summaryrefslogtreecommitdiff
path: root/contrib7/field
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /contrib7/field
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'contrib7/field')
-rw-r--r--contrib7/field/Field.v15
-rw-r--r--contrib7/field/Field_Compl.v62
-rw-r--r--contrib7/field/Field_Tactic.v397
-rw-r--r--contrib7/field/Field_Theory.v612
4 files changed, 1086 insertions, 0 deletions
diff --git a/contrib7/field/Field.v b/contrib7/field/Field.v
new file mode 100644
index 00000000..f282e246
--- /dev/null
+++ b/contrib7/field/Field.v
@@ -0,0 +1,15 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field.v,v 1.1.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
+
+Require Export Field_Compl.
+Require Export Field_Theory.
+Require Export Field_Tactic.
+
+(* Command declarations are moved to the ML side *)
diff --git a/contrib7/field/Field_Compl.v b/contrib7/field/Field_Compl.v
new file mode 100644
index 00000000..2cc01038
--- /dev/null
+++ b/contrib7/field/Field_Compl.v
@@ -0,0 +1,62 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Compl.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
+
+Inductive listT [A:Type] : Type :=
+ nilT : (listT A) | consT : A->(listT A)->(listT A).
+
+Fixpoint appT [A:Type][l:(listT A)] : (listT A) -> (listT A) :=
+ [m:(listT A)]
+ Cases l of
+ | nilT => m
+ | (consT a l1) => (consT A a (appT A l1 m))
+ end.
+
+Inductive prodT [A,B:Type] : Type :=
+ pairT: A->B->(prodT A B).
+
+Definition assoc_2nd :=
+Fix assoc_2nd_rec
+ {assoc_2nd_rec
+ [A:Type;B:Set;eq_dec:(e1,e2:B){e1=e2}+{~e1=e2};lst:(listT (prodT A B))]
+ : B->A->A:=
+ [key:B;default:A]
+ Cases lst of
+ | nilT => default
+ | (consT (pairT v e) l) =>
+ (Cases (eq_dec e key) of
+ | (left _) => v
+ | (right _) => (assoc_2nd_rec A B eq_dec l key default)
+ end)
+ end}.
+
+Definition fstT [A,B:Type;c:(prodT A B)] :=
+ Cases c of
+ | (pairT a _) => a
+ end.
+
+Definition sndT [A,B:Type;c:(prodT A B)] :=
+ Cases c of
+ | (pairT _ a) => a
+ end.
+
+Definition mem :=
+Fix mem {mem [A:Set;eq_dec:(e1,e2:A){e1=e2}+{~e1=e2};a:A;l:(listT A)] : bool :=
+ Cases l of
+ | nilT => false
+ | (consT a1 l1) =>
+ Cases (eq_dec a a1) of
+ | (left _) => true
+ | (right _) => (mem A eq_dec a l1)
+ end
+ end}.
+
+Inductive field_rel_option [A:Type] : Type :=
+ | Field_None : (field_rel_option A)
+ | Field_Some : (A -> A -> A) -> (field_rel_option A).
diff --git a/contrib7/field/Field_Tactic.v b/contrib7/field/Field_Tactic.v
new file mode 100644
index 00000000..ffd2aad4
--- /dev/null
+++ b/contrib7/field/Field_Tactic.v
@@ -0,0 +1,397 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Tactic.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
+
+Require Ring.
+Require Export Field_Compl.
+Require Export Field_Theory.
+
+(**** Interpretation A --> ExprA ****)
+
+Recursive Tactic Definition MemAssoc var lvar :=
+ Match lvar With
+ | [(nilT ?)] -> false
+ | [(consT ? ?1 ?2)] ->
+ (Match ?1=var With
+ | [?1=?1] -> true
+ | _ -> (MemAssoc var ?2)).
+
+Recursive Tactic Definition SeekVarAux FT lvar trm :=
+ Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
+ And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
+ And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
+ And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
+ And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
+ And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
+ And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
+ Match trm With
+ | [(AzeroT)] -> lvar
+ | [(AoneT)] -> lvar
+ | [(AplusT ?1 ?2)] ->
+ Let l1 = (SeekVarAux FT lvar ?1) In
+ (SeekVarAux FT l1 ?2)
+ | [(AmultT ?1 ?2)] ->
+ Let l1 = (SeekVarAux FT lvar ?1) In
+ (SeekVarAux FT l1 ?2)
+ | [(AoppT ?1)] -> (SeekVarAux FT lvar ?1)
+ | [(AinvT ?1)] -> (SeekVarAux FT lvar ?1)
+ | [?1] ->
+ Let res = (MemAssoc ?1 lvar) In
+ Match res With
+ | [(true)] -> lvar
+ | [(false)] -> '(consT AT ?1 lvar).
+
+Tactic Definition SeekVar FT trm :=
+ Let AT = Eval Cbv Beta Delta [A] Iota in (A FT) In
+ (SeekVarAux FT '(nilT AT) trm).
+
+Recursive Tactic Definition NumberAux lvar cpt :=
+ Match lvar With
+ | [(nilT ?1)] -> '(nilT (prodT ?1 nat))
+ | [(consT ?1 ?2 ?3)] ->
+ Let l2 = (NumberAux ?3 '(S cpt)) In
+ '(consT (prodT ?1 nat) (pairT ?1 nat ?2 cpt) l2).
+
+Tactic Definition Number lvar := (NumberAux lvar O).
