summaryrefslogtreecommitdiff
path: root/contrib/setoid_ring/Field_tac.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /contrib/setoid_ring/Field_tac.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'contrib/setoid_ring/Field_tac.v')
-rw-r--r--contrib/setoid_ring/Field_tac.v406
1 files changed, 0 insertions, 406 deletions
diff --git a/contrib/setoid_ring/Field_tac.v b/contrib/setoid_ring/Field_tac.v
deleted file mode 100644
index cccee604..00000000
--- a/contrib/setoid_ring/Field_tac.v
+++ /dev/null
@@ -1,406 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import Ring_tac BinList Ring_polynom InitialRing.
-Require Export Field_theory.
-
- (* syntaxification *)
- Ltac mkFieldexpr C Cst CstPow radd rmul rsub ropp rdiv rinv rpow t fv :=
- let rec mkP t :=
- match Cst t with
- | InitialRing.NotConstant =>
- match t with
- | (radd ?t1 ?t2) =>
- let e1 := mkP t1 in
- let e2 := mkP t2 in constr:(FEadd e1 e2)
- | (rmul ?t1 ?t2) =>
- let e1 := mkP t1 in
- let e2 := mkP t2 in constr:(FEmul e1 e2)
- | (rsub ?t1 ?t2) =>
- let e1 := mkP t1 in
- let e2 := mkP t2 in constr:(FEsub e1 e2)
- | (ropp ?t1) =>
- let e1 := mkP t1 in constr:(FEopp e1)
- | (rdiv ?t1 ?t2) =>
- let e1 := mkP t1 in
- let e2 := mkP t2 in constr:(FEdiv e1 e2)
- | (rinv ?t1) =>
- let e1 := mkP t1 in constr:(FEinv e1)
- | (rpow ?t1 ?n) =>
- match CstPow n with
- | InitialRing.NotConstant =>
- let p := Find_at t fv in constr:(@FEX C p)
- | ?c => let e1 := mkP t1 in constr:(FEpow e1 c)
- end
-
- | _ =>
- let p := Find_at t fv in constr:(@FEX C p)
- end
- | ?c => constr:(FEc c)
- end
- in mkP t.
-
-Ltac FFV Cst CstPow add mul sub opp div inv pow t fv :=
- let rec TFV t fv :=
- match Cst t with
- | InitialRing.NotConstant =>
- match t with
- | (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
- | (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
- | (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
- | (opp ?t1) => TFV t1 fv
- | (div ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
- | (inv ?t1) => TFV t1 fv
- | (pow ?t1 ?n) =>
- match CstPow n with
- | InitialRing.NotConstant => AddFvTail t fv
- | _ => TFV t1 fv
- end
- | _ => AddFvTail t fv
- end
- | _ => fv
- end
- in TFV t fv.
-
-Ltac ParseFieldComponents lemma req :=
- match type of lemma with
- | context [
- (* PCond _ _ _ _ _ _ _ _ _ _ _ -> *)
- req (@FEeval ?R ?rO ?radd ?rmul ?rsub ?ropp ?rdiv ?rinv
- ?C ?phi ?Cpow ?Cp_phi ?rpow _ _) _ ] =>
- (fun f => f radd rmul rsub ropp rdiv rinv rpow C)
- | _ => fail 1 "field anomaly: bad correctness lemma (parse)"
- end.
-
-(* simplifying the non-zero condition... *)
-
-Ltac fold_field_cond req :=
- let rec fold_concl t :=
- match t with
- ?x /\ ?y =>
- let fx := fold_concl x in let fy := fold_concl y in constr:(fx/\fy)
- | req ?x ?y -> False => constr:(~ req x y)
- | _ => t
- end in
- match goal with
- |- ?t => let ft := fold_concl t in change ft
- end.
-
-Ltac simpl_PCond req :=
- protect_fv "field_cond";
- (try exact I);
- fold_field_cond req.
-
-Ltac simpl_PCond_BEURK req :=
- protect_fv "field_cond";
- fold_field_cond req.
