev/null
+++ b/contrib/ring/Setoid_ring.v
@@ -0,0 +1,13 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Setoid_ring.v,v 1.4.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Export Setoid_ring_theory.
+Require Export Quote.
+Require Export Setoid_ring_normalize. \ No newline at end of file
diff --git a/contrib/ring/Setoid_ring_normalize.v b/contrib/ring/Setoid_ring_normalize.v
new file mode 100644
index 00000000..0c9c1e6a
--- /dev/null
+++ b/contrib/ring/Setoid_ring_normalize.v
@@ -0,0 +1,1137 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Setoid_ring_normalize.v,v 1.11.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Import Setoid_ring_theory.
+Require Import Quote.
+
+Set Implicit Arguments.
+
+Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
+Proof.
+ simple induction n; simple induction m; simpl in |- *;
+ try reflexivity || contradiction.
+ intros; rewrite (H i0); trivial.
+ intros; rewrite (H i0); trivial.
+Qed.
+
+Section setoid.
+
+Variable A : Type.
+Variable Aequiv : A -> A -> Prop.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aopp : A -> A.
+Variable Aeq : A -> A -> bool.
+
+Variable S : Setoid_Theory A Aequiv.
+
+Add Setoid A Aequiv S.
+
+Variable
+ plus_morph :
+ forall a a0 a1 a2:A,
+ Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Aplus a a1) (Aplus a0 a2).
+Variable
+ mult_morph :
+ forall a a0 a1 a2:A,
+ Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Amult a a1) (Amult a0 a2).
+Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0).
+
+Add Morphism Aplus : Aplus_ext.
+exact plus_morph.
+Qed.
+
+Add Morphism Amult : Amult_ext.
+exact mult_morph.
+Qed.
+
+Add Morphism Aopp : Aopp_ext.
+exact opp_morph.
+Qed.
+
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
+
+Hint Resolve equiv_refl equiv_trans.
+Hint Immediate equiv_sym.
+
+Section semi_setoid_rings.
+
+(* Section definitions. *)
+
+
+(******************************************)
+(* Normal abtract Polynomials *)
+(******************************************)
+(* DEFINITIONS :
+- A varlist is a sorted product of one or more variables : x, x*y*z
+- A monom is a constant, a varlist or the product of a constant by a varlist
+ variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
+- A canonical sum is either a monom or an ordered sum of monoms
+ (the order on monoms is defined later)
+- A normal polynomial it either a constant or a canonical sum or a constant
+ plus a canonical sum
+*)
+
+(* varlist is isomorphic to (list var), but we built a special inductive
+ for efficiency *)
+Inductive varlist : Type :=
+ | Nil_var : varlist
+ | Cons_var : index -> varlist -> varlist.
+
+Inductive canonical_sum : Type :=
+ | Nil_monom : canonical_sum
+ | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
+ | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
+
+(* Order on monoms *)
+
+(* That's the lexicographic order on varlist, extended by :
+ - A constant is less than every monom
+ - The relation between two varlist is preserved by multiplication by a
+ constant.
+
+ Examples :
+ 3 < x < y
+ x*y < x*y*y*z
+ 2*x*y < x*y*y*z
+ x*y < 54*x*y*y*z
+ 4*x*y < 59*x*y*y*z
+*)
+
+Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Nil_var => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ andb (index_eq i j) (varlist_eq xrest yrest)
+ | _, _ => false
+ end.
+
+Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Cons_var _ _ => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ if index_lt i j
+ then true
+ else andb (index_eq i j) (varlist_lt xrest yrest)
+ | _, _ => false
+ end.
+
+(* merges two variables lists *)
+Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
+ match l1 with
+ | Cons_var v1 t1 =>
+ (fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Cons_var v2 t2 =>
+ if index_lt v1 v2
+ then Cons_var v1 (varlist_merge t1 l2)
+ else Cons_var v2 (vm_aux t2)
+ | Nil_var => l1
+ end)
+ | Nil_var => fun l2 => l2
+ end.
+
+(* returns the sum of two canonical sums *)
+Fixpoint canonical_sum_merge (s1:canonical_sum) :
+ canonical_sum -> canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ (fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux t2)
+ | Nil_monom => s1
+ end)
+ | Cons_varlist l1 t1 =>
+ (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ | Nil_monom => s1
+ end)
+ | Nil_monom => fun s2 => s2
+ end.
+
+(* Insertion of a monom in a canonical sum *)
+Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_monom c2 l2 (monom_insert c1 l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_varlist l2 (monom_insert c1 l1 t2)
+ | Nil_monom => Cons_monom c1 l1 Nil_monom
+ end.
+
+Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_monom c2 l2 (varlist_insert l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_varlist l2 (varlist_insert l1 t2)
+ | Nil_monom => Cons_varlist l1 Nil_monom
+ end.
+
+(* Computes c0*s *)
+Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
+ | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* Computes l0*s *)
+Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Cons_varlist l t =>
+ varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* Computes c0*l0*s *)
+Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
+ (s:canonical_sum) {struct s} : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert (Amult c0 c) (varlist_merge l0 l)
+ (canonical_sum_scalar3 c0 l0 t)
+ | Cons_varlist l t =>
+ monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* returns the product of two canonical sums *)
+Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
+ canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Cons_varlist l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar2 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Nil_monom => Nil_monom
+ end.
+
+(* The type to represent concrete semi-setoid-ring polynomials *)
+
+Inductive setspolynomial : Type :=
+ | SetSPvar : index -> setspolynomial
+ | SetSPconst : A -> setspolynomial
+ | SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
+ | SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
+
+Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum :=
+ match p with
+ | SetSPplus l r =>
+ canonical_sum_merge (setspolynomial_normalize l)
+ (setspolynomial_normalize r)
+ | SetSPmult l r =>
+ canonical_sum_prod (setspolynomial_normalize l)
+ (setspolynomial_normalize r)
+ | SetSPconst c => Cons_monom c Nil_var Nil_monom
+ | SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ end.
+
+Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ if Aeq c Azero
+ then canonical_sum_simplify t
+ else
+ if Aeq c Aone
+ then Cons_varlist l (canonical_sum_simplify t)
+ else Cons_monom c l (canonical_sum_simplify t)
+ | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
+ | Nil_monom => Nil_monom
+ end.
+
+Definition setspolynomial_simplify (x:setspolynomial) :=
+ canonical_sum_simplify (setspolynomial_normalize x).
+
+Variable vm : varmap A.
+
+Definition interp_var (i:index) := varmap_find Azero i vm.
+
+Definition ivl_aux :=
+ (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
+ match t with
+ | Nil_var => interp_var x
+ | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
+ end).
+
+Definition interp_vl (l:varlist) :=
+ match l with
+ | Nil_var => Aone
+ | Cons_var x t => ivl_aux x t
+ end.
+
+Definition interp_m (c:A) (l:varlist) :=
+ match l with
+ | Nil_var => c
+ | Cons_var x t => Amult c (ivl_aux x t)
+ end.
+
+Definition ics_aux :=
+ (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
+ match s with
+ | Nil_monom => a
+ | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
+ | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
+ end).
+
+Definition interp_setcs (s:canonical_sum) : A :=
+ match s with
+ | Nil_monom => Azero
+ | Cons_varlist l t => ics_aux (interp_vl l) t
+ | Cons_monom c l t => ics_aux (interp_m c l) t
+ end.
+
+Fixpoint interp_setsp (p:setspolynomial) : A :=
+ match p with
+ | SetSPconst c => c
+ | SetSPvar i => interp_var i
+ | SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2)
+ | SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2)
+ end.
+
+(* End interpretation. *)
+
+Unset Implicit Arguments.
+
+(* Section properties. *)
+
+Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq.
+
+Hint Resolve (SSR_plus_comm T).
+Hint Resolve (SSR_plus_assoc T).
+Hint Resolve (SSR_plus_assoc2 S T).
+Hint Resolve (SSR_mult_comm T).
+Hint Resolve (SSR_mult_assoc T).
+Hint Resolve (SSR_mult_assoc2 S T).
+Hint Resolve (SSR_plus_zero_left T).
+Hint Resolve (SSR_plus_zero_left2 S T).
+Hint Resolve (SSR_mult_one_left T).
+Hint Resolve (SSR_mult_one_left2 S T).
+Hint Resolve (SSR_mult_zero_left T).
+Hint Resolve (SSR_mult_zero_left2 S T).
+Hint Resolve (SSR_distr_left T).
+Hint Resolve (SSR_distr_left2 S T).
+Hint Resolve (SSR_plus_reg_left T).
+Hint Resolve (SSR_plus_permute S plus_morph T).
+Hint Resolve (SSR_mult_permute S mult_morph T).
+Hint Resolve (SSR_distr_right S plus_morph T).
+Hint Resolve (SSR_distr_right2 S plus_morph T).
+Hint Resolve (SSR_mult_zero_right S T).
+Hint Resolve (SSR_mult_zero_right2 S T).
+Hint Resolve (SSR_plus_zero_right S T).
+Hint Resolve (SSR_plus_zero_right2 S T).
+Hint Resolve (SSR_mult_one_right S T).
+Hint Resolve (SSR_mult_one_right2 S T).
+Hint Resolve (SSR_plus_reg_right S T).
+Hint Resolve refl_equal sym_equal trans_equal.
+(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Immediate T.
+
+Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
+Proof.
+ simple induction x; simple induction y; contradiction || (try reflexivity).
+ simpl in |- *; intros.
+ generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
+ rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
+Qed.
+
+Remark ivl_aux_ok :
+ forall (v:varlist) (i:index),
+ Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
+Proof.
+ simple induction v; simpl in |- *; intros.
+ trivial.
+ rewrite (H i); trivial.
+Qed.
+
+Lemma varlist_merge_ok :
+ forall x y:varlist,
+ Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
+Proof.
+ simple induction x.
+ simpl in |- *; trivial.
+ simple induction y.
+ simpl in |- *; trivial.
+ simpl in |- *; intros.
+ elim (index_lt i i0); simpl in |- *; intros.
+
+ rewrite (ivl_aux_ok v i).
+ rewrite (ivl_aux_ok v0 i0).
+ rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
+ rewrite (H (Cons_var i0 v0)).
+ simpl in |- *.
+ rewrite (ivl_aux_ok v0 i0).
+ eauto.
+
+ rewrite (ivl_aux_ok v i).
+ rewrite (ivl_aux_ok v0 i0).
+ rewrite
+ (ivl_aux_ok
+ ((fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Nil_var => Cons_var i v
+ | Cons_var v2 t2 =>
+ if index_lt i v2
+ then Cons_var i (varlist_merge v l2)
+ else Cons_var v2 (vm_aux t2)
+ end) v0) i0).
+ rewrite H0.
+ rewrite (ivl_aux_ok v i).
+ eauto.
+Qed.
+
+Remark ics_aux_ok :
+ forall (x:A) (s:canonical_sum),
+ Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
+Proof.
+ simple induction s; simpl in |- *; intros; trivial.
+Qed.
+
+Remark interp_m_ok :
+ forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)).
+Proof.
+ destruct l as [| i v]; trivial.
+Qed.
+
+Hint Resolve ivl_aux_ok.
+Hint Resolve ics_aux_ok.
+Hint Resolve interp_m_ok.
+
+(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
+
+Lemma canonical_sum_merge_ok :
+ forall x y:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_merge x y))
+ (Aplus (interp_setcs x) (interp_setcs y)).
+Proof.
+simple induction x; simpl in |- *.
+trivial.
+
+simple induction y; simpl in |- *; intros.
+eauto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m a v0) c).
+rewrite (ics_aux_ok (interp_m a0 v0) c0).
+rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
+rewrite (H c0).
+rewrite (interp_m_ok (Aplus a a0) v0).
+rewrite (interp_m_ok a v0).
+rewrite (interp_m_ok a0 v0).
+setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with
+ (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (Amult a0 (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0)))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
+ (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c)
+ (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+intro.
+rewrite
+ (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
+ .
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (ics_aux_ok (interp_m a0 v0) c0).
+rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
+
+intro.
+rewrite
+ (ics_aux_ok (interp_m a0 v0)
+ ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_monom a v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux t2)
+ end) c0)).
+rewrite H0.
+rewrite (ics_aux_ok (interp_m a v) c);
+ rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *;
+ auto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
+ rewrite (ics_aux_ok (interp_m a v0) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0).
+rewrite (H c0).
+rewrite (interp_m_ok (Aplus a Aone) v0).
+rewrite (interp_m_ok a v0).
+setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with
+ (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0)))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
+ (Aplus (interp_vl v0) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
+setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+intro.
+rewrite
+ (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
+ ; rewrite (ics_aux_ok (interp_m a v) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0).
+rewrite (H (Cons_varlist v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v0) c0).
+auto.
+
+intro.
+rewrite
+ (ics_aux_ok (interp_vl v0)
+ ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_monom a v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
+ simpl in |- *.
+auto.
+
+simple induction y; simpl in |- *; intros.
+trivial.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
+ rewrite (ics_aux_ok (interp_vl v0) c);
+ rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
+rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0).
+setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with
+ (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
+ setoid_replace
+ (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0))));
+ setoid_replace
+ (Aplus (Aplus (interp_vl v0) (interp_setcs c))
+ (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with
+ (Aplus (interp_vl v0)
+ (Aplus (interp_setcs c)
+ (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *; intros.
+rewrite
+ (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
+ ; rewrite (ics_aux_ok (interp_vl v) c);
+ rewrite (ics_aux_ok (interp_m a v0) c0).
+rewrite (H (Cons_monom a v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_m a v0) c0); auto.
+
+rewrite
+ (ics_aux_ok (interp_m a v0)
+ ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_varlist v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
+ simpl in |- *; auto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0); intros.
+rewrite (H1 I); simpl in |- *.
+rewrite
+ (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
+ ; rewrite (ics_aux_ok (interp_vl v0) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0).
+rewrite (interp_m_ok (Aplus Aone Aone) v0).
+setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with
+ (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
+ setoid_replace
+ (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0))));
+ setoid_replace
+ (Aplus (Aplus (interp_vl v0) (interp_setcs c))
+ (Aplus (interp_vl v0) (interp_setcs c0))) with
+ (Aplus (interp_vl v0)
+ (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
+setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+rewrite
+ (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
+ ; rewrite (ics_aux_ok (interp_vl v) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
+ simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v0) c0); auto.
+
+rewrite
+ (ics_aux_ok (interp_vl v0)
+ ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_varlist v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
+ simpl in |- *; auto.
+Qed.
+
+Lemma monom_insert_ok :
+ forall (a:A) (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (monom_insert a l s))
+ (Aplus (Amult a (interp_vl l)) (interp_setcs s)).
+Proof.
+simple induction s; intros.
+simpl in |- *; rewrite (interp_m_ok a l); trivial.
+
+simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
+ rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
+setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
+ (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))).
+auto.
+
+elim (varlist_lt l v); simpl in |- *; intros.
+rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
+auto.
+
+rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
+ rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
+auto.
+
+simpl in |- *.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
+ rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (interp_m_ok (Aplus a Aone) v).
+setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with
+ (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v).
+auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
+rewrite (ics_aux_ok (interp_vl v) c); auto.
+Qed.
+
+Lemma varlist_insert_ok :
+ forall (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (varlist_insert l s))
+ (Aplus (interp_vl l) (interp_setcs s)).
+Proof.
+simple induction s; simpl in |- *; intros.
+trivial.
+
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
+ rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
+setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
+ (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
+ rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite H; auto.
+
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
+ rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (interp_m_ok (Aplus Aone Aone) v).
+setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
+ (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
+rewrite H.
+rewrite (ics_aux_ok (interp_vl v) c); auto.
+Qed.
+
+Lemma canonical_sum_scalar_ok :
+ forall (a:A) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar a s))
+ (Amult a (interp_setcs s)).
+Proof.
+simple induction s; simpl in |- *; intros.
+trivial.
+
+rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
+ rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v).
+rewrite H.
+setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
+ with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c))).
+auto.
+
+rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
+ rewrite (ics_aux_ok (interp_vl v) c); rewrite H.
+rewrite (interp_m_ok a v).
+auto.
+Qed.
+
+Lemma canonical_sum_scalar2_ok :
+ forall (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar2 l s))
+ (Amult (interp_vl l) (interp_setcs s)).
+Proof.
+simple induction s; simpl in |- *; intros; auto.
+rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c))).
+auto.
+
+rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)).
+rewrite (ics_aux_ok (interp_vl v) c).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+auto.
+Qed.
+
+Lemma canonical_sum_scalar3_ok :
+ forall (c:A) (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
+ (Amult c (Amult (interp_vl l) (interp_setcs s))).
+Proof.
+simple induction s; simpl in |- *; intros.
+rewrite (SSR_mult_zero_right S T (interp_vl l)).
+auto.
+
+rewrite
+ (monom_insert_ok (Amult c a) (varlist_merge l v)
+ (canonical_sum_scalar3 c l c0)).
+rewrite (ics_aux_ok (interp_m a v) c0).
+rewrite (interp_m_ok a v).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c0))).
+setoid_replace
+ (Amult c
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c0)))) with
+ (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
+ (Amult c (Amult (interp_vl l) (interp_setcs c0)))).
+setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with
+ (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))).
+auto.
+
+rewrite
+ (monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0))
+ .
+rewrite (ics_aux_ok (interp_vl v) c0).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
+ (Amult c (Amult (interp_vl l) (interp_setcs c0)))) with
+ (Amult c
+ (Aplus (Amult (interp_vl l) (interp_vl v))
+ (Amult (interp_vl l) (interp_setcs c0)))).
+auto.
+Qed.
+
+Lemma canonical_sum_prod_ok :
+ forall x y:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_prod x y))
+ (Amult (interp_setcs x) (interp_setcs y)).
+Proof.
+simple induction x; simpl in |- *; intros.
+trivial.
+
+rewrite
+ (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
+ (canonical_sum_prod c y)).
+rewrite (canonical_sum_scalar3_ok a v y).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H y).
+setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with
+ (Amult (Amult a (interp_vl v)) (interp_setcs y)).
+setoid_replace
+ (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y))
+ with
+ (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
+ (Amult (interp_setcs c) (interp_setcs y))).
+trivial.
+
+rewrite
+ (canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y))
+ .
+rewrite (canonical_sum_scalar2_ok v y).
+rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (H y).
+trivial.
+Qed.
+
+Theorem setspolynomial_normalize_ok :
+ forall p:setspolynomial,
+ Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
+Proof.
+simple induction p; simpl in |- *; intros; trivial.
+rewrite
+ (canonical_sum_merge_ok (setspolynomial_normalize s)
+ (setspolynomial_normalize s0)).
+rewrite H; rewrite H0; trivial.
+
+rewrite
+ (canonical_sum_prod_ok (setspolynomial_normalize s)
+ (setspolynomial_normalize s0)).
+rewrite H; rewrite H0; trivial.
+Qed.
+
+Lemma canonical_sum_simplify_ok :
+ forall s:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
+Proof.
+simple induction s; simpl in |- *; intros.
+trivial.
+
+generalize (SSR_eq_prop T a Azero).
+elim (Aeq a Azero).
+simpl in |- *.
+intros.
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H0 I).
+setoid_replace (Amult Azero (interp_vl v)) with Azero.
+rewrite H.
+trivial.
+
+intros; simpl in |- *.
+generalize (SSR_eq_prop T a Aone).
+elim (Aeq a Aone).
+intros.
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
+rewrite H.
+auto.
+
+simpl in |- *.
+intros.
+rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite H; trivial.
+
+rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
+rewrite H.
+auto.
+Qed.
+
+Theorem setspolynomial_simplify_ok :
+ forall p:setspolynomial,
+ Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
+Proof.
+intro.
+unfold setspolynomial_simplify in |- *.
+rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
+exact (setspolynomial_normalize_ok p).
+Qed.
+
+End semi_setoid_rings.
+
+Implicit Arguments Cons_varlist.
+Implicit Arguments Cons_monom.
+Implicit Arguments SetSPconst.
+Implicit Arguments SetSPplus.
+Implicit Arguments SetSPmult.
+
+
+
+Section setoid_rings.
+
+Set Implicit Arguments.
+
+Variable vm : varmap A.
+Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq.
+
+Hint Resolve (STh_plus_comm T).
+Hint Resolve (STh_plus_assoc T).
+Hint Resolve (STh_plus_assoc2 S T).
+Hint Resolve (STh_mult_sym T).
+Hint Resolve (STh_mult_assoc T).
+Hint Resolve (STh_mult_assoc2 S T).
+Hint Resolve (STh_plus_zero_left T).
+Hint Resolve (STh_plus_zero_left2 S T).
+Hint Resolve (STh_mult_one_left T).
+Hint Resolve (STh_mult_one_left2 S T).
+Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T).
+Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
+Hint Resolve (STh_distr_left T).
+Hint Resolve (STh_distr_left2 S T).
+Hint Resolve (STh_plus_reg_left S plus_morph T).
+Hint Resolve (STh_plus_permute S plus_morph T).
+Hint Resolve (STh_mult_permute S mult_morph T).
+Hint Resolve (STh_distr_right S plus_morph T).
+Hint Resolve (STh_distr_right2 S plus_morph T).
+Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T).
+Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
+Hint Resolve (STh_plus_zero_right S T).
+Hint Resolve (STh_plus_zero_right2 S T).
+Hint Resolve (STh_mult_one_right S T).
+Hint Resolve (STh_mult_one_right2 S T).
+Hint Resolve (STh_plus_reg_right S plus_morph T).
+Hint Resolve refl_equal sym_equal trans_equal.
+(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Immediate T.
+
+
+(*** Definitions *)
+
+Inductive setpolynomial : Type :=
+ | SetPvar : index -> setpolynomial
+ | SetPconst : A -> setpolynomial
+ | SetPplus : setpolynomial -> setpolynomial -> setpolynomial
+ | SetPmult : setpolynomial -> setpolynomial -> setpolynomial
+ | SetPopp : setpolynomial -> setpolynomial.
+
+Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum :=
+ match x with
+ | SetPplus l r =>
+ canonical_sum_merge (setpolynomial_normalize l)
+ (setpolynomial_normalize r)
+ | SetPmult l r =>
+ canonical_sum_prod (setpolynomial_normalize l)
+ (setpolynomial_normalize r)
+ | SetPconst c => Cons_monom c Nil_var Nil_monom
+ | SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ | SetPopp p =>
+ canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p)
+ end.
+
+Definition setpolynomial_simplify (x:setpolynomial) :=
+ canonical_sum_simplify (setpolynomial_normalize x).
+
+Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial :=
+ match x with
+ | SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r)
+ | SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r)
+ | SetPconst c => SetSPconst c
+ | SetPvar i => SetSPvar i
+ | SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)
+ end.
+
+(*** Interpretation *)
+
+Fixpoint interp_setp (p:setpolynomial) : A :=
+ match p with
+ | SetPconst c => c
+ | SetPvar i => varmap_find Azero i vm
+ | SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2)
+ | SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2)
+ | SetPopp p1 => Aopp (interp_setp p1)
+ end.
+
+(*** Properties *)
+
+Unset Implicit Arguments.
+
+Lemma setspolynomial_of_ok :
+ forall p:setpolynomial,
+ Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
+simple induction p; trivial; simpl in |- *; intros.
+rewrite H; rewrite H0; trivial.
+rewrite H; rewrite H0; trivial.
+rewrite H.
+rewrite
+ (STh_opp_mult_left2 S plus_morph mult_morph T Aone
+ (interp_setsp vm (setspolynomial_of s))).
+rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))).
+trivial.
+Qed.
+
+Theorem setpolynomial_normalize_ok :
+ forall p:setpolynomial,
+ setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
+simple induction p; trivial; simpl in |- *; intros.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; simpl in |- *.
+elim
+ (canonical_sum_scalar3 (Aopp Aone) Nil_var
+ (setspolynomial_normalize (setspolynomial_of s)));
+ [ reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity ].
+Qed.
+
+Theorem setpolynomial_simplify_ok :
+ forall p:setpolynomial,
+ Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
+intro.
+unfold setpolynomial_simplify in |- *.
+rewrite (setspolynomial_of_ok p).
+rewrite setpolynomial_normalize_ok.
+rewrite
+ (canonical_sum_simplify_ok vm
+ (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
+ plus_morph mult_morph T)
+ (setspolynomial_normalize (setspolynomial_of p)))
+ .
+rewrite
+ (setspolynomial_normalize_ok vm
+ (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
+ plus_morph mult_morph T) (setspolynomial_of p))
+ .
+trivial.
+Qed.
+
+End setoid_rings.
+
+End setoid. \ No newline at end of file
diff --git a/contrib/ring/Setoid_ring_theory.v b/contrib/ring/Setoid_ring_theory.v
new file mode 100644
index 00000000..69712216
--- /dev/null
+++ b/contrib/ring/Setoid_ring_theory.v
@@ -0,0 +1,427 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Setoid_ring_theory.v,v 1.16.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+Require Export Bool.
+Require Export Setoid.
+
+Set Implicit Arguments.
+
+Section Setoid_rings.
+
+Variable A : Type.
+Variable Aequiv : A -> A -> Prop.
+
+Infix Local "==" := Aequiv (at level 70, no associativity).
+
+Variable S : Setoid_Theory A Aequiv.
+
+Add Setoid A Aequiv S.
+
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aopp : A -> A.
+Variable Aeq : A -> A -> bool.
+
+Infix "+" := Aplus (at level 50, left associativity).
+Infix "*" := Amult (at level 40, left associativity).
+Notation "0" := Azero.
+Notation "1" := Aone.
+Notation "- x" := (Aopp x).
+
+Variable
+ plus_morph : forall a a0 a1 a2:A, a == a0 -> a1 == a2 -> a + a1 == a0 + a2.
+Variable
+ mult_morph : forall a a0 a1 a2:A, a == a0 -> a1 == a2 -> a * a1 == a0 * a2.
+Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0.
+
+Add Morphism Aplus : Aplus_ext.
+exact plus_morph.
+Qed.
+
+Add Morphism Amult : Amult_ext.
+exact mult_morph.
+Qed.
+
+Add Morphism Aopp : Aopp_ext.
+exact opp_morph.
+Qed.
+
+Section Theory_of_semi_setoid_rings.
+
+Record Semi_Setoid_Ring_Theory : Prop :=
+ {SSR_plus_comm : forall n m:A, n + m == m + n;
+ SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
+ SSR_mult_comm : forall n m:A, n * m == m * n;
+ SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
+ SSR_plus_zero_left : forall n:A, 0 + n == n;
+ SSR_mult_one_left : forall n:A, 1 * n == n;
+ SSR_mult_zero_left : forall n:A, 0 * n == 0;
+ SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
+ SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p;
+ SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
+
+Variable T : Semi_Setoid_Ring_Theory.
+
+Let plus_comm := SSR_plus_comm T.
+Let plus_assoc := SSR_plus_assoc T.
+Let mult_comm := SSR_mult_comm T.
+Let mult_assoc := SSR_mult_assoc T.
+Let plus_zero_left := SSR_plus_zero_left T.
+Let mult_one_left := SSR_mult_one_left T.
+Let mult_zero_left := SSR_mult_zero_left T.
+Let distr_left := SSR_distr_left T.
+Let plus_reg_left := SSR_plus_reg_left T.
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
+
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left mult_zero_left distr_left plus_reg_left
+ equiv_refl (*equiv_sym*).
+Hint Immediate equiv_sym.
+
+(* Lemmas whose form is x=y are also provided in form y=x because
+ Auto does not symmetry *)
+Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
+auto. Qed.
+
+Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
+auto. Qed.
+
+Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n.
+auto. Qed.
+
+Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n.
+auto. Qed.
+
+Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n.
+auto. Qed.
+
+Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
+auto. Qed.
+
+Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
+intros.
+rewrite (plus_assoc n m p).
+rewrite (plus_comm n m).
+rewrite <- (plus_assoc m n p).
+trivial.
+Qed.
+
+Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
+intros.
+rewrite (mult_assoc n m p).
+rewrite (mult_comm n m).
+rewrite <- (mult_assoc m n p).
+trivial.
+Qed.
+
+Hint Resolve SSR_plus_permute SSR_mult_permute.
+
+Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
+intros.
+rewrite (mult_comm n (m + p)).
+rewrite (mult_comm n m).
+rewrite (mult_comm n p).
+auto.
+Qed.
+
+Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
+intros.
+apply equiv_sym.
+apply SSR_distr_right.
+Qed.
+
+Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma SSR_plus_zero_right : forall n:A, n + 0 == n.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma SSR_mult_one_right : forall n:A, n * 1 == n.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma SSR_mult_one_right2 : forall n:A, n == n * 1.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
+intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n).
+intro; apply plus_reg_left with n; trivial.
+Qed.
+
+End Theory_of_semi_setoid_rings.
+
+Section Theory_of_setoid_rings.
+
+Record Setoid_Ring_Theory : Prop :=
+ {STh_plus_comm : forall n m:A, n + m == m + n;
+ STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
+ STh_mult_sym : forall n m:A, n * m == m * n;
+ STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
+ STh_plus_zero_left : forall n:A, 0 + n == n;
+ STh_mult_one_left : forall n:A, 1 * n == n;
+ STh_opp_def : forall n:A, n + - n == 0;
+ STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
+ STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
+
+Variable T : Setoid_Ring_Theory.
+
+Let plus_comm := STh_plus_comm T.
+Let plus_assoc := STh_plus_assoc T.
+Let mult_comm := STh_mult_sym T.
+Let mult_assoc := STh_mult_assoc T.
+Let plus_zero_left := STh_plus_zero_left T.
+Let mult_one_left := STh_mult_one_left T.
+Let opp_def := STh_opp_def T.
+Let distr_left := STh_distr_left T.
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
+
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left opp_def distr_left equiv_refl equiv_sym.
+
+(* Lemmas whose form is x=y are also provided in form y=x because Auto does
+ not symmetry *)
+
+Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
+auto. Qed.
+
+Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
+auto. Qed.
+
+Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n.
+auto. Qed.
+
+Lemma STh_mult_one_left2 : forall n:A, n == 1 * n.
+auto. Qed.
+
+Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
+auto. Qed.
+
+Lemma STh_opp_def2 : forall n:A, 0 == n + - n.
+auto. Qed.
+
+Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
+intros.
+rewrite (plus_assoc n m p).
+rewrite (plus_comm n m).
+rewrite <- (plus_assoc m n p).
+trivial.
+Qed.
+
+Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
+intros.
+rewrite (mult_assoc n m p).
+rewrite (mult_comm n m).
+rewrite <- (mult_assoc m n p).
+trivial.
+Qed.
+
+Hint Resolve STh_plus_permute STh_mult_permute.
+
+Lemma Saux1 : forall a:A, a + a == a -> a == 0.
+intros.
+rewrite <- (plus_zero_left a).
+rewrite (plus_comm 0 a).
+setoid_replace (a + 0) with (a + (a + - a)); auto.
+rewrite (plus_assoc a a (- a)).
+rewrite H.
+apply opp_def.
+Qed.
+
+Lemma STh_mult_zero_left : forall n:A, 0 * n == 0.
+intros.
+apply Saux1.
+rewrite <- (distr_left 0 0 n).
+rewrite (plus_zero_left 0).
+trivial.
+Qed.
+Hint Resolve STh_mult_zero_left.
+
+Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n.
+auto.
+Qed.
+
+Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z.
+intros.
+rewrite <- (plus_zero_left y).
+rewrite <- H0.
+rewrite <- (plus_assoc x z y).
+rewrite (plus_comm z y).
+rewrite (plus_assoc x y z).
+rewrite H.
+auto.
+Qed.
+
+Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y.
+intros.
+apply Saux2 with (x * y); auto.
+rewrite <- (distr_left x (- x) y).
+rewrite (opp_def x).
+auto.
+Qed.
+Hint Resolve STh_opp_mult_left.
+
+Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y).
+auto.
+Qed.
+
+Lemma STh_mult_zero_right : forall n:A, n * 0 == 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma STh_plus_zero_right : forall n:A, n + 0 == n.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma STh_plus_zero_right2 : forall n:A, n == n + 0.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma STh_mult_one_right : forall n:A, n * 1 == n.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma STh_mult_one_right2 : forall n:A, n == n * 1.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y.
+intros.
+rewrite (mult_comm x y).
+rewrite (mult_comm x (- y)).
+auto.
+Qed.
+
+Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y).
+intros.
+rewrite (mult_comm x y).
+rewrite (mult_comm x (- y)).
+auto.
+Qed.
+
+Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y).
+intros.
+apply Saux2 with (x + y); auto.
+rewrite (STh_plus_permute (x + y) (- x) (- y)).
+rewrite <- (plus_assoc x y (- y)).
+rewrite (opp_def y); rewrite (STh_plus_zero_right x).
+rewrite (STh_opp_def2 x); trivial.
+Qed.
+
+Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p).
+auto.
+Qed.
+
+Lemma STh_opp_opp : forall n:A, - - n == n.
+intro.
+apply Saux2 with (- n); auto.
+rewrite (plus_comm (- n) n); auto.
+Qed.
+Hint Resolve STh_opp_opp.
+
+Lemma STh_opp_opp2 : forall n:A, n == - - n.
+auto.
+Qed.
+
+Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y.
+intros.
+rewrite (STh_opp_mult_left2 x (- y)).
+rewrite (STh_opp_mult_right2 x y).
+trivial.
+Qed.
+
+Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y.
+intros.
+apply equiv_sym.
+apply STh_mult_opp_opp.
+Qed.
+
+Lemma STh_opp_zero : - 0 == 0.
+rewrite <- (plus_zero_left (- 0)).
+trivial.
+Qed.
+
+Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p.
+intros.
+rewrite <- (plus_zero_left m).
+rewrite <- (plus_zero_left p).
+rewrite <- (opp_def n).
+rewrite (plus_comm n (- n)).
+rewrite <- (plus_assoc (- n) n m).
+rewrite <- (plus_assoc (- n) n p).
+auto.
+Qed.
+
+Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
+intros.
+apply STh_plus_reg_left with n.
+rewrite (plus_comm n m); rewrite (plus_comm n p); assumption.
+Qed.
+
+Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
+intros.
+rewrite (mult_comm n (m + p)).
+rewrite (mult_comm n m).
+rewrite (mult_comm n p).
+trivial.
+Qed.
+
+Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
+intros.
+apply equiv_sym.
+apply STh_distr_right.
+Qed.
+
+End Theory_of_setoid_rings.
+
+Hint Resolve STh_mult_zero_left STh_plus_reg_left: core.
+
+Unset Implicit Arguments.
+
+Definition Semi_Setoid_Ring_Theory_of :
+ Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
+intros until 1; case H.
+split; intros; simpl in |- *; eauto.
+Defined.
+
+Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
+ Semi_Setoid_Ring_Theory.
+
+
+
+Section product_ring.
+
+End product_ring.
+
+Section power_ring.
+
+End power_ring.
+
+End Setoid_rings. \ No newline at end of file
diff --git a/contrib/ring/ZArithRing.v b/contrib/ring/ZArithRing.v
new file mode 100644
index 00000000..c511c076
--- /dev/null
+++ b/contrib/ring/ZArithRing.v
@@ -0,0 +1,36 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ZArithRing.v,v 1.5.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+(* Instantiation of the Ring tactic for the binary integers of ZArith *)
+
+Require Export ArithRing.
+Require Export ZArith_base.
+Require Import Eqdep_dec.
+
+Definition Zeq (x y:Z) :=
+ match (x ?= y)%Z with
+ | Datatypes.Eq => true
+ | _ => false
+ end.
+
+Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y.
+ intros x y H; unfold Zeq in H.
+ apply Zcompare_Eq_eq.
+ destruct (x ?= y)%Z; [ reflexivity | contradiction | contradiction ].
+Qed.
+
+Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq.
+ split; intros; apply eq2eqT; eauto with zarith.
+ apply eqT2eq; apply Zeq_prop; assumption.
+Qed.
+
+(* NatConstants and NatTheory are defined in Ring_theory.v *)
+Add Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory
+ [ Zpos Zneg 0%Z xO xI 1%positive ]. \ No newline at end of file
diff --git a/contrib/ring/g_quote.ml4 b/contrib/ring/g_quote.ml4
new file mode 100644
index 00000000..af23a8f7
--- /dev/null
+++ b/contrib/ring/g_quote.ml4
@@ -0,0 +1,18 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: g_quote.ml4,v 1.1.12.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+open Quote
+
+TACTIC EXTEND Quote
+ [ "Quote" ident(f) ] -> [ quote f [] ]
+| [ "Quote" ident(f) "[" ne_ident_list(lc) "]"] -> [ quote f lc ]
+END
diff --git a/contrib/ring/g_ring.ml4 b/contrib/ring/g_ring.ml4
new file mode 100644
index 00000000..f7c74c0b
--- /dev/null
+++ b/contrib/ring/g_ring.ml4
@@ -0,0 +1,135 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: g_ring.ml4,v 1.4.2.1 2004/07/16 19:30:13 herbelin Exp $ *)
+
+open Quote
+open Ring
+
+TACTIC EXTEND Ring
+ [ "Ring" constr_list(l) ] -> [ polynom l ]
+END
+
+(* The vernac commands "Add Ring" and co *)
+
+let cset_of_constrarg_list l =
+ List.fold_right ConstrSet.add (List.map constr_of l) ConstrSet.empty
+
+VERNAC COMMAND EXTEND AddRing
+ [ "Add" "Ring"
+ constr(a) constr(aplus) constr(amult) constr(aone) constr(azero)
+ constr(aopp) constr(aeq) constr(t) "[" ne_constr_list(l) "]" ]
+ -> [ add_theory true false false
+ (constr_of a)
+ None
+ None
+ None
+ (constr_of aplus)
+ (constr_of amult)
+ (constr_of aone)
+ (constr_of azero)
+ (Some (constr_of aopp))
+ (constr_of aeq)
+ (constr_of t)
+ (cset_of_constrarg_list l) ]
+
+| [ "Add" "Semi" "Ring"
+ constr(a) constr(aplus) constr(amult) constr(aone) constr(azero)
+ constr(aeq) constr(t) "[" ne_constr_list(l) "]" ]
+ -> [ add_theory false false false
+ (constr_of a)
+ None
+ None
+ None
+ (constr_of aplus)
+ (constr_of amult)
+ (constr_of aone)
+ (constr_of azero)
+ None
+ (constr_of aeq)
+ (constr_of t)
+ (cset_of_constrarg_list l) ]
+
+| [ "Add" "Abstract" "Ring"
+ constr(a) constr(aplus) constr(amult) constr(aone)
+ constr(azero) constr(aopp) constr(aeq) constr(t) ]
+ -> [ add_theory true true false
+ (constr_of a)
+ None
+ None
+ None
+ (constr_of aplus)
+ (constr_of amult)
+ (constr_of aone)
+ (constr_of azero)
+ (Some (constr_of aopp))
+ (constr_of aeq)
+ (constr_of t)
+ ConstrSet.empty ]
+
+| [ "Add" "Abstract" "Semi" "Ring"
+ constr(a) constr(aplus) constr(amult) constr(aone)
+ constr(azero) constr(aeq) constr(t) ]
+ -> [ add_theory false true false
+ (constr_of a)
+ None
+ None
+ None
+ (constr_of aplus)
+ (constr_of amult)
+ (constr_of aone)
+ (constr_of azero)
+ None
+ (constr_of aeq)
+ (constr_of t)
+ ConstrSet.empty ]
+
+| [ "Add" "Setoid" "Ring"
+ constr(a) constr(aequiv) constr(asetth) constr(aplus) constr(amult)
+ constr(aone) constr(azero) constr(aopp) constr(aeq) constr(pm)
+ constr(mm) constr(om) constr(t) "[" ne_constr_list(l) "]" ]
+ -> [ add_theory true false true
+ (constr_of a)
+ (Some (constr_of aequiv))
+ (Some (constr_of asetth))
+ (Some {
+ plusm = (constr_of pm);
+ multm = (constr_of mm);
+ oppm = Some (constr_of om) })
+ (constr_of aplus)
+ (constr_of amult)
+ (constr_of aone)
+ (constr_of azero)
+ (Some (constr_of aopp))
+ (constr_of aeq)
+ (constr_of t)
+ (cset_of_constrarg_list l) ]
+
+| [ "Add" "Semi" "Setoid" "Ring"
+ constr(a) constr(aequiv) constr(asetth) constr(aplus)
+ constr(amult) constr(aone) constr(azero) constr(aeq)
+ constr(pm) constr(mm) constr(t) "[" ne_constr_list(l) "]" ]
+ -> [ add_theory false false true
+ (constr_of a)
+ (Some (constr_of aequiv))
+ (Some (constr_of asetth))
+ (Some {
+ plusm = (constr_of pm);
+ multm = (constr_of mm);
+ oppm = None })
+ (constr_of aplus)
+ (constr_of amult)
+ (constr_of aone)
+ (constr_of azero)
+ None
+ (constr_of aeq)
+ (constr_of t)
+ (cset_of_constrarg_list l) ]
+END
diff --git a/contrib/ring/quote.ml b/contrib/ring/quote.ml
new file mode 100644
index 00000000..bda04db3
--- /dev/null
+++ b/contrib/ring/quote.ml
@@ -0,0 +1,489 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: quote.ml,v 1.30.2.1 2004/07/16 19:30:14 herbelin Exp $ *)
+
+(* The `Quote' tactic *)
+
+(* The basic idea is to automatize the inversion of interpetation functions
+ in 2-level approach
+
+ Examples are given in \texttt{theories/DEMOS/DemoQuote.v}
+
+ Suppose you have a langage \texttt{L} of 'abstract terms'
+ and a type \texttt{A} of 'concrete terms'
+ and a function \texttt{f : L -> (varmap A L) -> A}.
+
+ Then, the tactic \texttt{Quote f} will replace an
+ expression \texttt{e} of type \texttt{A} by \texttt{(f vm t)}
+ such that \texttt{e} and \texttt{(f vm t)} are convertible.
+
+ The problem is then inverting the function f.
+
+ The tactic works when:
+
+ \begin{itemize}
+ \item L is a simple inductive datatype. The constructors of L may
+ have one of the three following forms:
+
+ \begin{enumerate}
+ \item ordinary recursive constructors like: \verb|Cplus : L -> L -> L|
+ \item variable leaf like: \verb|Cvar : index -> L|
+ \item constant leaf like \verb|Cconst : A -> L|
+ \end{enumerate}
+
+ The definition of \texttt{L} must contain at most one variable
+ leaf and at most one constant leaf.
+
+ When there are both a variable leaf and a constant leaf, there is
+ an ambiguity on inversion. The term t can be either the
+ interpretation of \texttt{(Cconst t)} or the interpretation of
+ (\texttt{Cvar}~$i$) in a variables map containing the binding $i
+ \rightarrow$~\texttt{t}. How to discriminate between these
+ choices ?
+
+ To solve the dilemma, one gives to \texttt{Quote} a list of
+ \emph{constant constructors}: a term will be considered as a
+ constant if it is either a constant constructor of the
+ application of a constant constructor to constants. For example
+ the list \verb+[S, O]+ defines the closed natural
+ numbers. \texttt{(S (S O))} is a constant when \texttt{(S x)} is
+ not.
+
+ The definition of constants vary for each application of the
+ tactic, so it can even be different for two applications of
+ \texttt{Quote} with the same function.
+
+ \item \texttt{f} is a quite simple fixpoint on
+ \texttt{L}. In particular, \texttt{f} must verify:
+
+\begin{verbatim}
+ (f (Cvar i)) = (varmap_find vm default_value i)
+\end{verbatim}
+\begin{verbatim}
+ (f (Cconst c)) = c
+\end{verbatim}
+
+ where \texttt{index} and \texttt{varmap\_find} are those defined
+ the \texttt{Quote} module. \emph{The tactic won't work with
+ user's own variables map !!} It is mandatory to use the
+ variables map defined in module \texttt{Quote}.
+
+ \end{itemize}
+
+ The method to proceed is then clear:
+
+ \begin{itemize}
+ \item Start with an empty hashtable of "registed leafs"
+ that map constr to integers and a "variable counter" equal to 0.
+ \item Try to match the term with every right hand side of the
+ definition of f.
+
+ If there is one match, returns the correponding left hand
+ side and call yourself recursively to get the arguments of this
+ left hand side.
+
+ If there is no match, we are at a leaf. That is the
+ interpretation of either a variable or a constant.
+
+ If it is a constant, return \texttt{Cconst} applied to that
+ constant.
+
+ If not, it is a variable. Look in the hashtable
+ if this leaf has been already encountered. If not, increment
+ the variables counter and add an entry to the hashtable; then
+ return \texttt{(Cvar !variables\_counter)}
+ \end{itemize}
+*)
+
+
+(*i*)
+open Pp
+open Util
+open Names
+open Term
+open Instantiate
+open Pattern
+open Matching
+open Tacmach
+open Tactics
+open Proof_trees
+open Tacexpr
+(*i*)
+
+(*s First, we need to access some Coq constants
+ We do that lazily, because this code can be linked before
+ the constants are loaded in the environment *)
+
+let constant dir s = Coqlib.gen_constant "Quote" ("ring"::dir) s
+
+let coq_Empty_vm = lazy (constant ["Quote"] "Empty_vm")
+let coq_Node_vm = lazy (constant ["Quote"] "Node_vm")
+let coq_varmap_find = lazy (constant ["Quote"] "varmap_find")
+let coq_Right_idx = lazy (constant ["Quote"] "Right_idx")
+let coq_Left_idx = lazy (constant ["Quote"] "Left_idx")
+let coq_End_idx = lazy (constant ["Quote"] "End_idx")
+
+(*s Then comes the stuff to decompose the body of interpetation function
+ and pre-compute the inversion data.
+
+For a function like:
+
+\begin{verbatim}
+ Fixpoint interp[vm:(varmap Prop); f:form] :=
+ Cases f of
+ | (f_and f1 f1 f2) => (interp f1)/\(interp f2)
+ | (f_or f1 f1 f2) => (interp f1)\/(interp f2)
+ | (f_var i) => (varmap_find Prop default_v i vm)
+ | (f_const c) => c
+\end{verbatim}
+
+With the constant constructors \texttt{C1}, \dots, \texttt{Cn}, the
+corresponding scheme will be:
+
+\begin{verbatim}
+ {normal_lhs_rhs =
+ [ "(f_and ?1 ?2)", "?1 /\ ?2";
+ "(f_or ?1 ?2)", " ?1 \/ ?2";];
+ return_type = "Prop";
+ constants = Some [C1,...Cn];
+ variable_lhs = Some "(f_var ?1)";
+ constant_lhs = Some "(f_const ?1)"
+ }
+\end{verbatim}
+
+If there is no constructor for variables in the type \texttt{form},
+then [variable_lhs] is [None]. Idem for constants and
+[constant_lhs]. Both cannot be equal to [None].
+
+The metas in the RHS must correspond to those in the LHS (one cannot
+exchange ?1 and ?2 in the example above)
+
+*)
+
+module ConstrSet = Set.Make(
+ struct
+ type t = constr
+ let compare = (Pervasives.compare : t->t->int)
+ end)
+
+type inversion_scheme = {
+ normal_lhs_rhs : (constr * constr_pattern) list;
+ variable_lhs : constr option;
+ return_type : constr;
+ constants : ConstrSet.t;
+ constant_lhs : constr option }
+
+(*s [compute_ivs gl f cs] computes the inversion scheme associated to
+ [f:constr] with constants list [cs:constr list] in the context of
+ goal [gl]. This function uses the auxiliary functions
+ [i_can't_do_that], [decomp_term], [compute_lhs] and [compute_rhs]. *)
+
+let i_can't_do_that () = error "Quote: not a simple fixpoint"
+
+let decomp_term c = kind_of_term (strip_outer_cast c)
+
+(*s [compute_lhs typ i nargsi] builds the term \texttt{(C ?nargsi ...
+ ?2 ?1)}, where \texttt{C} is the [i]-th constructor of inductive
+ type [typ] *)
+
+let coerce_meta_out id = int_of_string (string_of_id id)
+let coerce_meta_in n = id_of_string (string_of_int n)
+
+let compute_lhs typ i nargsi =
+ match kind_of_term typ with
+ | Ind(sp,0) ->
+ let argsi = Array.init nargsi (fun j -> mkMeta (nargsi - j)) in
+ mkApp (mkConstruct ((sp,0),i+1), argsi)
+ | _ -> i_can't_do_that ()
+
+(*s This function builds the pattern from the RHS. Recursive calls are
+ replaced by meta-variables ?i corresponding to those in the LHS *)
+
+let compute_rhs bodyi index_of_f =
+ let rec aux c =
+ match kind_of_term c with
+ | App (j, args) when j = mkRel (index_of_f) (* recursive call *) ->
+ let i = destRel (array_last args) in
+ PMeta (Some (coerce_meta_in i))
+ | App (f,args) ->
+ PApp (pattern_of_constr f, Array.map aux args)
+ | Cast (c,t) -> aux c
+ | _ -> pattern_of_constr c
+ in
+ aux bodyi
+
+(*s Now the function [compute_ivs] itself *)
+
+let compute_ivs gl f cs =
+ let cst = try destConst f with _ -> i_can't_do_that () in
+ let body = Environ.constant_value (Global.env()) cst in
+ match decomp_term body with
+ | Fix(([| len |], 0), ([| name |], [| typ |], [| body2 |])) ->
+ let (args3, body3) = decompose_lam body2 in
+ let nargs3 = List.length args3 in
+ begin match decomp_term body3 with
+ | Case(_,p,c,lci) -> (* <p> Case c of c1 ... cn end *)
+ let n_lhs_rhs = ref []
+ and v_lhs = ref (None : constr option)
+ and c_lhs = ref (None : constr option) in
+ Array.iteri
+ (fun i ci ->
+ let argsi, bodyi = decompose_lam ci in
+ let nargsi = List.length argsi in
+ (* REL (narg3 + nargsi + 1) is f *)
+ (* REL nargsi+1 to REL nargsi + nargs3 are arguments of f *)
+ (* REL 1 to REL nargsi are argsi (reverse order) *)
+ (* First we test if the RHS is the RHS for constants *)
+ if bodyi = mkRel 1 then
+ c_lhs := Some (compute_lhs (snd (List.hd args3))
+ i nargsi)
+ (* Then we test if the RHS is the RHS for variables *)
+ else begin match decompose_app bodyi with
+ | vmf, [_; _; a3; a4 ]
+ when isRel a3 & isRel a4 &
+ pf_conv_x gl vmf
+ (Lazy.force coq_varmap_find)->
+ v_lhs := Some (compute_lhs
+ (snd (List.hd args3))
+ i nargsi)
+ (* Third case: this is a normal LHS-RHS *)
+ | _ ->
+ n_lhs_rhs :=
+ (compute_lhs (snd (List.hd args3)) i nargsi,
+ compute_rhs bodyi (nargs3 + nargsi + 1))
+ :: !n_lhs_rhs
+ end)
+ lci;
+
+ if !c_lhs = None & !v_lhs = None then i_can't_do_that ();
+
+ (* The Cases predicate is a lambda; we assume no dependency *)
+ let p = match kind_of_term p with
+ | Lambda (_,_,p) -> Termops.pop p
+ | _ -> p
+ in
+
+ { normal_lhs_rhs = List.rev !n_lhs_rhs;
+ variable_lhs = !v_lhs;
+ return_type = p;
+ constants = List.fold_right ConstrSet.add cs ConstrSet.empty;
+ constant_lhs = !c_lhs }
+
+ | _ -> i_can't_do_that ()
+ end
+ |_ -> i_can't_do_that ()
+
+(* TODO for that function:
+\begin{itemize}
+\item handle the case where the return type is an argument of the
+ function
+\item handle the case of simple mutual inductive (for example terms
+ and lists of terms) formulas with the corresponding mutual
+ recursvive interpretation functions.