+
+Tactic Definition BuildVarList FT trm :=
+ Let lvar = (SeekVar FT trm) In
+ (Number lvar).
+V7only [
+(*Used by contrib Maple *)
+Tactic Definition build_var_list := BuildVarList.
+].
+
+Recursive Tactic Definition Assoc elt lst :=
+ Match lst With
+ | [(nilT ?)] -> Fail
+ | [(consT (prodT ? nat) (pairT ? nat ?1 ?2) ?3)] ->
+ Match elt= ?1 With
+ | [?1= ?1] -> ?2
+ | _ -> (Assoc elt ?3).
+
+Recursive Meta Definition interp_A FT lvar trm :=
+ Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
+ And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
+ And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
+ And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
+ And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
+ And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
+ And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
+ Match trm With
+ | [(AzeroT)] -> EAzero
+ | [(AoneT)] -> EAone
+ | [(AplusT ?1 ?2)] ->
+ Let e1 = (interp_A FT lvar ?1)
+ And e2 = (interp_A FT lvar ?2) In
+ '(EAplus e1 e2)
+ | [(AmultT ?1 ?2)] ->
+ Let e1 = (interp_A FT lvar ?1)
+ And e2 = (interp_A FT lvar ?2) In
+ '(EAmult e1 e2)
+ | [(AoppT ?1)] ->
+ Let e = (interp_A FT lvar ?1) In
+ '(EAopp e)
+ | [(AinvT ?1)] ->
+ Let e = (interp_A FT lvar ?1) In
+ '(EAinv e)
+ | [?1] ->
+ Let idx = (Assoc ?1 lvar) In
+ '(EAvar idx).
+
+(************************)
+(* Simplification *)
+(************************)
+
+(**** Generation of the multiplier ****)
+
+Recursive Tactic Definition Remove e l :=
+ Match l With
+ | [(nilT ?)] -> l
+ | [(consT ?1 e ?2)] -> ?2
+ | [(consT ?1 ?2 ?3)] ->
+ Let nl = (Remove e ?3) In
+ '(consT ?1 ?2 nl).
+
+Recursive Tactic Definition Union l1 l2 :=
+ Match l1 With
+ | [(nilT ?)] -> l2
+ | [(consT ?1 ?2 ?3)] ->
+ Let nl2 = (Remove ?2 l2) In
+ Let nl = (Union ?3 nl2) In
+ '(consT ?1 ?2 nl).
+
+Recursive Tactic Definition RawGiveMult trm :=
+ Match trm With
+ | [(EAinv ?1)] -> '(consT ExprA ?1 (nilT ExprA))
+ | [(EAopp ?1)] -> (RawGiveMult ?1)
+ | [(EAplus ?1 ?2)] ->
+ Let l1 = (RawGiveMult ?1)
+ And l2 = (RawGiveMult ?2) In
+ (Union l1 l2)
+ | [(EAmult ?1 ?2)] ->
+ Let l1 = (RawGiveMult ?1)
+ And l2 = (RawGiveMult ?2) In
+ Eval Compute in (appT ExprA l1 l2)
+ | _ -> '(nilT ExprA).
+
+Tactic Definition GiveMult trm :=
+ Let ltrm = (RawGiveMult trm) In
+ '(mult_of_list ltrm).
+
+(**** Associativity ****)
+
+Tactic Definition ApplyAssoc FT lvar trm :=
+ Let t=Eval Compute in (assoc trm) In
+ Match t=trm With
+ | [ ?1=?1 ] -> Idtac
+ | _ -> Rewrite <- (assoc_correct FT trm); Change (assoc trm) with t.
+
+(**** Distribution *****)
+
+Tactic Definition ApplyDistrib FT lvar trm :=
+ Let t=Eval Compute in (distrib trm) In
+ Match t=trm With
+ | [ ?1=?1 ] -> Idtac
+ | _ -> Rewrite <- (distrib_correct FT trm); Change (distrib trm) with t.
+
+(**** Multiplication by the inverse product ****)
+
+Tactic Definition GrepMult :=
+ Match Context With
+ | [ id: ~(interp_ExprA ? ? ?)= ? |- ?] -> id.
+
+Tactic Definition WeakReduce :=
+ Match Context With
+ | [|-[(interp_ExprA ?1 ?2 ?)]] ->
+ Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list ?1 ?2 A
+ Azero Aone Aplus Amult Aopp Ainv] Zeta Iota.
+
+Tactic Definition Multiply mul :=
+ Match Context With
+ | [|-(interp_ExprA ?1 ?2 ?3)=(interp_ExprA ?1 ?2 ?4)] ->
+ Let AzeroT = Eval Cbv Beta Delta [Azero ?1] Iota in (Azero ?1) In
+ Cut ~(interp_ExprA ?1 ?2 mul)=AzeroT;
+ [Intro;
+ Let id = GrepMult In
+ Apply (mult_eq ?1 ?3 ?4 mul ?2 id)
+ |WeakReduce;
+ Let AoneT = Eval Cbv Beta Delta [Aone ?1] Iota in (Aone ?1)
+ And AmultT = Eval Cbv Beta Delta [Amult ?1] Iota in (Amult ?1) In
+ Try (Match Context With
+ | [|-[(AmultT ? AoneT)]] -> Rewrite (AmultT_1r ?1));Clear ?1 ?2].