-
-(* Rewriting (field_simplify) *)
-Ltac Field_norm_gen f Cst_tac Pow_tac lemma Cond_lemma req n lH rl :=
- let Main radd rmul rsub ropp rdiv rinv rpow C :=
- let mkFV := FV Cst_tac Pow_tac radd rmul rsub ropp rpow in
- let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in
- let mkFFV := FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in
- let mkFE :=
- mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in
- let fv := FV_hypo_tac mkFV req lH in
- let simpl_field H := (protect_fv "field" in H;f H) in
- let lemma_tac fv RW_tac :=
- let rr_lemma := fresh "f_rw_lemma" in
- let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in
- let vlpe := fresh "list_hyp" in
- let vlmp := fresh "list_hyp_norm" in
- let vlmp_eq := fresh "list_hyp_norm_eq" in
- let prh := proofHyp_tac lH in
- pose (vlpe := lpe);
- match type of lemma with
- | context [mk_monpol_list ?cO ?cI ?cadd ?cmul ?csub ?copp ?cdiv ?ceqb _] =>
- compute_assertion vlmp_eq vlmp
- (mk_monpol_list cO cI cadd cmul csub copp cdiv ceqb vlpe);
- (assert (rr_lemma := lemma n vlpe fv prh vlmp vlmp_eq)
- || fail 1 "type error when build the rewriting lemma");
- RW_tac rr_lemma;
- try clear rr_lemma vlmp_eq vlmp vlpe
- | _ => fail 1 "field_simplify anomaly: bad correctness lemma"
- end in
- ReflexiveRewriteTactic mkFFV mkFE simpl_field lemma_tac fv rl;
- try (apply Cond_lemma; simpl_PCond req) in
- ParseFieldComponents lemma req Main.
-
-Ltac Field_simplify_gen f :=
- fun req cst_tac pow_tac _ _ field_simplify_ok _ cond_ok pre post lH rl =>
- pre();
- Field_norm_gen f cst_tac pow_tac field_simplify_ok cond_ok req
- ring_subst_niter lH rl;
- post().
-
-Ltac Field_simplify := Field_simplify_gen ltac:(fun H => rewrite H).
-
-Tactic Notation (at level 0) "field_simplify" constr_list(rl) :=
- let G := Get_goal in
- field_lookup Field_simplify [] rl G.
-
-Tactic Notation (at level 0)
- "field_simplify" "[" constr_list(lH) "]" constr_list(rl) :=
- let G := Get_goal in
- field_lookup Field_simplify [lH] rl G.
-
-Tactic Notation "field_simplify" constr_list(rl) "in" hyp(H):=
- let G := Get_goal in
- let t := type of H in
- let g := fresh "goal" in
- set (g:= G);
- generalize H;clear H;
- field_lookup Field_simplify [] rl t;
- intro H;
- unfold g;clear g.
-
-Tactic Notation "field_simplify"
- "["constr_list(lH) "]" constr_list(rl) "in" hyp(H):=
- let G := Get_goal in
- let t := type of H in
- let g := fresh "goal" in
- set (g:= G);
- generalize H;clear H;
- field_lookup Field_simplify [lH] rl t;
- intro H;
- unfold g;clear g.
-
-(*
-Ltac Field_simplify_in hyp:=
- Field_simplify_gen ltac:(fun H => rewrite H in hyp).
-
-Tactic Notation (at level 0)
- "field_simplify" constr_list(rl) "in" hyp(h) :=
- let t := type of h in
- field_lookup (Field_simplify_in h) [] rl t.
-
-Tactic Notation (at level 0)
- "field_simplify" "[" constr_list(lH) "]" constr_list(rl) "in" hyp(h) :=
- let t := type of h in
- field_lookup (Field_simplify_in h) [lH] rl t.
-*)
-
-(** Generic tactic for solving equations *)
-
-Ltac Field_Scheme Simpl_tac Cst_tac Pow_tac lemma Cond_lemma req n lH :=
- let Main radd rmul rsub ropp rdiv rinv rpow C :=
- let mkFV := FV Cst_tac Pow_tac radd rmul rsub ropp rpow in
- let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in
- let mkFFV := FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in
- let mkFE :=
- mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in
- let rec ParseExpr ilemma :=
- match type of ilemma with
- forall nfe, ?fe = nfe -> _ =>
- (fun t =>
- let x := fresh "fld_expr" in
- let H := fresh "norm_fld_expr" in
- compute_assertion H x fe;
- ParseExpr (ilemma x H) t;
- try clear x H)
- | _ => (fun t => t ilemma)
- end in
- let Main_eq t1 t2 :=
- let fv := FV_hypo_tac mkFV req lH in
- let fv := mkFFV t1 fv in
- let fv := mkFFV t2 fv in
- let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in
- let prh := proofHyp_tac lH in
- let vlpe := fresh "list_hyp" in
- let fe1 := mkFE t1 fv in
- let fe2 := mkFE t2 fv in
- pose (vlpe := lpe);
- let nlemma := fresh "field_lemma" in
- (assert (nlemma := lemma n fv vlpe fe1 fe2 prh)
- || fail "field anomaly:failed to build lemma");
- ParseExpr nlemma
- ltac:(fun ilemma =>
- apply ilemma
- || fail "field anomaly: failed in applying lemma";
- [ Simpl_tac | apply Cond_lemma; simpl_PCond req]);
- clear vlpe nlemma in
- OnEquation req Main_eq in
- ParseFieldComponents lemma req Main.