+\end{itemize}
+*)
+
+(*s Stuff to build variables map, currently implemented as complete
+binary search trees (see file \texttt{Quote.v}) *)
+
+(* First the function to distinghish between constants (closed terms)
+ and variables (open terms) *)
+
+let rec closed_under cset t =
+ (ConstrSet.mem t cset) or
+ (match (kind_of_term t) with
+ | Cast(c,_) -> closed_under cset c
+ | App(f,l) -> closed_under cset f & array_for_all (closed_under cset) l
+ | _ -> false)
+
+(*s [btree_of_array [| c1; c2; c3; c4; c5 |]] builds the complete
+ binary search tree containing the [ci], that is:
+
+\begin{verbatim}
+ c1
+ / \
+ c2 c3
+ / \
+ c4 c5
+\end{verbatim}
+
+The second argument is a constr (the common type of the [ci])
+*)
+
+let btree_of_array a ty =
+ let size_of_a = Array.length a in
+ let semi_size_of_a = size_of_a lsr 1 in
+ let node = Lazy.force coq_Node_vm
+ and empty = mkApp (Lazy.force coq_Empty_vm, [| ty |]) in
+ let rec aux n =
+ if n > size_of_a
+ then empty
+ else if n > semi_size_of_a
+ then mkApp (node, [| ty; a.(n-1); empty; empty |])
+ else mkApp (node, [| ty; a.(n-1); aux (2*n); aux (2*n+1) |])
+ in
+ aux 1
+
+(*s [btree_of_array] and [path_of_int] verify the following invariant:\\
+ {\tt (varmap\_find A dv }[(path_of_int n)] [(btree_of_array a ty)]
+ = [a.(n)]\\
+ [n] must be [> 0] *)
+
+let path_of_int n =
+ (* returns the list of digits of n in reverse order with
+ initial 1 removed *)
+ let rec digits_of_int n =
+ if n=1 then []
+ else (n mod 2 = 1)::(digits_of_int (n lsr 1))
+ in
+ List.fold_right
+ (fun b c -> mkApp ((if b then Lazy.force coq_Right_idx
+ else Lazy.force coq_Left_idx),
+ [| c |]))
+ (List.rev (digits_of_int n))
+ (Lazy.force coq_End_idx)
+
+(*s The tactic works with a list of subterms sharing the same
+ variables map. We need to sort terms in order to avoid than
+ strange things happen during replacement of terms by their
+ 'abstract' counterparties. *)
+
+(* [subterm t t'] tests if constr [t'] occurs in [t] *)
+(* This function does not descend under binders (lambda and Cases) *)
+
+let rec subterm gl (t : constr) (t' : constr) =
+ (pf_conv_x gl t t') or
+ (match (kind_of_term t) with
+ | App (f,args) -> array_exists (fun t -> subterm gl t t') args
+ | Cast(t,_) -> (subterm gl t t')
+ | _ -> false)
+
+(*s We want to sort the list according to reverse subterm order. *)
+(* Since it's a partial order the algoritm of Sort.list won't work !! *)
+
+let rec sort_subterm gl l =
+ let rec insert c = function
+ | [] -> [c]
+ | (h::t as l) when c = h -> l (* Avoid doing the same work twice *)
+ | h::t -> if subterm gl c h then c::h::t else h::(insert c t)
+ in
+ match l with
+ | [] -> []
+ | h::t -> insert h (sort_subterm gl t)
+
+(*s Now we are able to do the inversion itself.
+ We destructurate the term and use an imperative hashtable
+ to store leafs that are already encountered.
+ The type of arguments is:\\
+ [ivs : inversion_scheme]\\
+ [lc: constr list]\\
+ [gl: goal sigma]\\ *)
+
+let quote_terms ivs lc gl =
+ Library.check_required_library ["Coq";"ring";"Quote"];
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ let rec aux c =
+ let rec auxl l =
+ match l with
+ | (lhs, rhs)::tail ->
+ begin try
+ let s1 = matches rhs c in
+ let s2 = List.map (fun (i,c_i) -> (coerce_meta_out i,aux c_i)) s1
+ in
+ Termops.subst_meta s2 lhs
+ with PatternMatchingFailure -> auxl tail
+ end
+ | [] ->
+ begin match ivs.variable_lhs with
+ | None ->
+ begin match ivs.constant_lhs with
+ | Some c_lhs -> Termops.subst_meta [1, c] c_lhs
+ | None -> anomaly "invalid inversion scheme for quote"
+ end
+ | Some var_lhs ->
+ begin match ivs.constant_lhs with
+ | Some c_lhs when closed_under ivs.constants c ->
+ Termops.subst_meta [1, c] c_lhs
+ | _ ->
+ begin
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar =
+ Termops.subst_meta [1, (path_of_int !counter)]
+ var_lhs in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ end
+ end
+ end
+ in
+ auxl ivs.normal_lhs_rhs
+ in
+ let lp = List.map aux lc in
+ (lp, (btree_of_array (Array.of_list (List.rev !varlist))
+ ivs.return_type ))
+
+(*s actually we could "quote" a list of terms instead of the
+ conclusion of current goal. Ring for example needs that, but Ring doesn't
+ uses Quote yet. *)
+
+let quote f lid gl =
+ let f = pf_global gl f in
+ let cl = List.map (pf_global gl) lid in
+ let ivs = compute_ivs gl f cl in
+ let (p, vm) = match quote_terms ivs [(pf_concl gl)] gl with
+ | [p], vm -> (p,vm)
+ | _ -> assert false
+ in
+ match ivs.variable_lhs with
+ | None -> Tactics.convert_concl (mkApp (f, [| p |])) gl
+ | Some _ -> Tactics.convert_concl (mkApp (f, [| vm; p |])) gl
+
+(*i
+
+Just testing ...
+
+#use "include.ml";;
+open Quote;;
+
+let r = raw_constr_of_string;;
+
+let ivs = {
+ normal_lhs_rhs =
+ [ r "(f_and ?1 ?2)", r "?1/\?2";
+ r "(f_not ?1)", r "~?1"];
+ variable_lhs = Some (r "(f_atom ?1)");
+ return_type = r "Prop";
+ constants = ConstrSet.empty;
+ constant_lhs = (r "nat")
+};;
+
+let t1 = r "True/\(True /\ ~False)";;
+let t2 = r "True/\~~False";;
+
+quote_term ivs () t1;;
+quote_term ivs () t2;;
+
+let ivs2 =
+ normal_lhs_rhs =
+ [ r "(f_and ?1 ?2)", r "?1/\?2";
+ r "(f_not ?1)", r "~?1"
+ r "True", r "f_true"];
+ variable_lhs = Some (r "(f_atom ?1)");
+ return_type = r "Prop";
+ constants = ConstrSet.empty;
+ constant_lhs = (r "nat")
+
+i*)
diff --git a/contrib/ring/ring.ml b/contrib/ring/ring.ml
new file mode 100644
index 00000000..378f19a4
--- /dev/null
+++ b/contrib/ring/ring.ml
@@ -0,0 +1,904 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ring.ml,v 1.49.2.1 2004/07/16 19:30:14 herbelin Exp $ *)
+
+(* ML part of the Ring tactic *)
+
+open Pp
+open Util
+open Options
+open Term
+open Names
+open Libnames
+open Nameops
+open Reductionops
+open Tacticals
+open Tacexpr
+open Tacmach
+open Proof_trees
+open Printer
+open Equality
+open Vernacinterp
+open Vernacexpr
+open Libobject
+open Closure
+open Tacred
+open Tactics
+open Pattern
+open Hiddentac
+open Nametab
+open Quote
+
+let mt_evd = Evd.empty
+let constr_of c = Constrintern.interp_constr mt_evd (Global.env()) c
+
+let ring_dir = ["Coq";"ring"]
+let setoids_dir = ["Coq";"Setoids"]
+
+let ring_constant = Coqlib.gen_constant_in_modules "Ring"
+ [ring_dir@["Ring_theory"];
+ ring_dir@["Setoid_ring_theory"];
+ ring_dir@["Ring_normalize"];
+ ring_dir@["Ring_abstract"];
+ setoids_dir@["Setoid"];
+ ring_dir@["Setoid_ring_normalize"]]
+
+(* Ring theory *)
+let coq_Ring_Theory = lazy (ring_constant "Ring_Theory")
+let coq_Semi_Ring_Theory = lazy (ring_constant "Semi_Ring_Theory")
+
+(* Setoid ring theory *)
+let coq_Setoid_Ring_Theory = lazy (ring_constant "Setoid_Ring_Theory")
+let coq_Semi_Setoid_Ring_Theory = lazy(ring_constant "Semi_Setoid_Ring_Theory")
+
+(* Ring normalize *)
+let coq_SPplus = lazy (ring_constant "SPplus")
+let coq_SPmult = lazy (ring_constant "SPmult")
+let coq_SPvar = lazy (ring_constant "SPvar")
+let coq_SPconst = lazy (ring_constant "SPconst")
+let coq_Pplus = lazy (ring_constant "Pplus")
+let coq_Pmult = lazy (ring_constant "Pmult")
+let coq_Pvar = lazy (ring_constant "Pvar")
+let coq_Pconst = lazy (ring_constant "Pconst")
+let coq_Popp = lazy (ring_constant "Popp")
+let coq_interp_sp = lazy (ring_constant "interp_sp")
+let coq_interp_p = lazy (ring_constant "interp_p")
+let coq_interp_cs = lazy (ring_constant "interp_cs")
+let coq_spolynomial_simplify = lazy (ring_constant "spolynomial_simplify")
+let coq_polynomial_simplify = lazy (ring_constant "polynomial_simplify")
+let coq_spolynomial_simplify_ok = lazy(ring_constant "spolynomial_simplify_ok")
+let coq_polynomial_simplify_ok = lazy (ring_constant "polynomial_simplify_ok")
+
+(* Setoid theory *)
+let coq_Setoid_Theory = lazy(ring_constant "Setoid_Theory")
+
+let coq_seq_refl = lazy(ring_constant "Seq_refl")
+let coq_seq_sym = lazy(ring_constant "Seq_sym")
+let coq_seq_trans = lazy(ring_constant "Seq_trans")
+
+(* Setoid Ring normalize *)
+let coq_SetSPplus = lazy (ring_constant "SetSPplus")
+let coq_SetSPmult = lazy (ring_constant "SetSPmult")
+let coq_SetSPvar = lazy (ring_constant "SetSPvar")
+let coq_SetSPconst = lazy (ring_constant "SetSPconst")
+let coq_SetPplus = lazy (ring_constant "SetPplus")
+let coq_SetPmult = lazy (ring_constant "SetPmult")
+let coq_SetPvar = lazy (ring_constant "SetPvar")
+let coq_SetPconst = lazy (ring_constant "SetPconst")
+let coq_SetPopp = lazy (ring_constant "SetPopp")
+let coq_interp_setsp = lazy (ring_constant "interp_setsp")
+let coq_interp_setp = lazy (ring_constant "interp_setp")
+let coq_interp_setcs = lazy (ring_constant "interp_setcs")
+let coq_setspolynomial_simplify =
+ lazy (ring_constant "setspolynomial_simplify")
+let coq_setpolynomial_simplify =
+ lazy (ring_constant "setpolynomial_simplify")
+let coq_setspolynomial_simplify_ok =
+ lazy (ring_constant "setspolynomial_simplify_ok")
+let coq_setpolynomial_simplify_ok =
+ lazy (ring_constant "setpolynomial_simplify_ok")
+
+(* Ring abstract *)
+let coq_ASPplus = lazy (ring_constant "ASPplus")
+let coq_ASPmult = lazy (ring_constant "ASPmult")
+let coq_ASPvar = lazy (ring_constant "ASPvar")
+let coq_ASP0 = lazy (ring_constant "ASP0")
+let coq_ASP1 = lazy (ring_constant "ASP1")
+let coq_APplus = lazy (ring_constant "APplus")
+let coq_APmult = lazy (ring_constant "APmult")
+let coq_APvar = lazy (ring_constant "APvar")
+let coq_AP0 = lazy (ring_constant "AP0")
+let coq_AP1 = lazy (ring_constant "AP1")
+let coq_APopp = lazy (ring_constant "APopp")
+let coq_interp_asp = lazy (ring_constant "interp_asp")
+let coq_interp_ap = lazy (ring_constant "interp_ap")
+let coq_interp_acs = lazy (ring_constant "interp_acs")
+let coq_interp_sacs = lazy (ring_constant "interp_sacs")
+let coq_aspolynomial_normalize = lazy (ring_constant "aspolynomial_normalize")
+let coq_apolynomial_normalize = lazy (ring_constant "apolynomial_normalize")
+let coq_aspolynomial_normalize_ok =
+ lazy (ring_constant "aspolynomial_normalize_ok")
+let coq_apolynomial_normalize_ok =
+ lazy (ring_constant "apolynomial_normalize_ok")
+
+(* Logic --> to be found in Coqlib *)
+open Coqlib
+
+let mkLApp(fc,v) = mkApp(Lazy.force fc, v)
+
+(*********** Useful types and functions ************)
+
+module OperSet =
+ Set.Make (struct
+ type t = global_reference
+ let compare = (Pervasives.compare : t->t->int)
+ end)
+
+type morph =
+ { plusm : constr;
+ multm : constr;
+ oppm : constr option;
+ }
+
+type theory =
+ { th_ring : bool; (* false for a semi-ring *)
+ th_abstract : bool;
+ th_setoid : bool; (* true for a setoid ring *)
+ th_equiv : constr option;
+ th_setoid_th : constr option;
+ th_morph : morph option;
+ th_a : constr; (* e.g. nat *)
+ th_plus : constr;
+ th_mult : constr;
+ th_one : constr;
+ th_zero : constr;
+ th_opp : constr option; (* None if semi-ring *)
+ th_eq : constr;
+ th_t : constr; (* e.g. NatTheory *)
+ th_closed : ConstrSet.t; (* e.g. [S; O] *)
+ (* Must be empty for an abstract ring *)
+ }
+
+(* Theories are stored in a table which is synchronised with the Reset
+ mechanism. *)
+
+module Cmap = Map.Make(struct type t = constr let compare = compare end)
+
+let theories_map = ref Cmap.empty
+
+let theories_map_add (c,t) = theories_map := Cmap.add c t !theories_map
+let theories_map_find c = Cmap.find c !theories_map
+let theories_map_mem c = Cmap.mem c !theories_map
+
+let _ =
+ Summary.declare_summary "tactic-ring-table"
+ { Summary.freeze_function = (fun () -> !theories_map);
+ Summary.unfreeze_function = (fun t -> theories_map := t);
+ Summary.init_function = (fun () -> theories_map := Cmap.empty);
+ Summary.survive_module = false;
+ Summary.survive_section = false }
+
+(* declare a new type of object in the environment, "tactic-ring-theory"
+ The functions theory_to_obj and obj_to_theory do the conversions
+ between theories and environement objects. *)
+
+
+let subst_morph subst morph =
+ let plusm' = subst_mps subst morph.plusm in
+ let multm' = subst_mps subst morph.multm in
+ let oppm' = option_smartmap (subst_mps subst) morph.oppm in
+ if plusm' == morph.plusm
+ && multm' == morph.multm
+ && oppm' == morph.oppm then
+ morph
+ else
+ { plusm = plusm' ;
+ multm = multm' ;
+ oppm = oppm' ;
+ }
+
+let subst_set subst cset =
+ let same = ref true in
+ let copy_subst c newset =
+ let c' = subst_mps subst c in
+ if not (c' == c) then same := false;
+ ConstrSet.add c' newset
+ in
+ let cset' = ConstrSet.fold copy_subst cset ConstrSet.empty in
+ if !same then cset else cset'
+
+let subst_theory subst th =
+ let th_equiv' = option_smartmap (subst_mps subst) th.th_equiv in
+ let th_setoid_th' = option_smartmap (subst_mps subst) th.th_setoid_th in
+ let th_morph' = option_smartmap (subst_morph subst) th.th_morph in
+ let th_a' = subst_mps subst th.th_a in
+ let th_plus' = subst_mps subst th.th_plus in
+ let th_mult' = subst_mps subst th.th_mult in
+ let th_one' = subst_mps subst th.th_one in
+ let th_zero' = subst_mps subst th.th_zero in
+ let th_opp' = option_smartmap (subst_mps subst) th.th_opp in
+ let th_eq' = subst_mps subst th.th_eq in
+ let th_t' = subst_mps subst th.th_t in
+ let th_closed' = subst_set subst th.th_closed in
+ if th_equiv' == th.th_equiv
+ && th_setoid_th' == th.th_setoid_th
+ && th_morph' == th.th_morph
+ && th_a' == th.th_a
+ && th_plus' == th.th_plus
+ && th_mult' == th.th_mult
+ && th_one' == th.th_one
+ && th_zero' == th.th_zero
+ && th_opp' == th.th_opp
+ && th_eq' == th.th_eq
+ && th_t' == th.th_t
+ && th_closed' == th.th_closed
+ then
+ th
+ else
+ { th_ring = th.th_ring ;
+ th_abstract = th.th_abstract ;
+ th_setoid = th.th_setoid ;
+ th_equiv = th_equiv' ;
+ th_setoid_th = th_setoid_th' ;
+ th_morph = th_morph' ;
+ th_a = th_a' ;
+ th_plus = th_plus' ;
+ th_mult = th_mult' ;
+ th_one = th_one' ;
+ th_zero = th_zero' ;
+ th_opp = th_opp' ;
+ th_eq = th_eq' ;
+ th_t = th_t' ;
+ th_closed = th_closed' ;
+ }
+
+
+let subst_th (_,subst,(c,th as obj)) =
+ let c' = subst_mps subst c in
+ let th' = subst_theory subst th in
+ if c' == c && th' == th then obj else
+ (c',th')
+
+
+let (theory_to_obj, obj_to_theory) =
+ let cache_th (_,(c, th)) = theories_map_add (c,th)
+ and export_th x = Some x in
+ declare_object {(default_object "tactic-ring-theory") with
+ open_function = (fun i o -> if i=1 then cache_th o);
+ cache_function = cache_th;
+ subst_function = subst_th;
+ classify_function = (fun (_,x) -> Substitute x);
+ export_function = export_th }
+
+(* from the set A, guess the associated theory *)
+(* With this simple solution, the theory to use is automatically guessed *)
+(* But only one theory can be declared for a given Set *)
+
+let guess_theory a =
+ try
+ theories_map_find a
+ with Not_found ->
+ errorlabstrm "Ring"
+ (str "No Declared Ring Theory for " ++
+ prterm a ++ fnl () ++
+ str "Use Add [Semi] Ring to declare it")
+
+(* Looks up an option *)
+
+let unbox = function
+ | Some w -> w
+ | None -> anomaly "Ring : Not in case of a setoid ring."
+
+(* Protects the convertibility test against undue exceptions when using it
+ with untyped terms *)
+
+let safe_pf_conv_x gl c1 c2 = try pf_conv_x gl c1 c2 with _ -> false
+
+
+(* Add a Ring or a Semi-Ring to the database after a type verification *)
+
+let implement_theory env t th args =
+ is_conv env Evd.empty (Typing.type_of env Evd.empty t) (mkLApp (th, args))
+
+let add_theory want_ring want_abstract want_setoid a aequiv asetth amorph aplus amult aone azero aopp aeq t cset =
+ if theories_map_mem a then errorlabstrm "Add Semi Ring"
+ (str "A (Semi-)(Setoid-)Ring Structure is already declared for " ++
+ prterm a);
+ let env = Global.env () in
+ if (want_ring & want_setoid &
+ not (implement_theory env t coq_Setoid_Ring_Theory
+ [| a; (unbox aequiv); aplus; amult; aone; azero; (unbox aopp); aeq|])
+ &
+ not (implement_theory env (unbox asetth) coq_Setoid_Theory
+ [| a; (unbox aequiv) |])) then
+ errorlabstrm "addring" (str "Not a valid Setoid-Ring theory");
+ if (not want_ring & want_setoid &
+ not (implement_theory env t coq_Semi_Setoid_Ring_Theory
+ [| a; (unbox aequiv); aplus; amult; aone; azero; aeq|]) &
+ not (implement_theory env (unbox asetth) coq_Setoid_Theory
+ [| a; (unbox aequiv) |])) then
+ errorlabstrm "addring" (str "Not a valid Semi-Setoid-Ring theory");
+ if (want_ring & not want_setoid &
+ not (implement_theory env t coq_Ring_Theory
+ [| a; aplus; amult; aone; azero; (unbox aopp); aeq |])) then
+ errorlabstrm "addring" (str "Not a valid Ring theory");
+ if (not want_ring & not want_setoid &
+ not (implement_theory env t coq_Semi_Ring_Theory
+ [| a; aplus; amult; aone; azero; aeq |])) then
+ errorlabstrm "addring" (str "Not a valid Semi-Ring theory");
+ Lib.add_anonymous_leaf
+ (theory_to_obj
+ (a, { th_ring = want_ring;
+ th_abstract = want_abstract;
+ th_setoid = want_setoid;
+ th_equiv = aequiv;
+ th_setoid_th = asetth;
+ th_morph = amorph;
+ th_a = a;
+ th_plus = aplus;
+ th_mult = amult;
+ th_one = aone;
+ th_zero = azero;
+ th_opp = aopp;
+ th_eq = aeq;
+ th_t = t;
+ th_closed = cset }))
+
+(******** The tactic itself *********)
+
+(*
+ gl : goal sigma
+ th : semi-ring theory (concrete)
+ cl : constr list [c1; c2; ...]
+
+Builds
+ - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
+ where c'i is convertible with ci and
+ c'i_eq_c''i is a proof of equality of c'i and c''i
+
+*)
+
+let build_spolynom gl th lc =
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ (* aux creates the spolynom p by a recursive destructuration of c
+ and builds the varmap with side-effects *)
+ let rec aux c =
+ match (kind_of_term (strip_outer_cast c)) with
+ | App (binop,[|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
+ mkLApp(coq_SPplus, [|th.th_a; aux c1; aux c2 |])
+ | App (binop,[|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
+ mkLApp(coq_SPmult, [|th.th_a; aux c1; aux c2 |])
+ | _ when closed_under th.th_closed c ->
+ mkLApp(coq_SPconst, [|th.th_a; c |])
+ | _ ->
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar =
+ mkLApp(coq_SPvar, [|th.th_a; (path_of_int !counter) |]) in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ in
+ let lp = List.map aux lc in
+ let v = btree_of_array (Array.of_list (List.rev !varlist)) th.th_a in
+ List.map
+ (fun p ->
+ (mkLApp (coq_interp_sp,
+ [|th.th_a; th.th_plus; th.th_mult; th.th_zero; v; p |]),
+ mkLApp (coq_interp_cs,
+ [|th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
+ pf_reduce cbv_betadeltaiota gl
+ (mkLApp (coq_spolynomial_simplify,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero;
+ th.th_eq; p|])) |]),
+ mkLApp (coq_spolynomial_simplify_ok,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
+ th.th_eq; v; th.th_t; p |])))
+ lp
+
+(*
+ gl : goal sigma
+ th : ring theory (concrete)
+ cl : constr list [c1; c2; ...]
+
+Builds
+ - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
+ where c'i is convertible with ci and
+ c'i_eq_c''i is a proof of equality of c'i and c''i
+
+*)
+
+let build_polynom gl th lc =
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ let rec aux c =
+ match (kind_of_term (strip_outer_cast c)) with
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
+ mkLApp(coq_Pplus, [|th.th_a; aux c1; aux c2 |])
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
+ mkLApp(coq_Pmult, [|th.th_a; aux c1; aux c2 |])
+ (* The special case of Zminus *)
+ | App (binop, [|c1; c2|])
+ when safe_pf_conv_x gl c
+ (mkApp (th.th_plus, [|c1; mkApp(unbox th.th_opp, [|c2|])|])) ->
+ mkLApp(coq_Pplus,
+ [|th.th_a; aux c1;
+ mkLApp(coq_Popp, [|th.th_a; aux c2|]) |])
+ | App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
+ mkLApp(coq_Popp, [|th.th_a; aux c1|])
+ | _ when closed_under th.th_closed c ->
+ mkLApp(coq_Pconst, [|th.th_a; c |])
+ | _ ->
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar =
+ mkLApp(coq_Pvar, [|th.th_a; (path_of_int !counter) |]) in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ in
+ let lp = List.map aux lc in
+ let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
+ List.map
+ (fun p ->
+ (mkLApp(coq_interp_p,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_zero;
+ (unbox th.th_opp); v; p |])),
+ mkLApp(coq_interp_cs,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
+ pf_reduce cbv_betadeltaiota gl
+ (mkLApp(coq_polynomial_simplify,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero;
+ (unbox th.th_opp); th.th_eq; p |])) |]),
+ mkLApp(coq_polynomial_simplify_ok,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
+ (unbox th.th_opp); th.th_eq; v; th.th_t; p |]))
+ lp
+
+(*
+ gl : goal sigma
+ th : semi-ring theory (abstract)
+ cl : constr list [c1; c2; ...]
+
+Builds
+ - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
+ where c'i is convertible with ci and
+ c'i_eq_c''i is a proof of equality of c'i and c''i
+
+*)
+
+let build_aspolynom gl th lc =
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ (* aux creates the aspolynom p by a recursive destructuration of c
+ and builds the varmap with side-effects *)
+ let rec aux c =
+ match (kind_of_term (strip_outer_cast c)) with
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
+ mkLApp(coq_ASPplus, [| aux c1; aux c2 |])
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
+ mkLApp(coq_ASPmult, [| aux c1; aux c2 |])
+ | _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_ASP0
+ | _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_ASP1
+ | _ ->
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar = mkLApp(coq_ASPvar, [|(path_of_int !counter) |]) in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ in
+ let lp = List.map aux lc in
+ let v = btree_of_array (Array.of_list (List.rev !varlist)) th.th_a in
+ List.map
+ (fun p ->
+ (mkLApp(coq_interp_asp,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero; v; p |]),
+ mkLApp(coq_interp_acs,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero; v;
+ pf_reduce cbv_betadeltaiota gl
+ (mkLApp(coq_aspolynomial_normalize,[|p|])) |]),
+ mkLApp(coq_spolynomial_simplify_ok,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
+ th.th_eq; v; th.th_t; p |])))
+ lp
+
+(*
+ gl : goal sigma
+ th : ring theory (abstract)
+ cl : constr list [c1; c2; ...]
+
+Builds
+ - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
+ where c'i is convertible with ci and
+ c'i_eq_c''i is a proof of equality of c'i and c''i
+
+*)
+
+let build_apolynom gl th lc =
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ let rec aux c =
+ match (kind_of_term (strip_outer_cast c)) with
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
+ mkLApp(coq_APplus, [| aux c1; aux c2 |])
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
+ mkLApp(coq_APmult, [| aux c1; aux c2 |])
+ (* The special case of Zminus *)
+ | App (binop, [|c1; c2|])
+ when safe_pf_conv_x gl c
+ (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|]) |])) ->
+ mkLApp(coq_APplus,
+ [|aux c1; mkLApp(coq_APopp,[|aux c2|]) |])
+ | App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
+ mkLApp(coq_APopp, [| aux c1 |])
+ | _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_AP0
+ | _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_AP1
+ | _ ->
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar =
+ mkLApp(coq_APvar, [| path_of_int !counter |]) in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ in
+ let lp = List.map aux lc in
+ let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
+ List.map
+ (fun p ->
+ (mkLApp(coq_interp_ap,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one;
+ th.th_zero; (unbox th.th_opp); v; p |]),
+ mkLApp(coq_interp_sacs,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero; (unbox th.th_opp); v;
+ pf_reduce cbv_betadeltaiota gl
+ (mkLApp(coq_apolynomial_normalize, [|p|])) |]),
+ mkLApp(coq_apolynomial_normalize_ok,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
+ (unbox th.th_opp); th.th_eq; v; th.th_t; p |])))
+ lp
+
+(*
+ gl : goal sigma
+ th : setoid ring theory (concrete)
+ cl : constr list [c1; c2; ...]
+
+Builds
+ - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
+ where c'i is convertible with ci and
+ c'i_eq_c''i is a proof of equality of c'i and c''i
+
+*)
+
+let build_setpolynom gl th lc =
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ let rec aux c =
+ match (kind_of_term (strip_outer_cast c)) with
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
+ mkLApp(coq_SetPplus, [|th.th_a; aux c1; aux c2 |])
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
+ mkLApp(coq_SetPmult, [|th.th_a; aux c1; aux c2 |])
+ (* The special case of Zminus *)
+ | App (binop, [|c1; c2|])
+ when safe_pf_conv_x gl c
+ (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|])|])) ->
+ mkLApp(coq_SetPplus,
+ [| th.th_a; aux c1;
+ mkLApp(coq_SetPopp, [|th.th_a; aux c2|]) |])
+ | App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
+ mkLApp(coq_SetPopp, [| th.th_a; aux c1 |])
+ | _ when closed_under th.th_closed c ->
+ mkLApp(coq_SetPconst, [| th.th_a; c |])
+ | _ ->
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar =
+ mkLApp(coq_SetPvar, [| th.th_a; path_of_int !counter |]) in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ in
+ let lp = List.map aux lc in
+ let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
+ List.map
+ (fun p ->
+ (mkLApp(coq_interp_setp,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_zero;
+ (unbox th.th_opp); v; p |]),
+ mkLApp(coq_interp_setcs,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
+ pf_reduce cbv_betadeltaiota gl
+ (mkLApp(coq_setpolynomial_simplify,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero;
+ (unbox th.th_opp); th.th_eq; p |])) |]),
+ mkLApp(coq_setpolynomial_simplify_ok,
+ [| th.th_a; (unbox th.th_equiv); th.th_plus;
+ th.th_mult; th.th_one; th.th_zero;(unbox th.th_opp);
+ th.th_eq; (unbox th.th_setoid_th);
+ (unbox th.th_morph).plusm; (unbox th.th_morph).multm;
+ (unbox (unbox th.th_morph).oppm); v; th.th_t; p |])))
+ lp
+
+(*
+ gl : goal sigma
+ th : semi setoid ring theory (concrete)
+ cl : constr list [c1; c2; ...]
+
+Builds
+ - a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
+ where c'i is convertible with ci and
+ c'i_eq_c''i is a proof of equality of c'i and c''i
+
+*)
+
+let build_setspolynom gl th lc =
+ let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varlist = ref ([] : constr list) in (* list of variables *)
+ let counter = ref 1 in (* number of variables created + 1 *)
+ let rec aux c =
+ match (kind_of_term (strip_outer_cast c)) with
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
+ mkLApp(coq_SetSPplus, [|th.th_a; aux c1; aux c2 |])
+ | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
+ mkLApp(coq_SetSPmult, [| th.th_a; aux c1; aux c2 |])
+ | _ when closed_under th.th_closed c ->
+ mkLApp(coq_SetSPconst, [| th.th_a; c |])
+ | _ ->
+ try Hashtbl.find varhash c
+ with Not_found ->
+ let newvar =
+ mkLApp(coq_SetSPvar, [|th.th_a; path_of_int !counter |]) in
+ begin
+ incr counter;
+ varlist := c :: !varlist;
+ Hashtbl.add varhash c newvar;
+ newvar
+ end
+ in
+ let lp = List.map aux lc in
+ let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
+ List.map
+ (fun p ->
+ (mkLApp(coq_interp_setsp,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_zero; v; p |]),
+ mkLApp(coq_interp_setcs,
+ [| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
+ pf_reduce cbv_betadeltaiota gl
+ (mkLApp(coq_setspolynomial_simplify,
+ [| th.th_a; th.th_plus; th.th_mult;
+ th.th_one; th.th_zero;
+ th.th_eq; p |])) |]),
+ mkLApp(coq_setspolynomial_simplify_ok,
+ [| th.th_a; (unbox th.th_equiv); th.th_plus;
+ th.th_mult; th.th_one; th.th_zero; th.th_eq; v;
+ th.th_t; (unbox th.th_setoid_th);
+ (unbox th.th_morph).plusm;
+ (unbox th.th_morph).multm; p |])))
+ lp
+
+module SectionPathSet =
+ Set.Make(struct
+ type t = section_path
+ let compare = Pervasives.compare
+ end)
+
+(* Avec l'uniformisation des red_kind, on perd ici sur la structure
+ SectionPathSet; peut-être faudra-t-il la déplacer dans Closure *)
+let constants_to_unfold =
+(* List.fold_right SectionPathSet.add *)
+ let transform s =
+ let sp = path_of_string s in
+ let dir, id = repr_path sp in
+ Libnames.encode_kn dir id
+ in
+ List.map transform
+ [ "Coq.ring.Ring_normalize.interp_cs";
+ "Coq.ring.Ring_normalize.interp_var";
+ "Coq.ring.Ring_normalize.interp_vl";
+ "Coq.ring.Ring_abstract.interp_acs";
+ "Coq.ring.Ring_abstract.interp_sacs";
+ "Coq.ring.Quote.varmap_find";
+ (* anciennement des Local devenus Definition *)
+ "Coq.ring.Ring_normalize.ics_aux";
+ "Coq.ring.Ring_normalize.ivl_aux";
+ "Coq.ring.Ring_normalize.interp_m";
+ "Coq.ring.Ring_abstract.iacs_aux";
+ "Coq.ring.Ring_abstract.isacs_aux";
+ "Coq.ring.Setoid_ring_normalize.interp_cs";
+ "Coq.ring.Setoid_ring_normalize.interp_var";
+ "Coq.ring.Setoid_ring_normalize.interp_vl";
+ "Coq.ring.Setoid_ring_normalize.ics_aux";
+ "Coq.ring.Setoid_ring_normalize.ivl_aux";
+ "Coq.ring.Setoid_ring_normalize.interp_m";
+ ]
+(* SectionPathSet.empty *)
+
+(* Unfolds the functions interp and find_btree in the term c of goal gl *)
+open RedFlags
+let polynom_unfold_tac =
+ let flags =
+ (mkflags(fBETA::fIOTA::(List.map fCONST constants_to_unfold))) in
+ reduct_in_concl (cbv_norm_flags flags)
+
+let polynom_unfold_tac_in_term gl =
+ let flags =
+ (mkflags(fBETA::fIOTA::fZETA::(List.map fCONST constants_to_unfold)))
+ in
+ cbv_norm_flags flags (pf_env gl) (project gl)
+
+(* lc : constr list *)
+(* th : theory associated to t *)
+(* op : clause (None for conclusion or Some id for hypothesis id) *)
+(* gl : goal *)
+(* Does the rewriting c_i -> (interp R RC v (polynomial_simplify p_i))
+ where the ring R, the Ring theory RC, the varmap v and the polynomials p_i
+ are guessed and such that c_i = (interp R RC v p_i) *)
+let raw_polynom th op lc gl =
+ (* first we sort the terms : if t' is a subterm of t it must appear
+ after t in the list. This is to avoid that the normalization of t'
+ modifies t in a non-desired way *)
+ let lc = sort_subterm gl lc in
+ let ltriplets =
+ if th.th_setoid then
+ if th.th_ring
+ then build_setpolynom gl th lc
+ else build_setspolynom gl th lc
+ else
+ if th.th_ring then
+ if th.th_abstract
+ then build_apolynom gl th lc
+ else build_polynom gl th lc
+ else
+ if th.th_abstract
+ then build_aspolynom gl th lc
+ else build_spolynom gl th lc in
+ let polynom_tac =
+ List.fold_right2
+ (fun ci (c'i, c''i, c'i_eq_c''i) tac ->
+ let c'''i =
+ if !term_quality then polynom_unfold_tac_in_term gl c''i else c''i
+ in
+ if !term_quality && safe_pf_conv_x gl c'''i ci then
+ tac (* convertible terms *)
+ else if th.th_setoid
+ then
+ (tclORELSE
+ (tclORELSE
+ (h_exact c'i_eq_c''i)
+ (h_exact (mkLApp(coq_seq_sym,
+ [| th.th_a; (unbox th.th_equiv);
+ (unbox th.th_setoid_th);
+ c'''i; ci; c'i_eq_c''i |]))))
+ (tclTHEN
+ (Setoid_replace.setoid_replace ci c'''i None)
+ (tclTHEN
+ (tclTRY (h_exact c'i_eq_c''i))
+ tac)))
+ else
+ (tclORELSE
+ (tclORELSE
+ (h_exact c'i_eq_c''i)
+ (h_exact (mkApp(build_coq_sym_eqT (),
+ [|th.th_a; c'''i; ci; c'i_eq_c''i |]))))
+ (tclTHENS
+ (elim_type
+ (mkApp(build_coq_eqT (), [|th.th_a; c'''i; ci |])))
+ [ tac;
+ h_exact c'i_eq_c''i ]))
+)
+ lc ltriplets polynom_unfold_tac
+ in
+ polynom_tac gl
+
+let guess_eq_tac th =
+ (tclORELSE reflexivity
+ (tclTHEN
+ polynom_unfold_tac
+ (tclTHEN
+ (* Normalized sums associate on the right *)
+ (tclREPEAT
+ (tclTHENFIRST
+ (apply (mkApp(build_coq_f_equal2 (),
+ [| th.th_a; th.th_a; th.th_a;
+ th.th_plus |])))
+ reflexivity))
+ (tclTRY
+ (tclTHENLAST
+ (apply (mkApp(build_coq_f_equal2 (),
+ [| th.th_a; th.th_a; th.th_a;
+ th.th_plus |])))
+ reflexivity)))))
+
+let guess_equiv_tac th =
+ (tclORELSE (apply (mkLApp(coq_seq_refl,
+ [| th.th_a; (unbox th.th_equiv);
+ (unbox th.th_setoid_th)|])))
+ (tclTHEN
+ polynom_unfold_tac
+ (tclREPEAT
+ (tclORELSE
+ (apply (unbox th.th_morph).plusm)
+ (apply (unbox th.th_morph).multm)))))
+
+let match_with_equiv c = match (kind_of_term c) with
+ | App (e,a) ->
+ if (List.mem e (Setoid_replace.equiv_list ()))
+ then Some (decompose_app c)
+ else None
+ | _ -> None
+
+let polynom lc gl =
+ Library.check_required_library ["Coq";"ring";"Ring"];
+ match lc with
+ (* If no argument is given, try to recognize either an equality or
+ a declared relation with arguments c1 ... cn,
+ do "Ring c1 c2 ... cn" and then try to apply the simplification
+ theorems declared for the relation *)
+ | [] ->
+ (match Hipattern.match_with_equation (pf_concl gl) with
+ | Some (eq,t::args) ->
+ let th = guess_theory t in
+ if List.exists
+ (fun c1 -> not (safe_pf_conv_x gl t (pf_type_of gl c1))) args
+ then
+ errorlabstrm "Ring :"
+ (str" All terms must have the same type");
+ (tclTHEN (raw_polynom th None args) (guess_eq_tac th)) gl
+ | _ -> (match match_with_equiv (pf_concl gl) with
+ | Some (equiv, c1::args) ->
+ let t = (pf_type_of gl c1) in
+ let th = (guess_theory t) in
+ if List.exists
+ (fun c2 -> not (safe_pf_conv_x gl t (pf_type_of gl c2))) args
+ then
+ errorlabstrm "Ring :"
+ (str" All terms must have the same type");
+ (tclTHEN (raw_polynom th None (c1::args)) (guess_equiv_tac th)) gl
+ | _ -> errorlabstrm "polynom :"
+ (str" This goal is not an equality nor a setoid equivalence")))
+ (* Elsewhere, guess the theory, check that all terms have the same type
+ and apply raw_polynom *)
+ | c :: lc' ->
+ let t = pf_type_of gl c in
+ let th = guess_theory t in
+ if List.exists
+ (fun c1 -> not (safe_pf_conv_x gl t (pf_type_of gl c1))) lc'
+ then
+ errorlabstrm "Ring :"
+ (str" All terms must have the same type");
+ (tclTHEN (raw_polynom th None lc) polynom_unfold_tac) gl
diff --git a/contrib/romega/README b/contrib/romega/README
new file mode 100644
index 00000000..86c9e58a
--- /dev/null
+++ b/contrib/romega/README
@@ -0,0 +1,6 @@
+This work was done for the RNRT Project Calife.
+As such it is distributed under the LGPL licence.
+
+Report bugs to :
+ pierre.cregut@francetelecom.com
+
diff --git a/contrib/romega/ROmega.v b/contrib/romega/ROmega.v
new file mode 100644
index 00000000..b3895b2a
--- /dev/null
+++ b/contrib/romega/ROmega.v
@@ -0,0 +1,11 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+Require Import Omega.
+Require Import ReflOmegaCore.
+
diff --git a/contrib/romega/ReflOmegaCore.v b/contrib/romega/ReflOmegaCore.v
new file mode 100644
index 00000000..3dfb5593
--- /dev/null
+++ b/contrib/romega/ReflOmegaCore.v
@@ -0,0 +1,2787 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence du projet : LGPL version 2.1
+
+ *************************************************************************)
+
+Require Import Arith.
+Require Import List.
+Require Import Bool.
+Require Import ZArith.
+Require Import OmegaLemmas.
+
+(* \subsection{Definition of basic types} *)
+
+(* \subsubsection{Environment of propositions (lists) *)
+Inductive PropList : Type :=
+ | Pnil : PropList
+ | Pcons : Prop -> PropList -> PropList.
+
+(* Access function for the environment with a default *)
+Fixpoint nthProp (n : nat) (l : PropList) (default : Prop) {struct l} :
+ Prop :=
+ match n, l with
+ | O, Pcons x l' => x
+ | O, other => default
+ | S m, Pnil => default
+ | S m, Pcons x t => nthProp m t default
+ end.
+
+(* \subsubsection{Définition of reified integer expressions}
+ Terms are either:
+ \begin{itemize}
+ \item integers [Tint]
+ \item variables [Tvar]
+ \item operation over integers (addition, product, opposite, subtraction)
+ The last two are translated in additions and products. *)
+
+Inductive term : Set :=
+ | Tint : Z -> term
+ | Tplus : term -> term -> term
+ | Tmult : term -> term -> term
+ | Tminus : term -> term -> term
+ | Topp : term -> term
+ | Tvar : nat -> term.
+
+(* \subsubsection{Definition of reified goals} *)
+(* Very restricted definition of handled predicates that should be extended
+ to cover a wider set of operations.
+ Taking care of negations and disequations require solving more than a
+ goal in parallel. This is a major improvement over previous versions. *)
+
+Inductive proposition : Set :=
+ | EqTerm : term -> term -> proposition (* egalité entre termes *)
+ | LeqTerm : term -> term -> proposition (* plus petit ou egal *)
+ | TrueTerm : proposition (* vrai *)
+ | FalseTerm : proposition (* faux *)
+ | Tnot : proposition -> proposition (* négation *)
+ | GeqTerm : term -> term -> proposition
+ | GtTerm : term -> term -> proposition
+ | LtTerm : term -> term -> proposition
+ | NeqTerm : term -> term -> proposition
+ | Tor : proposition -> proposition -> proposition
+ | Tand : proposition -> proposition -> proposition
+ | Timp : proposition -> proposition -> proposition
+ | Tprop : nat -> proposition.
+
+(* Definition of goals as a list of hypothesis *)
+Notation hyps := (list proposition) (only parsing).
+
+(* Definition of lists of subgoals (set of open goals) *)
+Notation lhyps := (list (list proposition)) (only parsing).
+
+(* a syngle goal packed in a subgoal list *)
+Notation singleton := (fun a : list proposition => a :: nil) (only parsing).
+
+(* an absurd goal *)
+Definition absurd := FalseTerm :: nil.
+
+(* \subsubsection{Traces for merging equations}
+ This inductive type describes how the monomial of two equations should be
+ merged when the equations are added.
+
+ For [F_equal], both equations have the same head variable and coefficient
+ must be added, furthermore if coefficients are opposite, [F_cancel] should
+ be used to collapse the term. [F_left] and [F_right] indicate which monomial
+ should be put first in the result *)
+
+Inductive t_fusion : Set :=
+ | F_equal : t_fusion
+ | F_cancel : t_fusion
+ | F_left : t_fusion
+ | F_right : t_fusion.
+
+(* \subsubsection{Rewriting steps to normalize terms} *)
+Inductive step : Set :=
+ (* apply the rewriting steps to both subterms of an operation *)
+ | C_DO_BOTH :
+ step -> step -> step
+ (* apply the rewriting step to the first branch *)
+ | C_LEFT : step -> step
+ (* apply the rewriting step to the second branch *)
+ | C_RIGHT : step -> step
+ (* apply two steps consecutively to a term *)
+ | C_SEQ : step -> step -> step
+ (* empty step *)
+ | C_NOP : step
+ (* the following operations correspond to actual rewriting *)
+ | C_OPP_PLUS : step
+ | C_OPP_OPP : step
+ | C_OPP_MULT_R : step
+ | C_OPP_ONE :
+ step
+ (* This is a special step that reduces the term (computation) *)
+ | C_REDUCE : step
+ | C_MULT_PLUS_DISTR : step
+ | C_MULT_OPP_LEFT : step
+ | C_MULT_ASSOC_R : step
+ | C_PLUS_ASSOC_R : step
+ | C_PLUS_ASSOC_L : step
+ | C_PLUS_PERMUTE : step
+ | C_PLUS_SYM : step
+ | C_RED0 : step
+ | C_RED1 : step
+ | C_RED2 : step
+ | C_RED3 : step
+ | C_RED4 : step
+ | C_RED5 : step
+ | C_RED6 : step
+ | C_MULT_ASSOC_REDUCED : step
+ | C_MINUS : step
+ | C_MULT_SYM : step.
+
+(* \subsubsection{Omega steps} *)
+(* The following inductive type describes steps as they can be found in
+ the trace coming from the decision procedure Omega. *)
+
+Inductive t_omega : Set :=
+ (* n = 0 n!= 0 *)
+ | O_CONSTANT_NOT_NUL : nat -> t_omega
+ | O_CONSTANT_NEG :
+ nat -> t_omega
+ (* division et approximation of an equation *)
+ | O_DIV_APPROX :
+ Z ->
+ Z ->
+ term ->
+ nat ->
+ t_omega -> nat -> t_omega
+ (* no solution because no exact division *)
+ | O_NOT_EXACT_DIVIDE :
+ Z -> Z -> term -> nat -> nat -> t_omega
+ (* exact division *)
+ | O_EXACT_DIVIDE : Z -> term -> nat -> t_omega -> nat -> t_omega
+ | O_SUM : Z -> nat -> Z -> nat -> list t_fusion -> t_omega -> t_omega
+ | O_CONTRADICTION : nat -> nat -> nat -> t_omega
+ | O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
+ | O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
+ | O_CONSTANT_NUL : nat -> t_omega
+ | O_NEGATE_CONTRADICT : nat -> nat -> t_omega
+ | O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
+ | O_STATE : Z -> step -> nat -> nat -> t_omega -> t_omega.
+
+(* \subsubsection{Règles pour normaliser les hypothèses} *)
+(* Ces règles indiquent comment normaliser les propositions utiles
+ de chaque hypothèse utile avant la décomposition des hypothèses et
+ incluent l'étape d'inversion pour la suppression des négations *)
+Inductive p_step : Set :=
+ | P_LEFT : p_step -> p_step
+ | P_RIGHT : p_step -> p_step
+ | P_INVERT : step -> p_step
+ | P_STEP : step -> p_step
+ | P_NOP : p_step.
+(* Liste des normalisations a effectuer : avec un constructeur dans le
+ type [p_step] permettant
+ de parcourir à la fois les branches gauches et droit, on pourrait n'avoir
+ qu'une normalisation par hypothèse. Et comme toutes les hypothèses sont
+ utiles (sinon on ne les incluerait pas), on pourrait remplacer [h_step]
+ par une simple liste *)
+
+Inductive h_step : Set :=
+ pair_step : nat -> p_step -> h_step.
+
+(* \subsubsection{Règles pour décomposer les hypothèses} *)
+(* Ce type permet de se diriger dans les constructeurs logiques formant les
+ prédicats des hypothèses pour aller les décomposer. Ils permettent
+ en particulier d'extraire une hypothèse d'une conjonction avec
+ éventuellement le bon niveau de négations. *)
+
+Inductive direction : Set :=
+ | D_left : direction
+ | D_right : direction
+ | D_mono : direction.
+
+(* Ce type permet d'extraire les composants utiles des hypothèses : que ce
+ soit des hypothèses générées par éclatement d'une disjonction, ou
+ des équations. Le constructeur terminal indique comment résoudre le système
+ obtenu en recourrant au type de trace d'Omega [t_omega] *)
+
+Inductive e_step : Set :=
+ | E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
+ | E_EXTRACT : nat -> list direction -> e_step -> e_step
+ | E_SOLVE : t_omega -> e_step.
+
+(* \subsection{Egalité décidable efficace} *)
+(* Pour chaque type de donnée réifié, on calcule un test d'égalité efficace.
+ Ce n'est pas le cas de celui rendu par [Decide Equality].
+
+ Puis on prouve deux théorèmes permettant d'éliminer de telles égalités :
+ \begin{verbatim}
+ (t1,t2: typ) (eq_typ t1 t2) = true -> t1 = t2.
+ (t1,t2: typ) (eq_typ t1 t2) = false -> ~ t1 = t2.
+ \end{verbatim} *)
+
+(* Ces deux tactiques permettent de résoudre pas mal de cas. L'une pour
+ les théorèmes positifs, l'autre pour les théorèmes négatifs *)
+
+Ltac absurd_case := simpl in |- *; intros; discriminate.
+Ltac trivial_case := unfold not in |- *; intros; discriminate.
+
+(* \subsubsection{Entiers naturels} *)
+
+Fixpoint eq_nat (t1 t2 : nat) {struct t2} : bool :=
+ match t1 with
+ | O => match t2 with
+ | O => true
+ | _ => false
+ end
+ | S n1 => match t2 with
+ | O => false
+ | S n2 => eq_nat n1 n2
+ end
+ end.
+
+Theorem eq_nat_true : forall t1 t2 : nat, eq_nat t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intro t2; case t2; [ trivial | absurd_case ]
+ | intros n H t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (H n0); [ trivial | assumption ] ] ].
+
+Qed.
+
+Theorem eq_nat_false : forall t1 t2 : nat, eq_nat t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intro t2; case t2; [ simpl in |- *; intros; discriminate | trivial_case ]
+ | intros n H t2; case t2; simpl in |- *; unfold not in |- *; intros;
+ [ discriminate | elim (H n0 H0); simplify_eq H1; trivial ] ].
+
+Qed.
+
+
+(* \subsubsection{Entiers positifs} *)
+
+Fixpoint eq_pos (p1 p2 : positive) {struct p2} : bool :=
+ match p1 with
+ | xI n1 => match p2 with
+ | xI n2 => eq_pos n1 n2
+ | _ => false
+ end
+ | xO n1 => match p2 with
+ | xO n2 => eq_pos n1 n2
+ | _ => false
+ end
+ | xH => match p2 with
+ | xH => true
+ | _ => false
+ end
+ end.
+
+Theorem eq_pos_true : forall t1 t2 : positive, eq_pos t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intros p H t2; case t2;
+ [ simpl in |- *; intros; rewrite (H p0 H0); trivial
+ | absurd_case
+ | absurd_case ]
+ | intros p H t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (H p0 H0); trivial
+ | absurd_case ]
+ | intro t2; case t2; [ absurd_case | absurd_case | auto ] ].
+
+Qed.
+
+Theorem eq_pos_false :
+ forall t1 t2 : positive, eq_pos t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros p H t2; case t2;
+ [ simpl in |- *; unfold not in |- *; intros; elim (H p0 H0);
+ simplify_eq H1; auto
+ | trivial_case
+ | trivial_case ]
+ | intros p H t2; case t2;
+ [ trivial_case
+ | simpl in |- *; unfold not in |- *; intros; elim (H p0 H0);
+ simplify_eq H1; auto
+ | trivial_case ]
+ | intros t2; case t2; [ trivial_case | trivial_case | absurd_case ] ].
+Qed.
+
+(* \subsubsection{Entiers relatifs} *)
+
+Definition eq_Z (z1 z2 : Z) : bool :=
+ match z1 with
+ | Z0 => match z2 with
+ | Z0 => true
+ | _ => false
+ end
+ | Zpos p1 => match z2 with
+ | Zpos p2 => eq_pos p1 p2
+ | _ => false
+ end
+ | Zneg p1 => match z2 with
+ | Zneg p2 => eq_pos p1 p2
+ | _ => false
+ end
+ end.
+
+Theorem eq_Z_true : forall t1 t2 : Z, eq_Z t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intros t2; case t2; [ auto | absurd_case | absurd_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (eq_pos_true p p0 H); trivial
+ | absurd_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | absurd_case
+ | simpl in |- *; intros; rewrite (eq_pos_true p p0 H); trivial ] ].
+
+Qed.
+
+Theorem eq_Z_false : forall t1 t2 : Z, eq_Z t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros t2; case t2; [ absurd_case | trivial_case | trivial_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | simpl in |- *; unfold not in |- *; intros; elim (eq_pos_false p p0 H);
+ simplify_eq H0; auto
+ | trivial_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | trivial_case
+ | simpl in |- *; unfold not in |- *; intros; elim (eq_pos_false p p0 H);
+ simplify_eq H0; auto ] ].
+Qed.
+
+(* \subsubsection{Termes réifiés} *)
+
+Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
+ match t1 with
+ | Tint st1 => match t2 with
+ | Tint st2 => eq_Z st1 st2
+ | _ => false
+ end
+ | Tplus st11 st12 =>
+ match t2 with
+ | Tplus st21 st22 => eq_term st11 st21 && eq_term st12 st22
+ | _ => false
+ end
+ | Tmult st11 st12 =>
+ match t2 with
+ | Tmult st21 st22 => eq_term st11 st21 && eq_term st12 st22
+ | _ => false
+ end
+ | Tminus st11 st12 =>
+ match t2 with
+ | Tminus st21 st22 => eq_term st11 st21 && eq_term st12 st22
+ | _ => false
+ end
+ | Topp st1 => match t2 with
+ | Topp st2 => eq_term st1 st2
+ | _ => false
+ end
+ | Tvar st1 => match t2 with
+ | Tvar st2 => eq_nat st1 st2
+ | _ => false
+ end
+ end.
+
+Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
+
+
+simple induction t1; intros until t2; case t2; try absurd_case; simpl in |- *;
+ [ intros; elim eq_Z_true with (1 := H); trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 H3; elim H with (1 := H3); trivial
+ | intros; elim eq_nat_true with (1 := H); trivial ].
+
+Qed.