+
+Tactic Definition ApplyMultiply FT lvar trm :=
+ Let t=Eval Compute in (multiply trm) In
+ Match t=trm With
+ | [ ?1=?1 ] -> Idtac
+ | _ -> Rewrite <- (multiply_correct FT trm); Change (multiply trm) with t.
+
+(**** Permutations and simplification ****)
+
+Tactic Definition ApplyInverse mul FT lvar trm :=
+ Let t=Eval Compute in (inverse_simplif mul trm) In
+ Match t=trm With
+ | [ ?1=?1 ] -> Idtac
+ | _ -> Rewrite <- (inverse_correct FT trm mul);
+ [Change (inverse_simplif mul trm) with t|Assumption].
+(**** Inverse test ****)
+
+Tactic Definition StrongFail tac := First [tac|Fail 2].
+
+Recursive Tactic Definition InverseTestAux FT trm :=
+ Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
+ And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
+ And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
+ And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
+ Match trm With
+ | [(AinvT ?)] -> Fail 1
+ | [(AoppT ?1)] -> StrongFail ((InverseTestAux FT ?1);Idtac)
+ | [(AplusT ?1 ?2)] ->
+ StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
+ | [(AmultT ?1 ?2)] ->
+ StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
+ | _ -> Idtac.
+
+Tactic Definition InverseTest FT :=
+ Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
+ Match Context With
+ | [|- ?1=?2] -> (InverseTestAux FT '(AplusT ?1 ?2)).
+
+(**** Field itself ****)
+
+Tactic Definition ApplySimplif sfun :=
+ (Match Context With
+ | [|- (interp_ExprA ?1 ?2 ?3)=(interp_ExprA ? ? ?)] ->
+ (sfun ?1 ?2 ?3));
+ (Match Context With
+ | [|- (interp_ExprA ? ? ?)=(interp_ExprA ?1 ?2 ?3)] ->
+ (sfun ?1 ?2 ?3)).
+
+Tactic Definition Unfolds FT :=
+ (Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
+ | [(Field_Some ? ?1)] -> Unfold ?1
+ | _ -> Idtac);
+ (Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
+ | [(Field_Some ? ?1)] -> Unfold ?1
+ | _ -> Idtac).
+
+Tactic Definition Reduce FT :=
+ Let AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
+ And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
+ And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
+ And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
+ And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
+ And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
+ Cbv Beta Delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] Zeta Iota
+ Orelse Compute.
+
+Recursive Tactic Definition Field_Gen_Aux FT :=
+ Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
+ Match Context With
+ | [|- ?1=?2] ->
+ Let lvar = (BuildVarList FT '(AplusT ?1 ?2)) In
+ Let trm1 = (interp_A FT lvar ?1)
+ And trm2 = (interp_A FT lvar ?2) In
+ Let mul = (GiveMult '(EAplus trm1 trm2)) In
+ Cut [ft:=FT][vm:=lvar](interp_ExprA ft vm trm1)=(interp_ExprA ft vm trm2);
+ [Compute;Auto
+ |Intros ft vm;(ApplySimplif ApplyDistrib);(ApplySimplif ApplyAssoc);
+ (Multiply mul);[(ApplySimplif ApplyMultiply);
+ (ApplySimplif (ApplyInverse mul));
+ (Let id = GrepMult In Clear id);WeakReduce;Clear ft vm;
+ First [(InverseTest FT);Ring|(Field_Gen_Aux FT)]|Idtac]].
+
+Tactic Definition Field_Gen FT :=
+ Unfolds FT;((InverseTest FT);Ring) Orelse (Field_Gen_Aux FT).
+V7only [Tactic Definition field_gen := Field_Gen.].
+
+(*****************************)
+(* Term Simplification *)
+(*****************************)
+
+(**** Minus and division expansions ****)
+
+Meta Definition InitExp FT trm :=
+ Let e =
+ (Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
+ | [(Field_Some ? ?1)] -> Eval Cbv Beta Delta [?1] in trm
+ | _ -> trm) In
+ Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
+ | [(Field_Some ? ?1)] -> Eval Cbv Beta Delta [?1] in e
+ | _ -> e.
+V7only [
+(*Used by contrib Maple *)
+Tactic Definition init_exp := InitExp.
+].
+
+(**** Inverses simplification ****)
+
+Recursive Meta Definition SimplInv trm:=
+ Match trm With
+ | [(EAplus ?1 ?2)] ->
+ Let e1 = (SimplInv ?1)
+ And e2 = (SimplInv ?2) In
+ '(EAplus e1 e2)
+ | [(EAmult ?1 ?2)] ->
+ Let e1 = (SimplInv ?1)
+ And e2 = (SimplInv ?2) In
+ '(EAmult e1 e2)
+ | [(EAopp ?1)] -> Let e = (SimplInv ?1) In '(EAopp e)
+ | [(EAinv ?1)] -> (SimplInvAux ?1)
+ | [?1] -> ?1
+And SimplInvAux trm :=
+ Match trm With
+ | [(EAinv ?1)] -> (SimplInv ?1)
+ | [(EAmult ?1 ?2)] ->
+ Let e1 = (SimplInv '(EAinv ?1))
+ And e2 = (SimplInv '(EAinv ?2)) In
+ '(EAmult e1 e2)
+ | [?1] -> Let e = (SimplInv ?1) In '(EAinv e).
