summaryrefslogtreecommitdiff
path: root/contrib/setoid_ring/RealField.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2007-02-13 13:48:12 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2007-02-13 13:48:12 +0000
commit55ce117e8083477593cf1ff2e51a3641c7973830 (patch)
treea82defb4105f175c71b0d13cae42831ce608c4d6 /contrib/setoid_ring/RealField.v
parent208a0f7bfa5249f9795e6e225f309cbe715c0fad (diff)
Imported Upstream version 8.1+dfsgupstream/8.1+dfsg
Diffstat (limited to 'contrib/setoid_ring/RealField.v')
-rw-r--r--contrib/setoid_ring/RealField.v34
1 files changed, 31 insertions, 3 deletions
diff --git a/contrib/setoid_ring/RealField.v b/contrib/setoid_ring/RealField.v
index 13896123..d0512dff 100644
--- a/contrib/setoid_ring/RealField.v
+++ b/contrib/setoid_ring/RealField.v
@@ -1,6 +1,9 @@
-Require Import Raxioms.
-Require Import Rdefinitions.
+Require Import Nnat.
+Require Import ArithRing.
Require Export Ring Field.
+Require Import Rdefinitions.
+Require Import Rpow_def.
+Require Import Raxioms.
Open Local Scope R_scope.
@@ -102,4 +105,29 @@ Lemma Zeq_bool_complete : forall x y,
Zeq_bool x y = true.
Proof gen_phiZ_complete Rset Rext Rfield Rgen_phiPOS_not_0.
-Add Field RField : Rfield (infinite Zeq_bool_complete).
+Lemma Rdef_pow_add : forall (x:R) (n m:nat), pow x (n + m) = pow x n * pow x m.
+Proof.
+ intros x n; elim n; simpl in |- *; auto with real.
+ intros n0 H' m; rewrite H'; auto with real.
+Qed.
+
+Lemma R_power_theory : power_theory 1%R Rmult (eq (A:=R)) nat_of_N pow.
+Proof.
+ constructor. destruct n. reflexivity.
+ simpl. induction p;simpl.
+ rewrite ZL6. rewrite Rdef_pow_add;rewrite IHp. reflexivity.
+ unfold nat_of_P;simpl;rewrite ZL6;rewrite Rdef_pow_add;rewrite IHp;trivial.
+ rewrite Rmult_comm;apply Rmult_1_l.
+Qed.
+
+Ltac Rpow_tac t :=
+ match isnatcst t with
+ | false => constr:(InitialRing.NotConstant)
+ | _ => constr:(N_of_nat t)
+ end.
+
+Add Field RField : Rfield
+ (completeness Zeq_bool_complete, power_tac R_power_theory [Rpow_tac]).
+
+
+