+
+Theorem eq_term_false :
+ forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ intros; elim eq_Z_false with (1 := H); simplify_eq H0;
+ auto
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3;
+ unfold not in |- *; intro H4; elim H1 with (1 := H3);
+ simplify_eq H4; auto
+ | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ intros; elim eq_nat_false with (1 := H); simplify_eq H0;
+ auto ].
+
+Qed.
+
+(* \subsubsection{Tactiques pour éliminer ces tests}
+
+ Si on se contente de faire un [Case (eq_typ t1 t2)] on perd
+ totalement dans chaque branche le fait que [t1=t2] ou [~t1=t2].
+
+ Initialement, les développements avaient été réalisés avec les
+ tests rendus par [Decide Equality], c'est à dire un test rendant
+ des termes du type [{t1=t2}+{~t1=t2}]. Faire une élimination sur un
+ tel test préserve bien l'information voulue mais calculatoirement de
+ telles fonctions sont trop lentes. *)
+
+(* Le théorème suivant permet de garder dans les hypothèses la valeur
+ du booléen lors de l'élimination. *)
+
+Theorem bool_ind2 :
+ forall (P : bool -> Prop) (b : bool),
+ (b = true -> P true) -> (b = false -> P false) -> P b.
+
+simple induction b; auto.
+Qed.
+
+(* Les tactiques définies si après se comportent exactement comme si on
+ avait utilisé le test précédent et fait une elimination dessus. *)
+
+Ltac elim_eq_term t1 t2 :=
+ pattern (eq_term t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_term_true t1 t2 Aux); clear Aux
+ | generalize (eq_term_false t1 t2 Aux); clear Aux ].
+
+Ltac elim_eq_Z t1 t2 :=
+ pattern (eq_Z t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_Z_true t1 t2 Aux); clear Aux
+ | generalize (eq_Z_false t1 t2 Aux); clear Aux ].
+
+Ltac elim_eq_pos t1 t2 :=
+ pattern (eq_pos t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_pos_true t1 t2 Aux); clear Aux
+ | generalize (eq_pos_false t1 t2 Aux); clear Aux ].
+
+(* \subsubsection{Comparaison sur Z} *)
+
+(* Sujet très lié au précédent : on introduit la tactique d'élimination
+ avec son théorème *)
+
+Theorem relation_ind2 :
+ forall (P : Datatypes.comparison -> Prop) (b : Datatypes.comparison),
+ (b = Datatypes.Eq -> P Datatypes.Eq) ->
+ (b = Datatypes.Lt -> P Datatypes.Lt) ->
+ (b = Datatypes.Gt -> P Datatypes.Gt) -> P b.
+
+simple induction b; auto.
+Qed.
+
+Ltac elim_Zcompare t1 t2 := pattern (t1 ?= t2)%Z in |- *; apply relation_ind2.
+
+(* \subsection{Interprétations}
+ \subsubsection{Interprétation des termes dans Z} *)
+
+Fixpoint interp_term (env : list Z) (t : term) {struct t} : Z :=
+ match t with
+ | Tint x => x
+ | Tplus t1 t2 => (interp_term env t1 + interp_term env t2)%Z
+ | Tmult t1 t2 => (interp_term env t1 * interp_term env t2)%Z
+ | Tminus t1 t2 => (interp_term env t1 - interp_term env t2)%Z
+ | Topp t => (- interp_term env t)%Z
+ | Tvar n => nth n env 0%Z
+ end.
+
+(* \subsubsection{Interprétation des prédicats} *)
+Fixpoint interp_proposition (envp : PropList) (env : list Z)
+ (p : proposition) {struct p} : Prop :=
+ match p with
+ | EqTerm t1 t2 => interp_term env t1 = interp_term env t2
+ | LeqTerm t1 t2 => (interp_term env t1 <= interp_term env t2)%Z
+ | TrueTerm => True
+ | FalseTerm => False
+ | Tnot p' => ~ interp_proposition envp env p'
+ | GeqTerm t1 t2 => (interp_term env t1 >= interp_term env t2)%Z
+ | GtTerm t1 t2 => (interp_term env t1 > interp_term env t2)%Z
+ | LtTerm t1 t2 => (interp_term env t1 < interp_term env t2)%Z
+ | NeqTerm t1 t2 => Zne (interp_term env t1) (interp_term env t2)
+ | Tor p1 p2 =>
+ interp_proposition envp env p1 \/ interp_proposition envp env p2
+ | Tand p1 p2 =>
+ interp_proposition envp env p1 /\ interp_proposition envp env p2
+ | Timp p1 p2 =>
+ interp_proposition envp env p1 -> interp_proposition envp env p2
+ | Tprop n => nthProp n envp True
+ end.
+
+(* \subsubsection{Inteprétation des listes d'hypothèses}
+ \paragraph{Sous forme de conjonction}
+ Interprétation sous forme d'une conjonction d'hypothèses plus faciles
+ à manipuler individuellement *)
+
+Fixpoint interp_hyps (envp : PropList) (env : list Z)
+ (l : list proposition) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | p' :: l' => interp_proposition envp env p' /\ interp_hyps envp env l'
+ end.
+
+(* \paragraph{sous forme de but}
+ C'est cette interpétation que l'on utilise sur le but (car on utilise
+ [Generalize] et qu'une conjonction est forcément lourde (répétition des
+ types dans les conjonctions intermédiaires) *)
+
+Fixpoint interp_goal_concl (envp : PropList) (env : list Z)
+ (c : proposition) (l : list proposition) {struct l} : Prop :=
+ match l with
+ | nil => interp_proposition envp env c
+ | p' :: l' =>
+ interp_proposition envp env p' -> interp_goal_concl envp env c l'
+ end.
+
+Notation interp_goal :=
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) (only parsing).
+
+(* Les théorèmes qui suivent assurent la correspondance entre les deux
+ interprétations. *)
+
+Theorem goal_to_hyps :
+ forall (envp : PropList) (env : list Z) (l : list proposition),
+ (interp_hyps envp env l -> False) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env l.
+
+simple induction l;
+ [ simpl in |- *; auto
+ | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
+Qed.
+
+Theorem hyps_to_goal :
+ forall (envp : PropList) (env : list Z) (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env l ->
+ interp_hyps envp env l -> False.
+
+simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ].
+Qed.
+
+(* \subsection{Manipulations sur les hypothèses} *)
+
+(* \subsubsection{Définitions de base de stabilité pour la réflexion} *)
+(* Une opération laisse un terme stable si l'égalité est préservée *)
+Definition term_stable (f : term -> term) :=
+ forall (e : list Z) (t : term), interp_term e t = interp_term e (f t).
+
+(* Une opération est valide sur une hypothèse, si l'hypothèse implique le
+ résultat de l'opération. \emph{Attention : cela ne concerne que des
+ opérations sur les hypothèses et non sur les buts (contravariance)}.
+ On définit la validité pour une opération prenant une ou deux propositions
+ en argument (cela suffit pour omega). *)
+
+Definition valid1 (f : proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p1 : proposition),
+ interp_proposition ep e p1 -> interp_proposition ep e (f p1).
+
+Definition valid2 (f : proposition -> proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p1 p2 : proposition),
+ interp_proposition ep e p1 ->
+ interp_proposition ep e p2 -> interp_proposition ep e (f p1 p2).
+
+(* Dans cette notion de validité, la fonction prend directement une
+ liste de propositions et rend une nouvelle liste de proposition.
+ On reste contravariant *)
+
+Definition valid_hyps (f : list proposition -> list proposition) :=
+ forall (ep : PropList) (e : list Z) (lp : list proposition),
+ interp_hyps ep e lp -> interp_hyps ep e (f lp).
+
+(* Enfin ce théorème élimine la contravariance et nous ramène à une
+ opération sur les buts *)
+
+ Theorem valid_goal :
+ forall (ep : PropList) (env : list Z) (l : list proposition)
+ (a : list proposition -> list proposition),
+ valid_hyps a ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env (
+ a l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; simpl in |- *; apply goal_to_hyps; intro H1;
+ apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
+Qed.
+
+(* \subsubsection{Généralisation a des listes de buts (disjonctions)} *)
+
+
+Fixpoint interp_list_hyps (envp : PropList) (env : list Z)
+ (l : list (list proposition)) {struct l} : Prop :=
+ match l with
+ | nil => False
+ | h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
+ end.
+
+Fixpoint interp_list_goal (envp : PropList) (env : list Z)
+ (l : list (list proposition)) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | h :: l' =>
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env h /\
+ interp_list_goal envp env l'
+ end.
+
+Theorem list_goal_to_hyps :
+ forall (envp : PropList) (env : list Z) (l : list (list proposition)),
+ (interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
+
+simple induction l; simpl in |- *;
+ [ auto
+ | intros h1 l1 H H1; split;
+ [ apply goal_to_hyps; intro H2; apply H1; auto
+ | apply H; intro H2; apply H1; auto ] ].
+Qed.
+
+Theorem list_hyps_to_goal :
+ forall (envp : PropList) (env : list Z) (l : list (list proposition)),
+ interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
+
+simple induction l; simpl in |- *;
+ [ auto
+ | intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
+ [ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
+Qed.
+
+Definition valid_list_hyps
+ (f : list proposition -> list (list proposition)) :=
+ forall (ep : PropList) (e : list Z) (lp : list proposition),
+ interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
+
+Definition valid_list_goal
+ (f : list proposition -> list (list proposition)) :=
+ forall (ep : PropList) (e : list Z) (lp : list proposition),
+ interp_list_goal ep e (f lp) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep e lp.
+
+Theorem goal_valid :
+ forall f : list proposition -> list (list proposition),
+ valid_list_hyps f -> valid_list_goal f.
+
+unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps;
+ intro H2; apply list_hyps_to_goal with (1 := H1);
+ apply (H ep e lp); assumption.
+Qed.
+
+Theorem append_valid :
+ forall (ep : PropList) (e : list Z) (l1 l2 : list (list proposition)),
+ interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
+ interp_list_hyps ep e (l1 ++ l2).
+
+intros ep e; simple induction l1;
+ [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ]
+ | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H];
+ [ auto
+ | right; apply (HR l2); left; trivial
+ | right; apply (HR l2); right; trivial ] ].
+
+Qed.
+
+(* \subsubsection{Opérateurs valides sur les hypothèses} *)
+
+(* Extraire une hypothèse de la liste *)
+Definition nth_hyps (n : nat) (l : list proposition) := nth n l TrueTerm.
+
+Theorem nth_valid :
+ forall (ep : PropList) (e : list Z) (i : nat) (l : list proposition),
+ interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
+
+unfold nth_hyps in |- *; simple induction i;
+ [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ]
+ | intros n H; simple induction l;
+ [ simpl in |- *; trivial
+ | intros; simpl in |- *; apply H; elim H1; auto ] ].
+Qed.
+
+(* Appliquer une opération (valide) sur deux hypothèses extraites de
+ la liste et ajouter le résultat à la liste. *)
+Definition apply_oper_2 (i j : nat)
+ (f : proposition -> proposition -> proposition) (l : list proposition) :=
+ f (nth_hyps i l) (nth_hyps j l) :: l.
+
+Theorem apply_oper_2_valid :
+ forall (i j : nat) (f : proposition -> proposition -> proposition),
+ valid2 f -> valid_hyps (apply_oper_2 i j f).
+
+intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *;
+ intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
+Qed.
+
+(* Modifier une hypothèse par application d'une opération valide *)
+
+Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
+ (l : list proposition) {struct i} : list proposition :=
+ match l with
+ | nil => nil (A:=proposition)
+ | p :: l' =>
+ match i with
+ | O => f p :: l'
+ | S j => p :: apply_oper_1 j f l'
+ end
+ end.
+
+Theorem apply_oper_1_valid :
+ forall (i : nat) (f : proposition -> proposition),
+ valid1 f -> valid_hyps (apply_oper_1 i f).
+
+unfold valid_hyps in |- *; intros i f Hf ep e; elim i;
+ [ intro lp; case lp;
+ [ simpl in |- *; trivial
+ | simpl in |- *; intros p l' (H1, H2); split;
+ [ apply Hf with (1 := H1) | assumption ] ]
+ | intros n Hrec lp; case lp;
+ [ simpl in |- *; auto
+ | simpl in |- *; intros p l' (H1, H2); split;
+ [ assumption | apply Hrec; assumption ] ] ].
+
+Qed.
+
+(* \subsubsection{Manipulations de termes} *)
+(* Les fonctions suivantes permettent d'appliquer une fonction de
+ réécriture sur un sous terme du terme principal. Avec la composition,
+ cela permet de construire des réécritures complexes proches des
+ tactiques de conversion *)
+
+Definition apply_left (f : term -> term) (t : term) :=
+ match t with
+ | Tplus x y => Tplus (f x) y
+ | Tmult x y => Tmult (f x) y
+ | Topp x => Topp (f x)
+ | x => x
+ end.
+
+Definition apply_right (f : term -> term) (t : term) :=
+ match t with
+ | Tplus x y => Tplus x (f y)
+ | Tmult x y => Tmult x (f y)
+ | x => x
+ end.
+
+Definition apply_both (f g : term -> term) (t : term) :=
+ match t with
+ | Tplus x y => Tplus (f x) (g y)
+ | Tmult x y => Tmult (f x) (g y)
+ | x => x
+ end.
+
+(* Les théorèmes suivants montrent la stabilité (conditionnée) des
+ fonctions. *)
+
+Theorem apply_left_stable :
+ forall f : term -> term, term_stable f -> term_stable (apply_left f).
+
+unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ intros; elim H; trivial.
+Qed.
+
+Theorem apply_right_stable :
+ forall f : term -> term, term_stable f -> term_stable (apply_right f).
+
+unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ intros t0 t1; elim H; trivial.
+Qed.
+
+Theorem apply_both_stable :
+ forall f g : term -> term,
+ term_stable f -> term_stable g -> term_stable (apply_both f g).
+
+unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *;
+ intros t0 t1; elim H1; elim H2; trivial.
+Qed.
+
+Theorem compose_term_stable :
+ forall f g : term -> term,
+ term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
+
+unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg.
+Qed.
+
+(* \subsection{Les règles de réécriture} *)
+(* Chacune des règles de réécriture est accompagnée par sa preuve de
+ stabilité. Toutes ces preuves ont la même forme : il faut analyser
+ suivant la forme du terme (élimination de chaque Case). On a besoin d'une
+ élimination uniquement dans les cas d'utilisation d'égalité décidable.
+
+ Cette tactique itère la décomposition des Case. Elle est
+ constituée de deux fonctions s'appelant mutuellement :
+ \begin{itemize}
+ \item une fonction d'enrobage qui lance la recherche sur le but,
+ \item une fonction récursive qui décompose ce but. Quand elle a trouvé un
+ Case, elle l'élimine.
+ \end{itemize}
+ Les motifs sur les cas sont très imparfaits et dans certains cas, il
+ semble que cela ne marche pas. On aimerait plutot un motif de la
+ forme [ Case (?1 :: T) of _ end ] permettant de s'assurer que l'on
+ utilise le bon type.
+
+ Chaque élimination introduit correctement exactement le nombre d'hypothèses
+ nécessaires et conserve dans le cas d'une égalité la connaissance du
+ résultat du test en faisant la réécriture. Pour un test de comparaison,
+ on conserve simplement le résultat.
+
+ Cette fonction déborde très largement la résolution des réécritures
+ simples et fait une bonne partie des preuves des pas de Omega.
+*)
+
+(* \subsubsection{La tactique pour prouver la stabilité} *)
+
+Ltac loop t :=
+ match constr:t with
+ | (?X1 = ?X2) =>
+ (* Global *)
+ loop X1 || loop X2
+ | (_ -> ?X1) => loop X1
+ | (interp_hyps _ _ ?X1) =>
+
+ (* Interpretations *)
+ loop X1
+ | (interp_list_hyps _ _ ?X1) => loop X1
+ | (interp_proposition _ _ ?X1) => loop X1
+ | (interp_term _ ?X1) => loop X1
+ | (EqTerm ?X1 ?X2) =>
+
+ (* Propositions *)
+ loop X1 || loop X2
+ | (LeqTerm ?X1 ?X2) => loop X1 || loop X2
+ | (Tplus ?X1 ?X2) =>
+ (* Termes *)
+ loop X1 || loop X2
+ | (Tminus ?X1 ?X2) => loop X1 || loop X2
+ | (Tmult ?X1 ?X2) => loop X1 || loop X2
+ | (Topp ?X1) => loop X1
+ | (Tint ?X1) =>
+ loop X1
+ | match ?X1 with
+ | EqTerm x x0 => _
+ | LeqTerm x x0 => _
+ | TrueTerm => _
+ | FalseTerm => _
+ | Tnot x => _
+ | GeqTerm x x0 => _
+ | GtTerm x x0 => _
+ | LtTerm x x0 => _
+ | NeqTerm x x0 => _
+ | Tor x x0 => _
+ | Tand x x0 => _
+ | Timp x x0 => _
+ | Tprop x => _
+ end =>
+
+ (* Eliminations *)
+ case X1;
+ [ intro; intro
+ | intro; intro
+ | idtac
+ | idtac
+ | intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro ]; auto; Simplify
+ | match ?X1 with
+ | Tint x => _
+ | Tplus x x0 => _
+ | Tmult x x0 => _
+ | Tminus x x0 => _
+ | Topp x => _
+ | Tvar x => _
+ end =>
+ case X1;
+ [ intro | intro; intro | intro; intro | intro; intro | intro | intro ];
+ auto; Simplify
+ | match (?X1 ?= ?X2)%Z with
+ | Datatypes.Eq => _
+ | Datatypes.Lt => _
+ | Datatypes.Gt => _
+ end =>
+ elim_Zcompare X1 X2; intro; auto; Simplify
+ | match ?X1 with
+ | Z0 => _
+ | Zpos x => _
+ | Zneg x => _
+ end =>
+ case X1; [ idtac | intro | intro ]; auto; Simplify
+ | (if eq_Z ?X1 ?X2 then _ else _) =>
+ elim_eq_Z X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | (if eq_term ?X1 ?X2 then _ else _) =>
+ elim_eq_term X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | (if eq_pos ?X1 ?X2 then _ else _) =>
+ elim_eq_pos X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | _ => fail
+ end
+ with Simplify := match goal with
+ | |- ?X1 => try loop X1
+ | _ => idtac
+ end.
+
+
+Ltac prove_stable x th :=
+ match constr:x with
+ | ?X1 =>
+ unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *;
+ apply th
+ end.
+
+(* \subsubsection{Les règles elle mêmes} *)
+Definition Tplus_assoc_l (t : term) :=
+ match t with
+ | Tplus n (Tplus m p) => Tplus (Tplus n m) p
+ | _ => t
+ end.
+
+Theorem Tplus_assoc_l_stable : term_stable Tplus_assoc_l.
+
+prove_stable Tplus_assoc_l Zplus_assoc.
+Qed.
+
+Definition Tplus_assoc_r (t : term) :=
+ match t with
+ | Tplus (Tplus n m) p => Tplus n (Tplus m p)
+ | _ => t
+ end.
+
+Theorem Tplus_assoc_r_stable : term_stable Tplus_assoc_r.
+
+prove_stable Tplus_assoc_r Zplus_assoc_reverse.
+Qed.
+
+Definition Tmult_assoc_r (t : term) :=
+ match t with
+ | Tmult (Tmult n m) p => Tmult n (Tmult m p)
+ | _ => t
+ end.
+
+Theorem Tmult_assoc_r_stable : term_stable Tmult_assoc_r.
+
+prove_stable Tmult_assoc_r Zmult_assoc_reverse.
+Qed.
+
+Definition Tplus_permute (t : term) :=
+ match t with
+ | Tplus n (Tplus m p) => Tplus m (Tplus n p)
+ | _ => t
+ end.
+
+Theorem Tplus_permute_stable : term_stable Tplus_permute.
+
+prove_stable Tplus_permute Zplus_permute.
+Qed.
+
+Definition Tplus_sym (t : term) :=
+ match t with
+ | Tplus x y => Tplus y x
+ | _ => t
+ end.
+
+Theorem Tplus_sym_stable : term_stable Tplus_sym.
+
+prove_stable Tplus_sym Zplus_comm.
+Qed.
+
+Definition Tmult_sym (t : term) :=
+ match t with
+ | Tmult x y => Tmult y x
+ | _ => t
+ end.
+
+Theorem Tmult_sym_stable : term_stable Tmult_sym.
+
+prove_stable Tmult_sym Zmult_comm.
+Qed.
+
+Definition T_OMEGA10 (t : term) :=
+ match t with
+ | Tplus (Tmult (Tplus (Tmult v (Tint c1)) l1) (Tint k1)) (Tmult (Tplus
+ (Tmult v' (Tint c2)) l2) (Tint k2)) =>
+ match eq_term v v' with
+ | true =>
+ Tplus (Tmult v (Tint (c1 * k1 + c2 * k2)))
+ (Tplus (Tmult l1 (Tint k1)) (Tmult l2 (Tint k2)))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem T_OMEGA10_stable : term_stable T_OMEGA10.
+
+prove_stable T_OMEGA10 OMEGA10.
+Qed.
+
+Definition T_OMEGA11 (t : term) :=
+ match t with
+ | Tplus (Tmult (Tplus (Tmult v1 (Tint c1)) l1) (Tint k1)) l2 =>
+ Tplus (Tmult v1 (Tint (c1 * k1))) (Tplus (Tmult l1 (Tint k1)) l2)
+ | _ => t
+ end.
+
+Theorem T_OMEGA11_stable : term_stable T_OMEGA11.
+
+prove_stable T_OMEGA11 OMEGA11.
+Qed.
+
+Definition T_OMEGA12 (t : term) :=
+ match t with
+ | Tplus l1 (Tmult (Tplus (Tmult v2 (Tint c2)) l2) (Tint k2)) =>
+ Tplus (Tmult v2 (Tint (c2 * k2))) (Tplus l1 (Tmult l2 (Tint k2)))
+ | _ => t
+ end.
+
+Theorem T_OMEGA12_stable : term_stable T_OMEGA12.
+
+prove_stable T_OMEGA12 OMEGA12.
+Qed.
+
+Definition T_OMEGA13 (t : term) :=
+ match t with
+ | Tplus (Tplus (Tmult v (Tint (Zpos x))) l1) (Tplus (Tmult v' (Tint (Zneg
+ x'))) l2) =>
+ match eq_term v v' with
+ | true => match eq_pos x x' with
+ | true => Tplus l1 l2
+ | false => t
+ end
+ | false => t
+ end
+ | Tplus (Tplus (Tmult v (Tint (Zneg x))) l1) (Tplus (Tmult v' (Tint (Zpos
+ x'))) l2) =>
+ match eq_term v v' with
+ | true => match eq_pos x x' with
+ | true => Tplus l1 l2
+ | false => t
+ end
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
+
+unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *;
+ [ apply OMEGA13 | apply OMEGA14 ].
+Qed.
+
+Definition T_OMEGA15 (t : term) :=
+ match t with
+ | Tplus (Tplus (Tmult v (Tint c1)) l1) (Tmult (Tplus (Tmult v' (Tint c2))
+ l2) (Tint k2)) =>
+ match eq_term v v' with
+ | true =>
+ Tplus (Tmult v (Tint (c1 + c2 * k2)))
+ (Tplus l1 (Tmult l2 (Tint k2)))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem T_OMEGA15_stable : term_stable T_OMEGA15.
+
+prove_stable T_OMEGA15 OMEGA15.
+Qed.
+
+Definition T_OMEGA16 (t : term) :=
+ match t with
+ | Tmult (Tplus (Tmult v (Tint c)) l) (Tint k) =>
+ Tplus (Tmult v (Tint (c * k))) (Tmult l (Tint k))
+ | _ => t
+ end.
+
+
+Theorem T_OMEGA16_stable : term_stable T_OMEGA16.
+
+prove_stable T_OMEGA16 OMEGA16.
+Qed.
+
+Definition Tred_factor5 (t : term) :=
+ match t with
+ | Tplus (Tmult x (Tint Z0)) y => y
+ | _ => t
+ end.
+
+Theorem Tred_factor5_stable : term_stable Tred_factor5.
+
+
+prove_stable Tred_factor5 Zred_factor5.
+Qed.
+
+Definition Topp_plus (t : term) :=
+ match t with
+ | Topp (Tplus x y) => Tplus (Topp x) (Topp y)
+ | _ => t
+ end.
+
+Theorem Topp_plus_stable : term_stable Topp_plus.
+
+prove_stable Topp_plus Zopp_plus_distr.
+Qed.
+
+
+Definition Topp_opp (t : term) :=
+ match t with
+ | Topp (Topp x) => x
+ | _ => t
+ end.
+
+Theorem Topp_opp_stable : term_stable Topp_opp.
+
+prove_stable Topp_opp Zopp_involutive.
+Qed.
+
+Definition Topp_mult_r (t : term) :=
+ match t with
+ | Topp (Tmult x (Tint k)) => Tmult x (Tint (- k))
+ | _ => t
+ end.
+
+Theorem Topp_mult_r_stable : term_stable Topp_mult_r.
+
+prove_stable Topp_mult_r Zopp_mult_distr_r.
+Qed.
+
+Definition Topp_one (t : term) :=
+ match t with
+ | Topp x => Tmult x (Tint (-1))
+ | _ => t
+ end.
+
+Theorem Topp_one_stable : term_stable Topp_one.
+
+prove_stable Topp_one Zopp_eq_mult_neg_1.
+Qed.
+
+Definition Tmult_plus_distr (t : term) :=
+ match t with
+ | Tmult (Tplus n m) p => Tplus (Tmult n p) (Tmult m p)
+ | _ => t
+ end.
+
+Theorem Tmult_plus_distr_stable : term_stable Tmult_plus_distr.
+
+prove_stable Tmult_plus_distr Zmult_plus_distr_l.
+Qed.
+
+Definition Tmult_opp_left (t : term) :=
+ match t with
+ | Tmult (Topp x) (Tint y) => Tmult x (Tint (- y))
+ | _ => t
+ end.
+
+Theorem Tmult_opp_left_stable : term_stable Tmult_opp_left.
+
+prove_stable Tmult_opp_left Zmult_opp_comm.
+Qed.
+
+Definition Tmult_assoc_reduced (t : term) :=
+ match t with
+ | Tmult (Tmult n (Tint m)) (Tint p) => Tmult n (Tint (m * p))
+ | _ => t
+ end.
+
+Theorem Tmult_assoc_reduced_stable : term_stable Tmult_assoc_reduced.
+
+prove_stable Tmult_assoc_reduced Zmult_assoc_reverse.
+Qed.
+
+Definition Tred_factor0 (t : term) := Tmult t (Tint 1).
+
+Theorem Tred_factor0_stable : term_stable Tred_factor0.
+
+prove_stable Tred_factor0 Zred_factor0.
+Qed.
+
+Definition Tred_factor1 (t : term) :=
+ match t with
+ | Tplus x y =>
+ match eq_term x y with
+ | true => Tmult x (Tint 2)
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem Tred_factor1_stable : term_stable Tred_factor1.
+
+prove_stable Tred_factor1 Zred_factor1.
+Qed.
+
+Definition Tred_factor2 (t : term) :=
+ match t with
+ | Tplus x (Tmult y (Tint k)) =>
+ match eq_term x y with
+ | true => Tmult x (Tint (1 + k))
+ | false => t
+ end
+ | _ => t
+ end.
+
+(* Attention : il faut rendre opaque [Zplus] pour éviter que la tactique
+ de simplification n'aille trop loin et défasse [Zplus 1 k] *)
+
+Opaque Zplus.
+
+Theorem Tred_factor2_stable : term_stable Tred_factor2.
+prove_stable Tred_factor2 Zred_factor2.
+Qed.
+
+Definition Tred_factor3 (t : term) :=
+ match t with
+ | Tplus (Tmult x (Tint k)) y =>
+ match eq_term x y with
+ | true => Tmult x (Tint (1 + k))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem Tred_factor3_stable : term_stable Tred_factor3.
+
+prove_stable Tred_factor3 Zred_factor3.
+Qed.
+
+
+Definition Tred_factor4 (t : term) :=
+ match t with
+ | Tplus (Tmult x (Tint k1)) (Tmult y (Tint k2)) =>
+ match eq_term x y with
+ | true => Tmult x (Tint (k1 + k2))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem Tred_factor4_stable : term_stable Tred_factor4.
+
+prove_stable Tred_factor4 Zred_factor4.
+Qed.
+
+Definition Tred_factor6 (t : term) := Tplus t (Tint 0).
+
+Theorem Tred_factor6_stable : term_stable Tred_factor6.
+
+prove_stable Tred_factor6 Zred_factor6.
+Qed.
+
+Transparent Zplus.
+
+Definition Tminus_def (t : term) :=
+ match t with
+ | Tminus x y => Tplus x (Topp y)
+ | _ => t
+ end.
+
+Theorem Tminus_def_stable : term_stable Tminus_def.
+
+(* Le théorème ne sert à rien. Le but est prouvé avant. *)
+prove_stable Tminus_def False.
+Qed.
+
+(* \subsection{Fonctions de réécriture complexes} *)
+
+(* \subsubsection{Fonction de réduction} *)
+(* Cette fonction réduit un terme dont la forme normale est un entier. Il
+ suffit pour cela d'échanger le constructeur [Tint] avec les opérateurs
+ réifiés. La réduction est ``gratuite''. *)
+
+Fixpoint reduce (t : term) : term :=
+ match t with
+ | Tplus x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' + y')
+ | y' => Tplus (Tint x') y'
+ end
+ | x' => Tplus x' (reduce y)
+ end
+ | Tmult x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' * y')
+ | y' => Tmult (Tint x') y'
+ end
+ | x' => Tmult x' (reduce y)
+ end
+ | Tminus x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' - y')
+ | y' => Tminus (Tint x') y'
+ end
+ | x' => Tminus x' (reduce y)
+ end
+ | Topp x =>
+ match reduce x with
+ | Tint x' => Tint (- x')
+ | x' => Topp x'
+ end
+ | _ => t
+ end.
+
+Theorem reduce_stable : term_stable reduce.
+
+unfold term_stable in |- *; intros e t; elim t; auto;
+ try
+ (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1;
+ (case (reduce t0);
+ [ intro z0; case (reduce t1); intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto ])); intros t0 H0; simpl in |- *;
+ rewrite H0; case (reduce t0); intros; auto.
+Qed.
+
+(* \subsubsection{Fusions}
+ \paragraph{Fusion de deux équations} *)
+(* On donne une somme de deux équations qui sont supposées normalisées.
+ Cette fonction prend une trace de fusion en argument et transforme
+ le terme en une équation normalisée. C'est une version très simplifiée
+ du moteur de réécriture [rewrite]. *)
+
+Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
+ match trace with
+ | nil => reduce t
+ | step :: trace' =>
+ match step with
+ | F_equal => apply_right (fusion trace') (T_OMEGA10 t)
+ | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA10 t))
+ | F_left => apply_right (fusion trace') (T_OMEGA11 t)
+ | F_right => apply_right (fusion trace') (T_OMEGA12 t)
+ end
+ end.
+
+Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t).
+
+simple induction t; simpl in |- *;
+ [ exact reduce_stable
+ | intros stp l H; case stp;
+ [ apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
+ | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable;
+ rewrite Tred_factor5_stable; apply H
+ | apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
+ | apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA12_stable ] ] ].
+
+Qed.
+
+(* \paragraph{Fusion de deux équations dont une sans coefficient} *)
+
+Definition fusion_right (trace : list t_fusion) (t : term) : term :=
+ match trace with
+ | nil => reduce t (* Il faut mettre un compute *)
+ | step :: trace' =>
+ match step with
+ | F_equal => apply_right (fusion trace') (T_OMEGA15 t)
+ | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA15 t))
+ | F_left => apply_right (fusion trace') (Tplus_assoc_r t)
+ | F_right => apply_right (fusion trace') (T_OMEGA12 t)
+ end
+ end.
+
+(* \paragraph{Fusion avec anihilation} *)
+(* Normalement le résultat est une constante *)
+
+Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => fusion_cancel trace' (T_OMEGA13 t)
+ end.
+
+Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
+
+unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace;
+ [ exact (reduce_stable e)
+ | intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
+Qed.
+
+(* \subsubsection{Opérations afines sur une équation} *)
+(* \paragraph{Multiplication scalaire et somme d'une constante} *)
+
+Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (scalar_norm_add trace') (T_OMEGA11 t)
+ end.
+
+Theorem scalar_norm_add_stable :
+ forall t : nat, term_stable (scalar_norm_add t).
+
+unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (T_OMEGA11_stable e t) | exact H ] ].
+Qed.
+
+(* \paragraph{Multiplication scalaire} *)
+Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (scalar_norm trace') (T_OMEGA16 t)
+ end.
+
+Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
+
+unfold term_stable, scalar_norm in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (T_OMEGA16_stable e t) | exact H ] ].
+Qed.
+
+(* \paragraph{Somme d'une constante} *)
+Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (add_norm trace') (Tplus_assoc_r t)
+ end.
+
+Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
+
+unfold term_stable, add_norm in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (Tplus_assoc_r_stable e t) | exact H ] ].
+Qed.
+
+(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
+
+
+Fixpoint rewrite (s : step) : term -> term :=
+ match s with
+ | C_DO_BOTH s1 s2 => apply_both (rewrite s1) (rewrite s2)
+ | C_LEFT s => apply_left (rewrite s)
+ | C_RIGHT s => apply_right (rewrite s)
+ | C_SEQ s1 s2 => fun t : term => rewrite s2 (rewrite s1 t)
+ | C_NOP => fun t : term => t
+ | C_OPP_PLUS => Topp_plus
+ | C_OPP_OPP => Topp_opp
+ | C_OPP_MULT_R => Topp_mult_r
+ | C_OPP_ONE => Topp_one
+ | C_REDUCE => reduce
+ | C_MULT_PLUS_DISTR => Tmult_plus_distr
+ | C_MULT_OPP_LEFT => Tmult_opp_left
+ | C_MULT_ASSOC_R => Tmult_assoc_r
+ | C_PLUS_ASSOC_R => Tplus_assoc_r
+ | C_PLUS_ASSOC_L => Tplus_assoc_l
+ | C_PLUS_PERMUTE => Tplus_permute
+ | C_PLUS_SYM => Tplus_sym
+ | C_RED0 => Tred_factor0
+ | C_RED1 => Tred_factor1
+ | C_RED2 => Tred_factor2
+ | C_RED3 => Tred_factor3
+ | C_RED4 => Tred_factor4
+ | C_RED5 => Tred_factor5
+ | C_RED6 => Tred_factor6
+ | C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
+ | C_MINUS => Tminus_def
+ | C_MULT_SYM => Tmult_sym
+ end.
+
+Theorem rewrite_stable : forall s : step, term_stable (rewrite s).
+
+simple induction s; simpl in |- *;
+ [ intros; apply apply_both_stable; auto
+ | intros; apply apply_left_stable; auto
+ | intros; apply apply_right_stable; auto
+ | unfold term_stable in |- *; intros; elim H0; apply H
+ | unfold term_stable in |- *; auto
+ | exact Topp_plus_stable
+ | exact Topp_opp_stable
+ | exact Topp_mult_r_stable
+ | exact Topp_one_stable
+ | exact reduce_stable
+ | exact Tmult_plus_distr_stable
+ | exact Tmult_opp_left_stable
+ | exact Tmult_assoc_r_stable
+ | exact Tplus_assoc_r_stable
+ | exact Tplus_assoc_l_stable
+ | exact Tplus_permute_stable
+ | exact Tplus_sym_stable
+ | exact Tred_factor0_stable
+ | exact Tred_factor1_stable
+ | exact Tred_factor2_stable
+ | exact Tred_factor3_stable
+ | exact Tred_factor4_stable
+ | exact Tred_factor5_stable
+ | exact Tred_factor6_stable
+ | exact Tmult_assoc_reduced_stable
+ | exact Tminus_def_stable
+ | exact Tmult_sym_stable ].
+Qed.
+
+(* \subsection{tactiques de résolution d'un but omega normalisé}
+ Trace de la procédure
+\subsubsection{Tactiques générant une contradiction}
+\paragraph{[O_CONSTANT_NOT_NUL]} *)
+
+Definition constant_not_nul (i : nat) (h : list proposition) :=
+ match nth_hyps i h with
+ | EqTerm (Tint Z0) (Tint n) =>
+ match eq_Z n 0 with
+ | true => h
+ | false => absurd
+ end
+ | _ => h
+ end.
+
+Theorem constant_not_nul_valid :
+ forall i : nat, valid_hyps (constant_not_nul i).
+
+unfold valid_hyps, constant_not_nul in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ elim_eq_Z ipattern:z0 0%Z; auto; simpl in |- *; intros H1 H2;
+ elim H1; symmetry in |- *; auto.
+Qed.
+
+(* \paragraph{[O_CONSTANT_NEG]} *)
+
+Definition constant_neg (i : nat) (h : list proposition) :=
+ match nth_hyps i h with
+ | LeqTerm (Tint Z0) (Tint (Zneg n)) => absurd
+ | _ => h
+ end.
+
+Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
+
+unfold valid_hyps, constant_neg in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ unfold Zle in |- *; simpl in |- *; intros H1; elim H1;
+ [ assumption | trivial ].
+Qed.
+
+(* \paragraph{[NOT_EXACT_DIVIDE]} *)
+Definition not_exact_divide (k1 k2 : Z) (body : term)
+ (t i : nat) (l : list proposition) :=
+ match nth_hyps i l with
+ | EqTerm (Tint Z0) b =>
+ match
+ eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
+ b
+ with
+ | true =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match (k1 ?= k2)%Z with
+ | Datatypes.Gt => absurd
+ | _ => l
+ end
+ | _ => l
+ end
+ | false => l
+ end
+ | _ => l
+ end.
+
+Theorem not_exact_divide_valid :
+ forall (k1 k2 : Z) (body : term) (t i : nat),
+ valid_hyps (not_exact_divide k1 k2 body t i).
+
+unfold valid_hyps, not_exact_divide in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify;
+ elim_eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) t1;
+ auto; Simplify; intro H2; elim H2; simpl in |- *;
+ elim (scalar_norm_add_stable t e); simpl in |- *;
+ intro H4; absurd ((interp_term e body * k1 + k2)%Z = 0%Z);
+ [ apply OMEGA4; assumption | symmetry in |- *; auto ].
+
+Qed.
+
+(* \paragraph{[O_CONTRADICTION]} *)
+
+Definition contradiction (t i j : nat) (l : list proposition) :=
+ match nth_hyps i l with
+ | LeqTerm (Tint Z0) b1 =>
+ match nth_hyps j l with
+ | LeqTerm (Tint Z0) b2 =>
+ match fusion_cancel t (Tplus b1 b2) with
+ | Tint k =>
+ match (0 ?= k)%Z with
+ | Datatypes.Gt => absurd
+ | _ => l
+ end
+ | _ => l
+ end
+ | _ => l
+ end
+ | _ => l
+ end.
+
+Theorem contradiction_valid :
+ forall t i j : nat, valid_hyps (contradiction t i j).
+
+unfold valid_hyps, contradiction in |- *; intros t i j ep e l H;
+ generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ generalize (refl_equal (interp_term e (fusion_cancel t (Tplus t2 t4))));
+ pattern (fusion_cancel t (Tplus t2 t4)) at 2 3 in |- *;
+ case (fusion_cancel t (Tplus t2 t4)); simpl in |- *;
+ auto; intro k; elim (fusion_cancel_stable t); simpl in |- *;
+ intro E; generalize (OMEGA2 _ _ H2 H1); rewrite E;
+ case k; auto; unfold Zle in |- *; simpl in |- *; intros p H3;
+ elim H3; auto.
+
+Qed.
+
+(* \paragraph{[O_NEGATE_CONTRADICT]} *)
+
+Definition negate_contradict (i1 i2 : nat) (h : list proposition) :=
+ match nth_hyps i1 h with
+ | EqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | NeqTerm (Tint Z0) b2 =>
+ match eq_term b1 b2 with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_term b1 b2 with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | _ => h
+ end.
+
+Definition negate_contradict_inv (t i1 i2 : nat) (h : list proposition) :=
+ match nth_hyps i1 h with
+ | EqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | NeqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | _ => h
+ end.
+
+Theorem negate_contradict_valid :
+ forall i j : nat, valid_hyps (negate_contradict i j).
+
+unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H;
+ generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ [ elim_eq_term t2 t4; intro H3;
+ [ elim H1; elim H3; assumption | assumption ]
+ | elim_eq_term t2 t4; intro H3;
+ [ elim H2; rewrite H3; assumption | assumption ] ].
+
+Qed.
+
+Theorem negate_contradict_inv_valid :
+ forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
+
+
+unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H;
+ generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ (pattern (eq_term t2 (scalar_norm t (Tmult t4 (Tint (-1))))) in |- *;
+ apply bool_ind2; intro Aux;
+ [ generalize (eq_term_true t2 (scalar_norm t (Tmult t4 (Tint (-1)))) Aux);
+ clear Aux
+ | generalize (eq_term_false t2 (scalar_norm t (Tmult t4 (Tint (-1)))) Aux);
+ clear Aux ]);
+ [ intro H3; elim H1; generalize H2; rewrite H3;
+ rewrite <- (scalar_norm_stable t e); simpl in |- *;
+ elim (interp_term e t4); simpl in |- *; auto; intros p H4;
+ discriminate H4
+ | auto
+ | intro H3; elim H2; rewrite H3; elim (scalar_norm_stable t e);
+ simpl in |- *; elim H1; simpl in |- *; trivial
+ | auto ].
+
+Qed.
+
+(* \subsubsection{Tactiques générant une nouvelle équation} *)
+(* \paragraph{[O_SUM]}
+ C'est une oper2 valide mais elle traite plusieurs cas à la fois (suivant
+ les opérateurs de comparaison des deux arguments) d'où une
+ preuve un peu compliquée. On utilise quelques lemmes qui sont des
+ généralisations des théorèmes utilisés par OMEGA. *)
+
+Definition sum (k1 k2 : Z) (trace : list t_fusion)
+ (prop1 prop2 : proposition) :=
+ match prop1 with
+ | EqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ EqTerm (Tint 0)
+ (fusion trace (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | LeqTerm (Tint Z0) b2 =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | LeqTerm (Tint Z0) b1 =>
+ match (k1 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | LeqTerm (Tint Z0) b2 =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_Z k1 0 with
+ | true => TrueTerm
+ | false =>
+ NeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem sum1 :
+ forall a b c d : Z, 0%Z = a -> 0%Z = b -> 0%Z = (a * c + b * d)%Z.
+
+intros; elim H; elim H0; simpl in |- *; auto.
+Qed.
+
+Theorem sum2 :
+ forall a b c d : Z,
+ (0 <= d)%Z -> 0%Z = a -> (0 <= b)%Z -> (0 <= a * c + b * d)%Z.
+
+intros; elim H0; simpl in |- *; generalize H H1; case b; case d;
+ unfold Zle in |- *; simpl in |- *; auto.
+Qed.
+
+Theorem sum3 :
+ forall a b c d : Z,
+ (0 <= c)%Z ->
+ (0 <= d)%Z -> (0 <= a)%Z -> (0 <= b)%Z -> (0 <= a * c + b * d)%Z.
+
+intros a b c d; case a; case b; case c; case d; unfold Zle in |- *;
+ simpl in |- *; auto.
+Qed.
+
+Theorem sum4 : forall k : Z, (k ?= 0)%Z = Datatypes.Gt -> (0 <= k)%Z.
+
+intro; case k; unfold Zle in |- *; simpl in |- *; auto; intros; discriminate.
+Qed.
+
+Theorem sum5 :
+ forall a b c d : Z,
+ c <> 0%Z -> 0%Z <> a -> 0%Z = b -> 0%Z <> (a * c + b * d)%Z.
+
+intros a b c d H1 H2 H3; elim H3; simpl in |- *; rewrite Zplus_comm;
+ simpl in |- *; generalize H1 H2; case a; case c; simpl in |- *;
+ intros; try discriminate; assumption.
+Qed.
+
+
+Theorem sum_valid :
+ forall (k1 k2 : Z) (t : list t_fusion), valid2 (sum k1 k2 t).
+
+unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *;
+ Simplify; simpl in |- *; auto; try elim (fusion_stable t);
+ simpl in |- *; intros;
+ [ apply sum1; assumption
+ | apply sum2; try assumption; apply sum4; assumption
+ | rewrite Zplus_comm; apply sum2; try assumption; apply sum4; assumption
+ | apply sum3; try assumption; apply sum4; assumption
+ | elim_eq_Z k1 0%Z; simpl in |- *; auto; elim (fusion_stable t);
+ simpl in |- *; intros; unfold Zne in |- *; apply sum5;
+ assumption ].
+Qed.
+
+(* \paragraph{[O_EXACT_DIVIDE]}
+ c'est une oper1 valide mais on préfère une substitution a ce point la *)
+
+Definition exact_divide (k : Z) (body : term) (t : nat)
+ (prop : proposition) :=
+ match prop with
+ | EqTerm (Tint Z0) b =>
+ match eq_term (scalar_norm t (Tmult body (Tint k))) b with
+ | true =>
+ match eq_Z k 0 with
+ | true => TrueTerm
+ | false => EqTerm (Tint 0) body
+ end
+ | false => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem exact_divide_valid :
+ forall (k : Z) (t : term) (n : nat), valid1 (exact_divide k t n).
+
+
+unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1; Simplify;
+ simpl in |- *; auto; elim_eq_term (scalar_norm t (Tmult k2 (Tint k1))) t1;
+ simpl in |- *; auto; elim_eq_Z k1 0%Z; simpl in |- *;
+ auto; intros H1 H2; elim H2; elim scalar_norm_stable;
+ simpl in |- *; generalize H1; case (interp_term e k2);
+ try trivial;
+ (case k1; simpl in |- *;
+ [ intros; absurd (0%Z = 0%Z); assumption
+ | intros p2 p3 H3 H4; discriminate H4
+ | intros p2 p3 H3 H4; discriminate H4 ]).
+
+Qed.
+
+
+
+(* \paragraph{[O_DIV_APPROX]}
+ La preuve reprend le schéma de la précédente mais on
+ est sur une opération de type valid1 et non sur une opération terminale. *)
+
+Definition divide_and_approx (k1 k2 : Z) (body : term)
+ (t : nat) (prop : proposition) :=
+ match prop with
+ | LeqTerm (Tint Z0) b =>
+ match
+ eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
+ b
+ with
+ | true =>
+ match (k1 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match (k1 ?= k2)%Z with
+ | Datatypes.Gt => LeqTerm (Tint 0) body
+ | _ => prop
+ end
+ | _ => prop
+ end
+ | false => prop
+ end
+ | _ => prop
+ end.
+
+Theorem divide_and_approx_valid :
+ forall (k1 k2 : Z) (body : term) (t : nat),
+ valid1 (divide_and_approx k1 k2 body t).
+
+unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1;
+ Simplify;
+ elim_eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) t1;
+ Simplify; auto; intro E; elim E; simpl in |- *;
+ elim (scalar_norm_add_stable t e); simpl in |- *;
+ intro H1; apply Zmult_le_approx with (3 := H1); assumption.
+Qed.
+
+(* \paragraph{[MERGE_EQ]} *)
+
+Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
+ match prop1 with
+ | LeqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | LeqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => EqTerm (Tint 0) b1
+ | false => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
+
+unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *;
+ auto; elim (scalar_norm_stable n e); simpl in |- *;
+ intros; symmetry in |- *; apply OMEGA8 with (2 := H0);
+ [ assumption | elim Zopp_eq_mult_neg_1; trivial ].
+Qed.
+
+
+
+(* \paragraph{[O_CONSTANT_NUL]} *)
+
+Definition constant_nul (i : nat) (h : list proposition) :=
+ match nth_hyps i h with
+ | NeqTerm (Tint Z0) (Tint Z0) => absurd
+ | _ => h
+ end.
+
+Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
+
+unfold valid_hyps, constant_nul in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ unfold Zne in |- *; intro H1; absurd (0%Z = 0%Z);
+ auto.
+Qed.
+
+(* \paragraph{[O_STATE]} *)
+
+Definition state (m : Z) (s : step) (prop1 prop2 : proposition) :=
+ match prop1 with
+ | EqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) (Tplus b2 (Topp b3)) =>
+ EqTerm (Tint 0)
+ (rewrite s (Tplus b1 (Tmult (Tplus (Topp b3) b2) (Tint m))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem state_valid : forall (m : Z) (s : step), valid2 (state m s).
+
+unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify;
+ simpl in |- *; auto; elim (rewrite_stable s e); simpl in |- *;
+ intros H1 H2; elim H1;
+ rewrite (Zplus_comm (- interp_term e t5) (interp_term e t3));
+ elim H2; simpl in |- *; reflexivity.
+
+Qed.
+
+(* \subsubsection{Tactiques générant plusieurs but}
+ \paragraph{[O_SPLIT_INEQ]}
+ La seule pour le moment (tant que la normalisation n'est pas réfléchie). *)
+
+Definition split_ineq (i t : nat)
+ (f1 f2 : list proposition -> list (list proposition))
+ (l : list proposition) :=
+ match nth_hyps i l with
+ | NeqTerm (Tint Z0) b1 =>
+ f1 (LeqTerm (Tint 0) (add_norm t (Tplus b1 (Tint (-1)))) :: l) ++
+ f2
+ (LeqTerm (Tint 0)
+ (scalar_norm_add t (Tplus (Tmult b1 (Tint (-1))) (Tint (-1))))
+ :: l)
+ | _ => l :: nil
+ end.
+
+Theorem split_ineq_valid :
+ forall (i t : nat) (f1 f2 : list proposition -> list (list proposition)),
+ valid_list_hyps f1 ->
+ valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
+
+unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H;
+ generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
+ simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *;
+ auto; intros z; case z; simpl in |- *; auto; intro H3;
+ apply append_valid; elim (OMEGA19 (interp_term e t2));
+ [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t);
+ simpl in |- *; auto
+ | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t);
+ simpl in |- *; auto
+ | generalize H3; unfold Zne, not in |- *; intros E1 E2; apply E1;
+ symmetry in |- *; trivial ].
+Qed.
+
+
+(* \subsection{La fonction de rejeu de la trace} *)
+
+Fixpoint execute_omega (t : t_omega) (l : list proposition) {struct t} :
+ list (list proposition) :=
+ match t with
+ | O_CONSTANT_NOT_NUL n =>
+ (fun a : list proposition => a :: nil) (constant_not_nul n l)
+ | O_CONSTANT_NEG n =>
+ (fun a : list proposition => a :: nil) (constant_neg n l)
+ | O_DIV_APPROX k1 k2 body t cont n =>
+ execute_omega cont (apply_oper_1 n (divide_and_approx k1 k2 body t) l)
+ | O_NOT_EXACT_DIVIDE k1 k2 body t i =>
+ (fun a : list proposition => a :: nil)
+ (not_exact_divide k1 k2 body t i l)
+ | O_EXACT_DIVIDE k body t cont n =>
+ execute_omega cont (apply_oper_1 n (exact_divide k body t) l)
+ | O_SUM k1 i1 k2 i2 t cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l)
+ | O_CONTRADICTION t i j =>
+ (fun a : list proposition => a :: nil) (contradiction t i j l)
+ | O_MERGE_EQ t i1 i2 cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l)
+ | O_SPLIT_INEQ t i cont1 cont2 =>
+ split_ineq i t (execute_omega cont1) (execute_omega cont2) l
+ | O_CONSTANT_NUL i =>
+ (fun a : list proposition => a :: nil) (constant_nul i l)
+ | O_NEGATE_CONTRADICT i j =>
+ (fun a : list proposition => a :: nil) (negate_contradict i j l)
+ | O_NEGATE_CONTRADICT_INV t i j =>
+ (fun a : list proposition => a :: nil) (negate_contradict_inv t i j l)
+ | O_STATE m s i1 i2 cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
+ end.
+
+Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t).
+
+simple induction t; simpl in |- *;
+ [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (constant_not_nul_valid n ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (constant_neg_valid n ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
+ apply
+ (apply_oper_1_valid m (divide_and_approx k1 k2 body n)
+ (divide_and_approx_valid k1 k2 body n) ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (not_exact_divide_valid z z0 t0 n n0 ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k body n t' Ht' m ep e lp H; apply Ht';
+ apply
+ (apply_oper_1_valid m (exact_divide k body n)
+ (exact_divide_valid k body n) ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
+ apply
+ (apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
+ lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (contradiction_valid n n0 n1 ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
+ apply
+ (apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
+ lp H)
+ | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *;
+ intros ep e lp H;
+ apply
+ (split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
+ lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left;
+ apply (constant_nul_valid i ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left;
+ apply (negate_contradict_valid i j ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H;
+ left; apply (negate_contradict_inv_valid n i j ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
+ apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
+Qed.