+
+(**** Monom simplification ****)
+
+Recursive Meta Definition Map fcn lst :=
+ Match lst With
+ | [(nilT ?)] -> lst
+ | [(consT ?1 ?2 ?3)] ->
+ Let r = (fcn ?2)
+ And t = (Map fcn ?3) In
+ '(consT ?1 r t).
+
+Recursive Meta Definition BuildMonomAux lst trm :=
+ Match lst With
+ | [(nilT ?)] -> Eval Compute in (assoc trm)
+ | [(consT ? ?1 ?2)] -> BuildMonomAux ?2 '(EAmult trm ?1).
+
+Recursive Meta Definition BuildMonom lnum lden :=
+ Let ildn = (Map (Fun e -> '(EAinv e)) lden) In
+ Let ltot = Eval Compute in (appT ExprA lnum ildn) In
+ Let trm = (BuildMonomAux ltot EAone) In
+ Match trm With
+ | [(EAmult ? ?1)] -> ?1
+ | [?1] -> ?1.
+
+Recursive Meta Definition SimplMonomAux lnum lden trm :=
+ Match trm With
+ | [(EAmult (EAinv ?1) ?2)] ->
+ Let mma = (MemAssoc ?1 lnum) In
+ (Match mma With
+ | [true] ->
+ Let newlnum = (Remove ?1 lnum) In SimplMonomAux newlnum lden ?2
+ | [false] -> SimplMonomAux lnum '(consT ExprA ?1 lden) ?2)
+ | [(EAmult ?1 ?2)] ->
+ Let mma = (MemAssoc ?1 lden) In
+ (Match mma With
+ | [true] ->
+ Let newlden = (Remove ?1 lden) In SimplMonomAux lnum newlden ?2
+ | [false] -> SimplMonomAux '(consT ExprA ?1 lnum) lden ?2)
+ | [(EAinv ?1)] ->
+ Let mma = (MemAssoc ?1 lnum) In
+ (Match mma With
+ | [true] ->
+ Let newlnum = (Remove ?1 lnum) In BuildMonom newlnum lden
+ | [false] -> BuildMonom lnum '(consT ExprA ?1 lden))
+ | [?1] ->
+ Let mma = (MemAssoc ?1 lden) In
+ (Match mma With
+ | [true] ->
+ Let newlden = (Remove ?1 lden) In BuildMonom lnum newlden
+ | [false] -> BuildMonom '(consT ExprA ?1 lnum) lden).
+
+Meta Definition SimplMonom trm :=
+ SimplMonomAux '(nilT ExprA) '(nilT ExprA) trm.
+
+Recursive Meta Definition SimplAllMonoms trm :=
+ Match trm With
+ | [(EAplus ?1 ?2)] ->
+ Let e1 = (SimplMonom ?1)
+ And e2 = (SimplAllMonoms ?2) In
+ '(EAplus e1 e2)
+ | [?1] -> SimplMonom ?1.
+
+(**** Associativity and distribution ****)
+
+Meta Definition AssocDistrib trm := Eval Compute in (assoc (distrib trm)).
+
+(**** The tactic Field_Term ****)
+
+Tactic Definition EvalWeakReduce trm :=
+ Eval Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero
+ Aone Aplus Amult Aopp Ainv] Zeta Iota in trm.
+
+Tactic Definition Field_Term FT exp :=
+ Let newexp = (InitExp FT exp) In
+ Let lvar = (BuildVarList FT newexp) In
+ Let trm = (interp_A FT lvar newexp) In
+ Let tma = Eval Compute in (assoc trm) In
+ Let tsmp = (SimplAllMonoms (AssocDistrib (SimplAllMonoms
+ (SimplInv tma)))) In
+ Let trep = (EvalWeakReduce '(interp_ExprA FT lvar tsmp)) In
+ Replace exp with trep;[Ring trep|Field_Gen FT].
diff --git a/contrib7/field/Field_Theory.v b/contrib7/field/Field_Theory.v
new file mode 100644
index 00000000..3ba2fbc0
--- /dev/null
+++ b/contrib7/field/Field_Theory.v
@@ -0,0 +1,612 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Theory.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
+
+Require Peano_dec.
+Require Ring.
+Require Field_Compl.
+
+Record Field_Theory : Type :=
+{ A : Type;
+ Aplus : A -> A -> A;
+ Amult : A -> A -> A;
+ Aone : A;
+ Azero : A;
+ Aopp : A -> A;
+ Aeq : A -> A -> bool;
+ Ainv : A -> A;
+ Aminus : (field_rel_option A);
+ Adiv : (field_rel_option A);
+ RT : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq);
+ Th_inv_def : (n:A)~(n=Azero)->(Amult (Ainv n) n)=Aone
+}.
+
+(* The reflexion structure *)
+Inductive ExprA : Set :=
+| EAzero : ExprA
+| EAone : ExprA
+| EAplus : ExprA -> ExprA -> ExprA
+| EAmult : ExprA -> ExprA -> ExprA
+| EAopp : ExprA -> ExprA
+| EAinv : ExprA -> ExprA
+| EAvar : nat -> ExprA.
+
+(**** Decidability of equality ****)
+
+Lemma eqExprA_O:(e1,e2:ExprA){e1=e2}+{~e1=e2}.
+Proof.
+ Double Induction e1 e2;Try Intros;
+ Try (Left;Reflexivity) Orelse Try (Right;Discriminate).
+ Elim (H1 e0);Intro y;Elim (H2 e);Intro y0;
+ Try (Left; Rewrite y; Rewrite y0;Auto)
+ Orelse (Right;Red;Intro;Inversion H3;Auto).