-
-(* solve completely a field equation, leaving non-zero conditions to be
- proved (field) *)
-
-Ltac FIELD :=
- let Simpl := vm_compute; reflexivity || fail "not a valid field equation" in
- fun req cst_tac pow_tac field_ok _ _ _ cond_ok pre post lH rl =>
- pre();
- Field_Scheme Simpl cst_tac pow_tac field_ok cond_ok req
- Ring_tac.ring_subst_niter lH;
- try exact I;
- post().
-
-Tactic Notation (at level 0) "field" :=
- let G := Get_goal in
- field_lookup FIELD [] G.
-
-Tactic Notation (at level 0) "field" "[" constr_list(lH) "]" :=
- let G := Get_goal in
- field_lookup FIELD [lH] G.
-
-(* transforms a field equation to an equivalent (simplified) ring equation,
- and leaves non-zero conditions to be proved (field_simplify_eq) *)
-Ltac FIELD_SIMPL :=
- let Simpl := (protect_fv "field") in
- fun req cst_tac pow_tac _ field_simplify_eq_ok _ _ cond_ok pre post lH rl =>
- pre();
- Field_Scheme Simpl cst_tac pow_tac field_simplify_eq_ok cond_ok
- req Ring_tac.ring_subst_niter lH;
- post().
-
-Tactic Notation (at level 0) "field_simplify_eq" :=
- let G := Get_goal in
- field_lookup FIELD_SIMPL [] G.
-
-Tactic Notation (at level 0) "field_simplify_eq" "[" constr_list(lH) "]" :=
- let G := Get_goal in
- field_lookup FIELD_SIMPL [lH] G.
-
-(* Same as FIELD_SIMPL but in hypothesis *)
-
-Ltac Field_simplify_eq Cst_tac Pow_tac lemma Cond_lemma req n lH :=
- let Main radd rmul rsub ropp rdiv rinv rpow C :=
- let hyp := fresh "hyp" in
- intro hyp;
- match type of hyp with
- | req ?t1 ?t2 =>
- let mkFV := FV Cst_tac Pow_tac radd rmul rsub ropp rpow in
- let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in
- let mkFFV := FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in
- let mkFE :=
- mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in
- let rec ParseExpr ilemma :=
- match type of ilemma with
- | forall nfe, ?fe = nfe -> _ =>
- (fun t =>
- let x := fresh "fld_expr" in
- let H := fresh "norm_fld_expr" in
- compute_assertion H x fe;
- ParseExpr (ilemma x H) t;
- try clear H x)
- | _ => (fun t => t ilemma)
- end in
- let fv := FV_hypo_tac mkFV req lH in
- let fv := mkFFV t1 fv in
- let fv := mkFFV t2 fv in
- let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in
- let prh := proofHyp_tac lH in
- let fe1 := mkFE t1 fv in
- let fe2 := mkFE t2 fv in
- let vlpe := fresh "vlpe" in
- ParseExpr (lemma n fv lpe fe1 fe2 prh)
- ltac:(fun ilemma =>
- match type of ilemma with
- | req _ _ -> _ -> ?EQ =>
- let tmp := fresh "tmp" in
- assert (tmp : EQ);
- [ apply ilemma;
- [ exact hyp | apply Cond_lemma; simpl_PCond_BEURK req]
- | protect_fv "field" in tmp;
- generalize tmp;clear tmp ];
- clear hyp
- end)
- end in
- ParseFieldComponents lemma req Main.