+
+
+(* \subsection{Les opérations globales sur le but}
+ \subsubsection{Normalisation} *)
+
+Definition move_right (s : step) (p : proposition) :=
+ match p with
+ | EqTerm t1 t2 => EqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | LeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (Tplus t2 (Topp t1)))
+ | GeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | LtTerm t1 t2 =>
+ LeqTerm (Tint 0) (rewrite s (Tplus (Tplus t2 (Tint (-1))) (Topp t1)))
+ | GtTerm t1 t2 =>
+ LeqTerm (Tint 0) (rewrite s (Tplus (Tplus t1 (Tint (-1))) (Topp t2)))
+ | NeqTerm t1 t2 => NeqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | p => p
+ end.
+
+Theorem Zne_left_2 : forall x y : Z, Zne x y -> Zne 0 (x + - y).
+unfold Zne, not in |- *; intros x y H1 H2; apply H1;
+ apply (Zplus_reg_l (- y)); rewrite Zplus_comm; elim H2;
+ rewrite Zplus_opp_l; trivial.
+Qed.
+
+Theorem move_right_valid : forall s : step, valid1 (move_right s).
+
+unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *;
+ elim (rewrite_stable s e); simpl in |- *;
+ [ symmetry in |- *; apply Zegal_left; assumption
+ | intro; apply Zle_left; assumption
+ | intro; apply Zge_left; assumption
+ | intro; apply Zgt_left; assumption
+ | intro; apply Zlt_left; assumption
+ | intro; apply Zne_left_2; assumption ].
+Qed.
+
+Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
+
+Theorem do_normalize_valid :
+ forall (i : nat) (s : step), valid_hyps (do_normalize i s).
+
+intros; unfold do_normalize in |- *; apply apply_oper_1_valid;
+ apply move_right_valid.
+Qed.
+
+Fixpoint do_normalize_list (l : list step) (i : nat)
+ (h : list proposition) {struct l} : list proposition :=
+ match l with
+ | s :: l' => do_normalize_list l' (S i) (do_normalize i s h)
+ | nil => h
+ end.
+
+Theorem do_normalize_list_valid :
+ forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
+
+simple induction l; simpl in |- *; unfold valid_hyps in |- *;
+ [ auto
+ | intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
+ apply (do_normalize_valid i a ep e lp); assumption ].
+Qed.
+
+Theorem normalize_goal :
+ forall (s : list step) (ep : PropList) (env : list Z) (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env (do_normalize_list s 0 l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; apply valid_goal with (2 := H); apply do_normalize_list_valid.
+Qed.
+
+(* \subsubsection{Exécution de la trace} *)
+
+Theorem execute_goal :
+ forall (t : t_omega) (ep : PropList) (env : list Z) (l : list proposition),
+ interp_list_goal ep env (execute_omega t l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; apply (goal_valid (execute_omega t) (omega_valid t) ep env l H).
+Qed.
+
+
+Theorem append_goal :
+ forall (ep : PropList) (e : list Z) (l1 l2 : list (list proposition)),
+ interp_list_goal ep e l1 /\ interp_list_goal ep e l2 ->
+ interp_list_goal ep e (l1 ++ l2).
+
+intros ep e; simple induction l1;
+ [ simpl in |- *; intros l2 (H1, H2); assumption
+ | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
+
+Qed.
+
+Require Import Decidable.
+
+(* A simple decidability checker : if the proposition belongs to the
+ simple grammar describe below then it is decidable. Proof is by
+ induction and uses well known theorem about arithmetic and propositional
+ calculus *)
+
+Fixpoint decidability (p : proposition) : bool :=
+ match p with
+ | EqTerm _ _ => true
+ | LeqTerm _ _ => true
+ | GeqTerm _ _ => true
+ | GtTerm _ _ => true
+ | LtTerm _ _ => true
+ | NeqTerm _ _ => true
+ | FalseTerm => true
+ | TrueTerm => true
+ | Tnot t => decidability t
+ | Tand t1 t2 => decidability t1 && decidability t2
+ | Timp t1 t2 => decidability t1 && decidability t2
+ | Tor t1 t2 => decidability t1 && decidability t2
+ | Tprop _ => false
+ end.
+
+Theorem decidable_correct :
+ forall (ep : PropList) (e : list Z) (p : proposition),
+ decidability p = true -> decidable (interp_proposition ep e p).
+
+simple induction p; simpl in |- *; intros;
+ [ apply dec_eq
+ | apply dec_Zle
+ | left; auto
+ | right; unfold not in |- *; auto
+ | apply dec_not; auto
+ | apply dec_Zge
+ | apply dec_Zgt
+ | apply dec_Zlt
+ | apply dec_Zne
+ | apply dec_or; elim andb_prop with (1 := H1); auto
+ | apply dec_and; elim andb_prop with (1 := H1); auto
+ | apply dec_imp; elim andb_prop with (1 := H1); auto
+ | discriminate H ].
+
+Qed.
+
+(* An interpretation function for a complete goal with an explicit
+ conclusion. We use an intermediate fixpoint. *)
+
+Fixpoint interp_full_goal (envp : PropList) (env : list Z)
+ (c : proposition) (l : list proposition) {struct l} : Prop :=
+ match l with
+ | nil => interp_proposition envp env c
+ | p' :: l' =>
+ interp_proposition envp env p' -> interp_full_goal envp env c l'
+ end.
+
+Definition interp_full (ep : PropList) (e : list Z)
+ (lc : list proposition * proposition) : Prop :=
+ match lc with
+ | (l, c) => interp_full_goal ep e c l
+ end.
+
+(* Relates the interpretation of a complete goal with the interpretation
+ of its hypothesis and conclusion *)
+
+Theorem interp_full_false :
+ forall (ep : PropList) (e : list Z) (l : list proposition) (c : proposition),
+ (interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
+
+simple induction l; unfold interp_full in |- *; simpl in |- *;
+ [ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
+
+Qed.
+
+(* Push the conclusion in the list of hypothesis using a double negation
+ If the decidability cannot be "proven", then just forget about the
+ conclusion (equivalent of replacing it with false) *)
+
+Definition to_contradict (lc : list proposition * proposition) :=
+ match lc with
+ | (l, c) => if decidability c then Tnot c :: l else l
+ end.
+
+(* The previous operation is valid in the sense that the new list of
+ hypothesis implies the original goal *)
+
+Theorem to_contradict_valid :
+ forall (ep : PropList) (e : list Z) (lc : list proposition * proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep e (to_contradict lc) ->
+ interp_full ep e lc.
+
+intros ep e lc; case lc; intros l c; simpl in |- *;
+ pattern (decidability c) in |- *; apply bool_ind2;
+ [ simpl in |- *; intros H H1; apply interp_full_false; intros H2;
+ apply not_not;
+ [ apply decidable_correct; assumption
+ | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2);
+ auto ]
+ | intros H1 H2; apply interp_full_false; intro H3;
+ elim hyps_to_goal with (1 := H2); assumption ].
+Qed.
+
+(* [map_cons x l] adds [x] at the head of each list in [l] (which is a list
+ of lists *)
+
+Fixpoint map_cons (A : Set) (x : A) (l : list (list A)) {struct l} :
+ list (list A) :=
+ match l with
+ | nil => nil
+ | l :: ll => (x :: l) :: map_cons A x ll
+ end.
+
+(* This function breaks up a list of hypothesis in a list of simpler
+ list of hypothesis that together implie the original one. The goal
+ of all this is to transform the goal in a list of solvable problems.
+ Note that :
+ - we need a way to drive the analysis as some hypotheis may not
+ require a split.
+ - this procedure must be perfectly mimicked by the ML part otherwise
+ hypothesis will get desynchronised and this will be a mess.
+ *)
+
+Fixpoint destructure_hyps (nn : nat) (ll : list proposition) {struct nn} :
+ list (list proposition) :=
+ match nn with
+ | O => ll :: nil
+ | S n =>
+ match ll with
+ | nil => nil :: nil
+ | Tor p1 p2 :: l =>
+ destructure_hyps n (p1 :: l) ++ destructure_hyps n (p2 :: l)
+ | Tand p1 p2 :: l => destructure_hyps n (p1 :: p2 :: l)
+ | Timp p1 p2 :: l =>
+ if decidability p1
+ then
+ destructure_hyps n (Tnot p1 :: l) ++ destructure_hyps n (p2 :: l)
+ else map_cons _ (Timp p1 p2) (destructure_hyps n l)
+ | Tnot p :: l =>
+ match p with
+ | Tnot p1 =>
+ if decidability p1
+ then destructure_hyps n (p1 :: l)
+ else map_cons _ (Tnot (Tnot p1)) (destructure_hyps n l)
+ | Tor p1 p2 => destructure_hyps n (Tnot p1 :: Tnot p2 :: l)
+ | Tand p1 p2 =>
+ if decidability p1
+ then
+ destructure_hyps n (Tnot p1 :: l) ++
+ destructure_hyps n (Tnot p2 :: l)
+ else map_cons _ (Tnot p) (destructure_hyps n l)
+ | _ => map_cons _ (Tnot p) (destructure_hyps n l)
+ end
+ | x :: l => map_cons _ x (destructure_hyps n l)
+ end
+ end.
+
+Theorem map_cons_val :
+ forall (ep : PropList) (e : list Z) (p : proposition)
+ (l : list (list proposition)),
+ interp_proposition ep e p ->
+ interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
+
+simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ].
+Qed.
+
+Hint Resolve map_cons_val append_valid decidable_correct.
+
+Theorem destructure_hyps_valid :
+ forall n : nat, valid_list_hyps (destructure_hyps n).
+
+simple induction n;
+ [ unfold valid_list_hyps in |- *; simpl in |- *; auto
+ | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp;
+ [ simpl in |- *; auto
+ | intros p l; case p;
+ try
+ (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ auto);
+ [ intro p'; case p';
+ try
+ (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ auto);
+ [ simpl in |- *; intros p1 (H1, H2);
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ intro H3;
+ [ apply H; simpl in |- *; split;
+ [ apply not_not; auto | assumption ]
+ | auto ]
+ | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *;
+ elim not_or with (1 := H1); auto
+ | simpl in |- *; intros p1 p2 (H1, H2);
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ intro H3;
+ [ apply append_valid; elim not_and with (2 := H1);
+ [ intro; left; apply H; simpl in |- *; auto
+ | intro; right; apply H; simpl in |- *; auto
+ | auto ]
+ | auto ] ]
+ | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid;
+ (elim H1; intro H3; simpl in |- *; [ left | right ]);
+ apply H; simpl in |- *; auto
+ | simpl in |- *; intros; apply H; simpl in |- *; tauto
+ | simpl in |- *; intros p1 p2 (H1, H2);
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ intro H3;
+ [ apply append_valid; elim imp_simp with (2 := H1);
+ [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto
+ | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto
+ | auto ]
+ | auto ] ] ] ].
+
+Qed.
+
+Definition prop_stable (f : proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p : proposition),
+ interp_proposition ep e p <-> interp_proposition ep e (f p).
+
+Definition p_apply_left (f : proposition -> proposition)
+ (p : proposition) :=
+ match p with
+ | Timp x y => Timp (f x) y
+ | Tor x y => Tor (f x) y
+ | Tand x y => Tand (f x) y
+ | Tnot x => Tnot (f x)
+ | x => x
+ end.
+
+Theorem p_apply_left_stable :
+ forall f : proposition -> proposition,
+ prop_stable f -> prop_stable (p_apply_left f).
+
+unfold prop_stable in |- *; intros f H ep e p; split;
+ (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto).
+Qed.
+
+Definition p_apply_right (f : proposition -> proposition)
+ (p : proposition) :=
+ match p with
+ | Timp x y => Timp x (f y)
+ | Tor x y => Tor x (f y)
+ | Tand x y => Tand x (f y)
+ | Tnot x => Tnot (f x)
+ | x => x
+ end.
+
+Theorem p_apply_right_stable :
+ forall f : proposition -> proposition,
+ prop_stable f -> prop_stable (p_apply_right f).
+
+unfold prop_stable in |- *; intros f H ep e p; split;
+ (case p; simpl in |- *; auto;
+ [ intros p1; elim (H ep e p1); tauto
+ | intros p1 p2; elim (H ep e p2); tauto
+ | intros p1 p2; elim (H ep e p2); tauto
+ | intros p1 p2; elim (H ep e p2); tauto ]).
+Qed.
+
+Definition p_invert (f : proposition -> proposition)
+ (p : proposition) :=
+ match p with
+ | EqTerm x y => Tnot (f (NeqTerm x y))
+ | LeqTerm x y => Tnot (f (GtTerm x y))
+ | GeqTerm x y => Tnot (f (LtTerm x y))
+ | GtTerm x y => Tnot (f (LeqTerm x y))
+ | LtTerm x y => Tnot (f (GeqTerm x y))
+ | NeqTerm x y => Tnot (f (EqTerm x y))
+ | x => x
+ end.
+
+Theorem p_invert_stable :
+ forall f : proposition -> proposition,
+ prop_stable f -> prop_stable (p_invert f).
+
+unfold prop_stable in |- *; intros f H ep e p; split;
+ (case p; simpl in |- *; auto;
+ [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *;
+ unfold Zne in |- *;
+ generalize (dec_eq (interp_term e t1) (interp_term e t2));
+ unfold decidable in |- *; tauto
+ | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *;
+ unfold Zgt in |- *;
+ generalize (dec_Zgt (interp_term e t1) (interp_term e t2));
+ unfold decidable, Zgt, Zle in |- *; tauto
+ | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *;
+ unfold Zlt in |- *;
+ generalize (dec_Zlt (interp_term e t1) (interp_term e t2));
+ unfold decidable, Zge in |- *; tauto
+ | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *;
+ generalize (dec_Zgt (interp_term e t1) (interp_term e t2));
+ unfold Zle, Zgt in |- *; unfold decidable in |- *;
+ tauto
+ | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *;
+ generalize (dec_Zlt (interp_term e t1) (interp_term e t2));
+ unfold Zge, Zlt in |- *; unfold decidable in |- *;
+ tauto
+ | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *;
+ generalize (dec_eq (interp_term e t1) (interp_term e t2));
+ unfold decidable, Zne in |- *; tauto ]).
+Qed.
+
+Theorem Zlt_left_inv : forall x y : Z, (0 <= y + -1 + - x)%Z -> (x < y)%Z.
+
+intros; apply Zsucc_lt_reg; apply Zle_lt_succ;
+ apply (fun a b : Z => Zplus_le_reg_r a b (-1 + - x));
+ rewrite Zplus_assoc; unfold Zsucc in |- *; rewrite (Zplus_assoc_reverse x);
+ rewrite (Zplus_assoc y); simpl in |- *; rewrite Zplus_0_r;
+ rewrite Zplus_opp_r; assumption.
+Qed.
+
+Theorem move_right_stable : forall s : step, prop_stable (move_right s).
+
+unfold move_right, prop_stable in |- *; intros s ep e p; split;
+ [ Simplify; simpl in |- *; elim (rewrite_stable s e); simpl in |- *;
+ [ symmetry in |- *; apply Zegal_left; assumption
+ | intro; apply Zle_left; assumption
+ | intro; apply Zge_left; assumption
+ | intro; apply Zgt_left; assumption
+ | intro; apply Zlt_left; assumption
+ | intro; apply Zne_left_2; assumption ]
+ | case p; simpl in |- *; intros; auto; generalize H; elim (rewrite_stable s);
+ simpl in |- *; intro H1;
+ [ rewrite (Zplus_0_r_reverse (interp_term e t0)); rewrite H1;
+ rewrite Zplus_permute; rewrite Zplus_opp_r;
+ rewrite Zplus_0_r; trivial
+ | apply (fun a b : Z => Zplus_le_reg_r a b (- interp_term e t));
+ rewrite Zplus_opp_r; assumption
+ | apply Zle_ge;
+ apply (fun a b : Z => Zplus_le_reg_r a b (- interp_term e t0));
+ rewrite Zplus_opp_r; assumption
+ | apply Zlt_gt; apply Zlt_left_inv; assumption
+ | apply Zlt_left_inv; assumption
+ | unfold Zne, not in |- *; unfold Zne in H1; intro H2; apply H1;
+ rewrite H2; rewrite Zplus_opp_r; trivial ] ].
+Qed.
+
+
+Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
+ match s with
+ | P_LEFT s => p_apply_left (p_rewrite s)
+ | P_RIGHT s => p_apply_right (p_rewrite s)
+ | P_STEP s => move_right s
+ | P_INVERT s => p_invert (move_right s)
+ | P_NOP => fun p : proposition => p
+ end.
+
+Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
+
+
+simple induction s; simpl in |- *;
+ [ intros; apply p_apply_left_stable; trivial
+ | intros; apply p_apply_right_stable; trivial
+ | intros; apply p_invert_stable; apply move_right_stable
+ | apply move_right_stable
+ | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ].
+Qed.
+
+Fixpoint normalize_hyps (l : list h_step) (lh : list proposition) {struct l}
+ : list proposition :=
+ match l with
+ | nil => lh
+ | pair_step i s :: r => normalize_hyps r (apply_oper_1 i (p_rewrite s) lh)
+ end.
+
+Theorem normalize_hyps_valid :
+ forall l : list h_step, valid_hyps (normalize_hyps l).
+
+simple induction l; unfold valid_hyps in |- *; simpl in |- *;
+ [ auto
+ | intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
+ apply apply_oper_1_valid;
+ [ unfold valid1 in |- *; intros ep1 e1 p1 H2;
+ elim (p_rewrite_stable s ep1 e1 p1); auto
+ | assumption ] ].
+Qed.
+
+Theorem normalize_hyps_goal :
+ forall (s : list h_step) (ep : PropList) (env : list Z)
+ (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env (normalize_hyps s l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
+Qed.
+
+Fixpoint extract_hyp_pos (s : list direction) (p : proposition) {struct s} :
+ proposition :=
+ match s with
+ | D_left :: l =>
+ match p with
+ | Tand x y => extract_hyp_pos l x
+ | _ => p
+ end
+ | D_right :: l =>
+ match p with
+ | Tand x y => extract_hyp_pos l y
+ | _ => p
+ end
+ | D_mono :: l => match p with
+ | Tnot x => extract_hyp_neg l x
+ | _ => p
+ end
+ | _ => p
+ end
+
+ with extract_hyp_neg (s : list direction) (p : proposition) {struct s} :
+ proposition :=
+ match s with
+ | D_left :: l =>
+ match p with
+ | Tor x y => extract_hyp_neg l x
+ | Timp x y => if decidability x then extract_hyp_pos l x else Tnot p
+ | _ => Tnot p
+ end
+ | D_right :: l =>
+ match p with
+ | Tor x y => extract_hyp_neg l y
+ | Timp x y => extract_hyp_neg l y
+ | _ => Tnot p
+ end
+ | D_mono :: l =>
+ match p with
+ | Tnot x => if decidability x then extract_hyp_pos l x else Tnot p
+ | _ => Tnot p
+ end
+ | _ =>
+ match p with
+ | Tnot x => if decidability x then x else Tnot p
+ | _ => Tnot p
+ end
+ end.
+
+Definition co_valid1 (f : proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p1 : proposition),
+ interp_proposition ep e (Tnot p1) -> interp_proposition ep e (f p1).
+
+Theorem extract_valid :
+ forall s : list direction,
+ valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
+
+unfold valid1, co_valid1 in |- *; simple induction s;
+ [ split;
+ [ simpl in |- *; auto
+ | intros ep e p1; case p1; simpl in |- *; auto; intro p;
+ pattern (decidability p) in |- *; apply bool_ind2;
+ [ intro H; generalize (decidable_correct ep e p H);
+ unfold decidable in |- *; tauto
+ | simpl in |- *; auto ] ]
+ | intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
+ case p; auto; simpl in |- *; intros;
+ (apply H1; tauto) ||
+ (apply H2; tauto) ||
+ (pattern (decidability p0) in |- *; apply bool_ind2;
+ [ intro H3; generalize (decidable_correct ep e p0 H3);
+ unfold decidable in |- *; intro H4; apply H1;
+ tauto
+ | intro; tauto ]) ].
+
+Qed.
+
+Fixpoint decompose_solve (s : e_step) (h : list proposition) {struct s} :
+ list (list proposition) :=
+ match s with
+ | E_SPLIT i dl s1 s2 =>
+ match extract_hyp_pos dl (nth_hyps i h) with
+ | Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
+ | Tnot (Tand x y) =>
+ if decidability x
+ then
+ decompose_solve s1 (Tnot x :: h) ++
+ decompose_solve s2 (Tnot y :: h)
+ else h :: nil
+ | _ => h :: nil
+ end
+ | E_EXTRACT i dl s1 =>
+ decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
+ | E_SOLVE t => execute_omega t h
+ end.
+
+Theorem decompose_solve_valid :
+ forall s : e_step, valid_list_goal (decompose_solve s).
+
+intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s;
+ simpl in |- *; intros;
+ [ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
+ [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto;
+ [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2;
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
+ apply append_valid; elim H4; intro H5;
+ [ right; apply H0; simpl in |- *; tauto
+ | left; apply H; simpl in |- *; tauto ]
+ | simpl in |- *; auto ]
+ | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2;
+ [ intros H3; left; apply H; simpl in |- *; auto
+ | intros H3; right; apply H0; simpl in |- *; auto ] ]
+ | elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
+ | intros; apply H; simpl in |- *; split;
+ [ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
+ | auto ]
+ | apply omega_valid with (1 := H) ].
+
+Qed.
+
+(* \subsection{La dernière étape qui élimine tous les séquents inutiles} *)
+
+Definition valid_lhyps
+ (f : list (list proposition) -> list (list proposition)) :=
+ forall (ep : PropList) (e : list Z) (lp : list (list proposition)),
+ interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
+
+Fixpoint reduce_lhyps (lp : list (list proposition)) :
+ list (list proposition) :=
+ match lp with
+ | (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
+ | x :: lp' => x :: reduce_lhyps lp'
+ | nil => nil (A:=list proposition)
+ end.
+
+Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
+
+unfold valid_lhyps in |- *; intros ep e lp; elim lp;
+ [ simpl in |- *; auto
+ | intros a l HR; elim a;
+ [ simpl in |- *; tauto
+ | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ].
+Qed.
+
+Theorem do_reduce_lhyps :
+ forall (envp : PropList) (env : list Z) (l : list (list proposition)),
+ interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
+
+intros envp env l H; apply list_goal_to_hyps; intro H1;
+ apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
+ assumption.
+Qed.
+
+Definition concl_to_hyp (p : proposition) :=
+ if decidability p then Tnot p else TrueTerm.
+
+Definition do_concl_to_hyp :
+ forall (envp : PropList) (env : list Z) (c : proposition)
+ (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env (
+ concl_to_hyp c :: l) -> interp_goal_concl envp env c l.
+
+simpl in |- *; intros envp env c l; induction l as [| a l Hrecl];
+ [ simpl in |- *; unfold concl_to_hyp in |- *;
+ pattern (decidability c) in |- *; apply bool_ind2;
+ [ intro H; generalize (decidable_correct envp env c H);
+ unfold decidable in |- *; simpl in |- *; tauto
+ | simpl in |- *; intros H1 H2; elim H2; trivial ]
+ | simpl in |- *; tauto ].
+Qed.
+
+Definition omega_tactic (t1 : e_step) (t2 : list h_step)
+ (c : proposition) (l : list proposition) :=
+ reduce_lhyps (decompose_solve t1 (normalize_hyps t2 (concl_to_hyp c :: l))).
+
+Theorem do_omega :
+ forall (t1 : e_step) (t2 : list h_step) (envp : PropList)
+ (env : list Z) (c : proposition) (l : list proposition),
+ interp_list_goal envp env (omega_tactic t1 t2 c l) ->
+ interp_goal_concl envp env c l.
+
+unfold omega_tactic in |- *; intros; apply do_concl_to_hyp;
+ apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
+ apply do_reduce_lhyps; assumption.
+Qed. \ No newline at end of file
diff --git a/contrib/romega/const_omega.ml b/contrib/romega/const_omega.ml
new file mode 100644
index 00000000..3b2a7d31
--- /dev/null
+++ b/contrib/romega/const_omega.ml
@@ -0,0 +1,488 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+let module_refl_name = "ReflOmegaCore"
+let module_refl_path = ["Coq"; "romega"; module_refl_name]
+
+type result =
+ Kvar of string
+ | Kapp of string * Term.constr list
+ | Kimp of Term.constr * Term.constr
+ | Kufo;;
+
+let destructurate t =
+ let c, args = Term.decompose_app t in
+ let env = Global.env() in
+ match Term.kind_of_term c, args with
+ | Term.Const sp, args ->
+ Kapp (Names.string_of_id
+ (Nametab.id_of_global (Libnames.ConstRef sp)),
+ args)
+ | Term.Construct csp , args ->
+ Kapp (Names.string_of_id
+ (Nametab.id_of_global (Libnames.ConstructRef csp)),
+ args)
+ | Term.Ind isp, args ->
+ Kapp (Names.string_of_id
+ (Nametab.id_of_global (Libnames.IndRef isp)),
+ args)
+ | Term.Var id,[] -> Kvar(Names.string_of_id id)
+ | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
+ | Term.Prod (Names.Name _,_,_),[] ->
+ Util.error "Omega: Not a quantifier-free goal"
+ | _ -> Kufo
+
+exception Destruct
+
+let dest_const_apply t =
+ let f,args = Term.decompose_app t in
+ let ref =
+ match Term.kind_of_term f with
+ | Term.Const sp -> Libnames.ConstRef sp
+ | Term.Construct csp -> Libnames.ConstructRef csp
+ | Term.Ind isp -> Libnames.IndRef isp
+ | _ -> raise Destruct
+ in Nametab.id_of_global ref, args
+
+let recognize_number t =
+ let rec loop t =
+ let f,l = dest_const_apply t in
+ match Names.string_of_id f,l with
+ "xI",[t] -> 1 + 2 * loop t
+ | "xO",[t] -> 2 * loop t
+ | "xH",[] -> 1
+ | _ -> failwith "not a number" in
+ let f,l = dest_const_apply t in
+ match Names.string_of_id f,l with
+ "Zpos",[t] -> loop t | "Zneg",[t] -> - (loop t) | "Z0",[] -> 0
+ | _ -> failwith "not a number";;
+
+
+let logic_dir = ["Coq";"Logic";"Decidable"]
+
+let coq_modules =
+ Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
+ @ [["Coq"; "omega"; "OmegaLemmas"]]
+ @ [["Coq"; "Lists"; (if !Options.v7 then "PolyList" else "List")]]
+ @ [module_refl_path]
+
+
+let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules
+
+let coq_xH = lazy (constant "xH")
+let coq_xO = lazy (constant "xO")
+let coq_xI = lazy (constant "xI")
+let coq_ZERO = lazy (constant "Z0")
+let coq_POS = lazy (constant "Zpos")
+let coq_NEG = lazy (constant "Zneg")
+let coq_Z = lazy (constant "Z")
+let coq_relation = lazy (constant "comparison")
+let coq_SUPERIEUR = lazy (constant "SUPERIEUR")
+let coq_INFEEIEUR = lazy (constant "INFERIEUR")
+let coq_EGAL = lazy (constant "EGAL")
+let coq_Zplus = lazy (constant "Zplus")
+let coq_Zmult = lazy (constant "Zmult")
+let coq_Zopp = lazy (constant "Zopp")
+
+let coq_Zminus = lazy (constant "Zminus")
+let coq_Zs = lazy (constant "Zs")
+let coq_Zgt = lazy (constant "Zgt")
+let coq_Zle = lazy (constant "Zle")
+let coq_inject_nat = lazy (constant "inject_nat")
+
+(* Peano *)
+let coq_le = lazy(constant "le")
+let coq_gt = lazy(constant "gt")
+
+(* Integers *)
+let coq_nat = lazy(constant "nat")
+let coq_S = lazy(constant "S")
+let coq_O = lazy(constant "O")
+let coq_minus = lazy(constant "minus")
+
+(* Logic *)
+let coq_eq = lazy(constant "eq")
+let coq_refl_equal = lazy(constant "refl_equal")
+let coq_and = lazy(constant "and")
+let coq_not = lazy(constant "not")
+let coq_or = lazy(constant "or")
+let coq_true = lazy(constant "true")
+let coq_false = lazy(constant "false")
+let coq_ex = lazy(constant "ex")
+let coq_I = lazy(constant "I")
+
+(* Lists *)
+let coq_cons = lazy (constant "cons")
+let coq_nil = lazy (constant "nil")
+
+let coq_pcons = lazy (constant "Pcons")
+let coq_pnil = lazy (constant "Pnil")
+
+let coq_h_step = lazy (constant "h_step")
+let coq_pair_step = lazy (constant "pair_step")
+let coq_p_left = lazy (constant "P_LEFT")
+let coq_p_right = lazy (constant "P_RIGHT")
+let coq_p_invert = lazy (constant "P_INVERT")
+let coq_p_step = lazy (constant "P_STEP")
+let coq_p_nop = lazy (constant "P_NOP")
+
+
+let coq_t_int = lazy (constant "Tint")
+let coq_t_plus = lazy (constant "Tplus")
+let coq_t_mult = lazy (constant "Tmult")
+let coq_t_opp = lazy (constant "Topp")
+let coq_t_minus = lazy (constant "Tminus")
+let coq_t_var = lazy (constant "Tvar")
+
+let coq_p_eq = lazy (constant "EqTerm")
+let coq_p_leq = lazy (constant "LeqTerm")
+let coq_p_geq = lazy (constant "GeqTerm")
+let coq_p_lt = lazy (constant "LtTerm")
+let coq_p_gt = lazy (constant "GtTerm")
+let coq_p_neq = lazy (constant "NeqTerm")
+let coq_p_true = lazy (constant "TrueTerm")
+let coq_p_false = lazy (constant "FalseTerm")
+let coq_p_not = lazy (constant "Tnot")
+let coq_p_or = lazy (constant "Tor")
+let coq_p_and = lazy (constant "Tand")
+let coq_p_imp = lazy (constant "Timp")
+let coq_p_prop = lazy (constant "Tprop")
+
+let coq_proposition = lazy (constant "proposition")
+let coq_interp_sequent = lazy (constant "interp_goal_concl")
+let coq_normalize_sequent = lazy (constant "normalize_goal")
+let coq_execute_sequent = lazy (constant "execute_goal")
+let coq_do_concl_to_hyp = lazy (constant "do_concl_to_hyp")
+let coq_sequent_to_hyps = lazy (constant "goal_to_hyps")
+let coq_normalize_hyps_goal =
+ lazy (constant "normalize_hyps_goal")
+
+(* Constructors for shuffle tactic *)
+let coq_t_fusion = lazy (constant "t_fusion")
+let coq_f_equal = lazy (constant "F_equal")
+let coq_f_cancel = lazy (constant "F_cancel")
+let coq_f_left = lazy (constant "F_left")
+let coq_f_right = lazy (constant "F_right")
+
+(* Constructors for reordering tactics *)
+let coq_step = lazy (constant "step")
+let coq_c_do_both = lazy (constant "C_DO_BOTH")
+let coq_c_do_left = lazy (constant "C_LEFT")
+let coq_c_do_right = lazy (constant "C_RIGHT")
+let coq_c_do_seq = lazy (constant "C_SEQ")
+let coq_c_nop = lazy (constant "C_NOP")
+let coq_c_opp_plus = lazy (constant "C_OPP_PLUS")
+let coq_c_opp_opp = lazy (constant "C_OPP_OPP")
+let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R")
+let coq_c_opp_one = lazy (constant "C_OPP_ONE")
+let coq_c_reduce = lazy (constant "C_REDUCE")
+let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR")
+let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R")
+let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R")
+let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L")
+let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE")
+let coq_c_plus_sym = lazy (constant "C_PLUS_SYM")
+let coq_c_red0 = lazy (constant "C_RED0")
+let coq_c_red1 = lazy (constant "C_RED1")
+let coq_c_red2 = lazy (constant "C_RED2")
+let coq_c_red3 = lazy (constant "C_RED3")
+let coq_c_red4 = lazy (constant "C_RED4")
+let coq_c_red5 = lazy (constant "C_RED5")
+let coq_c_red6 = lazy (constant "C_RED6")
+let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_reduced =
+ lazy (constant "C_MULT_ASSOC_REDUCED")
+let coq_c_minus = lazy (constant "C_MINUS")
+let coq_c_mult_sym = lazy (constant "C_MULT_SYM")
+
+let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL")
+let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG")
+let coq_s_div_approx = lazy (constant "O_DIV_APPROX")
+let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE")
+let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE")
+let coq_s_sum = lazy (constant "O_SUM")
+let coq_s_state = lazy (constant "O_STATE")
+let coq_s_contradiction = lazy (constant "O_CONTRADICTION")
+let coq_s_merge_eq = lazy (constant "O_MERGE_EQ")
+let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ")
+let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL")
+let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT")
+let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV")
+
+(* construction for the [extract_hyp] tactic *)
+let coq_direction = lazy (constant "direction")
+let coq_d_left = lazy (constant "D_left")
+let coq_d_right = lazy (constant "D_right")
+let coq_d_mono = lazy (constant "D_mono")
+
+let coq_e_split = lazy (constant "E_SPLIT")
+let coq_e_extract = lazy (constant "E_EXTRACT")
+let coq_e_solve = lazy (constant "E_SOLVE")
+
+let coq_decompose_solve_valid =
+ lazy (constant "decompose_solve_valid")
+let coq_do_reduce_lhyps = lazy (constant "do_reduce_lhyps")
+let coq_do_omega = lazy (constant "do_omega")
+
+(**
+let constant dir s =
+ try
+ Libnames.constr_of_reference
+ (Nametab.absolute_reference
+ (Libnames.make_path
+ (Names.make_dirpath (List.map Names.id_of_string (List.rev dir)))
+ (Names.id_of_string s)))
+ with e -> print_endline (String.concat "." dir); print_endline s;
+ raise e
+
+let path_fast_integer = ["Coq"; "ZArith"; "fast_integer"]
+let path_zarith_aux = ["Coq"; "ZArith"; "zarith_aux"]
+let path_logic = ["Coq"; "Init";"Logic"]
+let path_datatypes = ["Coq"; "Init";"Datatypes"]
+let path_peano = ["Coq"; "Init"; "Peano"]
+let path_list = ["Coq"; "Lists"; "PolyList"]
+
+let coq_xH = lazy (constant path_fast_integer "xH")
+let coq_xO = lazy (constant path_fast_integer "xO")
+let coq_xI = lazy (constant path_fast_integer "xI")
+let coq_ZERO = lazy (constant path_fast_integer "ZERO")
+let coq_POS = lazy (constant path_fast_integer "POS")
+let coq_NEG = lazy (constant path_fast_integer "NEG")
+let coq_Z = lazy (constant path_fast_integer "Z")
+let coq_relation = lazy (constant path_fast_integer "relation")
+let coq_SUPERIEUR = lazy (constant path_fast_integer "SUPERIEUR")
+let coq_INFEEIEUR = lazy (constant path_fast_integer "INFERIEUR")
+let coq_EGAL = lazy (constant path_fast_integer "EGAL")
+let coq_Zplus = lazy (constant path_fast_integer "Zplus")
+let coq_Zmult = lazy (constant path_fast_integer "Zmult")
+let coq_Zopp = lazy (constant path_fast_integer "Zopp")
+
+(* auxiliaires zarith *)
+let coq_Zminus = lazy (constant path_zarith_aux "Zminus")
+let coq_Zs = lazy (constant path_zarith_aux "Zs")
+let coq_Zgt = lazy (constant path_zarith_aux "Zgt")
+let coq_Zle = lazy (constant path_zarith_aux "Zle")
+let coq_inject_nat = lazy (constant path_zarith_aux "inject_nat")
+
+(* Peano *)
+let coq_le = lazy(constant path_peano "le")
+let coq_gt = lazy(constant path_peano "gt")
+
+(* Integers *)
+let coq_nat = lazy(constant path_datatypes "nat")
+let coq_S = lazy(constant path_datatypes "S")
+let coq_O = lazy(constant path_datatypes "O")
+
+(* Minus *)
+let coq_minus = lazy(constant ["Arith"; "Minus"] "minus")
+
+(* Logic *)
+let coq_eq = lazy(constant path_logic "eq")
+let coq_refl_equal = lazy(constant path_logic "refl_equal")
+let coq_and = lazy(constant path_logic "and")
+let coq_not = lazy(constant path_logic "not")
+let coq_or = lazy(constant path_logic "or")
+let coq_true = lazy(constant path_logic "true")
+let coq_false = lazy(constant path_logic "false")
+let coq_ex = lazy(constant path_logic "ex")
+let coq_I = lazy(constant path_logic "I")
+
+(* Lists *)
+let coq_cons = lazy (constant path_list "cons")
+let coq_nil = lazy (constant path_list "nil")
+
+let coq_pcons = lazy (constant module_refl_path "Pcons")
+let coq_pnil = lazy (constant module_refl_path "Pnil")
+
+let coq_h_step = lazy (constant module_refl_path "h_step")
+let coq_pair_step = lazy (constant module_refl_path "pair_step")
+let coq_p_left = lazy (constant module_refl_path "P_LEFT")
+let coq_p_right = lazy (constant module_refl_path "P_RIGHT")
+let coq_p_invert = lazy (constant module_refl_path "P_INVERT")
+let coq_p_step = lazy (constant module_refl_path "P_STEP")
+let coq_p_nop = lazy (constant module_refl_path "P_NOP")
+
+
+let coq_t_int = lazy (constant module_refl_path "Tint")
+let coq_t_plus = lazy (constant module_refl_path "Tplus")
+let coq_t_mult = lazy (constant module_refl_path "Tmult")
+let coq_t_opp = lazy (constant module_refl_path "Topp")
+let coq_t_minus = lazy (constant module_refl_path "Tminus")
+let coq_t_var = lazy (constant module_refl_path "Tvar")
+
+let coq_p_eq = lazy (constant module_refl_path "EqTerm")
+let coq_p_leq = lazy (constant module_refl_path "LeqTerm")
+let coq_p_geq = lazy (constant module_refl_path "GeqTerm")
+let coq_p_lt = lazy (constant module_refl_path "LtTerm")
+let coq_p_gt = lazy (constant module_refl_path "GtTerm")
+let coq_p_neq = lazy (constant module_refl_path "NeqTerm")
+let coq_p_true = lazy (constant module_refl_path "TrueTerm")
+let coq_p_false = lazy (constant module_refl_path "FalseTerm")
+let coq_p_not = lazy (constant module_refl_path "Tnot")
+let coq_p_or = lazy (constant module_refl_path "Tor")
+let coq_p_and = lazy (constant module_refl_path "Tand")
+let coq_p_imp = lazy (constant module_refl_path "Timp")
+let coq_p_prop = lazy (constant module_refl_path "Tprop")
+
+let coq_proposition = lazy (constant module_refl_path "proposition")
+let coq_interp_sequent = lazy (constant module_refl_path "interp_goal_concl")
+let coq_normalize_sequent = lazy (constant module_refl_path "normalize_goal")
+let coq_execute_sequent = lazy (constant module_refl_path "execute_goal")
+let coq_do_concl_to_hyp = lazy (constant module_refl_path "do_concl_to_hyp")
+let coq_sequent_to_hyps = lazy (constant module_refl_path "goal_to_hyps")
+let coq_normalize_hyps_goal =
+ lazy (constant module_refl_path "normalize_hyps_goal")
+
+(* Constructors for shuffle tactic *)
+let coq_t_fusion = lazy (constant module_refl_path "t_fusion")
+let coq_f_equal = lazy (constant module_refl_path "F_equal")
+let coq_f_cancel = lazy (constant module_refl_path "F_cancel")
+let coq_f_left = lazy (constant module_refl_path "F_left")
+let coq_f_right = lazy (constant module_refl_path "F_right")
+
+(* Constructors for reordering tactics *)
+let coq_step = lazy (constant module_refl_path "step")
+let coq_c_do_both = lazy (constant module_refl_path "C_DO_BOTH")
+let coq_c_do_left = lazy (constant module_refl_path "C_LEFT")
+let coq_c_do_right = lazy (constant module_refl_path "C_RIGHT")
+let coq_c_do_seq = lazy (constant module_refl_path "C_SEQ")
+let coq_c_nop = lazy (constant module_refl_path "C_NOP")
+let coq_c_opp_plus = lazy (constant module_refl_path "C_OPP_PLUS")
+let coq_c_opp_opp = lazy (constant module_refl_path "C_OPP_OPP")
+let coq_c_opp_mult_r = lazy (constant module_refl_path "C_OPP_MULT_R")
+let coq_c_opp_one = lazy (constant module_refl_path "C_OPP_ONE")
+let coq_c_reduce = lazy (constant module_refl_path "C_REDUCE")
+let coq_c_mult_plus_distr = lazy (constant module_refl_path "C_MULT_PLUS_DISTR")
+let coq_c_opp_left = lazy (constant module_refl_path "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_r = lazy (constant module_refl_path "C_MULT_ASSOC_R")
+let coq_c_plus_assoc_r = lazy (constant module_refl_path "C_PLUS_ASSOC_R")
+let coq_c_plus_assoc_l = lazy (constant module_refl_path "C_PLUS_ASSOC_L")
+let coq_c_plus_permute = lazy (constant module_refl_path "C_PLUS_PERMUTE")
+let coq_c_plus_sym = lazy (constant module_refl_path "C_PLUS_SYM")
+let coq_c_red0 = lazy (constant module_refl_path "C_RED0")
+let coq_c_red1 = lazy (constant module_refl_path "C_RED1")
+let coq_c_red2 = lazy (constant module_refl_path "C_RED2")
+let coq_c_red3 = lazy (constant module_refl_path "C_RED3")
+let coq_c_red4 = lazy (constant module_refl_path "C_RED4")
+let coq_c_red5 = lazy (constant module_refl_path "C_RED5")
+let coq_c_red6 = lazy (constant module_refl_path "C_RED6")
+let coq_c_mult_opp_left = lazy (constant module_refl_path "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_reduced =
+ lazy (constant module_refl_path "C_MULT_ASSOC_REDUCED")
+let coq_c_minus = lazy (constant module_refl_path "C_MINUS")
+let coq_c_mult_sym = lazy (constant module_refl_path "C_MULT_SYM")
+
+let coq_s_constant_not_nul = lazy (constant module_refl_path "O_CONSTANT_NOT_NUL")
+let coq_s_constant_neg = lazy (constant module_refl_path "O_CONSTANT_NEG")
+let coq_s_div_approx = lazy (constant module_refl_path "O_DIV_APPROX")
+let coq_s_not_exact_divide = lazy (constant module_refl_path "O_NOT_EXACT_DIVIDE")
+let coq_s_exact_divide = lazy (constant module_refl_path "O_EXACT_DIVIDE")
+let coq_s_sum = lazy (constant module_refl_path "O_SUM")
+let coq_s_state = lazy (constant module_refl_path "O_STATE")
+let coq_s_contradiction = lazy (constant module_refl_path "O_CONTRADICTION")
+let coq_s_merge_eq = lazy (constant module_refl_path "O_MERGE_EQ")
+let coq_s_split_ineq =lazy (constant module_refl_path "O_SPLIT_INEQ")
+let coq_s_constant_nul =lazy (constant module_refl_path "O_CONSTANT_NUL")
+let coq_s_negate_contradict =lazy (constant module_refl_path "O_NEGATE_CONTRADICT")
+let coq_s_negate_contradict_inv =lazy (constant module_refl_path "O_NEGATE_CONTRADICT_INV")
+
+(* construction for the [extract_hyp] tactic *)
+let coq_direction = lazy (constant module_refl_path "direction")
+let coq_d_left = lazy (constant module_refl_path "D_left")
+let coq_d_right = lazy (constant module_refl_path "D_right")
+let coq_d_mono = lazy (constant module_refl_path "D_mono")
+
+let coq_e_split = lazy (constant module_refl_path "E_SPLIT")
+let coq_e_extract = lazy (constant module_refl_path "E_EXTRACT")
+let coq_e_solve = lazy (constant module_refl_path "E_SOLVE")
+
+let coq_decompose_solve_valid =
+ lazy (constant module_refl_path "decompose_solve_valid")
+let coq_do_reduce_lhyps = lazy (constant module_refl_path "do_reduce_lhyps")
+let coq_do_omega = lazy (constant module_refl_path "do_omega")
+
+*)
+(* \subsection{Construction d'expressions} *)
+
+
+let mk_var v = Term.mkVar (Names.id_of_string v)
+let mk_plus t1 t2 = Term.mkApp (Lazy.force coq_Zplus,[| t1; t2 |])
+let mk_times t1 t2 = Term.mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
+let mk_minus t1 t2 = Term.mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
+let mk_eq t1 t2 = Term.mkApp (Lazy.force coq_eq, [| Lazy.force coq_Z; t1; t2 |])
+let mk_le t1 t2 = Term.mkApp (Lazy.force coq_Zle, [|t1; t2 |])
+let mk_gt t1 t2 = Term.mkApp (Lazy.force coq_Zgt, [|t1; t2 |])
+let mk_inv t = Term.mkApp (Lazy.force coq_Zopp, [|t |])
+let mk_and t1 t2 = Term.mkApp (Lazy.force coq_and, [|t1; t2 |])
+let mk_or t1 t2 = Term.mkApp (Lazy.force coq_or, [|t1; t2 |])
+let mk_not t = Term.mkApp (Lazy.force coq_not, [|t |])
+let mk_eq_rel t1 t2 = Term.mkApp (Lazy.force coq_eq, [|
+ Lazy.force coq_relation; t1; t2 |])
+let mk_inj t = Term.mkApp (Lazy.force coq_inject_nat, [|t |])
+
+
+let do_left t =
+ if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )
+
+let do_right t =
+ if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ else Term.mkApp (Lazy.force coq_c_do_right, [|t |])
+
+let do_both t1 t2 =
+ if t1 = Lazy.force coq_c_nop then do_right t2
+ else if t2 = Lazy.force coq_c_nop then do_left t1
+ else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])
+
+let do_seq t1 t2 =
+ if t1 = Lazy.force coq_c_nop then t2
+ else if t2 = Lazy.force coq_c_nop then t1
+ else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
+
+let rec do_list = function
+ | [] -> Lazy.force coq_c_nop
+ | [x] -> x
+ | (x::l) -> do_seq x (do_list l)
+
+
+let mk_integer n =
+ let rec loop n =
+ if n=1 then Lazy.force coq_xH else
+ Term.mkApp ((if n mod 2 = 0 then Lazy.force coq_xO else Lazy.force coq_xI),
+ [| loop (n/2) |]) in
+
+ if n = 0 then Lazy.force coq_ZERO
+ else Term.mkApp ((if n > 0 then Lazy.force coq_POS else Lazy.force coq_NEG),
+ [| loop (abs n) |])
+
+let mk_Z = mk_integer
+
+let rec mk_nat = function
+ | 0 -> Lazy.force coq_O
+ | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
+
+let mk_list typ l =
+ let rec loop = function
+ | [] ->
+ Term.mkApp (Lazy.force coq_nil, [|typ|])
+ | (step :: l) ->
+ Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in
+ loop l
+
+let mk_plist l =
+ let rec loop = function
+ | [] ->
+ (Lazy.force coq_pnil)
+ | (step :: l) ->
+ Term.mkApp (Lazy.force coq_pcons, [| step; loop l |]) in
+ loop l
+
+
+let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l
+
diff --git a/contrib/romega/g_romega.ml4 b/contrib/romega/g_romega.ml4
new file mode 100644
index 00000000..386f7f28
--- /dev/null
+++ b/contrib/romega/g_romega.ml4
@@ -0,0 +1,15 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Refl_omega
+
+TACTIC EXTEND ROmega
+ [ "ROmega" ] -> [ total_reflexive_omega_tactic ]
+END
diff --git a/contrib/romega/omega2.ml b/contrib/romega/omega2.ml
new file mode 100644
index 00000000..91aefc60
--- /dev/null
+++ b/contrib/romega/omega2.ml
@@ -0,0 +1,675 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(* 13/10/2002 : modified to cope with an external numbering of equations *)
+(* and hypothesis. Its use for Omega is not more complex and it makes *)
+(* things much simpler for the reflexive version where we should limit *)
+(* the number of source of numbering. *)
+(**************************************************************************)
+
+open Names
+
+let flat_map f =
+ let rec flat_map_f = function
+ | [] -> []
+ | x :: l -> f x @ flat_map_f l
+ in
+ flat_map_f
+
+let pp i = print_int i; print_newline (); flush stdout
+
+let debug = ref false
+
+let filter = List.partition
+
+let push v l = l := v :: !l
+
+let rec pgcd x y = if y = 0 then x else pgcd y (x mod y)
+
+let pgcd_l = function
+ | [] -> failwith "pgcd_l"
+ | x :: l -> List.fold_left pgcd x l
+
+let floor_div a b =
+ match a >=0 , b > 0 with
+ | true,true -> a / b
+ | false,false -> a / b
+ | true, false -> (a-1) / b - 1
+ | false,true -> (a+1) / b - 1
+
+type coeff = {c: int ; v: int}
+
+type linear = coeff list
+
+type eqn_kind = EQUA | INEQ | DISE
+
+type afine = {
+ (* a number uniquely identifying the equation *)
+ id: int ;
+ (* a boolean true for an eq, false for an ineq (Sigma a_i x_i >= 0) *)
+ kind: eqn_kind;
+ (* the variables and their coefficient *)
+ body: coeff list;
+ (* a constant *)
+ constant: int }
+
+type state_action = {
+ st_new_eq : afine;
+ st_def : afine;
+ st_orig : afine;
+ st_coef : int;
+ st_var : int }
+
+type action =
+ | DIVIDE_AND_APPROX of afine * afine * int * int
+ | NOT_EXACT_DIVIDE of afine * int
+ | FORGET_C of int
+ | EXACT_DIVIDE of afine * int
+ | SUM of int * (int * afine) * (int * afine)
+ | STATE of state_action
+ | HYP of afine
+ | FORGET of int * int
+ | FORGET_I of int * int
+ | CONTRADICTION of afine * afine
+ | NEGATE_CONTRADICT of afine * afine * bool
+ | MERGE_EQ of int * afine * int
+ | CONSTANT_NOT_NUL of int * int
+ | CONSTANT_NUL of int
+ | CONSTANT_NEG of int * int
+ | SPLIT_INEQ of afine * (int * action list) * (int * action list)
+ | WEAKEN of int * int
+
+exception UNSOLVABLE
+
+exception NO_CONTRADICTION
+
+let display_eq print_var (l,e) =
+ let _ =
+ List.fold_left
+ (fun not_first f ->
+ print_string
+ (if f.c < 0 then "- " else if not_first then "+ " else "");
+ let c = abs f.c in
+ if c = 1 then
+ Printf.printf "%s " (print_var f.v)
+ else
+ Printf.printf "%d %s " c (print_var f.v);
+ true)
+ false l
+ in
+ if e > 0 then
+ Printf.printf "+ %d " e
+ else if e < 0 then
+ Printf.printf "- %d " (abs e)
+
+let rec trace_length l =
+ let action_length accu = function
+ | SPLIT_INEQ (_,(_,l1),(_,l2)) ->
+ accu + 1 + trace_length l1 + trace_length l2
+ | _ -> accu + 1 in
+ List.fold_left action_length 0 l
+
+let operator_of_eq = function
+ | EQUA -> "=" | DISE -> "!=" | INEQ -> ">="
+
+let kind_of = function
+ | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation"