+ Elim (H1 e0);Intro y;Elim (H2 e);Intro y0;
+ Try (Left; Rewrite y; Rewrite y0;Auto)
+ Orelse (Right;Red;Intro;Inversion H3;Auto).
+ Elim (H0 e);Intro y.
+ Left; Rewrite y; Auto.
+ Right;Red; Intro;Inversion H1;Auto.
+ Elim (H0 e);Intro y.
+ Left; Rewrite y; Auto.
+ Right;Red; Intro;Inversion H1;Auto.
+ Elim (eq_nat_dec n n0);Intro y.
+ Left; Rewrite y; Auto.
+ Right;Red;Intro;Inversion H;Auto.
+Defined.
+
+Definition eq_nat_dec := Eval Compute in Peano_dec.eq_nat_dec.
+Definition eqExprA := Eval Compute in eqExprA_O.
+
+(**** Generation of the multiplier ****)
+
+Fixpoint mult_of_list [e:(listT ExprA)]: ExprA :=
+ Cases e of
+ | nilT => EAone
+ | (consT e1 l1) => (EAmult e1 (mult_of_list l1))
+ end.
+
+Section Theory_of_fields.
+
+Variable T : Field_Theory.
+
+Local AT := (A T).
+Local AplusT := (Aplus T).
+Local AmultT := (Amult T).
+Local AoneT := (Aone T).
+Local AzeroT := (Azero T).
+Local AoppT := (Aopp T).
+Local AeqT := (Aeq T).
+Local AinvT := (Ainv T).
+Local RTT := (RT T).
+Local Th_inv_defT := (Th_inv_def T).
+
+Add Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (Azero T) (Aopp T)
+ (Aeq T) (RT T).
+
+Add Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
+
+(***************************)
+(* Lemmas to be used *)
+(***************************)
+
+Lemma AplusT_sym:(r1,r2:AT)(AplusT r1 r2)=(AplusT r2 r1).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AplusT_assoc:(r1,r2,r3:AT)(AplusT (AplusT r1 r2) r3)=
+ (AplusT r1 (AplusT r2 r3)).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_sym:(r1,r2:AT)(AmultT r1 r2)=(AmultT r2 r1).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_assoc:(r1,r2,r3:AT)(AmultT (AmultT r1 r2) r3)=
+ (AmultT r1 (AmultT r2 r3)).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AplusT_Ol:(r:AT)(AplusT AzeroT r)=r.
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_1l:(r:AT)(AmultT AoneT r)=r.
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AplusT_AoppT_r:(r:AT)(AplusT r (AoppT r))=AzeroT.
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_AplusT_distr:(r1,r2,r3:AT)(AmultT r1 (AplusT r2 r3))=
+ (AplusT (AmultT r1 r2) (AmultT r1 r3)).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma r_AplusT_plus:(r,r1,r2:AT)(AplusT r r1)=(AplusT r r2)->r1=r2.
+Proof.
+ Intros; Transitivity (AplusT (AplusT (AoppT r) r) r1).
+ Ring.
+ Transitivity (AplusT (AplusT (AoppT r) r) r2).
+ Repeat Rewrite -> AplusT_assoc; Rewrite <- H; Reflexivity.
+ Ring.
+Save.
+
+Lemma r_AmultT_mult:
+ (r,r1,r2:AT)(AmultT r r1)=(AmultT r r2)->~r=AzeroT->r1=r2.
+Proof.
+ Intros; Transitivity (AmultT (AmultT (AinvT r) r) r1).
+ Rewrite Th_inv_defT;[Symmetry; Apply AmultT_1l;Auto|Auto].
+ Transitivity (AmultT (AmultT (AinvT r) r) r2).
+ Repeat Rewrite AmultT_assoc; Rewrite H; Trivial.
+ Rewrite Th_inv_defT;[Apply AmultT_1l;Auto|Auto].
+Save.
+
+Lemma AmultT_Or:(r:AT) (AmultT r AzeroT)=AzeroT.
+Proof.
+ Intro; Ring.
+Save.
+
+Lemma AmultT_Ol:(r:AT)(AmultT AzeroT r)=AzeroT.
+Proof.
+ Intro; Ring.
+Save.
+
+Lemma AmultT_1r:(r:AT)(AmultT r AoneT)=r.
+Proof.
+ Intro; Ring.
+Save.
+
+Lemma AinvT_r:(r:AT)~r=AzeroT->(AmultT r (AinvT r))=AoneT.
+Proof.
+ Intros; Rewrite -> AmultT_sym; Apply Th_inv_defT; Auto.
+Save.
+
+Lemma without_div_O_contr:
+ (r1,r2:AT)~(AmultT r1 r2)=AzeroT ->~r1=AzeroT/\~r2=AzeroT.
+Proof.
+ Intros r1 r2 H; Split; Red; Intro; Apply H; Rewrite H0; Ring.
+Save.
+
+(************************)
+(* Interpretation *)
+(************************)
+
+(**** ExprA --> A ****)
+
+Fixpoint interp_ExprA [lvar:(listT (prodT AT nat));e:ExprA] : AT :=
+ Cases e of
+ | EAzero => AzeroT
+ | EAone => AoneT
+ | (EAplus e1 e2) => (AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2))
+ | (EAmult e1 e2) => (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2))
+ | (EAopp e) => ((Aopp T) (interp_ExprA lvar e))
+ | (EAinv e) => ((Ainv T) (interp_ExprA lvar e))
+ | (EAvar n) => (assoc_2nd AT nat eq_nat_dec lvar n AzeroT)
+ end.