-
-Ltac FIELD_SIMPL_EQ :=
- fun req cst_tac pow_tac _ _ _ lemma cond_ok pre post lH rl =>
- pre();
- Field_simplify_eq cst_tac pow_tac lemma cond_ok req
- Ring_tac.ring_subst_niter lH;
- post().
-
-Tactic Notation (at level 0) "field_simplify_eq" "in" hyp(H) :=
- let t := type of H in
- generalize H;
- field_lookup FIELD_SIMPL_EQ [] t;
- [ try exact I
- | clear H;intro H].
-
-
-Tactic Notation (at level 0)
- "field_simplify_eq" "[" constr_list(lH) "]" "in" hyp(H) :=
- let t := type of H in
- generalize H;
- field_lookup FIELD_SIMPL_EQ [lH] t;
- [ try exact I
- |clear H;intro H].
-
-(* Adding a new field *)
-
-Ltac ring_of_field f :=
- match type of f with
- | almost_field_theory _ _ _ _ _ _ _ _ _ => constr:(AF_AR f)
- | field_theory _ _ _ _ _ _ _ _ _ => constr:(F_R f)
- | semi_field_theory _ _ _ _ _ _ _ => constr:(SF_SR f)
- end.
-
-Ltac coerce_to_almost_field set ext f :=
- match type of f with
- | almost_field_theory _ _ _ _ _ _ _ _ _ => f
- | field_theory _ _ _ _ _ _ _ _ _ => constr:(F2AF set ext f)
- | semi_field_theory _ _ _ _ _ _ _ => constr:(SF2AF set f)
- end.
-
-Ltac field_elements set ext fspec pspec sspec dspec rk :=
- let afth := coerce_to_almost_field set ext fspec in
- let rspec := ring_of_field fspec in
- ring_elements set ext rspec pspec sspec dspec rk
- ltac:(fun arth ext_r morph p_spec s_spec d_spec f => f afth ext_r morph p_spec s_spec d_spec).
-
-Ltac field_lemmas set ext inv_m fspec pspec sspec dspec rk :=
- let get_lemma :=
- match pspec with None => fun x y => x | _ => fun x y => y end in
- let simpl_eq_lemma := get_lemma
- Field_simplify_eq_correct Field_simplify_eq_pow_correct in
- let simpl_eq_in_lemma := get_lemma
- Field_simplify_eq_in_correct Field_simplify_eq_pow_in_correct in
- let rw_lemma := get_lemma
- Field_rw_correct Field_rw_pow_correct in
- field_elements set ext fspec pspec sspec dspec rk
- ltac:(fun afth ext_r morph p_spec s_spec d_spec =>
- match morph with
- | _ =>
- let field_ok1 := constr:(Field_correct set ext_r inv_m afth morph) in
- match p_spec with
- | mkhypo ?pp_spec =>
- let field_ok2 := constr:(field_ok1 _ _ _ pp_spec) in
- match s_spec with
- | mkhypo ?ss_spec =>
- let field_ok3 := constr:(field_ok2 _ ss_spec) in
- match d_spec with
- | mkhypo ?dd_spec =>
- let field_ok := constr:(field_ok3 _ dd_spec) in
- let mk_lemma lemma :=
- constr:(lemma _ _ _ _ _ _ _ _ _ _
- set ext_r inv_m afth
- _ _ _ _ _ _ _ _ _ morph
- _ _ _ pp_spec _ ss_spec _ dd_spec) in
- let field_simpl_eq_ok := mk_lemma simpl_eq_lemma in
- let field_simpl_ok := mk_lemma rw_lemma in
- let field_simpl_eq_in := mk_lemma simpl_eq_in_lemma in
- let cond1_ok :=
- constr:(Pcond_simpl_gen set ext_r afth morph pp_spec dd_spec) in
- let cond2_ok :=
- constr:(Pcond_simpl_complete set ext_r afth morph pp_spec dd_spec) in
- (fun f =>
- f afth ext_r morph field_ok field_simpl_ok field_simpl_eq_ok field_simpl_eq_in
- cond1_ok cond2_ok)
- | _ => fail 4 "field: bad coefficiant division specification"
- end
- | _ => fail 3 "field: bad sign specification"
- end
- | _ => fail 2 "field: bad power specification"
- end
- | _ => fail 1 "field internal error : field_lemmas, please report"
- end).