+
+let display_system print_var l =
+ List.iter
+ (fun { kind=b; body=e; constant=c; id=id} ->
+ print_int id; print_string ": ";
+ display_eq print_var (e,c); print_string (operator_of_eq b);
+ print_string "0\n")
+ l;
+ print_string "------------------------\n\n"
+
+let display_inequations print_var l =
+ List.iter (fun e -> display_eq print_var e;print_string ">= 0\n") l;
+ print_string "------------------------\n\n"
+
+let rec display_action print_var = function
+ | act :: l -> begin match act with
+ | DIVIDE_AND_APPROX (e1,e2,k,d) ->
+ Printf.printf
+ "Inequation E%d is divided by %d and the constant coefficient is \
+ rounded by substracting %d.\n" e1.id k d
+ | NOT_EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Constant in equation E%d is not divisible by the pgcd \
+ %d of its other coefficients.\n" e.id k
+ | EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Equation E%d is divided by the pgcd \
+ %d of its coefficients.\n" e.id k
+ | WEAKEN (e,k) ->
+ Printf.printf
+ "To ensure a solution in the dark shadow \
+ the equation E%d is weakened by %d.\n" e k
+ | SUM (e,(c1,e1),(c2,e2)) ->
+ Printf.printf
+ "We state %s E%d = %d %s E%d + %d %s E%d.\n"
+ (kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2
+ (kind_of e2.kind) e2.id
+ | STATE { st_new_eq = e; st_coef = x} ->
+ Printf.printf "We define a new equation %d :" e.id;
+ display_eq print_var (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | HYP e ->
+ Printf.printf "We define %d :" e.id;
+ display_eq print_var (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e
+ | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | FORGET_I (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | MERGE_EQ (e,e1,e2) ->
+ Printf.printf "E%d and E%d can be merged into E%d.\n" e1.id e2 e
+ | CONTRADICTION (e1,e2) ->
+ Printf.printf
+ "equations E%d and E%d implie a contradiction on their \
+ constant factors.\n" e1.id e2.id
+ | NEGATE_CONTRADICT(e1,e2,b) ->
+ Printf.printf
+ "Eqations E%d and E%d state that their body is at the same time
+ equal and different\n" e1.id e2.id
+ | CONSTANT_NOT_NUL (e,k) ->
+ Printf.printf "equation E%d states %d=0.\n" e k
+ | CONSTANT_NEG(e,k) ->
+ Printf.printf "equation E%d states %d >= 0.\n" e k
+ | CONSTANT_NUL e ->
+ Printf.printf "inequation E%d states 0 != 0.\n" e
+ | SPLIT_INEQ (e,(e1,l1),(e2,l2)) ->
+ Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2;
+ display_action print_var l1;
+ print_newline ();
+ display_action print_var l2;
+ print_newline ()
+ end; display_action print_var l
+ | [] ->
+ flush stdout
+
+(*""*)
+let default_print_var v = Printf.sprintf "XX%d" v
+
+let add_event, history, clear_history =
+ let accu = ref [] in
+ (fun (v:action) -> if !debug then display_action default_print_var [v]; push v accu),
+ (fun () -> !accu),
+ (fun () -> accu := [])
+
+let nf_linear = Sort.list (fun x y -> x.v > y.v)
+
+let nf ((b : bool),(e,(x : int))) = (b,(nf_linear e,x))
+
+let map_eq_linear f =
+ let rec loop = function
+ | x :: l -> let c = f x.c in if c=0 then loop l else {v=x.v; c=c} :: loop l
+ | [] -> []
+ in
+ loop
+
+let map_eq_afine f e =
+ { id = e.id; kind = e.kind; body = map_eq_linear f e.body;
+ constant = f e.constant }
+
+let negate_eq = map_eq_afine (fun x -> -x)
+
+let rec sum p0 p1 = match (p0,p1) with
+ | ([], l) -> l | (l, []) -> l
+ | (((x1::l1) as l1'), ((x2::l2) as l2')) ->
+ if x1.v = x2.v then
+ let c = x1.c + x2.c in
+ if c = 0 then sum l1 l2 else {v=x1.v;c=c} :: sum l1 l2
+ else if x1.v > x2.v then
+ x1 :: sum l1 l2'
+ else
+ x2 :: sum l1' l2
+
+let sum_afine new_eq_id eq1 eq2 =
+ { kind = eq1.kind; id = new_eq_id ();
+ body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant }
+
+exception FACTOR1
+
+let rec chop_factor_1 = function
+ | x :: l ->
+ if abs x.c = 1 then x,l else let (c',l') = chop_factor_1 l in (c',x::l')
+ | [] -> raise FACTOR1
+
+exception CHOPVAR
+
+let rec chop_var v = function
+ | f :: l -> if f.v = v then f,l else let (f',l') = chop_var v l in (f',f::l')
+ | [] -> raise CHOPVAR
+
+let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) =
+ if e = [] then begin
+ match eq_flag with
+ | EQUA ->
+ if x =0 then [] else begin
+ add_event (CONSTANT_NOT_NUL(id,x)); raise UNSOLVABLE
+ end
+ | DISE ->
+ if x <> 0 then [] else begin
+ add_event (CONSTANT_NUL id); raise UNSOLVABLE
+ end
+ | INEQ ->
+ if x >= 0 then [] else begin
+ add_event (CONSTANT_NEG(id,x)); raise UNSOLVABLE
+ end
+ end else
+ let gcd = pgcd_l (List.map (fun f -> abs f.c) e) in
+ if eq_flag=EQUA & x mod gcd <> 0 then begin
+ add_event (NOT_EXACT_DIVIDE (eq,gcd)); raise UNSOLVABLE
+ end else if eq_flag=DISE & x mod gcd <> 0 then begin
+ add_event (FORGET_C eq.id); []
+ end else if gcd <> 1 then begin
+ let c = floor_div x gcd in
+ let d = x - c * gcd in
+ let new_eq = {id=id; kind=eq_flag; constant=c;
+ body=map_eq_linear (fun c -> c / gcd) e} in
+ add_event (if eq_flag=EQUA or eq_flag = DISE then EXACT_DIVIDE(eq,gcd)
+ else DIVIDE_AND_APPROX(eq,new_eq,gcd,d));
+ [new_eq]
+ end else [eq]
+
+let eliminate_with_in new_eq_id {v=v;c=c_unite} eq2
+ ({body=e1; constant=c1} as eq1) =
+ try
+ let (f,_) = chop_var v e1 in
+ let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c
+ else failwith "eliminate_with_in" in
+ let res = sum_afine new_eq_id eq1 (map_eq_afine (fun c -> c * coeff) eq2) in
+ add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res
+ with CHOPVAR -> eq1
+
+let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b)
+let banerjee_step (new_eq_id,new_var_id,print_var) original l1 l2 =
+ let e = original.body in
+ let sigma = new_var_id () in
+ let smallest,var =
+ try
+ List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p))
+ (abs (List.hd e).c, (List.hd e).v) (List.tl e)
+ with Failure "tl" -> display_system print_var [original] ; failwith "TL" in
+ let m = smallest + 1 in
+ let new_eq =
+ { constant = omega_mod original.constant m;
+ body = {c= -m;v=sigma} ::
+ map_eq_linear (fun a -> omega_mod a m) original.body;
+ id = new_eq_id (); kind = EQUA } in
+ let definition =
+ { constant = - floor_div (2 * original.constant + m) (2 * m);
+ body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m))
+ original.body;
+ id = new_eq_id (); kind = EQUA } in
+ add_event (STATE {st_new_eq = new_eq; st_def = definition;
+ st_orig =original; st_coef = m; st_var = sigma});
+ let new_eq = List.hd (normalize new_eq) in
+ let eliminated_var, def = chop_var var new_eq.body in
+ let other_equations =
+ flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e))
+ l1 in
+ let inequations =
+ flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e))
+ l2 in
+ let original' = eliminate_with_in new_eq_id eliminated_var new_eq original in
+ let mod_original = map_eq_afine (fun c -> c / m) original' in
+ add_event (EXACT_DIVIDE (original',m));
+ List.hd (normalize mod_original),other_equations,inequations
+
+let rec eliminate_one_equation ((new_eq_id,new_var_id,print_var) as new_ids) (e,other,ineqs) =
+ if !debug then display_system print_var (e::other);
+ try
+ let v,def = chop_factor_1 e.body in
+ (flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) other,
+ flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) ineqs)
+ with FACTOR1 ->
+ eliminate_one_equation new_ids (banerjee_step new_ids e other ineqs)
+
+let rec banerjee ((_,_,print_var) as new_ids) (sys_eq,sys_ineq) =
+ let rec fst_eq_1 = function
+ (eq::l) ->
+ if List.exists (fun x -> abs x.c = 1) eq.body then eq,l
+ else let (eq',l') = fst_eq_1 l in (eq',eq::l')
+ | [] -> raise Not_found in
+ match sys_eq with
+ [] -> if !debug then display_system print_var sys_ineq; sys_ineq
+ | (e1::rest) ->
+ let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in
+ if eq.body = [] then
+ if eq.constant = 0 then begin
+ add_event (FORGET_C eq.id); banerjee new_ids (other,sys_ineq)
+ end else begin
+ add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE
+ end
+ else
+ banerjee new_ids
+ (eliminate_one_equation new_ids (eq,other,sys_ineq))
+
+type kind = INVERTED | NORMAL
+
+let redundancy_elimination new_eq_id system =
+ let normal = function
+ ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = Hashtbl.create 7 in
+ List.iter
+ (fun e ->
+ let ({body=ne} as nx) ,kind = normal e in
+ if ne = [] then
+ if nx.constant < 0 then begin
+ add_event (CONSTANT_NEG(nx.id,nx.constant)); raise UNSOLVABLE
+ end else add_event (FORGET_C nx.id)
+ else
+ try
+ let (optnormal,optinvert) = Hashtbl.find table ne in
+ let final =
+ if kind = NORMAL then begin
+ match optnormal with
+ Some v ->
+ let kept =
+ if v.constant < nx.constant
+ then begin add_event (FORGET (v.id,nx.id));v end
+ else begin add_event (FORGET (nx.id,v.id));nx end in
+ (Some(kept),optinvert)
+ | None -> Some nx,optinvert
+ end else begin
+ match optinvert with
+ Some v ->
+ let kept =
+ if v.constant > nx.constant
+ then begin add_event (FORGET_I (v.id,nx.id));v end
+ else begin add_event (FORGET_I (nx.id,v.id));nx end in
+ (optnormal,Some(if v.constant > nx.constant then v else nx))
+ | None -> optnormal,Some nx
+ end in
+ begin match final with
+ (Some high, Some low) ->
+ if high.constant < low.constant then begin
+ add_event(CONTRADICTION (high,negate_eq low));
+ raise UNSOLVABLE
+ end
+ | _ -> () end;
+ Hashtbl.remove table ne;
+ Hashtbl.add table ne final
+ with Not_found ->
+ Hashtbl.add table ne
+ (if kind = NORMAL then (Some nx,None) else (None,Some nx)))
+ system;
+ let accu_eq = ref [] in
+ let accu_ineq = ref [] in
+ Hashtbl.iter
+ (fun p0 p1 -> match (p0,p1) with
+ | (e, (Some x, Some y)) when x.constant = y.constant ->
+ let id=new_eq_id () in
+ add_event (MERGE_EQ(id,x,y.id));
+ push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq
+ | (e, (optnorm,optinvert)) ->
+ begin match optnorm with
+ Some x -> push x accu_ineq | _ -> () end;
+ begin match optinvert with
+ Some x -> push (negate_eq x) accu_ineq | _ -> () end)
+ table;
+ !accu_eq,!accu_ineq
+
+exception SOLVED_SYSTEM
+
+let select_variable system =
+ let table = Hashtbl.create 7 in
+ let push v c=
+ try let r = Hashtbl.find table v in r := max !r (abs c)
+ with Not_found -> Hashtbl.add table v (ref (abs c)) in
+ List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system;
+ let vmin,cmin = ref (-1), ref 0 in
+ let var_cpt = ref 0 in
+ Hashtbl.iter
+ (fun v ({contents = c}) ->
+ incr var_cpt;
+ if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end)
+ table;
+ if !var_cpt < 1 then raise SOLVED_SYSTEM;
+ !vmin
+
+let classify v system =
+ List.fold_left
+ (fun (not_occ,below,over) eq ->
+ try let f,eq' = chop_var v eq.body in
+ if f.c >= 0 then (not_occ,((f.c,eq) :: below),over)
+ else (not_occ,below,((-f.c,eq) :: over))
+ with CHOPVAR -> (eq::not_occ,below,over))
+ ([],[],[]) system
+
+let product new_eq_id dark_shadow low high =
+ List.fold_left
+ (fun accu (a,eq1) ->
+ List.fold_left
+ (fun accu (b,eq2) ->
+ let eq =
+ sum_afine new_eq_id (map_eq_afine (fun c -> c * b) eq1)
+ (map_eq_afine (fun c -> c * a) eq2) in
+ add_event(SUM(eq.id,(b,eq1),(a,eq2)));
+ match normalize eq with
+ | [eq] ->
+ let final_eq =
+ if dark_shadow then
+ let delta = (a - 1) * (b - 1) in
+ add_event(WEAKEN(eq.id,delta));
+ {id = eq.id; kind=INEQ; body = eq.body;
+ constant = eq.constant - delta}
+ else eq
+ in final_eq :: accu
+ | (e::_) -> failwith "Product dardk"
+ | [] -> accu)
+ accu high)
+ [] low
+
+let fourier_motzkin (_,new_eq_id,print_var) dark_shadow system =
+ let v = select_variable system in
+ let (ineq_out, ineq_low,ineq_high) = classify v system in
+ let expanded = ineq_out @ product new_eq_id dark_shadow ineq_low ineq_high in
+ if !debug then display_system print_var expanded; expanded
+
+let simplify ((new_eq_id,new_var_id,print_var) as new_ids) dark_shadow system =
+ if List.exists (fun e -> e.kind = DISE) system then
+ failwith "disequation in simplify";
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ineqs in
+ let system = (eqs @ simp_eq,simp_ineq) in
+ let rec loop1a system =
+ let sys_ineq = banerjee new_ids system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id sys_ineq in
+ if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin new_ids dark_shadow system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM ->
+ if !debug then display_system print_var system; system
+ in
+ loop2 (loop1a system)
+
+let rec depend relie_on accu = function
+ | act :: l ->
+ begin match act with
+ | DIVIDE_AND_APPROX (e,_,_,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | EXACT_DIVIDE (e,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | WEAKEN (e,_) ->
+ if List.mem e relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | SUM (e,(_,e1),(_,e2)) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | STATE {st_new_eq=e} ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | HYP e ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | FORGET_C _ -> depend relie_on accu l
+ | FORGET _ -> depend relie_on accu l
+ | FORGET_I _ -> depend relie_on accu l
+ | MERGE_EQ (e,e1,e2) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | NOT_EXACT_DIVIDE (e,_) -> depend (e.id::relie_on) (act::accu) l
+ | CONTRADICTION (e1,e2) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | CONSTANT_NOT_NUL (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NEG (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NUL e -> depend (e::relie_on) (act::accu) l
+ | NEGATE_CONTRADICT (e1,e2,_) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | SPLIT_INEQ _ -> failwith "depend"
+ end
+ | [] -> relie_on, accu
+
+(*
+let depend relie_on accu trace =
+ Printf.printf "Longueur de la trace initiale : %d\n"
+ (trace_length trace + trace_length accu);
+ let rel',trace' = depend relie_on accu trace in
+ Printf.printf "Longueur de la trace simplifiée : %d\n" (trace_length trace');
+ rel',trace'
+*)
+
+let solve (new_eq_id,new_eq_var,print_var) system =
+ try let _ = simplify new_eq_id false system in failwith "no contradiction"
+ with UNSOLVABLE -> display_action print_var (snd (depend [] [] (history ())))
+
+let negation (eqs,ineqs) =
+ let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in
+ let normal = function
+ | ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = Hashtbl.create 7 in
+ List.iter (fun e ->
+ let {body=ne;constant=c} ,kind = normal e in
+ Hashtbl.add table (ne,c) (kind,e)) diseq;
+ List.iter (fun e ->
+ if e.kind <> EQUA then pp 9999;
+ let {body=ne;constant=c},kind = normal e in
+ try
+ let (kind',e') = Hashtbl.find table (ne,c) in
+ add_event (NEGATE_CONTRADICT (e,e',kind=kind'));
+ raise UNSOLVABLE
+ with Not_found -> ()) eqs
+
+exception FULL_SOLUTION of action list * int list
+
+let simplify_strong ((new_eq_id,new_var_id,print_var) as new_ids) system =
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ (* Initial simplification phase *)
+ let rec loop1a system =
+ negation system;
+ let sys_ineq = banerjee new_ids system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in
+ if simp_eq = [] then dise @ simp_ineq
+ else loop1a (simp_eq,dise @ simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin new_ids false system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM -> if !debug then display_system print_var system; system
+ in
+ let rec explode_diseq = function
+ | (de::diseq,ineqs,expl_map) ->
+ let id1 = new_eq_id ()
+ and id2 = new_eq_id () in
+ let e1 =
+ {id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in
+ let e2 =
+ {id = id2; kind=INEQ; body = map_eq_linear (fun x -> -x) de.body;
+ constant = - de.constant - 1} in
+ let new_sys =
+ List.map (fun (what,sys) -> ((de.id,id1,true)::what, e1::sys))
+ ineqs @
+ List.map (fun (what,sys) -> ((de.id,id2,false)::what,e2::sys))
+ ineqs
+ in
+ explode_diseq (diseq,new_sys,(de.id,(de,id1,id2))::expl_map)
+ | ([],ineqs,expl_map) -> ineqs,expl_map
+ in
+ try
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let dise,ine = filter (fun e -> e.kind = DISE) ineqs in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in
+ let system = (eqs @ simp_eq,simp_ineq @ dise) in
+ let system' = loop1a system in
+ let diseq,ineq = filter (fun e -> e.kind = DISE) system' in
+ let first_segment = history () in
+ let sys_exploded,explode_map = explode_diseq (diseq,[[],ineq],[]) in
+ let all_solutions =
+ List.map
+ (fun (decomp,sys) ->
+ clear_history ();
+ try let _ = loop2 sys in raise NO_CONTRADICTION
+ with UNSOLVABLE ->
+ let relie_on,path = depend [] [] (history ()) in
+ let dc,_ = filter (fun (_,id,_) -> List.mem id relie_on) decomp in
+ let red = List.map (fun (x,_,_) -> x) dc in
+ (red,relie_on,decomp,path))
+ sys_exploded
+ in
+ let max_count sys =
+ let tbl = Hashtbl.create 7 in
+ let augment x =
+ try incr (Hashtbl.find tbl x)
+ with Not_found -> Hashtbl.add tbl x (ref 1) in
+ let eq = ref (-1) and c = ref 0 in
+ List.iter (function
+ | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on))
+ | (l,_,_,_) -> List.iter augment l) sys;
+ Hashtbl.iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl;
+ !eq
+ in
+ let rec solve systems =
+ try
+ let id = max_count systems in
+ let rec sign = function
+ | ((id',_,b)::l) -> if id=id' then b else sign l
+ | [] -> failwith "solve" in
+ let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in
+ let s1' =
+ List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s1 in
+ let s2' =
+ List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s2 in
+ let (r1,relie1) = solve s1'
+ and (r2,relie2) = solve s2' in
+ let (eq,id1,id2) = List.assoc id explode_map in
+ [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: Util.list_union relie1 relie2
+ with FULL_SOLUTION (x0,x1) -> (x0,x1)
+ in
+ let act,relie_on = solve all_solutions in
+ snd(depend relie_on act first_segment)
+ with UNSOLVABLE -> snd (depend [] [] (history ()))
diff --git a/contrib/romega/refl_omega.ml b/contrib/romega/refl_omega.ml
new file mode 100644
index 00000000..ef68c587
--- /dev/null
+++ b/contrib/romega/refl_omega.ml
@@ -0,0 +1,1307 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+open Const_omega
+
+
+(* \section{Useful functions and flags} *)
+(* Especially useful debugging functions *)
+let debug = ref false
+
+let show_goal gl =
+ if !debug then Pp.ppnl (Tacmach.pr_gls gl); Tacticals.tclIDTAC gl
+
+let pp i = print_int i; print_newline (); flush stdout
+
+(* More readable than the prefix notation *)
+let (>>) = Tacticals.tclTHEN
+
+(* [list_index t l = i] \eqv $nth l i = t \wedge \forall j < i nth l j != t$ *)
+
+let list_index t =
+ let rec loop i = function
+ | (u::l) -> if u = t then i else loop (i+1) l
+ | [] -> raise Not_found in
+ loop 0
+
+(* [list_uniq l = filter_i (x i -> nth l (i-1) != x) l] *)
+let list_uniq l =
+ let rec uniq = function
+ x :: ((y :: _) as l) when x = y -> uniq l
+ | x :: l -> x :: uniq l
+ | [] -> [] in
+ uniq (List.sort compare l)
+
+(* $\forall x. mem x (list\_union l1 l2) \eqv x \in \{l1\} \cup \{l2\}$ *)
+let list_union l1 l2 =
+ let rec loop buf = function
+ x :: r -> if List.mem x l2 then loop buf r else loop (x :: buf) r
+ | [] -> buf in
+ loop l2 l1
+
+(* $\forall x.
+ mem \;\; x \;\; (list\_intersect\;\; l1\;\;l2) \eqv x \in \{l1\}
+ \cap \{l2\}$ *)
+let list_intersect l1 l2 =
+ let rec loop buf = function
+ x :: r -> if List.mem x l2 then loop (x::buf) r else loop buf r
+ | [] -> buf in
+ loop [] l1
+
+(* cartesian product. Elements are lists and are concatenated.
+ $cartesian [x_1 ... x_n] [y_1 ... y_p] = [x_1 @ y_1, x_2 @ y_1 ... x_n @ y_1 , x_1 @ y_2 ... x_n @ y_p]$ *)
+
+let rec cartesien l1 l2 =
+ let rec loop = function
+ (x2 :: r2) -> List.map (fun x1 -> x1 @ x2) l1 @ loop r2
+ | [] -> [] in
+ loop l2
+
+(* remove element e from list l *)
+let list_remove e l =
+ let rec loop = function
+ x :: l -> if x = e then loop l else x :: loop l
+ | [] -> [] in
+ loop l
+
+(* equivalent of the map function but no element is added when the function
+ raises an exception (and the computation silently continues) *)
+let map_exc f =
+ let rec loop = function
+ (x::l) ->
+ begin match try Some (f x) with exc -> None with
+ Some v -> v :: loop l | None -> loop l
+ end
+ | [] -> [] in
+ loop
+
+let mkApp = Term.mkApp
+
+(* \section{Types}
+ \subsection{How to walk in a term}
+ To represent how to get to a proposition. Only choice points are
+ kept (branch to choose in a disjunction and identifier of the disjunctive
+ connector) *)
+type direction = Left of int | Right of int
+
+(* Step to find a proposition (operators are at most binary). A list is
+ a path *)
+type occ_step = O_left | O_right | O_mono
+type occ_path = occ_step list
+
+(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
+ d'une liste de pas à partir de la racine de l'hypothèse *)
+type occurence = {o_hyp : Names.identifier; o_path : occ_path}
+
+(* \subsection{refiable formulas} *)
+type oformula =
+ (* integer *)
+ | Oint of int
+ (* recognized binary and unary operations *)
+ | Oplus of oformula * oformula
+ | Omult of oformula * oformula
+ | Ominus of oformula * oformula
+ | Oopp of oformula
+ (* an atome in the environment *)
+ | Oatom of int
+ (* weird expression that cannot be translated *)
+ | Oufo of oformula
+
+(* Operators for comparison recognized by Omega *)
+type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
+
+(* Type des prédicats réifiés (fragment de calcul propositionnel. Les
+ * quantifications sont externes au langage) *)
+type oproposition =
+ Pequa of Term.constr * oequation
+ | Ptrue
+ | Pfalse
+ | Pnot of oproposition
+ | Por of int * oproposition * oproposition
+ | Pand of int * oproposition * oproposition
+ | Pimp of int * oproposition * oproposition
+ | Pprop of Term.constr
+
+(* Les équations ou proposiitions atomiques utiles du calcul *)
+and oequation = {
+ e_comp: comparaison; (* comparaison *)
+ e_left: oformula; (* formule brute gauche *)
+ e_right: oformula; (* formule brute droite *)
+ e_trace: Term.constr; (* tactique de normalisation *)
+ e_origin: occurence; (* l'hypothèse dont vient le terme *)
+ e_negated: bool; (* vrai si apparait en position nié
+ après normalisation *)
+ e_depends: direction list; (* liste des points de disjonction dont
+ dépend l'accès à l'équation avec la
+ direction (branche) pour y accéder *)
+ e_omega: Omega2.afine (* la fonction normalisée *)
+ }
+
+(* \subsection{Proof context}
+ This environment codes
+ \begin{itemize}
+ \item the terms and propositions that are given as
+ parameters of the reified proof (and are represented as variables in the
+ reified goals)
+ \item translation functions linking the decision procedure and the Coq proof
+ \end{itemize} *)
+
+type environment = {
+ (* La liste des termes non reifies constituant l'environnement global *)
+ mutable terms : Term.constr list;
+ (* La meme chose pour les propositions *)
+ mutable props : Term.constr list;
+ (* Les variables introduites par omega *)
+ mutable om_vars : (oformula * int) list;
+ (* Traduction des indices utilisés ici en les indices finaux utilisés par
+ * la tactique Omega après dénombrement des variables utiles *)
+ real_indices : (int,int) Hashtbl.t;
+ mutable cnt_connectors : int;
+ equations : (int,oequation) Hashtbl.t;
+ constructors : (int, occurence) Hashtbl.t
+}
+
+(* \subsection{Solution tree}
+ Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
+ d'un ensemble d'équation dont dépend la solution et d'une trace *)
+type solution = {
+ s_index : int;
+ s_equa_deps : int list;
+ s_trace : Omega2.action list }
+
+(* Arbre de solution résolvant complètement un ensemble de systèmes *)
+type solution_tree =
+ Leaf of solution
+ (* un noeud interne représente un point de branchement correspondant à
+ l'élimination d'un connecteur générant plusieurs buts
+ (typ. disjonction). Le premier argument
+ est l'identifiant du connecteur *)
+ | Tree of int * solution_tree * solution_tree
+
+(* Représentation de l'environnement extrait du but initial sous forme de
+ chemins pour extraire des equations ou d'hypothèses *)
+
+type context_content =
+ CCHyp of occurence
+ | CCEqua of int
+
+(* \section{Specific utility functions to handle base types} *)
+(* Nom arbitraire de l'hypothèse codant la négation du but final *)
+let id_concl = Names.id_of_string "__goal__"
+
+(* Initialisation de l'environnement de réification de la tactique *)
+let new_environment () = {
+ terms = []; props = []; om_vars = []; cnt_connectors = 0;
+ real_indices = Hashtbl.create 7;
+ equations = Hashtbl.create 7;
+ constructors = Hashtbl.create 7;
+}
+
+(* Génération d'un nom d'équation *)
+let new_eq_id env =
+ env.cnt_connectors <- env.cnt_connectors + 1; env.cnt_connectors
+
+(* Calcul de la branche complémentaire *)
+let barre = function Left x -> Right x | Right x -> Left x
+
+(* Identifiant associé à une branche *)
+let indice = function Left x | Right x -> x
+
+(* Affichage de l'environnement de réification (termes et propositions) *)
+let print_env_reification env =
+ let rec loop c i = function
+ [] -> Printf.printf "===============================\n\n"
+ | t :: l ->
+ Printf.printf "(%c%02d) : " c i;
+ Pp.ppnl (Printer.prterm t);
+ Pp.flush_all ();
+ loop c (i+1) l in
+ Printf.printf "PROPOSITIONS :\n\n"; loop 'P' 0 env.props;
+ Printf.printf "TERMES :\n\n"; loop 'V' 0 env.terms
+
+
+(* \subsection{Gestion des environnements de variable pour Omega} *)
+(* generation d'identifiant d'equation pour Omega *)
+let new_omega_id = let cpt = ref 0 in function () -> incr cpt; !cpt
+(* Affichage des variables d'un système *)
+let display_omega_id i = Printf.sprintf "O%d" i
+(* Recherche la variable codant un terme pour Omega et crée la variable dans
+ l'environnement si il n'existe pas. Cas ou la variable dans Omega représente
+ le terme d'un monome (le plus souvent un atome) *)
+
+let intern_omega env t =
+ begin try List.assoc t env.om_vars
+ with Not_found ->
+ let v = new_omega_id () in
+ env.om_vars <- (t,v) :: env.om_vars; v
+ end
+
+(* Ajout forcé d'un lien entre un terme et une variable Omega. Cas ou la
+ variable est crée par Omega et ou il faut la lier après coup a un atome
+ réifié introduit de force *)
+let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars
+
+(* Récupère le terme associé à une variable *)
+let unintern_omega env id =
+ let rec loop = function
+ [] -> failwith "unintern"
+ | ((t,j)::l) -> if id = j then t else loop l in
+ loop env.om_vars
+
+(* \subsection{Gestion des environnements de variable pour la réflexion}
+ Gestion des environnements de traduction entre termes des constructions
+ non réifiés et variables des termes reifies. Attention il s'agit de
+ l'environnement initial contenant tout. Il faudra le réduire après
+ calcul des variables utiles. *)
+
+let add_reified_atom t env =
+ try list_index t env.terms
+ with Not_found ->
+ let i = List.length env.terms in
+ env.terms <- env.terms @ [t]; i
+
+let get_reified_atom env =
+ try List.nth env.terms with _ -> failwith "get_reified_atom"
+
+(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
+(* ajout d'une proposition *)
+let add_prop env t =
+ try list_index t env.props
+ with Not_found ->
+ let i = List.length env.props in env.props <- env.props @ [t]; i
+
+(* accès a une proposition *)
+let get_prop v env = try List.nth v env with _ -> failwith "get_prop"
+
+(* \subsection{Gestion du nommage des équations} *)
+(* Ajout d'une equation dans l'environnement de reification *)
+let add_equation env e =
+ let id = e.e_omega.Omega2.id in
+ try let _ = Hashtbl.find env.equations id in ()
+ with Not_found -> Hashtbl.add env.equations id e
+
+(* accès a une equation *)
+let get_equation env id =
+ try Hashtbl.find env.equations id
+ with e -> Printf.printf "Omega Equation %d non trouvée\n" id; raise e
+
+(* Affichage des termes réifiés *)
+let rec oprint ch = function
+ | Oint n -> Printf.fprintf ch "%d" n
+ | Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2
+ | Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2
+ | Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2
+ | Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1
+ | Oatom n -> Printf.fprintf ch "V%02d" n
+ | Oufo x -> Printf.fprintf ch "?"
+
+let rec pprint ch = function
+ Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) ->
+ let connector =
+ match comp with
+ Eq -> "=" | Leq -> "=<" | Geq -> ">="
+ | Gt -> ">" | Lt -> "<" | Neq -> "!=" in
+ Printf.fprintf ch "%a %s %a" oprint t1 connector oprint t2
+ | Ptrue -> Printf.fprintf ch "TT"
+ | Pfalse -> Printf.fprintf ch "FF"
+ | Pnot t -> Printf.fprintf ch "not(%a)" pprint t
+ | Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2
+ | Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2
+ | Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2
+ | Pprop c -> Printf.fprintf ch "Prop"
+
+let rec weight env = function
+ | Oint _ -> -1
+ | Oopp c -> weight env c
+ | Omult(c,_) -> weight env c
+ | Oplus _ -> failwith "weight"
+ | Ominus _ -> failwith "weight minus"
+ | Oufo _ -> -1
+ | Oatom _ as c -> (intern_omega env c)
+
+(* \section{Passage entre oformules et représentation interne de Omega} *)
+
+(* \subsection{Oformula vers Omega} *)
+
+let omega_of_oformula env kind =
+ let rec loop accu = function
+ | Oplus(Omult(v,Oint n),r) ->
+ loop ({Omega2.v=intern_omega env v; Omega2.c=n} :: accu) r
+ | Oint n ->
+ let id = new_omega_id () in
+ (*i tag_equation name id; i*)
+ {Omega2.kind = kind; Omega2.body = List.rev accu;
+ Omega2.constant = n; Omega2.id = id}
+ | t -> print_string "CO"; oprint stdout t; failwith "compile_equation" in
+ loop []
+
+(* \subsection{Omega vers Oformula} *)
+
+let reified_of_atom env i =
+ try Hashtbl.find env.real_indices i
+ with Not_found ->
+ Printf.printf "Atome %d non trouvé\n" i;
+ Hashtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
+ raise Not_found
+
+let rec oformula_of_omega env af =
+ let rec loop = function
+ | ({Omega2.v=v; Omega2.c=n}::r) ->
+ Oplus(Omult(unintern_omega env v,Oint n),loop r)
+ | [] -> Oint af.Omega2.constant in
+ loop af.Omega2.body
+
+let app f v = mkApp(Lazy.force f,v)
+
+(* \subsection{Oformula vers COQ reel} *)
+
+let rec coq_of_formula env t =
+ let rec loop = function
+ | Oplus (t1,t2) -> app coq_Zplus [| loop t1; loop t2 |]
+ | Oopp t -> app coq_Zopp [| loop t |]
+ | Omult(t1,t2) -> app coq_Zmult [| loop t1; loop t2 |]
+ | Oint v -> mk_Z v
+ | Oufo t -> loop t
+ | Oatom var ->
+ (* attention ne traite pas les nouvelles variables si on ne les
+ * met pas dans env.term *)
+ get_reified_atom env var
+ | Ominus(t1,t2) -> app coq_Zminus [| loop t1; loop t2 |] in
+ loop t
+
+(* \subsection{Oformula vers COQ reifié} *)
+
+let rec reified_of_formula env = function
+ | Oplus (t1,t2) ->
+ app coq_t_plus [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Oopp t ->
+ app coq_t_opp [| reified_of_formula env t |]
+ | Omult(t1,t2) ->
+ app coq_t_mult [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Oint v -> app coq_t_int [| mk_Z v |]
+ | Oufo t -> reified_of_formula env t
+ | Oatom i -> app coq_t_var [| mk_nat (reified_of_atom env i) |]
+ | Ominus(t1,t2) ->
+ app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |]
+
+let reified_of_formula env f =
+ begin try reified_of_formula env f with e -> oprint stderr f; raise e end
+
+let rec reified_of_proposition env = function
+ Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) ->
+ app coq_p_eq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa (_,{ e_comp=Leq; e_left=t1; e_right=t2 }) ->
+ app coq_p_leq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Geq; e_left=t1; e_right=t2 }) ->
+ app coq_p_geq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Gt; e_left=t1; e_right=t2 }) ->
+ app coq_p_gt [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Lt; e_left=t1; e_right=t2 }) ->
+ app coq_p_lt [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Neq; e_left=t1; e_right=t2 }) ->
+ app coq_p_neq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Ptrue -> Lazy.force coq_p_true
+ | Pfalse -> Lazy.force coq_p_false
+ | Pnot t ->
+ app coq_p_not [| reified_of_proposition env t |]
+ | Por (_,t1,t2) ->
+ app coq_p_or
+ [| reified_of_proposition env t1; reified_of_proposition env t2 |]
+ | Pand(_,t1,t2) ->
+ app coq_p_and
+ [| reified_of_proposition env t1; reified_of_proposition env t2 |]
+ | Pimp(_,t1,t2) ->
+ app coq_p_imp
+ [| reified_of_proposition env t1; reified_of_proposition env t2 |]
+ | Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
+
+let reified_of_proposition env f =
+ begin try reified_of_proposition env f
+ with e -> pprint stderr f; raise e end
+
+(* \subsection{Omega vers COQ réifié} *)
+
+let reified_of_omega env body constant =
+ let coeff_constant =
+ app coq_t_int [| mk_Z constant |] in
+ let mk_coeff {Omega2.c=c; Omega2.v=v} t =
+ let coef =
+ app coq_t_mult
+ [| reified_of_formula env (unintern_omega env v);
+ app coq_t_int [| mk_Z c |] |] in
+ app coq_t_plus [|coef; t |] in
+ List.fold_right mk_coeff body coeff_constant
+
+let reified_of_omega env body c =
+ begin try
+ reified_of_omega env body c
+ with e ->
+ Omega2.display_eq display_omega_id (body,c); raise e
+ end
+
+(* \section{Opérations sur les équations}
+Ces fonctions préparent les traces utilisées par la tactique réfléchie
+pour faire des opérations de normalisation sur les équations. *)
+
+(* \subsection{Extractions des variables d'une équation} *)
+(* Extraction des variables d'une équation *)
+
+let rec vars_of_formula = function
+ | Oint _ -> []
+ | Oplus (e1,e2) -> (vars_of_formula e1) @ (vars_of_formula e2)
+ | Omult (e1,e2) -> (vars_of_formula e1) @ (vars_of_formula e2)
+ | Ominus (e1,e2) -> (vars_of_formula e1) @ (vars_of_formula e2)
+ | Oopp e -> (vars_of_formula e)
+ | Oatom i -> [i]
+ | Oufo _ -> []
+
+let vars_of_equations l =
+ let rec loop = function
+ e :: l -> vars_of_formula e.e_left @ vars_of_formula e.e_right @ loop l
+ | [] -> [] in
+ list_uniq (List.sort compare (loop l))
+
+(* \subsection{Multiplication par un scalaire} *)
+
+let rec scalar n = function
+ Oplus(t1,t2) ->
+ let tac1,t1' = scalar n t1 and
+ tac2,t2' = scalar n t2 in
+ do_list [Lazy.force coq_c_mult_plus_distr; do_both tac1 tac2],
+ Oplus(t1',t2')
+ | Oopp t ->
+ do_list [Lazy.force coq_c_mult_opp_left], Omult(t,Oint(-n))
+ | Omult(t1,Oint x) ->
+ do_list [Lazy.force coq_c_mult_assoc_reduced], Omult(t1,Oint (n*x))
+ | Omult(t1,t2) ->
+ Util.error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) -> do_list [], Omult(t,Oint n)
+ | Oint i -> do_list [Lazy.force coq_c_reduce],Oint(n*i)
+ | (Oufo _ as t)-> do_list [], Oufo (Omult(t,Oint n))
+ | Ominus _ -> failwith "scalar minus"
+
+(* \subsection{Propagation de l'inversion} *)
+
+let rec negate = function
+ Oplus(t1,t2) ->
+ let tac1,t1' = negate t1 and
+ tac2,t2' = negate t2 in
+ do_list [Lazy.force coq_c_opp_plus ; (do_both tac1 tac2)],
+ Oplus(t1',t2')
+ | Oopp t ->
+ do_list [Lazy.force coq_c_opp_opp], t
+ | Omult(t1,Oint x) ->
+ do_list [Lazy.force coq_c_opp_mult_r], Omult(t1,Oint (-x))
+ | Omult(t1,t2) ->
+ Util.error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) ->
+ do_list [Lazy.force coq_c_opp_one], Omult(t,Oint(-1))
+ | Oint i -> do_list [Lazy.force coq_c_reduce] ,Oint(-i)
+ | Oufo c -> do_list [], Oufo (Oopp c)
+ | Ominus _ -> failwith "negate minus"
+
+let rec norm l = (List.length l)
+
+(* \subsection{Mélange (fusion) de deux équations} *)
+(* \subsubsection{Version avec coefficients} *)
+let rec shuffle_path k1 e1 k2 e2 =
+ let rec loop = function
+ (({Omega2.c=c1;Omega2.v=v1}::l1) as l1'),
+ (({Omega2.c=c2;Omega2.v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ if k1*c1 + k2 * c2 = 0 then (
+ Lazy.force coq_f_cancel :: loop (l1,l2))
+ else (
+ Lazy.force coq_f_equal :: loop (l1,l2) )
+ else if v1 > v2 then (
+ Lazy.force coq_f_left :: loop(l1,l2'))
+ else (
+ Lazy.force coq_f_right :: loop(l1',l2))
+ | ({Omega2.c=c1;Omega2.v=v1}::l1), [] ->
+ Lazy.force coq_f_left :: loop(l1,[])
+ | [],({Omega2.c=c2;Omega2.v=v2}::l2) ->
+ Lazy.force coq_f_right :: loop([],l2)
+ | [],[] -> flush stdout; [] in
+ mk_shuffle_list (loop (e1,e2))
+
+(* \subsubsection{Version sans coefficients} *)
+let rec shuffle env (t1,t2) =
+ match t1,t2 with
+ Oplus(l1,r1), Oplus(l2,r2) ->
+ if weight env l1 > weight env l2 then
+ let l_action,t' = shuffle env (r1,t2) in
+ do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action], Oplus(l1,t')
+ else
+ let l_action,t' = shuffle env (t1,r2) in
+ do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
+ | Oplus(l1,r1), t2 ->
+ if weight env l1 > weight env t2 then
+ let (l_action,t') = shuffle env (r1,t2) in
+ do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action],Oplus(l1, t')
+ else do_list [Lazy.force coq_c_plus_sym], Oplus(t2,t1)
+ | t1,Oplus(l2,r2) ->
+ if weight env l2 > weight env t1 then
+ let (l_action,t') = shuffle env (t1,r2) in
+ do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
+ else do_list [],Oplus(t1,t2)
+ | Oint t1,Oint t2 ->
+ do_list [Lazy.force coq_c_reduce], Oint(t1+t2)
+ | t1,t2 ->
+ if weight env t1 < weight env t2 then
+ do_list [Lazy.force coq_c_plus_sym], Oplus(t2,t1)
+ else do_list [],Oplus(t1,t2)
+
+(* \subsection{Fusion avec réduction} *)
+
+let shrink_pair f1 f2 =
+ begin match f1,f2 with
+ Oatom v,Oatom _ ->
+ Lazy.force coq_c_red1, Omult(Oatom v,Oint 2)
+ | Oatom v, Omult(_,c2) ->
+ Lazy.force coq_c_red2, Omult(Oatom v,Oplus(c2,Oint 1))
+ | Omult (v1,c1),Oatom v ->
+ Lazy.force coq_c_red3, Omult(Oatom v,Oplus(c1,Oint 1))
+ | Omult (Oatom v,c1),Omult (v2,c2) ->
+ Lazy.force coq_c_red4, Omult(Oatom v,Oplus(c1,c2))
+ | t1,t2 ->
+ oprint stdout t1; print_newline (); oprint stdout t2; print_newline ();
+ flush Pervasives.stdout; Util.error "shrink.1"
+ end
+
+(* \subsection{Calcul d'une sous formule constante} *)
+
+let reduce_factor = function
+ Oatom v ->
+ let r = Omult(Oatom v,Oint 1) in
+ [Lazy.force coq_c_red0],r
+ | Omult(Oatom v,Oint n) as f -> [],f
+ | Omult(Oatom v,c) ->
+ let rec compute = function
+ Oint n -> n
+ | Oplus(t1,t2) -> compute t1 + compute t2
+ | _ -> Util.error "condense.1" in
+ [Lazy.force coq_c_reduce], Omult(Oatom v,Oint(compute c))
+ | t -> Util.error "reduce_factor.1"
+
+(* \subsection{Réordonancement} *)
+
+let rec condense env = function
+ Oplus(f1,(Oplus(f2,r) as t)) ->
+ if weight env f1 = weight env f2 then begin
+ let shrink_tac,t = shrink_pair f1 f2 in
+ let assoc_tac = Lazy.force coq_c_plus_assoc_l in
+ let tac_list,t' = condense env (Oplus(t,r)) in
+ assoc_tac :: do_left (do_list [shrink_tac]) :: tac_list, t'
+ end else begin
+ let tac,f = reduce_factor f1 in
+ let tac',t' = condense env t in
+ [do_both (do_list tac) (do_list tac')], Oplus(f,t')
+ end
+ | (Oplus(f1,Oint n) as t) ->
+ let tac,f1' = reduce_factor f1 in
+ [do_left (do_list tac)],Oplus(f1',Oint n)
+ | Oplus(f1,f2) ->
+ if weight env f1 = weight env f2 then begin
+ let tac_shrink,t = shrink_pair f1 f2 in
+ let tac,t' = condense env t in
+ tac_shrink :: tac,t'
+ end else begin
+ let tac,f = reduce_factor f1 in
+ let tac',t' = condense env f2 in
+ [do_both (do_list tac) (do_list tac')],Oplus(f,t')
+ end
+ | (Oint _ as t)-> [],t
+ | t ->
+ let tac,t' = reduce_factor t in
+ let final = Oplus(t',Oint 0) in
+ tac @ [Lazy.force coq_c_red6], final
+
+(* \subsection{Elimination des zéros} *)
+
+let rec clear_zero = function
+ Oplus(Omult(Oatom v,Oint 0),r) ->
+ let tac',t = clear_zero r in
+ Lazy.force coq_c_red5 :: tac',t
+ | Oplus(f,r) ->
+ let tac,t = clear_zero r in
+ (if tac = [] then [] else [do_right (do_list tac)]),Oplus(f,t)
+ | t -> [],t;;
+
+(* \subsection{Transformation des hypothèses} *)
+
+let rec reduce env = function
+ Oplus(t1,t2) ->
+ let t1', trace1 = reduce env t1 in
+ let t2', trace2 = reduce env t2 in
+ let trace3,t' = shuffle env (t1',t2') in
+ t', do_list [do_both trace1 trace2; trace3]
+ | Ominus(t1,t2) ->
+ let t,trace = reduce env (Oplus(t1, Oopp t2)) in
+ t, do_list [Lazy.force coq_c_minus; trace]
+ | Omult(t1,t2) as t ->
+ let t1', trace1 = reduce env t1 in
+ let t2', trace2 = reduce env t2 in
+ begin match t1',t2' with
+ | (_, Oint n) ->
+ let tac,t' = scalar n t1' in
+ t', do_list [do_both trace1 trace2; tac]
+ | (Oint n,_) ->
+ let tac,t' = scalar n t2' in
+ t', do_list [do_both trace1 trace2; Lazy.force coq_c_mult_sym; tac]
+ | _ -> Oufo t, Lazy.force coq_c_nop
+ end
+ | Oopp t ->
+ let t',trace = reduce env t in
+ let trace',t'' = negate t' in
+ t'', do_list [do_left trace; trace']
+ | (Oint _ | Oatom _ | Oufo _) as t -> t, Lazy.force coq_c_nop
+
+let normalize_linear_term env t =
+ let t1,trace1 = reduce env t in
+ let trace2,t2 = condense env t1 in
+ let trace3,t3 = clear_zero t2 in
+ do_list [trace1; do_list trace2; do_list trace3], t3
+
+(* Cette fonction reproduit très exactement le comportement de [p_invert] *)
+let negate_oper = function
+ Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq
+
+let normalize_equation env (negated,depends,origin,path) (oper,t1,t2) =
+ let mk_step t1 t2 f kind =
+ let t = f t1 t2 in
+ let trace, oterm = normalize_linear_term env t in
+ let equa = omega_of_oformula env kind oterm in
+ { e_comp = oper; e_left = t1; e_right = t2;
+ e_negated = negated; e_depends = depends;
+ e_origin = { o_hyp = origin; o_path = List.rev path };
+ e_trace = trace; e_omega = equa } in
+ try match (if negated then (negate_oper oper) else oper) with
+ | Eq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) Omega2.EQUA
+ | Neq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) Omega2.DISE
+ | Leq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o2,Oopp o1)) Omega2.INEQ
+ | Geq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) Omega2.INEQ
+ | Lt ->
+ mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o2,Oint (-1)),Oopp o1))
+ Omega2.INEQ
+ | Gt ->
+ mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o1,Oint (-1)),Oopp o2))
+ Omega2.INEQ
+ with e when Logic.catchable_exception e -> raise e
+
+(* \section{Compilation des hypothèses} *)
+
+let rec oformula_of_constr env t =
+ try match destructurate t with
+ | Kapp("Zplus",[t1;t2]) -> binop env (fun x y -> Oplus(x,y)) t1 t2
+ | Kapp("Zminus",[t1;t2]) ->binop env (fun x y -> Ominus(x,y)) t1 t2
+ | Kapp("Zmult",[t1;t2]) ->binop env (fun x y -> Omult(x,y)) t1 t2
+ | Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
+ begin try Oint(recognize_number t)
+ with _ -> Oatom (add_reified_atom t env) end
+ | _ ->
+ Oatom (add_reified_atom t env)
+ with e when Logic.catchable_exception e ->
+ Oatom (add_reified_atom t env)
+
+and binop env c t1 t2 =
+ let t1' = oformula_of_constr env t1 in
+ let t2' = oformula_of_constr env t2 in
+ c t1' t2'
+
+and binprop env (neg2,depends,origin,path)
+ add_to_depends neg1 gl c t1 t2 =
+ let i = new_eq_id env in
+ let depends1 = if add_to_depends then Left i::depends else depends in
+ let depends2 = if add_to_depends then Right i::depends else depends in
+ if add_to_depends then
+ Hashtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
+ let t1' =
+ oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
+ let t2' =
+ oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in
+ (* On numérote le connecteur dans l'environnement. *)
+ c i t1' t2'
+
+and mk_equation env ctxt c connector t1 t2 =
+ let t1' = oformula_of_constr env t1 in
+ let t2' = oformula_of_constr env t2 in
+ (* On ajoute l'equation dans l'environnement. *)
+ let omega = normalize_equation env ctxt (connector,t1',t2') in
+ add_equation env omega;
+ Pequa (c,omega)
+
+and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c =
+ try match destructurate c with
+ | Kapp("eq",[typ;t1;t2])
+ when destructurate (Tacmach.pf_nf gl typ) = Kapp("Z",[]) ->
+ mk_equation env ctxt c Eq t1 t2
+ | Kapp("Zne",[t1;t2]) ->
+ mk_equation env ctxt c Neq t1 t2
+ | Kapp("Zle",[t1;t2]) ->
+ mk_equation env ctxt c Leq t1 t2
+ | Kapp("Zlt",[t1;t2]) ->
+ mk_equation env ctxt c Lt t1 t2
+ | Kapp("Zge",[t1;t2]) ->
+ mk_equation env ctxt c Geq t1 t2
+ | Kapp("Zgt",[t1;t2]) ->
+ mk_equation env ctxt c Gt t1 t2
+ | Kapp("True",[]) -> Ptrue
+ | Kapp("False",[]) -> Pfalse
+ | Kapp("not",[t]) ->
+ let t' =
+ oproposition_of_constr
+ env (not negated, depends, origin,(O_mono::path)) gl t in
+ Pnot t'
+ | Kapp("or",[t1;t2]) ->
+ binprop env ctxt (not negated) negated gl (fun i x y -> Por(i,x,y)) t1 t2
+ | Kapp("and",[t1;t2]) ->
+ binprop env ctxt negated negated gl
+ (fun i x y -> Pand(i,x,y)) t1 t2
+ | Kimp(t1,t2) ->
+ binprop env ctxt (not negated) (not negated) gl
+ (fun i x y -> Pimp(i,x,y)) t1 t2
+ | _ -> Pprop c
+ with e when Logic.catchable_exception e -> Pprop c
+
+(* Destructuration des hypothèses et de la conclusion *)
+
+let reify_gl env gl =
+ let concl = Tacmach.pf_concl gl in
+ let t_concl =
+ Pnot (oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl) in
+ if !debug then begin
+ Printf.printf "CONCL: "; pprint stdout t_concl; Printf.printf "\n"
+ end;
+ let rec loop = function