+
+(************************)
+(* Simplification *)
+(************************)
+
+(**** Associativity ****)
+
+Definition merge_mult :=
+ Fix merge_mult {merge_mult [e1:ExprA] : ExprA -> ExprA :=
+ [e2:ExprA]Cases e1 of
+ | (EAmult t1 t2) =>
+ Cases t2 of
+ | (EAmult t2 t3) => (EAmult t1 (EAmult t2 (merge_mult t3 e2)))
+ | _ => (EAmult t1 (EAmult t2 e2))
+ end
+ | _ => (EAmult e1 e2)
+ end}.
+
+Fixpoint assoc_mult [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAmult e1 e3) =>
+ Cases e1 of
+ | (EAmult e1 e2) =>
+ (merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
+ (assoc_mult e3))
+ | _ => (EAmult e1 (assoc_mult e3))
+ end
+ | _ => e
+ end.
+
+Definition merge_plus :=
+ Fix merge_plus {merge_plus [e1:ExprA]:ExprA->ExprA:=
+ [e2:ExprA]Cases e1 of
+ | (EAplus t1 t2) =>
+ Cases t2 of
+ | (EAplus t2 t3) => (EAplus t1 (EAplus t2 (merge_plus t3 e2)))
+ | _ => (EAplus t1 (EAplus t2 e2))
+ end
+ | _ => (EAplus e1 e2)
+ end}.
+
+Fixpoint assoc [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e3) =>
+ Cases e1 of
+ | (EAplus e1 e2) =>
+ (merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3))
+ | _ => (EAplus (assoc_mult e1) (assoc e3))
+ end
+ | _ => (assoc_mult e)
+ end.
+
+Lemma merge_mult_correct1:
+ (e1,e2,e3:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_mult (EAmult e1 e2) e3))=
+ (interp_ExprA lvar (EAmult e1 (merge_mult e2 e3))).
+Proof.
+Intros e1 e2;Generalize e1;Generalize e2;Clear e1 e2.
+Induction e2;Auto;Intros.
+Unfold 1 merge_mult;Fold merge_mult;
+ Unfold 2 interp_ExprA;Fold interp_ExprA;
+ Rewrite (H0 e e3 lvar);
+ Unfold 1 interp_ExprA;Fold interp_ExprA;
+ Unfold 5 interp_ExprA;Fold interp_ExprA;Auto.
+Save.
+
+Lemma merge_mult_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_mult e1 e2))=
+ (interp_ExprA lvar (EAmult e1 e2)).
+Proof.
+Induction e1;Auto;Intros.
+Elim e0;Try (Intros;Simpl;Ring).
+Unfold interp_ExprA in H2;Fold interp_ExprA in H2;
+ Cut (AmultT (interp_ExprA lvar e2) (AmultT (interp_ExprA lvar e4)
+ (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))))=
+ (AmultT (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+Intro H3;Rewrite H3;Rewrite <-H2;
+ Rewrite merge_mult_correct1;Simpl;Ring.
+Ring.
+Save.
+
+Lemma assoc_mult_correct1:(e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (AmultT (interp_ExprA lvar (assoc_mult e1))
+ (interp_ExprA lvar (assoc_mult e2)))=
+ (interp_ExprA lvar (assoc_mult (EAmult e1 e2))).
+Proof.
+Induction e1;Auto;Intros.
+Rewrite <-(H e0 lvar);Simpl;Rewrite merge_mult_correct;Simpl;
+ Rewrite merge_mult_correct;Simpl;Auto.
+Save.
+
+Lemma assoc_mult_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (assoc_mult e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Auto;Intros.
+Elim e0;Intros.
+Intros;Simpl;Ring.
+Simpl;Rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
+ Rewrite (AmultT_1l (interp_ExprA lvar e1)); Apply H0.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite merge_mult_correct;Simpl;Rewrite merge_mult_correct;Simpl;
+ Rewrite AmultT_assoc;Rewrite assoc_mult_correct1;Rewrite H2;Simpl;
+ Rewrite <-assoc_mult_correct1 in H1;
+ Unfold 3 interp_ExprA in H1;Fold interp_ExprA in H1;
+ Rewrite (H0 lvar) in H1;
+ Rewrite (AmultT_sym (interp_ExprA lvar e3) (interp_ExprA lvar e1));
+ Rewrite <-AmultT_assoc;Rewrite H1;Rewrite AmultT_assoc;Ring.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Save.
+
+Lemma merge_plus_correct1:
+ (e1,e2,e3:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_plus (EAplus e1 e2) e3))=
+ (interp_ExprA lvar (EAplus e1 (merge_plus e2 e3))).
+Proof.
+Intros e1 e2;Generalize e1;Generalize e2;Clear e1 e2.
+Induction e2;Auto;Intros.
+Unfold 1 merge_plus;Fold merge_plus;
+ Unfold 2 interp_ExprA;Fold interp_ExprA;
+ Rewrite (H0 e e3 lvar);
+ Unfold 1 interp_ExprA;Fold interp_ExprA;
+ Unfold 5 interp_ExprA;Fold interp_ExprA;Auto.
+Save.
+
+Lemma merge_plus_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_plus e1 e2))=
+ (interp_ExprA lvar (EAplus e1 e2)).
+Proof.
+Induction e1;Auto;Intros.
+Elim e0;Try Intros;Try (Simpl;Ring).
+Unfold interp_ExprA in H2;Fold interp_ExprA in H2;
+ Cut (AplusT (interp_ExprA lvar e2) (AplusT (interp_ExprA lvar e4)
+ (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))))=
+ (AplusT (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+Intro H3;Rewrite H3;Rewrite <-H2;Rewrite merge_plus_correct1;Simpl;Ring.
+Ring.
+Save.
+
+Lemma assoc_plus_correct:(e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))=
+ (interp_ExprA lvar (assoc (EAplus e1 e2))).
+Proof.
+Induction e1;Auto;Intros.
+Rewrite <-(H e0 lvar);Simpl;Rewrite merge_plus_correct;Simpl;
+ Rewrite merge_plus_correct;Simpl;Auto.
+Save.
+
+Lemma assoc_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (assoc e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Auto;Intros.
+Elim e0;Intros.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite merge_plus_correct;Simpl;Rewrite merge_plus_correct;
+ Simpl;Rewrite AplusT_assoc;Rewrite assoc_plus_correct;Rewrite H2;
+ Simpl;Apply (r_AplusT_plus (interp_ExprA lvar (assoc e1))
+ (AplusT (interp_ExprA lvar (assoc e2))
+ (AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
+ (AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
+ (interp_ExprA lvar e1)));Rewrite <-AplusT_assoc;
+ Rewrite (AplusT_sym (interp_ExprA lvar (assoc e1))
+ (interp_ExprA lvar (assoc e2)));
+ Rewrite assoc_plus_correct;Rewrite H1;Simpl;Rewrite (H0 lvar);
+ Rewrite <-(AplusT_assoc (AplusT (interp_ExprA lvar e2)
+ (interp_ExprA lvar e1))
+ (interp_ExprA lvar e3) (interp_ExprA lvar e1));
+ Rewrite (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e3));
+ Rewrite (AplusT_sym (interp_ExprA lvar e1) (interp_ExprA lvar e3));
+ Rewrite <-(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
+ (interp_ExprA lvar e1));Apply AplusT_sym.
+Unfold assoc;Fold assoc;Unfold interp_ExprA;Fold interp_ExprA;
+ Rewrite assoc_mult_correct;Rewrite (H0 lvar);Simpl;Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Unfold assoc;Fold assoc;Unfold interp_ExprA;Fold interp_ExprA;
+ Rewrite assoc_mult_correct;Simpl;Auto.
+Save.
+
+(**** Distribution *****)
+
+Fixpoint distrib_EAopp [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e2) => (EAplus (distrib_EAopp e1) (distrib_EAopp e2))
+ | (EAmult e1 e2) => (EAmult (distrib_EAopp e1) (distrib_EAopp e2))
+ | (EAopp e) => (EAmult (EAopp EAone) (distrib_EAopp e))
+ | e => e
+ end.
+
+Definition distrib_mult_right :=
+ Fix distrib_mult_right {distrib_mult_right [e1:ExprA]:ExprA->ExprA:=
+ [e2:ExprA]Cases e1 of
+ | (EAplus t1 t2) =>
+ (EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2))
+ | _ => (EAmult e1 e2)
+ end}.
+
+Fixpoint distrib_mult_left [e1:ExprA] : ExprA->ExprA :=
+ [e2:ExprA]
+ Cases e1 of
+ | (EAplus t1 t2) =>
+ (EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2))
+ | _ => (distrib_mult_right e2 e1)
+ end.
+
+Fixpoint distrib_main [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAmult e1 e2) => (distrib_mult_left (distrib_main e1) (distrib_main e2))
+ | (EAplus e1 e2) => (EAplus (distrib_main e1) (distrib_main e2))
+ | (EAopp e) => (EAopp (distrib_main e))
+ | _ => e
+ end.
+
+Definition distrib [e:ExprA] : ExprA := (distrib_main (distrib_EAopp e)).
+
+Lemma distrib_mult_right_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (distrib_mult_right e1 e2))=
+ (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)).
+Proof.
+Induction e1;Try Intros;Simpl;Auto.
+Rewrite AmultT_sym;Rewrite AmultT_AplusT_distr;
+ Rewrite (H e2 lvar);Rewrite (H0 e2 lvar);Ring.
+Save.
+
+Lemma distrib_mult_left_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (distrib_mult_left e1 e2))=
+ (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)).
+Proof.
+Induction e1;Try Intros;Simpl.
+Rewrite AmultT_Ol;Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_Or.
+Rewrite distrib_mult_right_correct;Simpl;
+ Apply AmultT_sym.
+Rewrite AmultT_sym;
+ Rewrite (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
+ (interp_ExprA lvar e0));
+ Rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e));
+ Rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e0));
+ Rewrite (H e2 lvar);Rewrite (H0 e2 lvar);Auto.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Save.
+
+Lemma distrib_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (distrib e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Intros;Auto.
+Simpl;Rewrite <- (H lvar);Rewrite <- (H0 lvar); Unfold distrib;Simpl;Auto.
+Simpl;Rewrite <- (H lvar);Rewrite <- (H0 lvar); Unfold distrib;Simpl;
+ Apply distrib_mult_left_correct.
+Simpl;Fold AoppT;Rewrite <- (H lvar);Unfold distrib;Simpl;
+ Rewrite distrib_mult_right_correct;
+ Simpl;Fold AoppT;Ring.