+ (i,t) :: lhyps ->
+ let t' = oproposition_of_constr env (false,[],i,[]) gl t in
+ if !debug then begin
+ Printf.printf "%s: " (Names.string_of_id i);
+ pprint stdout t';
+ Printf.printf "\n"
+ end;
+ (i,t') :: loop lhyps
+ | [] ->
+ if !debug then print_env_reification env;
+ [] in
+ let t_lhyps = loop (Tacmach.pf_hyps_types gl) in
+ (id_concl,t_concl) :: t_lhyps
+
+let rec destructurate_pos_hyp orig list_equations list_depends = function
+ | Pequa (_,e) -> [e :: list_equations]
+ | Ptrue | Pfalse | Pprop _ -> [list_equations]
+ | Pnot t -> destructurate_neg_hyp orig list_equations list_depends t
+ | Por (i,t1,t2) ->
+ let s1 =
+ destructurate_pos_hyp orig list_equations (i::list_depends) t1 in
+ let s2 =
+ destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
+ s1 @ s2
+ | Pand(i,t1,t2) ->
+ let list_s1 =
+ destructurate_pos_hyp orig list_equations (list_depends) t1 in
+ let rec loop = function
+ le1 :: ll -> destructurate_pos_hyp orig le1 list_depends t2 @ loop ll
+ | [] -> [] in
+ loop list_s1
+ | Pimp(i,t1,t2) ->
+ let s1 =
+ destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
+ let s2 =
+ destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
+ s1 @ s2
+
+and destructurate_neg_hyp orig list_equations list_depends = function
+ | Pequa (_,e) -> [e :: list_equations]
+ | Ptrue | Pfalse | Pprop _ -> [list_equations]
+ | Pnot t -> destructurate_pos_hyp orig list_equations list_depends t
+ | Pand (i,t1,t2) ->
+ let s1 =
+ destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
+ let s2 =
+ destructurate_neg_hyp orig list_equations (i::list_depends) t2 in
+ s1 @ s2
+ | Por(_,t1,t2) ->
+ let list_s1 =
+ destructurate_neg_hyp orig list_equations list_depends t1 in
+ let rec loop = function
+ le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
+ | [] -> [] in
+ loop list_s1
+ | Pimp(_,t1,t2) ->
+ let list_s1 =
+ destructurate_pos_hyp orig list_equations list_depends t1 in
+ let rec loop = function
+ le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
+ | [] -> [] in
+ loop list_s1
+
+let destructurate_hyps syst =
+ let rec loop = function
+ (i,t) :: l ->
+ let l_syst1 = destructurate_pos_hyp i [] [] t in
+ let l_syst2 = loop l in
+ cartesien l_syst1 l_syst2
+ | [] -> [[]] in
+ loop syst
+
+(* \subsection{Affichage d'un système d'équation} *)
+
+(* Affichage des dépendances de système *)
+let display_depend = function
+ Left i -> Printf.printf " L%d" i
+ | Right i -> Printf.printf " R%d" i
+
+let display_systems syst_list =
+ let display_omega om_e =
+ Printf.printf "%d : %a %s 0\n"
+ om_e.Omega2.id
+ (fun _ -> Omega2.display_eq display_omega_id)
+ (om_e.Omega2.body, om_e.Omega2.constant)
+ (Omega2.operator_of_eq om_e.Omega2.kind) in
+
+ let display_equation oformula_eq =
+ pprint stdout (Pequa (Lazy.force coq_c_nop,oformula_eq)); print_newline ();
+ display_omega oformula_eq.e_omega;
+ Printf.printf " Depends on:";
+ List.iter display_depend oformula_eq.e_depends;
+ Printf.printf "\n Path: %s"
+ (String.concat ""
+ (List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M")
+ oformula_eq.e_origin.o_path));
+ Printf.printf "\n Origin: %s -- Negated : %s\n"
+ (Names.string_of_id oformula_eq.e_origin.o_hyp)
+ (if oformula_eq.e_negated then "yes" else "false") in
+
+ let display_system syst =
+ Printf.printf "=SYSTEME==================================\n";
+ List.iter display_equation syst in
+ List.iter display_system syst_list
+
+(* Extraction des prédicats utilisées dans une trace. Permet ensuite le
+ calcul des hypothèses *)
+
+let rec hyps_used_in_trace = function
+ | act :: l ->
+ begin match act with
+ | Omega2.HYP e -> e.Omega2.id :: hyps_used_in_trace l
+ | Omega2.SPLIT_INEQ (_,(_,act1),(_,act2)) ->
+ hyps_used_in_trace act1 @ hyps_used_in_trace act2
+ | _ -> hyps_used_in_trace l
+ end
+ | [] -> []
+
+(* Extraction des variables déclarées dans une équation. Permet ensuite
+ de les déclarer dans l'environnement de la procédure réflexive et
+ éviter les créations de variable au vol *)
+
+let rec variable_stated_in_trace = function
+ | act :: l ->
+ begin match act with
+ | Omega2.STATE action ->
+ (*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
+ (*i coef: int, var:int i*)
+ action :: variable_stated_in_trace l
+ | Omega2.SPLIT_INEQ (_,(_,act1),(_,act2)) ->
+ variable_stated_in_trace act1 @ variable_stated_in_trace act2
+ | _ -> variable_stated_in_trace l
+ end
+ | [] -> []
+;;
+
+let add_stated_equations env tree =
+ let rec loop = function
+ Tree(_,t1,t2) ->
+ list_union (loop t1) (loop t2)
+ | Leaf s -> variable_stated_in_trace s.s_trace in
+ (* Il faut trier les variables par ordre d'introduction pour ne pas risquer
+ de définir dans le mauvais ordre *)
+ let stated_equations =
+ List.sort (fun x y -> x.Omega2.st_var - y.Omega2.st_var) (loop tree) in
+ let add_env st =
+ (* On retransforme la définition de v en formule reifiée *)
+ let v_def = oformula_of_omega env st.Omega2.st_def in
+ (* Notez que si l'ordre de création des variables n'est pas respecté,
+ * ca va planter *)
+ let coq_v = coq_of_formula env v_def in
+ let v = add_reified_atom coq_v env in
+ (* Le terme qu'il va falloir introduire *)
+ let term_to_generalize = app coq_refl_equal [|Lazy.force coq_Z; coq_v|] in
+ (* sa représentation sous forme d'équation mais non réifié car on n'a pas
+ * l'environnement pour le faire correctement *)
+ let term_to_reify = (v_def,Oatom v) in
+ (* enregistre le lien entre la variable omega et la variable Coq *)
+ intern_omega_force env (Oatom v) st.Omega2.st_var;
+ (v, term_to_generalize,term_to_reify,st.Omega2.st_def.Omega2.id) in
+ List.map add_env stated_equations
+
+(* Calcule la liste des éclatements à réaliser sur les hypothèses
+ nécessaires pour extraire une liste d'équations donnée *)
+
+let rec get_eclatement env = function
+ i :: r ->
+ let l = try (get_equation env i).e_depends with Not_found -> [] in
+ list_union l (get_eclatement env r)
+ | [] -> []
+
+let select_smaller l =
+ let comp (_,x) (_,y) = List.length x - List.length y in
+ try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
+
+let filter_compatible_systems required systems =
+ let rec select = function
+ (x::l) ->
+ if List.mem x required then select l
+ else if List.mem (barre x) required then raise Exit
+ else x :: select l
+ | [] -> [] in
+ map_exc (function (sol,splits) -> (sol,select splits)) systems
+
+let rec equas_of_solution_tree = function
+ Tree(_,t1,t2) ->
+ list_union (equas_of_solution_tree t1) (equas_of_solution_tree t2)
+ | Leaf s -> s.s_equa_deps
+
+
+let really_useful_prop l_equa c =
+ let rec real_of = function
+ Pequa(t,_) -> t
+ | Ptrue -> app coq_true [||]
+ | Pfalse -> app coq_false [||]
+ | Pnot t1 -> app coq_not [|real_of t1|]
+ | Por(_,t1,t2) -> app coq_or [|real_of t1; real_of t2|]
+ | Pand(_,t1,t2) -> app coq_and [|real_of t1; real_of t2|]
+ (* Attention : implications sur le lifting des variables à comprendre ! *)
+ | Pimp(_,t1,t2) -> Term.mkArrow (real_of t1) (real_of t2)
+ | Pprop t -> t in
+ let rec loop c =
+ match c with
+ Pequa(_,e) ->
+ if List.mem e.e_omega.Omega2.id l_equa then Some c else None
+ | Ptrue -> None
+ | Pfalse -> None
+ | Pnot t1 ->
+ begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
+ | Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2
+ | Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2
+ | Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2
+ | Pprop t -> None
+ and binop f t1 t2 =
+ begin match loop t1, loop t2 with
+ None, None -> None
+ | Some t1',Some t2' -> Some (f(t1',t2'))
+ | Some t1',None -> Some (f(t1',Pprop (real_of t2)))
+ | None,Some t2' -> Some (f(Pprop (real_of t1),t2'))
+ end in
+ match loop c with
+ None -> Pprop (real_of c)
+ | Some t -> t
+
+let rec display_solution_tree ch = function
+ Leaf t ->
+ output_string ch
+ (Printf.sprintf "%d[%s]"
+ t.s_index
+ (String.concat " " (List.map string_of_int t.s_equa_deps)))
+ | Tree(i,t1,t2) ->
+ Printf.fprintf ch "S%d(%a,%a)" i
+ display_solution_tree t1 display_solution_tree t2
+
+let rec solve_with_constraints all_solutions path =
+ let rec build_tree sol buf = function
+ [] -> Leaf sol
+ | (Left i :: remainder) ->
+ Tree(i,
+ build_tree sol (Left i :: buf) remainder,
+ solve_with_constraints all_solutions (List.rev(Right i :: buf)))
+ | (Right i :: remainder) ->
+ Tree(i,
+ solve_with_constraints all_solutions (List.rev (Left i :: buf)),
+ build_tree sol (Right i :: buf) remainder) in
+ let weighted = filter_compatible_systems path all_solutions in
+ let (winner_sol,winner_deps) =
+ try select_smaller weighted
+ with e ->
+ Printf.printf "%d - %d\n"
+ (List.length weighted) (List.length all_solutions);
+ List.iter display_depend path; raise e in
+ build_tree winner_sol (List.rev path) winner_deps
+
+let find_path {o_hyp=id;o_path=p} env =
+ let rec loop_path = function
+ ([],l) -> Some l
+ | (x1::l1,x2::l2) when x1 = x2 -> loop_path (l1,l2)
+ | _ -> None in
+ let rec loop_id i = function
+ CCHyp{o_hyp=id';o_path=p'} :: l when id = id' ->
+ begin match loop_path (p',p) with
+ Some r -> i,r
+ | None -> loop_id (i+1) l
+ end
+ | _ :: l -> loop_id (i+1) l
+ | [] -> failwith "find_path" in
+ loop_id 0 env
+
+let mk_direction_list l =
+ let trans = function
+ O_left -> coq_d_left | O_right -> coq_d_right | O_mono -> coq_d_mono in
+ mk_list (Lazy.force coq_direction) (List.map (fun d-> Lazy.force(trans d)) l)
+
+
+(* \section{Rejouer l'historique} *)
+
+let get_hyp env_hyp i =
+ try list_index (CCEqua i) env_hyp
+ with Not_found -> failwith (Printf.sprintf "get_hyp %d" i)
+
+let replay_history env env_hyp =
+ let rec loop env_hyp t =
+ match t with
+ | Omega2.CONTRADICTION (e1,e2) :: l ->
+ let trace = mk_nat (List.length e1.Omega2.body) in
+ mkApp (Lazy.force coq_s_contradiction,
+ [| trace ; mk_nat (get_hyp env_hyp e1.Omega2.id);
+ mk_nat (get_hyp env_hyp e2.Omega2.id) |])
+ | Omega2.DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
+ mkApp (Lazy.force coq_s_div_approx,
+ [| mk_Z k; mk_Z d;
+ reified_of_omega env e2.Omega2.body e2.Omega2.constant;
+ mk_nat (List.length e2.Omega2.body);
+ loop env_hyp l; mk_nat (get_hyp env_hyp e1.Omega2.id) |])
+ | Omega2.NOT_EXACT_DIVIDE (e1,k) :: l ->
+ let e2_constant = Omega2.floor_div e1.Omega2.constant k in
+ let d = e1.Omega2.constant - e2_constant * k in
+ let e2_body = Omega2.map_eq_linear (fun c -> c / k) e1.Omega2.body in
+ mkApp (Lazy.force coq_s_not_exact_divide,
+ [|mk_Z k; mk_Z d;
+ reified_of_omega env e2_body e2_constant;
+ mk_nat (List.length e2_body);
+ mk_nat (get_hyp env_hyp e1.Omega2.id)|])
+ | Omega2.EXACT_DIVIDE (e1,k) :: l ->
+ let e2_body =
+ Omega2.map_eq_linear (fun c -> c / k) e1.Omega2.body in
+ let e2_constant = Omega2.floor_div e1.Omega2.constant k in
+ mkApp (Lazy.force coq_s_exact_divide,
+ [|mk_Z k;
+ reified_of_omega env e2_body e2_constant;
+ mk_nat (List.length e2_body);
+ loop env_hyp l; mk_nat (get_hyp env_hyp e1.Omega2.id)|])
+ | (Omega2.MERGE_EQ(e3,e1,e2)) :: l ->
+ let n1 = get_hyp env_hyp e1.Omega2.id and n2 = get_hyp env_hyp e2 in
+ mkApp (Lazy.force coq_s_merge_eq,
+ [| mk_nat (List.length e1.Omega2.body);
+ mk_nat n1; mk_nat n2;
+ loop (CCEqua e3:: env_hyp) l |])
+ | Omega2.SUM(e3,(k1,e1),(k2,e2)) :: l ->
+ let n1 = get_hyp env_hyp e1.Omega2.id
+ and n2 = get_hyp env_hyp e2.Omega2.id in
+ let trace = shuffle_path k1 e1.Omega2.body k2 e2.Omega2.body in
+ mkApp (Lazy.force coq_s_sum,
+ [| mk_Z k1; mk_nat n1; mk_Z k2;
+ mk_nat n2; trace; (loop (CCEqua e3 :: env_hyp) l) |])
+ | Omega2.CONSTANT_NOT_NUL(e,k) :: l ->
+ mkApp (Lazy.force coq_s_constant_not_nul,
+ [| mk_nat (get_hyp env_hyp e) |])
+ | Omega2.CONSTANT_NEG(e,k) :: l ->
+ mkApp (Lazy.force coq_s_constant_neg,
+ [| mk_nat (get_hyp env_hyp e) |])
+ | Omega2.STATE {Omega2.st_new_eq=new_eq; Omega2.st_def =def;
+ Omega2.st_orig=orig; Omega2.st_coef=m;
+ Omega2.st_var=sigma } :: l ->
+ let n1 = get_hyp env_hyp orig.Omega2.id
+ and n2 = get_hyp env_hyp def.Omega2.id in
+ let v = unintern_omega env sigma in
+ let o_def = oformula_of_omega env def in
+ let o_orig = oformula_of_omega env orig in
+ let body =
+ Oplus (o_orig,Omult (Oplus (Oopp v,o_def), Oint m)) in
+ let trace,_ = normalize_linear_term env body in
+ mkApp (Lazy.force coq_s_state,
+ [| mk_Z m; trace; mk_nat n1; mk_nat n2;
+ loop (CCEqua new_eq.Omega2.id :: env_hyp) l |])
+ | Omega2.HYP _ :: l -> loop env_hyp l
+ | Omega2.CONSTANT_NUL e :: l ->
+ mkApp (Lazy.force coq_s_constant_nul,
+ [| mk_nat (get_hyp env_hyp e) |])
+ | Omega2.NEGATE_CONTRADICT(e1,e2,b) :: l ->
+ mkApp (Lazy.force coq_s_negate_contradict,
+ [| mk_nat (get_hyp env_hyp e1.Omega2.id);
+ mk_nat (get_hyp env_hyp e2.Omega2.id) |])
+ | Omega2.SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: l ->
+ let i = get_hyp env_hyp e.Omega2.id in
+ let r1 = loop (CCEqua e1 :: env_hyp) l1 in
+ let r2 = loop (CCEqua e2 :: env_hyp) l2 in
+ mkApp (Lazy.force coq_s_split_ineq,
+ [| mk_nat (List.length e.Omega2.body); mk_nat i; r1 ; r2 |])
+ | (Omega2.FORGET_C _ | Omega2.FORGET _ | Omega2.FORGET_I _) :: l ->
+ loop env_hyp l
+ | (Omega2.WEAKEN _ ) :: l -> failwith "not_treated"
+ | [] -> failwith "no contradiction"
+ in loop env_hyp
+
+let rec decompose_tree env ctxt = function
+ Tree(i,left,right) ->
+ let org =
+ try Hashtbl.find env.constructors i
+ with Not_found ->
+ failwith (Printf.sprintf "Cannot find constructor %d" i) in
+ let (index,path) = find_path org ctxt in
+ let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in
+ let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in
+ app coq_e_split
+ [| mk_nat index;
+ mk_direction_list path;
+ decompose_tree env (left_hyp::ctxt) left;
+ decompose_tree env (right_hyp::ctxt) right |]
+ | Leaf s ->
+ decompose_tree_hyps s.s_trace env ctxt s.s_equa_deps
+and decompose_tree_hyps trace env ctxt = function
+ [] -> app coq_e_solve [| replay_history env ctxt trace |]
+ | (i::l) ->
+ let equation =
+ try Hashtbl.find env.equations i
+ with Not_found ->
+ failwith (Printf.sprintf "Cannot find equation %d" i) in
+ let (index,path) = find_path equation.e_origin ctxt in
+ let full_path = if equation.e_negated then path @ [O_mono] else path in
+ let cont =
+ decompose_tree_hyps trace env
+ (CCEqua equation.e_omega.Omega2.id :: ctxt) l in
+ app coq_e_extract [|mk_nat index;
+ mk_direction_list full_path;
+ cont |]
+
+(* \section{La fonction principale} *)
+ (* Cette fonction construit la
+trace pour la procédure de décision réflexive. A partir des résultats
+de l'extraction des systèmes, elle lance la résolution par Omega, puis
+l'extraction d'un ensemble minimal de solutions permettant la
+résolution globale du système et enfin construit la trace qui permet
+de faire rejouer cette solution par la tactique réflexive. *)
+
+let resolution env full_reified_goal systems_list =
+ let num = ref 0 in
+ let solve_system list_eq =
+ let index = !num in
+ let system = List.map (fun eq -> eq.e_omega) list_eq in
+ let trace =
+ Omega2.simplify_strong
+ ((fun () -> new_eq_id env),new_omega_id,display_omega_id)
+ system in
+ (* calcule les hypotheses utilisées pour la solution *)
+ let vars = hyps_used_in_trace trace in
+ let splits = get_eclatement env vars in
+ if !debug then begin
+ Printf.printf "SYSTEME %d\n" index;
+ Omega2.display_action display_omega_id trace;
+ print_string "\n Depend :";
+ List.iter (fun i -> Printf.printf " %d" i) vars;
+ print_string "\n Split points :";
+ List.iter display_depend splits;
+ Printf.printf "\n------------------------------------\n"
+ end;
+ incr num;
+ {s_index = index; s_trace = trace; s_equa_deps = vars}, splits in
+ if !debug then Printf.printf "\n====================================\n";
+ let all_solutions = List.map solve_system systems_list in
+ let solution_tree = solve_with_constraints all_solutions [] in
+ if !debug then begin
+ display_solution_tree stdout solution_tree;
+ print_newline()
+ end;
+ (* calcule la liste de toutes les hypothèses utilisées dans l'arbre de solution *)
+ let useful_equa_id = list_uniq (equas_of_solution_tree solution_tree) in
+ (* recupere explicitement ces equations *)
+ let equations = List.map (get_equation env) useful_equa_id in
+ let l_hyps' = list_uniq (List.map (fun e -> e.e_origin.o_hyp) equations) in
+ let l_hyps = id_concl :: list_remove id_concl l_hyps' in
+ let useful_hyps =
+ List.map (fun id -> List.assoc id full_reified_goal) l_hyps in
+ let useful_vars = vars_of_equations equations in
+ (* variables a introduire *)
+ let to_introduce = add_stated_equations env solution_tree in
+ let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in
+ let l_generalize_arg = List.map (fun (_,t,_,_) -> t) to_introduce in
+ let hyp_stated_vars = List.map (fun (_,_,_,id) -> CCEqua id) to_introduce in
+ (* L'environnement de base se construit en deux morceaux :
+ - les variables des équations utiles
+ - les nouvelles variables declarées durant les preuves *)
+ let all_vars_env = useful_vars @ stated_vars in
+ let basic_env =
+ let rec loop i = function
+ var :: l ->
+ let t = get_reified_atom env var in
+ Hashtbl.add env.real_indices var i; t :: loop (i+1) l
+ | [] -> [] in
+ loop 0 all_vars_env in
+ let env_terms_reified = mk_list (Lazy.force coq_Z) basic_env in
+ (* On peut maintenant généraliser le but : env est a jour *)
+ let l_reified_stated =
+ List.map (fun (_,_,(l,r),_) ->
+ app coq_p_eq [| reified_of_formula env l;
+ reified_of_formula env r |])
+ to_introduce in
+ let reified_concl =
+ match useful_hyps with
+ (Pnot p) :: _ ->
+ reified_of_proposition env (really_useful_prop useful_equa_id p)
+ | _ -> reified_of_proposition env Pfalse in
+ let l_reified_terms =
+ (List.map
+ (fun p ->
+ reified_of_proposition env (really_useful_prop useful_equa_id p))
+ (List.tl useful_hyps)) in
+ let env_props_reified = mk_plist env.props in
+ let reified_goal =
+ mk_list (Lazy.force coq_proposition)
+ (l_reified_stated @ l_reified_terms) in
+ let reified =
+ app coq_interp_sequent
+ [| env_props_reified;env_terms_reified;reified_concl;reified_goal |] in
+ let normalize_equation e =
+ let rec loop = function
+ [] -> app (if e.e_negated then coq_p_invert else coq_p_step)
+ [| e.e_trace |]
+ | ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |]
+ | (O_right :: l) -> app coq_p_right [| loop l |] in
+ app coq_pair_step
+ [| mk_nat (list_index e.e_origin.o_hyp l_hyps) ;
+ loop e.e_origin.o_path |] in
+ let normalization_trace =
+ mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in
+
+ let initial_context =
+ List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) (List.tl l_hyps) in
+ let context =
+ CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in
+ let decompose_tactic = decompose_tree env context solution_tree in
+
+ Tactics.generalize
+ (l_generalize_arg @ List.map Term.mkVar (List.tl l_hyps)) >>
+ Tactics.change_in_concl None reified >>
+ Tactics.apply (app coq_do_omega [|decompose_tactic; normalization_trace|]) >>
+ show_goal >>
+ Tactics.normalise_in_concl >>
+ Tactics.apply (Lazy.force coq_I)
+
+let total_reflexive_omega_tactic gl =
+ if !Options.v7 then Util.error "ROmega does not work in v7 mode";
+ try
+ let env = new_environment () in
+ let full_reified_goal = reify_gl env gl in
+ let systems_list = destructurate_hyps full_reified_goal in
+ if !debug then begin
+ display_systems systems_list
+ end;
+ resolution env full_reified_goal systems_list gl
+ with Omega2.NO_CONTRADICTION -> Util.error "ROmega can't solve this system"
+
+
+(*i let tester = Tacmach.hide_atomic_tactic "TestOmega" test_tactic i*)
+
+
diff --git a/contrib/xml/COPYRIGHT b/contrib/xml/COPYRIGHT
new file mode 100644
index 00000000..c8d231fd
--- /dev/null
+++ b/contrib/xml/COPYRIGHT
@@ -0,0 +1,25 @@
+(******************************************************************************)
+(* Copyright (C) 2000-2004, Claudio Sacerdoti Coen <sacerdot@cs.unibo.it> *)
+(* Project Helm (http://helm.cs.unibo.it) *)
+(* Project MoWGLI (http://mowgli.cs.unibo.it) *)
+(* *)
+(* Coq Exportation to XML *)
+(* *)
+(******************************************************************************)
+
+This Coq module has been developed by Claudio Sacerdoti Coen
+<sacerdot@cs.unibo.it> as a developer of projects HELM and MoWGLI.
+
+Project HELM (for Hypertextual Electronic Library of Mathematics) is a
+project developed at the Department of Computer Science, University of Bologna;
+http://helm.cs.unibo.it
+
+Project MoWGLI (Mathematics on the Web: Get It by Logics and Interfaces)
+is a UE IST project that generalizes and extends the HELM project;
+http://mowgli.cs.unibo.it
+
+The author is interested in any possible usage of the module.
+So, if you plan to use the module, please send him an e-mail.
+
+The licensing policy applied to the module is the same as for the whole Coq
+distribution.
diff --git a/contrib/xml/README b/contrib/xml/README
new file mode 100644
index 00000000..a45dd31a
--- /dev/null
+++ b/contrib/xml/README
@@ -0,0 +1,254 @@
+(******************************************************************************)
+(* Copyright (C) 2000-2004, Claudio Sacerdoti Coen <sacerdot@cs.unibo.it> *)
+(* Project Helm (http://helm.cs.unibo.it) *)
+(* Project MoWGLI (http://mowgli.cs.unibo.it) *)
+(* *)
+(* Coq Exportation to XML *)
+(* *)
+(******************************************************************************)
+
+This module provides commands to export a piece of Coq library in XML format.
+Only the information relevant to proof-checking and proof-rendering is exported,
+i.e. only the CIC proof objects (lambda-terms).
+
+This document is tructured in the following way:
+ 1. User documentation
+ 1.1. New vernacular commands available
+ 1.2. New coqc/coqtop flags and suggested usage
+ 1.3. How to exploit the XML files
+ 2. Technical informations
+ 2.1. Inner-types
+ 2.2. CIC with Explicit Named Substitutions
+ 2.3. The CIC with Explicit Named Substitutions XML DTD
+
+================================================================================
+ USER DOCUMENTATION
+================================================================================
+
+=======================================
+1.1. New vernacular commands available:
+=======================================
+
+The new commands are:
+
+ Print XML qualid. It prints in XML (to standard output) the
+ object whose qualified name is qualid and
+ its inner-types (see Sect. 2.1).
+ The inner-types are always printed
+ in their own XML file. If the object is a
+ constant, its type and body are also printed
+ as two distinct XML files.
+ The object printed is always the most
+ discharged form of the object (see
+ the Section command of the Coq manual).
+
+ Print XML File "filename" qualid. Similar to "Print XML qualid". The generated
+ files are stored on the hard-disk using the
+ base file name "filename".
+
+ Show XML Proof. It prints in XML the current proof in
+ progress. Its inner-types are also printed.
+
+ Show XML File "filename" Proof. Similar to "Show XML Proof". The generated
+ files are stored on the hard-disk using
+ the base file name "filename".
+
+ The verbosity of the previous commands is raised if the configuration
+ parameter verbose of xmlcommand.ml is set to true at compile time.
+
+==============================================
+1.2. New coqc/coqtop flags and suggested usage
+==============================================
+
+ The following flag has been added to coqc and coqtop:
+
+ -xml export XML files either to the hierarchy rooted in
+ the directory $COQ_XML_LIBRARY_ROOT (if the environment
+ variable is set) or to stdout (if unset)
+
+ If the flag is set, every definition or declaration is immediately
+ exported to XML. The XML files describe the user-provided non-discharged
+ form of the definition or declaration.
+
+
+ The coq_makefile utility has also been modified to easily allow XML
+ exportation:
+
+ make COQ_XML=-xml (or, equivalently, setting the environment
+ variable COQ_XML)
+
+
+ The suggested usage of the module is the following:
+
+ 1. add to your own contribution a valid Make file and use coq_makefile
+ to generate the Makefile from the Make file.
+ *WARNING:* Since logical names are used to structure the XML hierarchy,
+ always add to the Make file at least one "-R" option to map physical
+ file names to logical module paths. See the Coq manual for further
+ informations on the -R flag.
+ 2. set $COQ_XML_LIBRARY_ROOT to the directory where the XML file hierarchy
+ must be physically rooted.
+ 3. compile your contribution with "make COQ_XML=-xml"
+
+
+=================================
+1.3. How to exploit the XML files
+=================================
+
+ Once the information is exported to XML, it becomes possible to implement
+ services that are completely Coq-independent. Projects HELM and MoWGLI
+ already provide rendering, searching and data mining functionalities.
+
+ In particular, the standard library and contributions of Coq can be
+ browsed and searched on the HELM web site:
+
+ http://helm.cs.unibo.it/library.html
+
+
+ If you want to publish your own contribution so that it is included in the
+ HELM library, use the MoWGLI prototype upload form:
+
+ http://mowgli.cs.unibo.it
+
+
+================================================================================
+ TECHNICAL INFORMATIONS
+================================================================================
+
+==========================
+2.1. Inner-types
+==========================
+
+In order to do proof-rendering (for example in natural language),
+some redundant typing information is required, i.e. the type of
+at least some of the subterms of the bodies and types. So, each
+new command described in section 1.1 print not only
+the object, but also another XML file in which you can find
+the type of all the subterms of the terms of the printed object
+which respect the following conditions:
+
+ 1. It's sort is Prop or CProp (the "sort"-like definition used in
+ CoRN to type computationally relevant predicative propositions).
+ 2. It is not a cast or an atomic term, i.e. it's root is not a CAST, REL,
+ VAR, MUTCONSTR or CONST.
+ 3. If it's root is a LAMBDA, then the root's parent node is not a LAMBDA,
+ i.e. only the type of the outer LAMBDA of a block of nested LAMBDAs is
+ printed.
+
+The rationale for the 3rd condition is that the type of the inner LAMBDAs
+could be easily computed starting from the type of the outer LAMBDA; moreover,
+the types of the inner LAMBDAs requires a lot of disk/memory space: removing
+the 3rd condition leads to XML file that are two times as big as the ones
+exported appling the 3rd condition.
+
+==========================================
+2.2. CIC with Explicit Named Substitutions
+==========================================
+
+The exported files are and XML encoding of the lambda-terms used by the
+Coq system. The implementative details of the Coq system are hidden as much
+as possible, so that the XML DTD is a straightforward encoding of the
+Calculus of (Co)Inductive Constructions.
+
+Nevertheless, there is a feature of the Coq system that can not be
+hidden in a completely satisfactory way: discharging. In Coq it is possible
+to open a section, declare variables and use them in the rest of the section
+as if they were axiom declarations. Once the section is closed, every definition
+and theorem in the section is discharged by abstracting it over the section
+variables. Variable declarations as well as section declarations are entirely
+dropped. Since we are interested in an XML encoding of definitions and
+theorems as close as possible to those directly provided the user, we
+do not want to export discharged forms. Exporting non-discharged theorem
+and definitions together with theorems that rely on the discharged forms
+obliges the tools that work on the XML encoding to implement discharging to
+achieve logical consistency. Moreover, the rendering of the files can be
+misleading, since hyperlinks can be shown between occurrences of the discharge
+form of a definition and the non-discharged definition, that are different
+objects.
+
+To overcome the previous limitations, Claudio Sacerdoti Coen developed in his
+PhD. thesis an extension of CIC, called Calculus of (Co)Inductive Constructions
+with Explicit Named Substitutions, that is a slight extension of CIC where
+discharging is not necessary. The DTD of the exported XML files describes
+constants, inductive types and variables of the Calculus of (Co)Inductive
+Constructions with Explicit Named Substitions. The conversion to the new
+calculus is performed during the exportation phase.
+
+The following example shows a very small Coq development together with its
+version in CIC with Explicit Named Substitutions.
+
+# CIC version: #
+Section S.
+ Variable A : Prop.
+
+ Definition impl := A -> A.
+
+ Theorem t : impl. (* uses the undischarged form of impl *)
+ Proof.
+ exact (fun (a:A) => a).
+ Qed.
+
+End S.
+
+Theorem t' : (impl False). (* uses the discharged form of impl *)
+ Proof.
+ exact (t False). (* uses the discharged form of t *)
+ Qed.
+
+# Corresponding CIC with Explicit Named Substitutions version: #
+Section S.
+ Variable A : Prop.
+
+ Definition impl(A) := A -> A. (* theorems and definitions are
+ explicitly abstracted over the
+ variables. The name is sufficient
+ to completely describe the abstraction *)
+
+ Theorem t(A) : impl. (* impl where A is not instantiated *)
+ Proof.
+ exact (fun (a:A) => a).
+ Qed.
+
+End S.
+
+Theorem t'() : impl{False/A}. (* impl where A is instantiated with False
+ Notice that t' does not depend on A *)
+ Proof.
+ exact t{False/A}. (* t where A is instantiated with False *)
+ Qed.
+
+Further details on the typing and reduction rules of the calculus can be
+found in Claudio Sacerdoti Coen PhD. dissertation, where the consistency
+of the calculus is also proved.
+
+======================================================
+2.3. The CIC with Explicit Named Substitutions XML DTD
+======================================================
+
+A copy of the DTD can be found in the file "cic.dtd".
+
+<ConstantType> is the root element of the files that correspond to
+ constant types.
+<ConstantBody> is the root element of the files that correspond to
+ constant bodies. It is used only for closed definitions and
+ theorems (i.e. when no metavariable occurs in the body
+ or type of the constant)
+<CurrentProof> is the root element of the file that correspond to
+ the body of a constant that depends on metavariables
+ (e.g. unfinished proofs)
+<Variable> is the root element of the files that correspond to variables
+<InductiveTypes> is the root element of the files that correspond to blocks
+ of mutually defined inductive definitions
+
+The elements
+ <LAMBDA>,<CAST>,<PROD>,<REL>,<SORT>,<APPLY>,<VAR>,<META>, <IMPLICIT>,<CONST>,
+ <LETIN>,<MUTIND>,<MUTCONSTRUCT>,<MUTCASE>,<FIX> and <COFIX>
+are used to encode the constructors of CIC. The sort or type attribute of the
+element, if present, is respectively the sort or the type of the term, that
+is a sort because of the typing rules of CIC.
+
+The element <instantiate> correspond to the application of an explicit named
+substitution to its first argument, that is a reference to a definition
+or declaration in the environment.
+
+All the other elements are just syntactic sugar.
diff --git a/contrib/xml/acic.ml b/contrib/xml/acic.ml
new file mode 100644
index 00000000..032ddbeb
--- /dev/null
+++ b/contrib/xml/acic.ml
@@ -0,0 +1,108 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+open Names
+open Term
+
+(* Maps fron \em{unshared} [constr] to ['a]. *)
+module CicHash =
+ Hashtbl.Make
+ (struct
+ type t = Term.constr
+ let equal = (==)
+ let hash = Hashtbl.hash
+ end)
+;;
+
+type id = string (* the type of the (annotated) node identifiers *)
+type uri = string
+
+type 'constr context_entry =
+ Decl of 'constr (* Declaration *)
+ | Def of 'constr * 'constr (* Definition; the second argument (the type) *)
+ (* is not present in the DTD, but is needed *)
+ (* to use Coq functions during exportation. *)
+
+type 'constr hypothesis = identifier * 'constr context_entry
+type context = constr hypothesis list
+
+type conjecture = existential_key * context * constr
+type metasenv = conjecture list
+
+(* list of couples section path -- variables defined in that section *)
+type params = (string * uri list) list
+
+type obj =
+ Constant of string * (* id, *)
+ constr option * constr * (* value, type, *)
+ params (* parameters *)
+ | Variable of
+ string * constr option * constr * (* name, body, type *)
+ params (* parameters *)
+ | CurrentProof of
+ string * metasenv * (* name, conjectures, *)
+ constr * constr (* value, type *)
+ | InductiveDefinition of
+ inductiveType list * (* inductive types , *)
+ params * int (* parameters,n ind. pars*)
+and inductiveType =
+ identifier * bool * constr * (* typename, inductive, arity *)
+ constructor list (* constructors *)
+and constructor =
+ identifier * constr (* id, type *)
+
+type aconstr =
+ | ARel of id * int * id * identifier
+ | AVar of id * uri
+ | AEvar of id * existential_key * aconstr list
+ | ASort of id * sorts
+ | ACast of id * aconstr * aconstr
+ | AProds of (id * name * aconstr) list * aconstr
+ | ALambdas of (id * name * aconstr) list * aconstr
+ | ALetIns of (id * name * aconstr) list * aconstr
+ | AApp of id * aconstr list
+ | AConst of id * explicit_named_substitution * uri
+ | AInd of id * explicit_named_substitution * uri * int
+ | AConstruct of id * explicit_named_substitution * uri * int * int
+ | ACase of id * uri * int * aconstr * aconstr * aconstr list
+ | AFix of id * int * ainductivefun list
+ | ACoFix of id * int * acoinductivefun list
+and ainductivefun =
+ id * identifier * int * aconstr * aconstr
+and acoinductivefun =
+ id * identifier * aconstr * aconstr
+and explicit_named_substitution = id option * (uri * aconstr) list
+
+type acontext = (id * aconstr hypothesis) list
+type aconjecture = id * existential_key * acontext * aconstr
+type ametasenv = aconjecture list
+
+type aobj =
+ AConstant of id * string * (* id, *)
+ aconstr option * aconstr * (* value, type, *)
+ params (* parameters *)
+ | AVariable of id *
+ string * aconstr option * aconstr * (* name, body, type *)
+ params (* parameters *)
+ | ACurrentProof of id *
+ string * ametasenv * (* name, conjectures, *)
+ aconstr * aconstr (* value, type *)
+ | AInductiveDefinition of id *
+ anninductiveType list * (* inductive types , *)
+ params * int (* parameters,n ind. pars*)
+and anninductiveType =
+ id * identifier * bool * aconstr * (* typename, inductive, arity *)
+ annconstructor list (* constructors *)
+and annconstructor =
+ identifier * aconstr (* id, type *)
diff --git a/contrib/xml/acic2Xml.ml4 b/contrib/xml/acic2Xml.ml4
new file mode 100644
index 00000000..64dc8a05
--- /dev/null
+++ b/contrib/xml/acic2Xml.ml4
@@ -0,0 +1,363 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(*CSC codice cut & paste da cicPp e xmlcommand *)
+
+exception ImpossiblePossible;;
+exception NotImplemented;;
+let dtdname = "http://mowgli.cs.unibo.it/dtd/cic.dtd";;
+let typesdtdname = "http://mowgli.cs.unibo.it/dtd/cictypes.dtd";;
+
+let rec find_last_id =
+ function
+ [] -> Util.anomaly "find_last_id: empty list"
+ | [id,_,_] -> id
+ | _::tl -> find_last_id tl
+;;
+
+let export_existential = string_of_int
+
+let print_term ids_to_inner_sorts =
+ let rec aux =
+ let module A = Acic in
+ let module N = Names in
+ let module X = Xml in
+ function
+ A.ARel (id,n,idref,b) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_empty "REL"
+ ["value",(string_of_int n) ; "binder",(N.string_of_id b) ;
+ "id",id ; "idref",idref; "sort",sort]
+ | A.AVar (id,uri) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_empty "VAR" ["uri", uri ; "id",id ; "sort",sort]
+ | A.AEvar (id,n,l) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_nempty "META"
+ ["no",(export_existential n) ; "id",id ; "sort",sort]
+ (List.fold_left
+ (fun i t ->
+ [< i ; X.xml_nempty "substitution" [] (aux t) >]
+ ) [< >] (List.rev l))
+ | A.ASort (id,s) ->
+ let string_of_sort =
+ match Term.family_of_sort s with
+ Term.InProp -> "Prop"
+ | Term.InSet -> "Set"
+ | Term.InType -> "Type"
+ in
+ X.xml_empty "SORT" ["value",string_of_sort ; "id",id]
+ | A.AProds (prods,t) ->
+ let last_id = find_last_id prods in
+ let sort = Hashtbl.find ids_to_inner_sorts last_id in
+ X.xml_nempty "PROD" ["type",sort]
+ [< List.fold_left
+ (fun i (id,binder,s) ->
+ let sort =
+ Hashtbl.find ids_to_inner_sorts (Cic2acic.source_id_of_id id)
+ in
+ let attrs =
+ ("id",id)::("type",sort)::
+ match binder with
+ Names.Anonymous -> []
+ | Names.Name b -> ["binder",Names.string_of_id b]
+ in
+ [< X.xml_nempty "decl" attrs (aux s) ; i >]
+ ) [< >] prods ;
+ X.xml_nempty "target" [] (aux t)
+ >]
+ | A.ACast (id,v,t) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_nempty "CAST" ["id",id ; "sort",sort]
+ [< X.xml_nempty "term" [] (aux v) ;
+ X.xml_nempty "type" [] (aux t)
+ >]
+ | A.ALambdas (lambdas,t) ->
+ let last_id = find_last_id lambdas in
+ let sort = Hashtbl.find ids_to_inner_sorts last_id in
+ X.xml_nempty "LAMBDA" ["sort",sort]
+ [< List.fold_left
+ (fun i (id,binder,s) ->
+ let sort =
+ Hashtbl.find ids_to_inner_sorts (Cic2acic.source_id_of_id id)
+ in
+ let attrs =
+ ("id",id)::("type",sort)::
+ match binder with
+ Names.Anonymous -> []
+ | Names.Name b -> ["binder",Names.string_of_id b]
+ in
+ [< X.xml_nempty "decl" attrs (aux s) ; i >]
+ ) [< >] lambdas ;
+ X.xml_nempty "target" [] (aux t)
+ >]
+ | A.ALetIns (letins,t) ->
+ let last_id = find_last_id letins in
+ let sort = Hashtbl.find ids_to_inner_sorts last_id in
+ X.xml_nempty "LETIN" ["sort",sort]
+ [< List.fold_left
+ (fun i (id,binder,s) ->
+ let sort =
+ Hashtbl.find ids_to_inner_sorts (Cic2acic.source_id_of_id id)
+ in
+ let attrs =
+ ("id",id)::("sort",sort)::
+ match binder with
+ Names.Anonymous -> assert false
+ | Names.Name b -> ["binder",Names.string_of_id b]
+ in
+ [< X.xml_nempty "def" attrs (aux s) ; i >]
+ ) [< >] letins ;
+ X.xml_nempty "target" [] (aux t)
+ >]
+ | A.AApp (id,li) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_nempty "APPLY" ["id",id ; "sort",sort]
+ [< (List.fold_left (fun i x -> [< i ; (aux x) >]) [<>] li)
+ >]
+ | A.AConst (id,subst,uri) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ let attrs = ["uri", uri ; "id",id ; "sort",sort] in
+ aux_subst (X.xml_empty "CONST" attrs) subst
+ | A.AInd (id,subst,uri,i) ->
+ let attrs = ["uri", uri ; "noType",(string_of_int i) ; "id",id] in
+ aux_subst (X.xml_empty "MUTIND" attrs) subst
+ | A.AConstruct (id,subst,uri,i,j) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ let attrs =
+ ["uri", uri ;
+ "noType",(string_of_int i) ; "noConstr",(string_of_int j) ;
+ "id",id ; "sort",sort]
+ in
+ aux_subst (X.xml_empty "MUTCONSTRUCT" attrs) subst
+ | A.ACase (id,uri,typeno,ty,te,patterns) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_nempty "MUTCASE"
+ ["uriType", uri ;
+ "noType", (string_of_int typeno) ;
+ "id", id ; "sort",sort]
+ [< X.xml_nempty "patternsType" [] [< (aux ty) >] ;
+ X.xml_nempty "inductiveTerm" [] [< (aux te) >] ;
+ List.fold_left
+ (fun i x -> [< i ; X.xml_nempty "pattern" [] [< aux x >] >])
+ [<>] patterns
+ >]
+ | A.AFix (id, no, funs) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_nempty "FIX"
+ ["noFun", (string_of_int no) ; "id",id ; "sort",sort]
+ [< List.fold_left
+ (fun i (id,fi,ai,ti,bi) ->
+ [< i ;
+ X.xml_nempty "FixFunction"
+ ["id",id ; "name", (Names.string_of_id fi) ;
+ "recIndex", (string_of_int ai)]
+ [< X.xml_nempty "type" [] [< aux ti >] ;
+ X.xml_nempty "body" [] [< aux bi >]
+ >]
+ >]
+ ) [<>] funs
+ >]
+ | A.ACoFix (id,no,funs) ->
+ let sort = Hashtbl.find ids_to_inner_sorts id in
+ X.xml_nempty "COFIX"
+ ["noFun", (string_of_int no) ; "id",id ; "sort",sort]
+ [< List.fold_left
+ (fun i (id,fi,ti,bi) ->
+ [< i ;
+ X.xml_nempty "CofixFunction"
+ ["id",id ; "name", Names.string_of_id fi]
+ [< X.xml_nempty "type" [] [< aux ti >] ;
+ X.xml_nempty "body" [] [< aux bi >]
+ >]
+ >]
+ ) [<>] funs
+ >]
+ and aux_subst target (id,subst) =
+ if subst = [] then
+ target
+ else
+ Xml.xml_nempty "instantiate"
+ (match id with None -> [] | Some id -> ["id",id])
+ [< target ;
+ List.fold_left
+ (fun i (uri,arg) ->
+ [< i ; Xml.xml_nempty "arg" ["relUri", uri] (aux arg) >]
+ ) [<>] subst
+ >]
+ in
+ aux
+;;
+
+let param_attribute_of_params params =
+ List.fold_right
+ (fun (path,l) i ->
+ List.fold_right
+ (fun x i ->path ^ "/" ^ x ^ ".var" ^ match i with "" -> "" | i' -> " " ^ i'
+ ) l "" ^ match i with "" -> "" | i' -> " " ^ i'
+ ) params ""
+;;
+
+let print_object uri ids_to_inner_sorts =
+ let rec aux =
+ let module A = Acic in
+ let module X = Xml in
+ function
+ A.ACurrentProof (id,n,conjectures,bo,ty) ->
+ let xml_for_current_proof_body =
+(*CSC: Should the CurrentProof also have the list of variables it depends on? *)
+(*CSC: I think so. Not implemented yet. *)
+ X.xml_nempty "CurrentProof" ["of",uri ; "id", id]
+ [< List.fold_left
+ (fun i (cid,n,canonical_context,t) ->
+ [< i ;
+ X.xml_nempty "Conjecture"
+ ["id", cid ; "no",export_existential n]
+ [< List.fold_left
+ (fun i (hid,t) ->
+ [< (match t with
+ n,A.Decl t ->
+ X.xml_nempty "Decl"
+ ["id",hid;"name",Names.string_of_id n]
+ (print_term ids_to_inner_sorts t)
+ | n,A.Def (t,_) ->
+ X.xml_nempty "Def"
+ ["id",hid;"name",Names.string_of_id n]
+ (print_term ids_to_inner_sorts t)
+ ) ;
+ i
+ >]
+ ) [< >] canonical_context ;
+ X.xml_nempty "Goal" []
+ (print_term ids_to_inner_sorts t)
+ >]
+ >])
+ [<>] (List.rev conjectures) ;
+ X.xml_nempty "body" [] (print_term ids_to_inner_sorts bo) >]
+ in
+ let xml_for_current_proof_type =
+ X.xml_nempty "ConstantType" ["name",n ; "id", id]
+ (print_term ids_to_inner_sorts ty)
+ in
+ let xmlbo =
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata ("<!DOCTYPE CurrentProof SYSTEM \""^dtdname ^"\">\n");
+ xml_for_current_proof_body
+ >] in
+ let xmlty =
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata
+ ("<!DOCTYPE ConstantType SYSTEM \"" ^ dtdname ^ "\">\n");
+ xml_for_current_proof_type
+ >]
+ in
+ xmlty, Some xmlbo
+ | A.AConstant (id,n,bo,ty,params) ->
+ let params' = param_attribute_of_params params in
+ let xmlbo =
+ match bo with
+ None -> None
+ | Some bo ->
+ Some
+ [< X.xml_cdata
+ "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata
+ ("<!DOCTYPE ConstantBody SYSTEM \"" ^ dtdname ^ "\">\n") ;
+ X.xml_nempty "ConstantBody"
+ ["for",uri ; "params",params' ; "id", id]
+ [< print_term ids_to_inner_sorts bo >]
+ >]
+ in
+ let xmlty =
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata ("<!DOCTYPE ConstantType SYSTEM \""^dtdname ^"\">\n");
+ X.xml_nempty "ConstantType"
+ ["name",n ; "params",params' ; "id", id]
+ [< print_term ids_to_inner_sorts ty >]
+ >]
+ in
+ xmlty, xmlbo
+ | A.AVariable (id,n,bo,ty,params) ->
+ let params' = param_attribute_of_params params in
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata ("<!DOCTYPE Variable SYSTEM \"" ^ dtdname ^ "\">\n") ;
+ X.xml_nempty "Variable" ["name",n ; "params",params' ; "id", id]
+ [< (match bo with
+ None -> [<>]
+ | Some bo ->
+ X.xml_nempty "body" []
+ (print_term ids_to_inner_sorts bo)
+ ) ;
+ X.xml_nempty "type" [] (print_term ids_to_inner_sorts ty)
+ >]
+ >], None
+ | A.AInductiveDefinition (id,tys,params,nparams) ->
+ let params' = param_attribute_of_params params in
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata ("<!DOCTYPE InductiveDefinition SYSTEM \"" ^
+ dtdname ^ "\">\n") ;
+ X.xml_nempty "InductiveDefinition"
+ ["noParams",string_of_int nparams ;
+ "id",id ;
+ "params",params']
+ [< (List.fold_left
+ (fun i (id,typename,finite,arity,cons) ->
+ [< i ;
+ X.xml_nempty "InductiveType"
+ ["id",id ; "name",Names.string_of_id typename ;
+ "inductive",(string_of_bool finite)
+ ]
+ [< X.xml_nempty "arity" []
+ (print_term ids_to_inner_sorts arity) ;
+ (List.fold_left
+ (fun i (name,lc) ->
+ [< i ;
+ X.xml_nempty "Constructor"
+ ["name",Names.string_of_id name]
+ (print_term ids_to_inner_sorts lc)
+ >]) [<>] cons
+ )
+ >]
+ >]
+ ) [< >] tys
+ )
+ >]
+ >], None
+ in
+ aux
+;;
+
+let print_inner_types curi ids_to_inner_sorts ids_to_inner_types =
+ let module C2A = Cic2acic in
+ let module X = Xml in
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata ("<!DOCTYPE InnerTypes SYSTEM \"" ^ typesdtdname ^"\">\n");
+ X.xml_nempty "InnerTypes" ["of",curi]
+ (Hashtbl.fold
+ (fun id {C2A.annsynthesized = synty ; C2A.annexpected = expty} x ->
+ [< x ;
+ X.xml_nempty "TYPE" ["of",id]
+ [< X.xml_nempty "synthesized" []
+ (print_term ids_to_inner_sorts synty) ;
+ match expty with
+ None -> [<>]
+ | Some expty' ->
+ X.xml_nempty "expected" []
+ (print_term ids_to_inner_sorts expty')
+ >]
+ >]
+ ) ids_to_inner_types [<>]
+ )
+ >]
+;;