+Save.
+
+(**** Multiplication by the inverse product ****)
+
+Lemma mult_eq:
+ (e1,e2,a:ExprA)(lvar:(listT (prodT AT nat)))
+ ~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (EAmult a e1))=(interp_ExprA lvar (EAmult a e2))->
+ (interp_ExprA lvar e1)=(interp_ExprA lvar e2).
+Proof.
+ Simpl;Intros;
+ Apply (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e2));Assumption.
+Save.
+
+Fixpoint multiply_aux [a,e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e2) =>
+ (EAplus (EAmult a e1) (multiply_aux a e2))
+ | _ => (EAmult a e)
+ end.
+
+Definition multiply [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAmult a e1) => (multiply_aux a e1)
+ | _ => e
+ end.
+
+Lemma multiply_aux_correct:
+ (a,e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (multiply_aux a e))=
+ (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Proof.
+Induction e;Simpl;Intros;Try (Rewrite merge_mult_correct);Auto.
+ Simpl;Rewrite (H0 lvar);Ring.
+Save.
+
+Lemma multiply_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (multiply e))=(interp_ExprA lvar e).
+Proof.
+ Induction e;Simpl;Auto.
+ Intros;Apply multiply_aux_correct.
+Save.
+
+(**** Permutations and simplification ****)
+
+Fixpoint monom_remove [a,m:ExprA] : ExprA :=
+ Cases m of
+ | (EAmult m0 m1) =>
+ (Cases (eqExprA m0 (EAinv a)) of
+ | (left _) => m1
+ | (right _) => (EAmult m0 (monom_remove a m1))
+ end)
+ | _ =>
+ (Cases (eqExprA m (EAinv a)) of
+ | (left _) => EAone
+ | (right _) => (EAmult a m)
+ end)
+ end.
+
+Definition monom_simplif_rem :=
+ Fix monom_simplif_rem {monom_simplif_rem/1:ExprA->ExprA->ExprA:=
+ [a,m:ExprA]
+ Cases a of
+ | (EAmult a0 a1) => (monom_simplif_rem a1 (monom_remove a0 m))
+ | _ => (monom_remove a m)
+ end}.
+
+Definition monom_simplif [a,m:ExprA] : ExprA :=
+ Cases m of
+ | (EAmult a' m') =>
+ (Cases (eqExprA a a') of
+ | (left _) => (monom_simplif_rem a m')
+ | (right _) => m
+ end)
+ | _ => m
+ end.
+
+Fixpoint inverse_simplif [a,e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e2) => (EAplus (monom_simplif a e1) (inverse_simplif a e2))
+ | _ => (monom_simplif a e)
+ end.
+
+Lemma monom_remove_correct:(e,a:ExprA)
+ (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (monom_remove a e))=
+ (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Proof.
+Induction e; Intros.
+Simpl;Case (eqExprA EAzero (EAinv a));Intros;[Inversion e0|Simpl;Trivial].
+Simpl;Case (eqExprA EAone (EAinv a));Intros;[Inversion e0|Simpl;Trivial].
+Simpl;Case (eqExprA (EAplus e0 e1) (EAinv a));Intros;[Inversion e2|
+ Simpl;Trivial].
+Simpl;Case (eqExprA e0 (EAinv a));Intros.
+Rewrite e2;Simpl;Fold AinvT.
+Rewrite <-(AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
+ (interp_ExprA lvar e1));
+ Rewrite AinvT_r;[Ring|Assumption].
+Simpl;Rewrite H0;Auto; Ring.
+Simpl;Fold AoppT;Case (eqExprA (EAopp e0) (EAinv a));Intros;[Inversion e1|
+ Simpl;Trivial].
+Unfold monom_remove;Case (eqExprA (EAinv e0) (EAinv a));Intros.
+Case (eqExprA e0 a);Intros.
+Rewrite e2;Simpl;Fold AinvT;Rewrite AinvT_r;Auto.
+Inversion e1;Simpl;ElimType False;Auto.
+Simpl;Trivial.
+Unfold monom_remove;Case (eqExprA (EAvar n) (EAinv a));Intros;
+ [Inversion e0|Simpl;Trivial].
+Save.
+
+Lemma monom_simplif_rem_correct:(a,e:ExprA)
+ (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (monom_simplif_rem a e))=
+ (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Proof.
+Induction a;Simpl;Intros; Try Rewrite monom_remove_correct;Auto.
+Elim (without_div_O_contr (interp_ExprA lvar e)
+ (interp_ExprA lvar e0) H1);Intros.
+Rewrite (H0 (monom_remove e e1) lvar H3);Rewrite monom_remove_correct;Auto.
+Ring.
+Save.
+
+Lemma monom_simplif_correct:(e,a:ExprA)
+ (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (monom_simplif a e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Intros;Auto.
+Simpl;Case (eqExprA a e0);Intros.
+Rewrite <-e2;Apply monom_simplif_rem_correct;Auto.
+Simpl;Trivial.
+Save.
+
+Lemma inverse_correct:
+ (e,a:ExprA)(lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (inverse_simplif a e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Intros;Auto.
+Simpl;Rewrite (H0 a lvar H1); Rewrite monom_simplif_correct ; Auto.
+Unfold inverse_simplif;Rewrite monom_simplif_correct ; Auto.
+Save.
+
+End Theory_of_fields.