diff --git a/contrib/xml/cic.dtd b/contrib/xml/cic.dtd
new file mode 100644
index 00000000..c8035cab
--- /dev/null
+++ b/contrib/xml/cic.dtd
@@ -0,0 +1,259 @@
+<?xml encoding="ISO-8859-1"?>
+
+<!-- Copyright (C) 2000-2004, HELM Team -->
+<!-- -->
+<!-- This file is part of HELM, an Hypertextual, Electronic -->
+<!-- Library of Mathematics, developed at the Computer Science -->
+<!-- Department, University of Bologna, Italy. -->
+<!-- -->
+<!-- HELM is free software; you can redistribute it and/or -->
+<!-- modify it under the terms of the GNU General Public License -->
+<!-- as published by the Free Software Foundation; either version 2 -->
+<!-- of the License, or (at your option) any later version. -->
+<!-- -->
+<!-- HELM is distributed in the hope that it will be useful, -->
+<!-- but WITHOUT ANY WARRANTY; without even the implied warranty of -->
+<!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -->
+<!-- GNU General Public License for more details. -->
+<!-- -->
+<!-- You should have received a copy of the GNU General Public License -->
+<!-- along with HELM; if not, write to the Free Software -->
+<!-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, -->
+<!-- MA 02111-1307, USA. -->
+<!-- -->
+<!-- For details, see the HELM World-Wide-Web page, -->
+<!-- http://cs.unibo.it/helm/. -->
+
+<!-- DTD FOR CIC OBJECTS: -->
+
+<!-- CIC term declaration -->
+
+<!ENTITY % term '(LAMBDA|CAST|PROD|REL|SORT|APPLY|VAR|META|IMPLICIT|CONST|
+ LETIN|MUTIND|MUTCONSTRUCT|MUTCASE|FIX|COFIX|instantiate)'>
+
+<!-- CIC sorts -->
+
+<!ENTITY % sort '(Prop|Set|Type|CProp)'>
+
+<!-- CIC sequents -->
+
+<!ENTITY % sequent '((Decl|Def|Hidden)*,Goal)'>
+
+<!-- CIC objects: -->
+
+<!ELEMENT ConstantType %term;>
+<!ATTLIST ConstantType
+ name CDATA #REQUIRED
+ params CDATA #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT ConstantBody %term;>
+<!ATTLIST ConstantBody
+ for CDATA #REQUIRED
+ params CDATA #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT CurrentProof (Conjecture*,body)>
+<!ATTLIST CurrentProof
+ of CDATA #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT InductiveDefinition (InductiveType+)>
+<!ATTLIST InductiveDefinition
+ noParams NMTOKEN #REQUIRED
+ params CDATA #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT Variable (body?,type)>
+<!ATTLIST Variable
+ name CDATA #REQUIRED
+ params CDATA #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT Sequent %sequent;>
+<!ATTLIST Sequent
+ no NMTOKEN #REQUIRED
+ id ID #REQUIRED>
+
+<!-- Elements used in CIC objects, which are not terms: -->
+
+<!ELEMENT InductiveType (arity,Constructor*)>
+<!ATTLIST InductiveType
+ name CDATA #REQUIRED
+ inductive (true|false) #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT Conjecture %sequent;>
+<!ATTLIST Conjecture
+ no NMTOKEN #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT Constructor %term;>
+<!ATTLIST Constructor
+ name CDATA #REQUIRED>
+
+<!ELEMENT Decl %term;>
+<!ATTLIST Decl
+ name CDATA #IMPLIED
+ id ID #REQUIRED>
+
+<!ELEMENT Def %term;>
+<!ATTLIST Def
+ name CDATA #IMPLIED
+ id ID #REQUIRED>
+
+<!ELEMENT Hidden EMPTY>
+<!ATTLIST Hidden
+ id ID #REQUIRED>
+
+<!ELEMENT Goal %term;>
+
+<!-- CIC terms: -->
+
+<!ELEMENT LAMBDA (decl*,target)>
+<!ATTLIST LAMBDA
+ sort %sort; #REQUIRED>
+
+<!ELEMENT LETIN (def*,target)>
+<!ATTLIST LETIN
+ sort %sort; #REQUIRED>
+
+<!ELEMENT PROD (decl*,target)>
+<!ATTLIST PROD
+ type %sort; #REQUIRED>
+
+<!ELEMENT CAST (term,type)>
+<!ATTLIST CAST
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT REL EMPTY>
+<!ATTLIST REL
+ value NMTOKEN #REQUIRED
+ binder CDATA #REQUIRED
+ id ID #REQUIRED
+ idref IDREF #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT SORT EMPTY>
+<!ATTLIST SORT
+ value CDATA #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT APPLY (%term;)+>
+<!ATTLIST APPLY
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT VAR EMPTY>
+<!ATTLIST VAR
+ uri CDATA #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!-- The substitutions are ordered by increasing DeBrujin -->
+<!-- index. An empty substitution means that that index is -->
+<!-- not accessible. -->
+<!ELEMENT META (substitution*)>
+<!ATTLIST META
+ no NMTOKEN #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT IMPLICIT EMPTY>
+<!ATTLIST IMPLICIT
+ id ID #REQUIRED>
+
+<!ELEMENT CONST EMPTY>
+<!ATTLIST CONST
+ uri CDATA #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT MUTIND EMPTY>
+<!ATTLIST MUTIND
+ uri CDATA #REQUIRED
+ noType NMTOKEN #REQUIRED
+ id ID #REQUIRED>
+
+<!ELEMENT MUTCONSTRUCT EMPTY>
+<!ATTLIST MUTCONSTRUCT
+ uri CDATA #REQUIRED
+ noType NMTOKEN #REQUIRED
+ noConstr NMTOKEN #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT MUTCASE (patternsType,inductiveTerm,pattern*)>
+<!ATTLIST MUTCASE
+ uriType CDATA #REQUIRED
+ noType NMTOKEN #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT FIX (FixFunction+)>
+<!ATTLIST FIX
+ noFun NMTOKEN #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!ELEMENT COFIX (CofixFunction+)>
+<!ATTLIST COFIX
+ noFun NMTOKEN #REQUIRED
+ id ID #REQUIRED
+ sort %sort; #REQUIRED>
+
+<!-- Elements used in CIC terms: -->
+
+<!ELEMENT FixFunction (type,body)>
+<!ATTLIST FixFunction
+ name CDATA #REQUIRED
+ id ID #REQUIRED
+ recIndex NMTOKEN #REQUIRED>
+
+<!ELEMENT CofixFunction (type,body)>
+<!ATTLIST CofixFunction
+ id ID #REQUIRED
+ name CDATA #REQUIRED>
+
+<!ELEMENT substitution ((%term;)?)>
+
+<!-- Explicit named substitutions: -->
+
+<!ELEMENT instantiate ((CONST|MUTIND|MUTCONSTRUCT|VAR),arg+)>
+<!ATTLIST instantiate
+ id ID #IMPLIED>
+
+<!-- Sintactic sugar for CIC terms and for CIC objects: -->
+
+<!ELEMENT arg %term;>
+<!ATTLIST arg
+ relUri CDATA #REQUIRED>
+
+<!ELEMENT decl %term;>
+<!ATTLIST decl
+ id ID #REQUIRED
+ type %sort; #REQUIRED
+ binder CDATA #IMPLIED>
+
+<!ELEMENT def %term;>
+<!ATTLIST def
+ id ID #REQUIRED
+ sort %sort; #REQUIRED
+ binder CDATA #IMPLIED>
+
+<!ELEMENT target %term;>
+
+<!ELEMENT term %term;>
+
+<!ELEMENT type %term;>
+
+<!ELEMENT arity %term;>
+
+<!ELEMENT patternsType %term;>
+
+<!ELEMENT inductiveTerm %term;>
+
+<!ELEMENT pattern %term;>
+
+<!ELEMENT body %term;>
diff --git a/contrib/xml/cic2acic.ml b/contrib/xml/cic2acic.ml
new file mode 100644
index 00000000..d820f9e5
--- /dev/null
+++ b/contrib/xml/cic2acic.ml
@@ -0,0 +1,946 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(* Utility Functions *)
+
+exception TwoModulesWhoseDirPathIsOneAPrefixOfTheOther;;
+let get_module_path_of_section_path path =
+ let dirpath = fst (Libnames.repr_path path) in
+ let modules = Lib.library_dp () :: (Library.loaded_libraries ()) in
+ match
+ List.filter
+ (function modul -> Libnames.is_dirpath_prefix_of modul dirpath) modules
+ with
+ [modul] -> modul
+ | _ -> raise TwoModulesWhoseDirPathIsOneAPrefixOfTheOther
+;;
+
+(*CSC: Problem: here we are using the wrong (???) hypothesis that there do *)
+(*CSC: not exist two modules whose dir_paths are one a prefix of the other *)
+let remove_module_dirpath_from_dirpath ~basedir dir =
+ let module Ln = Libnames in
+ if Ln.is_dirpath_prefix_of basedir dir then
+ let ids = Names.repr_dirpath dir in
+ let rec remove_firsts n l =
+ match n,l with
+ (0,l) -> l
+ | (n,he::tl) -> remove_firsts (n-1) tl
+ | _ -> assert false
+ in
+ let ids' =
+ List.rev
+ (remove_firsts
+ (List.length (Names.repr_dirpath basedir))
+ (List.rev ids))
+ in
+ ids'
+ else Names.repr_dirpath dir
+;;
+
+
+let get_uri_of_var v pvars =
+ let module D = Declare in
+ let module N = Names in
+ let rec search_in_pvars names =
+ function
+ [] -> None
+ | ((name,l)::tl) ->
+ let names' = name::names in
+ if List.mem v l then
+ Some names'
+ else
+ search_in_pvars names' tl
+ in
+ let rec search_in_open_sections =
+ function
+ [] -> Util.error "Variable not found"
+ | he::tl as modules ->
+ let dirpath = N.make_dirpath modules in
+ if List.mem (N.id_of_string v) (D.last_section_hyps dirpath) then
+ modules
+ else
+ search_in_open_sections tl
+ in
+ let path =
+ match search_in_pvars [] pvars with
+ None -> search_in_open_sections (N.repr_dirpath (Lib.cwd ()))
+ | Some path -> path
+ in
+ "cic:" ^
+ List.fold_left
+ (fun i x -> "/" ^ N.string_of_id x ^ i) "" path
+;;
+
+type tag =
+ Constant
+ | Inductive
+ | Variable
+;;
+
+let ext_of_tag =
+ function
+ Constant -> "con"
+ | Inductive -> "ind"
+ | Variable -> "var"
+;;
+
+exception FunctorsXMLExportationNotImplementedYet;;
+
+let subtract l1 l2 =
+ let l1' = List.rev (Names.repr_dirpath l1) in
+ let l2' = List.rev (Names.repr_dirpath l2) in
+ let rec aux =
+ function
+ he::tl when tl = l2' -> [he]
+ | he::tl -> he::(aux tl)
+ | [] -> assert (l2' = []) ; []
+ in
+ Names.make_dirpath (List.rev (aux l1'))
+;;
+
+(*CSC: Dead code to be removed
+let token_list_of_kernel_name ~keep_sections kn tag =
+ let module N = Names in
+ let (modpath,dirpath,label) = Names.repr_kn kn in
+ let token_list_of_dirpath dirpath =
+ List.rev_map N.string_of_id (N.repr_dirpath dirpath) in
+ let rec token_list_of_modpath =
+ function
+ N.MPdot (path,label) ->
+ token_list_of_modpath path @ [N.string_of_label label]
+ | N.MPfile dirpath -> token_list_of_dirpath dirpath
+ | N.MPself self ->
+ if self = Names.initial_msid then
+ [ "Top" ]
+ else
+ let module_path =
+ let f = N.string_of_id (N.id_of_msid self) in
+ let _,longf =
+ System.find_file_in_path (Library.get_load_path ()) (f^".v") in
+ let ldir0 = Library.find_logical_path (Filename.dirname longf) in
+ let id = Names.id_of_string (Filename.basename f) in
+ Libnames.extend_dirpath ldir0 id
+ in
+ token_list_of_dirpath module_path
+ | N.MPbound _ -> raise FunctorsXMLExportationNotImplementedYet
+ in
+ token_list_of_modpath modpath @
+ (if keep_sections then token_list_of_dirpath dirpath else []) @
+ [N.string_of_label label ^ "." ^ (ext_of_tag tag)]
+;;
+*)
+
+let token_list_of_path dir id tag =
+ let module N = Names in
+ let token_list_of_dirpath dirpath =
+ List.rev_map N.string_of_id (N.repr_dirpath dirpath) in
+ token_list_of_dirpath dir @ [N.string_of_id id ^ "." ^ (ext_of_tag tag)]
+
+let token_list_of_kernel_name kn tag =
+ let module N = Names in
+ let module LN = Libnames in
+ let dir = match tag with
+ | Variable ->
+ Lib.cwd ()
+ | Constant ->
+ Lib.library_part (LN.ConstRef kn)
+ | Inductive ->
+ Lib.library_part (LN.IndRef (kn,0))
+ in
+ let id = N.id_of_label (N.label kn) in
+ token_list_of_path dir id tag
+;;
+
+let uri_of_kernel_name kn tag =
+ let tokens = token_list_of_kernel_name kn tag in
+ "cic:/" ^ String.concat "/" tokens
+
+let uri_of_declaration id tag =
+ let module LN = Libnames in
+ let dir = LN.extract_dirpath_prefix (Lib.sections_depth ()) (Lib.cwd ()) in
+ let tokens = token_list_of_path dir id tag in
+ "cic:/" ^ String.concat "/" tokens
+
+(* Special functions for handling of CCorn's CProp "sort" *)
+
+type sort =
+ Coq_sort of Term.sorts_family
+ | CProp
+;;
+
+let prerr_endline _ = ();;
+
+let family_of_term ty =
+ match Term.kind_of_term ty with
+ Term.Sort s -> Coq_sort (Term.family_of_sort s)
+ | Term.Const _ -> CProp (* I could check that the constant is CProp *)
+ | _ -> Util.anomaly "family_of_term"
+;;
+
+module CPropRetyping =
+ struct
+ module T = Term
+
+ let outsort env sigma t =
+ family_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma t)
+
+ let rec subst_type env sigma typ = function
+ | [] -> typ
+ | h::rest ->
+ match T.kind_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma typ) with
+ | T.Prod (na,c1,c2) -> subst_type env sigma (T.subst1 h c2) rest
+ | _ -> Util.anomaly "Non-functional construction"
+
+
+ let sort_of_atomic_type env sigma ft args =
+ let rec concl_of_arity env ar =
+ match T.kind_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma ar) with
+ | T.Prod (na, t, b) -> concl_of_arity (Environ.push_rel (na,None,t) env) b
+ | T.Sort s -> Coq_sort (T.family_of_sort s)
+ | _ -> outsort env sigma (subst_type env sigma ft (Array.to_list args))
+ in concl_of_arity env ft
+
+let typeur sigma metamap =
+ let rec type_of env cstr=
+ match Term.kind_of_term cstr with
+ | T.Meta n ->
+ (try T.strip_outer_cast (List.assoc n metamap)
+ with Not_found -> Util.anomaly "type_of: this is not a well-typed term")
+ | T.Rel n ->
+ let (_,_,ty) = Environ.lookup_rel n env in
+ T.lift n ty
+ | T.Var id ->
+ (try
+ let (_,_,ty) = Environ.lookup_named id env in
+ T.body_of_type ty
+ with Not_found ->
+ Util.anomaly ("type_of: variable "^(Names.string_of_id id)^" unbound"))
+ | T.Const c ->
+ let cb = Environ.lookup_constant c env in
+ T.body_of_type cb.Declarations.const_type
+ | T.Evar ev -> Instantiate.existential_type sigma ev
+ | T.Ind ind -> T.body_of_type (Inductive.type_of_inductive env ind)
+ | T.Construct cstr ->
+ T.body_of_type (Inductive.type_of_constructor env cstr)
+ | T.Case (_,p,c,lf) ->
+ let Inductiveops.IndType(_,realargs) =
+ try Inductiveops.find_rectype env sigma (type_of env c)
+ with Not_found -> Util.anomaly "type_of: Bad recursive type" in
+ let t = Reductionops.whd_beta (T.applist (p, realargs)) in
+ (match Term.kind_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma (type_of env t)) with
+ | T.Prod _ -> Reductionops.whd_beta (T.applist (t, [c]))
+ | _ -> t)
+ | T.Lambda (name,c1,c2) ->
+ T.mkProd (name, c1, type_of (Environ.push_rel (name,None,c1) env) c2)
+ | T.LetIn (name,b,c1,c2) ->
+ T.subst1 b (type_of (Environ.push_rel (name,Some b,c1) env) c2)
+ | T.Fix ((_,i),(_,tys,_)) -> tys.(i)
+ | T.CoFix (i,(_,tys,_)) -> tys.(i)
+ | T.App(f,args)->
+ T.strip_outer_cast
+ (subst_type env sigma (type_of env f) (Array.to_list args))
+ | T.Cast (c,t) -> t
+ | T.Sort _ | T.Prod _ ->
+ match sort_of env cstr with
+ Coq_sort T.InProp -> T.mkProp
+ | Coq_sort T.InSet -> T.mkSet
+ | Coq_sort T.InType -> T.mkType Univ.prop_univ (* ERROR HERE *)
+ | CProp -> T.mkConst DoubleTypeInference.cprop
+
+ and sort_of env t =
+ match Term.kind_of_term t with
+ | T.Cast (c,s) when T.isSort s -> family_of_term s
+ | T.Sort (T.Prop c) -> Coq_sort T.InType
+ | T.Sort (T.Type u) -> Coq_sort T.InType
+ | T.Prod (name,t,c2) ->
+ (match sort_of env t,sort_of (Environ.push_rel (name,None,t) env) c2 with
+ | _, (Coq_sort T.InProp as s) -> s
+ | Coq_sort T.InProp, (Coq_sort T.InSet as s)
+ | Coq_sort T.InSet, (Coq_sort T.InSet as s) -> s
+ | Coq_sort T.InType, (Coq_sort T.InSet as s)
+ | CProp, (Coq_sort T.InSet as s) when
+ Environ.engagement env = Some Environ.ImpredicativeSet -> s
+ | Coq_sort T.InType, Coq_sort T.InSet
+ | CProp, Coq_sort T.InSet -> Coq_sort T.InType
+ | _, (Coq_sort T.InType as s) -> s (*Type Univ.dummy_univ*)
+ | _, (CProp as s) -> s)
+ | T.App(f,args) -> sort_of_atomic_type env sigma (type_of env f) args
+ | T.Lambda _ | T.Fix _ | T.Construct _ ->
+ Util.anomaly "sort_of: Not a type (1)"
+ | _ -> outsort env sigma (type_of env t)
+
+ and sort_family_of env t =
+ match T.kind_of_term t with
+ | T.Cast (c,s) when T.isSort s -> family_of_term s
+ | T.Sort (T.Prop c) -> Coq_sort T.InType
+ | T.Sort (T.Type u) -> Coq_sort T.InType
+ | T.Prod (name,t,c2) -> sort_family_of (Environ.push_rel (name,None,t) env) c2
+ | T.App(f,args) ->
+ sort_of_atomic_type env sigma (type_of env f) args
+ | T.Lambda _ | T.Fix _ | T.Construct _ ->
+ Util.anomaly "sort_of: Not a type (1)"
+ | _ -> outsort env sigma (type_of env t)
+
+ in type_of, sort_of, sort_family_of
+
+ let get_type_of env sigma c = let f,_,_ = typeur sigma [] in f env c
+ let get_sort_family_of env sigma c = let _,_,f = typeur sigma [] in f env c
+
+ end
+;;
+
+let get_sort_family_of env evar_map ty =
+ CPropRetyping.get_sort_family_of env evar_map ty
+;;
+
+let type_as_sort env evar_map ty =
+(* CCorn code *)
+ family_of_term (DoubleTypeInference.whd_betadeltaiotacprop env evar_map ty)
+;;
+
+let is_a_Prop =
+ function
+ "Prop"
+ | "CProp" -> true
+ | _ -> false
+;;
+
+(* Main Functions *)
+
+type anntypes =
+ {annsynthesized : Acic.aconstr ; annexpected : Acic.aconstr option}
+;;
+
+let gen_id seed =
+ let res = "i" ^ string_of_int !seed in
+ incr seed ;
+ res
+;;
+
+let fresh_id seed ids_to_terms constr_to_ids ids_to_father_ids =
+ fun father t ->
+ let res = gen_id seed in
+ Hashtbl.add ids_to_father_ids res father ;
+ Hashtbl.add ids_to_terms res t ;
+ Acic.CicHash.add constr_to_ids t res ;
+ res
+;;
+
+let source_id_of_id id = "#source#" ^ id;;
+
+let acic_of_cic_context' computeinnertypes seed ids_to_terms constr_to_ids
+ ids_to_father_ids ids_to_inner_sorts ids_to_inner_types
+ pvars ?(fake_dependent_products=false) env idrefs evar_map t expectedty
+=
+ let module D = DoubleTypeInference in
+ let module E = Environ in
+ let module N = Names in
+ let module A = Acic in
+ let module T = Term in
+ let fresh_id' = fresh_id seed ids_to_terms constr_to_ids ids_to_father_ids in
+ (* CSC: do you have any reasonable substitute for 503? *)
+ let terms_to_types = Acic.CicHash.create 503 in
+ D.double_type_of env evar_map t expectedty terms_to_types ;
+ let rec aux computeinnertypes father passed_lambdas_or_prods_or_letins env
+ idrefs ?(subst=None,[]) tt
+ =
+ let fresh_id'' = fresh_id' father tt in
+ let aux' = aux computeinnertypes (Some fresh_id'') [] in
+ let string_of_sort_family =
+ function
+ Coq_sort T.InProp -> "Prop"
+ | Coq_sort T.InSet -> "Set"
+ | Coq_sort T.InType -> "Type"
+ | CProp -> "CProp"
+ in
+ let string_of_sort t =
+ string_of_sort_family
+ (type_as_sort env evar_map t)
+ in
+ let ainnertypes,innertype,innersort,expected_available =
+ let {D.synthesized = synthesized; D.expected = expected} =
+ if computeinnertypes then
+try
+ Acic.CicHash.find terms_to_types tt
+with _ ->
+(*CSC: Warning: it really happens, for example in Ring_theory!!! *)
+Pp.ppnl (Pp.(++) (Pp.str "BUG: this subterm was not visited during the double-type-inference: ") (Printer.prterm tt)) ; assert false
+ else
+ (* We are already in an inner-type and Coscoy's double *)
+ (* type inference algorithm has not been applied. *)
+ (* We need to refresh the universes because we are doing *)
+ (* type inference on an already inferred type. *)
+ {D.synthesized =
+ Reductionops.nf_beta
+ (CPropRetyping.get_type_of env evar_map
+ (Evarutil.refresh_universes tt)) ;
+ D.expected = None}
+ in
+(* Debugging only:
+print_endline "TERMINE:" ; flush stdout ;
+Pp.ppnl (Printer.prterm tt) ; flush stdout ;
+print_endline "TIPO:" ; flush stdout ;
+Pp.ppnl (Printer.prterm synthesized) ; flush stdout ;
+print_endline "ENVIRONMENT:" ; flush stdout ;
+Pp.ppnl (Printer.pr_context_of env) ; flush stdout ;
+print_endline "FINE_ENVIRONMENT" ; flush stdout ;
+*)
+ let innersort = get_sort_family_of env evar_map synthesized in
+(* Debugging only:
+print_endline "PASSATO" ; flush stdout ;
+*)
+ let ainnertypes,expected_available =
+ if computeinnertypes then
+ let annexpected,expected_available =
+ match expected with
+ None -> None,false
+ | Some expectedty' ->
+ Some (aux false (Some fresh_id'') [] env idrefs expectedty'),
+ true
+ in
+ Some
+ {annsynthesized =
+ aux false (Some fresh_id'') [] env idrefs synthesized ;
+ annexpected = annexpected
+ }, expected_available
+ else
+ None,false
+ in
+ ainnertypes,synthesized, string_of_sort_family innersort,
+ expected_available
+ in
+ let add_inner_type id =
+ match ainnertypes with
+ None -> ()
+ | Some ainnertypes -> Hashtbl.add ids_to_inner_types id ainnertypes
+ in
+
+ (* explicit_substitute_and_eta_expand_if_required h t t' *)
+ (* where [t] = [] and [tt] = [h]{[t']} ("{.}" denotes explicit *)
+ (* named substitution) or [tt] = (App [h]::[t]) (and [t'] = []) *)
+ (* check if [h] is a term that requires an explicit named *)
+ (* substitution and, in that case, uses the first arguments of *)
+ (* [t] as the actual arguments of the substitution. If there *)
+ (* are not enough parameters in the list [t], then eta-expansion *)
+ (* is performed. *)
+ let
+ explicit_substitute_and_eta_expand_if_required h t t'
+ compute_result_if_eta_expansion_not_required
+ =
+ let subst,residual_args,uninst_vars =
+ let variables,basedir =
+ try
+ let g = Libnames.reference_of_constr h in
+ let sp =
+ match g with
+ Libnames.ConstructRef ((induri,_),_)
+ | Libnames.IndRef (induri,_) ->
+ Nametab.sp_of_global (Libnames.IndRef (induri,0))
+ | Libnames.VarRef id ->
+ (* Invariant: variables are never cooked in Coq *)
+ raise Not_found
+ | _ -> Nametab.sp_of_global g
+ in
+ Dischargedhypsmap.get_discharged_hyps sp,
+ get_module_path_of_section_path sp
+ with Not_found ->
+ (* no explicit substitution *)
+ [], Libnames.dirpath_of_string "dummy"
+ in
+ (* returns a triple whose first element is *)
+ (* an explicit named substitution of "type" *)
+ (* (variable * argument) list, whose *)
+ (* second element is the list of residual *)
+ (* arguments and whose third argument is *)
+ (* the list of uninstantiated variables *)
+ let rec get_explicit_subst variables arguments =
+ match variables,arguments with
+ [],_ -> [],arguments,[]
+ | _,[] -> [],[],variables
+ | he1::tl1,he2::tl2 ->
+ let subst,extra_args,uninst = get_explicit_subst tl1 tl2 in
+ let (he1_sp, he1_id) = Libnames.repr_path he1 in
+ let he1' = remove_module_dirpath_from_dirpath ~basedir he1_sp in
+ let he1'' =
+ String.concat "/"
+ (List.map Names.string_of_id (List.rev he1')) ^ "/"
+ ^ (Names.string_of_id he1_id) ^ ".var"
+ in
+ (he1'',he2)::subst, extra_args, uninst
+ in
+ get_explicit_subst variables t'
+ in
+ let uninst_vars_length = List.length uninst_vars in
+ if uninst_vars_length > 0 then
+ (* Not enough arguments provided. We must eta-expand! *)
+ let un_args,_ =
+ T.decompose_prod_n uninst_vars_length
+ (CPropRetyping.get_type_of env evar_map tt)
+ in
+ let eta_expanded =
+ let arguments =
+ List.map (T.lift uninst_vars_length) t @
+ Termops.rel_list 0 uninst_vars_length
+ in
+ Unshare.unshare
+ (T.lamn uninst_vars_length un_args
+ (T.applistc h arguments))
+ in
+ D.double_type_of env evar_map eta_expanded
+ None terms_to_types ;
+ Hashtbl.remove ids_to_inner_types fresh_id'' ;
+ aux' env idrefs eta_expanded
+ else
+ compute_result_if_eta_expansion_not_required subst residual_args
+ in
+
+ (* Now that we have all the auxiliary functions we *)
+ (* can finally proceed with the main case analysis. *)
+ match T.kind_of_term tt with
+ T.Rel n ->
+ let id =
+ match List.nth (E.rel_context env) (n - 1) with
+ (N.Name id,_,_) -> id
+ | (N.Anonymous,_,_) -> Nameops.make_ident "_" None
+ in
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort && expected_available then
+ add_inner_type fresh_id'' ;
+ A.ARel (fresh_id'', n, List.nth idrefs (n-1), id)
+ | T.Var id ->
+ let path = get_uri_of_var (N.string_of_id id) pvars in
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort && expected_available then
+ add_inner_type fresh_id'' ;
+ A.AVar
+ (fresh_id'', path ^ "/" ^ (N.string_of_id id) ^ ".var")
+ | T.Evar (n,l) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort && expected_available then
+ add_inner_type fresh_id'' ;
+ A.AEvar
+ (fresh_id'', n, Array.to_list (Array.map (aux' env idrefs) l))
+ | T.Meta _ -> Util.anomaly "Meta met during exporting to XML"
+ | T.Sort s -> A.ASort (fresh_id'', s)
+ | T.Cast (v,t) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort then
+ add_inner_type fresh_id'' ;
+ A.ACast (fresh_id'', aux' env idrefs v, aux' env idrefs t)
+ | T.Prod (n,s,t) ->
+ let n' =
+ match n with
+ N.Anonymous -> N.Anonymous
+ | _ ->
+ if not fake_dependent_products && T.noccurn 1 t then
+ N.Anonymous
+ else
+ N.Name
+ (Nameops.next_name_away n (Termops.ids_of_context env))
+ in
+ Hashtbl.add ids_to_inner_sorts fresh_id''
+ (string_of_sort innertype) ;
+ let sourcetype = CPropRetyping.get_type_of env evar_map s in
+ Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'')
+ (string_of_sort sourcetype) ;
+ let new_passed_prods =
+ let father_is_prod =
+ match father with
+ None -> false
+ | Some father' ->
+ match
+ Term.kind_of_term (Hashtbl.find ids_to_terms father')
+ with
+ T.Prod _ -> true
+ | _ -> false
+ in
+ (fresh_id'', n', aux' env idrefs s)::
+ (if father_is_prod then
+ passed_lambdas_or_prods_or_letins
+ else [])
+ in
+ let new_env = E.push_rel (n', None, s) env in
+ let new_idrefs = fresh_id''::idrefs in
+ (match Term.kind_of_term t with
+ T.Prod _ ->
+ aux computeinnertypes (Some fresh_id'') new_passed_prods
+ new_env new_idrefs t
+ | _ ->
+ A.AProds (new_passed_prods, aux' new_env new_idrefs t))
+ | T.Lambda (n,s,t) ->
+ let n' =
+ match n with
+ N.Anonymous -> N.Anonymous
+ | _ ->
+ N.Name (Nameops.next_name_away n (Termops.ids_of_context env))
+ in
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ let sourcetype = CPropRetyping.get_type_of env evar_map s in
+ Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'')
+ (string_of_sort sourcetype) ;
+ let father_is_lambda =
+ match father with
+ None -> false
+ | Some father' ->
+ match
+ Term.kind_of_term (Hashtbl.find ids_to_terms father')
+ with
+ T.Lambda _ -> true
+ | _ -> false
+ in
+ if is_a_Prop innersort &&
+ ((not father_is_lambda) || expected_available)
+ then add_inner_type fresh_id'' ;
+ let new_passed_lambdas =
+ (fresh_id'',n', aux' env idrefs s)::
+ (if father_is_lambda then
+ passed_lambdas_or_prods_or_letins
+ else []) in
+ let new_env = E.push_rel (n', None, s) env in
+ let new_idrefs = fresh_id''::idrefs in
+ (match Term.kind_of_term t with
+ T.Lambda _ ->
+ aux computeinnertypes (Some fresh_id'') new_passed_lambdas
+ new_env new_idrefs t
+ | _ ->
+ let t' = aux' new_env new_idrefs t in
+ (* eta-expansion for explicit named substitutions *)
+ (* can create nested Lambdas. Here we perform the *)
+ (* flattening. *)
+ match t' with
+ A.ALambdas (lambdas, t'') ->
+ A.ALambdas (lambdas@new_passed_lambdas, t'')
+ | _ ->
+ A.ALambdas (new_passed_lambdas, t')
+ )
+ | T.LetIn (n,s,t,d) ->
+ let n' =
+ match n with
+ N.Anonymous -> N.Anonymous
+ | _ ->
+ N.Name (Nameops.next_name_away n (Termops.ids_of_context env))
+ in
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ let sourcesort =
+ get_sort_family_of env evar_map
+ (CPropRetyping.get_type_of env evar_map s)
+ in
+ Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'')
+ (string_of_sort_family sourcesort) ;
+ let father_is_letin =
+ match father with
+ None -> false
+ | Some father' ->
+ match
+ Term.kind_of_term (Hashtbl.find ids_to_terms father')
+ with
+ T.LetIn _ -> true
+ | _ -> false
+ in
+ if is_a_Prop innersort then
+ add_inner_type fresh_id'' ;
+ let new_passed_letins =
+ (fresh_id'',n', aux' env idrefs s)::
+ (if father_is_letin then
+ passed_lambdas_or_prods_or_letins
+ else []) in
+ let new_env = E.push_rel (n', Some s, t) env in
+ let new_idrefs = fresh_id''::idrefs in
+ (match Term.kind_of_term d with
+ T.LetIn _ ->
+ aux computeinnertypes (Some fresh_id'') new_passed_letins
+ new_env new_idrefs d
+ | _ -> A.ALetIns
+ (new_passed_letins, aux' new_env new_idrefs d))
+ | T.App (h,t) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort then
+ add_inner_type fresh_id'' ;
+ let
+ compute_result_if_eta_expansion_not_required subst residual_args
+ =
+ let residual_args_not_empty = List.length residual_args > 0 in
+ let h' =
+ if residual_args_not_empty then
+ aux' env idrefs ~subst:(None,subst) h
+ else
+ aux' env idrefs ~subst:(Some fresh_id'',subst) h
+ in
+ (* maybe all the arguments were used for the explicit *)
+ (* named substitution *)
+ if residual_args_not_empty then
+ A.AApp (fresh_id'', h'::residual_args)
+ else
+ h'
+ in
+ let t' =
+ Array.fold_right (fun x i -> (aux' env idrefs x)::i) t []
+ in
+ explicit_substitute_and_eta_expand_if_required h
+ (Array.to_list t) t'
+ compute_result_if_eta_expansion_not_required
+ | T.Const kn ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort && expected_available then
+ add_inner_type fresh_id'' ;
+ let compute_result_if_eta_expansion_not_required _ _ =
+ A.AConst (fresh_id'', subst, (uri_of_kernel_name kn Constant))
+ in
+ let (_,subst') = subst in
+ explicit_substitute_and_eta_expand_if_required tt []
+ (List.map snd subst')
+ compute_result_if_eta_expansion_not_required
+ | T.Ind (kn,i) ->
+ let compute_result_if_eta_expansion_not_required _ _ =
+ A.AInd (fresh_id'', subst, (uri_of_kernel_name kn Inductive), i)
+ in
+ let (_,subst') = subst in
+ explicit_substitute_and_eta_expand_if_required tt []
+ (List.map snd subst')
+ compute_result_if_eta_expansion_not_required
+ | T.Construct ((kn,i),j) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort && expected_available then
+ add_inner_type fresh_id'' ;
+ let compute_result_if_eta_expansion_not_required _ _ =
+ A.AConstruct
+ (fresh_id'', subst, (uri_of_kernel_name kn Inductive), i, j)
+ in
+ let (_,subst') = subst in
+ explicit_substitute_and_eta_expand_if_required tt []
+ (List.map snd subst')
+ compute_result_if_eta_expansion_not_required
+ | T.Case ({T.ci_ind=(kn,i)},ty,term,a) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort then
+ add_inner_type fresh_id'' ;
+ let a' =
+ Array.fold_right (fun x i -> (aux' env idrefs x)::i) a []
+ in
+ A.ACase
+ (fresh_id'', (uri_of_kernel_name kn Inductive), i,
+ aux' env idrefs ty, aux' env idrefs term, a')
+ | T.Fix ((ai,i),(f,t,b)) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort then add_inner_type fresh_id'' ;
+ let fresh_idrefs =
+ Array.init (Array.length t) (function _ -> gen_id seed) in
+ let new_idrefs =
+ (List.rev (Array.to_list fresh_idrefs)) @ idrefs
+ in
+ let f' =
+ let ids = ref (Termops.ids_of_context env) in
+ Array.map
+ (function
+ N.Anonymous -> Util.error "Anonymous fix function met"
+ | N.Name id as n ->
+ let res = N.Name (Nameops.next_name_away n !ids) in
+ ids := id::!ids ;
+ res
+ ) f
+ in
+ A.AFix (fresh_id'', i,
+ Array.fold_right
+ (fun (id,fi,ti,bi,ai) i ->
+ let fi' =
+ match fi with
+ N.Name fi -> fi
+ | N.Anonymous -> Util.error "Anonymous fix function met"
+ in
+ (id, fi', ai,
+ aux' env idrefs ti,
+ aux' (E.push_rec_types (f',t,b) env) new_idrefs bi)::i)
+ (Array.mapi
+ (fun j x -> (fresh_idrefs.(j),x,t.(j),b.(j),ai.(j))) f'
+ ) []
+ )
+ | T.CoFix (i,(f,t,b)) ->
+ Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
+ if is_a_Prop innersort then add_inner_type fresh_id'' ;
+ let fresh_idrefs =
+ Array.init (Array.length t) (function _ -> gen_id seed) in
+ let new_idrefs =
+ (List.rev (Array.to_list fresh_idrefs)) @ idrefs
+ in
+ let f' =
+ let ids = ref (Termops.ids_of_context env) in
+ Array.map
+ (function
+ N.Anonymous -> Util.error "Anonymous fix function met"
+ | N.Name id as n ->
+ let res = N.Name (Nameops.next_name_away n !ids) in
+ ids := id::!ids ;
+ res
+ ) f
+ in
+ A.ACoFix (fresh_id'', i,
+ Array.fold_right
+ (fun (id,fi,ti,bi) i ->
+ let fi' =
+ match fi with
+ N.Name fi -> fi
+ | N.Anonymous -> Util.error "Anonymous fix function met"
+ in
+ (id, fi',
+ aux' env idrefs ti,
+ aux' (E.push_rec_types (f',t,b) env) new_idrefs bi)::i)
+ (Array.mapi
+ (fun j x -> (fresh_idrefs.(j),x,t.(j),b.(j)) ) f'
+ ) []
+ )
+ in
+ aux computeinnertypes None [] env idrefs t
+;;
+
+let acic_of_cic_context metasenv context t =
+ let ids_to_terms = Hashtbl.create 503 in
+ let constr_to_ids = Acic.CicHash.create 503 in
+ let ids_to_father_ids = Hashtbl.create 503 in
+ let ids_to_inner_sorts = Hashtbl.create 503 in
+ let ids_to_inner_types = Hashtbl.create 503 in
+ let seed = ref 0 in
+ acic_of_cic_context' true seed ids_to_terms constr_to_ids ids_to_father_ids
+ ids_to_inner_sorts ids_to_inner_types metasenv context t,
+ ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types
+;;
+
+let acic_object_of_cic_object pvars sigma obj =
+ let module A = Acic in
+ let ids_to_terms = Hashtbl.create 503 in
+ let constr_to_ids = Acic.CicHash.create 503 in
+ let ids_to_father_ids = Hashtbl.create 503 in
+ let ids_to_inner_sorts = Hashtbl.create 503 in
+ let ids_to_inner_types = Hashtbl.create 503 in
+ let ids_to_conjectures = Hashtbl.create 11 in
+ let ids_to_hypotheses = Hashtbl.create 127 in
+ let hypotheses_seed = ref 0 in
+ let conjectures_seed = ref 0 in
+ let seed = ref 0 in
+ let acic_term_of_cic_term_context' =
+ acic_of_cic_context' true seed ids_to_terms constr_to_ids ids_to_father_ids
+ ids_to_inner_sorts ids_to_inner_types pvars in
+(*CSC: is this the right env to use? Hhmmm. There is a problem: in *)
+(*CSC: Global.env () the object we are exporting is already defined, *)
+(*CSC: either in the environment or in the named context (in the case *)
+(*CSC: of variables. Is this a problem? *)
+ let env = Global.env () in
+ let acic_term_of_cic_term' ?fake_dependent_products =
+ acic_term_of_cic_term_context' ?fake_dependent_products env [] sigma in
+(*CSC: the fresh_id is not stored anywhere. This _MUST_ be fixed using *)
+(*CSC: a modified version of the already existent fresh_id function *)
+ let fresh_id () =
+ let res = "i" ^ string_of_int !seed in
+ incr seed ;
+ res
+ in
+ let aobj =
+ match obj with
+ A.Constant (id,bo,ty,params) ->
+ let abo =
+ match bo with
+ None -> None
+ | Some bo' -> Some (acic_term_of_cic_term' bo' (Some ty))
+ in
+ let aty = acic_term_of_cic_term' ty None in
+ A.AConstant (fresh_id (),id,abo,aty,params)
+ | A.Variable (id,bo,ty,params) ->
+ let abo =
+ match bo with
+ Some bo -> Some (acic_term_of_cic_term' bo (Some ty))
+ | None -> None
+ in
+ let aty = acic_term_of_cic_term' ty None in
+ A.AVariable (fresh_id (),id,abo,aty,params)
+ | A.CurrentProof (id,conjectures,bo,ty) ->
+ let aconjectures =
+ List.map
+ (function (i,canonical_context,term) as conjecture ->
+ let cid = "c" ^ string_of_int !conjectures_seed in
+ Hashtbl.add ids_to_conjectures cid conjecture ;
+ incr conjectures_seed ;
+ let canonical_env,idrefs',acanonical_context =
+ let rec aux env idrefs =
+ function
+ [] -> env,idrefs,[]
+ | ((n,decl_or_def) as hyp)::tl ->
+ let hid = "h" ^ string_of_int !hypotheses_seed in
+ let new_idrefs = hid::idrefs in
+ Hashtbl.add ids_to_hypotheses hid hyp ;
+ incr hypotheses_seed ;
+ match decl_or_def with
+ A.Decl t ->
+ let final_env,final_idrefs,atl =
+ aux (Environ.push_rel (Names.Name n,None,t) env)
+ new_idrefs tl
+ in
+ let at =
+ acic_term_of_cic_term_context' env idrefs sigma t None
+ in
+ final_env,final_idrefs,(hid,(n,A.Decl at))::atl
+ | A.Def (t,ty) ->
+ let final_env,final_idrefs,atl =
+ aux
+ (Environ.push_rel (Names.Name n,Some t,ty) env)
+ new_idrefs tl
+ in
+ let at =
+ acic_term_of_cic_term_context' env idrefs sigma t None
+ in
+ let dummy_never_used =
+ let s = "dummy_never_used" in
+ A.ARel (s,99,s,Names.id_of_string s)
+ in
+ final_env,final_idrefs,
+ (hid,(n,A.Def (at,dummy_never_used)))::atl
+ in
+ aux env [] canonical_context
+ in
+ let aterm =
+ acic_term_of_cic_term_context' canonical_env idrefs' sigma term
+ None
+ in
+ (cid,i,List.rev acanonical_context,aterm)
+ ) conjectures in
+ let abo = acic_term_of_cic_term_context' env [] sigma bo (Some ty) in
+ let aty = acic_term_of_cic_term_context' env [] sigma ty None in
+ A.ACurrentProof (fresh_id (),id,aconjectures,abo,aty)
+ | A.InductiveDefinition (tys,params,paramsno) ->
+ let env' =
+ List.fold_right
+ (fun (name,_,arity,_) env ->
+ Environ.push_rel (Names.Name name, None, arity) env
+ ) (List.rev tys) env in
+ let idrefs = List.map (function _ -> gen_id seed) tys in
+ let atys =
+ List.map2
+ (fun id (name,inductive,ty,cons) ->
+ let acons =
+ List.map
+ (function (name,ty) ->
+ (name,
+ acic_term_of_cic_term_context' ~fake_dependent_products:true
+ env' idrefs Evd.empty ty None)
+ ) cons
+ in
+ let aty =
+ acic_term_of_cic_term' ~fake_dependent_products:true ty None
+ in
+ (id,name,inductive,aty,acons)
+ ) (List.rev idrefs) tys
+ in
+ A.AInductiveDefinition (fresh_id (),atys,params,paramsno)
+ in
+ aobj,ids_to_terms,constr_to_ids,ids_to_father_ids,ids_to_inner_sorts,
+ ids_to_inner_types,ids_to_conjectures,ids_to_hypotheses
+;;
diff --git a/contrib/xml/doubleTypeInference.ml b/contrib/xml/doubleTypeInference.ml
new file mode 100644
index 00000000..f0e3f5e3
--- /dev/null
+++ b/contrib/xml/doubleTypeInference.ml
@@ -0,0 +1,288 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(*CSC: tutto da rifare!!! Basarsi su Retyping che e' meno costoso! *)
+type types = {synthesized : Term.types ; expected : Term.types option};;
+
+let prerr_endline _ = ();;
+
+let cprop =
+ let module N = Names in
+ N.make_kn
+ (N.MPfile
+ (Libnames.dirpath_of_string "CoRN.algebra.CLogic"))
+ (N.make_dirpath [])
+ (N.mk_label "CProp")
+;;
+
+let whd_betadeltaiotacprop env evar_map ty =
+ let module R = Rawterm in
+ let red_exp =
+ R.Hnf (*** Instead CProp is made Opaque ***)
+(*
+ R.Cbv
+ {R.rBeta = true ; R.rIota = true ; R.rDelta = true; R.rZeta=true ;
+ R.rConst = [Names.EvalConstRef cprop]
+ }
+*)
+ in
+Conv_oracle.set_opaque_const cprop;
+prerr_endline "###whd_betadeltaiotacprop:" ;
+let xxx =
+(*Pp.msgerr (Printer.prterm_env env ty);*)
+prerr_endline "";
+ Tacred.reduction_of_redexp red_exp env evar_map ty
+in
+prerr_endline "###FINE" ;
+(*
+Pp.msgerr (Printer.prterm_env env xxx);
+*)
+prerr_endline "";
+Conv_oracle.set_transparent_const cprop;
+xxx
+;;
+
+
+(* Code similar to the code in the Typing module, but: *)
+(* - the term is already assumed to be well typed *)
+(* - some checks have been removed *)
+(* - both the synthesized and expected types of every *)
+(* node are computed (Coscoy's double type inference) *)
+
+let assumption_of_judgment env sigma j =
+ Typeops.assumption_of_judgment env (Evarutil.j_nf_evar sigma j)
+;;
+
+let type_judgment env sigma j =
+ Typeops.type_judgment env (Evarutil.j_nf_evar sigma j)
+;;
+
+let type_judgment_cprop env sigma j =
+ match Term.kind_of_term(whd_betadeltaiotacprop env sigma (Term.body_of_type j.Environ.uj_type)) with
+ | Term.Sort s -> Some {Environ.utj_val = j.Environ.uj_val; Environ.utj_type = s }
+ | _ -> None (* None means the CProp constant *)
+;;
+
+let double_type_of env sigma cstr expectedty subterms_to_types =
+ (*CSC: the code is inefficient because judgments are created just to be *)
+ (*CSC: destroyed using Environ.j_type. Moreover I am pretty sure that the *)
+ (*CSC: functions used do checks that we do not need *)
+ let rec execute env sigma cstr expectedty =
+ let module T = Term in
+ let module E = Environ in
+ (* the type part is the synthesized type *)
+ let judgement =
+ match T.kind_of_term cstr with
+ T.Meta n ->
+ Util.error
+ "DoubleTypeInference.double_type_of: found a non-instanciated goal"
+
+ | T.Evar ((n,l) as ev) ->
+ let ty = Unshare.unshare (Instantiate.existential_type sigma ev) in
+ let jty = execute env sigma ty None in
+ let jty = assumption_of_judgment env sigma jty in
+ let evar_context = (Evd.map sigma n).Evd.evar_hyps in
+ let rec iter actual_args evar_context =
+ match actual_args,evar_context with
+ [],[] -> ()
+ | he1::tl1,(n,_,ty)::tl2 ->
+ (* for side-effects *)
+ let _ = execute env sigma he1 (Some ty) in
+ let tl2' =
+ List.map
+ (function (m,bo,ty) ->
+ (* Warning: the substitution should be performed also on bo *)
+ (* This is not done since bo is not used later yet *)
+ (m,bo,Unshare.unshare (T.replace_vars [n,he1] ty))
+ ) tl2
+ in
+ iter tl1 tl2'
+ | _,_ -> assert false
+ in
+ (* for side effects only *)
+ iter (List.rev (Array.to_list l)) (List.rev evar_context) ;
+ E.make_judge cstr jty
+
+ | T.Rel n ->
+ Typeops.judge_of_relative env n
+
+ | T.Var id ->
+ Typeops.judge_of_variable env id
+
+ | T.Const c ->
+ E.make_judge cstr (E.constant_type env c)
+
+ | T.Ind ind ->
+ E.make_judge cstr (Inductive.type_of_inductive env ind)
+
+ | T.Construct cstruct ->
+ E.make_judge cstr (Inductive.type_of_constructor env cstruct)
+
+ | T.Case (ci,p,c,lf) ->
+ let expectedtype =
+ Reduction.whd_betadeltaiota env (Retyping.get_type_of env sigma c) in
+ let cj = execute env sigma c (Some expectedtype) in
+ let pj = execute env sigma p None in
+ let (expectedtypes,_,_) =
+ let indspec = Inductive.find_rectype env cj.Environ.uj_type in
+ Inductive.type_case_branches env indspec pj cj.Environ.uj_val
+ in
+ let lfj =
+ execute_array env sigma lf
+ (Array.map (function x -> Some x) expectedtypes) in
+ let (j,_) = Typeops.judge_of_case env ci pj cj lfj in
+ j
+
+ | T.Fix ((vn,i as vni),recdef) ->
+ let (_,tys,_ as recdef') = execute_recdef env sigma recdef in
+ let fix = (vni,recdef') in
+ E.make_judge (T.mkFix fix) tys.(i)
+
+ | T.CoFix (i,recdef) ->
+ let (_,tys,_ as recdef') = execute_recdef env sigma recdef in
+ let cofix = (i,recdef') in
+ E.make_judge (T.mkCoFix cofix) tys.(i)
+
+ | T.Sort (T.Prop c) ->
+ Typeops.judge_of_prop_contents c
+
+ | T.Sort (T.Type u) ->
+(*CSC: In case of need, I refresh the universe. But exportation of the *)
+(*CSC: right universe level information is destroyed. It must be changed *)
+(*CSC: again once Judicael will introduce his non-bugged algebraic *)
+(*CSC: universes. *)
+(try
+ Typeops.judge_of_type u
+ with _ -> (* Successor of a non universe-variable universe anomaly *)
+ (Pp.ppnl (Pp.str "Warning: universe refresh performed!!!") ; flush stdout ) ;
+ Typeops.judge_of_type (Termops.new_univ ())
+)
+
+ | T.App (f,args) ->
+ let expected_head =
+ Reduction.whd_betadeltaiota env (Retyping.get_type_of env sigma f) in
+ let j = execute env sigma f (Some expected_head) in
+ let expected_args =
+ let rec aux typ =
+ function
+ [] -> []
+ | hj::restjl ->
+ match T.kind_of_term (Reduction.whd_betadeltaiota env typ) with
+ T.Prod (_,c1,c2) ->
+ (Some (Reductionops.nf_beta c1)) ::
+ (aux (T.subst1 hj c2) restjl)
+ | _ -> assert false
+ in
+ Array.of_list (aux j.Environ.uj_type (Array.to_list args))
+ in
+ let jl = execute_array env sigma args expected_args in
+ let (j,_) = Typeops.judge_of_apply env j jl in
+ j
+
+ | T.Lambda (name,c1,c2) ->
+ let j = execute env sigma c1 None in
+ let var = type_judgment env sigma j in
+ let env1 = E.push_rel (name,None,var.E.utj_val) env in
+ let expectedc2type =
+ match expectedty with
+ None -> None
+ | Some ety ->
+ match T.kind_of_term (Reduction.whd_betadeltaiota env ety) with
+ T.Prod (_,_,expected_target_type) ->
+ Some (Reductionops.nf_beta expected_target_type)
+ | _ -> assert false
+ in
+ let j' = execute env1 sigma c2 expectedc2type in
+ Typeops.judge_of_abstraction env1 name var j'
+
+ | T.Prod (name,c1,c2) ->
+ let j = execute env sigma c1 None in
+ let varj = type_judgment env sigma j in
+ let env1 = E.push_rel (name,None,varj.E.utj_val) env in
+ let j' = execute env1 sigma c2 None in
+ (match type_judgment_cprop env1 sigma j' with
+ Some varj' -> Typeops.judge_of_product env name varj varj'
+ | None ->
+ (* CProp found *)
+ { Environ.uj_val = T.mkProd (name, j.Environ.uj_val, j'.Environ.uj_val);
+ Environ.uj_type = T.mkConst cprop })
+
+ | T.LetIn (name,c1,c2,c3) ->
+(*CSC: What are the right expected types for the source and *)
+(*CSC: target of a LetIn? None used. *)
+ let j1 = execute env sigma c1 None in
+ let j2 = execute env sigma c2 None in
+ let j2 = type_judgment env sigma j2 in
+ let env1 =
+ E.push_rel (name,Some j1.E.uj_val,j2.E.utj_val) env
+ in
+ let j3 = execute env1 sigma c3 None in
+ Typeops.judge_of_letin env name j1 j2 j3
+
+ | T.Cast (c,t) ->
+ let cj = execute env sigma c (Some (Reductionops.nf_beta t)) in
+ let tj = execute env sigma t None in
+ let tj = type_judgment env sigma tj in
+ let j, _ = Typeops.judge_of_cast env cj tj in
+ j
+ in
+ let synthesized = E.j_type judgement in
+ let synthesized' = Reductionops.nf_beta synthesized in
+ let types,res =
+ match expectedty with
+ None ->
+ (* No expected type *)
+ {synthesized = synthesized' ; expected = None}, synthesized
+ (*CSC: in HELM we did not considered Casts to be irrelevant. *)
+ (*CSC: does it really matter? (eq_constr is up to casts) *)
+ | Some ty when Term.eq_constr synthesized' ty ->
+ (* The expected type is synthactically equal to *)
+ (* the synthesized type. Let's forget it. *)
+ {synthesized = synthesized' ; expected = None}, synthesized
+ | Some expectedty' ->
+ {synthesized = synthesized' ; expected = Some expectedty'},
+ expectedty'
+ in
+(*CSC: debugging stuff to be removed *)
+if Acic.CicHash.mem subterms_to_types cstr then
+ (Pp.ppnl (Pp.(++) (Pp.str "DUPLICATE INSERTION: ") (Printer.prterm cstr)) ; flush stdout ) ;
+ Acic.CicHash.add subterms_to_types cstr types ;
+ E.make_judge cstr res
+
+
+ and execute_recdef env sigma (names,lar,vdef) =
+ let length = Array.length lar in
+ let larj =
+ execute_array env sigma lar (Array.make length None) in
+ let lara = Array.map (assumption_of_judgment env sigma) larj in
+ let env1 = Environ.push_rec_types (names,lara,vdef) env in
+ let expectedtypes =
+ Array.map (function i -> Some (Term.lift length i)) lar
+ in
+ let vdefj = execute_array env1 sigma vdef expectedtypes in
+ let vdefv = Array.map Environ.j_val vdefj in
+ (names,lara,vdefv)
+
+ and execute_array env sigma v expectedtypes =
+ let jl =
+ execute_list env sigma (Array.to_list v) (Array.to_list expectedtypes)
+ in
+ Array.of_list jl
+
+ and execute_list env sigma =
+ List.map2 (execute env sigma)
+
+in
+ ignore (execute env sigma cstr expectedty)
+;;
diff --git a/contrib/xml/doubleTypeInference.mli b/contrib/xml/doubleTypeInference.mli
new file mode 100644
index 00000000..33d3e5cd
--- /dev/null
+++ b/contrib/xml/doubleTypeInference.mli
@@ -0,0 +1,24 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+type types = { synthesized : Term.types; expected : Term.types option; }
+
+val cprop : Names.kernel_name
+
+val whd_betadeltaiotacprop :
+ Environ.env -> Evd.evar_map -> Term.constr -> Term.constr
+
+val double_type_of :
+ Environ.env -> Evd.evar_map -> Term.constr -> Term.constr option ->
+ types Acic.CicHash.t -> unit
diff --git a/contrib/xml/proof2aproof.ml b/contrib/xml/proof2aproof.ml
new file mode 100644
index 00000000..165a456d
--- /dev/null
+++ b/contrib/xml/proof2aproof.ml
@@ -0,0 +1,169 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(* Note: we can not use the Set module here because we _need_ physical *)
+(* equality and there exists no comparison function compatible with *)
+(* physical equality. *)
+
+module S =
+ struct
+ let empty = []
+ let mem = List.memq
+ let add x l = x::l
+ end
+;;
+
+(* evar reduction that preserves some terms *)
+let nf_evar sigma ~preserve =
+ let module T = Term in
+ let rec aux t =
+ if preserve t then t else
+ match T.kind_of_term t with
+ | T.Rel _ | T.Meta _ | T.Var _ | T.Sort _ | T.Const _ | T.Ind _
+ | T.Construct _ -> t
+ | T.Cast (c1,c2) -> T.mkCast (aux c1, aux c2)
+ | T.Prod (na,c1,c2) -> T.mkProd (na, aux c1, aux c2)
+ | T.Lambda (na,t,c) -> T.mkLambda (na, aux t, aux c)
+ | T.LetIn (na,b,t,c) -> T.mkLetIn (na, aux b, aux t, aux c)
+ | T.App (c,l) ->
+ let c' = aux c in
+ let l' = Array.map aux l in
+ (match T.kind_of_term c' with
+ T.App (c'',l'') -> T.mkApp (c'', Array.append l'' l')
+ | T.Cast (he,_) ->
+ (match T.kind_of_term he with
+ T.App (c'',l'') -> T.mkApp (c'', Array.append l'' l')
+ | _ -> T.mkApp (c', l')
+ )
+ | _ -> T.mkApp (c', l'))
+ | T.Evar (e,l) when Evd.in_dom sigma e & Evd.is_defined sigma e ->
+ aux (Instantiate.existential_value sigma (e,l))
+ | T.Evar (e,l) -> T.mkEvar (e, Array.map aux l)
+ | T.Case (ci,p,c,bl) -> T.mkCase (ci, aux p, aux c, Array.map aux bl)
+ | T.Fix (ln,(lna,tl,bl)) ->
+ T.mkFix (ln,(lna,Array.map aux tl,Array.map aux bl))
+ | T.CoFix(ln,(lna,tl,bl)) ->
+ T.mkCoFix (ln,(lna,Array.map aux tl,Array.map aux bl))
+ in
+ aux
+;;
+
+(* Unshares a proof-tree. *)
+(* Warning: statuses, goals, prim_rules and tactic_exprs are not unshared! *)
+let rec unshare_proof_tree =
+ let module PT = Proof_type in
+ function {PT.open_subgoals = status ; PT.goal = goal ; PT.ref = ref} ->
+ let unshared_ref =
+ match ref with
+ None -> None
+ | Some (rule,pfs) ->
+ let unshared_rule =
+ match rule with
+ PT.Prim prim -> PT.Prim prim
+ | PT.Change_evars -> PT.Change_evars
+ | PT.Tactic (tactic_expr, pf) ->
+ PT.Tactic (tactic_expr, unshare_proof_tree pf)
+ in
+ Some (unshared_rule, List.map unshare_proof_tree pfs)
+ in
+ {PT.open_subgoals = status ; PT.goal = goal ; PT.ref = unshared_ref}
+;;
+
+module ProofTreeHash =
+ Hashtbl.Make
+ (struct
+ type t = Proof_type.proof_tree
+ let equal = (==)
+ let hash = Hashtbl.hash
+ end)
+;;
+
+
+let extract_open_proof sigma pf =
+ let module PT = Proof_type in
+ let module L = Logic in
+ let sigma = ref sigma in
+ let proof_tree_to_constr = ProofTreeHash.create 503 in
+ let proof_tree_to_flattened_proof_tree = ProofTreeHash.create 503 in
+ let unshared_constrs = ref S.empty in
+ let rec proof_extractor vl node =
+ let constr =
+ match node with
+ {PT.ref=Some(PT.Prim _,_)} as pf ->
+ L.prim_extractor proof_extractor vl pf
+
+ | {PT.ref=Some(PT.Tactic (_,hidden_proof),spfl)} ->
+ let sgl,v = Refiner.frontier hidden_proof in
+ let flat_proof = v spfl in
+ ProofTreeHash.add proof_tree_to_flattened_proof_tree node flat_proof ;
+ proof_extractor vl flat_proof
+
+ | {PT.ref=Some(PT.Change_evars,[pf])} -> (proof_extractor vl) pf
+
+ | {PT.ref=None;PT.goal=goal} ->
+ let visible_rels =
+ Util.map_succeed
+ (fun id ->
+ (* Section variables are in the [id] list but are not *)
+ (* lambda abstracted in the term [vl] *)
+ try let n = Util.list_index id vl in (n,id)
+ with Not_found -> failwith "caught")
+(*CSC: the above function must be modified such that when it is found *)
+(*CSC: it becomes a Rel; otherwise a Var. Then it can be already used *)
+(*CSC: as the evar_instance. Ordering the instance becomes useless (it *)
+(*CSC: will already be ordered. *)
+ (Termops.ids_of_named_context goal.Evd.evar_hyps) in
+ let sorted_rels =
+ Sort.list (fun (n1,_) (n2,_) -> n1 < n2 ) visible_rels in
+ let context =
+ List.map
+ (fun (_,id) -> Sign.lookup_named id goal.Evd.evar_hyps)
+ sorted_rels
+ in
+(*CSC: the section variables in the right order must be added too *)
+ let evar_instance = List.map (fun (n,_) -> Term.mkRel n) sorted_rels in
+ let env = Global.env_of_context context in
+ let sigma',evar =
+ Evarutil.new_isevar_sign env !sigma goal.Evd.evar_concl evar_instance
+ in
+ sigma := sigma' ;
+ evar
+
+ | _ -> Util.anomaly "Bug : a case has been forgotten in proof_extractor"
+ in
+ let unsharedconstr =
+ let evar_nf_constr =
+ nf_evar !sigma ~preserve:(function e -> S.mem e !unshared_constrs) constr
+ in
+ Unshare.unshare
+ ~already_unshared:(function e -> S.mem e !unshared_constrs)
+ evar_nf_constr
+ in
+(*CSC: debugging stuff to be removed *)
+if ProofTreeHash.mem proof_tree_to_constr node then
+ Pp.ppnl (Pp.(++) (Pp.str "#DUPLICATE INSERTION: ") (Refiner.print_proof !sigma [] node)) ;
+ ProofTreeHash.add proof_tree_to_constr node unsharedconstr ;
+ unshared_constrs := S.add unsharedconstr !unshared_constrs ;
+ unsharedconstr
+ in
+ let unshared_pf = unshare_proof_tree pf in
+ let pfterm = proof_extractor [] unshared_pf in
+ (pfterm, !sigma, proof_tree_to_constr, proof_tree_to_flattened_proof_tree,
+ unshared_pf)
+;;
+
+let extract_open_pftreestate pts =
+ extract_open_proof (Refiner.evc_of_pftreestate pts)
+ (Tacmach.proof_of_pftreestate pts)
+;;
diff --git a/contrib/xml/proofTree2Xml.ml4 b/contrib/xml/proofTree2Xml.ml4
new file mode 100644
index 00000000..b9b66774
--- /dev/null
+++ b/contrib/xml/proofTree2Xml.ml4
@@ -0,0 +1,211 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+let prooftreedtdname = "http://mowgli.cs.unibo.it/dtd/prooftree.dtd";;
+
+let std_ppcmds_to_string s =
+ Pp.msg_with Format.str_formatter s;
+ Format.flush_str_formatter ()
+;;
+
+let idref_of_id id = "v" ^ id;;
+
+(* Transform a constr to an Xml.token Stream.t *)
+(* env is a named context *)
+(*CSC: in verita' dovrei "separare" le variabili vere e lasciarle come Var! *)
+let constr_to_xml obj sigma env =
+ let ids_to_terms = Hashtbl.create 503 in
+ let constr_to_ids = Acic.CicHash.create 503 in
+ let ids_to_father_ids = Hashtbl.create 503 in
+ let ids_to_inner_sorts = Hashtbl.create 503 in
+ let ids_to_inner_types = Hashtbl.create 503 in
+
+ let pvars = [] in
+ (* named_context holds section variables and local variables *)
+ let named_context = Environ.named_context env in
+ (* real_named_context holds only the section variables *)
+ let real_named_context = Environ.named_context (Global.env ()) in
+ (* named_context' holds only the local variables *)
+ let named_context' =
+ List.filter (function n -> not (List.mem n real_named_context)) named_context
+ in
+ let idrefs =
+ List.map
+ (function x,_,_ -> idref_of_id (Names.string_of_id x)) named_context' in
+ let rel_context = Sign.push_named_to_rel_context named_context' [] in
+ let rel_env =
+ Environ.push_rel_context rel_context
+ (Environ.reset_with_named_context real_named_context env) in
+ let obj' =
+ Term.subst_vars (List.map (function (i,_,_) -> i) named_context') obj in
+ let seed = ref 0 in
+ try
+ let annobj =
+ Cic2acic.acic_of_cic_context' false seed ids_to_terms constr_to_ids
+ ids_to_father_ids ids_to_inner_sorts ids_to_inner_types pvars rel_env
+ idrefs sigma (Unshare.unshare obj') None
+ in
+ Acic2Xml.print_term ids_to_inner_sorts annobj
+ with e ->
+ Util.anomaly
+ ("Problem during the conversion of constr into XML: " ^
+ Printexc.to_string e)
+(* CSC: debugging stuff
+Pp.ppnl (Pp.str "Problem during the conversion of constr into XML") ;
+Pp.ppnl (Pp.str "ENVIRONMENT:") ;
+Pp.ppnl (Printer.pr_context_of rel_env) ;
+Pp.ppnl (Pp.str "TERM:") ;
+Pp.ppnl (Printer.prterm_env rel_env obj') ;
+Pp.ppnl (Pp.str "RAW-TERM:") ;
+Pp.ppnl (Printer.prterm obj') ;
+Xml.xml_empty "MISSING TERM" [] (*; raise e*)
+*)
+;;
+
+let first_word s =
+ try let i = String.index s ' ' in
+ String.sub s 0 i
+ with _ -> s
+;;
+
+let string_of_prim_rule x = match x with
+ | Proof_type.Intro _-> "Intro"
+ | Proof_type.Intro_replacing _-> "Intro_replacing"
+ | Proof_type.Cut (_,_,_) -> "Cut"
+ | Proof_type.FixRule (_,_,_) -> "FixRule"
+ | Proof_type.Cofix (_,_)-> "Cofix"
+ | Proof_type.Refine _ -> "Refine"
+ | Proof_type.Convert_concl _ -> "Convert_concl"
+ | Proof_type.Convert_hyp _->"Convert_hyp"
+ | Proof_type.Thin _ -> "Thin"
+ | Proof_type.ThinBody _-> "ThinBody"
+ | Proof_type.Move (_,_,_) -> "Move"
+ | Proof_type.Rename (_,_) -> "Rename"
+
+
+let
+ print_proof_tree curi sigma0 pf proof_tree_to_constr
+ proof_tree_to_flattened_proof_tree constr_to_ids
+=
+ let module PT = Proof_type in
+ let module L = Logic in
+ let module X = Xml in
+ let module T = Tacexpr in
+ let ids_of_node node =
+ let constr = Proof2aproof.ProofTreeHash.find proof_tree_to_constr node in
+(*
+let constr =
+ try
+ Proof2aproof.ProofTreeHash.find proof_tree_to_constr node
+ with _ -> Pp.ppnl (Pp.(++) (Pp.str "Node of the proof-tree that generated
+no lambda-term: ") (Refiner.print_script true (Evd.empty)
+(Global.named_context ()) node)) ; assert false (* Closed bug, should not
+happen any more *)
+in
+*)
+ try
+ Some (Acic.CicHash.find constr_to_ids constr)
+ with _ ->
+Pp.ppnl (Pp.(++) (Pp.str
+"The_generated_term_is_not_a_subterm_of_the_final_lambda_term")
+(Printer.prterm constr)) ;
+ None
+ in
+ let rec aux node old_hyps =
+ let of_attribute =
+ match ids_of_node node with
+ None -> []
+ | Some id -> ["of",id]
+ in
+ match node with
+ {PT.ref=Some(PT.Prim tactic_expr,nodes)} ->
+ let tac = string_of_prim_rule tactic_expr in
+ let of_attribute = ("name",tac)::of_attribute in
+ if nodes = [] then
+ X.xml_empty "Prim" of_attribute
+ else
+ X.xml_nempty "Prim" of_attribute
+ (List.fold_left
+ (fun i n -> [< i ; (aux n old_hyps) >]) [<>] nodes)
+
+ | {PT.goal=goal;
+ PT.ref=Some(PT.Tactic (tactic_expr,hidden_proof),nodes)} ->
+ (* [hidden_proof] is the proof of the tactic; *)
+ (* [nodes] are the proof of the subgoals generated by the tactic; *)
+ (* [flat_proof] if the proof-tree obtained substituting [nodes] *)
+ (* for the holes in [hidden_proof] *)
+ let flat_proof =
+ Proof2aproof.ProofTreeHash.find proof_tree_to_flattened_proof_tree node
+ in begin
+ match tactic_expr with
+ | T.TacArg (T.Tacexp _) ->
+ (* We don't need to keep the level of abstraction introduced at *)
+ (* user-level invocation of tactic... (see Tacinterp.hide_interp)*)
+ aux flat_proof old_hyps
+ | _ ->
+ (****** la tactique employee *)
+ let prtac = if !Options.v7 then Pptactic.pr_tactic else Pptacticnew.pr_tactic (Global.env()) in
+ let tac = std_ppcmds_to_string (prtac tactic_expr) in
+ let tacname= first_word tac in
+ let of_attribute = ("name",tacname)::("script",tac)::of_attribute in
+
+ (****** le but *)
+ let {Evd.evar_concl=concl;
+ Evd.evar_hyps=hyps}=goal in
+
+ let rc = (Proof_trees.rc_of_gc sigma0 goal) in
+ let sigma = Proof_trees.get_gc rc in
+ let hyps = Proof_trees.get_hyps rc in
+ let env= Proof_trees.get_env rc in
+
+ let xgoal =
+ X.xml_nempty "Goal" [] (constr_to_xml concl sigma env) in
+
+ let rec build_hyps =
+ function
+ | [] -> xgoal
+ | (id,c,tid)::hyps1 ->
+ let id' = Names.string_of_id id in
+ [< build_hyps hyps1;
+ (X.xml_nempty "Hypothesis"
+ ["id",idref_of_id id' ; "name",id']
+ (constr_to_xml tid sigma env))
+ >] in
+ let old_names = List.map (fun (id,c,tid)->id) old_hyps in
+ let new_hyps =
+ List.filter (fun (id,c,tid)-> not (List.mem id old_names)) hyps in
+
+ X.xml_nempty "Tactic" of_attribute
+ [<(build_hyps new_hyps) ; (aux flat_proof hyps)>]
+ end
+
+ | {PT.ref=Some(PT.Change_evars,nodes)} ->
+ X.xml_nempty "Change_evars" of_attribute
+ (List.fold_left
+ (fun i n -> [< i ; (aux n old_hyps) >]) [<>] nodes)
+
+ | {PT.ref=None;PT.goal=goal} ->
+ X.xml_empty "Open_goal" of_attribute
+ in
+ [< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
+ X.xml_cdata ("<!DOCTYPE ProofTree SYSTEM \""^prooftreedtdname ^"\">\n\n");
+ X.xml_nempty "ProofTree" ["of",curi] (aux pf [])
+ >]
+;;
+
+
+(* Hook registration *)
+(* CSC: debranched since it is bugged
+Xmlcommand.set_print_proof_tree print_proof_tree;;
+*)
diff --git a/contrib/xml/theoryobject.dtd b/contrib/xml/theoryobject.dtd
new file mode 100644
index 00000000..953fe009
--- /dev/null
+++ b/contrib/xml/theoryobject.dtd
@@ -0,0 +1,62 @@
+<?xml encoding="ISO-8859-1"?>
+
+<!-- Copyright (C) 2000-2004, HELM Team -->
+<!-- -->
+<!-- This file is part of HELM, an Hypertextual, Electronic -->
+<!-- Library of Mathematics, developed at the Computer Science -->
+<!-- Department, University of Bologna, Italy. -->
+<!-- -->
+<!-- HELM is free software; you can redistribute it and/or -->
+<!-- modify it under the terms of the GNU General Public License -->
+<!-- as published by the Free Software Foundation; either version 2 -->
+<!-- of the License, or (at your option) any later version. -->
+<!-- -->
+<!-- HELM is distributed in the hope that it will be useful, -->
+<!-- but WITHOUT ANY WARRANTY; without even the implied warranty of -->
+<!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -->
+<!-- GNU General Public License for more details. -->
+<!-- -->
+<!-- You should have received a copy of the GNU General Public License -->
+<!-- along with HELM; if not, write to the Free Software -->
+<!-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, -->
+<!-- MA 02111-1307, USA. -->
+<!-- -->
+<!-- For details, see the HELM World-Wide-Web page, -->
+<!-- http://cs.unibo.it/helm/. -->
+
+
+
+<!-- Notice: the markup described in this DTD is meant to be embedded -->
+<!-- in foreign markup (e.g. XHTML) -->
+
+<!ENTITY % theorystructure
+ '(ht:AXIOM|ht:DEFINITION|ht:THEOREM|ht:VARIABLE|ht:SECTION|ht:MUTUAL)*'>
+
+<!ELEMENT ht:SECTION (%theorystructure;)>
+<!ATTLIST ht:SECTION
+ uri CDATA #REQUIRED>
+
+<!ELEMENT ht:MUTUAL (ht:DEFINITION,ht:DEFINITION+)>
+
+<!-- Theory Items -->
+
+<!ELEMENT ht:AXIOM (Axiom)>
+<!ATTLIST ht:AXIOM
+ uri CDATA #REQUIRED
+ as (Axiom|Declaration) #REQUIRED>
+
+<!ELEMENT ht:DEFINITION (Definition|InductiveDefinition)>
+<!ATTLIST ht:DEFINITION
+ uri CDATA #REQUIRED
+ as (Definition|InteractiveDefinition|Inductive|CoInductive
+ |Record) #REQUIRED>
+
+<!ELEMENT ht:THEOREM (type)>
+<!ATTLIST ht:THEOREM
+ uri CDATA #REQUIRED
+ as (Theorem|Lemma|Corollary|Fact|Remark) #REQUIRED>
+
+<!ELEMENT ht:VARIABLE (Variable)>
+<!ATTLIST ht:VARIABLE
+ uri CDATA #REQUIRED
+ as (Assumption|Hypothesis|LocalDefinition|LocalFact) #REQUIRED>
diff --git a/contrib/xml/unshare.ml b/contrib/xml/unshare.ml
new file mode 100644
index 00000000..f30f8230
--- /dev/null
+++ b/contrib/xml/unshare.ml
@@ -0,0 +1,52 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+exception CanNotUnshare;;
+
+(* [unshare t] gives back a copy of t where all sharing has been removed *)
+(* Physical equality becomes meaningful on unshared terms. Hashtables that *)
+(* use physical equality can now be used to associate information to evey *)
+(* node of the term. *)
+let unshare ?(already_unshared = function _ -> false) t =
+ let obj = Obj.repr t in
+ let rec aux obj =
+ if already_unshared (Obj.obj obj) then
+ obj
+ else
+ (if Obj.is_int obj then
+ obj
+ else if Obj.is_block obj then
+ begin
+ let tag = Obj.tag obj in
+ if tag < Obj.no_scan_tag then
+ begin
+ let size = Obj.size obj in
+ let new_obj = Obj.new_block 0 size in
+ Obj.set_tag new_obj tag ;
+ for i = 0 to size - 1 do
+ Obj.set_field new_obj i (aux (Obj.field obj i))
+ done ;
+ new_obj
+ end
+ else if tag = Obj.string_tag then
+ obj
+ else
+ raise CanNotUnshare
+ end
+ else
+ raise CanNotUnshare
+ )
+ in
+ Obj.obj (aux obj)
+;;
diff --git a/contrib/xml/unshare.mli b/contrib/xml/unshare.mli
new file mode 100644
index 00000000..31ba9037
--- /dev/null
+++ b/contrib/xml/unshare.mli
@@ -0,0 +1,21 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+exception CanNotUnshare;;
+
+(* [unshare t] gives back a copy of t where all sharing has been removed *)
+(* Physical equality becomes meaningful on unshared terms. Hashtables that *)
+(* use physical equality can now be used to associate information to evey *)
+(* node of the term. *)
+val unshare: ?already_unshared:('a -> bool) -> 'a -> 'a
diff --git a/contrib/xml/xml.ml4 b/contrib/xml/xml.ml4
new file mode 100644
index 00000000..d0c64f30
--- /dev/null
+++ b/contrib/xml/xml.ml4
@@ -0,0 +1,73 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(* the type token for XML cdata, empty elements and not-empty elements *)
+(* Usage: *)
+(* Str cdata *)
+(* Empty (element_name, [attrname1, value1 ; ... ; attrnamen, valuen] *)
+(* NEmpty (element_name, [attrname1, value2 ; ... ; attrnamen, valuen], *)
+(* content *)
+type token = Str of string
+ | Empty of string * (string * string) list
+ | NEmpty of string * (string * string) list * token Stream.t
+;;
+
+(* currified versions of the constructors make the code more readable *)
+let xml_empty name attrs = [< 'Empty(name,attrs) >]
+let xml_nempty name attrs content = [< 'NEmpty(name,attrs,content) >]
+let xml_cdata str = [< 'Str str >]
+
+(* Usage: *)
+(* pp tokens None pretty prints the output on stdout *)
+(* pp tokens (Some filename) pretty prints the output on the file filename *)
+let pp strm fn =
+ let channel = ref stdout in
+ let rec pp_r m =
+ parser
+ [< 'Str a ; s >] ->
+ print_spaces m ;
+ fprint_string (a ^ "\n") ;
+ pp_r m s
+ | [< 'Empty(n,l) ; s >] ->
+ print_spaces m ;
+ fprint_string ("<" ^ n) ;
+ List.iter (function (n,v) -> fprint_string (" " ^ n ^ "=\"" ^ v ^ "\"")) l;
+ fprint_string "/>\n" ;
+ pp_r m s
+ | [< 'NEmpty(n,l,c) ; s >] ->
+ print_spaces m ;
+ fprint_string ("<" ^ n) ;
+ List.iter (function (n,v) -> fprint_string (" " ^ n ^ "=\"" ^ v ^ "\"")) l;
+ fprint_string ">\n" ;
+ pp_r (m+1) c ;
+ print_spaces m ;
+ fprint_string ("</" ^ n ^ ">\n") ;
+ pp_r m s
+ | [< >] -> ()
+ and print_spaces m =
+ for i = 1 to m do fprint_string " " done
+ and fprint_string str =
+ output_string !channel str
+ in
+ match fn with
+ Some filename ->
+ let filename = filename ^ ".xml" in
+ channel := open_out filename ;
+ pp_r 0 strm ;
+ close_out !channel ;
+ print_string ("\nWriting on file \"" ^ filename ^ "\" was succesful\n");
+ flush stdout
+ | None ->
+ pp_r 0 strm
+;;
diff --git a/contrib/xml/xml.mli b/contrib/xml/xml.mli
new file mode 100644
index 00000000..e65e6c81
--- /dev/null
+++ b/contrib/xml/xml.mli
@@ -0,0 +1,38 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(*i $Id: xml.mli,v 1.5.2.2 2004/07/16 19:30:15 herbelin Exp $ i*)
+
+(* Tokens for XML cdata, empty elements and not-empty elements *)
+(* Usage: *)
+(* Str cdata *)
+(* Empty (element_name, [attrname1, value1 ; ... ; attrnamen, valuen] *)
+(* NEmpty (element_name, [attrname1, value2 ; ... ; attrnamen, valuen], *)
+(* content *)
+type token =
+ | Str of string
+ | Empty of string * (string * string) list
+ | NEmpty of string * (string * string) list * token Stream.t
+
+(* currified versions of the token constructors make the code more readable *)
+val xml_empty : string -> (string * string) list -> token Stream.t
+val xml_nempty :
+ string -> (string * string) list -> token Stream.t -> token Stream.t
+val xml_cdata : string -> token Stream.t
+
+(* The pretty printer for streams of token *)
+(* Usage: *)
+(* pp tokens None pretty prints the output on stdout *)
+(* pp tokens (Some filename) pretty prints the output on the file filename *)
+val pp : token Stream.t -> string option -> unit
diff --git a/contrib/xml/xmlcommand.ml b/contrib/xml/xmlcommand.ml
new file mode 100644
index 00000000..9fba5474
--- /dev/null
+++ b/contrib/xml/xmlcommand.ml
@@ -0,0 +1,706 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(* CONFIGURATION PARAMETERS *)
+
+let verbose = ref false;;
+
+(* HOOKS *)
+let print_proof_tree, set_print_proof_tree =
+ let print_proof_tree = ref (fun _ _ _ _ _ _ -> None) in
+ (fun () -> !print_proof_tree),
+ (fun f ->
+ print_proof_tree :=
+ fun
+ curi sigma0 pf proof_tree_to_constr proof_tree_to_flattened_proof_tree
+ constr_to_ids
+ ->
+ Some
+ (f curi sigma0 pf proof_tree_to_constr
+ proof_tree_to_flattened_proof_tree constr_to_ids))
+;;
+
+(* UTILITY FUNCTIONS *)
+
+let print_if_verbose s = if !verbose then print_string s;;
+
+(* Next exception is used only inside print_coq_object and tag_of_string_tag *)
+exception Uninteresting;;
+
+(* Internally, for Coq V7, params of inductive types are associated *)
+(* not to the whole block of mutual inductive (as it was in V6) but to *)
+(* each member of the block; but externally, all params are required *)
+(* to be the same; the following function checks that the parameters *)
+(* of each inductive of a same block are all the same, then returns *)
+(* this number; it fails otherwise *)
+let extract_nparams pack =
+ let module D = Declarations in
+ let module U = Util in
+ let module S = Sign in
+
+ let {D.mind_nparams=nparams0} = pack.(0) in
+ let arity0 = pack.(0).D.mind_user_arity in
+ let params0, _ = S.decompose_prod_n_assum nparams0 arity0 in
+ for i = 1 to Array.length pack - 1 do
+ let {D.mind_nparams=nparamsi} = pack.(i) in
+ let arityi = pack.(i).D.mind_user_arity in
+ let paramsi, _ = S.decompose_prod_n_assum nparamsi arityi in
+ if params0 <> paramsi then U.error "Cannot convert a block of inductive definitions with parameters specific to each inductive to a block of mutual inductive definitions with parameters global to the whole block"
+ done;
+ nparams0
+
+(* could_have_namesakes sp = true iff o is an object that could be cooked and *)
+(* than that could exists in cooked form with the same name in a super *)
+(* section of the actual section *)
+let could_have_namesakes o sp = (* namesake = omonimo in italian *)
+ let module DK = Decl_kinds in
+ let module D = Declare in
+ let tag = Libobject.object_tag o in
+ print_if_verbose ("Object tag: " ^ tag ^ "\n") ;
+ match tag with
+ "CONSTANT" ->
+ (match D.constant_strength sp with
+ | DK.Local -> false (* a local definition *)
+ | DK.Global -> true (* a non-local one *)
+ )
+ | "INDUCTIVE" -> true (* mutual inductive types are never local *)
+ | "VARIABLE" -> false (* variables are local, so no namesakes *)
+ | _ -> false (* uninteresting thing that won't be printed*)
+;;
+
+
+(* A SIMPLE DATA STRUCTURE AND SOME FUNCTIONS TO MANAGE THE CURRENT *)
+(* ENVIRONMENT (= [(name1,l1); ...;(namen,ln)] WHERE li IS THE LIST *)
+(* OF VARIABLES DECLARED IN THE i-th SUPER-SECTION OF THE CURRENT *)
+(* SECTION, WHOSE PATH IS namei *)
+
+let pvars =
+ ref ([Names.id_of_string "",[]] : (Names.identifier * string list) list);;
+let cumenv = ref Environ.empty_env;;
+
+(* filter_params pvars hyps *)
+(* filters out from pvars (which is a list of lists) all the variables *)
+(* that does not belong to hyps (which is a simple list) *)
+(* It returns a list of couples relative section path -- list of *)
+(* variable names. *)
+let filter_params pvars hyps =
+ let rec aux ids =
+ function
+ [] -> []
+ | (id,he)::tl ->
+ let ids' = id::ids in
+ let ids'' =
+ "cic:/" ^
+ String.concat "/" (List.rev (List.map Names.string_of_id ids')) in
+ let he' =
+ ids'', List.rev (List.filter (function x -> List.mem x hyps) he) in
+ let tl' = aux ids' tl in
+ match he' with
+ _,[] -> tl'
+ | _,_ -> he'::tl'
+ in
+ let cwd = Lib.cwd () in
+ let cwdsp = Libnames.make_path cwd (Names.id_of_string "dummy") in
+ let modulepath = Cic2acic.get_module_path_of_section_path cwdsp in
+ aux (Names.repr_dirpath modulepath) (List.rev pvars)
+;;
+
+type variables_type =
+ Definition of string * Term.constr * Term.types
+ | Assumption of string * Term.constr
+;;
+
+let add_to_pvars x =
+ let module E = Environ in
+ let v =
+ match x with
+ Definition (v, bod, typ) ->
+ cumenv :=
+ E.push_named (Names.id_of_string v, Some bod, typ) !cumenv ;
+ v
+ | Assumption (v, typ) ->
+ cumenv :=
+ E.push_named (Names.id_of_string v, None, typ) !cumenv ;
+ v
+ in
+ match !pvars with
+ [] -> assert false
+ | ((name,l)::tl) -> pvars := (name,v::l)::tl
+;;
+
+(* The computation is very inefficient, but we can't do anything *)
+(* better unless this function is reimplemented in the Declare *)
+(* module. *)
+let search_variables () =
+ let module N = Names in
+ let cwd = Lib.cwd () in
+ let cwdsp = Libnames.make_path cwd (Names.id_of_string "dummy") in
+ let modulepath = Cic2acic.get_module_path_of_section_path cwdsp in
+ let rec aux =
+ function
+ [] -> []
+ | he::tl as modules ->
+ let one_section_variables =
+ let dirpath = N.make_dirpath (modules @ N.repr_dirpath modulepath) in
+ let t = List.map N.string_of_id (Declare.last_section_hyps dirpath) in
+ [he,t]
+ in
+ one_section_variables @ aux tl
+ in
+ aux
+ (Cic2acic.remove_module_dirpath_from_dirpath
+ ~basedir:modulepath cwd)
+;;
+
+(* FUNCTIONS TO PRINT A SINGLE OBJECT OF COQ *)
+
+let rec join_dirs cwd =
+ function
+ [] -> cwd
+ | he::tail ->
+ (try
+ Unix.mkdir cwd 0o775
+ with _ -> () (* Let's ignore the errors on mkdir *)
+ ) ;
+ let newcwd = cwd ^ "/" ^ he in
+ join_dirs newcwd tail
+;;
+
+let filename_of_path xml_library_root kn tag =
+ let module N = Names in
+ match xml_library_root with
+ None -> None (* stdout *)
+ | Some xml_library_root' ->
+ let tokens = Cic2acic.token_list_of_kernel_name kn tag in
+ Some (join_dirs xml_library_root' tokens)
+;;
+
+let body_filename_of_filename =
+ function
+ Some f -> Some (f ^ ".body")
+ | None -> None
+;;
+
+let types_filename_of_filename =
+ function
+ Some f -> Some (f ^ ".types")
+ | None -> None
+;;
+
+let prooftree_filename_of_filename =
+ function
+ Some f -> Some (f ^ ".proof_tree")
+ | None -> None
+;;
+
+let theory_filename xml_library_root =
+ let module N = Names in
+ match xml_library_root with
+ None -> None (* stdout *)
+ | Some xml_library_root' ->
+ let toks = List.map N.string_of_id (N.repr_dirpath (Lib.library_dp ())) in
+ let hd = List.hd toks in
+ (* theory from A/B/C/F.v goes into A/B/C/F.theory *)
+ let alltoks = List.rev toks in
+ Some (join_dirs xml_library_root' alltoks ^ ".theory")
+
+let print_object uri obj sigma proof_tree_infos filename =
+ (* function to pretty print and compress an XML file *)
+(*CSC: Unix.system "gzip ..." is an horrible non-portable solution. *)
+ let pp xml filename =
+ Xml.pp xml filename ;
+ match filename with
+ None -> ()
+ | Some fn ->
+ let fn' =
+ let rec escape s n =
+ try
+ let p = String.index_from s n '\'' in
+ String.sub s n (p - n) ^ "\\'" ^ escape s (p+1)
+ with Not_found -> String.sub s n (String.length s - n)
+ in
+ escape fn 0
+ in
+ ignore (Unix.system ("gzip " ^ fn' ^ ".xml"))
+ in
+ let (annobj,_,constr_to_ids,_,ids_to_inner_sorts,ids_to_inner_types,_,_) =
+ Cic2acic.acic_object_of_cic_object !pvars sigma obj in
+ let (xml, xml') = Acic2Xml.print_object uri ids_to_inner_sorts annobj in
+ let xmltypes =
+ Acic2Xml.print_inner_types uri ids_to_inner_sorts ids_to_inner_types in
+ pp xml filename ;
+ begin
+ match xml' with
+ None -> ()
+ | Some xml' -> pp xml' (body_filename_of_filename filename)
+ end ;
+ pp xmltypes (types_filename_of_filename filename) ;
+ match proof_tree_infos with
+ None -> ()
+ | Some (sigma0,proof_tree,proof_tree_to_constr,
+ proof_tree_to_flattened_proof_tree) ->
+ let xmlprooftree =
+ print_proof_tree ()
+ uri sigma0 proof_tree proof_tree_to_constr
+ proof_tree_to_flattened_proof_tree constr_to_ids
+ in
+ match xmlprooftree with
+ None -> ()
+ | Some xmlprooftree ->
+ pp xmlprooftree (prooftree_filename_of_filename filename)
+;;
+
+let string_list_of_named_context_list =
+ List.map
+ (function (n,_,_) -> Names.string_of_id n)
+;;
+
+(* Function to collect the variables that occur in a term. *)
+(* Used only for variables (since for constants and mutual *)
+(* inductive types this information is already available. *)
+let find_hyps t =
+ let module T = Term in
+ let rec aux l t =
+ match T.kind_of_term t with
+ T.Var id when not (List.mem id l) ->
+ let (_,bo,ty) = Global.lookup_named id in
+ let boids =
+ match bo with
+ Some bo' -> aux l bo'
+ | None -> l
+ in
+ id::(aux boids ty)
+ | T.Var _
+ | T.Rel _
+ | T.Meta _
+ | T.Evar _
+ | T.Sort _ -> l
+ | T.Cast (te,ty) -> aux (aux l te) ty
+ | T.Prod (_,s,t) -> aux (aux l s) t
+ | T.Lambda (_,s,t) -> aux (aux l s) t
+ | T.LetIn (_,s,_,t) -> aux (aux l s) t
+ | T.App (he,tl) -> Array.fold_left (fun i x -> aux i x) (aux l he) tl
+ | T.Const con ->
+ let hyps = (Global.lookup_constant con).Declarations.const_hyps in
+ map_and_filter l hyps @ l
+ | T.Ind ind
+ | T.Construct (ind,_) ->
+ let hyps = (fst (Global.lookup_inductive ind)).Declarations.mind_hyps in
+ map_and_filter l hyps @ l
+ | T.Case (_,t1,t2,b) ->
+ Array.fold_left (fun i x -> aux i x) (aux (aux l t1) t2) b
+ | T.Fix (_,(_,tys,bodies))
+ | T.CoFix (_,(_,tys,bodies)) ->
+ let r = Array.fold_left (fun i x -> aux i x) l tys in
+ Array.fold_left (fun i x -> aux i x) r bodies
+ and map_and_filter l =
+ function
+ [] -> []
+ | (n,_,_)::tl when not (List.mem n l) -> n::(map_and_filter l tl)
+ | _::tl -> map_and_filter l tl
+ in
+ aux [] t
+;;
+
+(* Functions to construct an object *)
+
+let mk_variable_obj id body typ =
+ let hyps,unsharedbody =
+ match body with
+ None -> [],None
+ | Some bo -> find_hyps bo, Some (Unshare.unshare bo)
+ in
+ let hyps' = find_hyps typ @ hyps in
+ let hyps'' = List.map Names.string_of_id hyps' in
+ let variables = search_variables () in
+ let params = filter_params variables hyps'' in
+ Acic.Variable
+ (Names.string_of_id id, unsharedbody,
+ (Unshare.unshare (Term.body_of_type typ)), params)
+;;
+
+(* Unsharing is not performed on the body, that must be already unshared. *)
+(* The evar map and the type, instead, are unshared by this function. *)
+let mk_current_proof_obj is_a_variable id bo ty evar_map env =
+ let unshared_ty = Unshare.unshare (Term.body_of_type ty) in
+ let metasenv =
+ List.map
+ (function
+ (n, {Evd.evar_concl = evar_concl ;
+ Evd.evar_hyps = evar_hyps}
+ ) ->
+ (* We map the named context to a rel context and every Var to a Rel *)
+ let final_var_ids,context =
+ let rec aux var_ids =
+ function
+ [] -> var_ids,[]
+ | (n,None,t)::tl ->
+ let final_var_ids,tl' = aux (n::var_ids) tl in
+ let t' = Term.subst_vars var_ids t in
+ final_var_ids,(n, Acic.Decl (Unshare.unshare t'))::tl'
+ | (n,Some b,t)::tl ->
+ let final_var_ids,tl' = aux (n::var_ids) tl in
+ let b' = Term.subst_vars var_ids b in
+ (* t will not be exported to XML. Thus no unsharing performed *)
+ final_var_ids,(n, Acic.Def (Unshare.unshare b',t))::tl'
+ in
+ aux [] (List.rev evar_hyps)
+ in
+ (* We map the named context to a rel context and every Var to a Rel *)
+ (n,context,Unshare.unshare (Term.subst_vars final_var_ids evar_concl))
+ ) (Evd.non_instantiated evar_map)
+ in
+ let id' = Names.string_of_id id in
+ if metasenv = [] then
+ let ids =
+ Names.Idset.union
+ (Environ.global_vars_set env bo) (Environ.global_vars_set env ty) in
+ let hyps0 = Environ.keep_hyps env ids in
+ let hyps = string_list_of_named_context_list hyps0 in
+ (* Variables are the identifiers of the variables in scope *)
+ let variables = search_variables () in
+ let params = filter_params variables hyps in
+ if is_a_variable then
+ Acic.Variable (id',Some bo,unshared_ty,params)
+ else
+ Acic.Constant (id',Some bo,unshared_ty,params)
+ else
+ Acic.CurrentProof (id',metasenv,bo,unshared_ty)
+;;
+
+let mk_constant_obj id bo ty variables hyps =
+ let hyps = string_list_of_named_context_list hyps in
+ let ty = Unshare.unshare (Term.body_of_type ty) in
+ let params = filter_params variables hyps in
+ match bo with
+ None ->
+ Acic.Constant (Names.string_of_id id,None,ty,params)
+ | Some c ->
+ Acic.Constant
+ (Names.string_of_id id, Some (Unshare.unshare (Declarations.force c)),
+ ty,params)
+;;
+
+let mk_inductive_obj sp packs variables hyps finite =
+ let module D = Declarations in
+ let hyps = string_list_of_named_context_list hyps in
+ let params = filter_params variables hyps in
+ let nparams = extract_nparams packs in
+ let tys =
+ let tyno = ref (Array.length packs) in
+ Array.fold_right
+ (fun p i ->
+ decr tyno ;
+ let {D.mind_consnames=consnames ;
+ D.mind_typename=typename ;
+ D.mind_nf_arity=arity} = p
+ in
+ let lc = Inductive.arities_of_constructors (Global.env ()) (sp,!tyno) in
+ let cons =
+ (Array.fold_right (fun (name,lc) i -> (name,lc)::i)
+ (Array.mapi
+ (fun j x ->(x,Unshare.unshare (Term.body_of_type lc.(j)))) consnames)
+ []
+ )
+ in
+ (typename,finite,Unshare.unshare arity,cons)::i
+ ) packs []
+ in
+ Acic.InductiveDefinition (tys,params,nparams)
+;;
+
+(* The current channel for .theory files *)
+let theory_buffer = Buffer.create 4000;;
+
+let theory_output_string ?(do_not_quote = false) s =
+ (* prepare for coqdoc post-processing *)
+ let s = if do_not_quote then s else "(** #"^s^"\n#*)\n" in
+ print_if_verbose s;
+ Buffer.add_string theory_buffer s
+;;
+
+let kind_of_theorem = function
+ | Decl_kinds.Theorem -> "Theorem"
+ | Decl_kinds.Lemma -> "Lemma"
+ | Decl_kinds.Fact -> "Fact"
+ | Decl_kinds.Remark -> "Remark"
+
+let kind_of_global_goal = function
+ | Decl_kinds.IsGlobal Decl_kinds.DefinitionBody -> "DEFINITION","InteractiveDefinition"
+ | Decl_kinds.IsGlobal (Decl_kinds.Proof k) -> "THEOREM",kind_of_theorem k
+ | Decl_kinds.IsLocal -> assert false
+
+let kind_of_inductive isrecord kn =
+ "DEFINITION",
+ if (fst (Global.lookup_inductive (kn,0))).Declarations.mind_finite
+ then if isrecord then "Record" else "Inductive"
+ else "CoInductive"
+;;
+
+let kind_of_variable id =
+ let module DK = Decl_kinds in
+ match Declare.variable_kind id with
+ | DK.IsAssumption DK.Definitional -> "VARIABLE","Assumption"
+ | DK.IsAssumption DK.Logical -> "VARIABLE","Hypothesis"
+ | DK.IsAssumption DK.Conjectural -> "VARIABLE","Conjecture"
+ | DK.IsDefinition -> "VARIABLE","LocalDefinition"
+ | DK.IsConjecture -> "VARIABLE","Conjecture"
+ | DK.IsProof DK.LocalStatement -> "VARIABLE","LocalFact"
+;;
+
+let kind_of_constant kn =
+ let module DK = Decl_kinds in
+ match Declare.constant_kind (Nametab.sp_of_global(Libnames.ConstRef kn)) with
+ | DK.IsAssumption DK.Definitional -> "AXIOM","Declaration"
+ | DK.IsAssumption DK.Logical -> "AXIOM","Axiom"
+ | DK.IsAssumption DK.Conjectural -> "AXIOM","Conjecture"
+ | DK.IsDefinition -> "DEFINITION","Definition"
+ | DK.IsConjecture -> "THEOREM","Conjecture"
+ | DK.IsProof thm -> "THEOREM",kind_of_theorem thm
+;;
+
+let kind_of_global r =
+ let module Ln = Libnames in
+ let module DK = Decl_kinds in
+ match r with
+ | Ln.IndRef kn | Ln.ConstructRef (kn,_) ->
+ let isrecord =
+ try let _ = Recordops.find_structure kn in true
+ with Not_found -> false in
+ kind_of_inductive isrecord (fst kn)
+ | Ln.VarRef id -> kind_of_variable id
+ | Ln.ConstRef kn -> kind_of_constant kn
+;;
+
+let print_object_kind uri (xmltag,variation) =
+ let s =
+ Printf.sprintf "<ht:%s uri=\"%s\" as=\"%s\"/>\n" xmltag uri variation
+ in
+ theory_output_string s
+;;
+
+(* print id dest *)
+(* where sp is the qualified identifier (section path) of a *)
+(* definition/theorem, variable or inductive definition *)
+(* and dest is either None (for stdout) or (Some filename) *)
+(* pretty prints via Xml.pp the object whose identifier is id on dest *)
+(* Note: it is printed only (and directly) the most cooked available *)
+(* form of the definition (all the parameters are *)
+(* lambda-abstracted, but the object can still refer to variables) *)
+let print internal glob_ref kind xml_library_root =
+ let module D = Declarations in
+ let module De = Declare in
+ let module G = Global in
+ let module N = Names in
+ let module Nt = Nametab in
+ let module T = Term in
+ let module X = Xml in
+ let module Ln = Libnames in
+ (* Variables are the identifiers of the variables in scope *)
+ let variables = search_variables () in
+ let kn,tag,obj =
+ match glob_ref with
+ Ln.VarRef id ->
+ let sp = Declare.find_section_variable id in
+ (* this kn is fake since it is not provided by Coq *)
+ let kn =
+ let (mod_path,dir_path) = Lib.current_prefix () in
+ N.make_kn mod_path dir_path (N.label_of_id (Ln.basename sp))
+ in
+ let (_,body,typ) = G.lookup_named id in
+ kn,Cic2acic.Variable,mk_variable_obj id body typ
+ | Ln.ConstRef kn ->
+ let id = N.id_of_label (N.label kn) in
+ let {D.const_body=val0 ; D.const_type = typ ; D.const_hyps = hyps} =
+ G.lookup_constant kn in
+ kn,Cic2acic.Constant,mk_constant_obj id val0 typ variables hyps
+ | Ln.IndRef (kn,_) ->
+ let {D.mind_packets=packs ;
+ D.mind_hyps=hyps;
+ D.mind_finite=finite} = G.lookup_mind kn in
+ kn,Cic2acic.Inductive,
+ mk_inductive_obj kn packs variables hyps finite
+ | Ln.ConstructRef _ ->
+ Util.anomaly ("print: this should not happen")
+ in
+ let fn = filename_of_path xml_library_root kn tag in
+ let uri = Cic2acic.uri_of_kernel_name kn tag in
+ if not internal then print_object_kind uri kind;
+ print_object uri obj Evd.empty None fn
+;;
+
+let print_ref qid fn =
+ let ref = Nametab.global qid in
+ print false ref (kind_of_global ref) fn
+
+(* show dest *)
+(* where dest is either None (for stdout) or (Some filename) *)
+(* pretty prints via Xml.pp the proof in progress on dest *)
+let show_pftreestate internal fn (kind,pftst) id =
+ let str = Names.string_of_id id in
+ let pf = Tacmach.proof_of_pftreestate pftst in
+ let typ = (Proof_trees.goal_of_proof pf).Evd.evar_concl in
+ let val0,evar_map,proof_tree_to_constr,proof_tree_to_flattened_proof_tree,
+ unshared_pf
+ =
+ Proof2aproof.extract_open_pftreestate pftst in
+ let kn = Lib.make_kn id in
+ let env = Global.env () in
+ let obj =
+ mk_current_proof_obj (kind = Decl_kinds.IsLocal) id val0 typ evar_map env in
+ let uri =
+ match kind with
+ Decl_kinds.IsLocal ->
+ let uri =
+ "cic:/" ^ String.concat "/"
+ (Cic2acic.token_list_of_path (Lib.cwd ()) id Cic2acic.Variable) in
+ let kind_of_var = "VARIABLE","LocalFact" in
+ if not internal then print_object_kind uri kind_of_var;
+ uri
+ | Decl_kinds.IsGlobal _ ->
+ let uri = Cic2acic.uri_of_declaration id Cic2acic.Constant in
+ if not internal then print_object_kind uri (kind_of_global_goal kind);
+ uri
+ in
+ print_object uri obj evar_map
+ (Some (Tacmach.evc_of_pftreestate pftst,unshared_pf,proof_tree_to_constr,
+ proof_tree_to_flattened_proof_tree)) fn
+;;
+
+let show fn =
+ let pftst = Pfedit.get_pftreestate () in
+ let (id,kind,_,_) = Pfedit.current_proof_statement () in
+ show_pftreestate false fn (kind,pftst) id
+;;
+
+
+(* Let's register the callbacks *)
+let xml_library_root =
+ try
+ Some (Sys.getenv "COQ_XML_LIBRARY_ROOT")
+ with Not_found -> None
+;;
+
+let proof_to_export = ref None (* holds the proof-tree to export *)
+;;
+
+let _ =
+ Pfedit.set_xml_cook_proof
+ (function pftreestate -> proof_to_export := Some pftreestate)
+;;
+
+let _ =
+ Declare.set_xml_declare_variable
+ (function (sp,kn) ->
+ let id = Libnames.basename sp in
+ print false (Libnames.VarRef id) (kind_of_variable id) xml_library_root ;
+ proof_to_export := None)
+;;
+
+let _ =
+ Declare.set_xml_declare_constant
+ (function (internal,(sp,kn)) ->
+ match !proof_to_export with
+ None ->
+ print internal (Libnames.ConstRef kn) (kind_of_constant kn)
+ xml_library_root
+ | Some pftreestate ->
+ (* It is a proof. Let's export it starting from the proof-tree *)
+ (* I saved in the Pfedit.set_xml_cook_proof callback. *)
+ let fn = filename_of_path xml_library_root kn Cic2acic.Constant in
+ show_pftreestate internal fn pftreestate
+ (Names.id_of_label (Names.label kn)) ;
+ proof_to_export := None)
+;;
+
+let _ =
+ Declare.set_xml_declare_inductive
+ (function (isrecord,(sp,kn)) ->
+ print false (Libnames.IndRef (kn,0)) (kind_of_inductive isrecord kn)
+ xml_library_root)
+;;
+
+let _ =
+ Vernac.set_xml_start_library
+ (function () ->
+ Buffer.reset theory_buffer;
+ theory_output_string "<?xml version=\"1.0\" encoding=\"latin1\"?>\n";
+ theory_output_string ("<!DOCTYPE html [\n" ^
+ "<!ENTITY % xhtml-lat1.ent SYSTEM \"http://helm.cs.unibo.it/dtd/xhtml-lat1.ent\">\n" ^
+ "<!ENTITY % xhtml-special.ent SYSTEM \"http://helm.cs.unibo.it/dtd/xhtml-special.ent\">\n" ^
+ "<!ENTITY % xhtml-symbol.ent SYSTEM \"http://helm.cs.unibo.it/dtd/xhtml-symbol.ent\">\n\n" ^
+ "%xhtml-lat1.ent;\n" ^
+ "%xhtml-special.ent;\n" ^
+ "%xhtml-symbol.ent;\n" ^
+ "]>\n\n");
+ theory_output_string "<html xmlns=\"http://www.w3.org/1999/xhtml\" xmlns:ht=\"http://www.cs.unibo.it/helm/namespaces/helm-theory\" xmlns:helm=\"http://www.cs.unibo.it/helm\">\n";
+ theory_output_string "<head></head>\n<body>\n")
+;;
+
+let _ =
+ Vernac.set_xml_end_library
+ (function () ->
+ theory_output_string "</body>\n</html>\n";
+ let ofn = theory_filename xml_library_root in
+ begin
+ match ofn with
+ None ->
+ Buffer.output_buffer stdout theory_buffer ;
+ | Some fn ->
+ let ch = open_out (fn ^ ".v") in
+ Buffer.output_buffer ch theory_buffer ;
+ close_out ch
+ end ;
+ Util.option_iter
+ (fun fn ->
+ let coqdoc = Coq_config.bindir^"/coqdoc" in
+ let options = " --html -s --body-only --no-index --latin1 --raw-comments" in
+ let dir = Util.out_some xml_library_root in
+ let command cmd =
+ if Sys.command cmd <> 0 then
+ Util.anomaly ("Error executing \"" ^ cmd ^ "\"")
+ in
+ command (coqdoc^options^" -d "^dir^" "^fn^".v");
+ let dot = if fn.[0]='/' then "." else "" in
+ command ("mv "^dir^"/"^dot^"*.html "^fn^".xml ");
+ command ("rm "^fn^".v");
+ print_string("\nWriting on file \"" ^ fn ^ ".xml\" was succesful\n"))
+ ofn)
+;;
+
+let _ = Lexer.set_xml_output_comment (theory_output_string ~do_not_quote:true) ;;
+
+let uri_of_dirpath dir =
+ "/" ^ String.concat "/"
+ (List.map Names.string_of_id (List.rev (Names.repr_dirpath dir)))
+;;
+
+let _ =
+ Lib.set_xml_open_section
+ (fun _ ->
+ let s = "cic:" ^ uri_of_dirpath (Lib.cwd ()) in
+ theory_output_string ("<ht:SECTION uri=\""^s^"\">"))
+;;
+
+let _ =
+ Lib.set_xml_close_section
+ (fun _ -> theory_output_string "</ht:SECTION>")
+;;
+
+let _ =
+ Library.set_xml_require
+ (fun d -> theory_output_string
+ (Printf.sprintf "<b>Require</b> <a helm:helm_link=\"href\" href=\"theory:%s.theory\">%s</a>.<br/>"
+ (uri_of_dirpath d) (Names.string_of_dirpath d)))
+;;
diff --git a/contrib/xml/xmlcommand.mli b/contrib/xml/xmlcommand.mli
new file mode 100644
index 00000000..9a7464bd
--- /dev/null
+++ b/contrib/xml/xmlcommand.mli
@@ -0,0 +1,41 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(*i $Id: xmlcommand.mli,v 1.18.2.2 2004/07/16 19:30:15 herbelin Exp $ i*)
+
+(* print_global qid fn *)
+(* where qid is a long name denoting a definition/theorem or *)
+(* an inductive definition *)
+(* and dest is either None (for stdout) or (Some filename) *)
+(* pretty prints via Xml.pp the object whose name is ref on dest *)
+(* Note: it is printed only (and directly) the most discharged available *)
+(* form of the definition (all the parameters are *)
+(* lambda-abstracted, but the object can still refer to variables) *)
+val print_ref : Libnames.reference -> string option -> unit
+
+(* show dest *)
+(* where dest is either None (for stdout) or (Some filename) *)
+(* pretty prints via Xml.pp the proof in progress on dest *)
+val show : string option -> unit
+
+(* set_print_proof_tree f *)
+(* sets a callback function f to export the proof_tree to XML *)
+val set_print_proof_tree :
+ (string ->
+ Evd.evar_map ->
+ Proof_type.proof_tree ->
+ Term.constr Proof2aproof.ProofTreeHash.t ->
+ Proof_type.proof_tree Proof2aproof.ProofTreeHash.t ->
+ string Acic.CicHash.t -> Xml.token Stream.t) ->
+ unit
diff --git a/contrib/xml/xmlentries.ml4 b/contrib/xml/xmlentries.ml4
new file mode 100644
index 00000000..2bc686f7
--- /dev/null
+++ b/contrib/xml/xmlentries.ml4
@@ -0,0 +1,40 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * The HELM Project / The EU MoWGLI Project *)
+(* * University of Bologna *)
+(************************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(* *)
+(* Copyright (C) 2000-2004, HELM Team. *)
+(* http://helm.cs.unibo.it *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: xmlentries.ml4,v 1.12.2.2 2004/07/16 19:30:15 herbelin Exp $ *)
+
+open Util;;
+open Vernacinterp;;
+
+open Extend;;
+open Genarg;;
+open Pp;;
+open Pcoq;;
+
+(* File name *)
+
+VERNAC ARGUMENT EXTEND filename
+| [ "File" string(fn) ] -> [ Some fn ]
+| [ ] -> [ None ]
+END
+
+(* Print XML and Show XML *)
+
+VERNAC COMMAND EXTEND Xml
+| [ "Print" "XML" filename(fn) global(qid) ] -> [ Xmlcommand.print_ref qid fn ]
+
+| [ "Show" "XML" filename(fn) "Proof" ] -> [ Xmlcommand.show fn ]
+END